Sample records for yb-doped media excited

  1. Laser, optical and thermomechanical properties of Yb-doped fluorapatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, S.A.; Smith, L.K.; DeLoach, L.D.

    The laser performance of Yb-doped fluorapatite (Ca[sub 5](PO[sub 4])[sub 3]F or FAP), is assessed by employing a Ti:sapphire laser operating at 905 nm as the pump source. The authors have measured slope efficiencies to be as high as 79%; the residual decrement from the quantum defect-limited efficiency of 87% is accounted for by the presence of passive loss at the 1,043-nm laser wavelength. The important spectral properties of Yb:FAP were evaluated, including the absorption and emission cross sections, excited-state lifetime, and ground-state energy-level splitting. The emission and absorption cross sections of Yb[sup 3+] in FAP are found to be substantiallymore » larger than those of other Yb-doped media. The thermal, physical, and optical properties of the FAP host are reported as well.« less

  2. Origin of near to middle infrared luminescence and energy transfer process of Er(3+)/Yb(3+)co-doped fluorotellurite glasses under different excitations.

    PubMed

    Huang, Feifei; Liu, Xueqiang; Ma, Yaoyao; Kang, Shuai; Hu, Lili; Chen, Danping

    2015-02-04

    We report the near to middle infrared luminescence and energy transfer process of Er(3+)/Yb(3+) co-doped fluorotellurite glasses under 980, 1550 and 800 nm excitations, respectively. Using a 980 nm laser diode pump, enhanced 1.5 and 2.7 μm emissions from Er(3+):I13/2→(4)I15/2 and I11/2→(4)I13/2 transitions are observed, in which Yb(3+) ions can increase pumping efficiency and be used as energy transfer donors. Meanwhile, Yb(3+) can also be used as an acceptor and intensive upconversion luminescence of around 1000 nm is achieved from Er(3+):I11/2→(4)I15/2 and Yb(3+): F5/2→(4)F7/2 transitions using 1550 nm excitation. In addition, the luminescence properties and variation trendency by 800 nm excitation is similar to that using 1550 nm excitation. The optimum Er(3+) and Yb(3+) ion ratio is 1:1.5 and excess Yb(3+) ions decrease energy transfer efficiency under the two pumpings. These results indicate that Er(3+)/Yb(3+) co-doped fluorotellurite glasses are potential middle- infrared laser materials and may be used to increase the efficiency of the silicon solar cells.

  3. Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations

    PubMed Central

    Huang, Feifei; Liu, Xueqiang; Ma, Yaoyao; Kang, Shuai; Hu, Lili; Chen, Danping

    2015-01-01

    We report the near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under 980, 1550 and 800 nm excitations, respectively. Using a 980 nm laser diode pump, enhanced 1.5 and 2.7 μm emissions from Er3+:I13/2→4I15/2 and I11/2→4I13/2 transitions are observed, in which Yb3+ ions can increase pumping efficiency and be used as energy transfer donors. Meanwhile, Yb3+ can also be used as an acceptor and intensive upconversion luminescence of around 1000 nm is achieved from Er3+:I11/2→4I15/2 and Yb3+: F5/2→4F7/2 transitions using 1550 nm excitation. In addition, the luminescence properties and variation trendency by 800 nm excitation is similar to that using 1550 nm excitation. The optimum Er3+ and Yb3+ ion ratio is 1:1.5 and excess Yb3+ ions decrease energy transfer efficiency under the two pumpings. These results indicate that Er3+/Yb3+ co-doped fluorotellurite glasses are potential middle- infrared laser materials and may be used to increase the efficiency of the silicon solar cells. PMID:25648651

  4. Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation.

    PubMed

    Taccheo, Stefano; Gebavi, Hrvoje; Monteville, Achille; Le Goffic, Olivier; Landais, David; Mechin, David; Tregoat, Denis; Cadier, Benoit; Robin, Thierry; Milanese, Daniel; Durrant, Tim

    2011-09-26

    We report on an extensive investigation of photodarkening in Yb-doped silica fibers. A set of similar fibers, covering a large Yb concentration range, was made so as to compare the photodarkening induced losses. Careful measurements were made to ensure equal and uniform inversion for all the tested fibers. The results show that, with the specific set-up, the stretching parameter obtained through fitting has a very limited variation. This gives more meaning to the fitting parameters. Results tend to indicate a square law dependence of the concentration of excited ions on the final saturated loss. We also demonstrate self-similarity of loss evolution when experimental curves are simply normalized to fitting parameters. This evidence of self-similarity also supports the possibility of introducing a preliminary figure of merit for Yb-doped fiber. This will allow the impact of photodarkening on laser/amplifier devices to be evaluated. © 2011 Optical Society of America

  5. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} andmore » Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3

  6. Upconversion luminescence in Er3+ doped and Er3+/Yb3+ codoped zirconia and hafnia nanocrystals excited at 980 nm

    NASA Astrophysics Data System (ADS)

    Gómez, Luis A.; Menezes, Leonardo de S.; de Araújo, Cid B.; Gonçalves, Rogeria R.; Ribeiro, Sidney J. L.; Messaddeq, Younes

    2010-06-01

    Frequency upconversion (UC) luminescence in nanocrystalline zirconia (ZrO2) and hafnia (HfO2) doped with Er3+ and Yb3+ was studied under continuous-wave excitation at 980 nm. Samples of ZrO2:Er3+, ZrO2:Er3+/Yb3+, and HfO2:Er3+/Yb3+ were prepared by the sol-gel technique and characterized using x-ray diffraction and electron microscopy. A study of the infrared-to-green and infrared-to-red UC processes was performed including the analysis of the spectral and the temporal behavior. The mechanisms contributing to the UC luminescence were identified as excited state absorption and energy transfer among rare-earth ions.

  7. X-ray Excitation Triggers Ytterbium Anomalous Emission in CaF2:Yb but Not in SrF2:Yb.

    PubMed

    Hughes-Currie, Rosa B; Ivanovskikh, Konstantin V; Wells, Jon-Paul R; Reid, Michael F; Gordon, Robert A; Seijo, Luis; Barandiarán, Zoila

    2017-03-16

    Materials that luminesce after excitation with ionizing radiation are extensively applied in physics, medicine, security, and industry. Lanthanide dopants are known to trigger crystal scintillation through their fast d-f emissions; the same is true for other important applications as lasers or phosphors for lighting. However, this ability can be seriously compromised by unwanted anomalous emissions often found with the most common lanthanide activators. We report high-resolution X-ray-excited optical (IR to UV) luminescence spectra of CaF 2 :Yb and SrF 2 :Yb samples excited at 8949 eV and 80 K. Ionizing radiation excites the known anomalous emission of ytterbium in the CaF 2 host but not in the SrF 2 host. Wave function-based ab initio calculations of host-to-dopant electron transfer and Yb 2+ /Yb 3+ intervalence charge transfer explain the difference. The model also explains the lack of anomalous emission in Yb-doped SrF 2 excited by VUV radiation.

  8. The Upconversion Luminescence of Er3+/Yb3+/Nd3+ Triply-Doped β-NaYF4 Nanocrystals under 808-nm Excitation

    PubMed Central

    Tian, Lijiao; Xu, Zheng; Zhao, Suling; Cui, Yue; Liang, Zhiqin; Zhang, Junjie; Xu, Xurong

    2014-01-01

    In this paper, Nd3+–Yb3+–Er3+-doped β-NaYF4 nanocrystals with different Nd3+ concentrations are synthesized, and the luminescence properties of the upconversion nanoparticles (UCNPs) have been studied under 808-nm excitation for sensitive biological applications. The upconversion luminescence spectra of NaYF4 nanoparticles with different dopants under 808-nm excitation proves that the Nd3+ ion can absorb the photons effectively, and the Yb3+ ion can play the role of an energy-transfer bridging ion between the Nd3+ ion and Er3+ ion. To investigate the effect of the Nd3+ ion, the decay curves of the 4S3/2 → 4I15/2 transition at 540 nm are measured and analyzed. The NaYF4: 20% Yb3+, 2% Er3+, 0.5% Nd3+ nanocrystals have the highest emission intensity among all samples under 808-nm excitation. The UC (upconversion) mechanism under 808-nm excitation is discussed in terms of the experimental results. PMID:28788246

  9. White phosphor using Yb3+-sensitized Er3+-and Tm3+-doped sol-gel derived lead-fluorosilicate transparent glass ceramic excited at 980 nm

    NASA Astrophysics Data System (ADS)

    Tavares, M. C. P.; da Costa, E. B.; Bueno, L. A.; Gouveia-Neto, A. S.

    2018-01-01

    Generation of primary colors and white light through frequency upconversion using sol-gel derived 80SiO2:20PbF2 vitroceramic phosphors doped with Er3+, Er3+/Yb3+, Tm3+/Yb3+, and Er3+/Tm3+/Yb3+ excited at 980 nm is demonstrated. For Er3+ and Er3+/Yb3+ doped samples emissions were obtained in the blue (410 nm), green (530, and 550 nm) and red (670 nm) regions, corresponding to the 2H9/2 → 4I15/2,2H11/2 → 4I15/2, 4S3/2 → 4I152 and 4F9/2 → 4I15/2 transitions of Er3+, respectively. The codoping with Yb3+ ions altered the spectral profile of most of the emissions compared to the single doped samples, resulting in changes in the emitted color, in addition to a significant increase in the emission intensity. In Tm3+/Yb3+ co-doped samples visible emissions in the blue (480 nm), and red (650 nm), corresponding to transitions 1G4 → 3H6 and 1G4 → 3F4 of Tm3+, respectively, were obtained. The emission intensity around 480 nm overcome the red emission, and luminescence showed a predominantly blue tone. White light with CIE-1931 coordinates (0.36; 0.34) was produced by homogeneously mixing up powders of heat treated at 400 °C co-doped samples 5.0Er3+/5.0Yb3+ and 0.5Tm3+/2.5Yb3+ in the mass ratio of 13%, and 87%, respectively. The measured emission spectrum for a sample resulting from the mixture showed a profile with very good agreement with the spectrum found from the superimposition of the spectra of the co-doped samples.

  10. Thermometry properties of Er, Yb-Gd2O2S microparticles: dependence on the excitation mode (cw versus pulsed excitation) and excitation wavelength (980 nm versus 1500 nm)

    NASA Astrophysics Data System (ADS)

    Avram, Daniel; Tiseanu, Carmen

    2018-04-01

    Herein, we present a first report on the luminescence thermometry properties of Er, Yb doped Gd2O2S microparticles under near infrared up-conversion excitation at 980 and 1500 nm measured in the 280-800 K interval. The thermometry properties are assessed using both cw and ns pulsed excitation as well as tuning the excitation wavelength across Yb and Er absorption profiles. For low cw (300 mW cm-1) and pulsed ns (400 ÷ 550 mW cm-1) excitation modes, no thermal load is observed. At room-temperature (280 K), the maximum relative sensitivity values are comparable under pulsed excitation at 980 and 1500 nm, around ˜0.01 and ˜0.008% K-1, respectively. In addition, a relative intense up-conversion emission at 980 nm under excitation at 1500 nm is measured. Our findings evidence attractive up-conversion and thermometry properties Er, Yb doped Gd2O2S under near-infrared excitation and highlight the need to explore further these properties in the nanoparticulate regime.

  11. Thermoluminescence properties of Yb-Tb-doped SiO2 optical fiber subject to 6 and 10 MV photon irradiation

    NASA Astrophysics Data System (ADS)

    Sahini, M. H.; Wagiran, H.; Hossain, I.; Saeed, M. A.; Ali, H.

    2014-08-01

    This paper reports thermoluminescence characteristics of thermoluminescence dosimetry 100 chips and Yb-Tb-doped optical fibers irradiated with 6 and 10 MV photons. Thermoluminescence response of both dosimeters increases over a wide photon dose range from 0.5 to 4 Gy. Yb-Tb-doped optical fibers demonstrate useful thermoluminescence properties and represent a good candidate for thermoluminescence dosimetry application with ionizing radiation. The results of this fiber have been compared with those of commercially available standard thermoluminescence dosimetry-100 media. Commercially available Yb-Tb-doped optical fibers and said standard media are found to yield a linear relationship between dose- and thermoluminescence signal, although Yb-Tb-doped optical fibers provide only 10 % of the sensitivity of thermoluminescence dosimetry-100. With better thermoluminescence characteristics such as small size (125 μm diameter), high flexibility, easy of handling and low cost, as compared to other thermoluminescence materials, indicate that commercial Yb-Tb-doped optical fiber is a promising thermoluminescence material for variety of applications.

  12. Compositional dependence of broadband near-infrared downconversion and upconversion of Yb3+-doped multi-component glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Liaolin; Xia, Yu; Shen, Xiao; Wei, Wei

    2017-07-01

    Yb3+ single-doped glasses show a strong excitation band in the 300-400 nm region, and efficiently emit photons with wavelengths of 920-1150 nm, and have potential applications in solar cells operating in an extraterrestrial situation. In this work, we systematically study the broadband near-infrared downconversion and upconversion of Yb3+-doped silicate, germanate, phosphate, tellurite and tungsten tellurite glasses. All samples show a broad excitation band in the 300-400 nm range, which is attributed to the charge transfer of the Yb3+-O2- couple. The position of the charge transfer band (CTB) shifts from 300 nm to longer wavelengths around 350 nm when the length of the R-O(Si, P, Ge, Te) increases. The longer R-O gives rise to a smaller central void for Yb3+, thus resulting in a small proportion of Yb3+ ions, thus leading to the blue-shift of the CTB. A smaller proportion of Yb3+ in silicate glasses causes in the strongest upconversion emission at 500 nm.

  13. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  14. Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties

    NASA Astrophysics Data System (ADS)

    Merzliakov, M. A.; Kouhar, V. V.; Malashkevich, G. E.; Pestryakov, E. V.

    2018-01-01

    Glasses of the TeO2-WO3-Yb2O3 system are synthesized for wide range of Yb3+ concentrations of up to 6.0 × 1021 ions/cm3. The spectral-luminescent properties of lightly doped samples are investigated at room temperature and at the boiling point of liquid nitrogen. The energies of the Stark levels of the ground and excited states of Yb3+ ions incorporated into tungsten-tellurite glass are determined by analyzing the low-temperature spectra. The absorption, emission, and gain cross section spectra are obtained. The excess of the measured fluorescence decay time over the radiative lifetime ∼0.3 ms derived from the absorption spectra is attributed to the reabsorption effect in bulk samples. Measurements of lightly doped glass powder in the immersion liquid are made to reduce the effect of reabsorption. The fluorescence decay time of the powder is very close to the calculated radiative lifetime. Compared with phosphate, silicate, and other Yb3+-doped glasses, the tungsten-tellurite glass has a promising potential as a gain medium for lasers and amplifiers.

  15. Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Maodong; Qi, Hongji; Pan, Mingyan; Hou, Qing; Jiang, Benxue; Jin, Yaxue; Han, Hetong; Song, Zhaohui; Zhang, Hui

    2018-05-01

    In this work, Yb-doped Y3Al5O12 [yttrium aluminum garnet (YAG)] crystals and Ca co-doped Yb:YAG crystals were grown by the Czochralski (CZ) method. The chemical formulas of the two crystals are (Yb0.1Y0.9)3Al5O12 and (Ca0.001Yb0.1Y0.899)3Al5O12, respectively. The structural, optical and luminescent properties of the Yb:YAG and Ca, Yb:YAG crystals were investigated by X-ray rocking curve, X-ray diffraction, Raman spectra, UV-Visble-NIR absorption spectra and X-ray fluorescence. X-ray fluorescence spectrum with two emission peaks at 330 nm and 490 nm were observed in the two kinds of crystals, which would increase slightly after the annealing. Comparing to the Yb:YAG crystal, Ca co-doped Yb:YAG crystal behaved the better luminescent intensity without changing the crystal structure and vibrational modes. This indicates that by doping Ca2+ in Yb:YAG crystal may be an appropriate way to enhance the luminescent property of the scintillation crystal.

  16. Ultralow-threshold laser and blue shift cooperative luminescence in a Yb{sup 3+} doped silica microsphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yantang, E-mail: g@fzu.edu.cn; Huang, Yu; Zhang, Peijin

    2014-02-15

    An experimental investigation on ultralow threshold laser and blue shift cooperative luminescence (CL) in a Yb{sup 3+} doped silica microsphere (YDSM) with continuous-wave 976 nm laser diode pumping is reported. The experimental results show that the YDSM emits laser oscillation with ultralow threshold of 2.62 μW, and the laser spectrum is modulated by the microsphere morphology characteristics. In addition, blue emission of YDSM is also observed with the increase of pump power, which is supposed to be generated by CL of excited Yb ion-pairs with the absorption of 976 nm photons and Si-O vibration phonons, and the process is explainedmore » with an energy level diagram. This property of the blue shift CL with phonons absorption in the Yb{sup 3+}doped microcavity makes it attractive for the application of laser cooling based on anti-Stokes fluorescence emission, if the Yb{sup 3+}doped microcavity made from with low phonon energy host materials.« less

  17. Intervalence charge transfer luminescence: Interplay between anomalous and 5d − 4f emissions in Yb-doped fluorite-type crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis; Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid

    2014-12-21

    In this paper, we report the existence of intervalence charge transfer (IVCT) luminescence in Yb-doped fluorite-type crystals associated with Yb{sup 2+}–Yb{sup 3+} mixed valence pairs. By means of embedded cluster, wave function theory ab initio calculations, we show that the widely studied, very broad band, anomalous emission of Yb{sup 2+}-doped CaF{sub 2} and SrF{sub 2}, usually associated with impurity-trapped excitons, is, rather, an IVCT luminescence associated with Yb{sup 2+}–Yb{sup 3+} mixed valence pairs. The IVCT luminescence is very efficiently excited by a two-photon upconversion mechanism where each photon provokes the same strong 4f{sup 14}–1A{sub 1g}→ 4f{sup 13}({sup 2}F{sub 7/2})5de{sub g}–1T{submore » 1u} absorption in the Yb{sup 2+} part of the pair: the first one, from the pair ground state; the second one, from an excited state of the pair whose Yb{sup 3+} moiety is in the higher 4f{sup 13}({sup 2}F{sub 5/2}) multiplet. The Yb{sup 2+}–Yb{sup 3+} → Yb{sup 3+}–Yb{sup 2+} IVCT emission consists of an Yb{sup 2+} 5de{sub g} → Yb{sup 3+} 4f{sub 7/2} charge transfer accompanied by a 4f{sub 7/2} → 4f{sub 5/2} deexcitation within the Yb{sup 2+} 4f{sup 13} subshell: [{sup 2}F{sub 5/2}5de{sub g},{sup 2}F{sub 7/2}] → [{sup 2}F{sub 7/2},4f{sup 14}]. The IVCT vertical transition leaves the oxidized and reduced moieties of the pair after electron transfer very far from their equilibrium structures; this explains the unexpectedly large band width of the emission band and its low peak energy, because the large reorganization energies are subtracted from the normal emission. The IVCT energy diagrams resulting from the quantum mechanical calculations explain the different luminescent properties of Yb-doped CaF{sub 2}, SrF{sub 2}, BaF{sub 2}, and SrCl{sub 2}: the presence of IVCT luminescence in Yb-doped CaF{sub 2} and SrF{sub 2}; its coexistence with regular 5d-4f emission in SrF{sub 2}; its absence in BaF{sub 2} and SrCl{sub 2}; the

  18. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kshetri, Yuwaraj K.; Regmi, Chhabilal; Kim, Hak-Soo; Wohn Lee, Soo; Kim, Tae-Ho

    2018-05-01

    Yb3+ and Er3+ doped YVO4 (Yb3+/Er3+:YVO4) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb3+/Er3+:YVO4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2H11/2, 4S3/2 to 4I15/2 and 4F9/2 to 4I15/2 transitions of Er3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb3+. The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  19. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles.

    PubMed

    Kshetri, Yuwaraj K; Regmi, Chhabilal; Kim, Hak-Soo; Lee, Soo Wohn; Kim, Tae-Ho

    2018-05-18

    Yb 3+ and Er 3+ doped YVO 4 (Yb 3+ /Er 3+ :YVO 4 ) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb 3+ /Er 3+ :YVO 4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2 H 11/2 , 4 S 3/2 to 4 I 15/2 and 4 F 9/2 to 4 I 15/2 transitions of Er 3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb 3+ . The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  20. Characterizations of Pr-doped Yb3Al5O12 single crystals for scintillator applications

    NASA Astrophysics Data System (ADS)

    Yoshida, Yasuki; Shinozaki, Kenji; Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-04-01

    Yb3Al5O12 (YbAG) single crystals doped with different concentrations of Pr were synthesized by the Floating Zone (FZ) method. Then, we evaluated their basic optical and scintillation properties. All the samples showed photoluminescence (PL) with two emission bands appeared approximately 300-500 nm and 550-600 nm due to the charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. A PL decay profile of each sample was approximated by a sum of two exponential decay functions, and the obtained decay times were 1 ns and 3-4 ns. In the scintillation spectra, we observed emission peaks in the ranges from 300 to 400 nm and from 450 to 550 nm for all the samples. The origins of these emissions were attributed to charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. The scintillation decay times became longer with increasing the Pr concentrations. Among the present samples, the 0.1% Pr-doped sample showed the lowest scintillation afterglow level. In addition, pulse height spectrum of 5.5 MeV α-rays was demonstrated using the Pr-doped YbAG, and we confirmed that all the samples showed a full energy deposited peak. Above all, the 0.1% Pr-doped sample showed the highest light yield with a value of 14 ph/MeV under α-rays excitation.

  1. Yb-doped polarizing fiber

    NASA Astrophysics Data System (ADS)

    Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.

    2017-02-01

    An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.

  2. Color tunable emission through energy transfer from Yb3+ co-doped SrSnO3: Ho3+ perovskite nano-phosphor

    NASA Astrophysics Data System (ADS)

    Jain, Neha; Singh, Rajan Kr.; Sinha, Shriya; Singh, R. A.; Singh, Jai

    2018-04-01

    First time color tunable lighting observed from Ho3+ and Yb3+ co-doped SrSnO3 perovskite. Down-conversion and up-conversion (UC) photoluminescence emission spectra were recorded to understand the whole mechanism of energy migration between Ho3+ and Yb3+ ions. The intensity of green and red emission varies with Yb3+ doping which causes multicolour emissions from nano-phosphor. The intensity of UC red emission (654 nm) obtained from 1 at.% Ho3+ and 3 at.% Yb3+ co-doped nano-phosphor is nine times higher than from 1 at.% Ho3+ doped SrSnO3 nano-phosphor. Enhanced brightness of 654 nm in UC process belongs in biological transparency window so that it might be a promising phosphor in the bio-medical field. Moreover, for the other Yb3+ co-doped nano-phosphor, Commission Internationale de l'Éclairage chromaticity co-ordinates were found near the white region and their CCT values lie in the range 4900-5100 K indicating cool white. Decay time was measured for 545 nm emission of Ho3+ ion found in 7.652 and 8.734 µs at 355 nm excitation. The variation in lifetime was observed in ascending order with increasing Yb3+ concentration which supports PL emission spectra observation that with increasing Yb3+ concentration, rate of transition has changed. These studies reveal that Ho3+ and Yb3+ co-doped phosphor is useful for fabrication of white LEDs.

  3. Upconversion improvement in KLaF4:Yb3+/Er3+ nanoparticles by doping Al3+ ions

    NASA Astrophysics Data System (ADS)

    Zhou, Haifang; Wang, Xiechun; Lai, Yunfeng; Cheng, Shuying; Zheng, Qiao; Yu, Jinlin

    2017-10-01

    Rare-earth ion-doped upconversion (UC) materials show great potential applications in optical and optoelectronic devices due to their novel optical properties. In this work, hexagonal KLaF4:Yb3+/Er3+ nanoparticles (NPs) were successfully synthesized by a hydrothermal method, and remarkably enhanced upconversion luminescence in green and red emission bands in KLaF4:Yb3+/Er3+ NPs has been achieved by doping Al3+ ions under 980 nm excitation. Compared to the aluminum-free KLaF4:Yb3+/Er3+ NPs sample, the UC fluorescence intensities of the green and red emissions of NPs doped with 10 at.% Al3+ ions were significantly enhanced by 5.9 and 7.3 times, respectively. Longer lifetimes of the doped samples were observed for the 4S3/2 state and 4F9/2 state. The underlying reason for the UC enhancement by doping Al3+ ions was mainly ascribed to distortion of the local symmetry around Er3+ ions and adsorption reduction of organic ligands on the surface of NPs. In addition, the influence of doping Al3+ ions on the structure and morphology of the NPs samples was also discussed.

  4. Luminescence of Er/Yb and Tm/Yb doped FAp nanoparticles and ceramics

    NASA Astrophysics Data System (ADS)

    Grigorjeva, L.; Smits, K.; Millers, D.; Jankoviča, Dz

    2015-03-01

    The nanoparticles of hydroxiapatite and fluorapatite doped with Er/Yb and Tm/Yb were synthesized and characterized by FTIR, XRD, SEM and TEM methods. The results of up-conversion luminescence studies were presented for the samples as prepared, annealed at 500°C and at 900-1000 °C. At annealing above 800°C the ceramic state was formed. It is shown that fluorapatite host is more appropriate than hydroxiapatite host for rare ions luminescence and up-conversion processes. The post preparing annealing of nanarticles significantly enhanced the luminescence intensity. The Tm/Yb doped fluorapatite shows intense up-conversion luminescence in 790-800 nm spectral region and is potentially useful for biomedical applications.

  5. Photoluminescence properties of Mn2+/Yb3+ co-doped oxyfluoride glasses for solar cells application

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Chen, Zeng; Jia, Xiyang; Li, Shengjun

    2018-01-01

    Mn2+/Yb3+ co-doped oxyfluoride glasses were facilely synthesized in the SiO2-Al2O3-Na2O-CaF2 system. Partial crystallization processed during the preparation of the glasses, by which small amounts of CaF2 nano-crystals were formed. Under ultraviolet and blue (370-500 nm) light excitation, an efficient down-conversion involving the emission of near-infrared is realized in the Mn2+/Yb3+ co-doped oxyfluoride glasses. The near-infrared emission peaks mainly at 976 nm and secondarily at 1020 nm, which is a comfortable match with the band gap of c-Si. The variation in visible and near-infrared spectra and the decay curves of Mn2+:4T1 → 6A1 emission have been investigated to verify the possible energy transfer from Mn2+ ions to Yb3+ ions. On analyzing the energy transfer processes theoretically and experimentally, we propose that quantum cutting and down-shifting processes may occur simultaneously in the samples. We suggest that the Mn2+-Yb3+ co-doped materials can provide a novel direction to realize UV-Vis to NIR down-conversion for Si solar cells.

  6. Violet-green excitation for NIR luminescence of Yb3+ ions in Bi2O3-B2O3-SiO2-Ga2O3 glasses.

    PubMed

    Li, Weiwei; Cheng, Jimeng; Zhao, Guoying; Chen, Wei; Hu, Lili; Guzik, Malgorzata; Boulon, Georges

    2014-04-21

    60Bi(2)O(3)-20B(2)O(3)-10SiO(2)-10Ga(2)O(3) glasses doped with 1-9 mol% Yb(2)O(3) were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb(3+), generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb(2+) and Bi(3+). 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi(0) metal nanoparticles/grains. Yb-content-dependence of the excitation and absorption means that Bi(0) is the reduced product of Bi(3+), but greatly competed by the redox reaction of Yb(2+) ↔ Yb(3+). It is proved that the violet-green excitations result in the NIR emission of Yb(3+). On the energy transfer, the virtual level of Yb(3+)-Yb(3+) as well as Bi(0) dimers probably plays an important role. An effective and controllable way is suggested to achieve nano-optical applications by Bi(0) metal nanoparticles/grains and Yb(3+).

  7. Fluorosilicate and fluorophosphate superfluorescent multicore optical fibers co-doped with Nd3+/Yb3+

    NASA Astrophysics Data System (ADS)

    Kochanowicz, M.; Zmojda, J.; Dorosz, D.

    2014-06-01

    In the paper spectroscopic properties of two fluorosilicate and fluorophosphate glass systems co-doped with Nd3+/Yb3+ ions are investigated. As a result of optical excitation at the wavelength of 808 nm strong and wide emission in the 1 μm region corresponding to the superposition of optical transitions 4F3/2 → 4I11/2 (Nd3+) and 2F5/2 → 2F7/2 (Yb3+) can be observed. The optimization of Nd3+ → Yb3+ energy transfer in both glasses allows to manufacture multicore optical fibers with narrowing and red-shifting of amplified spontaneous emission (ASE) at 1.1 μm.

  8. Enhancement of luminescence emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor by Li{sup +} co-doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilović, Tamara V.; Jovanović, Dragana J., E-mail: draganaj@vinca.rs; Lojpur, Vesna M.

    2014-09-15

    This paper demonstrates the effects of Li{sup +} co-doping on the structure, morphology, and luminescence properties of GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor prepared using a high-temperature solid-state chemistry method. The GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} powders synthesized with the Li{sup +} co-dopant (in concentrations of 0, 5, 10, and 15 mol%) are characterized by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectroscopy. Structural analysis showed that powders co-doped with Li{sup +} have larger crystallite sizes and slightly smaller crystal lattice parameters than powders prepared without Li{sup +} ions. Photoluminescence down-conversion (345-nm excitation) and up-conversion (980-nm excitation) spectra show characteristic Er{supmore » 3+} emissions, with the most intense bands peaking at 525 nm ({sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} transition) and 552 nm ({sup 4}S{sub 3/2}→{sup 4}I{sub 15/2}). The intensity of up-conversion emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} is enhanced (by a factor of four) by co-doping with 5 mol% of Li{sup +} ions. The mechanisms responsible for this emission enhancement are discussed. - Graphical abstract: UC emission spectra for GdVO{sub 4}:1.5-mol% Er{sup 3+}/20-mol% Yb{sup 3+} powders co-doped with different concentrations of Li{sup +} ions, recorded under 980-nm excitation. - Highlights: • 5-mol% Li{sup +} co-doped powders have 400% enhanced up-conversion emission intensity. • 15-mol% Li{sup +} co-doping produces 40% higher emission in down-conversion. • Li{sup +} co-doped powders have larger crystallite size and smaller lattice parameters.« less

  9. Crystal Growth and Luminescence Properties of Yb-doped Gd3Al2Ga3O12 Infra-red Scintillator

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Kurosawa, Shunsuke; Nagata, Shinji; Yamamura, Tomoo; Pejchal, Jan; Yamaji, Akihiro; Yokota, Yuui; Shirasaki, Kenji; Homma, Yoshiya; Aoki, Dai; Shikama, Tatsuo; Yoshikawa, Akira

    2014-07-01

    1-mol%-Yb-doped Gd3Al2Ga3O12 infra-red scintillator crystal has been studied as a novel implantable radiation monitor in radiation therapy. Powder X-ray diffraction measurement and chemical analysis with a field emission scanning microscope and wavelength dispersive spectrometer determined its garnet structure and average chemical composition of Yb0.03±0.01Gd2.99±0.07Al2.21±0.08Ga2.64±0.09O12.10±0.09. Transmittance measurements reached high values of approximately 70% in the human body transparency region between 650 to 1200 nm. Photoluminescence peaks were detected around 970 and 1030 nm under the 940 nm excitation with a Xe lamp. Infra-red scintillation emissions were clearly observed around 970 and 1030 nm due to Yb3+ 4f-4f transitions under X-ray excitation. Therefore, these results suggest that Yb-doped Gd3Al2Ga3O12 might be used as an infra-red scintillator material.

  10. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobkov, K K; Rybaltovsky, A A; Vel'miskin, V V

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicatemore » glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)« less

  11. Up-conversion white light of Tm 3+/Er 3+/Yb 3+ tri-doped CaF 2 phosphors

    NASA Astrophysics Data System (ADS)

    Cao, Chunyan; Qin, Weiping; Zhang, Jisen; Wang, Yan; Wang, Guofeng; Wei, Guodong; Zhu, Peifen; Wang, Lili; Jin, Longzhen

    2008-03-01

    Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors were synthesized using a hydrothermal method. The phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and up-conversion (UC) emission spectra. After annealing, the phosphors emitted white light under a 980 nm continuous wave diode laser (CW LD 2 W) excitation. As the excitation power density changed in the range of 20-260 W/cm2, the chromaticity coordinates of the UC light of the phosphor Ca0.885Tm0.005Er0.01Yb0.1F2 fell well in the white region of the 1931 CIE diagram. For the proportion of red, green and blue (RGB) in white light is strict, key factors for achieving UC white light, such as host materials, rare earth ions doping concentrations, annealing temperatures, as well as the excitation power densities, were investigated and discussed.

  12. Intense green and red upconversion emission of Er3+,Yb3+ co-doped CaZrO3 obtained by a solution combustion reaction

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Kumar Rai, Vineet; Haase, Markus

    2012-09-01

    CaZrO3 phosphors co-doped with Er3+ and Yb3+ ions have been prepared by the urea combustion route. The formation of the orthorhombic phase of CaZrO3 was confirmed by powder x-ray diffraction. The absorption in the 280-1800 nm region and excitation spectrum corresponding to the emission at 545 nm for CaZrO3:Er3+/CaZrO3:Er3+,Yb3+ phosphors have been recorded. Upon excitation at 978 nm, the material displays strong energy transfer upconversion emission in the green and red spectral regions. The upconversion emission of the CaZrO3:Er3+,Yb3+ co-doped material shows an increased red-to-green ratio, indicating cross relaxation between Er3+ ions.

  13. Er{sup 3+}/Yb{sup 3+}co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Rajesh; Gyawali, Gobinda; Cho, Sung Hun

    2014-01-15

    In this paper, we report the microwave hydrothermal synthesis of Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst. Crystal structure, morphology, elemental composition, optical properties and BET surface area were analyzed in detail. Infrared to visible upconversion luminescence at 532 nm and 546 nm of the co-doped samples was investigated under excitation at 980 nm. The results revealed that the co-doping of Er{sup 3+}/Yb{sup 3+} into Bi{sub 2}MoO{sub 6} exhibited enhanced photocatalytic activity for the decomposition of rhodamine B under simulated solar light irradiation. Enhanced photocatalytic activity can be attributed to the energy transfer between Er{sup 3+}/Yb{sup 3+} andmore » Bi{sub 2}MoO{sub 6} via infrared to visible upconversion from Er{sup 3+}/Yb{sup 3+} ion and higher surface area of the Bi{sub 2}MoO{sub 6} nanosheets. Therefore, this synthetic approach may exhibit a better alternative to fabricate upconversion photocatalyst for integral solar light absorption. - Graphical abstract: Schematic illustration of the upconversion photocatalysis. Display Omitted - Highlights: • Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst is successfully synthesized. • We obtained the nanosheets having high surface area. • Upconversion of IR to visible light was confirmed. • Upconversion phenomena can be utilized for effective photocatalysis.« less

  14. Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability

    NASA Astrophysics Data System (ADS)

    Li, Yuwei; Peng, Kun; Zhan, Huan; Liu, Shuang; Ni, Li; Wang, Yuying; Yu, Juan; Wang, Xiaolong; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2018-03-01

    By using chelate precursor doping technique and traditional modified chemical vapor deposition system, we fabricated Yb-doped aluminophosphosilicate (Al2O3-P2O5-SiO2, ternary Yb-APS) large-mode-area fiber and reported on its laser performance. The fiber preform was doped with Al, P and Yb with concentration of ∼8000 ppm, ∼1700 ppm and ∼400 ppm in molar percent, respectively. Tested with master oscillator power amplifier system, the home-made Yb-APS fiber was found to present 1.02 kW at 1061.1 nm with a high slope efficiency of 81.2% and excellent laser stability with power fluctuation less than ±1.1% for over 10 h. Compared with Yb-doped aluminosilicate (Al2O3-SiO2, binary Yb-AS) fiber, the introduction of P2O5 effectively suppressed photodarkening effect even the P/Al ratio is much less than 1, indicating that Yb-APS fiber is a better candidate for high power fiber lasers.

  15. Yb3+/Ho3+ Co-Doped Apatite Upconversion Nanoparticles to Distinguish Implanted Material from Bone Tissue.

    PubMed

    Li, Xiyu; Chen, Haifeng

    2016-10-07

    The exploration of bone reconstruction with time requires the combination of a biological method and a chemical technique. Lanthanide Yb 3+ and Ho 3+ co-doped fluorapatite (FA:Yb 3+ /Ho 3+ ) and hydroxyapatite (HA:Yb 3+ /Ho 3+ ) particles with varying dopant concentrations were prepared by hydrothermal synthesis and thermal activation. Controllable green and red upconversion emissions were generated under 980 nm near-infrared excitation; the FA:Yb 3+ /Ho 3+ particles resulted in superior green luminescence, while HA:Yb 3+ /Ho 3+ dominated in red emission. The difference in the green and red emission behavior was dependent on the lattice structure and composition. Two possible lattice models were proposed for Yb 3+ /Ho 3+ co-doped HA and FA along the hydroxyl channel and fluorine channel of the apatite crystal structure. We first reported the use of the upconversion apatite particles to clearly distinguish implanted material from bone tissue on stained histological sections of harvested in vivo samples. The superposition of the tissue image and material image is a creative method to show the material-tissue distribution and interrelation. The upconversion apatite particles and image superposition method provide a novel strategy for long-term discriminable fluorescence tracking of implanted material or scaffold during bone regeneration.

  16. Co-operative energy transfer in Yb3+-Er3+ co-doped SrGdxOy upconverting phosphor

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Pathak, Trilok K.; Dhoble, S. J.; . Terblans, J. J.; Swart, H. C.

    2018-04-01

    Upconversion nanoparticles (UCNPs) have shown considerable interest in many fields; however, low upconversion efficiency of UCNPs is still the most severe limitation of their applications. Yb3+ and Er3+ co-doped SrGd4O7/Gd2O3(SGO) upconversion (UC) phosphors were synthesized by a modified co-precipitation process. The UC properties were investigated by direct excitation with a 980 nm laser. It was observed that the as prepared materials showed relatively strong green emission, while upon the incorporation of the Er3+ ion, there was an increase in the upconversion luminescence intensity for the red component. The effect of different doping concentration of Er3+on the emission spectra and X-ray diffraction patterns of the UC materials have also been studied. The luminescence lifetimes and Commission Internationale de L'Eclairage coordinates for these as prepared samples were determined to understand the energy transfer (ET) mechanisms occurring between Yb3+ and Er3+ in the SGO host matrix. The UC luminescence intensity as a function of laser pump power was monitored and it was confirmed that the UC process in SGO:Yb3+/Er3+is a two-photon absorption process. The findings reported here are expected to provide a better approach for understanding of the ET mechanisms in the oxide based Yb3+/Er3+ co-doped UC phosphors. This study might be helpful in precisely defined applications where optical transitions are essential criterion and this can be easily achieved by smart tuning of the emission properties of Yb3+/Er3+ co-doped UC phosphors.

  17. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    PubMed Central

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-01-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu3+-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er3+/Yb3+-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from 2H11/2 → 2I15/2 and 4S3/2 → 4I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K−1, which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers. PMID:24572638

  18. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    NASA Astrophysics Data System (ADS)

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-02-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu3+-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er3+/Yb3+-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from 2H11/2 --> 2I15/2 and 4S3/2 --> 4I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K-1, which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.

  19. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method.

    PubMed

    Gavrilović, Tamara V; Jovanović, Dragana J; Lojpur, Vesna; Dramićanin, Miroslav D

    2014-02-27

    Synthesis of Eu(3+)- and Er(3+)/Yb(3+)-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu(3+)-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er(3+)/Yb(3+)-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from (2)H11/2 → (2)I15/2 and (4)S3/2 → (4)I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K(-1), which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.

  20. Transparent layered YAG ceramics with structured Yb doping produced via tape casting

    NASA Astrophysics Data System (ADS)

    Hostaša, Jan; Piancastelli, Andreana; Toci, Guido; Vannini, Matteo; Biasini, Valentina

    2017-03-01

    The flexibility of the ceramic production process, in particular in terms of shaping and spatial control of distribution of active ions, is one of the strong points in favor of transparent ceramics. In high power lasers in particular, where thermal management is a critical issue, the finely controlled design of spatial distribution of the doping ions within the laser gain media can reduce undesired thermally induced effects and large temperature gradients, and thus enhance the efficiency and laser beam quality especially under increased thermal load. In the present work transparent structured YAG ceramics with Yb doping were produced by tape casting followed by thermal compression of assembled tapes and sintered under high vacuum. The thermal compression of variously doped tape cast layers is a very promising method because it allows a high precision and good control over dopant distribution in the sintered material. After sintering, the distribution of Yb across the layers was characterized by SEM-EDX and the thickness of Yb diffusion zones between the layers with different Yb content was measured. Optical homogeneity was assessed by means of optical transmittance mapping of the samples and by 2D scanning of laser output. The effect of structured dopant distribution on laser performance was measured in quasi-CW and CW regime with different duty factors. Slope efficiency values higher than 50% were measured both in quasi-CW and in CW lasing conditions. The results are in good agreement with previously calculated predictions, confirming the beneficial effect of structured doping on laser performances and enlightening the impact of the residual scattering losses. Compared to other processing methods, such as the pressing of granulated powders, tape casting followed by thermal compression leads to straight and narrow interfaces between layers with different composition and allows to build structures composed of extremely thin layers with defined dopant content.

  1. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    NASA Astrophysics Data System (ADS)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle

  2. Optically active Er-Yb doped glass films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Serna, R.; Ballesteros, J. M.; Jiménez de Castro, M.; Solis, J.; Afonso, C. N.

    1998-08-01

    Active rare-earth Er3+-Yb3+ co-doped phosphate glass films are produced in a single step by pulsed laser deposition. The films are multimode waveguides and exhibit the highest refractive index, optical density and 1.54 μm photoluminescence intensity and lifetime when deposited at low oxygen pressure (Pox⩽4×10-5 Torr). The density of the films obtained under these conditions is higher than that of the target material as a consequence of the high kinetic energy of the species generated during ablation. Luminescent emission can be excited by optical pumping the Er3+ ions either directly or through cross-relaxation of the Yb3+. Post-deposition annealing allows us to improve the luminescence performance.

  3. Fluorescence properties of Yb3+-Er3+ co-doped phosphate glasses containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Martínez Gámez, Ma A.; Vallejo H, Miguel A.; Kiryanov, A. V.; Licea-Jiménez, L.; Lucio M, J. L.; Pérez-García, S. A.

    2018-04-01

    Er3+-Yb3+ co-doped phosphate glasses containing silver nitrate (SN), were fabricated. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analyses were used to evidence the nucleation and presence of silver nanoparticles (SNP). The basic parameters of the glasses were inspected by means of absorption and fluorescence spectra, and fluorescence lifetimes under excitation at 916 nm (in-band of Yb3+), and at 406 nm (in-band of surface plasmon resonance given by the presence of SNP). The spectra as well as estimates for the basic parameters defining the lasing/amplifying potential of the glasses were studied as a function of SN concentration. The experimental results indicate that by increasing the SN content an enhancement of Er3+/Yb3+ fluorescence takes place.

  4. Electroluminescent Yb2O3:Er and Yb2Si2O7:Er nanolaminate films fabricated by atomic layer deposition on silicon

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhongtao; Yang, Yang; Sun, Jiaming

    2018-06-01

    Atomic layer doped Yb2O3:Er and Yb2Si2O7:Er nanolaminate films are fabricated on silicon by atomic layer deposition, and ∼1530 nm electroluminescence (EL) is obtained from the metal-oxide-semiconductor light-emitting devices (MOSLEDs) based on these films. The Yb2O3 films transfer to Yb2Si2O7 phase after annealing above 1000 °C. Intense photoluminescence from Yb2Si2O7 film confirms high efficiency and energy transfer under optical excitation, but the limited electron conduction restricts the EL performance. EL from the Yb2O3:Er MOSLED outperforms, presenting an external quantum efficiency up to 8.5% and the power efficiency of 1 × 10-3. The EL is derived to result from the impact excitation of Er3+ ions by hot electrons, which stem from Fowler-Nordheim tunneling mechanism under sufficient bias voltage. The critical distance for the cross relaxation of doped Er3+ ions in nanolaminate Yb2O3 matrix is experimentally determined to be ∼3 nm. Such devices manifest the technological potential of Er-doped Yb-oxides for applications in silicon-based optoelectronics.

  5. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles.

    PubMed

    Zou, Qilin; Huang, Ping; Zheng, Wei; You, Wenwu; Li, Renfu; Tu, Datao; Xu, Jin; Chen, Xueyuan

    2017-05-18

    Lanthanide (Ln 3+ )-doped upconversion nanoparticles (UCNPs) have attracted tremendous interest owing to their potential bioapplications. However, the intrinsic photophysics responsible for upconversion (UC) especially the cooperative sensitization UC (CSU) in colloidal Ln 3+ -doped UCNPs has remained untouched so far. Herein, we report a unique strategy for the synthesis of high-quality LiYbF 4 :Ln 3+ core-only and core/shell UCNPs with tunable particle sizes and shell thicknesses. Energy transfer UC from Er 3+ , Ho 3+ and Tm 3+ and CSU from Tb 3+ were comprehensively surveyed under 980 nm excitation. Through surface passivation, we achieved efficient non-cooperative sensitization UC with absolute UC quantum yields (QYs) of 3.36%, 0.69% and 0.81% for Er 3+ , Ho 3+ and Tm 3+ , respectively. Particularly, we for the first time quantitatively determined the CSU efficiency for Tb 3+ with an absolute QY of 0.0085% under excitation at a power density of 70 W cm -2 . By means of temperature-dependent steady-state and transient UC spectroscopy, we unraveled the dominant mechanisms of phonon-assisted cooperative energy transfer (T > 100 K) and sequential dimer ground-state absorption/excited-state absorption (T < 100 K) for the CSU process in LiYbF 4 :Tb 3+ UCNPs.

  6. Preparation and laser properties of Yb3+-doped microstructure fiber based on hydrolysis-melting technique

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    2017-01-01

    The Yb3+-doped silica glass was prepared by the SiCl4 hydrolysis doping and powder melting technology based on high frequency plasma. The absorption and emission characteristics of the Yb3+-doped silica glass are studied at room temperature. The integrated absorption cross section, stimulated emission cross section and fluorescence lifetime are calculated to be 8.56×104 pm3, 1.39 pm2 and 0.56 ms, respectively. The Yb3+-doped microstructure fiber (MSF) was also fabricated by using the Yb3+-doped silica glass as fiber core. What's more, the laser properties of the Yb3+-doped MSF are studied.

  7. Study of upconversion fluorescence property of novel Er3+/Yb3+ co-doped tellurite glasses.

    PubMed

    Xu, Tie-Feng; Li, Guang-Po; Nie, Qiu-Hua; Shen, Xiang

    2006-06-01

    Er3+/Yb3+ co-doped TeO2-B2O3-Nb2O5-ZnO (TBN) glasses were prepared. The absorption spectra and upconversion luminescence spectra of TBN glasses were measured and analyzed. The upconversion emission bands centered at 530, 546 and 658 nm were observed under the excitation at 975 nm, corresponding to the transitions of 2H11/2-->4I15/2, 4S3/2-->4I15/2 and 4F9/2-->4I15/2 respectively. The ratio of red emission to green emission increases with an increasing of Yb3+ ions concentration. According to the quadratic dependence on excitation power, the possible upconversion mechanisms and processes were discussed.

  8. Synthesis and photoluminescence in Yb doped cerium phosphate CePO4

    NASA Astrophysics Data System (ADS)

    Bhonsule, S. U.; Wankhede, S. P.; Moharil, S. V.

    2018-05-01

    This paper presents the preparation of CePO4 and Yb doped CePO4 using simple solid state reaction method. PL measurements indicated significant energy transfer from Ce3+ to Yb3+ ions. Further evidence of energy transfer was provided by analysis of Luminescence Decay measurements. Energy transfer efficiency of 50% was obtained for 5%Yb doping. Energy transfer from Ce3+ to Yb3+ ions takes place by Cooperative energy transfer mechanism. Such phosphors can be used in white LED's, Lasers and energy saving fluorescent lamps.

  9. Biocompatible Er, Yb co-doped fluoroapatite upconversion nanoparticles for imaging applications

    NASA Astrophysics Data System (ADS)

    Anjana, R.; K. M., Kurias; M. K., Jayaraj

    2017-08-01

    Upconversion luminescence, visible emission on infra red (IR) excitation was achieved in a biocompatible material, fluoroapatite. Fluoroapatite crystals are well known biomaterials, which is a component of tooth enamel. Also it can be considered as an excellent host material for lanthanide doping since the ionic radii of lanthanide is similar to that of calcium ion(Ca2+) hence successful incorporation of dopants within the lattice is possible. Erbium (Er), Ytterbium (Yb) co-doped fluorapatite (FAp) nanoparticles were prepared by precipitation method. The particles show intense visible emission when excited with 980 nm laser. Since upconversion luminescence is a multiphoton process the excitation power dependence on emission will give number of photons involved in the emission of single photon. Excitation power dependence studies show that two photons are involved in the emission of single photons. The value of slope was different for different emission peak because of the difference in intermediate energy level involved. The crystal structure and morphology of the particle were determined using X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM). These particles with surface functionalisation can be used for live cell imaging.

  10. Emission intensity of the λ = 1.54 μm line in ZnO films grown by magnetron sputtering, diffusion doped with Ce, Yb, Er

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezdrogina, M. M., E-mail: margeret.m@mail.ioffe.ru; Eremenko, M. V.; Smirnov, A. N.

    2015-08-15

    The effect of the Er{sup 3+}-ion excitation type on the photoluminescence spectra of crystalline ZnO(ZnO〈Ce, Yb, Er〉) films is determined in the cases of resonant (λ = 532 nm, Er{sup 3+}-ion transition from {sup 4}S{sub 3/2}, {sup 2}H{sub 11/2} levels to {sup 4}I{sub 15/2}) and non-resonant (λ = 325 nm, in the region near the ZnO band-edge emission) excitation. It is shown that resonant excitation gives rise to lines with various emission intensities, characteristic of the Er{sup 3+}-ion intracenter 4f transition with λ = 1535 nm when doping crystalline ZnO films with three rare-earth ions (REIs, Ce, Yb, Er) ormore » with two impurities (Ce, Er) or (Er, Yb), independently of the measurement temperature (T = 83 and 300 K). The doping of crystalline ZnO films with rare-earth impurities (Ce, Yb, Er) leads to the efficient transfer of energy to REIs, a consequence of which is the intense emission of an Er{sup 3+} ion in the IR spectral region at λ{sub max} = 1535 nm. The kick-out diffusion mechanism is used upon the sequential introduction of impurities into semiconductor matrices and during the postgrowth annealing of the ZnO films under study. The crystalline ZnO films doped with Ce, Yb, Er also exhibit intense emission in the visible spectral region at room temperature, which makes them promising materials for optoelectronics.« less

  11. Enhanced frequency upconversion study in Er3+/Yb3+ doped/codoped TWTi glasses

    NASA Astrophysics Data System (ADS)

    Azam, Mohd; Rai, Vineet Kumar

    2018-04-01

    Er3+/Yb3+ doped/codoped TeO2-WO3-TiO2 (TWTi) glasses have been prepared by using the melt-quenching technique. The upconversion (UC) emission spectra of the developed glasses have been recorded upon 980 nm laser excitation. Three intense UC emission bands have been observed within the green and red region centered at ˜532 nm, ˜553 nm and ˜669 nm corresponding to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions respectively in the singly Er3+ doped glass. On introducing Yb3+ ions in the singly Er3+ doped glass, an enhancement of about ˜ 12 times and ˜50 times in the green and red bands respectively have been observed even at low pump power ˜ 364 mW followed by two photon absorption process. Colour tunability from yellowish green to pure green colour region has been observed on varying the pump power. The prepared glass can be used to produce NIR to green upconverter and colour tunable display devices.

  12. Assessment of effect of Yb3+ ion pairs on a highly Yb-doped double-clad fibre laser

    NASA Astrophysics Data System (ADS)

    Vallés, J. A.; Martín, J. C.; Berdejo, V.; Cases, R.; Álvarez, J. M.; Rebolledo, M. Á.

    2018-03-01

    Using a previously validated characterization method based on the careful measurement of the characteristic parameters and fluorescence emission spectra of a highly Yb-doped double-clad fibre, we evaluate the contribution of ion pair induced processes to the output power of a double-clad Yb-doped fibre ring laser. This contribution is proved to be insignificant, contrary to analysis by other authors, who overestimate the role of ion pairs.

  13. Enhanced NIR downconversion luminescence by precipitating nano Ca5(PO4)3F crystals in Eu2+-Yb3+ co-doped glass

    NASA Astrophysics Data System (ADS)

    Li, Chen; Song, Zhiguo; Li, Yongjin; Lou, Kai; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Wang, Xue; Wang, Qi; Wan, Ronghua

    2013-10-01

    Eu2+-Yb3+ co-doped transparent glass-ceramic containing nano-Ca5(PO4)3F (FAP) was prepared in reducing atmosphere. XRD and TEM analysis indicated that nano-FAP about 40 nm precipitated homogeneously in glass matrix after heat treatment. Confirmed by spectroscopy measurements, the crystal-like absorption and emission of Eu2+ indicated the partition of Eu2+ into FAP nanocrystals in glass ceramic. NIR emission due to the transition 2F→2F of Yb3+ ions (about 980-1100 nm) was observed from glasses under ultraviolet excitation, ascribed to downconversion from Eu2+ to Yb3+, which can be enhanced by precipitating nano-FAP crystals. The results indicated that Eu2+-Yb3+ co-doped glass-ceramic embedding with nano-FAP is a promising candidate as downconversion materials for enhancing conversion efficiency of solar cells.

  14. Nd³⁺-Yb³⁺ doped powder for near-infrared optical temperature sensing.

    PubMed

    Rakov, Nikifor; Maciel, Glauco S

    2014-07-01

    Er³⁺ doped powders are generally used for fluorescence-based temperature sensing application when near-infrared lasers are the excitation sources of choice. The fluorescence of Er³⁺ is produced by nonlinear (upconversion) processes, which generate strong internal heat. Lowering the excitation power causes drastic reduction of the fluorescence signal, and as a consequence the sensor applicability of Er³⁺ doped powders becomes compromised. Here we propose the use of the downconverted fluorescence of Yb³⁺ produced by efficient energy transfer from Nd³⁺ as an alternative temperature sensing system. Our results are presented for yttrium silicate powders prepared by combustion synthesis.

  15. Up-conversion luminescence properties and energy transfer of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Mei, Lefu, E-mail: mlf@cugb.edu.cn; Deng, Junru

    2015-11-15

    Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} up-conversion (UC) phosphors were successfully synthesized by high temperature solid-state reaction method. The X-ray diffraction (XRD) results show that synthesized phosphor co-doped with 0.75% Tm/10% Yb has the optimum pure phase of BaLa{sub 2}ZnO{sub 5} among different co-doping concentrations. The structure of BaLa{sub 2}ZnO{sub 5}:0.75% Tm/10% Yb phosphor was refined by the Rietveld method and results show the decreased unit cell parameters and cell volume after doping Tm{sup 3+}/Yb{sup 3+}, indicating that Tm{sup 3+}/Yb{sup 3+} have successfully replaced La{sup 3+}. Under excitation at 980 nm, Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} phosphorsmore » present bright blue emission near 478 nm generated by the {sup 1}G{sub 4}→{sup 3}H{sub 6} transition and weak red emissions around 653 nm and 692 nm generated by the {sup 1}G{sub 4}→{sup 3}F{sub 4} and {sup 3}F{sub 3}→{sup 3}H{sub 6} transitions of Tm{sup 3+}, respectively. The UC luminescence properties of BaLa{sub 2}ZnO{sub 5} phosphors co-doped with different Tm{sup 3+}/Yb{sup 3+} concentrations were investigated, and the related UC mechanisms of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} depending on pump power were studied in detail. - Graphical abstract: Up-conversion luminescence of BaLa{sub 2}ZnO{sub 5}:Tm{sup 3+}/Yb{sup 3+} and its crystal structure and up-conversion mechanisms. - Highlights: • Up-conversion phosphors BaLa{sub 2}ZnO{sub 5} co-doped with Tm{sup 3+}/Yb{sup 3+} were synthesized by high temperature solid-state reaction method. • The crystal structure of BaLa{sub 2}ZnO{sub 5} and the changes of cell parameters and volume of BaLa{sub 2}ZnO{sub 5} after doping Tm{sup 3+} and Yb{sup 3+} have been discussed. • Up-conversion luminescence properties and energy transfer between Tm{sup 3+} and Yb{sup 3+} in BaLa{sub 2}ZnO{sub 5} have been discussed in detail.« less

  16. Yb-doped large-mode-area laser fiber fabricated by halide-gas-phase-doping technique

    NASA Astrophysics Data System (ADS)

    Peng, Kun; Wang, Yuying; Ni, Li; Wang, Zhen; Gao, Cong; Zhan, Huan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2015-06-01

    In this manuscript, we designed a rare-earth-halide gas-phase-doping setup to fabricate a large-mode-area fiber for high power laser applications. YbCl3 and AlCl3 halides are evaporated, carried respectively and finally mixed with usual host gas material SiCl4 at the hot zone of MCVD system. Owing to the all-gas-phasing reaction process and environment, the home-made Yb-doped fiber preform has a homogeneous large core and modulated refractive index profile to keep high beam quality. The drawn fiber core has a small numerical aperture of 0.07 and high Yb concentration of 9500 ppm. By using a master oscillator power amplifier system, nearly kW-level (951 W) laser output power was obtained with a slope efficiency of 83.3% at 1063.8 nm, indicating the competition and potential of the halide-gas-phase-doping technique for high power laser fiber fabrication.

  17. Transparent Oxyfluoride Nano-Glass-Ceramics Doped with Pr3+ and Pr3+-Yb3+ for NIR Emission

    NASA Astrophysics Data System (ADS)

    Gorni, Giulio; Cosci, Alessandro; Pelli, Stefano; Pascual, Laura; Durán, Alicia; Pascual, M. J.

    2016-12-01

    Pr3+-Yb3+ co-doped oxyfluoride glasses and glass-ceramics (GC) containing LaF3 nanocrystals have been prepared to obtain NIR emission of Yb3+ ions upon Pr3+ excitation in the blue region of the visible spectrum. Two different compositions have been tested 0.1-0.5 Pr-Yb and 0.5-1 Pr-Yb, in addition to Pr3+ singly doped samples. The crystallization mechanism of the nano-glass-ceramics was studied by DTA revealing that it occurs from a constant number of nuclei, the crystal growth being limited by diffusion. HR-TEM demonstrated that phase separation acts as precursor for LaF3 crystallization and a detailed analysis of the chemical composition (EDXS) revealed the enrichment in RE3+ ions inside the initial phase separated droplets, from which the LaF3 crystals are formed. The RE3+ ions incorporation inside LaF3 crystals was also proved by photoluminescence measurements showing Stark splitting of the RE3+ ions energy levels in the glass-ceramic samples. Lifetimes measurements showed the existence of a better energy transfer process between Pr3+ and Yb3+ ions in the glass-ceramics compared to the as made glass, and the highest value of energy transfer efficiency is 59% and the highest theoretical quantum efficiency is 159%, obtained for glass-ceramics GC0.1-0.5 Pr-Yb treated at 620 ºC-40 h.

  18. Single linearly polarized, widely and freely tunable two wavelengths Yb3+-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Dongfeng; Wang, Chinhua

    2010-01-01

    We report a novel single linearly polarized, widely, freely and continuously tunable two wavelengths Yb3+-doped fiber laser. The laser generates stable arbitrary two wavelengths output between 1003.1 and 1080.7 nm peak wavelengths simultaneously with a 346.0 mW CW power by using polarization beam splitting (PBS) for separation of two wavelengths. Each lasing line shows a single polarization with a polarization extinction ratio of >20 dB under different pump levels. The central and the interval of the two wavelengths can be tuned smoothly and independently in the entire gain region of >70 nm of PM Yb3+-doped single mode fiber. Strongly enhanced polarization-hole burning (PHB) phenomena in polarization maintain (PM) Yb3+-doped fiber was observed in the tunable two wavelengths Yb3+-doped fiber laser.

  19. Sensitivity-enhanced Tm3+/Yb3+ co-doped YAG single crystal optical fiber thermometry based on upconversion emissions

    NASA Astrophysics Data System (ADS)

    Yu, Lu; Ye, Linhua; Bao, Renjie; Zhang, Xianwei; Wang, Li-Gang

    2018-03-01

    Optical thermometry based on Y3Al5O12 (YAG) single crystal optical fiber with end Tm3+/Yb3+ co-doped is presented. The YAG crystal fiber with end Tm3+/Yb3+ co-doped was grown by laser heated pedestal growth (LHPG) method. Under a 976 nm laser diode excitation, the upconversion (UC) emissions, originating from 3F2,3 →3H6 and 3H4 →3H6 transitions of Tm3+ ions, were investigated in the temperature range from 333 K to 733 K. Interestingly, the UC emission intensity of 3F2,3 →3H6 transition was significantly enhanced with increase of temperature, as compared with the other Tm3+/Yb3+ co-doped materials. The temperature dependence of fluorescence intensity ratio (FIR) of these two emission bands (3F2,3/3H4 →3H6) suggests that this doped YAG crystal fiber can be used as a highly sensitive optical thermal probe, which demonstrates a high absolute sensitivity with the maximum value of 0.021 K-1 at 733 K. In addition, due to the compact structure, strong mechanical strength and high thermal stability, such thermal probe may be a more promising candidate for temperature sensor with a high spatial resolution.

  20. Broadband near-infrared downconversion luminescence in Yb3+-doped BaZn2(BO3)2

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Deng, Degang; Su, Weitao; Li, Chenxia; Xu, Shiqing

    2018-06-01

    BaZn2(BO3)2 self-activated phosphors were prepared by the conventional high temperature solid-state method. The PL spectra of BaZn2(BO3)2 powders prepared under reductive and air atmosphere consist of a weak ultraviolet emission band (∼410 nm) and a broad emission band which were centered at ∼ 500 and 545 nm, respectively. According to the spectral analysis and EPR results, the green and yellow emissions may arise from the transitions of photo-generated electron close to the conduction band to the deeply trapped hole in single ionized oxygen vacancy (V+ o) centers and single negatively charged interstitial oxygen ion (O- i), respectively. An efficient broadband near-infrared (NIR) quantum cutting was demonstrated in Yb3+ doped BaZn2(BO3)2 phosphor. Upon excitation with an ultraviolet photon at 375 nm, the emissions of two NIR photons at 983 nm from Yb3+ ions were achieved. The dependences of the visible and NIR emissions, the decay lifetime, the energy transfer efficiency, and the quantum efficiency on the Yb3+ doping content were investigated in detail. The results indicated that the maximum energy transfer and the corresponding downconversion quantum efficiency could reach between 68.5% and 168.5%.

  1. Structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor, synthesized using the solid-state reaction method, and its luminescence behavior.

    PubMed

    Tamrakar, Raunak Kumar; Bisen, D P; Brahme, Nameeta

    2016-02-01

    We report the synthesis and structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor. The sample was prepared using the conventional solid-state reaction method, which is the most suitable method for large-scale production. The prepared phosphor sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er(3+) and Yb(3+) were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light-emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er(3+) and Yb(3+) -doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.

  2. Broadband ∼3 μm mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Lingling; Wang, Ning; Dou, Aoju; Cai, Yangjian; Tian, Ying; Huang, Feifei; Xu, Shiqing; Zhang, Junjie

    2018-01-01

    The Dy3+/Yb3+ co-doped germanate glasses with good thermal stability have been prepared by the conventional melt quenching method. The J-O intensity parameters and radiative properties such as spontaneous transition probilities (Arad), fluorescence branching ratios (β) and radiative lifetimes (τrad) were investigated according to the absorption spectrum based on Judd-Ofelt theory. An intense emission around ∼3 μm with the FWHM reaching to 322 nm was obtained in present glasses excited by 980 nm LD. The high spontaneous transition probability (63.94 s-1), large emission cross section (6.0 × 10-21 cm2) and superior gain performance corresponding to the Dy3+: 6H13/2 → 6H15/2 transition were obtained. Moreover, the energy transfer mechanism was analyzed qualitatively, and it was found that the energy transfer from Yb3+: 2F5/2 to Dy3+: 6H5/2 level could be quite efficient. Hence, the results indicated that the prepared Dy3+/Yb3+ co-doped germanate glass could be a potential candidate for ∼3 μm mid-infrared solid state lasers.

  3. Understanding the infrared to visible upconversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Rajesh; Choi, Jinhyuk; Narro-García, R.

    2014-08-15

    In this paper we report the infrared to visible upconversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals synthesized via microwave assisted sol–gel processing route. Structural, morphological and upconversion luminescence properties were investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), UV–vis diffuse reflectance spectroscopy (UV–vis DRS) and Upconversion Photoluminescence spectra analysis. Results revealed that the oval shaped BaMoO{sub 4} nanocrystals ranging in size from 40 to 60 nm having tetragonal scheelite crystal structure were obtained by sol–gel route. The infrared to visible upconversion luminescence has been investigated in Er{sup 3+}/Yb{sup 3+} co-doped in BaMoO{sub 4}with different Yb{supmore » 3+} concentrations. Intense green upconversion emissions around 528, 550 nm, and red emission at 657 nm corresponding to the {sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}, and {sup 4}F{sub 9/2} transitions, respectively to the {sup 4}I{sub 15/2} ground state were observed when excited by CW laser radiation at 980 nm. The green emissions were greatly enhanced after the addition of sensitizer (Yb{sup 3+} ions). The effect of Yb{sup 3+} on the upconversion luminescence intensity was analyzed and explained in terms of the energy transfer process based. The reported work establishes the understanding of molybdates as an alternative host material for upconversion luminescence. - Graphical abstract: Infrared to visible upconversion luminescence of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals. - Highlights: • Nanocrystals were synthesized by microwave assisted sol–gel processing route. • Strong green emissions were observed in Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals. • Provides an insight on Upconversion luminescence properties of oxides host materials.« less

  4. Pump-induced phase aberrations in Yb3+-doped materials(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keppler, Sebastian; Tamer, Issa; Hornung, Marco; Körner, Jörg; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte C.

    2017-05-01

    Optical pumping of laser materials is an effective way to create a population inversion necessary for laser operation. However, a fraction of the pump energy is always transfered as heat into the laser material, which is mainly caused by the quantum defect. For Yb3+-doped materials, the small energy difference between the pump level and the laser level and the pumping with narrowband high-power laser diodes result in a quantum defect of approx. 9%, which is significantly lower compared to other dopants e.g. Ti3+ (33%) or Nd3+ (24%). Due to the low heat introduction, high optical-to-optical efficiency and high repetition rate laser systems based on diode-pumping are well-suited for a number of applications. Here, however, laser beam quality is of crucial importance. Phase distortions and beam profile modulations can lead to optical damages as well as a significant reduction of the focal spot intensity. Pump-induced phase aberrations are the main cause for phase distortions of the amplified laser beam. The heat transferred to the material causes a change of the refractive index (dn/dT), thermal expansion and stress within the laser material, eventually leading to spatial phase aberrations (also called `thermal lens'). However, the spatially dependent distribution of the population inversion itself also leads to spatial phase aberrations. Since electron excitation directly leads to a change in the charge distribution of the laser active ions, the dynamic response of the material to external fields changes. These electronic phase aberrations (also called `population lens') are described by a change in the polarizability of the material. Due to the low quantum defect of Yb3+-doped materials, this effect becomes more important. We show the first comprehensive spatio-temporal characterization of the pump-induced phase aberration including both effects. A high-resolution interference measurement was carried out with time steps of 50µs for times during the pump period and

  5. Formation Mechanism, Structural, and Upconversion Properties of Alkaline Rare-Earth Fluoride Nanocrystals Doped With Yb3+/Er3+ Ions.

    PubMed

    Grzyb, Tomasz; Przybylska, Dominika

    2018-06-04

    Ultrasmall (9-30 nm) Yb 3+ /Er 3+ -doped, upconverting alkaline rare-earth fluorides that are promising for future applications were synthesized by the microwave-assisted hydrothermal method. The formation mechanism was proposed, indicating the influence of the stability of metal ions complexes with ethylenediaminetetraacetic acid on the composition of the product and tendency to form M 2 REF 7 (M 0.67 RE 0.33 F 2.33 ) cubic compounds in the M-RE-F systems. Their physicochemical properties (structure, morphology, and spectroscopic properties) are compared and discussed. The obtained nanoparticles exhibited emission of light in the visible spectra under excitation by 976 nm laser radiation. Excitation and emission spectra, luminescence decays, laser energy dependencies, and upconversion quantum yields were measured to determine the spectroscopic properties of prepared materials. The Yb 3+ /Er 3+ pair of ions used as dopants was responsible for an intense yellowish-green emission. The upconversion quantum yields determined for the first time for M 2 REF 7 -based materials were 0.0192 ± 0.001% and 0.0176 ± 0.001% for Sr 2 LuF 7 :Yb 3+ ,Er 3+ and Ba 2 LuF 7 :Yb 3+ ,Er 3+ respectively, the two best emitting samples. These results indicated the prepared materials are good and promising alternatives for the most studied NaYF 4 :Yb 3+ ,Er 3+ nanoparticles.

  6. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.

    PubMed

    Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark

    2011-03-14

    We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.

  7. Microstructure investigations of Yb- and Bi-doped Mg{sub 2}Si prepared from metal hydrides for thermoelectric applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janka, Oliver; Zaikina, Julia V.; Bux, Sabah K.

    2017-01-15

    Within the field of thermoelectric materials for energy conversion magnesium silicide, Mg{sub 2}Si, is an outstanding candidate due to its low density, abundant constituents and low toxicity. However electronic and thermal tuning of the material is a required necessity to improve its Figure of Merit, zT. Doping of Yb via reactive YbH{sub 2} into the structure is performed with the goal of reducing the thermal conductivity. Hydrogen is released as a by-product at high temperatures allowing for facile incorporation of Yb into the structure. We report on the properties of Yb- and Bi-doped Mg{sub 2}Si prepared with MgH{sub 2} andmore » YbH{sub 2} with the focus on the synthetic conditions, and samples’ microstructure, investigated by various electron microscopy techniques. Yb is found in the form of both Yb{sub 3}Si{sub 5} inclusions and Yb dopant segregated at the grain boundary substituting for Mg. The addition of 1 at% Yb concentration reduced the thermal conductivity, providing a value of 30 mW/cm K at 800 K. In order to adjust carrier concentration, the sample is additionally doped with Bi. The impact of the microstructure on the transport properties of the obtained material is studied. Idealy, the reduction of the thermal conductivity is achieved by doping with Yb and the electronic transport is adjusted by doping with Bi. Large grain microstructure facilitates the electronic transport. However, the synthetic conditions that provide the optimized microstructure for electrical transport do not facilitate the additional Yb dopant incorporation. Therefore, the Yb and Bi containing sample with the optimized microstructure provides a zT=0.46 at 800 K. - Graphical abstract: 1% or less addition of YbH{sub 2} to Mg{sub 2}Si significantly reduces the thermal conductivity of the material. Yb replaces some Mg in Mg{sub 2}Si and the remainder is distributed as Yb{sub 3}Sb{sub 5} in the Yb-doped Mg{sub 2}Si matrix. Correlation between the observed grain size and transport

  8. 10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE

    NASA Astrophysics Data System (ADS)

    Sobon, G.; Sliwinska, D.; Abramski, K. M.; Kaczmarek, P.

    2014-02-01

    In this work we demonstrate a single-frequency, single-mode all-fiber master oscillator power amplifier (MOPA) source, based on erbium-ytterbium co-doped double-clad fiber emitting 10 W of continuous wave power at 1565 nm. In the power amplifier stage, the amplified spontaneous emission from Yb3+ ions (Yb-ASE) is forced to recirculate in a loop resonator in order to provide stable lasing at 1060 nm. The generated signal acts as an additional pump source for the amplifier and is reabsorbed by the Yb3+ ions in the active fiber, allowing an increase in the efficiency and boosting the output power. The feedback loop also protects the amplifier from parasitic lasing or self-pulsing at a wavelength of 1 μm. This allows one to significantly scale the output power in comparison to a conventional setup without any Yb-ASE control.

  9. Yb:YAG disc for high energy laser systems

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Kubát, Jan; Å ulc, Jan; Jelínková, Helena

    2017-02-01

    Large Yb:YAG crystals were grown using of new improved technology enabling to produce YAG crystals without central growth defect. The crystals diameter reached 115-120mm and their central part was used for manufacturing of discs with the diameter larger than 55 mm. Both sides of this discs were polished and coated. Doping concentration of Yb3+ ions in Yb:YAG crystals was measured using of X-ray fluorescence spectrometry. Absorption coefficient of Yb:YAG was measured for different doping concentration of Yb3+ ions. Fluorescence decay time of Yb:YAG was measured at temperatures of 300K and 80 K. We found the fluorescence decay time of the values of 0.95-1 ms at both temperatures stable and independent on the Yb3+ doping concentration in the range of 1-10 at.% Yb/Y demonstrating high chemical purity of grown crystals. Optical homogeneity as measured using of Fizeau double pass interferometer at 633nm resulted with PV values lower than 0.15 λ on clear aperture of 35 mm. Polished surfaces were ideally parallel with the wedge lower than 2 arcsec. Uniformity of laser properties of Yb:YAG was verified by scanning of the disc as active media in plan-convex pulsed laser resonator pumped by semiconductor diode (wavelength 969 nm, pumping beam diameter 100 μm). It was confirmed, that newly developed technology allows to manufacture very large high quality Yb:YAG discs suitable for high power lasers and amplifiers.

  10. Yb-doped Gd2O2CO3: Structure, microstructure, thermal and magnetic behaviour

    NASA Astrophysics Data System (ADS)

    Artini, Cristina; Locardi, Federico; Pani, Marcella; Nelli, Ilaria; Caglieris, Federico; Masini, Roberto; Plaisier, Jasper Rikkert; Costa, Giorgio Andrea

    2017-04-01

    persistent luminescence, with the emission taking place at 970 nm in correspondence of the Yb3+2F7/2-2F5/2 transition, detectable up to 144 h after the end of irradiation. The origin of persistent luminescence is still substantially unclear, even if it is well known that excitation energy has to be stored in an intrinsic or extrinsic trap to be then slowly released. Extrinsic traps can derive from the presence of an aliovalent ion within the matrix; this should be the case of Yb-doped Gd2O2CO3, due to the valence instability of Yb, that is believed to be induced by irradiation [19,20]. In this respect, the precise knowledge of the dioxycarbonate crystal structure and its compositional extent, as well as the determination of the Yb location and its surroundings within the crystal structure, are of great importance. Also a microstructural approach can provide useful hints about the environment of the doping ion, even if it can not replace an investigation at the local scale. The synthetic route used for the preparation of hexagonal RE dioxycarbonates plays an important role in the obtainment of monophasic samples. The formation of the product via transformation of form I or Ia is documented for light lanthanides up to Sm [1], while thermal decomposition of Gd oxalate at 600 °C in static CO2 was performed to obtain hexagonal Gd2O2CO3[21]. The latter method is useful also for the synthesis of some mixed oxycarbonates, such as the ones containing Gd/Nd [9], but not Gd/Ce [8]. Carbonatation of RE2O3 is also reported as successful for RE≡La [1], Pr [1], Gd [21] and Nd [22]. The duration of the synthetic process is significantly shortened by adding the eutectic mixture Li2CO3-Na2CO3-K2CO3 to oxides, and by heating the whole mixture [7]. Nanostructured Yb- and Er-doped Gd2O2CO3 were also obtained, by coating with SiO2 the corresponding RE(OH)CO3·H2O nanoparticles [23]. In this work we present a structural, microstructural, thermal and magnetic study of a series of Yb-doped Gd2O2

  11. Enhanced infrared-to-visible up-conversion emission and temperature sensitivity in (Er3+,Yb3+, and W6+) tri-doped Bi4Ti3O12 ferroelectric oxide

    NASA Astrophysics Data System (ADS)

    Bokolia, Renuka; Mondal, Manisha; Rai, V. K.; Sreenivas, K.

    2017-02-01

    Strong up conversion (UC) luminescence at 527, 550, and 662 nm is compared under an excitation of 980 nm in single doped (Er3+), co-doped (Er3+/Yb3+), and (Er3+/Yb3+/W6+) tri-doped bismuth titanate (Bi4Ti3O12). For the co-doped system, the frequency (UC) emission intensity due to Er3+ ions is enhanced significantly in the green bands due to the efficient energy transfer from Yb3+ to Er3+ ions. Further increase in the emission intensity is seen with non-luminescent W6+ ions in the tri-doped system due to the modification in the local crystal field around the Er3+ ions, and is evidenced through a gradual change in the crystal structure of the host lattice with increasing W6+ content. The observed changes in the fluorescence lifetime and the associated energy transfer mechanisms are discussed. A progressive reduction of the lifetime of the 4S3/2 levels of Er3+ ions from 72 to 58.7 μs with the introduction of Yb3+ and W6+ dopant increases the transition probability and enhances the UC emission intensity. The efficiency of the energy transfer process ( η ) in the co-doped and tri-doped systems is found to be 9.4% and 18.6%, respectively, in comparison to the single doped system. Temperature sensing based on the fluorescence intensity ratio (FR) technique shows high sensitivity (0.0123 K-1) in the high temperature range (293 to 523 K) for an optimum content of Er3+, Yb3+, and W6+ with x = 0.03, y = 0.18, and z = 0.06 at. % in the tri-doped Bi4-x-yErxYbyTi3-zWzO12 ferroelectric composition, and is found useful for potential applications in optical thermometry.

  12. Multicolor up conversion emission and color tunability in Yb 3+/Tm 3+/Ho 3+ triply doped heavy metal oxide glasses

    NASA Astrophysics Data System (ADS)

    Ledemi, Yannick; Manzani, Danilo; Ribeiro, Sidney J. L.; Messaddeq, Younes

    2011-10-01

    Multicolor and white light emissions have been achieved in Yb 3+, Tm 3+ and Ho 3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO 2-GeO 2-Bi 2O 3-K 2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb 2O 3, 0.6 wt% Tm 2O 3 and 0.1 wt% Ho 2O 3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm 3+ ions and a two-photon green and red up conversions of Ho 3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards.

  13. Blue upconversion in Yb3+/Tm3+ co-doped silica fiber based on glass phase-separation technology

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Chu, Yingbo; Chen, Zhangru; Xing, Yingbin; Hu, Xionwei; Li, Haiqing; Peng, Jinggang; Dai, Nengli; Li, Jinyan; Yang, Luyun

    2018-02-01

    Yb3+/Tm3+ co-doped silica fiber was prepared successfully by glass phase-separation technology. The measured refractive index profile indicated that the active fiber core had an excellent uniformity. The highest emission intensity was obtained in a sample with a Yb3+ concentration of 0.3 mol/L and a Tm3+ concentration of 0.1 mol/L. Under the excitation at 976 nm, intense blue upconversion emission of Tm3+ at 474 nm was observed due to energy transfer from Yb3+ to Tm3+. A three-photon process was responsible for the blue emission. Due to re-absorption resulted from the Tm3+:3H6→1G4 transition, the blue emission peak was red-shifted. It is suggested that the fiber preparation technology based on glass phase-separation technology can be a potential candidate for preparing active fibers with large core or complex fiber structure.

  14. Gain and noise figure enhancement of Er+3/Yb+3 co-doped fiber/Raman hybrid amplifier

    NASA Astrophysics Data System (ADS)

    Mahran, O.

    2016-02-01

    An Er/Yb co-doped fiber/Raman hybrid amplifier (HA) is proposed and studied theoretically and analytically to improve the gain and noise figure of optical amplifiers. The calculations are performed under a uniform dopant and steady-state conditions. The initial energy transfer efficiency for Er/Yb co-doped fiber amplifier (EYDFA) is introduced, while the amplified spontaneous emission (ASE) is neglected. The glass fiber used for both Er/Yb and Raman amplifiers is phosphate. Different pump powers are used for both EYDFA and RA with 1 μW input signal power, 1 m length of Er/Yb amplifier and 25 km length of Raman amplifier (RA). The proposed model is validated for Er/Yb co-doped amplifier and Raman amplifier separately by comparing the calculating results with the experimental data. A high gain and low noise figure at 200 mW Raman pump power and 500 mW Er/Yb pump power are obtained for the proposed HA as compared with the experimental results of EYDFA, Raman amplifier and the EDFA/Raman hybrid amplifier.

  15. Investigation of ASE and SRS effects on 1018nm short-wavelength Yb3+-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoxin; Shi, Wei; Sheng, Quan; Fu, Shijie; Fang, Qiang; Zhang, Haiwei; Bai, Xiaolei; Shi, Guannan; Yao, Jianquan

    2017-03-01

    1018nm short wavelength Yb3+-doped fiber laser can be widely used for tandem-pumped fiber laser system in 1 μm regime because of its high brightness and low quantum defect (QD). In order to achieve 1018nm short wavelength Yb3+-doped fiber laser with high output power, a steady-state rate equations considering the amplified spontaneous emission (ASE) and Stimulated Raman Scattering (SRS) has been established. We theoretically analyzed the ASE and SRS effects in 1018nm short wavelength Yb3+-doped fiber laser and the simulation results show that the ASE is the main restriction rather than SRS for high power 1018nm short wavelength Yb3+-doped fiber laser, besides the high temperature of fiber is also the restriction for high output power. We use numerical solution of steady-state rate equations to discuss how to suppress ASE in 1018nm short wavelength fiber laser and how to achieve high power 1018nm short-wavelength fiber laser.

  16. Yb3+ sensitized Tm3+ upconversion in tellurite lead oxide glass.

    PubMed

    Mohanty, Deepak Kumar; Rai, Vineet Kumar; Dwivedi, Y

    2012-04-01

    Triply ionized thulium/thulium--ytterbium doped/codoped TeO2-Pb3O4 (TPO) glasses have been fabricated by classical quenching method. The upconversion emission spectra in the Tm3+/Tm3+-Yb3+ doped/codoped glasses upon excitation with a diode laser lasing at ∼980 nm has been studied. Effect of the addition of the Yb3+ on the upconversion emission intensity in the visible and near infrared regions of the Tm3+ doped in TPO glass has been studied and the processes involved explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of Nd3+: Yb3+ co-doped near infrared sensitive fluorapatite nanoparticles as a bioimaging probe

    NASA Astrophysics Data System (ADS)

    Karthi, S.; Kumar, G. A.; Sardar, D. K.; Santhosh, C.; Girija, E. K.

    2018-03-01

    Trivalent Nd and Yb co-doped rod shaped hexagonal phase fluorapatite (FAP) nanoparticles of length and width about 32 and 13 nm, respectively were prepared by hydrothermal method and investigated the ability for 980 nm emission via Nd3+ → Yb3+ energy transfer with the objective of utilizing them in biomedical imaging. Nd3+ → Yb3+ energy transfer in FAP was studied as a function of both Nd3+ and Yb3+ concentrations and found that when Yb3+ concentration was 10 mol% the FAP phase has partially turned in to YbPO4 phase. The Yb3+ emission intensity at 980 nm significantly increased up to 5 mol% Yb3+ doping and then reduced drastically for further increase in its concentration. Nd3+ →Yb3+ energy transfer rates were evaluated from the decay curves and found that a transfer rate of 71% for 2 mol% Nd3+ co-doped with 5 mol% Yb3+. The cytocompatibility test with fibroblast like cells using MTT assay revealed that the nanoparticles are compatible with the cells.

  18. Cladding pumped Yb-doped HOM power amplifier with high gain

    NASA Astrophysics Data System (ADS)

    Abedin, Kazi S.; Ahmad, Raja; DeSantolo, Anthony M.; Nicholson, Jeffrey W.; Westbrook, Paul S.; Headley, Clifford; DiGiovanni, David J.

    2018-02-01

    Higher-order mode (HOM) fibers have been engineered to allow propagation of linearly polarized symmetric modes LP0,N in a robust way. Compared with the fundamental mode LP(0,1), HOMs exhibits an effective area that can be larger by over two order magnitude, and thus propagating light in these modes could greatly suppress the effect of nonlinear effects. HOM fibers could also be doped with rare earth ions in order to amplify light propagating in these modes, which offers the enormous potential for generating high-intensity pulses. Excitation of HOM gain fiber using cladding pumping with multimode pump source is attractive for ytterbium based amplifiers, because of the availability of low-cost multimode pump diodes in the 975nm wavelength range. One problem associated with cladding pumping which leads to excitation of the large doped core (over 100 μm diameter) is that it could result in a large amount of amplifiedspontaneous- emission (ASE) noise, particularly when the input signal is weak. Optimization of amplifier design is critical in order to suppress ASE and achieve high gain and pump-to-signal conversion efficiency. We conducted numerical modeling of a cladding pumped HOM-amplifier, which revealed that this problem could be mitigated by using a relatively long gain-fiber that allowed reabsorption of the forward propagating ASE resulting in a further amplification of the signal. We demonstrate efficient amplification of a LP0,10 mode with an effective area 3140μm2 in an Yb-doped HOM amplifier cladding pumped at 975nm. We have successfully obtained a 20.2dB gain for 0.95 W 1064 nm input seed signal to more than 105W.

  19. Ultraviolet and near-infrared luminescence of LaBO3:Ce3+,Yb3+

    NASA Astrophysics Data System (ADS)

    Wei, Heng-Wei; Shao, Li-Ming; Jiao, Huan; Jing, Xi-Ping

    2018-01-01

    Ce3+ or Yb3+ singly doped LaBO3 and Ce3+-Yb3+ co-doped LaBO3 were prepared by conventional solid state reactions at 1100 °C and their photoluminescence (PL) properties were investigated. The emission spectrum of LaBO3:Ce3+,Yb3+ contains both the Ce3+ ultraviolet (UV) emissions (355 nm and 380 nm) and the Yb3+ near infrared (NIR) emission (975 nm) when excited by the UV light at 270 nm. By using the data of the Ce3+ decay curves and the PL intensities of both Ce3+ and Yb3+, the energy transfer efficiency (η) from Ce3+ to Yb3+, the actual energy transfer efficiency (AE) and the quantum efficiency (Q) of the Yb3+ emission were calculated. In the Ce3+-Yb3+ co-doped LaBO3, Ce3+ can transfer its absorbed energy to Yb3+ efficiently (η can be over 60%), and Yb3+ shows the Q value over 50% when it accepts the energy from Ce3+, which results in the low AE value ∼30%. The energy transfer process from Ce3+ to Yb3+ may be understood by the charge transfer mechanism: Ce3+ + Yb3+ ↔ Ce4+ + Yb2+. Particularly the Ce3+-Yb3+ co-doped LaBO3 phosphor gives the emissions mainly in the UV range and the NIR range with a portion of visible emissions in eye-insensitive range. This unique property may be suitable for applications in anti-counterfeiting techniques and public security affairs.

  20. Research on up- and down-conversion emissions of Er3+/Yb3+ co-doped phosphate glass ceramic

    NASA Astrophysics Data System (ADS)

    Ming, Chengguo; Song, Feng; An, Liqun; Ren, Xiaobin; Yuan, Yize; Cao, Yang; Wang, Gangzhi

    2012-12-01

    By high-temperature melting method and thermal treatment technology, Er3+/Yb3+ co-doped phosphate glass and glass ceramic samples were prepared. The luminescence spectra of the glass and glass ceramic samples were studied under 975 nm excitation. In visible and near-infrared bands, the emission intensity of the glass ceramic is stronger than that of the glass. The glass ceramic can comprehensively improve the luminous characters of the precursor glass. The phosphate glass ceramic will be valuable luminescence materials.

  1. Heavily Yb-doped phosphate large-mode area all-solid photonic crystal fiber operating at 990 nm

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping

    2015-07-01

    We demonstrate, for the first time to our knowledge, a 16 wt.% Yb-doped phosphate large-mode area all-solid photonic crystal fiber (AS-PCF) laser operating at 990 nm. By carefully tailoring the absorption and emission properties of the active glass and designing the structure of AS-PCF, the excitation of the 990 nm laser and the depression of the laser above 1 µm can be easily realized even without any wavelength-selective optics. The single-mode behavior of PCF with a 35 µm doped core, the largest core diameter of approximately 1 µm in phosphate fiber, is theoretically investigated by finite-difference time-domain method and experimentally confirmed.

  2. Synthetic and spectroscopic studies of vanadate glaserites I: Upconversion studies of doubly co-doped (Er, Tm, or Ho):Yb:K{sub 3}Y(VO{sub 4}){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimani, Martin M., E-mail: kimani@g.clemson.edu; Chen, Hongyu, E-mail: hongyuc@g.clemson.edu; McMillen, Colin D., E-mail: cmcmill@g.clemson.edu

    2015-03-15

    The synthesis and upconversion properties of trigonal glaserite-type K{sub 3}Y(VO{sub 4}){sub 2} co-doped with Er{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+}, or Tm{sup 3+}/Yb{sup 3+} were studied. Powder samples were synthesized by solid state reactions at 1000 °C for 48 h, while well-formed hexagonal single crystals of the same were grown hydrothermally using 10 M K{sub 2}CO{sub 3} at 560–650 °C. Infrared-to-visible upconversion by Er{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+}, or Tm{sup 3+}/Yb{sup 3+} codoped-K{sub 3}Y(VO{sub 4}){sub 2} glaserite powder and single crystals was observed, and the upconversion spectral properties were studied as a function of different Er{sup 3+}, Tm{sup 3+},more » Ho{sup 3+}, and Yb{sup 3+} ion concentrations. The process is observed under 980 nm laser diode excitation and leads to strong green (552 nm) and red (659 nm) emission for Er{sup 3+}/Yb{sup 3+}, green (549 nm) and red (664 nm) emission for Ho{sup 3+}/Yb{sup 3+}, and blue (475 nm) and red (647 nm) emission for Tm{sup 3+}/Yb{sup 3+}. The main mechanism that allows for up-conversion is attributed the energy transfer among Yb{sup 3+} and the various Er{sup 3+}/Ho{sup 3+}/Tm{sup 3+} ions in excited states. These results illustrate the large potential of co-doped alkali double vanadates for photonic applications involving optoelectronics devices. - Graphical abstract: Synthesis and upconversion in vanadate glaserites. - Highlights: • K{sub 3}Y(VO{sub 4}){sub 2} codoped with Er, Tm, or Ho:Yb were synthesized via solid-state and hydrothermal routes. • Upconversion properties are investigated. • The codoped compounds revealed efficient infrared-to-visible upconversion. • The presented compounds are potential host for solid state lighting.« less

  3. Crystal field excitations from Yb3 + ions at defective sites in highly stuffed Yb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Sala, G.; Maharaj, D. D.; Stone, M. B.; Dabkowska, H. A.; Gaulin, B. D.

    2018-06-01

    The pyrochlore magnet Yb2Ti2O7 has been proposed as a quantum spin ice candidate, a spin liquid state expected to display emergent quantum electrodynamics with gauge photons among its elementary excitations. However, Yb2Ti2O7 's ground state is known to be very sensitive to its precise stoichiometry. Powder samples, produced by solid-state synthesis at relatively low temperatures, tend to be stoichiometric, while single crystals grown from the melt tend to display weak "stuffing" wherein ˜2 % of the Yb3 +, normally at the A site of the A2B2O7 pyrochlore structure, reside as well at the B site. In such samples Yb3 + ions should exist in defective environments at low levels and be subjected to crystalline electric fields very different from those at the stoichiometric A sites. Neutron scattering measurements of Yb3 + in four compositions of Yb2 +xTi2 -xO7 -y show the spectroscopic signatures for these defective Yb3 + ions and explicitly demonstrate that the spin anisotropy of the Yb3 + moment changes from X Y -like for stoichiometric Yb3 + to Ising-like for "stuffed" B site Yb3 + or for A site Yb3 + in the presence of oxygen vacancies.

  4. Effect of silica surface coating on the luminescence lifetime and upconversion temperature sensing properties of semiconductor zinc oxide doped with gallium(III) and sensitized with rare earth ions Yb(III) and Tm(III).

    PubMed

    Li, Yuemei; Li, Yongmei; Wang, Rui; Zheng, Wei

    2018-02-26

    Optical sensing of temperature by measurement of the ratio of the intensities of the 700 nm emission and the 800 nm emission of Ga(III)-doped ZnO (GZO) nanoparticles (NPs) and of GZO NPs coated with a silica shell are demonstrated at 980 nm excitation. It is found that the relative sensitivity of SiO 2 @Yb/Tm/GZO is 6.2% K -1 at a temperature of 693 K. This is ~3.4 times higher than that of Yb/Tm/GZO NPs. Obviously, the SiO 2 shell structure decreases the rate of the nonradiative decay. The decay time of the 800 nm emission of the Yb/Tm/GZO NPs (15 mol% Ga; 7 mol% Yb; 0.5 mol% Tm) displays a biexponential decay with a dominant decay time of 148 μs and a second decay time of ~412 μs. The lifetime of the Yb/Tm/GZO NPs at 293 K, and of the SiO 2 @Yb/Tm/GZO NPs are ~412 μs. Both the Yb/Tm/GZO and SiO 2 @Yb/Tm/GZO can be used up to 693 K. These results indicate that the SiO 2 shell on the Yb/Tm/GZO is beneficial in terms of sensitivity and resolution. Graphical abstract The enhancement the decay time and thermal sensitivity in the SiO 2 @Yb/Tm/GZO shell@core structure have been studied compared to the Ga(III)-doped Yb/Tm-doped ZnO (Yb/Tm/GZO). The SiO 2 @Yb/Tm/GZO have good thermal accuracy up to 693 °C.

  5. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    NASA Astrophysics Data System (ADS)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  6. Investigation of Upconversion, downshifting and quantum –cutting behavior of Eu3+, Yb3+, Bi3+ co-doped LaNbO4 phosphor as a spectral conversion material

    NASA Astrophysics Data System (ADS)

    Dwivedi, A.; Mishra, K.; Rai, S. B.

    2018-06-01

    This work presents the spectral conversion characteristics [upconversion (UC), downshifting (DS) and quantum–cutting (QC) optical processes] of Eu3+, Yb3+ and Bi3+ co-doped LaNbO4 (LBO) phosphor samples synthesized by solid state reaction technique. The crystal structure and the pure phase formation have been confirmed by x-ray diffraction (XRD) measurements. The surface morphology and particle size are studied by scanning electron microscopy (SEM). The rarely observed intense red UC emission from Eu3+ ion has been successfully obtained in Eu3+/Yb3+ co-doped LaNbO4 phosphor (on excitation with 980 nm) by optimizing the concentrations of Eu3+ and Yb3+ ions. The downshifting (DS) behavior has been studied by photoluminescence (PL) measurements on excitation with 265 nm wavelength from a Xe lamp source. A broad blue emission in the region 300–550 nm with its maximum ∼415 nm due to charge transfer band (CTB) of the host and large number of sharp peaks due to f-f transitions of Eu3+ ion have been observed. The energy transfer has been observed from (NbO4)3‑ to Eu3+ ion and the fluorescence emission has been optimized by varying the concentration of Eu3+ ion. An intense red emission has also been observed corresponding to 5D0 → 7F2 transition of Eu3+ ion at 611 nm in LBO: 0.09Eu3+ phosphor on excitation with 394 nm. The luminescence properties of Eu3+ ion are enhanced further through the sensitization effect of Bi3+ ion. The near infra-red (NIR) quantum cutting (QC) behavior due to Yb3+ ion has been monitored on excitation with 265 as well as 394 nm. The NIR QC is observed due to 2F5/2 → 2F7/2 transition of Yb3+ ion via co-operative energy transfer (CET) process from (NbO4)3‑ as well as Eu3+ ions to Yb3+ ion. This multimodal behavior (UC, DS and QC) makes this a promising phosphor material for multi-purpose spectral converter.

  7. Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal

    NASA Astrophysics Data System (ADS)

    Bigotta, Stefano; Parisi, Daniela; Bonelli, Lucia; Toncelli, Alessandra; Tonelli, Mauro; Di Lieto, Alberto

    2006-07-01

    Anti-Stokes cooling has been observed in an Yb3+-doped BaY2F8 single crystal. Single crystals have been grown by the Czochralski technique. The absorption spectra and the emission properties have been measured at room temperature and at 10K. The energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and separated from the vibronic substructure. The intrinsic decay time of the F5/22 level has been measured taking care of avoiding the effect of multiple reabsorption processes. The theoretical and experimental cooling efficiencies of Yb:BaY2F8 are evaluated and compared with respect to those of the most frequently investigated materials for laser cooling. A temperature drop of almost 4K was measured by pumping the crystal with 3W of laser radiation at ˜1025nm in single pass configuration with a cooling efficiency of ˜3%.

  8. CW and tunable performances of Yb3+:LuAG transparent ceramics with different doping concentrations

    NASA Astrophysics Data System (ADS)

    Ma, Chaoyang; Zhu, Jiangfeng; Liu, Kai; Wen, Zicheng; Ma, Ran; Long, Jiaqi; Yuan, Xuanyi; Cao, Yongge

    2017-07-01

    We report the CW laser operation and wavelength tunability of 10 at%, 15 at% and 20 at% Yb3+-doping LuAG ceramics pumped at 970 nm. The absorption saturation effects were taken into account herein. For 10 at% Yb3+-doping sample, the maximum slop efficiency and output power was 60.7% and 1.8 W, respectively. Furthermore, the slop efficiencies of 52.3% (15 at%) and 46.5% (20 at%) were reported. What's more, the maximum optical-to-optical efficiency for our samples was determined to be 40.1%, 36.8%, and 33.1% at the incident pump power of 4 W, respectively. The round-trip cavity loss of the laser system based on our Yb3+:LuAG ceramics were evaluated. The tuning curve of a 20 at% Yb3+:LuAG ceramic extended from 1018 nm up to 1062 nm, and that of 10 at% and 15 at% samples became much more broader, making Yb3+:LuAG ceramics possible candidates for ultrashort pulse generation.

  9. Optical properties of Mg2+, Yb3+, and Ho3+ tri-doped LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Dai, Li; Liu, Chun-Rui; Tan, Chao; Yan, Zhe-Hua; Xu, Yu-Heng

    2017-04-01

    A series of LiNbO3 crystals tri-doped with Mg{}2+, Yb{}3+, and Ho{}3+ are grown by the conventional Czochraski technique. The concentrations of Mg{}2+, Yb{}3+, and Ho{}3+ ions in Mg:Yb:Ho:LiNbO3 crystals are measured by using an inductively coupled plasma atomic emission spectrometry. The x-ray diffraction is proposed to determine the lattice constant and analyze the internal structure of the crystal. The light-induced scattering of Mg:Yb:Ho:LiNbO3 crystal is quantitatively described via the threshold effect of incident exposure energy flux. The exposure energy ({E}{{r}}) is calculated to discuss the optical damage resistance ability. The exposure energy of Mg(7 mol):Yb:Ho:LiNbO3 crystal is 709.17 J/cm2, approximately 425 times higher than that of the Mg(1 mol):Yb:Ho:LiNbO3 crystal in magnitude. The blue, red, and very intense green bands of Mg:Yb:Ho:LiNbO3 crystal are observed under the 980-nm laser excitation to evaluate the up-conversion emission properties. The dependence of the emission intensity on pumping power indicates that the up-conversion emission is a two-photon process. The up-conversion emission mechanism is discussed in detail. This study indicates that Mg:Yb:Ho:LiNbO3 crystal can be applied to the fabrication of new multifunctional photoluminescence devices. Project supported by the National Natural Science Foundation of China (Grant No. 51301055), the Youth Science Fund of Heilongjiang Province, China (Grant No. QC2015061), the Special Funds of Harbin Innovation Talents in Science and Technology Research, China (Grant No. 2015RQQXJ045 ), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201501).

  10. Investigation of Tm3+/Yb3+ co-doped germanate-tellurite glasses for efficient 2 µm mid-infrared laser materials

    NASA Astrophysics Data System (ADS)

    Dou, Aoju; Shen, Lingling; Wang, Ning; Cai, Yangjian; Cai, Muzhi; Guo, Yanyan; Huang, Feifei; Tian, Ying; Xu, Shiqing; Zhang, Junjie

    2018-05-01

    The Tm3+/Yb3+ co-doped germanate-tellurite glasses with good thermal properties were prepared. Based on the absorption spectra and the Judd-Ofelt theory, the J-O intensity parameters (Ω t ), radiative transition probability (276.78 s- 1), fluorescence lifetime (3.89 ms), absorption and emission cross sections ({σ e} = 1.35 × 10- 20 cm2) were calculated. The 2 µm mid-infrared emission resulting from the 3F4→3H6 transition of Tm3+ sensitized by Yb3+ was observed pumped by 980 nm LD. Besides, the energy transfer mechanism between Yb3+ and Tm3+ was thoroughly discussed. The measured 2 µm emission lifetime of Tm3+/Yb3+ co-doped glass can reach as high as 2.38 ms. The above results showed that Tm3+/Yb3+ co-doping glass could be expected to be a promising material to achieve high efficient 2 µm lasing with a 980 nm LD pumping.

  11. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhu, Jianqi; Li, Pingxue; Wang, Xiaoxiao; Yu, Hua; Xiao, Kun; Li, Chunyong; Zhang, Guangyu

    2018-04-01

    We report on an all-fiber passively mode-locked ytterbium-doped (Yb-doped) fiber laser with monolayer molybdenum disulfide (ML-MoS2) saturable absorber (SA) by three-temperature zone chemical vapor deposition (CVD) method. The modulation depth, saturation fluence, and non-saturable loss of this ML-MoS2 are measured to be 3.6%, 204.8 μJ/cm2 and 6.3%, respectively. Based on this ML-MoS2SA, a passively mode-locked Yb-doped fiber laser has been achieved at 979 nm with pulse duration of 13 ps and repetition rate of 16.51 MHz. A mode-locked fiber laser at 1037 nm is also realized with a pulse duration of 475 ps and repetition rate of 26.5 MHz. To the best of our knowledge, this is the first report that the ML-MoS2 SA is used in an all-fiber Yb-doped mode-locked fiber laser at 980 nm. Our work further points the excellent saturable absorption ability of ML-MoS2 in ultrafast photonic applications.

  12. Luminescence properties of Tm3+ ions single-doped YF3 materials in an unconventional excitation region.

    PubMed

    Chen, Yuan; Liu, Qing; Lin, Han; Yan, Xiaohong

    2018-05-01

    According to the spectral distribution of solar radiation at the earth's surface, under the excitation region of 1150 to 1350 nm, the up-conversion luminescence of Tm 3+ ions was investigated. The emission bands were matched well with the spectral response region of silicon solar cells, achieved by Tm 3+ ions single-doped yttrium fluoride (YF 3 ) phosphor, which was different from the conventional Tm 3+ /Yb 3+ ion couple co-doped materials. Additionally, the similar emission bands of Tm 3+ ions were achieved under excitation in the ultraviolet region. It is expected that via up-conversion and down-conversion routes, Tm 3+ -sensitized materials could convert photons to the desired wavelengths in order to reduce the energy loss of silicon solar cells, thereby enhancing the photovoltaic efficiency. Copyright © 2018 John Wiley & Sons, Ltd.

  13. 65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management.

    PubMed

    Yang, Peilong; Teng, Hao; Fang, Shaobo; Hu, Zhongqi; Chang, Guoqing; Wang, Junli; Wei, Zhiyi

    2018-04-15

    We implement an ultrafast Yb-doped all-fiber laser which incorporates tapered single-mode fibers for managing nonlinearity and dispersion. The tapered fiber placed in the oscillator cavity aims to broaden the optical spectrum of the intracavity pulse. At the oscillator output, we use another tapered fiber to perform pulse compression. The resulting 66.1-MHz Yb-doped all-fiber oscillator self-starts and generates 0.4-nJ, 65-fs pulses, which can serve as a compact and robust seed source for subsequent high-power, high-energy amplifiers.

  14. Cooperative upconversion luminescence in Tb{sup 3+}:Yb{sup 3+} co-doped Y{sub 2}SiO{sub 5} powders prepared by combustion synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakov, Nikifor, E-mail: nikifor.gomez@univasf.edu.br; Vieira, Simone A.; Guimarães, Renato B.

    2014-03-15

    Frequency upconversion (UC) luminescence via cooperative energy transfer (CET) process between pairs of Yb{sup 3+} and Tb{sup 3+} ions was investigated in Tb{sup 3+}:Yb{sup 3+}:Y{sub 2}SiO{sub 5} crystalline ceramic powders prepared by combustion synthesis. Surface morphology and structure of the powders were investigated by scanning electronic microscopy and X-ray powder diffraction. Photoluminescence experiments were performed in Tb{sup 3+}-singly doped samples using ultraviolet light (λ=255 nm) and in Tb{sup 3+}:Yb{sup 3+} co-doped samples using a near-infrared (NIR) diode laser (λ=975 nm). Upon excitation with the NIR diode laser, UC luminescence with an intense emission band centered at ∼549 nm, corresponding tomore » the 4f intraband {sup 5}D{sub 4}→{sup 7}F{sub 5} transition of Tb{sup 3+}, along with less intense emission bands at ∼490, ∼590 and ∼620 nm, corresponding to other {sup 5}D{sub 4}→{sup 7}F{sub J} transitions, was detected. The CET rate was estimated by analyzing the dynamics of UC luminescence with rate equations model of the electronic populations. -- Graphical Abstract: Left: Cooperative upconversion luminescence spectra of three powder samples prepared by combustion synthesis. Right: The SEM image of the powder showing that it consists of agglomerated flake-like shaped particles of various sizes. Full scale bar is 20 μm. Highlights: • Yttrium orthosilicate (Y{sub 2}SiO{sub 5}) powders were prepared by combustion synthesis. • Cooperative upconversion is observed for the first time in Tb{sup 3+}–Yb{sup 3+} doped Y{sub 2}SiO{sub 5}. • Energy transfer and back-transfer rates between Tb{sup 3+} and Yb{sup 3+} pairs were estimated.« less

  15. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role inmore » photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.« less

  16. Luminescence properties of Y2O3:Bi3+, Yb3+ co-doped phosphor for application in solar cells

    NASA Astrophysics Data System (ADS)

    Lee, E.; Kroon, R. E.; Terblans, J. J.; Swart, H. C.

    2018-04-01

    Bismuth (Bi3+) and ytterbium (Yb3+) co-doped yttrium oxide (Y2O3) phosphor powder was successfully synthesised using the co-precipitation technique. The X-ray diffraction (XRD) patterns confirmed that a single phase cubic structure with a Ia-3 space group was formed. The visible emission confirmed the two symmetry sites, C2 and S6, found in the Y2O3 host material and revealed that Bi3+ ions preferred the S6 site as seen the stronger emission intensity. The near-infrared (NIR) emission of Yb3+ increased significantly by the presence of the Bi3+ ions when compared to the singly doped Y2O3:Yb3+ phosphor with the same Yb3+ concentration. An increase in the NIR emission intensity was also observed by simply increasing the Yb3+ concentration in the Y2O3:Bi3+, Yb3+ phosphor material where the intensity increased up to x = 5.0 mol% of Yb3+ before decreasing due to concentration quenching.

  17. Bifunction in Er{sup 3+}/Yb{sup 3+} co-doped BaTi{sub 2}O{sub 5}–Gd{sub 2}O{sub 3} glasses prepared by aerodynamic levitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Minghui; University of Chinese Academy of Sciences, Beijing 100039; Yu, Jianding

    2013-11-15

    Graphical abstract: - Highlights: • Novel BaTi{sub 2}O{sub 5}–Gd{sub 2}O{sub 3} based glasses have been prepared by aerodynamic levitation. • The obtained glasses show high thermal stability with T{sub g} = 763.3 °C. • Er{sup 3+}/Yb{sup 3+} co-doped glasses show strong upconversion based on a two-photon process. • Red emission is stronger than green emissions for EBT by high Yb{sup 3+} concentration. • Magnetic ions are paramagnetic and the distribution is homogeneous in the glasses. - Abstract: Novel Er{sup 3+}/Yb{sup 3+} co-doped BaTi{sub 2}O{sub 5}–Gd{sub 2}O{sub 3} spherical glasses have been fabricated by aerodynamic levitation method. The thermal stability, upconversionmore » luminescence, and magnetic properties of the present glass have been studied. The glasses show high thermal stability with 763.3 °C of the onset temperature of the glass transition. Red and green emissions centered at 671 nm, 548 nm and 535 nm are obtained at 980 nm excitation. The upconversion is based on a two-photon process by energy transfer, excited-state absorption, and energy back transfer. Yb{sup 3+} ions are more than Er{sup 3+} ions in the glass, resulting in efficient energy back transfer from Er{sup 3+} to Yb{sup 3+}. So the red emission is stronger than the green emissions. Magnetization curves indicate that magnetic rare earth ions are paramagnetic and the distribution is homogeneous and random in the glass matrix. Aerodynamic levitation method is an efficient way to prepare glasses with homogeneous rare earth ions.« less

  18. Near-infrared quantum cutting in Yb3+ ion doped strontium vanadate

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The materials Sr3-x(VO4)2:xYb were successfully synthesized by co-precipitation method varying the concentration of Yb3+ ions from 0 to 0.06 mol. It was characterize by powder X-ray powder diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Yb3+ ion doped tristrontium vanadate (Sr3(VO4)2) phosphors that can convert a photon of UV region (349 nm) into photons of NIR region (978, 996 and 1026 nm). Hence this phosphor could be used as a quantum cutting (QC) luminescent convertor in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss due to spectral mismatch of the solar cells. The theoretical value of quantum efficiency (QE) was calculated from steady time decay measurement and the maximum efficiency approached up to 144.43%. The Sr(3-x) (VO4)2:xYb can be potentiality used for betterment of photovoltaic (PV) technology.

  19. Single transverse mode laser in a center-sunken and cladding-trenched Yb-doped fiber.

    PubMed

    Liu, Yehui; Zhang, Fangfang; Zhao, Nan; Lin, Xianfeng; Liao, Lei; Wang, Yibo; Peng, Jinggang; Li, Haiqing; Yang, LuYun; Dai, NengLi; Li, Jinyan

    2018-02-05

    We report a novel center-sunken and cladding-trenched Yb-doped fiber, which was fabricated by a modified chemical vapor deposition process with a solution-doping technique. The simulation results showed that the fiber with a core diameter of 40 µm and a numerical aperture of 0.043 has a 1217 µm 2 effective mode area at 1080 nm. It is also disclosed that the leakage loss can be reduced lower than 0.01 dB/m for the LP 01 mode, while over 80 dB/m for the LP 11 mode by optimizing the bending radius as 14 cm. A 456 W laser output was observed in a MOPA structure. The laser slope efficiency was measured to be 79% and the M 2 was less than 1.1, which confirmed the single mode operation of the large mode area center-sunken cladding-trenched Yb-doped fiber.

  20. White light generation via up-conversion and blue tone in Er3+/Tm3+/Yb3+-doped zinc-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Rivera, V. A. G.; Ferri, F. A.; Nunes, L. A. O.; Marega, E.

    2017-05-01

    Yb3+, Er3+ and Tm3+ triply doped zinc-tellurite glass have been prepared containing up to 3.23 wt% of rare-earth ion oxides, were characterized by absorption spectroscopy, excitation, emission and up-conversion spectra. Transparent and homogeneous glasses have been produced, managing the red, green and blue emission bands, in order to generate white light considering the human eye perception. The energy transfer (resonant or non-resonant) between those rare-earth ions provides a color balancing mechanism that maintains the operating point in the white region, generating warm white light, cool white light and artificial daylight through the increase of the 976/980 nm diode laser excitation power from 4 to 470 mW. A light source at 4000 K is obtained under the excitation at 980 nm with 15 mW, providing a white light environment that is comfortable to the human eye vision. The spectroscopic study presented in this work describes the white light generation by the triply-doped zinc-tellurite glass, ranging from blue, green and red, by controlling the laser excitation power and wavelength at 976/980 nm. Such white tuning provokes healthy effects on human health throughout the day, especially the circadian system.

  1. Effect of cryogenic temperature on spectroscopic and laser properties of Er, Yb-doped potassium-lanthanum phosphate glass

    NASA Astrophysics Data System (ADS)

    Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Nitsch, Karel; Cihlář, Antonín.; Král, Robert; Nejezchleb, Karel; Nikl, Martin

    2017-05-01

    Glass matrix doped with rare-earth ions is a promising laser active medium for high power laser systems. Due to amorphous structure of glasses the absorption and emission spectra lines are broader in comparison with crystalline materials thus pumping radiation can be absorbed efficiently, moreover much broader gain bandwidth is suitable for generation of ultra-short pulses. Another advantage of the glass matrix is the possibility to fabricate large volume ingots and simultaneously preservation of sufficient optical quality. The lower thermal conductivity of glasses can be compensated by geometry of the active medium for instance shaped into fibres or discs. We present temperature dependence of spectroscopic and laser properties of newly developed Er, Yb - doped potassium-lanthanum phosphate glass, which is appropriate for generation of radiation at 1.53 μm. The sample of Er,Yb:KLaP glassy mixture was cut into disc shape with dimensions of 2.5 mm (thickness) and 5 mm (diameter) and its faces were polished plan-parallelly without being anti-reflection coated. The temperature dependence of the transmission and emission spectra Er,Yb:KLaP together with the fluorescence decay time were measured the temperature range from 80 to 400 K. The fluorescence lifetime of manifold 4I13/2 (upper laser level) prolonged and the intensity of up-conversion radiation decreased with decreasing temperature. The longitudinal excitation of Er,Yb:KLaP was carried out by a fibre-coupled laser diode (pulse duration 2 ms, repetition rate 10 Hz, pump wavelength 969 nm). Laser resonator was hemispherical, with flat pumping mirror (HR @ 1.5 μm) and spherical output coupler (R = 98 % @ 1.5 - 1.6 μm). The Er,Yb:KLaP glass laser properties were investigated in the temperature range 80 - 300 K. The highest slope efficiency with respect to absorbed pumped power was 6.1 % at 80 K. The maximum output of peak amplitude power was 0.71 W at 80 K, i.e. 1.2 times higher than at 300 K. Tunability of laser

  2. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers.

    PubMed

    Sobon, Grzegorz; Kaczmarek, Pawel; Antonczak, Arkadiusz; Sotor, Jaroslaw; Abramski, Krzysztof M

    2011-09-26

    In this paper we present our experimental studies on controlling the amplified spontaneous emission (ASE) from Yb(3+) ions in Er/Yb co-doped fiber amplifiers. We propose a new method of controlling the Yb-ASE by stimulating a laser emission at 1064 nm in the amplifier, by providing a positive 1 μm signal feedback loop. The results are discussed and compared to a conventional amplifier setup without 1 μm ASE control and to an amplifier with auxiliary 1064 nm seeding. We have shown, that applying a 1064 nm signal loop in an Er/Yb amplifier can increase the output power at 1550 nm and provide stable operation without parasitic lasing at 1 μm. © 2011 Optical Society of America

  3. Evaluation of TeO2 content on the optical and spectroscopic properties of Yb3+-doped calcium borotellurite glasses.

    PubMed

    Lima, A M O; Gomes, J F; Hegeto, F L; Medina, A N; Steimacher, A; Barboza, M J

    2018-03-15

    This paper reports the synthesis and the characterization of Yb 3+ -doped calcium borotellurite (CaBTeX) glasses with composition 10CaF 2 -(29.5-0.4x)CaO-(60-0.6x)B 2 O 3 -xTeO 2 -0.5Yb 2 O 3 (x=10, 16, 22, 31 and 54mol%). The results of XRD confirm the amorphous character of all the samples. The density, molar volume, refractive index and electronic polarizability values show an increase with TeO 2 content. Otherwise, the optical band gap energy shows a decrease with the increase of TeO 2 content. The replacement of CaO and B 2 O 3 by TeO 2 changes the glass structure, which decreases the excited Yb 3+ /cm 3 and, consequently, the luminescence intensity. The temperature dependence of luminescence was studied for all the samples up to 420K. The fluorescence lifetime does not change significantly due to TeO 2 addition. In addition, absorption and emission cross section were calculated and present high values as compared to other tellurite and phosphate glasses. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of TeO2 content on the optical and spectroscopic properties of Yb3 +-doped calcium borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Lima, A. M. O.; Gomes, J. F.; Hegeto, F. L.; Medina, A. N.; Steimacher, A.; Barboza, M. J.

    2018-03-01

    This paper reports the synthesis and the characterization of Yb3 +-doped calcium borotellurite (CaBTeX) glasses with composition 10CaF2-(29.5 - 0.4x)CaO-(60 - 0.6x)B2O3-xTeO2-0.5Yb2O3 (x = 10, 16, 22, 31 and 54 mol%). The results of XRD confirm the amorphous character of all the samples. The density, molar volume, refractive index and electronic polarizability values show an increase with TeO2 content. Otherwise, the optical band gap energy shows a decrease with the increase of TeO2 content. The replacement of CaO and B2O3 by TeO2 changes the glass structure, which decreases the excited Yb3 +/cm3 and, consequently, the luminescence intensity. The temperature dependence of luminescence was studied for all the samples up to 420 K. The fluorescence lifetime does not change significantly due to TeO2 addition. In addition, absorption and emission cross section were calculated and present high values as compared to other tellurite and phosphate glasses.

  5. Study of energy transfer and spectral downshifting in Ce, RE (RE = Nd and Yb) co-doped lanthanum phosphate

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Omanwar, S. K.

    2017-03-01

    The phosphors LaPO4 (Lanthanum phosphate) doped with Ce(III)/Ce3+ and co-doped with Ce3+-Nd3+ and Ce3+-Yb3+ were effectively synthesized by conventional solid state reaction method. The prepared samples were characterized by powder X-ray diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infrared (NIR) and ultraviolet visible (UV-VIS) region. Additionally the luminescence time decay curves of samples were investigated to confirm energy transfer (ET) process. The Ce3+-Nd3+ ion co-doped LaPO4 phosphors can convert a photon of UV region (278 nm) into photons of NIR region (1058 nm). While Ce3+-Yb3+ ion doped LaPO4 phosphors convert photons of UV region (278 nm) into photons of NIR region (979 nm). The Ce3+ ion acts like sensitizer and Nd3+/Yb3+ ions act as activators. Both kinds of emissions are suitable for improving spectral response of solar cells.

  6. Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm.

    PubMed

    Yang, Jun; Zhang, Cuimiao; Peng, Chong; Li, Chunxia; Wang, Lili; Chai, Ruitao; Lin, Jun

    2009-01-01

    Light fantastic! Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals with controllable red, green, blue (RGB) and bright white upconversion luminescence by a single laser excitation of 980 nm have been successfully synthesized (see picture). Due to abundant UC PL colors, it can potentially be used as fluorophores in the field of color displays, back light, UC lasers, photonics, and biomedicine.Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu(2)O(3):Yb(3+), Tm(3+) nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-->(3)H(6) transition of Tm(3+). The bright green UC emissions of Lu(2)O(3):Er(3+) nanocrystals appeared near 540 and 565 nm were observed and assigned to the (2)H(11/2)-->(4)I(15/2) and (4)S(3/2)-->(4)I(15/2) transitions, respectively, of Er(3+). The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb(3+) in Lu(2)O(3):Er(3+) nanocrystals. In sufficient quantities of Yb(3+) with resprct to Er(3+), the bright red UC emission of Lu(2)O(3):Yb(3+)/Er(3+) centered at 662 nm was predominant, due to the (4)F(9/2)-->(4)I(15/2) transition of Er(3+). Based on the generation of red, green, and blue emissions in the different doped Lu(2)O(3):RE(3+) nanocrystals, it is possible to produce the luminescence with a wide spectrum of colors, including white, by the appropriate doping of Yb(3+), Tm(3+), and Er(3+) in the present Lu(2)O(3) nanocrystals. Namely, Lu(2)O(3):3 %Yb(3+)/0.2 %Tm(3+)/0.4 %Er(3+) nanocrystals show suitable intensities of blue, green, and red (RGB) emission, resulting in the production of perfect and bright white light

  7. Spectroscopic and crystal-field analysis of new Yb-doped laser materials

    NASA Astrophysics Data System (ADS)

    Haumesser, Paul-Henri; Gaumé, Romain; Viana, Bruno; Antic-Fidancev, Elisabeth; Vivien, Daniel

    2001-06-01

    Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca3Y2(BO3)4 (CYB), Ca3Gd2(BO3)4 (CaGB), Sr3Y(BO3)3 (SrYBO), Ba3Lu(BO3)3 (BLuB), Y2SiO5 (YSO), Ca2Al2SiO7 (CAS) and SrY4(SiO4)3O (SYS). The 2F7/2 splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach.

  8. Spectroscopy of high index contrast Yb:Ta2O5 waveguides for lasing applications

    NASA Astrophysics Data System (ADS)

    Aghajani, A.; Murugan, G. S.; Sessions, N. P.; Apostolopoulos, V.; Wilkinson, J. S.

    2015-06-01

    Ytterbium-doped waveguides are required for compact integrated lasers and Yb- doped Ta2O5 is a promising candidate material. The design, fabrication and spectroscopic characterisation of Yb:Ta2O5 rib waveguides are described. The peak absorption cross-section was measured to be 2.75×10-20 cm2 at 975 nm. The emission spectrum was found to have a fluorescence emission peak at a wavelength of 976 nm with a peak cross-section of 2.9×10-20 cm2 and a second broad fluorescence band spanning from 990 nm to 1090 nm. The excited- state life time was measured to be 260 μs.

  9. A temperature sensor based on the enhanced upconversion luminescence of Li+ doped NaLuF4:Yb3+,Tm3+/Er3+ nano/microcrystals.

    PubMed

    Qiang, Qinping; Du, Shanshan; Ma, Xinlong; Chen, Wenbo; Zhang, Gangyi; Wang, Yuhua

    2018-05-09

    In this paper, fluorescent and optical temperature sensing bi-functional Li+-doping NaLuF4:Ln (Ln = Yb3+, Tm3+/Er3+) nanocrystals were synthesized via a simple hydrothermal method using oleic acid as a capping ligand. The crystal phase, size, upconversion (UC) properties, and optical temperature sensing characteristics of the crystals can be easily modified by Li+ doping. The results reveal that additional Li+ can promote the transformation from the hexagonal phase to the cubic phase and reduce the size of the nanocrystals. In addition, NaLuF4:Ln (Ln = Yb3+, Tm3+, Li+) nanocrystals present efficient near infrared (NIR) emission, which is beneficial for in vivo biomedical applications due to the increased penetration depth and low radiation damage of NIR light in bio-tissues. More importantly, under 980 nm excitation, the temperature dependent UCL from the 2H11/2 and 4S3/2 levels of Er3+ ions in NaLuF4:Yb3+,Er3+,Li+ microcrystals was investigated systematically. The fluorescence intensity ratios (FIR) of the pairs of thermally coupled levels were studied as a function of temperature in the range of 298-523 K. The maximum sensor sensitivities were found to be about 0.0039 K-1 (523 K) by exploiting the UC emissions from the 2H11/2 and 4S3/2 levels. This suggests that the Li+-doped upconversion luminescence (UCL) materials are promising prototypes for application as multi-mode probes for use in bio-separation and optical thermometers.

  10. Growth, improved thermal stability and spectral properties of Yb3+-ions doped high temperature phase α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions

    NASA Astrophysics Data System (ADS)

    Pan, Shangke; Zhang, Jianyu; Pan, Jianguo

    2018-02-01

    To investigate the cause of the thermal instability of Yb3+-ions doped Ba3Gd(BO3)3 crystal grown from Czochralski technique, the low temperature phase β-Ba3Gd(BO3)3 powder was synthesized at the temperature of 800 °C. To inhibit the phase transition of high temperature phase Yb:α-Ba3Gd(BO3)3 during the crystal growth process, co-doping ions Sr2+, Ca2+ and La3+ ions were introduced in Yb:α-Ba3Gd(BO3)3 crystal. The melting point increased and the thermal stability of Yb:α-Ba3Gd(BO3)3 crystal was improved by co-doping ions. The absorption peaks of co-doped crystals centered at 976 nm with FWHM of 11, 11 and 12 nm and the absorption cross sections were 3.40 × 10-21 cm2, 4.00 × 10-21 cm2 and 2.66 × 10-21 cm2, respectively. The emission cross sections at 1040 nm were 2.19 × 10-21 cm2, 2.53 × 10-21 cm2 and 1.93 × 10-21 cm2, respectively. The fluorescence times of co-doped by Sr2+, Ca2+ and La3+ ions were shorter than that of Yb:α-Ba3Gd(BO3)3 crystal. So Yb:α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions will be more suitable for LD-pumping laser.

  11. Design, synthesis and luminescence properties of Ba2 YB2 O6 Cl- and Ba2 YB2 O6 F-based phosphors.

    PubMed

    Chen, Wanping; Yang, Xin; Liu, Yan; Dai, Xiaoyan

    2015-05-01

    Using a high-temperature solid-state reaction, the chlorine in Ba2 YB2 O6 Cl is gradually replaced by F, and a new compound with the nominal chemical formula Ba2 YB2 O6 F and two phosphors doped with Ce(3+) and Eu(3+) , respectively, are obtained. X-Ray diffraction and photoluminescence spectroscopy are used to characterize the as-synthesized samples. The as-synthesized Ba2 YB2 O6 Cl exhibits bright blue emission in the spectral range ~ 330-410 nm with a maximum around 363 nm under X-ray or UV excitation. Ba2 YB2 O6 F:0.01Ce(3+) exhibits blue emission in the range ~ 340-570 nm with a maximum around 383 nm. Ba2 YB2 O6 F:0.01Eu(3+) exhibits a predominantly (5) D0 -(7)  F2 emission (~610 nm) and the relative intensities of the (5) D0 -(7)  F0,1,2 emissions are tunable under different wavelength UV excitation. The luminescence behaviors of the two phosphors are explained simply in terms of the host composition and site occupancy probability of Ce(3+) and Eu(3+) , respectively. The results indicate that these phosphors have potential application as a blue phosphor or as a red phosphor. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Color-tunable up-conversion emission from Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped T-AgGd(W,Mo){sub 2}O{sub 8} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jijian; Liu, Ni; Xu, Ling, E-mail: xuling@snnu.edu.cn

    Graphical abstract: The doping ions tune the UC luminescence of the T- AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} material. - Highlights: • AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} phosphors show color-tunable blue, green, and red UC emissions. • The samples’ UC emission color can be switched with the concentrations of doped ions. • The blue, green and red UC mechanisms are interpreted reasonably as three- and two- photon process. - Abstract: Tetragonal Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGd(W,Mo){sub 2}O{sub 8} phosphors were prepared by the high-temperature solid-state method. When the phosphors were excited at 980 nm, the UC emission ofmore » blue at 475 nm, green at 525 and 550 nm, and red at 656 nm were corresponding to the {sup 1}G{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} ions, the {sup 2}H{sub 11/2},{sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, and the {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transition of Er{sup 3+} ions, respectively. The blue UC emissions originate from a three-photon mechanism, while the green and red ones of Er{sup 3+} from two-photon process. The UC emission color of the Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGdW{sub 2}O{sub 8} samples switched from green to white, and then to red depending on the concentrations of Er{sup 3+} and Tm{sup 3+}. After doping with Mo(VI), tetragonal AgGdW{sub 2}O{sub 8} was transformed into tetragonal AgGdMo{sub 2}O{sub 8}, resulting in a slightly enhanced UC luminescence intensity with the favor of the red emission of Er{sup 3+} ion.« less

  13. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO₂.

    PubMed

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T; Sun, Luyi

    2017-02-28

    Yb 3+ -doped phosphate glasses containing different amounts of SiO₂ were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO₂ on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO₂ possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm²), the maximum Stark splitting manifold of ²F 7/2 level (781 cm -1 ), and the largest scalar crystal-field N J and Yb 3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO₂ promoted the formation of P=O linkages, but broke the P=O linkages when the SiO₂ content was greater than 26.7 mol %. Based on the previous 29 Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO₆] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb 3+ -doped gain medium for solid-state lasers and optical fiber amplifiers.

  14. Colour emission tunability in Ho3+-Tm3+-Yb3+ co-doped Y2O3 upconverted phosphor

    NASA Astrophysics Data System (ADS)

    Pandey, Anurag; Rai, Vineet Kumar

    2012-12-01

    The frequency upconversion (UC) emission throughout the visible region from the Y2O3:Ho3+-Tm3+-Yb3+ co-doped phosphors synthesized by using low temperature combustion process upon excitation with a diode laser operating at 980 nm have been presented. The colour emission tunability in co-doped phosphor has been observed on increasing the pump power and seen by the naked eyes. The tunability in colour emission has also been visualized by CIE chromaticity diagram. The variation in UC emission intensity of the 1G4 → 3H6 (Tm3+) and 5F3 → 5I8 (Ho3+) transitions lying in the blue region has been monitored with increase in the pump power and marked that their ratio can be used to determine the temperature. The developed phosphor has been used to record fingerprints. The observed most intense visible colour emission from the developed material may be used for photodynamic therapy and as an alternative of traditional fluorescent biolabels.

  15. Thermoelectric Performance of Yb-Doped Ba8Ni0.1Zn0.54Ga13.8Ge31.56 Type-I Clathrate Synthesized by High-Pressure Technique

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhang, Long; Dong, Jianying; Xu, Bo

    2017-05-01

    Type I clathrates are a promising thermoelectric (TE) material for waste heat recovery applications. However, the TE figure-of-merit of type I clathrates still needs further improvement. In this study, Yb-doped Ba8- x Yb x Ni0.1Zn0.54 Ga13.8Ge31.56 (0 ≤ x ≤ 0.5) type I clathrates were synthesized using a high-pressure technique. Energy dispersive spectrometry confirmed successful Yb doping. An increased Yb doping level reduces electrical resistivity and suppresses lattice thermal conductivity while keeping the Seebeck coefficient almost unchanged. TE figure-of-merit of Ba7.7Yb0.3Ni0.1Zn0.54Ga13.8Ge31.56 type I clathrate was improved by 15% (0.91) at the highest measured temperature (900 K) compared with a Yb-free sample.

  16. Atomic frequency reference at 1033 nm for ytterbium (Yb)-doped fiber lasers and applications exploiting a rubidium (Rb) 5S_1/2 to 4D_5/2 one-colour two-photon transition

    NASA Astrophysics Data System (ADS)

    Roy, Ritayan; Condylis, Paul C.; Johnathan, Yik Jinen; Hessmo, Björn

    2017-04-01

    We demonstrate a two-photon transition of rubidium (Rb) atoms from the ground state (5$S_{1/2}$) to the excited state (4$D_{5/2}$), using a home-built ytterbium (Yb)-doped fiber amplifier at 1033 nm. This is the first demonstration of an atomic frequency reference at 1033 nm as well as of a one-colour two-photon transition for the above energy levels. A simple optical setup is presented for the two-photon transition fluorescence spectroscopy, which is useful for frequency stabilization for a broad class of lasers. This spectroscopy has potential applications in the fiber laser industry as a frequency reference, particularly for the Yb-doped fiber lasers. This two-photon transition also has applications in atomic physics as a background- free high- resolution atom detection and for quantum communication, which is outlined in this article.

  17. Design and characterization of Yb and Nd doped transparent ceramics for high power laser applications: recent advancements

    NASA Astrophysics Data System (ADS)

    Lapucci, A.; Vannini, M.; Ciofini, M.; Pirri, A.; Nikl, M.; Li, J.; Esposito, L.; Biasini, V.; Hostasa, J.; Goto, T.; Boulon, G.; Maksimov, R.; Gizzi, L.; Labate, L.; Toci, G.

    2017-01-01

    We report a review on our recent developments in Yttebium and Neodymium doped laser ceramics, along two main research lines. The first is the design and development of Yb:YAG ceramics with non uniform doping distribution, for the management of thermo-mechanical stresses and for the mitigation of ASE: layered structures have been produced by solid state reactive sintering, using different forming processes (spray drying and cold press of the homogenized powders, tape cast of the slurry); samples have been characterized and compared to FEM analysis. The second is the investigation of Lutetium based ceramics (such as mixed garnets LuYAG and Lu2O3); this interest is mainly motivated by the favorable thermal properties of these hosts under high doping. We recently obtained for the first time high efficiency laser emission from Yb doped LuYAG ceramics. The investigation on sesquioxides has been focused on Nddoped Lu2O3 ceramics, fabricated with the Spark Plasma Sintering method (SPS). We recently achieved the first laser emission above 1 W from Nd doped Lu2O3 ceramics fabricated by SPS.

  18. Wavelength tunability of laser based on Yb-doped YGAG ceramics

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡

    2015-02-01

    The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.

  19. ZnMoO4:Er3+,Yb3+ phosphor with controlled morphology and enhanced upconversion through alkali ions doping

    NASA Astrophysics Data System (ADS)

    Luitel, Hom Nath; Chand, Rumi; Watari, Takanori

    2018-04-01

    A facile hydrothermal method was used to synthesize ZnMoO4:Er3+,Yb3+ nanoparticles. The shapes and sizes of the nanoparticles were well tuned by simply monitoring the pH of the starting solution. Microballs consisting of agglomerated nanograins were observed at strong acidic condition. At mild pH, plates and rectangular particles were realized, while strong basic pH stabilized rods. Further increasing pH to extremely basic conditions (pH > 13), rods changed to fragile hairy structures. The nucleation and growth mechanism of nanograins to form different morphology nanoparticles were studied and illustrated. XRD patterns confirmed well crystalline, triclinic structure despite small amount of aliovalent metal ions doping. Under 980 nm excitation, the ZnMoO4:Er3+,Yb3+ nanophosphor exhibited strong green (centered at 530 and 560 nm) and weak red (centered at 660 nm) upconversion (UC) emissions. Substitution of part of the Zn2+ ions by monovalent alkali ions intensified the UC emission intensities drastically. The order of intensification was K+>Na+>Li+>Rb+>no alkali ion. When Zn2+ ions were substituted with 10 at% K+ ions, the green and red UC emissions intensities increased by more than 50 and 15 folds, respectively. Time dependent measurements confirmed efficient Yb to Er energy transfer in the ZnMoO4:Er3+,Yb3+,K+ nanophosphor. The optimized ZnMoO4:Er3+,Yb3+,K+ phosphor exhibited intense UC emissions with 0.31% quantum yield. The upconverted light is visible to naked eye while pumping by laser of less than 1 mW power and opens door for variety of novel applications.

  20. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO 4

    DOE PAGES

    Paddison, Joseph A. M.; Daum, Marcus; Dun, Zhiling; ...

    2016-12-05

    A quantum spin liquid (QSL) is an exotic state of matter in which electrons’ spins are quantum entangled over long distances, but do not show magnetic order in the zero-temperature limit. The observation of QSL states is a central aim of experimental physics, because they host collective excitations that transcend our knowledge of quantum matter; however, examples in real materials are scarce. We report neutron-scattering experiments on YbMgGaO 4, a QSL candidate in which Yb 3+ ions with effective spin-1/2 occupy a triangular lattice. Furthermore, our measurements reveal a continuum of magnetic excitations—the essential experimental hallmark of a QSL7—at verymore » low temperature (0.06 K). The origin of this peculiar excitation spectrum is a crucial question, because isotropic nearest-neighbour interactions do not yield a QSL ground state on the triangular lattice. In using measurements the field-polarized state, we identify antiferromagnetic next-nearest-neighbour interactions spin-space anisotropies and chemical disorder between the magnetic layers as key ingredients in YbMgGaO 4.« less

  1. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, R.H.; Schaffers, K.I.; Waide, P.A.

    We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beammore » profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.« less

  2. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    PubMed

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  3. Dual functional NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ core-shell nanoparticles for cell temperature sensing and imaging

    NASA Astrophysics Data System (ADS)

    Shi, Zengliang; Duan, Yue; Zhu, Xingjun; Wang, Qiwei; Li, DongDong; Hu, Ke; Feng, Wei; Li, Fuyou; Xu, Chunxiang

    2018-03-01

    Lanthanide-doped up-conversion nanoparticles (UCNPs) provide a remote temperature sensing approach to monitoring biological microenvironments. In this research, the UCNPs of NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ with hexagonal (β)-phase were synthesized and applied in cell temperature sensing as well as imaging after surface modification with meso-2, 3-dimercaptosuccinic acid. In the core-shell UCNPs, Yb3+ ions were introduced as energy transfer media between sensitizers of Nd3+ and activators of Er3+ to improve Er3+emission and prevent their quenching behavior due to multiple energy levels of Nd3+. Under the excitations of 808 nm and 980 nm lasers, the NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ nanoparticles exhibited an efficient green band with two emission peaks at 525 nm and 545 nm, respectively, which originated from the transitions of 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 for Er3+ ions. We demonstrate that an occurrence of good logarithmic linearity exists between the intensity ratio of these two emission peaks and the reciprocal of the inside or outside temperature of NIH-3T3 cells. A better thermal stability is proved through temperature-dependent spectra with a heating-cooling cycle. The obtained viability of NIH-3T3 cells is greater than 90% after incubations of about 12 and 24 (h), and they possess a lower cytotoxicity of UCNPs. This work provides a method for monitoring the cell temperature and its living state from multiple dimensions including temperature response, cell images and visual up-conversion fluorescent color.

  4. Cooperative down-conversion of UV light in disordered scheelitelike Yb-doped NaGd(MoO4)2 and NaLa(MoO4)2 crystals

    NASA Astrophysics Data System (ADS)

    Subbotin, K. A.; Osipova, Yu. N.; Lis, D. A.; Smirnov, V. A.; Zharikov, E. V.; Shcherbakov, I. A.

    2017-07-01

    Concentration series of disordered scheelitelike Yb:NaGd(MoO4)2 and Yb:NaLa(MoO4)2 single crystals are grown by the Czochralski method. The actual concentrations of Yb3+ ions in the crystals are determined by optical-absorption spectroscopy. The luminescence of Yb3+ ions in these crystals in the region of 1 μm is studied under UV and IR excitation. In the case of UV excitation, this luminescence appears as a result of nonradiative excited state energy transfer from donor centers of unknown nature to ytterbium. The character of the concentration dependence of Yb3+ luminescence indicates that the energy transfer at high Yb concentrations occurs with active participation of a cooperative mechanism, according to which the excitation energy of one donor center is transferred simultaneously to two Yb3+ ions. In other words, the quantum yield of this transfer exceeds unity, which can be used to increase the efficiency of crystalline silicon (c-Si) solar cells.

  5. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    NASA Astrophysics Data System (ADS)

    Ryser, Manuel; Neff, Martin; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2012-02-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 μW of fiber-coupled average output power. For the low output pulse energy of 0.33 pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72 dBs to an output pulse energy of 5.7 μJ, pulse duration of 11 ps and peak power of >0.6 MW.

  6. 2.7 μm emission properties of Er3+ doped tungsten-tellurite glass sensitized by Yb3+ ions.

    PubMed

    Guo, Yanyan; Ma, Yaoyao; Huang, Feifei; Peng, Yapei; Zhang, Liyan; Zhang, Junjie

    2013-07-01

    With a 980 nm laser diode (LD) pumped, the sensitized effect of Yb(3+) ions on 2.7 μm emission properties and energy transfer mechanism in Yb(3+)/Er(3+) co-doped tungsten-tellurite glass were investigated in present paper. Based on absorption spectra, Judd-Ofelt parameters and radiative transition probabilities were calculated and analyzed. The emission spectra were tested and the optimized concentration ratio of Yb(3+) to Er(3+) ions was found to be 3:0.5 with a largest calculated emission cross-section (6.05×10(-21) cm(2)) corresponding to Er(3+):(4)I11/2→(4)I13/2 transition. When the concentration ratio of Yb(3+) to Er(3+) ions was 4:0.5, 1.5 μm and 2.7 μm emission decreased while up-conversion increased. The decreased 1.5 μm and 2.7 μm emission were induced by the saturation of Er(3+):(4)I13/2 level. In brief, the advantageous spectroscopic characteristics indicated that Yb(3+)/Er(3+) co-doped tungsten-tellurite glass may be a promising candidate for application of 2.7 μm emission. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Fractional and hidden magnetic excitations in f-electron metal Yb2Pt2Pb

    NASA Astrophysics Data System (ADS)

    Zaliznyak, Igor

    Quantum states with fractionalized excitations such as spinons in one-dimensional chains are commonly viewed as belonging to the domain of S=1/2 spin systems. However, recent experiments on the quantum antiferromagnet Yb2Pt2Pb, part of a large family of R2T2X (R=rare earth, T=transition metal, X=main group) materials spectacularly disqualify this opinion. The results show that spinons can also emerge in an f-electron system with strong spin-orbit coupling, where magnetism is mainly associated with large and anisotropic orbital moment. Here, the competition of several high-energy interactions Coulomb repulsion, spin-orbit coupling, crystal field, and the peculiar crystal structure, which combines low dimensionality and geometrical frustration, lead to the emergence, at low energy, of an effective spin-1/2, purely quantum Hamiltonian. Consequently, it produces unusual spin-liquid states and fractional excitations enabled by the inherently quantum mechanical nature of the moments. The emergent quantum spins bear the unique birthmark of their unusual origin in that they only lead to measurable longitudinal magnetic fluctuations, while the transverse excitations such as spin waves remain invisible to scattering experiments. Similarlyhidden would be transverse magnetic ordering, although it would have visible excitations. The rich magnetic phase diagram of Yb2Pt2Pb is suggestive of the existence of hidden-order phases, while the recent experiments indeed reveal the dark magnon, a hidden excitation in the saturated ferromagnetic (FM) phase of Yb2Pt2Pb. Unlike copper-based spin-1/2 chains, where the magnon in the FM state accounts for the full spectral weight of the zero-field spinon continuum, in the spin-orbital chains in Yb2Pt2Pb it is 100 times, or more weaker. It thus presents an example of dark magnon matter\\x9D, whose Hamiltonian is that of the effective spin-1/2 chain, but whose coupling to magnetic field, the physical probe at our disposal, is vanishingly small

  8. Role of Yb3+ ions on enhanced ~2.9 μm emission from Ho3+ ions in low phonon oxide glass system

    PubMed Central

    Balaji, Sathravada; Gupta, Gaurav; Biswas, Kaushik; Ghosh, Debarati; Annapurna, Kalyandurg

    2016-01-01

    The foremost limitation of an oxide based crystal or glass host to demonstrate mid- infrared emissions is its high phonon energy. It is very difficult to obtain radiative mid-infrared emissions from these hosts which normally relax non-radiatively between closely spaced energy levels of dopant rare earth ions. In this study, an intense mid-infrared emission around 2.9 μm has been perceived from Ho3+ ions in Yb3+/Ho3+ co-doped oxide based tellurite glass system. This emission intensity has increased many folds upon Yb3+: 985 nm excitation compared to direct Ho3+ excitations due to efficient excited state resonant energy transfer through Yb3+: 2F5/2 → Ho3+: 5I5 levels. The effective bandwidth (FWHM) and cross-section (σem) of measured emission at 2.9 μm are assessed to be 180 nm and 9.1 × 10−21 cm2 respectively which are comparable to other crystal/glass hosts and even better than ZBLAN fluoride glass host. Hence, this Ho3+/Yb3+ co-doped oxide glass system has immense potential for the development of solid state mid-infrared laser sources operating at 2.9 μm region. PMID:27374129

  9. Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration

    PubMed Central

    Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N.; Chen, Guanying

    2014-01-01

    The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF4:Yb3+30%/Tm3+0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF4:Yb3+30%/Tm3+0.5%)/NaYbF4/NaYF4 design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF4:Yb3+30%/Tm3+0.5%)/NaYF4 active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb3+/Tm3+-codoped NaYF4 nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles. PMID:28348285

  10. Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration.

    PubMed

    Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N; Chen, Guanying

    2014-01-03

    The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF₄:Yb 3+ 30%/Tm 3+ 0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYbF₄/NaYF₄ design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYF₄ active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb 3+ /Tm 3+ -codoped NaYF₄ nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles.

  11. Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Hong, P.; Bass, M.; Chai, B. H. T.

    1995-04-01

    Strong blue emissions have been observed in fluoride crystals, such as LiYF4, BaY2F8, and KYF4, codoped with Tm3+ and Yb3+ when excited into the Tm3+ 3F4 state at ~780 nm. Energy transfer from Tm3+ to Yb3+ ions followed by the transfer from Yb3+ to Tm3+ was demonstrated to be responsible for the upconversion process. A pumping scheme is proposed based on this upconversion mechanism for blue-laser applications using these materials.

  12. Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited

    NASA Astrophysics Data System (ADS)

    Li, Lu; Yan, Pei-Guang; Wang, Yong-Gang; Duan, Li-Na; Sun, Hang; Si, Jin-Hai

    2015-12-01

    In this study we present an all-normal-dispersion Yb-doped fiber laser passively mode-locked with topological insulator (Bi2Te3) saturable absorber. The saturable absorber device is fabricated by depositing Bi2Te3 on a tapered fiber through using pulsed laser deposition (PLD) technology, which can give rise to less non-saturable losses than most of the solution processing methods. Owing to the long interaction length, Bi2Te3 is not exposed to high optical power, which allows the saturable absorber device to work in a high power regime. The modulation depth of this kind of saturable absorber is measured to be 10%. By combining the saturable absorber device with Yb-doped fiber laser, a mode-locked pulse operating at a repetition rate of 19.8 MHz is achieved. The 3-dB spectral width and pulse duration are measured to be 1.245 nm and 317 ps, respectively. Project supported by the National Natural Science Foundation of China (Grant No. 61378024) and the Natural Science Fund of Guangdong Province, China (Grant No. S2013010012235).

  13. Er3+ -doped anatase TiO2 nanocrystals: crystal-field levels, excited-state dynamics, upconversion, and defect luminescence.

    PubMed

    Luo, Wenqin; Fu, Chengyu; Li, Renfu; Liu, Yongsheng; Zhu, Haomiao; Chen, Xueyuan

    2011-11-04

    A comprehensive survey of electronic structure and optical properties of rare-earth ions embedded in semiconductor nanocrystals (NCs) is of vital importance for their potential applications in areas as diverse as luminescent bioprobes, lighting, and displays. Er3+ -doped anatase TiO2 NCs, synthesized via a facile sol-gel solvothermal method, exhibit intense and well-resolved intra-4f emissions of Er3+ . Crystal-field (CF) spectra of Er3+ in TiO2 NCs are systematically studied by means of high-resolution emission and excitation spectra at 10-300 K. The CF analysis of Er3+ assuming a site symmetry of C(2v) yields a small root-mean-square deviation of 25.1 cm(-1) and reveals the relatively large CF strength (549 cm(-1) ) of Er3+, thus verifying the rationality of the C(2v) symmetry assignment of Er3+ in anatase TiO2 NCs. Based on a simplified thermalization model for the temperature-dependent photoluminescence (PL) dynamics from (4) S(3/2) , the intrinsic radiative luminescence lifetimes of (4) S(3/2) and (2) H(11/2) are experimentally determined to be 3.70 and 1.73 μs, respectively. Green and red upconversion (UC) luminescence of Er3+ can be achieved upon laser excitation at 974.5 nm. The UC intensity of Er3+ in Yb/Er-codoped NCs is found to be about five times higher than that of Er-singly-doped counterparts as a result of efficient Yb3+ sensitization and energy transfer upconversion (ETU) evidenced by its distinct UC luminescence dynamics. Furthermore, the origin of defect luminescence is revealed based on the temperature-dependent PL spectra upon excitation above the TiO2 bandgap at 325 nm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Different polarization dynamic states in a vector Yb-doped fiber laser.

    PubMed

    Li, Xingliang; Zhang, Shumin; Han, Huiyun; Han, Mengmeng; Zhang, Huaxing; Zhao, Luming; Wen, Fang; Yang, Zhenjun

    2015-04-20

    Different polarization dynamic states in an unidirectional, vector, Yb-doped fiber ring laser have been observed. A rich variety of dynamic states, including group velocity locked polarization domains and their splitting into regularly distributed multiple domains, polarization locked square pulses and their harmonic mode locking counterparts, and dissipative soliton resonances have all been observed with different operating parameters. We have also shown experimentally details of the conditions under which polarization-domain-wall dark pulses and bright square pulses form.

  15. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO2

    PubMed Central

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T.; Sun, Luyi

    2017-01-01

    Yb3+-doped phosphate glasses containing different amounts of SiO2 were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO2 on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO2 possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm2), the maximum Stark splitting manifold of 2F7/2 level (781 cm−1), and the largest scalar crystal-field NJ and Yb3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO2 promoted the formation of P=O linkages, but broke the P=O linkages when the SiO2 content was greater than 26.7 mol %. Based on the previous 29Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO6] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb3+-doped gain medium for solid-state lasers and optical fiber amplifiers. PMID:28772601

  16. Studies on up/down-conversion emission of Yb3+ sensitized Er3+ doped MLa2(MoO4)4 (M = Ba, Sr and Ca) phosphors for thermometry and optical heating

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Kumar, Kaushal

    2018-01-01

    The photoluminescence properties of Yb3+ sensitized Er3+ doped BaLa2(MoO4)4, SrLa2(MoO4)4 and CaLa2(MoO4)4 phosphors synthesized via hydrothermal method are investigated upon 980 nm and 380 nm light excitations. The phase, purity, and morphology of the samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy and Field emission scanning electron microscope. Among these three phosphors, the strongest emission intensity is seen in BaLa2(MoO4)4: Er3+/Yb3+ through both the 980 nm and 380 nm light excitations and is explained by the lifetime measurement of 4S3/2 level of Er3+ ion. Temperature sensing measurements were performed by using the fluorescence intensity ratio (FIR) of green emission bands originated from the two thermally coupled 2H11/2 → 4I15/2 and 4S3//2 → 4I15/2 transitions of Er3+ and maximum temperature sensitivity of 1.05% K-1 at 305 K is found for BLa2(MoO4)4: Er3+/Yb3+ sample. Moreover, the laser induced heating is measured in the samples and the maximum temperature of the sample particles is calculated as 422 K at 76 W/cm2 in BaLa2(MoO4)4: Er3+/Yb3+, pointing out large amount of heat generation in such phosphors. The BaLa2(MoO4)4: Er3+/Yb3+ also exhibits higher photothermal conversion efficiency of 46.7%.

  17. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    PubMed

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times.

  18. Frequency upconversion and fluorescence intensity ratio method in Yb3+-ion-sensitized Gd2O3:Er3+-Eu3+ phosphors for display and temperature sensing

    NASA Astrophysics Data System (ADS)

    Ranjan, Sushil Kumar; Soni, Abhishek Kumar; Rai, Vineet Kumar

    2017-09-01

    Near infrared (NIR) to visible frequency upconversion emission studies in Er3+-Eu3+/Er3+-Eu3+-Yb3+ co-doped/tri-doped Gd2O3 phosphors prepared by the co-precipitation technique have been explored under 980 nm laser diode radiation. The developed phosphors were characterized with the help of XRD, FE-SEM and FTIR analysis. No upconversion (UC) emission was found in the Eu3+-doped Gd2O3 phosphor. UC emission from Eu3+ ions along with Er3+ ions was observed in Er3+-Eu3+ and Er3+-Eu3+-Yb3+ co-doped/tri-doped phosphors. The UC emission arising from the Er3+ and Eu3+ ions was enhanced several times due to the incorporation of Yb3+ ions. The processes involved in the UC emission were obtained on the basis of the effect of energy transfer/sensitization through the Yb3+ → Er3+ → Eu3+ process. The red/green intensity ratio was improved from 0.16 to 1.50 and 1.01 to 1.50 for Er3+-Eu3+-Yb3+ tri-doped phosphors as compared to the Er3+-doped and Er3+-Yb3+ co-doped phosphors, respectively, at a fixed pump power density. A UC fluorescence intensity ratio (FIR)-based temperature sensing study was performed in the prepared Er3+-Eu3+-Yb3+ tri-doped Gd2O3 phosphors for green upconversion emission bands in the 300 K-443 K temperature range. A maximum sensor sensitivity of about ˜0.0043 K-1 at 300 K was achieved for the synthesized tri-doped phosphors upon excitation with a 980 nm laser diode. The colour coordinates lying in the green-yellow region are invariant, with variation in pump power density and temperature. The observed results support the utility of the prepared tri-doped phosphors in optical temperature sensing, display devices and NIR to visible upconverters.

  19. Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Yuan, Maohui; Zhang, Chaofan; Wang, Hongyan; Xu, Xiaojun

    2018-05-01

    Transition metal ions (e.g. Mn2+) and lanthanide co-doped upconversion (UC) materials have attracted wide attention in recent years due to their promising application in multicolor display. Here, we report the hydrothermal synthesis and characterization of Mn2+ doped monodisperse CaF2:Yb3+/Ho3+ microspheres. The results of X-ray diffraction (XRD) revealed that Mn2+ doping does not change the cubic phase of CaF2 material but will lead to diffraction peaks shifting slightly towards higher angle due to the substitution of larger Ca2+ by the relatively smaller Mn2+. Under the excitation of 980 nm continuous wave (CW) laser, these microspheres exhibit green-yellow-red tuning colors and remarkable enhancement of both red to green ratio (R/G) and red to blue ratio (R/B) when increasing Mn2+ concentration from 0 to 30 mol%. The energy migration process between Ho3+ and Mn2+ was proposed and supported by time-decay and power dependence measurements of Ho3+ UC emission. These upconversion materials may have potential applications in optical devices, color display, nanoscale lasers and biomedical imaging.

  20. Visible upconversion emission and non-radiative direct Yb 3+ to Er 3+ energy transfer processes in nanocrystalline ZrO 2:Yb 3+,Er 3+

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, L. A.; Meza, O.; Solis, D.; Salas, P.; De la Rosa, E.

    2011-06-01

    Wide band gap Yb 3+ and Er 3+ codoped ZrO 2 nanocrystals have been synthesized by a modified sol-gel method. Under 967 nm excitation strong green and red upconversion emission is observed for several Er 3+ to Yb 3+ ions concentration ratios. A simple microscopic rate equation model is used to study the effects of non-radiative direct Yb 3+ to Er 3+ energy transfer processes on the visible and near infrared fluorescence decay trends of both Er 3+ and Yb 3+ ions. The microscopic rate equation model takes into account the crystalline phase as well as the size of nanocrystals. Nanocrystals phase and size were estimated from XRD patterns. The rate equation model succeeds to fit simultaneously all visible and near infrared fluorescence decay profiles. The dipole-dipole interaction parameters that drive the non-radiative energy transfer processes depend on doping concentration due to crystallite phase changes. In addition the non-radiative relaxation rate ( 4I11/2→ 4I13/2) is found to be greater than that estimated by the Judd-Ofelt parameters due to the action of surface impurities. Results suggest that non-radiative direct Yb 3+ to Er 3+ energy transfer processes in ZrO 2:Yb,Er are extremely efficient.

  1. Broadband near-infrared downconversion luminescence in Eu2+-Yb3+ codoped Ca9Y(PO4)7

    NASA Astrophysics Data System (ADS)

    Sun, Jiayue; Zhou, Wei; Sun, Yining; Zeng, Junhui

    2013-06-01

    An efficient broadband near-infrared (NIR) quantum cutting was demonstrated in Eu2+-Yb3+ codoped Ca9Y(PO4)7 phosphor. Upon excitation of Eu2+ ions to the 4f65d1 level with an ultraviolet photon at 322 nm, emissions of two NIR photons at 983 nm of Yb3+were achieved. The dependences of the visible and NIR emissions, the decay lifetime, the energy transfer efficiency (ETE), and the quantum efficiency (QE) on the Yb3+ doping content were investigated in detail. The results indicated that the maximum ETE and the corresponding downconversion QE can reach between 80% and 179%, respectively.

  2. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications.

    PubMed

    Krishnaiah, Kummara Venkata; de Lima Filho, Elton Soares; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-02-26

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb(3+)) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb(3+) concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb(3+): glass and decreases with increasing Yb(3+) concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm(3+) and Er(3+) ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb(3+): (2)F5/2 → (2)F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb(3+) with increasing Yb(3+) concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed.

  3. Monolithic all-fiber repetition-rate tunable gain-switched single-frequency Yb-doped fiber laser.

    PubMed

    Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu

    2016-12-12

    We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.

  4. Cr3+-Doped Yb3Ga5O12 Nanophosphor: Synthesis, Optical, EPR, Studies

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Singh, N.; Pathak, M. S.; Jirimali, H. D.; Singh, Pramod K.; Srivastava, Anoop K.; Dhoble, S. J.; Mohapatra, M.

    2016-08-01

    Gallium garnets of lanthanides are multifunctional materials especially known for their complicated structure and magnetic properties. In addition, with a suitable transition metal dopant ion, these matrices have been proved to be excellent materials for lasers. In particular, gallium garnet of ytterbium (Yb3Ga5O12) is known to possess excellent properties with regards to these applications. In this connection, Yb3Ga5O12 doped with Cr3+ nanophosphors were synthesized by a solution combustion route. The synthesized material was characterized by powder x-ray diffraction and scanning electron microscopy for phase purity and homogenous morphology. In order to ascertain the oxidation state of the doped ion, diffuse reflectance (DRF), photoluminescence (PL) and electron paramagnetic resonance (EPR) experiments were performed on the sample. The DRF and PL data suggested the stabilisation of the trivalent Cr ion in the matrix. The EPR spectra exhibited two resonance signals with effective g values at g ≈ 7.6 and 4. The EPR data corroborated the DRF and PL results, suggesting the stabilisation of Cr3+ in the matrix at octahedral-type geometries.

  5. Up-conversion monodispersed spheres of NaYF4:Yb3+/Er3+: green and red emission tailoring mediated by heating temperature, and greatly enhanced luminescence by Mn2+ doping.

    PubMed

    Zhu, Qi; Song, Caiyun; Li, Xiaodong; Sun, Xudong; Li, Ji-Guang

    2018-04-09

    Submicron sized, monodispersed spheres of Mn2+, Yb3+/Er3+ and Mn2+/Yb3+/Er3+ doped α-NaYF4 were easily autoclaved from mixed solutions of the component nitrates and ammonium fluoride (NH4F), in the presence of EDTA-2Na. Detailed characterizations of the resultant phosphors were obtained using XRD, Raman spectroscopy, FE-SEM, HR-TEM, STEM, PLE/PL spectroscopy, and fluorescence decay analysis. Finer structure and better crystal perfection was observed at a higher calcination temperature, and the spherical shape and excellent dispersion of the original particles was retained at temperatures up to 600 °C. Under the 980 nm infrared excitation, the Yb3+/Er3+-doped sample (calcined at 400 °C) exhibits a stronger green emission centered at ∼524 nm (2H11/2 → 4I15/2 transition of Er3+) and a weaker red emission centered at ∼657 nm (4F9/2 → 4I15/2 transition of Er3+). A 200 °C increase in the temperature from 400 °C to 600 °C resulted in the dominant red emission originating from the 4F9/2 → 4I15/2 transition of Er3+, instead of the previously dominant green one. Mn2+ doping induced a remarkable more enhanced intensity at ∼657 nm and ∼667 nm (red emission area) than that at ∼524 nm and ∼546 nm (green emission area), because of the non-radiative energy transfer between Mn2+ and Er3+. However, a poor thermal stability was induced by Mn2+ doping. The observed upconversion luminescence of the samples calcined at 400 °C and 600 °C followed the two photon process and the four photon process, respectively.

  6. Orbital-exchange and fractional quantum number excitations in an f-electron metal Yb 2Pt 2Pb

    DOE PAGES

    L. S. Wu; Zaliznyak, I. A.; Gannon, W. J.; ...

    2016-06-03

    Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb 2Pt 2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutronmore » scattering. Furthermore, the proliferation of these orbital-spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.« less

  7. Two-wavelength, passive self-injection-controlled operation of diode-pumped cw Yb-doped crystal lasers.

    PubMed

    Louyer, Yann; Wallerand, Jean-Pierre; Himbert, Marc; Deneva, Margarita; Nenchev, Marin

    2003-09-20

    We demonstrate and investigate a peculiar mode of cw Yb3+-doped crystal laser operation when two emissions, at two independently tunable wavelengths, are simultaneously produced. Both emissions are generated from a single pumped volume and take place in either a single beam or spatially separated beams. The laser employs original two-channel cavities that use a passive self-injection-locking (PSIL) control to reduce intracavity loss. The advantages of the application of the PSIL technique and some limitations are shown. The conditions for two-wavelength multimode operation of the cw quasi-three-level diode-pumped Yb3+ lasers and the peculiarity of such an operation are carried out both theoretically and experimentally. The results reported are based on the example of a Yb3+:GGG laser but similar results are also obtained with a Yb3+:YAG laser. The laser operates in the 1023-1033-nm (1030-1040-nm) range with a total output power of 0.4 W. A two-wavelength, single longitudinal mode generation is also obtained.

  8. Energy transfer and optical gain properties of P{sub 2}O{sub 5}-ZnO-LiF: (Yb{sup 3+}, Er{sup 3+}) glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, C. Parthasaradhi, E-mail: cgparthasaradhi@gmail.com, E-mail: ktrkreddy@gmail.com; Naresh, V.; Reddy, K. T. Ramakrishna, E-mail: cgparthasaradhi@gmail.com, E-mail: ktrkreddy@gmail.com

    2015-06-24

    The present paper reports on the results pertaining to the emission properties of 0.5 mol% Er{sup 3+} and together (0.5 Yb{sup 3+} /0.5 Er{sup 3+}) doped PZL (P{sub 2}O{sub 5}-ZnO-LiF) glasses prepared by a melt quenching method. From the optical absorption data, absorption and stimulated emission cross-sections have been evaluated using McCumber’s theory and further cross-sectional gain has also been computed for Yb{sup 3+}/Er{sup 3+} doped glass. On exciting the single (Er{sup 3+}) and dual rare earth ions (Yb{sup 3+}/Er{sup 3+}) doped glass sample at λ{sub exci} = 379 nm, three emission bands in the visible region {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}more » (526 nm), {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (549 nm) and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (664 nm) are observed and while at λ{sub exci} = 980 nm (Laser Diode) excitation a broad emission at 1530 nm attributed to {sup 4}H{sub 13/2}→{sup 4}I{sub 15/2} is observed in the NIR region. The enhancement in visible and NIR emission intensities with the addition of Yb{sup 3+} to Er{sup 3+} due to an energy transfer process from Yb{sup 3+} to Er{sup 3+} has been explained in terms of an energy level diagram.« less

  9. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    PubMed Central

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  10. A global design of high power Nd 3+-Yb 3+ co-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Fan, Zhang; Chuncan, Wang; Tigang, Ning

    2008-09-01

    A global optimization method - niche hybrid genetic algorithm (NHGA) based on fitness sharing and elite replacement is applied to optimize Nd3+-Yb3+ co-doped fiber lasers (NYDFLs) for obtaining maximum signal output power. With a objective function and different pumping powers, five critical parameters (the fiber length, L; the proportion of pump power for pumping Nd3+, η; Nd3+ and Yb3+ concentrations, NNd and NYb and output mirror reflectivity, Rout) of the given NYDFLs are optimized by solving the rate and power propagation equations. Results show that dividing equally the input pump power among 808 nm (Nd3+) and 940 nm (Yb3+) is not an optimal choice and the pump power of Nd3+ ions should be kept around 10-13.78% of the total pump power. Three optimal schemes are obtained by NHGA and the highest slope efficiency of the laser is able to reach 80.1%.

  11. Upconversion properties of Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses.

    PubMed

    Su, Fangning; Deng, Zaide

    2006-01-01

    The Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses were prepared by conventional melting procedures, and their upconversion spectra were performed. The dependence of luminescence intensity on the ratio of Yb3+/Er3+ was studied, and the relationship between green upconversion luminescence intensity and Er3+ concentration is discussed in detail. The 546 nm green upconversion luminescence intensity is optimised in the studied glasses either when the Yb3+/Er3+ ratio is 25/1 and Er3+ concentration is 0.1 mol%, or when the Yb3+/Er3+ ratio is 10/1 and Er3+ concentration is 0.15 mol%. These glasses could be one of the potential candidates for LD pumping microchip solid-state lasers.

  12. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber

    PubMed Central

    Zhang, M.; Hu, Guohua; Hu, Guoqing; Howe, R. C. T.; Chen, L.; Zheng, Z.; Hasan, T.

    2015-01-01

    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm2 saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications. PMID:26657601

  13. Enhanced Power Conversion Efficiency of Perovskite Solar Cells with an Up-Conversion Material of Er3+-Yb3+-Li+ Tri-doped TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenlong; Qin, Jianqiang; Shi, Wenjia; Liu, Yanyan; Zhang, Yan; Liu, Yuefeng; Gao, Huiping; Mao, Yanli

    2018-05-01

    In this paper, Er3+-Yb3+-Li+ tri-doped TiO2 (UC-TiO2) was prepared by an addition of Li+ to Er3+-Yb3+ co-doped TiO2. The UC-TiO2 presented an enhanced up-conversion emission compared with Er3+-Yb3+ co-doped TiO2. The UC-TiO2 was applied to the perovskite solar cells. The power conversion efficiency (PCE) of the solar cells without UC-TiO2 was 14.0%, while the PCE of the solar cells with UC-TiO2 was increased to 16.5%, which presented an increase of 19%. The results suggested that UC-TiO2 is an effective up-conversion material. And this study provided a route to expand the spectral absorption of perovskite solar cells from visible light to near-infrared using up-conversion materials.

  14. Enhanced Power Conversion Efficiency of Perovskite Solar Cells with an Up-Conversion Material of Er3+-Yb3+-Li+ Tri-doped TiO2.

    PubMed

    Zhang, Zhenlong; Qin, Jianqiang; Shi, Wenjia; Liu, Yanyan; Zhang, Yan; Liu, Yuefeng; Gao, Huiping; Mao, Yanli

    2018-05-11

    In this paper, Er 3+ -Yb 3+ -Li + tri-doped TiO 2 (UC-TiO 2 ) was prepared by an addition of Li + to Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 presented an enhanced up-conversion emission compared with Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 was applied to the perovskite solar cells. The power conversion efficiency (PCE) of the solar cells without UC-TiO 2 was 14.0%, while the PCE of the solar cells with UC-TiO 2 was increased to 16.5%, which presented an increase of 19%. The results suggested that UC-TiO 2 is an effective up-conversion material. And this study provided a route to expand the spectral absorption of perovskite solar cells from visible light to near-infrared using up-conversion materials.

  15. Excitation and De-Excitation Mechanisms of Er-Doped GaAs and A1GaAs.

    DTIC Science & Technology

    1992-12-01

    AD-A258 814 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs DISSERTATION David W. Elsaesser, Captain, USAF DTICY. ft £ICTE’’ )AN...0 8 1993U -o Wo- .%Approved for public release; Distribution unlimited 93 1 04 022 AFIT/DS/ENP/92-5 EXCITATION AND DE -EXCITATION MECHANISMS OF Er...public release; Distribution unlimited AFIT/DS/ENP/92D-005 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs 4 toFlor -- David W

  16. Optical transitions of Ho(3+) in oxyfluoride glasses and upconversion luminescence of Ho(3+)/Yb(3+)-codoped oxyfluoride glasses.

    PubMed

    Feng, Li; Wu, Yinsu

    2015-05-05

    Optical properties of Ho(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Ho(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980nm excitation. The effects of composition, concentration of the doping ions, and excitation pump power on the upconversion emissions were also systematically studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications

    PubMed Central

    Krishnaiah, Kummara Venkata; Soares de Lima Filho, Elton; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-01-01

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb3+) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb3+ concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb3+: glass and decreases with increasing Yb3+ concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm3+ and Er3+ ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb3+: 2F5/2 → 2F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb3+ with increasing Yb3+ concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed. PMID:26915817

  18. MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength

    NASA Astrophysics Data System (ADS)

    Han, Seongheum; Jang, Heesuk; Kim, Seungman; Kim, Young-Jin; Kim, Seung-Woo

    2017-08-01

    An erbium (Er)/ytterbium (Yb) co-doped double-clad fiber is configured to amplify single-mode pulses with a high average power of 10 W at a 1.5 µm center wavelength. The pulse duration at the exit of the Er/Yb fiber amplifier is measured to be ~440 fs after grating-based compression. The whole single-mode operation of the amplifier system permits the M 2-value of the output beam quality to be evaluated better than 1.05. By tuning the repetition rate from 100 MHz down to 600 kHz, the pulse peak power is scaled up to 19.1 MW to be the highest ever reported using an Er/Yb single-mode fiber. The proposed amplifier system is well suited for strong-power applications such as free-space LIDAR, non-thermal machining and medical surgery.

  19. All-optical switching application based on optical nonlinearity of Yb(3+) doped aluminosilicate glass fiber with a long-period fiber gratings pair.

    PubMed

    Kim, Yune; Kim, Nam; Chung, Youngjoo; Paek, Un-Chul; Han, Won-Taek

    2004-02-23

    We propose a new fiber-type all-optical switching device based on the optical nonlinearity of Yb(3+) doped fiber and a long-period fiber gratings(LPG) pair. The all-optical ON-OFF switching with the continuous wave laser signal at ~1556nm in the LPG pair including the 25.5cm long Yb(3+) doped fiber was demonstrated up to ~200Hz upon pumping with the modulated square wave pulses at 976nm, where a full optical switching with the ~18dB extinction ratio was obtained at the launched pump power of ~35mW.

  20. Several hundred kHz repetition rate nanosecond pulses amplification in Er-Yb co-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Yin, Ke; Zhang, Bin; Xue, Guanghui; Hou, Jing

    2014-07-01

    We have experimentally investigated several hundred kHz repetition rate 1,550-nm nanosecond pulses amplification in Er-Yb co-doped fiber amplifier (EYDFA). The experimental setup has three stage fiber amplifiers. At the output of the second stage EYDFA, Yb3+ ions induced amplified spontaneous emission (Yb-ASE) is not observed owing to the low pump power. In the third stage EYDFA, a simultaneously seeded 1,064-nm continuous-wave laser is used to control Yb-ASE. Without any additional 1,064-nm signal, significantly backward Yb-ASE which caused loss-induced heat accumulation at the input port of the pump combiner can be observed. The monitored temperature at the input port of the pump combiner rapidly grows from 30 to 80 °C when the pump power is turned from 20 to 32 W. When a 196-mW forward 1,064-nm laser is added, the monitored backward Yb-ASE power is significantly declined, and the monitored temperature is kept below 35 °C. But, the additional signal caused a large power fraction at 1,064 nm in the output laser. In our experiment at the maximum pump power of 48.5 W, the total output power is 20 W with ~6.4-W 1,550-nm pulsed laser and ~13-W 1,064-nm continuous-wave laser.

  1. Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry.

    PubMed

    Du, Peng; Yu, Jae Su

    2018-03-23

    The authors describe an ethylene glycol assisted precipitation method for synthesis of Er(III)/Yb(III)-doped BiF 3 nanoparticles (NPs) at room temperature. Under 980-nm light irradiation, the NPs emit upconversion (UC) emission of Er(III) ions as a result of a two-photon absorption process. The temperature-dependent green emissions (peaking at 525 and 545 nm) are used to establish an unambiguous relationship between the ratio of fluorescence intensities and temperature. The NPs have a maximum sensitivity of 6.5 × 10 -3  K -1 at 619 K and can be applied over the 291-691 K temperature range. The results indicate that these NPs are a promising candidate for optical thermometry. Graphical abstract Schematic of the room-temperature preparation of Er(III)/Yb(III)-doped BiF 3 nanoparticles with strongly temperature-dependent upconversion emission.

  2. Remote Water Temperature Measurements Based on Brillouin Scattering with a Frequency Doubled Pulsed Yb:doped Fiber Amplifier

    PubMed Central

    Schorstein, Kai; Popescu, Alexandru; Göbel, Marco; Walther, Thomas

    2008-01-01

    Temperature profiles of the ocean are of interest for weather forecasts, climate studies and oceanography in general. Currently, mostly in situ techniques such as fixed buoys or bathythermographs deliver oceanic temperature profiles. A LIDAR method based on Brillouin scattering is an attractive alternative for remote sensing of such water temperature profiles. It makes it possible to deliver cost-effective on-line data covering an extended region of the ocean. The temperature measurement is based on spontaneous Brillouin scattering in water. In this contribution, we present the first water temperature measurements using a Yb:doped pulsed fiber amplifier. The fiber amplifier is a custom designed device which can be operated in a vibrational environment while emitting narrow bandwidth laser pulses. The device shows promising performance and demonstrates the feasibility of this approach. Furthermore, the current status of the receiver is briefly discussed; it is based on an excited state Faraday anomalous dispersion optical filter. PMID:27873842

  3. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm(3+) and Yb(3+).

    PubMed

    Soares, M R N; Ferro, M; Costa, F M; Monteiro, T

    2015-12-21

    Lanthanide doped inorganic nanoparticles with upconversion luminescence are of utmost importance for biomedical applications, solid state lighting and photovoltaics. In this work we studied the downshifted luminescence, upconversion luminescence (UCL) and blackbody radiation of tetragonal yttrium stabilized zirconia co-doped with Tm(3+) and Yb(3+) single crystals and nanoparticles produced by laser floating zone and laser ablation in liquids, respectively. The photoluminescence (PL) and PL excitation (PLE) were investigated at room temperature (RT). PL spectra exhibit the characteristic lines in UV, blue/green, red and NIR regions of the Tm(3+) (4f(12)) under resonant excitation into the high energy (2S+1)LJ multiplets. Under NIR excitation (980 nm), the samples placed in air display an intense NIR at ∼800 nm due to the (1)G4→(3)H5/(3)H4→(3)H6 transitions. Additionally, red, blue/green and ultraviolet UCL is observed arising from higher excited (1)G4 and (1)D2 multiplets. The power excitation dependence of the UCL intensity indicated that 2-3 low energy absorbed photons are involved in the UCL for low power levels, while for high powers, the identified saturation is dependent on the material size with a enhanced effect on the NPs. The temperature dependence of the UCL was investigated for single crystals and targets used in the ablation. An overall increase of the integrated intensity was found to occur between 12 K and the RT. The thermally activated process is described by activation energies of 10 meV and 30 meV for single crystals and targets, respectively. For the NPs, the UCL was found to be strongly sensitive to pressure conditions. Under vacuum conditions, instead of the narrow lines of the Tm(3+), a wide blackbody radiation was detected, responsible for the change in the emission colour from blue to orange. This phenomenon is totally reversible when the NPs are placed at ambient pressure. The UCL/blackbody radiation in the nanosized material exhibits

  4. Lanthanide-doped upconversion nanocrystals: Synthesis and optical properties study

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    Upconversion phosphor materials have attracted considerable attention in recent years for their potential applications in a wide range of fields, including three-dimensional displays technologies, bio-imaging and photovoltaics. This dissertation aims to develop novel lanthanide-doped upconversion luminescent nanomaterials by using wet chemistry methods. Considerable efforts have been devoted to manipulating the optical properties of the synthesized lanthanide-doped nanoparticles under excitation of different wavelengths, for example, 808, 980 and 1532 nm. In the first research work, a novel core-shell-shell design has been developed for finely tuning of energy migration upconversion of activators without long-lived mediated states, such as Eu3+ and Tb3+ upon excitation at 808 nm by using Nd3+ as sensitizer. Exquisite control the composition of each layer gives rise to maximized upconversion emissions of the activators. For example, with the use of core layer for energy harvesting (NaGdF4:Yb/Nd, active core), the optimal doping concentrations of Eu3+ and Tb3+ is fixed to 15 and 15 mol%, respectively. In contrast, active shell can also provide access to strong upconversion of Eu3+ and Tb3+ by doping Nd (40 mol%) into the outmost layer. Note that the effect of active shell is much stronger than active core in generating upconversion emissions of Eu3+ and Tb3+. Next, upconversion emission tuning of Er/Tm/Yb-doped NaYF4 upconversion nanoparticles has been conducted under excitation at 1532 nm. The output color of the nanoparticles is tunable by changing the doping levels of the lanthanides. With the use of core-shell design, the optical properties of the doped nanoparticles can be further optimized, for example, strongest upconversion emission was observed for NaYF4:Er(10 mol%) NaYF4:Er(0.5 mol%) with a relative emission of green-to-red of 1.2. This work provides a new dimension to control the color output of upconversion nanoparticles. It should be noted that the

  5. Wave Propagation in Inhomogeneous Excitable Media

    NASA Astrophysics Data System (ADS)

    Zykov, Vladimir S.; Bodenschatz, Eberhard

    2018-03-01

    Excitable media are ubiquitous in nature and can be found in physical, chemical, and biological systems that are far from thermodynamic equilibrium. The spatiotemporal self-organization of these systems has long attracted the deep interest of condensed matter physicists and applied mathematicians alike. Spatial inhomogeneity of excitable media leads to nontrivial spatiotemporal dynamics. Here, we report on well-established as well as recent developments in the experimental and theoretical studies of inhomogeneous excitable media.

  6. Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2 +-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods

    NASA Astrophysics Data System (ADS)

    Cheng, Keyi; Zhang, Jianguo; Zhang, Liping; Wang, Lun; Chen, Hongqi

    2017-01-01

    A highly sensitive luminescent bioassay for the detection of Salmonella typhimurium was fabricated using Mn2 +-doped NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) as the donor and gold nanorods (Au NRs) as the acceptor and utilizing an energy transfer (LET) system. Mn2 +-doped NaYF4:Yb,Tm UCNPs with a strong emission peak at 807 nm were obtained by changing the doped ion ratio. Carboxyl-terminated Mn2 +-doped NaYF4:Yb,Tm UCNPs were coupled with S. typhimurium aptamers, which were employed to capture and concentrate S. typhimurium. The electrostatic interactions shorten the distance between the negatively charged donor and the positively charged acceptor, which results in luminescence quenching. The added S. typhimurium leads to the restoration of luminescence due to the formation of UCNPs-aptamers-S. typhimurium, which repels the UCNPs-aptamers from the Au NRs. The LET system does not occur because of the nonexistence of the luminescence emission band of Mn2 +-doped NaYF4:Yb,Tm UCNPs, which had large spectral overlap with the absorption band of Au NRs. Under optimal conditions, the linear range of detecting S. typhimurium was 12 to 5 × 105 cfu/mL (R = 0.99). The limit of detection for S. typhimurium was as low as 11 cfu/mL in an aqueous buffer. The measurement of S. typhimurium in milk samples was satisfied in accordance with the plate-counting method, suggesting that the proposed method was of practical value in the application of food security.

  7. Effect of C6+ Ion Irradiation on structural and electrical properties of Yb and Eu doped Bi1.5 Zn0.92 Nb1.5 O6.92 pyrochlores

    NASA Astrophysics Data System (ADS)

    Yumak, Mehmet; Mergen, Ayhan; Qureshi, Anjum; Singh, N. L.

    2015-03-01

    Pyrochlore general formula of A2B2X7 where A and B are cations and X is an anion Pyrochlore compounds exhibit semiconductor, metallic or ionic conduction properties, depending on the doping, compositions/ substituting variety of cations and oxygen partial pressure. Ion beam irradiation can induce the structural disordering by mixing the cation and anion sublattices, therefore we aim to inevestigate effects of irradiation in pyrochlore compounds. In this study, Eu and Yb-doped Bi1.5Zn0.92Nb1.5O6.92 (Eu-BZN, Yb-BZN) Doping effect and single phase formation of Eu-BZN, Yb-BZN was characterized by X-ray diffraction technique (XRD). Radiation-induced effect of 85 MeV C6+ ions on Eu-BZN, Yb-BZN was studied by XRD, scanning electron microscopy (SEM) and temperature dependent dielectric measurements at different fluences. XRD results revealed that the ion beam-induced structural amorphization processes in Eu-BZN and Yb-BZN structures. Our results suggested that the ion beam irradiation induced the significant change in the temprature depndent dielectric properties of Eu-BZN and Yb-BZN pyrochlores due to the increased oxygen vacancies as a result of cation and anion disordering. Department of Metallurgical and Materials Eng., Marmara University, Istanbul-81040, Turkey.

  8. Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Liaolin; Xia, Yu; Shen, Xiao; Yang, Runlan; Wei, Wei

    2018-01-01

    In this work, we systematically studied the spectroscopic characteristics of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses. The emission peak beyond 976 nm showed irregular shift from 1001 nm to 1023 nm when Yb3+ in different glass matrices. It was associated with the Stark splitting of 2F7/2 and the emission intensities ratio between the transition from the lowest Stark splitting energy level of 2F5/2 to the Stark splitting energy levels of 2F7/2, e to b and that of e to d. Larger Stark splitting of 2F7/2 results in the red-shift of the near infrared emission band at room temperature and larger ratio results in the blue-shift of emission band. The fluorescence lifetimes of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses were measured to be 0.94, 0.82, 1.51, and 0.66 ms, respectively. The fluorescence lifetime was associated with the reabsorption of Yb3+, which larger absorption cross section at the emission band results in larger reabsorption, then leads to the shorter near infrared fluorescence lifetime.

  9. kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber

    NASA Astrophysics Data System (ADS)

    Sun, Shihao; Zhan, Huan; Li, Yuwei; Liu, Shuang; Jiang, Jiali; Peng, Kun; Wang, Yuying; Ni, Li; Wang, Xiaolong; Jiang, Lei; Yu, Juan; Liu, Gang; Lu, Pengfei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2018-03-01

    Based on a master oscillator power amplifier configuration, laser performance of commercial Nufern-20/400-8M Ybdoped aluminophosphosilicate ternary laser fiber was investigated. Pumped by 976 nm laser diodes, 982 W laser output power was obtained with a slope efficiency of 84.9%. Spectrum of output was centered at 1066.56nm with 3dB bandwidth less than 0.32 nm, and the nonlinearity suppression ratio was more than 39dB. Beam quality of Mx2 and M2y were 1.55 and 1.75 at 982 W, respectively. The laser performance indicated that Nufern-20/400-8M Yb-doped aluminophosphosilicate ternary laser fiber is highly competitive for industry fiber laser use.

  10. Influence of nanopowders sedimentation on characteristics of Yb-doped Y2O3 transparent ceramics

    NASA Astrophysics Data System (ADS)

    Aleksandrov, E. O.; Shitov, V. A.; Maksimov, R. N.; Basyrova, L. R.

    2017-09-01

    In this work we report on the effects induced by different conditions of nanopowders sedimentation on the microstructure features and optical properties of ytterbium-doped yttrium oxide (Yb:Y2O3) transparent ceramics sintered at 1780 °C for 20 h under a vacuum. The nanopowder of (Yb0.005Y0.995)2O3 co-doped with 5 at % ZrO2 was synthesized by laser ablation and used as the starting material for the fabrication of ceramics. The obtained nanoparticles were annealed at 1100 °C for 3 h in air in order to transform a metastable monoclinic phase into a main cubic phase. After sedimentation for 24 h in isopropyl alcohol the useful suspension was dried using a rotary evaporator operating at different temperatures and pressures. The use of lower evaporation temperature (37 °C) and higher vacuum level (10 mbar) lead to complete removal of organic species from the nanopowder and promote homogeneous densification of the powder compact. Under optimal treatment conditions the optical transmittance and the average content of the scattering centers were measured to be 77 % at a wavelength of 1080 nm and 0.25 ppm, respectively.

  11. Nd3+, Yb3+ and Ho3+ Codoped Oxyfluoride Glass Ceramics with High Efficient Green Upconversion Luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Jie; Kawamoto, Yoji; Dai, Shi-Xun; Zhang, Li-Yan; Hu, Li-Li

    2004-06-01

    New oxyfluoride glasses and glass ceramic codoped with Nd3+, Yb3+ and Ho3+ were prepared. The x-ray diffraction analysis revealed that the heat treatments of the oxyfluoride glasses could cause the precipitation of (Nd3+, Yb3+, Ho3+)-doped fluorite-type crystals. Very strong green up-conversion luminescence due to the Ho3+: (5F4, 5S2)rightarrow5I8 transition under 800-nm excitation was observed in these transparent glass ceramics. The intensity of the green up-conversion luminescence in a 1-mol% YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+ up-conversion luminescence in the oxyfluoride glass ceramics is discussed.

  12. Quantum sized Ag nanocluster assisted fluorescence enhancement in Tm{sup 3+}-Yb{sup 3+} doped optical fiber beyond plasmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, Rik; Haldar, Arindam; Paul, Mukul C.

    2015-12-07

    We report a process for enhancing fluorescence emission from conventional rare earth ions in optical fiber by metal nanocluster (MNC) in nonresonant indirect pumping. The process is completely different from formal metal enhanced fluorescence phenomenon as the MNCs are too small in size to support localized surface plasmon and the excitation wavelength is far from plasmon resonance frequency. We used an established theory of two coupled oscillators to explain the simultaneous enhancement of Ytterbium (Yb{sup 3+}) and Thulium (Tm{sup 3+}) emission by silver (Ag) NCs under nonresonant pumping in optical fiber. The fiber is pumped with a 980 nm fiber pigtailedmore » laser diode with input power of 20–100 mW to excite the Yb{sup 3+}. Four times enhancement of Yb{sup 3+} emission of 900–1100 nm and Tm{sup 3+} upconversion emission around 474 nm, 650 nm, and 790 nm is observed in the fiber with Ag NCs.« less

  13. Tuning upconversion luminescence of LiYF4:Yb3+,Er3+/Tm3+/Ho3+ microcrystals synthesized through a molten salt process.

    PubMed

    Niu, Na; He, Fei; Wang, Liuzhen; Wang, Lin; Wang, Yan; Gai, Shili; Yang, Piaoping

    2014-05-01

    In this paper, well-defined tetragonal-phase LiYF4:Yb3+,Er3+/Tm3+/Ho3+ micro-crystals with octahedral morphology were successfully prepared through a surfactant-free molten salt process for the first time. By gradually increasing the LiF content in the NaNO3-KNO3 reaction medium, the crystal phase transforms from a mixture of YF3 and LiYF4 to pure tetragonal-phase LiYF4. The possible formation process for the phase and morphology evolution is also presented. Moreover, upon 980 nm laser diode (LD) excitation, the lanthanide ions (Yb3+, Er3+/Tm3+/Ho3+) doped LiYF4 crystals exhibit intense upconversion emission lights. By tuning the sensitizer concentrations of Yb3+ ions in LiYF4:Yb3+,Er3+, the relative intensities of green and red emissions can be precisely adjusted under single wavelength excitation. Consequently, multicolor upconversion emissions can be obtained. On the other hand, UC mechanisms were also given based on the emission spectra and the plot of luminescence intensity to pump power.

  14. Optical transitions of Tm3+ in oxyfluoride glasses and compositional and thermal effect on upconversion luminescence of Tm3+/Yb3+-codoped oxyfluoride glasses.

    PubMed

    Feng, Li; Wu, Yinsu; Liu, Zhuo; Guo, Tao

    2014-01-24

    Optical properties of Tm(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Tm(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980 nm excitation. The effects of composition, concentration of the doping ions, temperature, and excitation pump power on the upconversion emissions were also systematically studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. White up-conversion emission in Ho3+/Tm3+/Yb3+ tri-doped glass ceramics embedding BaF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Chenxia; Xu, Shiqing; Ye, Rengguang; Deng, Degang; Hua, Youjie; Zhao, Shilong; Zhuang, Songlin

    2011-04-01

    Ho3+/Tm3+/Yb3+ tri-doped glass ceramics with white light emitting have been developed and demonstrated. Pumped by 980 nm laser diode (LD), intensive red, green and blue up-conversions (UC) were obtained. The green emission is assigned to Ho3+ ion and the blue emission is assigned to Tm3+ ion, whereas the red emission is the combination contribution of the Ho3+ and Tm3+ ions. The RGB intensities could be adjusted by tuning the rare-earth ion concentration and pump power intensity. Thus, multicolor of the luminescence, including perfect white light with CIE-X=0.329 and CIE-Y=0.342 in the 1931 CIE chromaticity diagram can be obtained in 0.15 Ho3+/0.2Tm3+/3Yb3+ tri-doped glass ceramics embedding BaF2 nanocrystals pumped by a single infrared laser diode source of 980 nm at 500 mW. The up-conversion luminescence mechanism of Yb3+ sensitize Ho3+ and Tm3+ ions and the energy transfer from Ho3+ to Tm3+ in oxy-fluoride silicate glass ceramics were analyzed.

  16. Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Serres, J. M.; Mateos, X.; Demesh, M. P.; Yasukevich, A. S.; Yumashev, K. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2016-01-01

    We report on a comprehensive spectroscopic and laser characterization of monoclinic Yb,Tm:KLu(WO4)2 crystals. Stimulated-emission cross-section spectra corresponding to the 3F4 → 3H6 transition of Tm3+ ions are determined. The radiative lifetime of the 3F4 state of Tm3+ ions is 0.82 ms. The maximum Yb3+ → Tm3+ energy transfer efficiency is 83.9% for 5 at.% Yb - 8 at.% Tm doping. The fractional heat loading for Yb,Tm:KLu(WO4)2 is 0.45 ± 0.05. Using a hemispherical cavity and 5 at.% Yb - 6 at.% Tm doped crystal, a maximum CW power of 227 mW is achieved at 1.983-2.011 μm with a maximum slope efficiency η = 14%. In the microchip laser set-up, the highest slope efficiency is 20% for a 5 at.% Yb- 8 at.% Tm doped crystal with a maximum output power of 201 mW at 1.99-2.007 μm. Operation of Yb,Tm:KLu(WO4)2 as a vibronic laser emitting at 2.081-2.093 μm is also demonstrated.

  17. Spectroscopy and visible frequency upconversion in Er3+-Yb3+: TeO2-ZnO glass.

    PubMed

    Mohanty, Deepak Kumar; Rai, Vineet Kumar

    2014-01-01

    The UV-Vis-NIR absorption studies of the Er(3+)/Er(3+)-Yb(3+) doped/codoped TeO2-ZnO (TZO) glasses fabricated by the melting and quenching method has been performed. The spectroscopic radiative parameters viz. radiative transition probabilities, branching ratios and lifetimes have been determined from the absorption spectrum by using Judd-Ofelt theory. The near infrared (NIR) to visible frequency upconversion (UC) have been monitored by using an excitation of 976 nm wavelength radiation from a CW diode laser. The effect of codoping with Yb(3+) ions on the intensity of the UC emission bands from the Er(3+) ions throughout visible region has been studied. The mechanism responsible for the observed upconversion emissions in the prepared samples have been explained on the basis of excited state absorption and efficient energy transfer processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Microwave sol–gel synthesis and upconversion photoluminescence properties of CaGd{sub 2}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors with incommensurately modulated structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chang Sung; Aleksandrovsky, Aleksandr; Department of Photonics and Laser Technologies, Siberian Federal University, Krasnoyarsk 660079

    2015-08-15

    CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors with the doping concentrations of Er{sup 3+} and Yb{sup 3+} (x=Er{sup 3+}+Yb{sup 3+}, Er{sup 3+}=0.05, 0.1, 0.2 and Yb{sup 3+}=0.2, 0.45) have been successfully synthesized by the microwave sol–gel method. The crystal structure of CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} tungstates have been refined, and upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after the heat-treatment at 900 °C for 16 h, showed a well crystallized morphology. Under the excitation at 980 nm, CaGd{sub 2}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} particles exhibited a strong 525-nm and a weak 550-nm emission bandsmore » in the green region and a very weak 655-nm emission band in the red region. The Raman spectrum of undoped CaGd{sub 2}(WO{sub 4}){sub 4} revealed about 12 narrow lines. The strongest band observed at 903 cm{sup −1} was assigned to the ν{sub 1} symmetric stretching vibration of WO{sub 4} tetrahedrons. The spectra of the samples doped with Er and Yb obtained under the 514.5 nm excitation were dominated by Er{sup 3+} luminescence preventing the recording of these samples Raman spectra. Concentration quenching of the erbium luminescence at {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} transition is weak in the range of erbium doping level x{sub Er}=0.05–0.2, while, for transition {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2}, the signs of concentration quenching become pronounced at x{sub Er}=0.2. - Graphical abstract: CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors with the doping concentrations of Er{sup 3+} and Yb{sup 3+} (x=Er{sup 3+}+Yb{sup 3+}, Er{sup 3+}=0.05, 0.1, 0.2 and Yb{sup 3+}=0.2, 0.45) have been successfully synthesized by the microwave sol–gel method and the crystal structure refinement, and upconversion photoluminescence properties have been investigated. - Highlights: • CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er

  19. Doping evolution of spin and charge excitations in the Hubbard model

    DOE PAGES

    Kung, Y. F.; Nowadnick, E. A.; Jia, C. J.; ...

    2015-11-05

    We shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, examining the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40% hole and 15% electron doping (the range of dopings achievedmore » in the cuprates). Ultimately, these fundamental differences between the doping evolution of single- and multi-particle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description.« less

  20. Lifetime measurement in ^170Yb

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Krücken, R.; Beausang, C. W.; Casten, R. F.; Cooper, J. R.; Cederkäll, J.; Caprio, M.; Novak, J. R.; Zamfir, N. V.; Barton, C.

    1999-10-01

    The nature of the low lying K^π=0^+ excitations in deformed nuclei have recently been subject of intense discussion. In this context we present results from a Coulomb excitation experiment on ^170Yb using a 70MeV ^16O beam on a gold backed, 1.5 mg/cm^2 thick ^170Yb target. The beam was delivered by the ESTU tandem accelerator of WNSL at Yale University. Gamma rays were detected by the YRAST Ball array in coincidence with back-scattered ^16O particles, which were detected in an array of 8 solar cells. Lineshapes were observed for several transitions from collective states in ^170Yb and the lifetimes for those states were extracted using a standard DSAM analysis. The results will be presented together with a short introduction to the solar cell array at Yale (SCARY) that was used to make angular selection of the excited ^170Yb nuclei. This work is supported by the US-DOE under grant numbers DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  1. Tuning the electronic hybridization in the heavy fermion cage compound YbFe2Zn20 with Cd doping

    NASA Astrophysics Data System (ADS)

    Cabrera-Baez, M.; Ribeiro, R. A.; Avila, M. A.

    2016-09-01

    The tuning of the electronic properties of heavy fermion compounds by chemical substitution provides excellent opportunities for further understanding the physics of hybridized ions in crystal lattices. Here we present an investigation on the effects of Cd doping in flux-grown single crystals of the complex intermetallic cage compound YbFe2Zn20, which has been described as a heavy fermion with a Sommerfeld coefficient of 535 mJ mol-1 · K-2. The substitution of Cd for Zn disturbs the system by expanding the unit cell and, in this case, the size of the Zn cages that surround the Yb and Fe. With an increasing amount of Cd, the hybridization between the Yb 4f electrons and the conduction electrons is weakened, as shown by a decrease in the Sommerfeld coefficient, which should be accompanied by a valence shift of the Yb3+ due to the negative chemical pressure effect. This scenario is also supported by the low temperature DC magnetic susceptibility, which is gradually suppressed and shows an increment of the Kondo temperature, based on a shift to higher temperatures of the characteristic broad susceptibility peak. Furthermore, the DC resistivity decreases with the isoelectronic substitution of Cd for Zn, contrary to expectations in an increasingly disordered system, and implying that the valence shift is not related to charge carrier doping. The combined results demonstrate the excellent complementarity between positive physical pressure and negative chemical pressure, and point to a rich playground for exploring the physics and chemistry of strongly correlated electron systems in the general family of Zn20 compounds, despite their structural complexity.

  2. Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors

    NASA Astrophysics Data System (ADS)

    Yadav, Manglesh; Mondal, Manisha; Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-04-01

    Tm3+/Yb3+/Zn2+:yttrium metavanadate (YVO4) phosphors prepared through chemical coprecipitation and the solid state reaction method have been structurally characterized by an x-ray diffraction (XRD) study. Photoluminescence study of the developed phosphors under ultraviolet (UV) and near infrared (NIR) excitation has been performed. The excitation spectrum of the tetragonal zircon type YVO4 phosphors corresponding to the emission at ˜476 nm exhibits a broad excitation peak in the 250-350 nm region, which is due to charge distribution in the {{{{VO}}}4}3- group. Under 980 nm CW diode laser excitation, enhancements of about ˜3000 times and ˜40 times have been observed for the blue band in the tridoped Tm3+Yb3+Zn2+:YVO4 phosphors compared to those of the Tm3+:YVO4 singly and Tm3+/Yb3+:YVO4 codoped phosphors, respectively. A downconversion (DC) emission study shows an enhancement of about ˜50 times for the blue band in the tridoped phosphors compared to that of the singly doped phosphors. Optical bistability (OB) behavior of the developed phosphors has been also investigated upon 980 nm excitation. The calculated Commission Internationale de l’Éclairage (CIE) color coordinates lie in the blue region with 96.5% color purity under 980 nm excitation, having a color temperature of ˜3400 K. Our observations show that the developed phosphors may be suitably used in dual mode luminescence spectroscopy, display devices, and UV LED chips.

  3. Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors.

    PubMed

    Yadav, Manglesh; Mondal, Manisha; Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-01-22

    Tm 3+ /Yb 3+ /Zn 2+ :yttrium metavanadate (YVO 4 ) phosphors prepared through chemical coprecipitation and the solid state reaction method have been structurally characterized by an x-ray diffraction (XRD) study. Photoluminescence study of the developed phosphors under ultraviolet (UV) and near infrared (NIR) excitation has been performed. The excitation spectrum of the tetragonal zircon type YVO 4 phosphors corresponding to the emission at ∼476 nm exhibits a broad excitation peak in the 250-350 nm region, which is due to charge distribution in the [Formula: see text] group. Under 980 nm CW diode laser excitation, enhancements of about ∼3000 times and ∼40 times have been observed for the blue band in the tridoped Tm 3+ Yb 3+ Zn 2+ :YVO 4 phosphors compared to those of the Tm 3+ :YVO 4 singly and Tm 3+ /Yb 3+ :YVO 4 codoped phosphors, respectively. A downconversion (DC) emission study shows an enhancement of about ∼50 times for the blue band in the tridoped phosphors compared to that of the singly doped phosphors. Optical bistability (OB) behavior of the developed phosphors has been also investigated upon 980 nm excitation. The calculated Commission Internationale de l'Éclairage (CIE) color coordinates lie in the blue region with 96.5% color purity under 980 nm excitation, having a color temperature of ∼3400 K. Our observations show that the developed phosphors may be suitably used in dual mode luminescence spectroscopy, display devices, and UV LED chips.

  4. Role of Gd{sup 3+} ion on downshifting and upconversion emission properties of Pr{sup 3+}, Yb{sup 3+} co-doped YNbO{sub 4} phosphor and sensitization effect of Bi{sup 3+} ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, A.; Rai, S. B., E-mail: sbrai49@yahoo.co.in; Mishra, Kavita

    Dual-mode luminescence (downshifting-DS and upconversion-UC) properties of Pr{sup 3+}/Yb{sup 3+} co-doped Y{sub 1−x}Gd{sub x}NbO{sub 4} (x = 0.0, 0.5, and 1.0) phosphors synthesized by solid state reaction technique have been explored with and without Gd{sup 3+} ion. The structural characterizations (XRD, SEM, and FTIR) confirm the pure phase of YNbO{sub 4} phosphor. Further, with the Gd{sup 3+} ion co-doping, the YNbO{sub 4} phosphors having a random shape and the large particle size are found to be transformed into nearly spherical shape particles with the reduced particle size. The optical band gaps (E{sub g}) of Y{sub 1−x}Gd{sub x}NbO{sub 4} (x = 0.00, 0.25, 0.50, andmore » 1.00) calculated from UV-Vis-NIR measurements are ∼3.69, 4.00, 4.38, and 4.44 eV, respectively. Moreover, YNbO{sub 4} phosphor is a promising blue emitting material, whereas Y{sub 1−x−y−z}Pr{sub y}Yb{sub z}Gd{sub x}NbO{sub 4} phosphor gives intense green, blue, and red emissions via dual-mode optical processes. The broad blue emission arises due to (NbO{sub 4}){sup 3−} group of the host with λ{sub ex} = 264 nm, whereas Pr{sup 3+} doped YNbO{sub 4} phosphor gives dominant red and blue emissions along with comparatively weak green emission on excitation with λ{sub ex} = 300 nm and 491 nm. The concentration dependent variation in emission intensity at 491 nm ({sup 3}P{sub 0}→{sup 3}H{sub 4} transition) and 612 nm ({sup 1}D{sub 2}→{sup 3}H{sub 4} transition); at 612 nm ({sup 1}D{sub 2}→{sup 3}H{sub 4} transition) and 658 nm ({sup 3}P{sub 0}→{sup 3}F{sub 2} transition) of Pr{sup 3+} ion in YNbO{sub 4} phosphor with λ{sub ex} = 300 nm and 491 nm excitations, respectively, has been thoroughly explored and explained by the cross-relaxation process through different channels. The sensitization effect of Bi{sup 3+} ion co-doping on DS properties of the phosphor has also been studied. The observed DS results have been optimized by

  5. Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations

    NASA Astrophysics Data System (ADS)

    Giri, N. K.; Rai, D. K.; Rai, S. B.

    2008-06-01

    Multicolor emission has been produced using 798 nm and 980 nm laser excitation in a Tm3++Ho3++Yb3+ codoped tellurite based glass. This glass generates simultaneously red, green and blue (RGB) emission on 798 nm excitation. Multicolor emission thus obtained was tuned to white luminescence by adjusting the Ho3+ ion concentration. There is a close match between the calculated color coordinate for the white luminescence obtained here and the point of equal energy which represents white in the 1931 CIE chromaticity diagram. The 980 nm excitation of the same sample on the other hand gives intense green and red emission and the glass appears greenish.

  6. The complexity of the CaF2:Yb system: evidence that CaF2:Yb2+ is not an impurity trapped exciton system

    NASA Astrophysics Data System (ADS)

    Mackeen, Cameron; Bridges, Frank; Kozina, Michael; Mehta, Apurva; Reid, M. F.; Wells, J.-P. R.; BarandiaráN, Zoila

    Fluorite crystal structures doped with rare-earth elements exhibit an anomalous redshifted luminescence upon UV excitation, generally attributed to the relaxation of impurity trapped excitons (ITE). We find that the intensity of this luminescence decreases as the total concentration of Yb 2+ increases in unexposed samples, which is in conflict with the currently accepted ITE model. Further, using x-ray absorption spectroscopy and UV-vis studies of CaF2:Yb, we find a large (but reversible) Yb valence reduction upon x-ray exposure at 200 K - from mostly 3+ to 2+. This valence reduction is stable for long time periods at low T < 50 K, but reverts to the initial state upon warming to 300 K. After reverting to the initial valence state of 3+ the anomalous luminescence does not reappear; only after annealing at 900 K do we again observe the anomalous emission below 150 K. To explore the mechanism at work, we employ extended x-ray fine-structure absorption spectroscopy (EXAFS) to probe local structure and its role in the anomalous luminescence. The x-ray and emission studies show that CaF2:Yb is not described by the ITE model; the data appear more consistent with an intervalence charge transfer (IVCT) model. It is likely that many similar ITE systems have also been misidentified.

  7. Mode-Selective Amplification in a Large Mode Area Yb-Doped Fiber Using a Photonic Lantern

    DTIC Science & Technology

    2016-05-15

    in a few mode, double- clad Yb-doped large mode area (LMA) fiber, utilizing an all-fiber photonic lantern. Amplification to multi-watt output power is...that could enable dynamic spatial mode control in high power fiber lasers . © 2016 Optical Society of America OCIS codes: (060.2320) Fiber optics...amplifiers and oscillators; (060.2340) Fiber optics components. http://dx.doi.org/10.1364/OL.41.002157 The impressive growth experienced by fiber lasers and

  8. Color-tunable up-conversion emission in Y2O3:Yb3+, Er3+ nanoparticles prepared by polymer complex solution method

    PubMed Central

    2013-01-01

    Abstract Powders of Y2O3 co-doped with Yb3+ and Er3+ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb3+/Er3+ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties. PACS 42.70.-a, 78.55.Hx, 78.60.-b PMID:23522083

  9. Continuous System-Level Scale for Comparing Laser Gain Media

    DTIC Science & Technology

    2008-12-01

    thickness in Yb3+-doped microchip lasers . J. Opt. Soc. Am. B October 2003, 20, 2061–2067. 29. Liu, Q.; Gong, M.; Lu, F.; Gong, W.; Li, C. 520-W...Continuous “System-Level” Scale for Comparing Laser Gain Media by Jeffrey O. White ARL-TR-4682 December 2008...System-Level” Scale for Comparing Laser Gain Media Jeffrey O. White Sensors and Electron Devices Directorate, ARL

  10. Photoluminescence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions

    NASA Astrophysics Data System (ADS)

    Arzumanyan, Grigory M.; Kuznetsov, Evgeny A.; Zhilin, Aleksandr A.; Dymshits, Olga S.; Shemchuk, Daria V.; Alekseeva, Irina P.; Mudryi, Alexandr V.; Zhivulko, Vadim D.; Borodavchenko, Olga M.

    2016-12-01

    Glasses of the K2Osbnd ZnOsbnd Al2O3sbnd SiO2 system co-doped with Eu2O3 and Yb2O3 were prepared by the melt-quenching technique. Transparent zincite (ZnO) glass-ceramics were obtained by secondary heat-treatments at 680-860 °C. At 860 °C, traces of Eu oxyapatite appeared in addition to ZnO nanocrystals. The average crystal size obtained from the X-ray diffraction data was found to range between 14 and 35 nm. Absorption spectra of the initial glasses are composed of an absorption edge and absorption bands due to electronic transitions of Eu3+ ions. With heat-treatment, the absorption edge pronouncedly shifts to the visible spectral range. The luminescence properties of the glass and glass-ceramics were studied by measuring their excitation and emission spectra at 300, 78, and 4.2 K. Strong red emission of Eu3+ ions dominated by the 5D0-7F2 (612 nm) electric dipole transition was detected. Changes in the luminescence properties of the Eu3+-related excitation and emission bands were observed after heat-treatments at 680 °C and 860 °C. The ZnO nanocrystals showed both broad luminescence (400-850 nm) and free-exciton emission near 3.3 eV at room temperature. The upconversion luminescence spectrum of the initial glass was obtained under excitation of the 976 nm laser source.

  11. Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K.

    PubMed

    Melgaard, Seth; Seletskiy, Denis; Polyak, Victor; Asmerom, Yemane; Sheik-Bahae, Mansoor

    2014-04-07

    Systematic study of Yb doping concentration in the Yb:YLF cryocoolers by means of optical and mass spectroscopies has identified iron ions as the main source of the background absorption. Parasitic absorption was observed to decrease with Yb doping, resulting in optical cooling of a 10% Yb:YLF sample to 114K ± 1K, with room temperature cooling power of 750 mW and calculated minimum achievable temperature of 93 K.

  12. Near infrared emission of TbAG:Ce3+,Yb3+ phosphor for solar cell applications

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Yadav, P. J.; Pathak, A. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimated to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr3+, Gd3+,Gd3+-Eu3+, and Er3+-Tb3+ had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb3+-Yb3+, Pr3+-Yb3+, and Tm3+-Yb3+ has been reported. The Yb3+ ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb3+ is close to 100% and the energy of the only excited level of Yb3+ (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce3+-doped Tb3Al5O12 (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300-500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce3+ ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this

  13. Structure and intense UV up-conversion emissions in RE3+-doped sol-gel glass-ceramics containing KYF4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.; del-Castillo, J.

    2013-12-01

    Transparent nano-glass-ceramics containing KYF4 nanocrystals were successfully obtained by the sol-gel method, doped with Eu3+ and co-doped with Yb3+ and Tm3+ ions. Precipitation of cubic KYF4 nanocrystals was confirmed by X-ray diffraction and high-resolution transmission electron microscope images. Excitation and emission spectra let us to discern between ions into KYF4 nanocrystals and those remaining in a glassy environment, supplemented with time-resolved photoluminescence decays, that also clearly reveal differences between local environments. Unusual high-energy up-conversion emissions in the UV range were obtained in Yb3+-Tm3+ co-doped samples, and involved mechanisms were discussed. The intensity of these high-energy emissions was analyzed as a function of Yb3+ concentration, heat treatment temperature of precursor sol-gel glasses and pump power, determining the optimum values for potential optical applications as highly efficient UV up-conversion materials in UV solid-state lasers.

  14. 1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier

    NASA Astrophysics Data System (ADS)

    Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi

    2018-01-01

    A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.

  15. Gapless quantum excitations from an icelike splayed ferromagnetic ground state in stoichiometric Yb 2 Ti 2 O 7

    DOE PAGES

    Gaudet, J.; Ross, K. A.; Kermarrec, E.; ...

    2016-02-03

    We know the ground state of the quantum spin ice candidate magnet Yb 2Ti 2O 7 to be sensitive to weak disorder at the similar to 1% level which occurs in single crystals grown from the melt. Powders produced by solid state synthesis tend to be stoichiometric and display large and sharp heat capacity anomalies at relatively high temperatures, T-C similar to 0.26 K. We have carried out neutron elastic and inelastic measurements on well characterized and equilibrated stoichiometric powder samples of Yb 2Ti 2O 7 which show resolution-limited Bragg peaks to appear at low temperatures, but whose onset correlatesmore » with temperatures much higher than T-C. The corresponding magnetic structure is best described as an icelike splayed ferromagnet. In the spin dynamics of Yb 2Ti 2O 7 we see the gapless on an energy scale <0.09 meV at all temperatures and organized into a continuum of scattering with vestiges of highly overdamped ferromagnetic spin waves present. These excitations differ greatly from conventional spin waves predicted for Yb 2Ti 2O 7's mean field ordered state, but appear robust to weak disorder as they are largely consistent with those displayed by nonstoichiometric crushed single crystals and single crystals, as well as by powder samples of Yb 2Ti 2O 7's sister quantum magnet Yb 2Ti 2O 7.« less

  16. Mode instability in a Yb-doped stretched core fiber

    NASA Astrophysics Data System (ADS)

    Xia, N.; Yoo, S.

    2017-02-01

    In this work we present the theoretical study of transverse mode instability (TMI) in ytterbium (Yb)-doped rectangular core fibers with different core aspect ratios using the fast Fourier transform (FFT) beam propagation method (BPM). As expected, the rectangular core fiber with larger aspect ratio (AR.) offers more efficient heat dissipation than a circular core fiber. However, it is found that the rectangular core fiber does not benefit from the better heat dissipation to suppress the TMI when compared to the circular core counterpart. The temperature building in the rectangular core fiber decreases by up to 24.6% with a 10:1 aspect ratio core, while threshold pump power drops by up to 38.3% when compared with a circular core fiber with the same core area. Our study reveals that a smaller effective refractive index difference between modes and a weaker gain saturation effect compensate the thermal advantage from more efficient heat dissipation.

  17. Tunable upconversion luminescence of monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Qibai; Lin, Shaoteng; Xie, Zhongxiang; Zhang, Liqing; Qian, Yannan; Wang, Yaodong; Zhang, Haiyan

    2017-12-01

    Monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles with various dopant concentrations have been synthesized successfully by a homogeneous precipitation method. Their phase structures and surface morphologies have been characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The diversities of upconversion luminescence spectra and CIE coordinates of prepared samples are investigated in detail at room temperature under 980 nm excitation. Through adjusting the concentrations of Yb3+, Tm3+ and Er3+ ions, three upconversion emission bands in red, green and blue region could be tunable to achieve the color of interest and near white light emission can be obtained in the tri-doped Y2O3 nanoparticles for a variety of application.

  18. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd(3+) to Yb(3+) energy transfer.

    PubMed

    Marciniak, Ł; Bednarkiewicz, A; Stefanski, M; Tomala, R; Hreniak, D; Strek, W

    2015-10-07

    A new type of near infrared absorbing near infrared emitting (NANE) luminescent nanothermometer is presented, with a physical background that relies on efficient Nd(3+) to Yb(3+) energy transfer under 808 nm photo-excitation. The emission spectra of LiLa0.9-xNd0.1YbxP4O12 (x = 0.05, 0.1, 0.2, 0.3, 0.5) nanocrystals were measured in a wide 100-700 °C temperature range. The ratio between the Nd(3+) ((4)F3/2→(4)I9/2) and Yb(3+) ((2)F5/2→(2)F7/2) luminescence bands, and the thermometer sensitivity were found to be strongly dependent on the Yb(3+) concentration. These phenomenological relations were discussed in terms of the competition between three phenomena, namely (a) Nd(3+)→ Yb(3+) phonon assisted energy transfer, (b) Yb(3+)→ Nd(3+) back energy transfer and (c) energy diffusion between Yb(3+) ions. The highest sensitivity of the temperature measurement was found for x = 0.5 (LiLa0.4Nd0.1Yb0.5P4O12), which was equal to 4 × 10(-3) K(-1) at 330 K. In stark contrast to conventional approaches, the proposed phosphate host matrix allows for a high level of doping, and thus, owing to the negligible concentration quenching, the presented luminophores exhibit a high absorption cross section and bright emission. Moreover, such optical remote thermometers, whose excitation and emission wavelengths are weakly scattered or absorbed and fall into the optical transmission window of the skin, may therefore become a practical solution for biomedical applications, such as remote control of thermotherapy.

  19. Forward to cryogenic temperature: laser cooling of Yb: LuLiF crystal

    NASA Astrophysics Data System (ADS)

    Zhong, Biao; Luo, Hao; Lei, Yongqing; Shi, Yanling; Yin, Jianping

    2017-06-01

    The high quality Yb-doped fluoride crystals have broad prospects for optical refrigeration. We have laser cooled the Yb:LuLiF crystal to a temperature below the limit of current thermoelectric coolers ( 180 K). The 5% Yb:LuLiF crystal sample has a geometry of 2 mm×2 mm×5 mm and was supported by two fibers of 200 μm in diameter. They were placed in a 2×10-4 Pa vacuum chamber with an environment temperature of 294.5 K. The 1019 nm CW laser of power 38.7 W was adopted to irradiate the sample. The temperature of the sample was measured utilizing the DLT methods. After 20 minutes of laser irradiation, the 5% Yb:LuLiF crystal sample was cooled down to 182.4 K. By further optimizing experimental conditions and increasing the doped Yb concentration, the Yb:LuLiF crystal might be optically cooled below the cryogenic temperature of 123K in the near future.

  20. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5

    DOE PAGES

    Song, Yu; Van Dyke, John; Lum, I. K.; ...

    2016-09-28

    Here, the neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s ±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5 with x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation usingmore » the electronic structure and the momentum dependence of the d x2 –y2-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn 5, we conclude the robust upward dispersing resonance mode in Ce 1–xYb xCoIn 5 is inconsistent with the downward dispersion predicted within the spin-exciton scenari« less

  1. Up-conversion green emission of Yb3+/Er3+ ions doped YVO4 nanocrystals obtained via modified Pechini's method

    NASA Astrophysics Data System (ADS)

    Szczeszak, Agata; Runowski, Marcin; Wiglusz, Rafal J.; Grzyb, Tomasz; Lis, Stefan

    2017-12-01

    A series of lanthanide doped yttrium vanadates were prepared by Pechini's method (sol-gel process). The as-prepared precursors, in the presence of citric acid, were calcined in the temperature range of 600-900 °C. The obtained products were composed of small nanoparticles, in the size range of 20-50 nm, depending on the annealing temperature, exhibiting a bright green up-conversion emission, under NIR laser irradiation, and emission lifetimes in the range of 4.7-18.3 μs. Their structural, morphological and spectroscopic properties were investigated in detail by XRD, HR-TEM including FFT analysis, EDX and spectroscopic techniques (emission, power dependence and emission kinetics). The luminescence quenching phenomenon, manifested in a decrease of up-conversion intensity and shortening of emission lifetime, was observed with increasing of the Yb3+ ion concentration and decreasing the particle size. The optimal concentration of the Yb3+ ions was found to be 15 mol% (YVO4: Yb3+ 15 mol%, Er3+ 2 mol%).

  2. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, William F.; Payne, Stephen A.; Chase, Lloyd L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises Ytterbium doped apatite (Yb:Ca.sub.5 (PO.sub.4).sub.3 F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  3. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, W.F.; Payne, S.A.; Chase, L.L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca{sub 5}(PO{sub 4}){sub 3}F) or Yb:FAP, or ytterbium doped crystals structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  4. White light upconversion emission in Yb3+/ Er3+/ Tm3+ codoped oxy-fluoride lithium tungsten tellurite glass ceramics

    NASA Astrophysics Data System (ADS)

    Ansari, Ghizal F.; Mahajan, S. K.

    2012-02-01

    The bright white upconversion emission ( tri-colour UC) is generated in Er/Tm/Yb tri -doped oxy-fluoride lithium tungsten tellurite (TWLOF)glass ceramics containing crystalline phase LiYbF4 under the excitation of 980nm laser diode. The most appropriate combination of rare-earth ions (2mol% YbF3 1mol% ErF3 and 1mol%TmF3 )of glass ceramic sample has been determined to tune the primary colour (RGB and generate white light emission. By varying the pump power, intense and weak blue (487nm, 437nm), green (525nm and 545nm) and red (662nm) emission are simultaneously observed at room temperature. The dependence of upconversion emission intensity suggest that a theephoton process is responsible for the blue emission of Tm3+ ions and red emission due to both Tm3+ and Er3+ ions , while green emission originated from two photon processes in Er3+ ions. Also tri colour upconvesion and energy transfer in this glass ceramics sample were studied under 808nm laser diode excitation. The Upconversion mechanisms and Tm3+ ions plays role of both emitter and activator (transfer energy to Er) were discussed.

  5. Quadratic general rotary unitized design for doping concentrations and up-conversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiashi, E-mail: sunjs@dlmu.edu.cn; Shi, Linlin; Li, Shuwei

    Highlights: • NaLa(MoO4)2: Er3+/Yb3+ phosphor is synthesized by solid state method. • QGRUD is first applied to the codoping concentration option. • Optimized phosphor presents more stable UC emissions than the commercial phosphor. - Abstract: It is still a great challenge that designing proper codoping concentrations of rare earth ions for achieving intensest expected emission from the studied phosphor. In this work, the quadratic general rotary unitized design (QGRUD) was introduced into the codoping concentration option of NaLa(MoO{sub 4}){sub 2}: Er{sup 3+}/Yb{sup 3+} phosphor for upconversion (UC) applications, and the optimum doping concentrations of Er{sup 3+} and Yb{sup 3+} formore » achieving maximum UC luminescence intensity, which is close to commercial NaYF{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor, were obtained. The two-photon process was assigned to the green UC emissions in the optimized NaLa(MoO{sub 4}){sub 2}: Er{sup 3+}/Yb{sup 3+} phosphor. It was also demonstrated that the optimized phosphor presented more stable upconversion emissions than the commercial NaYF{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor.« less

  6. Sol-Gel Derived Active Material for Yb Thin-Disk Lasers

    PubMed Central

    Almeida, Rui M.; Ribeiro, Tiago

    2017-01-01

    A ytterbium doped active material for thin-disk laser was developed based on aluminosilicate and phosphosilicate glass matrices containing up to 30 mol% YbO1.5. Thick films and bulk samples were prepared by sol-gel processing. The structural nature of the base material was assessed by X-ray diffraction and Raman spectroscopy and the film morphology was evidenced by scanning electron microscopy. The photoluminescence (PL) properties of different compositions, including emission spectra and lifetimes, were also studied. Er3+ was used as an internal reference to compare the intensities of the Yb3+ PL peaks at ~ 1020 nm. The Yb3+ PL lifetimes were found to vary between 1.0 and 0.5 ms when the Yb concentration increased from 3 to 30 mol%. Based on a figure of merit, the best active material selected was the aluminosilicate glass composition 71 SiO2-14 AlO1.5-15 YbO1.5 (in mol%). An active disk, ~ 36 μm thick, consisting of a Bragg mirror, an aluminosilicate layer doped with 15 mol% Yb and an anti-reflective coating, was fabricated. PMID:28869488

  7. Ultralow-threshold Yb(3+):SiO(2) glass laser fabricated by the solgel process.

    PubMed

    Ostby, Eric P; Yang, Lan; Vahala, Kerry J

    2007-09-15

    A Yb-doped silica microcavity laser on a silicon chip is fabricated from a solgel thin film. The high-Q micro-toroid cavity, which has a finesse of 10,000, is evanescently coupled to an optical fiber taper. We report a threshold of 1.8 microW absorbed power that is, to the best of our knowledge, the lowest published threshold to date for any Yb-doped laser. The effect of Yb(3+) concentration on laser threshold is experimentally quantified.

  8. Growth and Spectral Assessment of Yb3+-Doped KBaGd(MoO4)3 Crystal: A Candidate for Ultrashort Pulse and Tunable Lasers

    PubMed Central

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu

    2013-01-01

    In order to explore new more powerful ultrashort pulse laser and tunable laser for diode-pumping, this paper reports the growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal. An Yb3+:KBaGd(MoO4)3 crystal with dimensions of 50×40×9 mm3 was grown by the TSSG method from the K2Mo2O7 flux. The investigated spectral properties indicated that Yb3+:KBaGd(MoO4)3 crystal exhibits broad absorption and emission bands, except the large emission and gain cross-sections. This feature of the broad absorption and emission bands is not only suitable for the diode pumping, but also for the production of ultrashort pulses and tunability. Therefore, Yb3+:KBaGd(MoO4)3 crystal can be regarded as a candidate for the ultrashort pulse and tunable lasers. PMID:23349892

  9. Growth and spectral assessment of Yb(3+)-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers.

    PubMed

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu

    2013-01-01

    In order to explore new more powerful ultrashort pulse laser and tunable laser for diode-pumping, this paper reports the growth and spectral assessment of Yb(3+)-doped KBaGd(MoO(4))(3) crystal. An Yb(3+):KBaGd(MoO(4))(3) crystal with dimensions of 50×40×9 mm(3) was grown by the TSSG method from the K(2)Mo(2)O(7) flux. The investigated spectral properties indicated that Yb(3+):KBaGd(MoO(4))(3) crystal exhibits broad absorption and emission bands, except the large emission and gain cross-sections. This feature of the broad absorption and emission bands is not only suitable for the diode pumping, but also for the production of ultrashort pulses and tunability. Therefore, Yb(3+):KBaGd(MoO(4))(3) crystal can be regarded as a candidate for the ultrashort pulse and tunable lasers.

  10. Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs

    DOE PAGES

    Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...

    2016-06-13

    We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less

  11. Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm

    NASA Astrophysics Data System (ADS)

    Gong, Guoliang; Chen, Yujin; Lin, Yanfu; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-04-01

    An Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 (CNGS) crystal was grown by the Czochralski method. Spectral properties of the crystal, including the polarized absorption and fluorescence spectra, the fluorescence decay, as well as the energy transfer efficiency from Yb3+ to Er3+ were investigated in detail. End-pumped by a 976 nm diode laser, a 1556 nm continuous-wave laser with a maximum output power of 202 mW and a slope efficiency of 11.4% was achieved in the Er,Yb,Ce:CNGS crystal. The results indicate the Er,Yb,Ce:CNGS crystal is a promising 1.55 µm laser gain medium.

  12. Two-step photoconductivity in LiY x Lu1 - x F4:Ce,Yb crystals

    NASA Astrophysics Data System (ADS)

    Nurtdinova, L. A.; Korableva, S. L.; Leontiev, A. V.

    2016-10-01

    Photoconductivity of LiY x Lu1- x F4:Ce,Yb ( x = 0-1) crystals is measured under one- and two-step excitation. It is established that the photoconductivity is due to intra-center transitions from excited states of Ce3+ ions. The position of the ground 4 f-state of Ce3+ ion relative to the bottom of the conduction band is determined. The choice of pumping conditions to obtain the lasing on the 5 d-4 f transitions of trivalent cerium in these active media is substantiated.

  13. Nd3+/Yb3+ cascade-sensitized single-band red upconversion emission in active-core/active-shell nanocrystals.

    PubMed

    Ding, M Y; Hou, J J; Yuan, Y J; Bai, W F; Lu, C H; Xi, J H; Ji, Z G; Chen, D Q

    2018-08-24

    Lanthanide-doped upconversion nanomaterials (UCNMs) have promoted extensive interest for its biological research and biomedical applications, benefiting from low autofluorescence background, deep light penetration depth, and minimal photo-damage to biological tissues. However, owing to the 980 nm laser-induced overheating issue and the attenuation effect associated with conventional multi-peak emissions, the usage of UCNMs as fluorescent bioprobes is still limited. To address these issues, an effective strategy has been proposed to tune both the excitation and emission peaks of UCNMs into the first biological window (650 ∼ 900 nm), where the light absorption by water and hemoglobin in biological tissues is minimal. Based on the Nd 3+ /Yb 3+ cascade-sensitized upconversion process and efficient exchange-energy transfer between Mn 2+ and Er 3+ in conjunction with the active-core@active-shell nanostructured design, we have developed a new class of upconversion nanoparticles (UCNPs) that exhibit strong single-band red emission upon excitation of an 808 nm near-infrared laser. Hopefully, the well-designed KMnF 3 :Yb/Er/Nd@ KMnF 3 :Yb/Nd core-shell nanocrystals will be considered a promising alternative to conventionally used UCNPs for biolabeling applications without the concern of the overheating issue and the attenuation constraints.

  14. Spectral characterization and white light generation by yttrium silicate nanopowders undoped and doped with Ytterbium(III) at different concentrations when excited by a laser diode at 975 nm

    NASA Astrophysics Data System (ADS)

    Cinkaya, Hatun; Eryurek, Gonul; Bilir, Gokhan; Collins, John; Di Bartolo, Baldassare

    2017-01-01

    We have studied nanophosphors of yttrium silicate (YSO) undoped and doped with different concentration of ytterbium (Yb3+) synthesized by using the sol-gel method. Structural and luminescence properties of the nanophosphors were studied experimentally by using different analytical techniques. For the structural analysis, we performed X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectrometry (EDS) measurements. Upconversion (UC) and the white light (WL) emission properties were investigated by using the near infrared cw laser excitation of 975 nm. The spectral properties have been found to depend on several physical parameters.

  15. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, W.F.; Payne, S.A.; Chase, L.L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  16. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, W.F.; Payne, S.A.; Chase, L.L.; Smith, L.K.

    1994-01-18

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  17. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    NASA Astrophysics Data System (ADS)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  18. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting in Tb and Yb co-doped glass containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Sekar, G.; Akrobetu, R.; Mu, R.; Morgan, S. H.

    2011-10-01

    Tb, Yb, and Ag co-doped glass nano-composites were synthesized in a lithium-lanthanum-aluminosilicate glass matrix (LLAS) by a melt-quench technique. Ag nanoparticles (NPs) were formed in the glass matrix and confirmed by optical absorption and transmission electron microscopy (TEM). Plasmon enhanced luminescence was observed. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting were studied for samples with different thermal annealing times. Because the Yb3+ emission at 940 - 1020 nm is matched well with the band gap of crystalline Si, the quantum cutting effect may have its potential application in silicon-based solar cells.

  19. Effect of Yb doping on the refractive index and thermo-optic coefficient of YVO4 single crystals.

    PubMed

    Soharab, M; Bhaumik, Indranil; Bhatt, R; Saxena, A; Karnal, A K; Gupta, P K

    2017-02-20

    Single crystals of YVO4 with different doping concentrations of Yb (1.5, 3.0, 8.0, and 15.0 at. %) and with good crystalline quality (FWHM ∼43-55 arc sec of rocking curve) were grown by the optical floating zone technique. Refractive index measurements were carried out at four wavelengths as a function of temperature. The measurements show that as the doping concentration of Yb is increased, the refractive index varies marginally for ne whereas there is a significant change in the value of no. The thermo-optic coefficient (dn/dT) was found to be positive with a value ∼10-5/°C, which is 1 order higher than that for the undoped YVO4 crystal. The thermo-optic coefficient is higher for ne compared to that of no. Also, a set of relations describing the wavelength dependence of the thermo-optic coefficient were established that are useful for calculating the thermo-optic coefficient at any temperature in the range 30°C-150°C and at any wavelength in the range 532-1551 nm.

  20. Luminescence of Yb3+ ions in silica-based glasses synthesized by SPCVD

    NASA Astrophysics Data System (ADS)

    Savel'ev, E. A.; Krivovichev, A. V.; Yapaskurt, V. O.; Golant, K. M.

    2017-02-01

    The spectra and decay kinetics of Yb3+ single-ion and cooperative luminescence in silica-based optical slab waveguides are investigated. The slab waveguides with a high content of Yb and various amounts of P and Al additives to the light-guiding core glass were fabricated on the basis of fused and unfused glassy layers synthesized via surface-plasma chemical vapor deposition (SPCVD). Luminescence was pumped by laser diodes at ∼904 nm and ∼967 nm wavelengths and recorded in the 450-1175 nm spectral band. For the pure silica host doped with Yb, only the influence of cluster sizes on the luminescence decay kinetics is determined. It is found that the profusion of deposited glass with increased Al content favors separation by geometry of the Yb3+ and Tm3+ ions; the latter are present in the glass as an uncontrollable contamination. Evidence was found that at least two different types of Yb clusters were formed in P doped silica as a result of profusion.

  1. Influence of Yb{sub 2}O{sub 3} on electrical and microstructural characteristics of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Kai; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054; Luo, Yun

    2015-09-15

    Graphical abstract: Some Yb atoms entered in the lattice of CCTO substituted the Ca sites, the rest of Yb atoms concentrated at grain boundaries decreased the grain size. The dielectric constant was decreased by Yb doping. The dielectric loss of the CCTO could be greatly reduced at low frequency. - Highlights: • Yb atoms may take the place of Ca sites and concentrate at grain boundaries. • Tiny second phase corresponding to Yb may decrease the grain size. • Decrease of the grain size leads to the decrease of dielectric constant. • Yb doping could decrease the dielectric loss ofmore » CCTO. - Abstract: This paper focuses on the remarkable effects of Yb{sub 2}O{sub 3} doping on the microstructure and dielectric characteristics of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO). Samples were prepared by the solid phase reaction method and sintered in air at 1030 °C for 12 h. X-ray diffraction and X-ray photoelectron spectroscopy studies confirm that the primary phase is CCTO. Some Yb{sup 3+} ions may substitute into the Ca site at the center or zenith sites of the CCTO lattice hexahedron, while the rest of the Yb atoms may concentrate at grain boundaries. The grain size of Yb{sub 2}O{sub 3}-doped CCTO ceramics were examined by scanning electron microscopy and demonstrate sharp grain size reduction with Yb{sub 2}O{sub 3} doping. From dielectric property measurements, the Yb{sub 2}O{sub 3} doping reduces the dielectric constant of CCTO, and the dielectric loss is also reduced.« less

  2. Comparative analysis of luminescent properties of germanate glass and double-clad optical fibers co-doped with Yb3+/Ho3+ ions

    NASA Astrophysics Data System (ADS)

    Pietrzycki, Marcin; Kochanowicz, Marcin; Romańczuk, Patryk; Żmojda, Jacek; Miluski, Piotr; Ragiń, Tomasz; Jeleń, Piotr; Sitarz, Maciej; Dorosz, Dominik

    2016-09-01

    The 2 μm and visible emission of low phonon (805 cm-1) germanate glasses and double - clad optical fiber co-doped with 0.7Yb2O3/(0.07-0.7)Ho2O3 ions have been investigated. Luminescence at 2 μm corresponding to Ho3+: 5I7 → 5I8 as well as upconversion luminescence in the visible spectral range corresponding to the Ho3+: 5S2(5F4)→5I8 (545 nm), and Ho3+: 5F5→5I8 (655 nm) transition, respectively were obtained. The optimization of the acceptor content and donor-acceptor ratio were conducted with the purpose of maximizing the luminescence intensity. The highest luminescence intensity in both spectral range was obtained in glass co-doped with 0.7Yb2O3/0.15 Ho2O3. Despite relatively small effective absorption coefficient of the optical fiber comparative analysis of luminescent properties of fabricated glasses (further core) and double - clad optical fiber showed significant contribution of reabsorption process of emitted ASE signal.

  3. Optical Temperature Sensor Based on Infrared Excited Green Upconversion Emission in Hexagonal Phase NaLuF4:Yb3+/Er3+ Nanorods.

    PubMed

    Li, Dongyu; Tian, Linlin; Huang, Zhen; Shao, Lexi; Quan, Jun; Wang, Yuxiao

    2016-04-01

    Hexagonal phase NaLuF4:Yb3+/Er3+ nanorods were synthesized hydrothermally. An analysis of the intense green upconversion emissions at 525 nm and 550 nm in hexagonal phase NaLuF4:Yb3/+Er3+ nanorods under excitation power density of 4.2 W/cm2 available from a diode laser emitting at 976 nm, have been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive green upconversion emissions at 525 nm and 550 nm in this material was recorded in the physiological range from 295 to 343 K. The maximum sensitivity derived from the FIR technique of the green upconversion emissions is approximately 0.0044 K-1. Experimental results implied that hexagonal phase NaLuF4:Yb3/+Er3+ nanorods was a potential candidate for optical temperature sensor.

  4. Near infrared emission of TbAG:Ce{sup 3+},Yb{sup 3+} phosphor for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com; Yadav, P. J., E-mail: yadav.pooja75@yahoo.in; Pathak, A. A., E-mail: aapathak@yahoo.com

    2016-05-06

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimatedmore » to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr{sup 3+}, Gd{sup 3+},Gd{sup 3+}–Eu{sup 3+}, and Er{sup 3+}–Tb{sup 3+} had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb{sup 3+}–Yb{sup 3+}, Pr{sup 3+}–Yb{sup 3+}, and Tm{sup 3+}–Yb{sup 3+} has been reported. The Yb{sup 3+} ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb{sup 3+} is close to 100% and the energy of the only excited level of Yb{sup 3+} (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce{sup 3+}-doped Tb{sub 3}Al{sub 5}O{sub 12} (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300–500 nm due to strong ligand field and high luminescent quantum efficiency

  5. Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement

    NASA Astrophysics Data System (ADS)

    Roy, V.; Paré, C.; Labranche, B.; Laperle, P.; Desbiens, L.; Boivin, M.; Taillon, Y.

    2017-02-01

    A polarization-maintaining Yb-doped large mode area fiber with depressed-index inner cladding layer and confinement of rare-earth dopants has been drawn as a long tapered fiber. The larger end features a core/clad diameter of 56/400 μm and core NA 0.07, thus leading to an effective mode area over 1000 μm2. The fiber was tested up to 100 W average power, with near diffraction-limited output as the beam quality M2 was measured < 1.2. As effective single-mode guidance is enforced in the first section due to enhanced bending loss, subsequent adiabatic transition of the mode field in the taper section preserves single-mode amplification towards the larger end of the fiber.

  6. Universal heat conduction in Ce 1-xYb xCoIn 5: Evidence for robust nodal d-wave superconducting gap

    DOE PAGES

    Xu, Y.; Petrovic, C.; Dong, J. K.; ...

    2016-02-01

    In the heavy-fermion superconductor Ce 1-xYb xCoIn 5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x ≈ 0.07 (nominal value x nom = 0.2). Here we present systematic thermal conductivity measurements on Ce 1-xYb xCoIn 5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term κ 0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce 1-xYb xCoIn 5. Similar universal heat conduction is also observed in the CeCo(Inmore » 1–yCd y) 5 system. Furthermore, these results reveal a robust nodal d-wave gap in CeCoIn 5 upon Yb or Cd doping.« less

  7. Role of ytterbium-erbium co-doped gadolinium molybdate (Gd2(MoO4)3:Yb/Er) nanophosphors in solar cells.

    PubMed

    Jin, Xiao; Li, Haiyang; Li, Dongyu; Zhang, Qin; Li, Feng; Sun, Weifu; Chen, Zihan; Li, Qinghua

    2016-09-05

    Insufficient harvest of solar light energy is one of the obstacles for current photovoltaic devices to achieve high performance. Especially, conventional organic/inorganic hybrid solar cells (HSCs) based on PTB7 as p-type semiconductor can only utilize 400-800 nm solar spectrum. One effective strategy to overcome this obstacle is the introduction of up-conversion nanophosphors (NPs), in the virtue of utilizing the near infrared region (NIR) of solar radiation. Up-conversion can convert low-energy photons to high-energy ones through multi-photon processes, by which the solar spectrum is tailored to well match the absorptive domain of the absorber. Herein we incorporate erbium-ytterbium co-doped gadolinium molybdate (Gd2(MoO4)3, GMO), denoted as GMO:Yb/Er, into TiO2 acceptor film in HSCs to enhance the light harvest. Here Er3+ acts as activator while Yb-MoO4 2- is the joint sensitizer. Facts proved that the GMO:Yb/Er single crystal NPs are capable of turning NIR photons to visible photons that can be easily captured by PTB7. Studies on time-resolved photoluminescence demonstrate that electron transfer rate at the interface increases sharply from 0.65 to 1.42 × 109 s-1. As a result, the photoelectric conversion efficiency of the GMO:Yb/Er doped TiO2/PTB7 HSCs reach 3.67%, which is increased by around 25% compared to their neat PTB7/TiO2 counterparts (2.94%). This work may open a hopeful way to take the advantage of those conversional rare-earth ion doped oxides that function in tailoring solar light spectrum for optoelectronic applications.

  8. Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers.

    PubMed

    Fedotov, Andrey; Noronen, Teppo; Gumenyuk, Regina; Ustimchik, Vasiliy; Chamorovskii, Yuri; Golant, Konstantin; Odnoblyudov, Maxim; Rissanen, Joona; Niemi, Tapio; Filippov, Valery

    2018-03-19

    We present a birefringent Yb-doped tapered double-clad fiber with a record core diameter of 96 µm. An impressive gain of over 38 dB was demonstrated for linearly polarized CW and pulsed sources at a wavelength of 1040 nm. For the CW regime the output power was70 W. For a mode-locked fiber laser a pulse energy of 28 µJ with 292 kW peak power was reached at an average output power of 28 W for a 1 MHz repetition rate. The tapered double-clad fiber has a high value of polarization extinction ratio at 30 dB and is capable of delivering the linearly polarized diffraction-limited beam (M 2 = 1.09).

  9. Strong emission in Yb3+/Er3+ co-doped phosphate glass ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Yanling; Song, Feng; Jia, Guozhi; Zhang, Yanbang; Tang, Yi

    Yb3+/Er3+ co-doped phosphate glass and glass ceramics were prepared by high-temperature melting method. The X-ray diffraction, transmission electron micrographs, up-conversion and infrared emissions, photothermal conversion properties of the samples have been measured. The results showed the annealing time had a great impact on the microstructure and luminous performance of the phosphate glass. At the beginning of annealing, the metaphosphate crystals were firstly dissolved out. The metaphosphate crystals gradually turned into the orthophosphate with the increasing of annealing time. The emission intensity of the sample was obviously improved after the precursor glass was annealed. The up-conversion and infrared emissions of the sample annealed at 600 °C for 24 h, reached the maximum intensity. Compared with the photothermal properties of glass, the lower photothermal conversion efficiency of the glass ceramics testified the strong emission.

  10. The upconversion luminescence and magnetism in Yb3+/Ho3+ co-doped LaF3 nanocrystals for potential bimodal imaging

    NASA Astrophysics Data System (ADS)

    Syamchand, Sasidharanpillai S.; George, Sony

    2016-12-01

    Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity ( r 1) of 0.12 s-1 mM-1 and transverse relaxivity ( r 2) of 28.18 s-1 mM-1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential

  11. Single-step synthesis of Er3+ and Yb3+ ions doped molybdate/Gd2O3 core-shell nanoparticles for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Kamińska, Izabela; Elbaum, Danek; Sikora, Bożena; Kowalik, Przemysław; Mikulski, Jakub; Felcyn, Zofia; Samol, Piotr; Wojciechowski, Tomasz; Minikayev, Roman; Paszkowicz, Wojciech; Zaleszczyk, Wojciech; Szewczyk, Maciej; Konopka, Anna; Gruzeł, Grzegorz; Pawlyta, Mirosława; Donten, Mikołaj; Ciszak, Kamil; Zajdel, Karolina; Frontczak-Baniewicz, Małgorzata; Stępień, Piotr; Łapiński, Mariusz; Wilczyński, Grzegorz; Fronc, Krzysztof

    2018-01-01

    Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/Gd2O3 doped rare earth ions (erbium, Er3+ and ytterbium, Yb3+) core-shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence. Scanning electron and transmission electron microscopes were used to visualize and determine the size and shape of the NPs. Spherical NPs were obtained. Their core-shell structures were confirmed by x-ray diffraction and energy-dispersive x-ray spectroscopy measurements. We postulated that the molybdate rich core is formed due to high segregation coefficient of the Mo ion during the precipitation. The calcination process resulted in crystallization of δ/ξ (core/shell) NP doped Er and Yb ions, where δ—gadolinium molybdates and ξ—molybdates or gadolinium oxide. We confirmed two different upconversion mechanisms. In the presence of molybdenum ions, in the core of the NPs, Yb3+-{{{{MoO}}}4}2- (∣2F7/2, 3T2〉) dimers were formed. As a result of a two 980 nm photon absorption by the dimer, we observed enhanced green luminescence in the upconversion process. However, for the shell formed by the Gd2O3:Er, Yb NPs (without the Mo ions), the typical energy transfer upconversion takes place, which results in red luminescence. We demonstrated that the NPs were transported into cytosol of the HeLa and astrocytes cells by endocytosis. The core-shell NPs are sensitive sensors for the environment prevailing inside (shorter luminescence decay) and outside (longer luminescence decay) of the tested cells. The toxicity of the NPs was examined using MTT assay.

  12. Efficient Nd3+→Yb3+ energy transfer processes in high phonon energy phosphate glasses for 1.0 μm Yb3+ laser

    NASA Astrophysics Data System (ADS)

    Rivera-López, F.; Babu, P.; Basavapoornima, Ch.; Jayasankar, C. K.; Lavín, V.

    2011-06-01

    Efficient Nd3+→Yb3+ resonant and phonon-assisted energy transfer processes have been observed in phosphate glasses and have been studied using steady-state and time-resolved optical spectroscopies. Results indicate that the energy transfer occurs via nonradiative electric dipole-dipole processes and is enhanced with the concentration of Yb3+ acceptor ions, having an efficiency higher than 75% for the glass doped with 1 mol% of Nd2O3 and 4 mol% of Yb2O3. The luminescence decay curves show a nonexponential character and the energy transfer microscopic parameter calculated with the Inokuti-Hirayama model gives a value of 240 × 10-40 cm6 s-1, being one of the highest reported in the literature for Nd3+-Yb3+ co-doped matrices. From the steady-state experimental absorption and emission cross-sections, a general expression for estimating the microscopic energy transfer parameter is proposed based upon the theoretical methods developed by Miyakawa and Dexter and Tarelho et al. This expression takes into account all the resonant mechanisms involved in an energy transfer processes together with other phonon-assisted nonvanishing overlaps. The value of the Nd3+→Yb3+ energy transfer microscopic parameter has been calculated to be 200 × 10-40 cm6 s-1, which is in good agreement with that obtained from the Inokuti-Hirayama fitting. These results show the importance of the nonresonant phonon-assisted Nd3+→Yb3+ energy transfer processes and the great potential of these glasses as active matrices in the development of multiple-pump-channel Yb3+ lasers.

  13. Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics tuneable up-conversion phosphor

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Rodriguez, V. D.; Tikhomirov, V. K.; Del-Castillo, J.; Yanes, A. C.

    2008-08-01

    Transparent Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics have been prepared, 32(SiO{2}) 9(AlO{1.5}) 31.5(CdF{2}) 18.5(PbF{2}) 5.5(ZnF{2}): 3.5(Yb-Er-TmF{3}) mol%, where the co-dopants partition mostly to the fluoride PbF{2}-based nano-crystals. A comparative study of the up-conversion luminescence in nano-glass-ceramics and its precursor glass indicates that these materials can be used as blue/green/red tuneable up-conversion phosphor, in particular for white light generation. A ratio between blue, green and red emission bands of the Tm3+ and Er3+ can be widely varied with nano-ceramming of the precursor glass and with changing a pump power of luminescence. The change in the ratio between the blue, green and red emission bands is explained to be due to substantial lowering phonon energy and shortening of inter-dopant distances with nano-ceramming of the precursor glass and due to change in the ratio of 2- and 3-photon up-conversion processes with pump power.

  14. Spectroscopy and enhanced frequency upconversion in Nd3+-Yb3+ codoped TPO glasses: energy transfer and NIR to visible upconverter.

    PubMed

    Azam, Mohd; Rai, Vineet Kumar; Mohanty, Deepak Kumar

    2017-09-22

    TeO 2 -Pb 3 O 4 (TPO) glasses codoped with Nd 3+ and Yb 3+ ions have been fabricated by conventional melting technique. The absorption, emission and excitation spectra of the samples have been recorded. The optical band gap in both the doped/codoped glasses is found to be ∼3.31 eV. Judd-Ofelt analysis has been carried out by using the absorption spectrum of 0.8 mol% Nd 3+ doped glass to determine the radiative properties viz radiative transition probabilities, branching ratios, radiative lifetimes, quality factor and emission cross sections of some emitting levels for Nd 3+ ions. The radiative transition probability for the 4 G 7/2  →  4 I 9/2 transition (∼1926 Hz) is found to be maximum compared to other 4 G 5/2  →  4 I 9/2 (∼1622 Hz) and 4 F 5/2  →  4 I 9/2 (∼865 Hz) transitions. Upconversion (UC) luminescence of the samples has been examined by the 980 nm CW diode laser excitation. Effect of addition of Yb 3+ ions in the Nd 3+ doped glasses on UC emission intensity has been discussed. The UC emission intensity corresponding to the green, red and NIR bands in the codoped glass has been enhanced by ∼17, ∼12 and ∼42 times as compared to that of the Nd 3+ singly doped glass. The quantum efficiency for the 4 G 7/2 level is found to be ∼32%. The nephelauxetic ratio, bonding parameter and covalency of Nd 3+ ions have been found positive which represents the covalent bonding between Nd 3+ ion and oxygen atom. The colour tunability from yellowish-green to dominant green region has been obtained in the optimized codoped TPO glass.

  15. Spectroscopy and enhanced frequency upconversion in Nd3+-Yb3+ codoped TPO glasses: energy transfer and NIR to visible upconverter

    NASA Astrophysics Data System (ADS)

    Azam, Mohd; Rai, Vineet Kumar; Mohanty, Deepak Kumar

    2017-09-01

    TeO2-Pb3O4 (TPO) glasses codoped with Nd3+ and Yb3+ ions have been fabricated by conventional melting technique. The absorption, emission and excitation spectra of the samples have been recorded. The optical band gap in both the doped/codoped glasses is found to be ˜3.31 eV. Judd-Ofelt analysis has been carried out by using the absorption spectrum of 0.8 mol% Nd3+ doped glass to determine the radiative properties viz radiative transition probabilities, branching ratios, radiative lifetimes, quality factor and emission cross sections of some emitting levels for Nd3+ ions. The radiative transition probability for the 4G7/2 → 4I9/2 transition (˜1926 Hz) is found to be maximum compared to other 4G5/2 → 4I9/2 (˜1622 Hz) and 4F5/2 → 4I9/2 (˜865 Hz) transitions. Upconversion (UC) luminescence of the samples has been examined by the 980 nm CW diode laser excitation. Effect of addition of Yb3+ ions in the Nd3+ doped glasses on UC emission intensity has been discussed. The UC emission intensity corresponding to the green, red and NIR bands in the codoped glass has been enhanced by ˜17, ˜12 and ˜42 times as compared to that of the Nd3+ singly doped glass. The quantum efficiency for the 4G7/2 level is found to be ˜32%. The nephelauxetic ratio, bonding parameter and covalency of Nd3+ ions have been found positive which represents the covalent bonding between Nd3+ ion and oxygen atom. The colour tunability from yellowish-green to dominant green region has been obtained in the optimized codoped TPO glass.

  16. Fabrication and evaluation of chitosan/NaYF4:Yb3+/Tm3+ upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets.

    PubMed

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang; Wang, Xianghui; Dai, Zihao

    2017-02-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF 4 :Yb 3+ /Tm 3+ UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF 4 :Yb 3+ /Tm 3+ composite beads (CS/NaYF 4 :Yb 3+ /Tm 3+ CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF 4 :Yb 3+ /Tm 3+ UCNPs with an average size of 20nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF 4 :Yb 3+ /Tm 3+ UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF 4 :Yb 3+ /Tm 3+ CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. NIR luminescence studies on Er{sup 3+}:Yb{sup 3+} co-doped sodium telluroborate glasses for lasers and optical amplifer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annapoorani, K.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com; Murthy, N. Suriya

    2016-05-23

    Er{sup 3+}:Yb{sup 3+} co-doped Sodium telluroborate glasses were prepared with the chemical composition (49.5–x)B{sub 2}O{sub 3}+25TeO{sub 2}+5Li{sub 2}CO{sub 3}+10ZnO+10NaF+0.5Er{sub 2}O{sub 3}+xYb{sub 2}O{sub 3} (where x= 0.1, 0.5, 1.0 and 2.0 in mol %) following the melt quenching technique. With the addition of Yb{sup 3+} ions into Er{sup 3+} ions in the prepared glasses, the absorption cross-section values were found to increase due to the effective energy transfer from {sup 2}F{sub 5/2} level of Yb{sup 3+} ions to the {sup 4}I{sub 11/2} level of Er{sup 3+} ions. The fluorescence around 1550 nm correspond to the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition wasmore » observed under 980 nm pumping. Among the present glasses, integrated intensity was found to be higher for 1.0 mol% Yb{sup 3+} ion glass. The parameters such as stimulated emission cross- section, Gain bandwidth and quantum efficiency of the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition was found to be higher for the NTBE1.0Y glass and the same is suggested for potential NIR lasers and optical amplifier applications.« less

  18. Growth, spectroscopy and lasing of the Yb-doped monoclinic Gd2SiO5 in the prospect of hydrogen laser cooling with Lyman-α radiation

    NASA Astrophysics Data System (ADS)

    Cabaret, L.; Robert, J.; Lebbou, K.; Brenier, A.; Cabane, H.

    2016-12-01

    We have grown good optical quality 10% Yb-doped Gd2SiO5 monocrystal by the Czochralski technique. The Yb segregation coefficient was measured to be 0.747. In agreement with the monoclinic symmetry of the host, the Yb fluorescence extrema were found to deviate from the Nm and Ng principal axes and a fourth spectroscopic parameter representing the rotation of the fluorescence distribution was introduced for a full description. Diode pumped laser operation at Brewster incidence was demonstrated to be significantly more efficient if the lasing propagation corresponds to the maximum fluorescence inside the crystal. We obtained a laser emission tunable between 1079 and 1100 nm, showing that our crystal is the best choice for the application to the production of QCW Lyman-α radiation by resonant four-wave-mixing in mercury vapor.

  19. Fabrication and characterization of a phosphosilicate YDF with high Yb absorbance and low background loss

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Jin; Hujimaki, Yosuke; Taniguchi, Hirokazu; Kinoshita, Hiroaki; Sato, Kenji

    2014-03-01

    In this paper, we report fabrication and investigation of ytterbium-doped phosphorsilicate fiber (P co-doped YDF) with high Yb content, low numerical aperture, and low background loss. The P co-doped YDF is fabricated by MCVD using the vapor sources of Yb, SiCl4, AlCl3, and POCl3, and by the gas-phase doping method. The optical properties of this P co-doped YDF are compared with Al co-doped and Al:P co-doped YDFs with low background losses. The minimum background loss of the P co-doped YDF in the spectral range from 1100 to 1380 nm is as low as ~3 dB/km. This is nearly independent of the Yb and P contents because soot deposition and collapsing conditions are properly optimized (i.e., the P co-doped YDF from a non-optimized process shows a few hundred dB/km). The excess loss induced by PD, for the P co-doped YDF, was dramatically reduced compared to both Al co-doped and Al:P co-doped YDFs. The optical slope efficiency of the P co-doped YDF is about 80%, depending on the pumping wavelength and fiber length. The fiber colors during pumping are blue for both the P co-doped and Al:P co-doped YDFs. Based on the results from a prolonged test, the output power of the P co-doped YDF is highly stable, with an initial degradation of 2-3%; which demonstrate improvement in PD resistivity with P incorporation into the glass, compared to the Al:P co-doped YDF with degradation above 6%.

  20. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals.

    PubMed

    Yang, L W; Zhang, Y Y; Li, J J; Li, Y; Zhong, J X; Chu, Paul K

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X=0.352, CIE-Y=0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4 nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4 nanocrystals. The multifunctional Ln3+ doped KGdF4 nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  1. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Zhang, Y. Y.; Li, J. J.; Li, Y.; Zhong, J. X.; Chu, Paul K.

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln = Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X = 0.352, CIE-Y = 0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4nanocrystals. The multifunctional Ln3+ doped KGdF4nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  2. Microstructural and electrical characteristics of rare earth oxides doped ZnO varistor films

    NASA Astrophysics Data System (ADS)

    Jiao, Lei; Mei, Yunzhu; Xu, Dong; Zhong, Sujuan; Ma, Jia; Zhang, Lei; Bao, Li

    2018-02-01

    ZnO-Bi2O3 varistor films doped with two kinds of rare earth element oxides (Lu2O3 and Yb2O3) were prepared by the sol-gel method. The effects of Lu2O3/Yb2O3 doping on the microstructure and electrical characteristics of ZnO-Bi2O3 varistor films were investigated. All samples show a homogenized morphology and an improved nonlinear relationship between the electric field (E) and current density (I). Both Yb2O3 and Lu2O3 doping can decrease the grain size of ZnO-Bi2O3 varistor films and improve the electrical properties, which have a positive effect on the development of ZnO varistor ceramics. Yb2O3 doping significantly increases the dielectric constant at low frequency. 0.2 mol. % Yb2O3 doped ZnO-Bi2O3 varistor films exhibit the highest nonlinear coefficient (2.5) and the lowest leakage current (328 μA) among Lu2O3/Yb2O3 doped ZnO-Bi2O3 varistor films. Similarly, 0.1 mol. % Lu2O3 doping increases the nonlinear coefficient to 1.9 and decrease the leakage current to 462 μA.

  3. Effect of defect state on photon synergistic process in KLu2F7:Yb3+, Er3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Bian, Wenjuan; Lu, Wei; Qi, Yushuang; Yu, Xue; Zhou, Dacheng; Yang, Yong; Qiu, Jianbei; Xu, Xuhui

    2016-10-01

    The synergistic effect appeared due to the cooperative dual-wavelength excitation by near-infrared (NIR) and ultraviolet (UV) light in rare-earth doped nano-particles (NPs) is very important to improve solar cell efficiency. Herein, we studied the synergistic effect combined with the energy levels of Er3+ ions and the defect states in KLu2F7 NPs. The introduction of Ce3+ ions in KLu2F7:16%Yb3+, 2%Er3+ NPs results in significant improvement of synergistic effect by producing more vacancy defects (VK‧) which serves as shallow traps. We verify unambiguously that the control of the defects distribution exerts a facile approach to promote the synergistic effect with the assistance of Ce3+ ions doping.

  4. Hybrid solid state laser system using a neodymium-based master oscillator and an ytterbium-based power amplifier

    DOEpatents

    Payne, Stephen A.; Marshall, Christopher D.; Powell, Howard T.; Krupke, William F.

    2001-01-01

    In a master oscillator-power amplifier (MOPA) hybrid laser system, the master oscillator (MO) utilizes a Nd.sup.3+ -doped gain medium and the power amplifier (PA) utilizes a diode-pumped Yb.sup.3+ -doped material. The use of two different laser gain media in the hybrid MOPA system provides advantages that are otherwise not available. The Nd-doped gain medium preferably serves as the MO because such gain media offer the lowest threshold of operation and have already been engineered as practical systems. The Yb-doped gain medium preferably serves in the diode-pumped PA to store pump energy effectively and efficiently by virtue of the long emission lifetime, thereby reducing diode pump costs. One crucial constraint on the MO and PA gain media is that the Nd and Yb lasers must operate at nearly the same wavelength. The 1.047 .mu.m Nd:YLF/Yb:S-FAP [Nd:LiYF.sub.4 /Yb:Sr.sub.5 (PO.sub.4).sub.3 F] hybrid MOPA system is a preferred embodiment of the hybrid Nd/Yb MOPA.

  5. Crystal structure of YbCu6In6 and mixed valence behavior of Yb in YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution.

    PubMed

    Subbarao, Udumula; Peter, Sebastian C

    2012-06-04

    High quality single crystals of YbCu(6)In(6) have been grown using the flux method and characterized by means of single crystal X-ray diffraction data. YbCu(6)In(6) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and the lattice constants are a = b = 9.2200(13) Å and c = 5.3976(11) Å. The crystal structure of YbCu(6)In(6) is composed of pseudo-Frank-Kasper cages filled with one ytterbium atom in each ring. The neighboring cages share corners along [100] and [010] to build the three-dimensional network. YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution compounds were obtained from high frequency induction heating and characterized using powder X-ray diffraction. The magnetic susceptibilities of YbCu(6-x)In(6+x) (x = 0, 1, and 2) were investigated in the temperature range 2-300 K and showed Curie-Weiss law behavior above 50 K, and the experimentally measured magnetic moment indicates mixed valent ytterbium. A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb(2+) to Yb(3+) as the temperature decreases. An increase in doping of Cu at the Al2 position enhances the disorder in the system and enhancement in the trivalent nature of Yb. Electrical conductivity measurements show that all compounds are of a metallic nature.

  6. Size and shape effects in β-NaGdF4: Yb3+, Er3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Noculak, Agnieszka; Podhorodecki, Artur

    2017-04-01

    Three sets of β-NaGdF4:Yb3+, Er3+ nanocrystals (NCs) with different shapes (spherical and more complex flower shapes), different sizes (6-17 nm) and Yb3+ concentrations (2%-15%) were synthesized by a co-precipitation method using oleic acid as a stabilizing agent. The uncommon, single-crystalline flower-shaped NCs were obtained by simply adjusting the fluorine-to-lanthanides molar ratio. Additionally, some of the NCs with different sizes have been covered by the un-doped shell. The crystal phase, shapes and sizes of all NCs were examined using transmission electron microscopy and x-ray diffraction methods. Simultaneously, upconversion luminescence and lifetimes, under 980 nm excitation, were measured and the changes in green to red (G/R) emission ratios as well as emission decay times were correlated with the evolution of nanocrystal sizes and surface to volume ratios. Three different mechanisms responsible for the changes in G/R ratios were presented and discussed.

  7. Active media for up-conversion diode-pumped lasers

    NASA Astrophysics Data System (ADS)

    Tkachuk, Alexandra M.

    1996-03-01

    In this work, we consider the different methods of populating the initial and final working levels of laser transitions in TR-doped crystals under the selective 'up-conversion' and 'avalanche' diode laser pumping. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes rates obtained from the experimental data and theoretical calculations, we estimated the efficiency of the up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the output characteristics and up-conversion processes in YLF:Er; BaY2F8:Er; BaY2F8:Er,Yb and BaY2F8:Yb,Ho are determined.

  8. Gold nanorod as saturable absorber for Q-switched Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Xu-De; Luo, Zhi-Chao; Liu, Hao; Zhao, Nian; Liu, Meng; Zhu, Yan-Fang; Xue, Jian-Ping; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-01

    We reported on the generation of Q-switched pulse in an Yb-doped fiber laser by using a filmy polyvinyl alcohol (PVA)-based gold nanorods (GNRs) saturable absorber (SA). The GNRs are synthesized through seed-mediated method whose longitudinal surface plasmon resonance (SPR) absorption peak is located at 1038 nm. The modulation depth of the GNRs SA is ∼4.06%. By gradually increasing the pump power from 62 mW to 128 mW, the repetition rate of Q-switched pulse increases from 8.78 kHz to 20.78 kHz and the pulse duration decreases from 9.43 μs to 3.65 μs. In addition, the dual-wavelength switchable Q-switched operation was also observed. The obtained results further expand the applications of GNRs SA to the field of Q-switched pulsed fiber lasers at 1.0 μm waveband.

  9. Observation of defect-assisted enhanced visible whispering gallery modes in ytterbium-doped ZnO microsphere

    NASA Astrophysics Data System (ADS)

    Khanum, Rizwana; Moirangthem, Rakesh S.; Das, Nayan Mani

    2017-06-01

    Smooth surfaced and crystalline undoped and ytterbium doped zinc oxide (ZnO) microspheres having an approximate size of 3-5 μm were synthesized by hydrothermal process. Out of these microspheres, a single microparticle was chosen and engaged as a whispering gallery wave microresonator. The defect induced luminescence from an individual ZnO microsphere was investigated with micro-photoluminescence measurement in the spectral range of 565 to 740 nm under the excitation of a green laser having a centered wavelength at 532 nm. The defects-related emissions from a single ZnO microsphere show optical resonance peaks so-called "whispering gallery modes" (WGMs) which are confirmed with the theoretical calculation. Further, ZnO microspheres were chemically doped with the different molar percentages of Ytterbium (Yb), and enhancement in their emission properties was investigated. Our experimental results show that ZnO microspheres with 0.5 mol. % doping of Yb gives the strongest optical emission and has highest Q-factor which can be employed in the development of WGM based optical biosensor or laser.

  10. Doping dependence of the magnetic excitations in La 2 - x Sr x CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, D.; Miao, H.; Walters, A. C.

    The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high-temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La 2–xSr xCuO 4, spanning the doping phase diagram from the antiferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the antinodal direction. This phenomenology is discussed in terms of the nature of the magnetism inmore » the doped cuprates. As a result, survival of the high-energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low-energy excitations remains ambiguous.« less

  11. Doping dependence of the magnetic excitations in La 2 - x Sr x CuO 4

    DOE PAGES

    Meyers, D.; Miao, H.; Walters, A. C.; ...

    2017-02-15

    The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high-temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La 2–xSr xCuO 4, spanning the doping phase diagram from the antiferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the antinodal direction. This phenomenology is discussed in terms of the nature of the magnetism inmore » the doped cuprates. As a result, survival of the high-energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low-energy excitations remains ambiguous.« less

  12. The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yinpeng; Luo, Laihui, E-mail: luolaihui@nbu.edu.cn; Wang, Jia

    2015-07-28

    Na{sub 0.5}Bi{sub 0.5−x−y}Yb{sub x}Pr{sub y}TiO{sub 3} (NBT:xYb/yPr) ceramics with different Yb and Pr contents are prepared. Both the down-conversion (DC) and up-conversion (UC) photoluminescence (PL) of the ceramics via 453 and 980 nm excitation, respectively, are investigated. The effect of Yb{sup 3+} and Pr{sup 3+} doping contents on the DC and UC PL is significantly different from each other. Furthermore, the UC PL of the ceramics as a function of temperatures is measured to investigate the UC process in detail. Based on energy level diagram of Pr{sup 3+} and Yb{sup 3+} ions and the DC and UC PL spectra, the DCmore » and UC PL mechanisms of Pr{sup 3+} and Yb{sup 3+} ions are discussed. Especially, the UC PL mechanism is clarified, which is different from the previously reported literature. Also, the temperature sensing properties of the ceramics are studied based on the photoluminescence ratio technique, using the thermal coupling energy levels of Pr{sup 3+}.« less

  13. Nd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm

    NASA Astrophysics Data System (ADS)

    Li, Xiaomin; Wang, Rui; Zhang, Fan; Zhou, Lei; Shen, Dengke; Yao, Chi; Zhao, Dongyuan

    2013-12-01

    Core/shell1/shell2/shell3 structured NaGdF4:Nd/NaYF4/NaGdF4:Nd,Yb,Er/NaYF4 nanocrystals were well designed and synthesized, each of the parts assume respective role and work together to achieve dual-mode upconverting (UC) and downconverting (DC) luminescence upon the low heat effect 800-nm excitation. Nd3+, Yb3+, Er3+ tri-doped NaGdF4:Nd,Yb,Er UC layer [NIR (800 nm)-to-Visible (540 nm)] with a constitutional efficient 800 nm excitable property were achieved for the in-vitro bioimaging with low auto-fluorescence and photo-damage effects. Moreover, typical NIR (800 nm)-to-NIR (860-895 nm) DC luminescence of Nd3+ has also been realized with this designed nanostructure. Due to the low heat effect, high penetration depth of the excitation and the high efficiency of the DC luminescence, the in-vivo high contrast DC imaging of a whole body nude mouse was achieved. We believe that such dual-mode luminescence NCs will open the door to engineering the excitation and emission wavelengths of NCs and will provide a new tool for a wide variety of applications in the fields of bioanalysis and biomedical.

  14. Nd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm

    PubMed Central

    Li, Xiaomin; Wang, Rui; Zhang, Fan; Zhou, Lei; Shen, Dengke; Yao, Chi; Zhao, Dongyuan

    2013-01-01

    Core/shell1/shell2/shell3 structured NaGdF4:Nd/NaYF4/NaGdF4:Nd,Yb,Er/NaYF4 nanocrystals were well designed and synthesized, each of the parts assume respective role and work together to achieve dual-mode upconverting (UC) and downconverting (DC) luminescence upon the low heat effect 800-nm excitation. Nd3+, Yb3+, Er3+ tri-doped NaGdF4:Nd,Yb,Er UC layer [NIR (800 nm)-to-Visible (540 nm)] with a constitutional efficient 800 nm excitable property were achieved for the in-vitro bioimaging with low auto-fluorescence and photo-damage effects. Moreover, typical NIR (800 nm)-to-NIR (860–895 nm) DC luminescence of Nd3+ has also been realized with this designed nanostructure. Due to the low heat effect, high penetration depth of the excitation and the high efficiency of the DC luminescence, the in-vivo high contrast DC imaging of a whole body nude mouse was achieved. We believe that such dual-mode luminescence NCs will open the door to engineering the excitation and emission wavelengths of NCs and will provide a new tool for a wide variety of applications in the fields of bioanalysis and biomedical. PMID:24346622

  15. Comparative thermometric properties of bi-functional Er3+-Yb3+ doped rare earth (RE = Y, Gd and La) molybdates

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Mahata, Manoj Kumar; Kumar, Kaushal

    2018-02-01

    The molybdate compounds as luminescent medium have received great attention of recent research due to their excellent intrinsic optical properties. Therefore, the investigation on the optical thermometry and nanoheating effect in Er3+-Yb3+ doped molybdates of yttrium (EYYMO), gadolinium (EYGMO) and lanthanum (EYLMO) nanophosphors is reported herein. The temperature dependent fluorescence intensity ratio of green (525 and 548 nm) emission bands of Er3+ ions were analyzed within 300-500 K temperature range to determine the thermal behavior. The comparative temperature sensitivity of the materials has been found to depend on the phonon energy of their own. The thermal sensitivity is higher in the materials with low phonon energy. The intensity ratio of the green emission bands has been found to alter with the laser excitation density, which can be used to estimate the induced temperature in the materials. Furthermore, the photothermal conversion efficiency is calculated in the water dispersed samples and the maximum photothermal conversion efficiency of 49.6% is achieved for EYGMO nanophosphor. Comparative experimental results explore unequal thermal sensing and induced optical heating in the three rare earth molybdates. The optical properties of the green emitting molybdates are interesting for temperature sensing and optical heating applications.

  16. Covering the optical spectrum through collective rare-earth doping of NaGdF4 nanoparticles: 806 and 980 nm excitation routes.

    PubMed

    Skripka, A; Marin, R; Benayas, A; Canton, P; Hemmer, E; Vetrone, F

    2017-05-17

    Today, at the frontier of biomedical research, the need has been clearly established for integrating disease detection and therapeutic function in one single theranostic system. Light-emitting nanoparticles are being intensively investigated to fulfil this demand, by continuously developing nanoparticle systems simultaneously emitting in both the UV/visible (light-triggered release and activation of drugs) and the near-infrared (imaging and tracking) spectral regions. In this work, rare-earth (RE) doped nanoparticles (RENPs) were synthesized via a thermal decomposition process and spectroscopically investigated as potential candidates as all-in-one optical imaging, diagnostic and therapeutic agents. These core/shell/shell nanoparticles (NaGdF 4 :Er 3+ ,Ho 3+ ,Yb 3+ /NaGdF 4 :Nd 3+ ,Yb 3+ /NaGdF 4 ) are optically excited by heating-free 806 nm light that, aside from minimizing the local thermal load, also allows to obtain a deeper sub-tissue penetration with respect to the still widely used 980 nm light. Moreover, these water-dispersed nanoplatforms offer interesting assets as triggers/probes for biomedical applications, by virtue of a plethora of emission bands (spanning the 380-1600 nm range). Our results pave the way to use these RENPs for UV/visible-triggered photodynamic therapy/drug release, while simultaneously tracking the nanoparticle biodistribution and monitoring their therapeutic action through the near-infrared signal that overlaps with biological transparency windows.

  17. Scaling properties of conduction velocity in heterogeneous excitable media

    NASA Astrophysics Data System (ADS)

    Shajahan, T. K.; Borek, Bartłomiej; Shrier, Alvin; Glass, Leon

    2011-10-01

    Waves of excitation through excitable media, such as cardiac tissue, can propagate as plane waves or break up to form reentrant spiral waves. In diseased hearts reentrant waves can be associated with fatal cardiac arrhythmias. In this paper we investigate the conditions that lead to wave break, reentry, and propagation failure in mathematical models of heterogeneous excitable media. Two types of heterogeneities are considered: sinks are regions in space in which the voltage is fixed at its rest value, and breaks are nonconducting regions with no-flux boundary conditions. We find that randomly distributed heterogeneities in the medium have a decremental effect on the velocity, and above a critical density of such heterogeneities the conduction fails. Using numerical and analytical methods we derive the general relationship among the conduction velocity, density of heterogeneities, diffusion coefficient, and the rise time of the excitation in both two and three dimensions. This work helps us understand the factors leading to reduced propagation velocity and the formation of spiral waves in heterogeneous excitable media.

  18. Formation of Deep Electron Trap by Yb3+ Codoping Leads into Super-Long Persistent Luminescence in Ce3+-doped Yttrium Aluminum Gallium Garnet Phosphors.

    PubMed

    Ueda, Jumpei; Miyano, Shun; Tanabe, Setsuhisa

    2018-05-23

    The Y 3 Al 2 Ga 3 O 12 :Ce 3+ -Cr 3+ compound is one of the brightest persistent phosphors, but its persistent luminescence (PersL) duration is not so long due to the relatively shallow Cr 3+ electron trap. Comparing the vacuum referred binding energy of the electron trapping state by Cr 3+ and those by lanthanide ions, we selected Yb 3+ as a deeper electron trapping center. The Y 3 Al 2 Ga 3 O 12 :Ce 3+ -Yb 3+ phosphors show Ce 3+ :5d→4f green persistent luminescence after ceasing blue light excitation. The formation of Yb 2+ was confirmed by the increased intensity of absorption at 585 nm during the charging process. This result indicates that the Yb 3+ ions act as electron traps by capturing an electron. From the thermoluminescence glow curves, it was found the Yb 3+ trap makes much deeper electron trap with 1.01 eV depth than the Cr 3+ electron trap with 0.81 eV depth. This deeper Yb 3+ trap provides much slower detrapping rate of filled electron traps than the Cr 3+ -codoped persistent phosphor. In addition, by preparing transparent ceramics and optimizing Ce 3+ and Yb 3+ concentrations, the Y 3 Al 2 Ga 3 O 12 :Ce 3+ (0.2%)-Yb 3+ (0.1%) as-made transparent ceramic phosphor showed super long persistent luminescence for over 138.8 hours after ceasing blue light charging.

  19. [Up-conversion luminescent materials of Y2O3: RE(RE=Er or Er/Yb) prepared by sol-gel combustion synthesis].

    PubMed

    Han, Peng-de; Zhang, Le; Huang, Xiao-gu; Wang, Li-xi; Zhang, Qi-tu

    2010-11-01

    Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.

  20. Effect of silver nanoparticles on the 1.53 μm fluorescence in Er3+/Yb3+ codoped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Wu, Libo; Zhou, Yaxun; Zhou, Zizhong; Cheng, Pan; Huang, Bo; Yang, Fengjing; Li, Jun

    2016-07-01

    Improving the spectroscopic properties of rare earth (RE) doped glass materials is a challenging task. In the present work the metallic silver nanoparticles (Ag NPs) were embedded into Er3+/Yb3+ codoped tellurite glasses with composition TeO2-Bi2O3-TiO2, prepared using melt-quenching and subsequent heat-treated techniques, and the improved effect of Ag NPs on the 1.53 μm band fluorescence of Er3+ ions was investigated. About 24 h heat-treatment of Er3+/Yb3+ codoped tellurite glass containing 1 mol % amount of AgNO3 at the temperature 370 °C yielded the well-dispersed and near-spherical Ag NPs with ∼11.4 nm average diameter as evidenced by transmission electron microscopy (TEM) image. The intense 1.53 μm band fluorescence was observed in the prepared Er3+/Yb3+ codoped tellurite glasses under the excitation of 980 nm and was further improved with the presence of Ag NPs in the glass matrix, which is attributed to the enhanced local electric field around doped RE ions induced by Ag NPs and the possible energy transfer from Ag NPs to Er3+ ions. The enhanced local electric field was well demonstrated by comparing the variation of emission spectra of hypersensitive probe Eu3+ ions in tellurite glasses with and without Ag NPs. From the Judd-Ofelt analysis, it was also found that the value of Ω6 intensity parameter increased slightly with the increase of Ag NPs concentration in a certain range, also confirming the possibility of realizing strong fluorescence emission. In addition, the amorphous structural nature was demonstrated by the measured X-ray diffraction (XRD) patterns with no sharp diffraction peak. The enhanced 1.53 μm band fluorescence indicates that the Er3+/Yb3+ codoped tellurite glass with an appropriate amount of Ag NPs is a promising candidate for the development of Er3+-doped fiber amplifiers (EDFAs) applied in the WDM systems.

  1. Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.

    PubMed

    Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang

    2013-10-01

    Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Probing the Crystal Structure and Formation Mechanism of Lanthanide-Doped Upconverting Nanocrystals

    DOE PAGES

    Hudry, Damien; Abeykoon, A. M. M.; Dooryhee, E.; ...

    2016-11-23

    Lanthanide (Ln)-doped upconverting nanocrystals (UCNCs), such as NaLnF 4 (with Ln = lanthanide), constitute an important class of nanoscale materials due to their capacity to convert near-infrared photons into near-ultraviolet or visible light. Although under intense investigation for more than a decade, UCNCs have been relatively underexplored especially regarding their crystal structure and mechanisms of formation in organic media. The former is needed to explain the relationship between atomic scale structure and upconversion (UC) properties of UCNCs (i.e., local symmetry for 4f–4f transition probability, Ln 3+ distances for energy migration), while the latter is essential to finely tune the size, morphology, chemical composition, and architecture of well-defined upconverting nanostructures, which constitute the experimental levers to modify the optical properties. In this contribution, we use synchrotron-based diffraction experiments coupled to Rietveld and pair distribution function (PDF) analyses to understand the formation of NaGdF 4:Yb:Er UCNCs in organic media and to investigate their crystal structure. Our results reveal a complex mechanism of the formation of NaGdF 4:Yb:Er UCNCs based on chemical reactions involving molecular clusters and in situ-generated, crystalline sodium fluoride at high temperature. Additionally, a detailed crystallographic investigation of NaGdF 4:Yb:Er UCNCs is presented. Our Rietveld and PDF analyses show that the space group Pmore » $$\\bar{6}$$ is the one that best describes the crystal structure of NaGdF 4:Yb:Er UCNCs contrary to what has been recently proposed. Further, our Rietveld and PDF data reveal the formation of bulk-like crystal structure down to 10 nm with limited distortions. Finally, the results presented in this paper constitute an important step toward the comprehensive understanding of the underlying picture that governs UC properties of lanthanide-doped nanostructures.« less

  3. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF{sub 2} and SrF{sub 2} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis; Instituto Universitario de Ciencia de Materiales Nicolás Cabrera and Condensed Matter Physics Center

    2015-10-14

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF{sub 2} and Yb/Sr pairs in SrF{sub 2} crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f{sup N−1}5d excited states of Y b{sup 2+}: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b{sup 2+} + Ca{sup 2+} (Sr{sup 2+}) → Y b{sup 3+} + Ca{sup +} (Sr{sup +}) electron phototransfer. This mechanism applies to all the observed Ymore » b{sup 2+} 4f–5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF{sub 2}:Y b{sup 2+} because the Y b{sup 3+}–Ca{sup +} states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF{sub 2}:Y b{sup 2+} at the wavelengths of the first 4f–5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b{sup 2+} active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF{sub 2} host, associated with the lowest 4f–5d band.« less

  4. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  5. 30-W Yb3+-pulsed fiber laser with wavelength tuning

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.; Krylov, A. A.

    2007-12-01

    We have investigated various pulsed operation regimes of a diode-pumped Yb3+-doped fiber laser with both an acoustooptic filter and a shutter inside the resonator. To imbed the polarization-sensitive acoustooptic-tunable spectral filter into the polarization-nonmaintaining resonator, based on an “isotropic” single-mode fiber without “polarization’ losses, we have used a CaCO3 single-crystal nondispersive thermostable polarization splitter. Stable smooth bell-shaped laser pulses were obtained in the Q-switch generation regime across the entire wavelength tuning band. Their duration depended on the resonator travel time and their repetition rate was determined exclusively by the outer high-frequency generator controlling the acoustooptic shutter. A pulsed laser radiation tuning bandwidth of more than 20-nm at a repetition rate band of 10-100 kHz was observed in the amplification band of the Yb3+-doped fiber. A stable average power of 30 W of the pulsed 70-ns 100-kHz laser radiation in a near Gaussian beam was reached by means of the two-stage amplifier based on Yb3+-doped fibers with an enlarged mode field diameter (14 μm). The amplifier was pumped by λ = 975 nm CW multimode laser diodes with a maximum average power of 42 W.

  6. White light emission and effect of annealing on the Ho{sup 3+}–Yb{sup 3+} codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Astha; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in

    Graphical abstract: The upconversion emission spectra of the Ho{sup 3+}/Yb{sup 3+} doped/codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphors with different doping concentrations of Ho{sup 3+}/Yb{sup 3+} ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa{sub 2}Al{sub 8}O{sub 15} phosphors codoped with Ho{sup 3+}–Yb{sup 3+} have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pumpmore » power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa{sub 2}Al{sub 8}O{sub 15} (BCAO) phosphors codoped with suitable Ho{sup 3+}–Yb{sup 3+} dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.« less

  7. High-beam quality, high-efficiency laser based on fiber with heavily Yb(3+)-doped phosphate core and silica cladding.

    PubMed

    Egorova, O N; Semjonov, S L; Medvedkov, O I; Astapovich, M S; Okhrimchuk, A G; Galagan, B I; Denker, B I; Sverchkov, S E; Dianov, E M

    2015-08-15

    We have fabricated and tested a composite fiber with an Yb(3+)-doped phosphate glass core and silica cladding. Oscillation with a slope efficiency of 74% was achieved using core pumping at 976 nm with fiber lengths of 48-90 mm in a simple laser configuration, where the cavity was formed by a high-reflectivity Bragg grating and the cleaved fiber end. The measured M(2) factors were as low as 1.05-1.22 even though the fiber was multimode at the lasing wavelength.

  8. Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    High power fiber lasers/amplifiers in the 1550nm spectral region have not scaled as rapidly as Yb-, Tm-, or Ho-doped fibers. This is primarily due to the low gain of the erbium ion. To overcome the low pump absorption, Yb is typically added as a sensitizer. Although this helps the pump absorption, it also creates a problem with parasitic lasing of the Yb ions under strong pumping conditions, which generally limits output power. Other pump schemes have shown high efficiency through resonant pumping of erbium only without the need for Yb as a sensitizer [1-2]. Although this can enable higher power scaling due to a decrease in the thermal loading, resonant pumping methods require long fiber lengths due to pump bleaching, which may limit the power scaling which can be achieved for single frequency output. By using an Er:Yb fiber and pumping in the minima of the Yb pump absorption at 940nm, we have been able to simultaneously generate high power, single frequency output at 1560nm while suppressing the 1-micron ASE and enabling higher efficiency compared to pumping at the absorption peak at 976nm. We have demonstrated single frequency amplification (540Hz linewidth) to 207W average output power with 49.3% optical efficiency (50.5% slope efficiency) in an LMA Er:Yb fiber. We believe this is the highest reported efficiency from a high power 9XXnm pumped Er:Yb-doped fiber amplifier. This is significantly more efficient that the best-reported efficiency for high power Er:Yb doped fibers, which, to-date, has been limited to ~41% slope efficiency [3].

  9. Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.

    PubMed

    Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2014-06-02

    Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.

  10. Two-Photon Excited Fluorescence from Biological Aerosol Particles

    DTIC Science & Technology

    2010-09-29

    in material damage. We overcame these limitations by building a band-limited Yb-doped fiber laser with no dispersion compensation [9], as the master...master oscillator was an all-normal- dispersion Yb-doped fiber laser [9], followed by high- dispersion fiber for stretching the pulses, a single-mode...of ~670 fs in duration, and its expected transform-limited pulse width for a normal- dispersion laser with this spectral width would be ~454 fs [10

  11. Photon up-conversion production in Tb{sup 3+}–Yb{sup 3+} co-doped CaF{sub 2} phosphors prepared by combustion synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakov, Nikifor, E-mail: nikifor.gomez@univasf.edu.br; Guimarães, Renato B.; Maciel, Glauco S., E-mail: glauco@if.uff.br

    2016-02-15

    Graphical abstract: Up-conversion luminescence from Tb{sup 3+} obtained by energy transfer from Yb{sup 3+} pairs in CaF{sub 2} powder prepared by combustion synthesis. - Highlights: • Calcium fluoride (CaF{sub 2}) powders were prepared by combustion synthesis. • Rare-earth ions doped in this material were found in interstitial sites. • Cooperative up-conversion was observed in Tb{sup 3+}:Yb{sup 3+}:CaF{sub 2} powder. • Energy transfer between Tb{sup 3+} and pairs of Yb{sup 3+} was analyzed using rate equations. - Abstract: Calcium fluoride (CaF{sub 2}) crystalline powders were successfully prepared by the combustion synthesis method. The powder material containing luminescent rare-earth ions, more specificallymore » terbium (Tb{sup 3+}) and ytterbium (Yb{sup 3+}), was studied by X-ray diffraction, scanning electronic microscopy and optical spectroscopy. These ions are allocated in charge compensated interstitial positions of tetragonal (C{sub 4v}) and trigonal (C{sub 3v}) symmetry sites of the cubic (O{sub h}) CaF{sub 2} lattice. Up-conversion (UC) luminescence in Tb{sup 3+} was achieved using a low power diode laser operating at 975 nm. Tb{sup 3+} is insensitive to near-infrared radiation but UC can be achieved via energy transfer from pairs of Yb{sup 3+} ions to Tb{sup 3+} ions. The UC luminescence dynamics of Tb{sup 3+} was used to study the energy transfer mechanism.« less

  12. Tuning from green to red the upconversion emission of Y2O3:Er3+-Yb3+ nanophosphors

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, L. A.; Salas, P.; Oliva, J.; Resendiz-L, E.; Rodriguez-Gonzalez, C.; Meza, O.

    2017-01-01

    In this work, the structural, morphological and luminescent properties of Y2O3 nanophosphors doped with Er3+ (1 mol%) and different Yb3+ concentrations (2-12 mol%) have been studied. Those nanophosphors were synthesized using a simple hydrothermal method. XRD analysis indicates that all the samples presented a pure cubic phase even for Yb concentrations as high as 12 mol%. In addition, SEM images show nanoparticles with quasi-spherical shapes with average sizes in the range of 300-340 nm. Photoluminescence measurements obtained after excitation at 967 nm revealed that our samples have strong green (563 nm) and red emissions (660 nm) corresponding to 2H11/2 + 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions, respectively. We also observed that the green band is quenched and the red emission enhanced as the Yb concentration increases. In consequence, the CIE coordinates changed from (0.35, 0.64) in the green region to (0.59, 0.39) in the red region. Thus, the tuning properties of Y2O3 nanophosphors suggest that they are good candidates for applications in lighting.

  13. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, Stephen A.; Kway, Wayne L.; DeLoach, Laura D.; Krupke, William F.; Chai, Bruce H. T.

    1994-01-01

    Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by related chemical species, have similar properties.

  14. Structure of spin excitations in heavily electron-doped Li 0.8Fe 0.2ODFeSe superconductors

    DOE PAGES

    Pan, Bingying; Shen, Yao; Hu, Die; ...

    2017-07-25

    Heavily electron-doped iron-selenide high-transition-temperature (high-T c) superconductors, which have no hole Fermi pockets, but have a notably high T c, have challenged the prevailing s± pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in heavily electron-doped iron-selenide remains unclear. Here, we used neutron scattering to study the spin excitations of the heavily electron-doped iron-selenide material Li 0.8Fe 0.2ODFeSe (T c = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding (π, π) at ~21 meV. As the energy increased, the spin excitations assumed a diamond shape,more » and they dispersed outward until the energy reached ~60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near (π, π) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high T c in these materials.« less

  15. High-Speed Terahertz Waveform Measurement for Intense Terahertz Light Using 100-kHz Yb-Doped Fiber Laser.

    PubMed

    Tsubouchi, Masaaki; Nagashima, Keisuke

    2018-06-14

    We demonstrate a high-speed terahertz (THz) waveform measurement system for intense THz light with a scan rate of 100 Hz. To realize the high scan rate, a loudspeaker vibrating at 50 Hz is employed to scan the delay time between THz light and electro-optic sampling light. Because the fast scan system requires a high data sampling rate, we develop an Yb-doped fiber laser with a repetition rate of 100 kHz optimized for effective THz light generation with the output electric field of 1 kV/cm. The present system drastically reduces the measurement time of the THz waveform from several minutes to 10 ms.

  16. Persistent tangled vortex rings in generic excitable media.

    PubMed

    Winfree, A T

    1994-09-15

    Excitable media are exemplified by a range of living systems, such as mammalian heart muscle and its cells and Xenopus eggs. They also occur in non-living systems such as the autocatalytic Belousov-Zhabotinsky reaction. In most of these systems, activity patterns, such as concentration waves, typically radiate as spiral waves from a vortex of excitation created by some nonuniform stimulus. In three-dimensional systems, the vortex is commonly a line, and these vortex lines can form linked and knotted rings which contract into compact, particle-like bundles. In most previous work these stable 'organizing centres' have been found to be symmetrical and can be classified topologically. Here I show through numerical studies of a generic excitable medium that the more general configuration of vortex lines is a turbulent tangle, which is robust against changes in the parameters of the system or perturbations to it. In view of their stability, I suggest that these turbulent tangles should be observable in any of the many known excitable media.

  17. Excitation and doping dependence of hole-spin relaxation in bulk GaAs

    NASA Astrophysics Data System (ADS)

    Krauss, Michael; Hilton, David; Schneider, Hans Christian

    2009-03-01

    We present theoretical and experimental results on ultrafast hole-spin dynamics in bulk GaAs. By combining a sufficiently realistic bandstructure at the level of an 8x8 k .p theory and a dynamical treatment of the relevant scattering mechanisms [1], we obtain quantitative agreement between the microscopic theoretical results and differential transmission measurements [2] for different excitation conditions. In particular, we examine the dependence of the hole-spin relaxation time on the optically excited carrier density, lattice temperature, and doping concentration. Although the spin relaxation is rather insensitive to changes in the optically excited density and temperature, strong p-doping causes a significantly faster relaxation. [1] M. Krauss, M. Aeschlimann, and H. C. Schneider, Phys.Rev.Lett. 100, 256601 (2008)[2] D. J. Hilton and C. L. Tang, Phys. Rev. Lett. 89, 146601 (2002)

  18. Effect of Yb substitution on room temperature magnetic and dielectric properties of bismuth ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Remya, K. P.; Amirthapandian, S.; Manivel Raja, M.; Viswanathan, C.; Ponpandian, N.

    2016-10-01

    Effect of the Yb dopant on the structural, magnetic, and electrical properties of the multiferroic BiFeO3 have been studied. The structural properties of sol-gel derived Bi1-xYbxFeO3 (x = 0.0, 0.1, and 0.2) nanoparticles reveal the formation of a rhombohedrally distorted perovskite in XRD and a reduction in the average grain size have been observed with an increase in the Yb concentration. Microstructural studies exhibited the formation of sphere like morphology with decreasing particle size with increase in the dopant concentration. The effective doping also resulted in larger magnetization as well as coercivity with the maximum of 257 Oe and 1.76 emu/g in the Bi0.8Yb0.2FeO3 nanoparticles. Ferroelectric as well as dielectric properties of the nanoparticles were also improved on doping. The best results were obtained for the BiFeO3 nanoparticles having Yb concentration x = 0.2.

  19. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    NASA Astrophysics Data System (ADS)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  20. Yb3+-doped cadmium molybdato-tungstate single crystal - Its structural, optical, magnetic and transport properties

    NASA Astrophysics Data System (ADS)

    Groń, T.; Tomaszewicz, E.; Berkowski, M.; Głowacki, M.; Oboz, M.; Kusz, J.; Sawicki, B.; Kukuła, Z.; Duda, H.

    2018-06-01

    Single crystal of new cadmium and ytterbium molybdato-tungstate (Cd0.9706⎕0.0098Yb0.0196(MoO4)0.9706(WO4)0.0294, where ⎕ denotes cationic vacancies) has been successfully grown by the Czochralski method in air and under 1 MPa. X-ray crystallographic analysis reveals that the as-grown single crystal belongs to a scheelite-type structure (a = b = 5.15539(12) and c = 11.1919(3) Å, space group I41/a), in which Yb3+ ions do not show long-range order and are randomly distributed in the unit cell, substituting the Cd2+ ones. The as-grown single crystal does not show anisotropy of optical properties, i.e. its direct band gap reaches Eg = 1.76 or 1.75 eV along (100) and (001) crystallographic directions, respectively. The single crystal exhibits paramagnetic state with short-range antiferromagnetic and long-range ferrimagnetic interactions, a magnetization with zero coercivity and, a remanence that is almost a universal function of H/T, characterizing superparamagnetic-like behaviour. Electrical studies of the new ytterbium-doped cadmium molybdato-tungstate single crystal show a relatively small dielectric constant (εr<12), large lossiness of Joule-Lenz type observed at low frequencies as well as nonlinear I-V characteristics of Schottky or Maxwell-Wagner type.

  1. Spin-flop and magnetodielectric reversal in Yb substituted GdMnO3

    NASA Astrophysics Data System (ADS)

    Pal, A.; Prellier, W.; Murugavel, P.

    2018-03-01

    The evolution of various spin structures in Yb doped GdMnO3 distorted orthorhombic perovskite system was investigated from their magnetic, dielectric and magnetodielectric characteristics. The Gd1-x Yb x MnO3 (0  ⩽  x  ⩽  0.15) revealed an enhanced magnetodielectric coupling when their magnetic structure is guided from ab to the bc-cycloidal spin structure upon Yb doping. The compounds exhibit magnetic field and temperature controlled spin-flop from c to a-axis. Additionally, magnetodielectric reversal is observed for the x  =  0.1 sample which depends on both magnetic field and temperature. The resultant correlation between magnetic and electric orderings is discussed in the frame of symmetric and antisymmetric exchange interaction models. These findings provide further insight in understanding the magnetoelectric materials and importantly show a way to tune the magnetic and magnetodielectric properties towards better application potential.

  2. Influence of F- on stark splitting of Yb3+ and the thermal expansion of silica glass

    NASA Astrophysics Data System (ADS)

    Cao, Yabin; Chen, Si; Shao, Chongyun; Yu, Chunlei

    2018-06-01

    A local phosphate/fluoride environment of Yb3+ was created in silica glass using a multi-step method. The influence of F- on the Stark splitting of Yb3+ in Al3+/P5+/F- co-doped silica glass was studied at room-temperature, in addition to its effect on the thermal expansion performance of the glass matrix. The results indicate that Yb3+ ions in Al3+/P5+/F- co-doped silica glass have a larger Stark splitting energy of 2F7/2 compared to Al3+/P5+ co-doped silica glass. Moreover, a larger integrated absorption cross-section (34.58 pm2 × nm), stimulated emission cross-section (0.63 pm2), and better thermal expansion performance (1.3062 × 10-6 K- at 100 °C) are achieved in Al3+/P5+/F- co-doped silica glass. Finally, different function mechanisms of F- in silica and phosphate glasses were analyzed and the F-Si bond was used to explain the results in silica glass. The combination of low refractive index, large Stark splitting energy of 2F7/2, and small thermal expansion makes Al3+/P5+/F- co-doped silica glass a preferred material for large mode area fibers for high-power laser applications.

  3. Analysis of Synchronization Phenomena in Broadband Signals with Nonlinear Excitable Media

    NASA Astrophysics Data System (ADS)

    Chernihovskyi, Anton; Elger, Christian E.; Lehnertz, Klaus

    2009-12-01

    We apply the method of frequency-selective excitation waves in excitable media to characterize synchronization phenomena in interacting complex dynamical systems by measuring coincidence rates of induced excitations. We relax the frequency-selectivity of excitable media and demonstrate two applications of the method to signals with broadband spectra. Findings obtained from analyzing time series of coupled chaotic oscillators as well as electroencephalographic (EEG) recordings from an epilepsy patient indicate that this method can provide an alternative and complementary way to estimate the degree of phase synchronization in noisy signals.

  4. Realization and optimization of a 1 ns pulsewidth multi-stage 250 kW peak power monolithic Yb doped fiber amplifier at 1064 nm

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Plourde, Estéban

    2017-02-01

    We present a simple way to achieve and optimize hundreds of kW peak power pulsed output using a monolithic amplifier chain based on solid core double cladding fiber tightly packaged. A fiber pigtailed current driven diode is used to produce nanosecond pulses at 1064 nm. We present how to optimize the use of Fabry-Perot versus DFB type diode along with the proper wavelength locking using a fiber Bragg grating. The optimization of the two pre-amplifiers with respect to the pump wavelength and Yb inversions is presented. We explain how to manage ASE using core and cladding pumping and by using single pass and double pass amplifier. ASE rejection within the Yb fiber itself and with the use of bandpass filter is discussed. Maximizing the amplifier conversion efficiency with regards to the fiber parameters, glass matrix and signal wavelength is described in details. We present how to achieve high peak power at the power amplifier stage using large core/cladding diameter ratio highly doped Yb fibers pumped at 975 nm. The effect of pump bleaching on the effective Yb fiber length is analyzed carefully. We demonstrate that counter-pumping brings little advantage in very short length amplifier. Dealing with the self-pulsation limit of stimulated Brillouin scattering is presented with the adjustment of the seed pulsewidth and linewidth. Future prospects for doubling the output peak power are discussed.

  5. Dual structure in the charge excitation spectrum of electron-doped cuprates

    NASA Astrophysics Data System (ADS)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  6. 5  W output power from a double-clad hybrid fiber with Yb-doped phosphate core and silicate cladding.

    PubMed

    Wang, Longfei; He, Dongbing; Zhang, Lei; Yu, Chunlei; Feng, Suya; Wang, Meng; Chen, Danping; Hu, Lili

    2017-08-01

    For the first time, to the best of our knowledge, we report on the realization of a laser from a Yb-doped phosphate core/silicate cladding double-clad hybrid fiber. 5 W output power was extracted with 14.6% slope efficiency and a laser spectrum of a 1027 nm central wavelength from a 20 cm long single-mode fiber with a ∼10  μm core diameter in a 20%-4% laser cavity. The laser efficiency can be significantly enhanced by correspondingly adjusting and optimizing the laser oscillator.

  7. Investigating the evolution of local structure around Er and Yb in ZnO:Er and ZnO:Er, Yb on annealing using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Anjana, R.; Jayaraj, M. K.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.

    2018-04-01

    The local structure around Er and Yb centre in ZnO favouring upconversion luminescence was studied using EXAFS (Extended X-ray absorption fine structure spectroscopy). Due to the ionic radii difference between Zn and Er, Yb ions, the dopants cannot replace Zn in the ZnO lattice properly. Er2O3 and Yb2O3 impurity phases are formed at the grain boundaries of ZnO. It is found that the local structure around the Er centre in ZnO is modified on annealing in air. The symmetry around both erbium and ytterbium reduces with increase in annealing temperature. Symmetry reduction will favour the intra-4f transition and the energy transitions causing upconversion luminescence. By fitting the EXAFS data with theoretically simulated data, it is found that the Er centre forms a local structure similar to C4ν symmetry which is a distorted octahedron. On annealing the sample to 1200 °C, all the erbium centres are transformed to C4ν symmetry causing enhanced upconversion emission. Yb centre has also been modified on annealing. The decrease in co-ordination number with annealing temperature will decrease the symmetry and increase the near infrared absorption cross section. The decrease in symmetry around both the erbium and ytterbium centre and formation of C4ν symmetry around Er centre is the reason behind the activation of upconversion luminescence with high temperature annealing in both Er doped and Er, Yb co-doped ZnO samples. The study will be useful for the synthesis of high efficiency upconversion materials.

  8. Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier.

    PubMed

    Bobkov, Konstantin; Andrianov, Alexey; Koptev, Maxim; Muravyev, Sergey; Levchenko, Andrei; Velmiskin, Vladimir; Aleshkina, Svetlana; Semjonov, Sergey; Lipatov, Denis; Guryanov, Alexey; Kim, Arkady; Likhachev, Mikhail

    2017-10-30

    We demonstrate a novel amplification regime in a counter-pumped, relatively long (2 meters), large mode area, highly Yb-doped and polarization-maintaining tapered fiber, which offers a high peak power directly from the amplifier. The main feature of this regime is that the amplifying signal propagates through a thin part of the tapered fiber without amplification and experiences an extremely high gain in the thick part of the tapered fiber, where most of the pump power is absorbed. In this regime, we have demonstrated 8 ps pulse amplification to a peak power of up to 0.76 MW, which is limited by appearance of stimulated Raman scattering. In the same regime, 28 ps chirped pulses are amplified to a peak power of 0.35 MW directly from the amplifier and then compressed with 70% efficiency to 315 ± 10 fs, corresponding to an estimated peak power of 22 MW.

  9. Diode-Pumped Narrow Linewidth Multi-kW Metalized Yb Fiber Amplifier

    DTIC Science & Technology

    2016-10-01

    multi-kW Yb fiber amplifier in a bi-directional pumping configuration. Each pump outputs 2 kW in a 200 µm, 0.2 NA multi-mode fiber. Gold -coated...multi-mode instability, with 90% O-O efficiency 12 GHz Linewidth and M2 < 1.15. OCIS codes: (140.3510) Lasers , fiber; (140.3615) Lasers , ytterbium...060.2430) Fibers, single-mode. 1. INTRODUCTION Yb-doped fiber laser has experienced exponential growth over the past decade. The output power

  10. Highly Efficient LiYF4:Yb(3+), Er(3+) Upconversion Single Crystal under Solar Cell Spectrum Excitation and Photovoltaic Application.

    PubMed

    Chen, Xu; Xu, Wen; Song, Hongwei; Chen, Cong; Xia, Haiping; Zhu, Yongsheng; Zhou, Donglei; Cui, Shaobo; Dai, Qilin; Zhang, Jiazhong

    2016-04-13

    Luminescent upconversion is a promising way to harvest near-infrared (NIR) sunlight and transforms it into visible light that can be directly absorbed by active materials of solar cells and improve their power conversion efficiency (PCE). However, it is still a great challenge to effectively improve the PCE of solar cells with the assistance of upconversion. In this work, we demonstrate the application of the transparent LiYF4:Yb(3+), Er(3+) single crystal as an independent luminescent upconverter to improve the PCE of perovskite solar cells. The LiYF4:Yb(3+), Er(3+) single crystal is prepared by an improved Bridgman method, and its internal quantum efficiency approached to 5.72% under 6.2 W cm(-2) 980 nm excitation. The power-dependent upconversion luminescence indicated that under the excitation of simulated sunlight the (4)F(9/2)-(4)I(15/2) red emission originally results from the cooperation of a 1540 nm photon and a 980 nm photon. Furthermore, when the single crystal is placed in front of the perovskite solar cells, the PCE is enhanced by 7.9% under the irradiation of simulated sunlight by 7-8 solar constants. This work implies the upconverter not only can serve as proof of principle for improving PCE of solar cells but also is helpful to practical application.

  11. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  12. Enhanced frequency upconversion in Er3+-Yb3+ codoped heavy metal oxides based tellurite glasses.

    PubMed

    Azam, Mohd; Rai, Vineet Kumar

    2018-01-24

    The spectroscopic investigations on the Er 3+ /Yb 3+ ions doped/codoped TeO 2 -ZnO (TZ), TeO 2 -ZnO-WO 3 (TZW) and TeO 2 -ZnO-WO 3 -TiO 2 (TZWTi) heavy metal oxide (HMO) glasses have been made. The absorption, photoluminescence, decay curve and Judd-Ofelt analysis have been performed to optimise the optical properties of the Er 3+ /Yb 3+ ions. The effect of incorporation of HMOs like WO 3 and TiO 2 in the Er 3+ /Yb 3+ doped/codoped TZ glass on its optical properties have been investigated. The enhancement in upconversion emission intensity has been explained on the basis of efficient energy transfer and inhomogeneous local field generation around the rare earth ions. The spectroscopic quality factor, absorption and stimulated emission cross-sections, optical gain, quantum efficiency (∼17.53%), energy transfer efficiency (∼61.64%), colour purity (∼94.7%) and ionic nature of the bonding have been determined. The Er 3+ -Yb 3+ -TZWTi glass can be used in visible lasers, yellowish green optical devices and home appliances.

  13. A femtosecond Yb-doped fiber laser with generalized vector vortex beams output (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huo, Tiancheng; Qi, Li; Zhang, Buyun; Chen, Zhongping

    2017-03-01

    Light carries both spin and orbital angular momentum (OAM) and the superpositions of these two dynamical properties have found many applications. Many techniques exist to create such light sources but none allow their creation at the femtosecond fiber laser. Here we report on a novel mode-locked Ytterbium-doped fiber laser that generates femtosecond pulses with generalized vector vortex states. The controlled generation of such pulses such as azimuthally and radially polarized light with definite orbital angular momentum modes are demonstrated. A unidirectional ring cavity constructed with the Yb-doped fiber placed at the end of the fiber section to reduces unnecessary nonlinear effects is employed for self-starting operation. Pairs of diffraction gratings are used for compensating the normal group velocity dispersion of the fiber and other elements. Mode-locked operation is achieved based on nonlinear polarization evolution, which is mainly implemented with the single mode fiber, the bulk wave plates and the variable spiral plates (q-plate with topological charge q=0.5). The conversion from spin angular momentum to the OAM and reverse inside the laser cavity are realized by means of a quarter-wave plate and a q-plate so that the polarization control was mapped to OAM mode control. The fiber laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability and portability.

  14. Spectroscopic investigation of zinc tellurite glasses doped with Yb(3+) and Er(3+) ions.

    PubMed

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-05

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80-x-y) TeO2+(0.20) ZnO+xEr2O3+yYb2O3 (x=0, y=0; x=0.004, y=0; x=0, y=0.05 and x=0.004, y=0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er(3+) glasses as erbium doped fiber amplifiers at 1.55μm in infrared emission region. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electronic Spectra of Cs2NaYb(NO2)6: Is There Quantum Cutting?

    PubMed

    Luo, Yuxia; Liu, Zhenyu; Hau, Sam Chun-Kit; Yeung, Yau Yuen; Wong, Ka-Leung; Shiu, Kwok Keung; Chen, Xueyuan; Zhu, Haomiao; Bao, Guochen; Tanner, Peter A

    2018-05-03

    The crystal structure and electronic spectra of the T h symmetry hexanitritoytterbate(III) anion have been studied in Cs 2 NaY 0.96 Yb 0.04 (NO 2 ) 6 , which crystallizes in the cubic space group Fm3̅. The emission from Yb 3+ can be excited via the NO 2 - antenna. The latter electronic transition is situated at more than twice the energy of the former, but at room temperature, one photon absorbed at 470 nm in the triplet state produces no more than one photon emitted. Some degree of quantum cutting is observed at 298 K under 420 nm excitation into the singlet state and at 25 K using excitation into either state. The quantum efficiency is ∼10% at 25 K. The energy level scheme of Yb 3+ has been deduced from excitation and emission spectra and calculated by crystal field theory. New improved energy level calculations are also reported for the Cs 2 NaLn(NO 2 ) 6 (Ln = Pr, Eu, Tb) series using the f- Spectra package. The neat crystal Cs 2 NaYb(NO 2 ) 6 has also been studied, but results were unsatisfactory due to sample decomposition, and this chemical instability makes it unsuitable for applications.

  16. Highly efficient up-conversion and bright white light in RE co-doped KYF4 nanocrystals in sol-gel silica matrix

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Yanes, A. C.; Santana-Alonso, A.; del-Castillo, J.

    2013-01-01

    Transparent nano-glass-ceramics comprising Yb3+, Er3+ and Tm3+ co-doped KYF4 nanocrystals have been developed from sol-gel method. A structural analysis by means of X-ray diffraction confirmed the precipitation of cubic KYF4 nanocrystals into a silica matrix. Visible luminescence has been analyzed as function of treatment temperature of precursor sol-gel glasses. Highly efficient up-conversion emissions have been obtained under 980 nm excitation and studied by varying the doping level, processing temperature and pump power. Color tuneability has been quantified in terms of CIE diagram and in particular, a white-balanced overall emission has been achieved for a certain doping level and thermal treatment.

  17. Yb3+/Ho3+-codoped antimony-silicate optical fiber

    NASA Astrophysics Data System (ADS)

    Żmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Dorosz, Jan

    2012-05-01

    The emission properties of Yb3+/Ho3+-codoped antimony-silicate optical fiber has been investigated. Luminescence at 2.1 μm corresponding to 5I7--> 5I8 transition in holmium was obtained by energy transfer between Yb3+ and Ho3+ ions. According to the Dexter-Miyakawa model, the parameters of energy migration CDD of the 2F5/2 (Yb3+) <--> 2F5/2 (Yb3+) transition and direct energy transfer CDA of the 2F5/2 (Yb3+) --> 5I6 (Ho3+) transition was calculated. The optimization of the activator content and the concentration ratio were conducted with the purpose of maximizing the efficiency of energy transfer. It made possible to select best-suited glass which was used to manufacture double-clad optical fiber. Strong and narrow bands of spontaneous emission which formed as a result of energy transfer between ytterbium and holmium ions were observed in the fiber under exciting with radiation at 978 nm wavelength.

  18. Research and Development of High Energy 2 - Micron Lasers Based on TM: Doped Ceramic Laser Gain Media and TM: Doped Optical Fibers

    DTIC Science & Technology

    2016-07-20

    AFRL-AFOSR-VA-TR-2016-0257 RESEARCH AND DEVELOPMENT OF HIGH ENERGY 2 - MICRON LASERS BASED ON TM: DOPED CERAMIC LASER GAIN MEDIA AND TM: DOPED...2010 to 01/03/2016 4. TITLE AND SUBTITLE RESEARCH AND DEVELOPMENT OF HIGH ENERGY 2 - MICRON LASERS BASED ON TM: DOPED CERAMIC LASER GAIN MEDIA AND...NOTES 14. ABSTRACT Our research and development of 2-μm femtosecond lasers has included development of mode-locked Tm:fiber lasers , super-continuum

  19. Monolithic diffraction-limited 976-nm laser based on saddle-shaped photo darkening-free Yb-doped fiber

    NASA Astrophysics Data System (ADS)

    Aleshkina, Svetlana S.; Lipatov, Denis S.; Levchenko, Andrei E.; Medvedkov, Oleg I.; Bobkov, Konstantin K.; Bubnov, Mikhail M.; Guryanov, Alexei N.; Likhachev, Mikhail E.

    2018-02-01

    Monolithic 976 nm laser design based on a newly developed saddle-shaped Yb-doped fiber has been proposed. The fiber has central single-mode part with core diameter of about 12 μm and ultra-thin square-shaped clad with side of about 42x42 μm. At the both ends of the saddle-shaped fiber the core and the clad sizes were adiabatically increased up to 20/(70x70) μm and the fiber could be spliced with standard (80..125 μm clad) passive fibers using commercially available equipment. Single-mode laser at 976 nm based on the developed fiber has been fabricated and photodarkening-free operation with output power of 10.6 W, which is the record high for all-fiber laser schemes, has been demonstrated.

  20. Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals.

    PubMed

    Di Lieto, Alberto; Sottile, Alberto; Volpi, Azzurra; Zhang, Zhonghan; Seletskiy, Denis V; Tonelli, Mauro

    2014-11-17

    We investigated the effect of rare earth impurities on the cooling efficiency of Yb³⁺:LiYF₄ (Yb:YLF). The refrigeration performance of two single crystals, doped with 5%-at. Yb and with identical history but with different amount of contaminations, have been compared by measuring the cooling efficiency curves. Spectroscopic and elemental analyses of the samples have been carried out to identify the contaminants, to quantify their concentrations and to understand their effect on the cooling efficiencies. A model of energy transfer processes between Yb and other rare earth ions is suggested, identifying Erbium and Holmium as elements that produce a detrimental effect on the cooling performance.

  1. Wavelength adjustability of frequency conversion light of Yb-doped fiber laser based on FBGs

    NASA Astrophysics Data System (ADS)

    Dobashi, Kazuma; Tomihari, Yasuhiro; Imai, Koichi; Hirohashi, Junji; Makio, Satoshi

    2018-02-01

    We focused on wavelength conversion of simple and compact CW Yb-Doped fiber laser based on FBGs with wavelength adjustable function. By controlling temperatures of FBGs in fiber laser, it was possible to tune oscillated wavelength from 1064.101 nm to 1064.414 nm with more than 20 W in CW operation mode. Based on this fundamental light, frequency converted light (SHG and THG) were generated by utilizing two PP:Mg-SLT devises. We obtained more than 3 W of SHG light with tuning range of 150 pm and more than 35 mW of THG with tuning range of 100 pm. By selecting FBG grating and QPM grating properly, we can realize adjustable wavelength laser with the same scheme from 1040 nm to 1090 nm and their SHG/THG. With this combination of FBG based fiber laser and QPM devices, it is possible to tune the wavelength just by temperature tuning without any changes of beam shape and beam pointing.

  2. Q-switched Yb3+:YAG laser using plasmonic Cu2-xSe quantum dots as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Yimeng; Zhan, Yi; Lee, Sooho; Wang, Li; Zhang, Xinping

    2018-04-01

    Cu2-xSe quantum dots (QDs) were synthesized by organometallic synthesis methods. Due to heavy self-doping, the Cu2-xSe QDs exhibit particle plasmon resonance in the near-infrared. Transient absorption spectroscopic investigation revealed strong nonlinear optical absorption and bleaching performance of the QDs under femtosecond pulse excitation, which enabled the Cu2-xSe QDs to be excellent saturable absorbers and applied in Q-switched or mode-locked lasers. A passively Q-switched Yb3+:YAG solid-state laser at 1.03 μm was achieved by coating Cu2-xSe QDs as saturable absorbers onto one of the output coupler of the V-shaped linear cavity.

  3. Nonradiative recombination centers in GaAs:N δ-doped superlattice revealed by two-wavelength-excited photoluminescence

    NASA Astrophysics Data System (ADS)

    Dulal Haque, Md.; Kamata, Norihiko; Fukuda, Takeshi; Honda, Zentaro; Yagi, Shuhei; Yaguchi, Hiroyuki; Okada, Yoshitaka

    2018-04-01

    We use two-wavelength-excited photoluminescence (PL) to investigate nonradiative recombination (NRR) centers in GaAs:N δ-doped superlattice (SL) structures grown by molecular beam epitaxy. The change in photoluminescence (PL) intensity due to the superposition of below-gap excitation at energies of 0.75, 0.80, 0.92, and 0.95 eV and above-gap excitation at energies of 1.69 or 1.45 eV into the GaAs conduction band and the E- band implies the presence of NRR centers inside the GaAs:N δ-doped SL and/or GaAs layers. The change in PL intensity as a function of the photon number density of below-gap excitation is examined for both bands, which enables us to determine the distribution of NRR centers inside the GaAs:N δ-doped SL and GaAs layers. We propose recombination models to explain the experimental results. Defect-related parameters that give a qualitative insight into the samples are investigated systematically by fitting the rate equations to the experimental data.

  4. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  5. Structure and up-conversion luminescence in sol-gel derived Er 3+-Yb 3+ co-doped SiO 2:PbF 2 nano-glass-ceramics

    NASA Astrophysics Data System (ADS)

    del-Castillo, J.; Yanes, A. C.; Méndez-Ramos, J.; Tikhomirov, V. K.; Rodríguez, V. D.

    2009-11-01

    Transparent oxyfluoride nano-glass-ceramics 90(SiO 2)10(PbF 2) co-doped with 0.3 Yb 3+ and 0.1 Er 3+ (mol%) have been prepared by thermal treatment of precursor sol-gel glasses. X-ray diffraction and high resolution transmission electron microscopy analysis pointed out a precipitation of cubic β-PbF 2 nanocrystals of certain diameter in nano-glass-ceramics varying from 10 to 20 nm depending on heat treatment conditions. The incorporation of Yb 3+ and Er 3+ dopants in these nanocrystals has been confirmed by signatures of luminescence spectroscopy. Up-conversion luminescence pumped at 980 nm has been detected. Colour tuneability of up-conversion luminescence varying pump power has been analyzed in terms of standard chromaticity diagram. This tuneability opens applications for up-conversion phosphors and three-dimensional optical recording.

  6. Evidence of dissipative solitons in Yb³⁺:CaYAlO₄.

    PubMed

    Tan, W D; Tang, D Y; Xu, C W; Zhang, J; Xu, X D; Li, D Z; Xu, J

    2011-09-12

    Operation of an end-pumped Yb³⁺:CaYAlO₄ laser operating in the positive dispersion regime is experimentally investigated. The laser emitted strongly chirped pulses with extremely steep spectral edges, resembling the characteristics of dissipative solitons observed in fiber lasers. The results show that dissipative soliton emission constitutes another operating regime for mode locked Yb³⁺-doped solid state lasers, which can be explored for the generation of stable large energy femtosecond pulses.

  7. Yb3+-doped rod-type amplifiers with local adiabatic tapers for peak power scaling and beam quality improvement

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan; Eschrich, Tina; Leich, Martin; Grimm, Stephan; Kobelke, Jens; Lorenz, Martin; Bartelt, Hartmut; Jäger, Matthias

    2017-10-01

    The use of short local tapers in large mode area fiber amplifiers is proposed for peak power scaling while maintaining good beam quality. To avoid modal distortions, the powder-sintering (REPUSIL) method was employed to obtain core materials with excellent refractive index homogeneity. First experiments with Yb3+-doped rod-type amplifiers delivered 2 ns pulses with peak powers of 540 kW and energies of 1.4 mJ for the untapered rod and 230 kW for the tapered rod (limited by facet damage). The beam quality improved from an M 2 value of approximately 10 to 3.5. The investigation of the taper structure indicates room for further improvement.

  8. White light upconversion emissions in Er3+/Tm3+/Yb3+ tridoped oxyfluoride glass

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoping; Xu, Wei; Zhu, Shuang; Song, Qiutong; Wu, Xijun; Liu, Hailong

    2015-10-01

    Rare earth ions doped glasses producing visible upconversion emissions are of great interest due to their potential applications in the photonics filed. In fact, practical application of upconversion emissions has been used to obtain color image displays and white light sources. However, there are few reports on the thermal effect on tuning the emission color of the RE doped materials. In this work, the Er3+/Tm3+/Yb3+ tridoped oxyfluoride glasses were prepared through high temperature solid-state method. Under a 980 nm diode laser excitation, the upconversion emissions from the samples were studied. At room-temperature, bright white luminescence, whose CIE chromaticity coordinate was about (0.28, 0.31), can be obtained when the excitation power was 120 mW. The emission color was changed by varying the intensity ratios between RGB bands, which are strongly dependent on the rare earth ions concentration. The temperature dependent color emissions were also investigated. As temperature increased, the intensities for the emission bands presented different decay rates, finally resulting in the changing of the CIE coordinate. When the temperature was 573 K, white light with color coordinate of (0.31, 0.33) was achieved, which matches well with the white reference (0.33, 0.33). The color tunability, high quality of white light and intense emission intensity make the transparent oxyfluoride glasses excellent candidates for applications in solid-state lighting.

  9. High Resolution Fluorescence Imaging of Cancers Using Lanthanide Ion-Doped Upconverting Nanocrystals

    PubMed Central

    Naccache, Rafik; Rodríguez, Emma Martín; Bogdan, Nicoleta; Sanz-Rodríguez, Francisco; de la Cruz, Maria del Carmen Iglesias; de la Fuente, Ángeles Juarranz; Vetrone, Fiorenzo; Jaque, Daniel; Solé, José García; Capobianco, John A.

    2012-01-01

    During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR) excitation (in the biological window) have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs) and metal nanoparticles, mostly gold nanorods (GNRs), are already commercially available for this purpose. In this work we review the role which is being played by a relatively new class of nanoparticles, based on lanthanide ion doped nanocrystals, to target and image cancer cells using upconversion fluorescence microscopy. These nanoparticles are insulating nanocrystals that are usually doped with small percentages of two different rare earth (lanthanide) ions: The excited donor ions (usually Yb3+ ion) that absorb the NIR excitation and the acceptor ions (usually Er3+, Ho3+ or Tm3+), that are responsible for the emitted visible (or also near infrared) radiation. The higher conversion efficiency of these nanoparticles in respect to those based on QDs and GNRs, as well as the almost independent excitation/emission properties from the particle size, make them particularly promising for fluorescence imaging. The different approaches of these novel nanoparticles devoted to “in vitro” and “in vivo” cancer imaging, selective targeting and treatment are examined in this review. PMID:24213500

  10. Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation.

    PubMed

    Wang, Xiangfu; Zheng, Jin; Xuan, Yan; Yan, Xiaohong

    2013-09-09

    NaYbF(4):Tm3+@SiO(2) core-shell micro-particles were synthesized by a hydrothermal method and subsequent ultrasonic coating process. Optical temperature sensing has been observed in NaYbF4: Tm(3+)@SiO(2)core-shell micro-particles with a 980 nm infrared laser as excitation source.The fluorescence intensity ratios, optical temperature sensitivity, and temperature dependent population re-distribution ability from the thermally coupled (1)D(2)/(1)G(4) and (3)F(2) /(3)H(4) levels of the Tm(3+) ion have been analyzed as a function of temperature in the range of 100~700 K in order to check its availability as a optical temperature sensor. A better behavior as a lowtemperature sensor has been obtained with a minimum sensitivity of 5.4 × 10(-4) K(-1) at 430 K. It exhibits temperature induced population re-distribution from (1)D(2) /(1)G(4) thermally coupled levels at higher temperature range.

  11. Efficient charge transfer and utilization of near-infrared solar spectrum by ytterbium and thulium codoped gadolinium molybdate (Gd2(MoO4)3:Yb/Tm) nanophosphor in hybrid solar cells.

    PubMed

    Sun, Weifu; Chen, Zihan; Zhang, Qin; Zhou, Junli; Li, Feng; Jin, Xiao; Li, Dongyu; Li, Qinghua

    2016-11-09

    In this work, thulium and ytterbium codoped gadolinium molybdate (Gd 2 (MoO 4 ) 3 :Yb/Tm) nanophosphors (NPs) have been synthesized, followed by being incorporated into a photo-catalytic titania (TiO 2 ) nanoparticle layer. In detail, morphology and phase identification of the prepared NPs are first characterized and then the up-conversion of the Gd 2 (MoO 4 ) 3 :Yb/Tm NPs is studied. Electron transfer dynamics after interfacing with bare or NP-doped electron donor TiO 2 and the corresponding photovoltaic performance of solar cells are explored. The results show that Gd 2 (MoO 4 ) 3 :Yb/Tm NPs excited at 976 nm exhibit intense blue (460-498 nm) and weak red (627-669 nm) emissions. The lifetime of electron transfer is shortened from 817 to 316 ps after incorporating NPs and correspondingly the electron transfer rate outstrips by 3 times that of the bare TiO 2 . Consequently, a notable power conversion efficiency of 4.15% is achieved as compared to 3.17% of pure TiO 2 /PTB7. This work demonstrates that the co-doping of robust rare earth ions with different unique functions can widen the harvesting range of the solar spectrum, boost electron transfer rate and eventually strengthen device performance, without complicated interfacial and structural engineering.

  12. Laser and spectroscopic properties of Sr[sub 5](PO[sub 4])[sub 3]F:Yb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLoach, L.D.; Payne, S.A.; Smith, L.K.

    Sr[sub 5](PO[sub 4])[sub 3]F (S-FAP) has been investigated as a new Yb-doped laser crystal belonging to the apatite structural family. The spectroscopy of the Yb[sup 3+] ion and the laser properties of the medium have been investigated. The maximum absorption cross section of Yb in S-FAP is 8.6 [times] 10[sup [minus]20] cm[sup 2], and the maximum emission cross section is 7.3 [times] 10[sup [minus]20] cm[sup 2]. The measured emission lifetime of Yb[sup 3+] is 1.26 ms. An Yb:S-FAP laser has been demonstrated with a Ti:sapphire laser pump operating at 899 nm. The Yb:S-FAP laser was measured to have slope efficienciesmore » as high as 71%. The spectroscopy and laser studies are reported, as well as certain thermal, mechanical, and optical properties.« less

  13. Crystal structure, electronic structure, optical and scintillation properties of self-activated Cs 4YbI 6 [Crystal structure, optical and scintillation properties of self-activated Cs 4YbI 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yuntao; Chakoumakos, Bryan C.; Shi, Hongliang

    A self-activated Cs 4YbI 6 single crystal was grown by the vertical Bridgman method. Crystal structure refinements verified the phase purity and the trigonal crystal system with a space group of more » $$\\bar{R}$$3 c. By using differential scanning calorimetry, the melting and crystallization points were determined to be 550 and 510 °C, respectively. Luminescence and scintillation properties were systematically studied. Upon ultraviolet light (360 nm) excitation, the Cs 4YbI 6 crystal exhibits bluish-green emission centered at 450 and 480 nm due to spin-allowed and spin-forbidden transitions of Yb 2+ activators. The lifetimes of the corresponding emission bands at room temperature are tens and hundreds of nanoseconds, respectively. X-ray excited radioluminescence spectrum is dominated by the spin-forbidden transition of Yb 2+ at 480 nm. The absolute light yield is 2700 ± 200 photons/MeV with a principal scintillation decay time of 33 ns. In conclusion, the physical explanation for the low light yield observed is proposed from experimental and theoretical insights.« less

  14. Crystal structure, electronic structure, optical and scintillation properties of self-activated Cs 4YbI 6 [Crystal structure, optical and scintillation properties of self-activated Cs 4YbI 6

    DOE PAGES

    Wu, Yuntao; Chakoumakos, Bryan C.; Shi, Hongliang; ...

    2018-05-14

    A self-activated Cs 4YbI 6 single crystal was grown by the vertical Bridgman method. Crystal structure refinements verified the phase purity and the trigonal crystal system with a space group of more » $$\\bar{R}$$3 c. By using differential scanning calorimetry, the melting and crystallization points were determined to be 550 and 510 °C, respectively. Luminescence and scintillation properties were systematically studied. Upon ultraviolet light (360 nm) excitation, the Cs 4YbI 6 crystal exhibits bluish-green emission centered at 450 and 480 nm due to spin-allowed and spin-forbidden transitions of Yb 2+ activators. The lifetimes of the corresponding emission bands at room temperature are tens and hundreds of nanoseconds, respectively. X-ray excited radioluminescence spectrum is dominated by the spin-forbidden transition of Yb 2+ at 480 nm. The absolute light yield is 2700 ± 200 photons/MeV with a principal scintillation decay time of 33 ns. In conclusion, the physical explanation for the low light yield observed is proposed from experimental and theoretical insights.« less

  15. Spectral and multi-wavelength continuous-wave laser properties of Yb3+:BaLaGa3O7

    NASA Astrophysics Data System (ADS)

    Gao, Shufang; Xu, Shan

    2018-05-01

    Yb3+ doped BaLaGa3O7 crystal has been successfully grown by Czochralski method. The polarized absorption spectra, the fluorescence spectra and the fluorescence decay lifetime of Yb3+:BaLaGa3O7 crystal were measured at room temperature. The spectroscopic parameters of Yb3+:BaLaGa3O7 crystal are calculated. A continuous wave output power of 1.32W was obtained with four-wavelength emission corresponding to an optical-optical slope efficiency of 55%.

  16. Optical temperature sensing of Er3+/Yb3+ doped LaGdO3 based on fluorescence intensity ratio and lifetime thermometry

    NASA Astrophysics Data System (ADS)

    Siaï, A.; Haro-González, P.; Horchani Naifer, K.; Férid, M.

    2018-02-01

    The investigation of the fluorescence intensity ratio and the lifetime thermometry techniques for two rare earth perovskites-type oxide (LaGdO3:Er3+ and LaGdO3:Er3+/Yb3+) has been carried out. We have demonstrated that the intensity ratio of thermally coupled levels of erbium (2H11/2 and 4S3/2) is temperature dependant in the range from 283 to 393 K. The sensitivity parameter was found to reach a maximum value of 31 × 10-4 K-1 and 34 × 10-4 K-1 at 393 K and the temperature resolution to be equivalent to 1.61 and 3.1 K, for Er3+ and Er3+/Yb3+ doped oxide, respectively. By studying the temperature dependence of the normalized lifetimes in the range from 293 to 348 K, we proved that the sensitivity of the green emission (4S3/2) is higher than the red one (4F9/2) for both samples, and that it increases from 144 × 10-4 K-1 for LaGdO3:Er3+ to 179 × 10-4 K-1 for LaGdO3:Er3+/Yb3+. The thermal coefficients were quite large in comparison to those calculated for different luminescent materials and reported in literature. The repeatability of measurements was tested by performing heating and cooling cycles for both methods and the results show that these optical techniques have a good repeatability performance. Hence, the LaGdO3: Er3+, Yb3+ oxide has a precise and a satisfying sensitivity associated to a good thermal and chemical stability, suggesting that it can be a potential candidate in temperature sensing.

  17. Bosonic excitations and electron pairing in an electron-doped cuprate superconductor

    NASA Astrophysics Data System (ADS)

    Wang, M. C.; Yu, H. S.; Xiong, J.; Yang, Y.-F.; Luo, S. N.; Jin, K.; Qi, J.

    2018-04-01

    By applying ultrafast optical spectroscopy to electron-doped La1.9Ce0.1CuO4 ±δ , we discern a bosonic mode of electronic origin and provide the evolution of its coupling with the charge carriers as a function of temperature. Our results show that it has the strongest coupling strength near Tc and can fully account for the superconducting pairing. This mode can be associated with the two-dimensional antiferromagnetic spin correlations emerging below a critical temperature T† larger than Tc. Our work may help to establish a quantitative relation between bosonic excitations and superconducting pairing in electron-doped cuprates.

  18. Plasmon excitations in doped square-lattice atomic clusters

    NASA Astrophysics Data System (ADS)

    Wang, Yaxin; Yu, Ya-Bin

    2017-12-01

    Employing the tight-binding model, we theoretically study the properties of the plasmon excitations in doped square-lattice atomic clusters. The results show that the dopant atoms would blur the absorption spectra, and give rise to extra plasmon resonant peaks as reported in the literature; however, our calculated external-field induced oscillating charge density shows that no obvious evidences indicate the so-called local mode of plasmon appearing in two-dimensional-doped atomic clusters, but the dopants may change the symmetry of the charge distribution. Furthermore, we show that the disorder of the energy level due to dopant makes the absorption spectrum has a red- or blue-shift, which depends on the position of impurities; disorder of hopping due to dopant makes a blue- or red-shift, a larger (smaller) hopping gives a blue-shift (red-shift); and a larger (smaller) host-dopant and dopant-dopant intersite coulomb repulsion induces a blue-shift (red-shift).

  19. Micro-joule pico-second range Yb3+-doped fibre laser for medical applications in acupuncture

    NASA Astrophysics Data System (ADS)

    Alvarez-Chavez, J. A.; Rivera-Manrique, S. I.; Jacques, S. L.

    2011-08-01

    The work described here is based on the optical design, simulation and on-going implementation of a pulsed (Q-switch) Yb3+-doped, 1-um diffraction-limited fibre laser with pico-second, 10 micro-Joule-range energy pulses for producing the right energy pulses which could be of benefit for patients who suffer chronic headache, photophobia, and even nausea which could is sometimes triggered by a series of factors. The specific therapeutic effect known as acupunctural analgesia is the main objective of this medium-term project. It is a simple design on which commercially available software was employed for laser cavity design. Monte Carlo technique for skin light-transport, thermal diffusion and the possible thermal de-naturalization optical study and prediction will also be included in the presentation. Full optical characterization will be included and a complete set of recent results on the laser-skin interaction and the so called moxi-bustion from the laser design will be extensively described.

  20. Designed Er(3+)-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging.

    PubMed

    Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang

    2016-06-01

    Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.

  1. Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging

    PubMed Central

    2015-01-01

    Hexagonal NaYbF4:Tm3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm3+ nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd3+) can convert NaYbF4:Tm3+ 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm3+ 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd3+ 30%/Tm3+ 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline. PMID:25027118

  2. Analysis on energy transfer process of Ho3+ doped fluoroaluminate glass sensitized by Yb3+ for mid-infrared 2.85 μm emission

    NASA Astrophysics Data System (ADS)

    Zhou, Beier; Wei, Tao; Cai, Muzhi; Tian, Ying; Zhou, Jiajia; Deng, Degang; Xu, Shiqing; Zhang, Junjie

    2014-12-01

    This work reports the mid-infrared emission properties around 2.85 μm in a Yb3+/Ho3+ codoped fluoroaluminate glass. This fluoroaluminate glass shows a good thermal stability and high transmittance around 3 μm. The mid-infrared emission characteristics and energy transfer mechanism upon the excitation of the conventional 980 nm laser diode have been investigated. The prepared glass possesses higher spontaneous transition probability (31.77 s-1) along with the larger calculated emission cross section (1.91×10-20 cm2) corresponding to the laser transition of Ho3+:5I6→5I7. Besides, the upconversion, 1.2 μm and 2 μm fluorescence spectra were measured to understand mid-infrared emission behavior together with decay curves of Ho3+:5I6 level. Moreover, energy transfer microparameters between Yb3+ and Ho3+ were calculated and discussed based on Dexter's model. Hence, the advantageous spectroscopic characteristics of Yb3+/Ho3+ codoped fluoroaluminate glass as well as the good thermal property indicate that this kind of glass is an attractive host for developing mid-infrared solid state laser.

  3. Photonic doping of epsilon-near-zero media

    NASA Astrophysics Data System (ADS)

    Liberal, Iñigo; Mahmoud, Ahmed M.; Li, Yue; Edwards, Brian; Engheta, Nader

    2017-03-01

    Doping a semiconductor with foreign atoms enables the control of its electrical and optical properties. We transplant the concept of doping to macroscopic photonics, demonstrating that two-dimensional dielectric particles immersed in a two-dimensional epsilon-near-zero medium act as dopants that modify the medium’s effective permeability while keeping its effective permittivity near zero, independently of their positions within the host. The response of a large body can be tuned with a single impurity, including cases such as engineering perfect magnetic conductor and epsilon-and-mu-near-zero media with nonmagnetic constituents. This effect is experimentally demonstrated at microwave frequencies via the observation of geometry-independent tunneling. This methodology might provide a new pathway for engineering electromagnetic metamaterials and reconfigurable optical systems.

  4. Structural and optical properties of rare earth-doped (Ba{sub 0.77}Ca{sub 0.23}){sub 1-x}(Sm, Nd, Pr, Yb){sub x}TiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moraes, A. P. A.; Universidade Federal do Mato Grosso, 78060-900, Araguaia-MT; Filho, A. G. Souza

    2011-06-15

    The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba{sub 0.77}Ca{sub 0.23}TiO{sub 3} (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 deg. C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electronmore » microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO{sub 6} octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb{sup 3+} doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm{sup -1}, which is in agreement with lattice dynamics calculations.« less

  5. Interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Da-Shuai; Wu, Ge; Gao, Bo; Tian, Xiao-Jian

    2013-01-01

    We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the inter-cavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.

  6. Er 3+-Yb 3+ co-doped glass waveguide amplifiers using ion exchange and field-assisted annealing

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, K.; Mu, S. K.; Tan, C. Z.; Zhang, D.; Pun, E. Y. B.; Zhang, D. M.

    2006-12-01

    Er 3+-Yb 3+ co-doped waveguide amplifiers fabricated using thermal two-step ion-exchange are demonstrated. K +-Na + ion-exchange process was first carried out in pure KNO 3 molten bath, and then field-assisted annealing (FAA) was used to make the buried waveguides. The effective buried depth is estimated to be ˜3.4 μm for the buried FAA waveguides. With the use of cut-back method, the fiber-to-guide coupling loss of ˜4.38 dB, the waveguide loss of ˜2.27 dB/cm, and Er 3+ absorption loss ˜5.7 dB were measured for a ˜1.24-cm-long waveguide. Peak relative gain of ˜7.0 dB is obtained for a ˜1.24-cm-long waveguide. The potential for the fabrication of compact optical amplifiers operating in the range of 1520-1580 nm is also demonstrated.

  7. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.

    PubMed

    Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi

    2013-12-05

    : The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

  8. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212

    PubMed Central

    2013-01-01

    The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening. PMID:24314035

  9. Role of electron transfer in Ce{sup 3+} sensitized Yb{sup 3+} luminescence in borate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Zhuang, Yixi

    2015-01-07

    In a Ce{sup 3+}-Yb{sup 3+} system, two mechanisms are proposed so far namely, the quantum cutting mechanism and the electron transfer mechanism explaining Yb{sup 3+} infrared luminescence under Ce{sup 3+} excitation. Among them, the quantum cutting mechanism, where one Ce{sup 3+} photon (ultraviolet/blue) gives rise to two Yb{sup 3+} photons (near infrared) is widely sought for because of its huge potential in enhancing the solar cell efficiency. In present study on Ce{sup 3+}-Yb{sup 3+} codoped borate glasses, Ce{sup 3+} sensitized Yb{sup 3+} luminescence at ∼1 μm have been observed on Ce{sup 3+} 5d state excitation. However, the intensity of sensitized Yb{supmore » 3+} luminescence is found to be very weak compared to the strong quenching occurred in Ce{sup 3+} luminescence in Yb{sup 3+} codoped glasses. Moreover, the absolute luminescence quantum yield also showed a decreasing trend with Yb{sup 3+} codoping in the glasses. The overall behavior of the luminescence properties and the quantum yield is strongly contradicting with the quantum cutting phenomenon. The results are attributed to the energetically favorable electron transfer interactions followed by Ce{sup 3+}-Yb{sup 3+} ⇌ Ce{sup 4+}-Yb{sup 2+} inter-valence charge transfer and successfully explained using the absolute electron binding energies of dopant ions in the studied borate glass. Finally, an attempt has been presented to generalize the electron transfer mechanism among opposite oxidation/reduction property dopant ions using the vacuum referred electron binding energy (VRBE) scheme for lanthanide series.« less

  10. Temperature influence on diode pumped Yb:GGAG laser

    NASA Astrophysics Data System (ADS)

    Veselský, Karel; Boháček, Pavel; Šulc, Jan; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin

    2017-05-01

    We present temperature influence (in range from 78 up to 400,K) on spectroscopic properties and laser performance of new Yb-doped mixed garnet Gd3GaxAl5-xO12 (Yb:GGAG). The sample was 2.68 mm thick plane-parallel face-polished Yb:GGAG single-crystal plate which was AR coated for pump (930 nm) and generated (1030 nm) laser radiation wavelength. The composition of sample was Gd3.098Yb0:0897Ga2:41Al2.41O12 (3 at % Yb/Gd). The Yb:GGAG crystal was mounted in temperature controlled copper holder of the liquid nitrogen cryostat. The 138 mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (T > 90 % @ 930 nm, HR @ 1030 nm) placed inside cryostat, and a curved output coupler (r = 150 mm, R = 94.5 % @ 1030 nm) placed outside cryostat. For longitudinal pumping a fiber coupled laser diode was used. The diode was operating in the pulse regime (5 ms pulse length, 20 Hz repetition rate) at wavelength 928.5 nm. The absorption spectrum was measured for the temperatures from 78 to 400 K, and absorption lines narrowing was observed with temperature decrease. Zero-phonon line at 970 nm has width 1 nm (FWHM) at 100 K. The fluorescence intensity decay time was measured and it increased linearly with temperature from 864 μs @ 78 K to 881 μs @ 300 K. The temperature of active medium has strong influence mainly on laser threshold which was 5 times lower at 100 K than at 300 K, and on slope efficiency which was 3 times higher at 100 K than at 300 K.

  11. Doped YbRh2Si2: not only ferromagnetic correlations but ferromagnetic order.

    PubMed

    Lausberg, S; Hannaske, A; Steppke, A; Steinke, L; Gruner, T; Pedrero, L; Krellner, C; Klingner, C; Brando, M; Geibel, C; Steglich, F

    2013-06-21

    YbRh2Si2 is a prototypical system for studying unconventional antiferromagnetic quantum criticality. However, ferromagnetic correlations are present which can be enhanced via isoelectronic cobalt substitution for rhodium in Yb(Rh(1-x)Co(x))2Si2. So far, the magnetic order with increasing x was believed to remain antiferromagnetic. Here, we present the discovery of ferromagnetism for x = 0.27 below T(C) = 1.30  K in single crystalline samples. Unexpectedly, ordering occurs along the c axis, the hard crystalline electric field direction, where the g factor is an order of magnitude smaller than in the basal plane. Although the spontaneous magnetization is only 0.1 μB/Yb it corresponds to the full expected saturation moment along c taking into account partial Kondo screening.

  12. Impact of firing temperature on multi-wavelength selective Stokes and anti-Stokes luminescent behavior by Gd2O2S:Er,Yb phosphor and its application in solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Kataria, V.; Mehta, D. S.

    2018-04-01

    Erbium (Er3+)-ytterbium (Yb3+) doped gadolinium oxysulphide (Gd2O2S) phosphor has been developed via a facile method of solid-state flux fusion, and offers two-fold spectrum modification with highly intense Stokes and anti-Stokes shift. The effect of the firing cycle on the photoluminescent response and morphology of Gd2O2S:Er,Yb is scrutinized, wherein the firing temperature was varied (1000 °C-1250 °C), keeping firing time and all other parameters constant. Interestingly, the nanostructures fired below 1150 °C showed nanorods of diameter ~200 nm and length ~1-2 µm, whereas firing at 1150 °C and above rendered nanospheres with small diameter, ~350 nm. Highly bright upconversion (UC) emission was achieved even under an extremely low excitation power density of 800 µW cm-2 from a 980 nm laser, and was comfortably visible to the naked eye. The incident power dependent studies disclosed increase in UC-emission intensity with increasing excitation power and a quasi-linear dependence on excitation power density. Intense characteristic UC-emission of Er3+ excited states at 525 nm, 556 nm and 668 nm were observed, and the green emission band was found to be dominant over the red band in intensity. Concurrently, downconversion (DC) emission at 556 nm and 669 nm was also exhibited under ultraviolet excitation (285 nm and 380 nm), with the red band being more powerful than the green, unlike UC-emission. Firing temperature dependent studies divulged the dependence of luminescence intensity on the firing cycle of the luminophore and formation of the respective luminescent phase. The UC-emission intensity was found to be maximum for samples fired at 1150 °C, whereas samples fired at 1000 °C showed the highest DC-emission intensity. The excitation and emission profile of single Gd2O2S:Er,Yb phosphor lying in the desired spectral region and as a dual spectral converter marks its possible application for enhanced harvesting of sunlight.

  13. Growth and characterization of Yb:Ho:YAG single crystal fiber

    NASA Astrophysics Data System (ADS)

    Yang, Yilun; Ye, Linhua; Bao, Renjie; Li, Shanming; Zhang, Peixiong; Xu, Min; Hang, Yin

    2018-06-01

    High quality Yb and Ho co-doped Y3Al5O12 single crystal fibers have been successfully grown by the laser heated pedestal growth method of up to 124 mm in length and 450 μm in diameter for the first time. The results of inductively coupled plasma-atomic emission spectrometry analysis, X-ray diffraction and Raman spectroscopy reveal that the lattice structure and doping concentrations of the SCF are the same as that of the bulk. Scanning electron microscopy microphotographs shows that the fibers only have minor diameter fluctuations within 0.5%.

  14. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging.

    PubMed

    Zhou, Jing; Yu, Mengxiao; Sun, Yun; Zhang, Xianzhong; Zhu, Xingjun; Wu, Zhanhong; Wu, Dongmei; Li, Fuyou

    2011-02-01

    Molecular imaging modalities provide a wealth of information that is highly complementary and rarely redundant. To combine the advantages of molecular imaging techniques, (18)F-labeled Gd(3+)/Yb(3+)/Er(3+) co-doped NaYF(4) nanophosphors (NPs) simultaneously possessing with radioactivity, magnetic, and upconversion luminescent properties have been fabricated for multimodality positron emission tomography (PET), magnetic resonance imaging (MRI), and laser scanning upconversion luminescence (UCL) imaging. Hydrophilic citrate-capped NaY(0.2)Gd(0.6)Yb(0.18)Er(0.02)F(4) nanophosphors (cit-NPs) were obtained from hydrophobic oleic acid (OA)-coated nanoparticles (OA-NPs) through a process of ligand exchange of OA with citrate, and were found to be monodisperse with an average size of 22 × 19 nm. The obtained hexagonal cit-NPs show intense UCL emission in the visible region and paramagnetic longitudinal relaxivity (r(1) = 0.405 s(-1)·(mM)(-1)). Through a facile inorganic reaction based on the strong binding between Y(3+) and F(-), (18)F-labeled NPs have been fabricated in high yield. The use of cit-NPs as a multimodal probe has been further explored for T(1)-weighted MR and PET imaging in vivo and UCL imaging of living cells and tissue slides. The results indicate that (18)F-labeled NaY(0.2)Gd(0.6)Yb(0.18)Er(0.02) is a potential candidate as a multimodal nanoprobe for ultra-sensitive molecular imaging from the cellular scale to whole-body evaluation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. High-efficiency cavity-dumped micro-chip Yb:YAG laser

    NASA Astrophysics Data System (ADS)

    Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.

  16. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2006-01-01

    Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.

  17. Bismuth-doped optical fibres: A new breakthrough in near-IR lasing media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dianov, Evgenii M

    Recent results demonstrate that bismuth-doped optical fibres have considerable potential as near-IR active lasing media. This paper examines bismuth-doped fibres intended for the fabrication of fibre lasers and optical amplifiers and reviews recent results on the luminescence properties of various types of bismuth-doped fibres and the performance of bismuth-doped fibre lasers and optical amplifiers for the spectral range 1150 - 1550 nm. Problems are discussed that have yet to be solved in order to improve the efficiency of the bismuth lasers and optical amplifiers. (optical fibres, lasers and amplifiers. properties and applications)

  18. Comparing Yb-fiber and Ti:Sapphire lasers for depth resolved imaging of human skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2016-02-01

    We report on a direct comparison between Ti:Sapphire and Yb fiber lasers for depth-resolved label-free multimodal imaging of human skin. We found that the penetration depth achieved with the Yb laser was 80% greater than for the Ti:Sapphire. Third harmonic generation (THG) imaging with Yb laser excitation provides additional information about skin structure. Our results indicate the potential of fiber-based laser systems for moving into clinical use.

  19. Luminescent and lasing characteristics of heavily doped Yb{sup 3+}:KY(WO{sub 4}){sub 2} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisel', V E; Troshin, A E; Shcherbitskii, V G

    The luminescence decay times are measured taking into account reabsorption for KY(WO{sub 4}){sub 2}:Yb(KYW:Yb) crystals with atomic concentrations of active ions from 0.2% to 30%. The radiative lifetime of Yb{sup 3+} ions was measured to be 233 {mu}s. The cw output power of 1.46 and 1.62 W was achieved with the slope efficiency 52% and 47% for Yb:KYW lasers with the atomic concentration of Yb{sup 3+} ions equal to 10% and 30%, respectively. Using a semiconductor mirror with a saturable absorber (SESAM) in the passive mode-locking regime, pulses of duration 194 and 180 fs were obtained at wavelengths of 1042more » and 1039 nm for crystals with Yb{sup 3+} concentrations equal to 10% and 30%, respectively, the average output power being 0.63 and 0.75 W. (lasers and amplifiers)« less

  20. Near-infrared photoluminescence in La0.98AlO3: 0.02Ln3+(Ln = Nd/Yb) for sensitization of c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The host matrix LaAlO3 was synthesized by conventional solid state reaction method in which the Nd3+ ions and Yb3+ ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd3+ ion doped LaAlO3 converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb3+ ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La0.98AlO3: 0.02Ln3+(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.

  1. Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency.

    PubMed

    Dubinskii, M; Zhang, J; Ter-Mikirtychev, V

    2009-05-15

    We report the performance of a resonantly cladding-pumped, Yb-free, Er-doped fiber laser. We believe this is the first reported resonantly cladding-pumped fiber-Bragg-grating-based, Er-doped, large-mode-area (LMA) fiber laser. The laser, pumped by fiber-coupled InGaAsP/InP laser diode modules at 1,532.5 nm, delivers approximately 48 W of cw output at 1,590 nm. It is believed to be the highest power ever reported from a Yb-free Er-doped LMA fiber. This fully integrated laser also has the optical-to-optical efficiency of approximately 57%, to the best of our knowledge, the highest efficiency reported for cladding-pumped unidirectionally emitting Er-doped laser.

  2. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO{sub 2} fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Toru, E-mail: katsumat@toyo.jp; Morita, Kentaro; Komuro, Shuji

    2014-08-15

    Visible light thermal radiation from SiO{sub 2} glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO{sub 2} fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900more » K. Peak intensities of thermal radiations from rare-earth doped SiO{sub 2} fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO{sub 2} fibers are smaller than those from SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO{sub 2} are potentially applicable for the fiber-optic thermometry above 900 K.« less

  3. Ln(3+)-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered.

    PubMed

    van Veggel, Frank C J M; Dong, Cunhai; Johnson, Noah J J; Pichaandi, Jothirmayanantham

    2012-12-07

    In this feature article we will critically discuss the synthesis and characterisation aspects of Ln(3+)-doped nanoparticles (NPs) that show upconversion, upon 980 nm excitation. Upconversion is a non-linear process that converts two or more low-energy photons, often near-infrared photons, into one of higher energy, e.g. blue and 800 nm from Tm(3+) and green and red from Er(3+) or Ho(3+). Nearly all researchers use the absorption of 980 nm light by Yb(3+) as the sensitiser for the co-doped emissive Ln(3+) ions. The focus will be on LnF(3) and MLnF(4) (M = alkali metal) as the host matrix, because most progress has been made with these. In particular we will argue that a detailed understanding of how the dopant ions and the host Ln(3+) ions are distributed (in the core) and how (doped) shell growth occurs is not well understood. Moreover, their use as optical and magnetic resonance imaging contrast agents will be discussed. We will argue that deep-tissue imaging beyond 600 μm with retention of optical resolution, i.e. to see fine structure such as blood capillaries in brain tissues, has not yet been achieved. Three key parameters have been identified as impediments: (i) the low absorption efficiency of the Yb(3+) sensitiser, (ii) the low quantum yield of upconversion, and (iii) the long-lived excited states. On the other hand, there are very encouraging results that suggest that these nanoparticles could be developed into very potent magnetic resonance imaging (MRI) contrast agents.

  4. Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered

    NASA Astrophysics Data System (ADS)

    van Veggel, Frank C. J. M.; Dong, Cunhai; Johnson, Noah J. J.; Pichaandi, Jothirmayanantham

    2012-11-01

    In this feature article we will critically discuss the synthesis and characterisation aspects of Ln3+-doped nanoparticles (NPs) that show upconversion, upon 980 nm excitation. Upconversion is a non-linear process that converts two or more low-energy photons, often near-infrared photons, into one of higher energy, e.g. blue and 800 nm from Tm3+ and green and red from Er3+ or Ho3+. Nearly all researchers use the absorption of 980 nm light by Yb3+ as the sensitiser for the co-doped emissive Ln3+ ions. The focus will be on LnF3 and MLnF4 (M = alkali metal) as the host matrix, because most progress has been made with these. In particular we will argue that a detailed understanding of how the dopant ions and the host Ln3+ ions are distributed (in the core) and how (doped) shell growth occurs is not well understood. Moreover, their use as optical and magnetic resonance imaging contrast agents will be discussed. We will argue that deep-tissue imaging beyond 600 μm with retention of optical resolution, i.e. to see fine structure such as blood capillaries in brain tissues, has not yet been achieved. Three key parameters have been identified as impediments: (i) the low absorption efficiency of the Yb3+ sensitiser, (ii) the low quantum yield of upconversion, and (iii) the long-lived excited states. On the other hand, there are very encouraging results that suggest that these nanoparticles could be developed into very potent magnetic resonance imaging (MRI) contrast agents.

  5. Wave-front propagation in a discrete model of excitable media

    NASA Astrophysics Data System (ADS)

    Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.

    1998-06-01

    We generalize our recent discrete cellular automata (CA) model of excitable media [Y. B. Chernyak, A. B. Feldman, and R. J. Cohen, Phys. Rev. E 55, 3215 (1997)] to incorporate the effects of inhibitory processes on the propagation of the excitation wave front. In the common two variable reaction-diffusion (RD) models of excitable media, the inhibitory process is described by the v ``controller'' variable responsible for the restoration of the equilibrium state following excitation. In myocardial tissue, the inhibitory effects are mainly due to the inactivation of the fast sodium current. We represent inhibition using a physical model in which the ``source'' contribution of excited elements to the excitation of their neighbors decreases with time as a simple function with a single adjustable parameter (a rate constant). We sought specific solutions of the CA state transition equations and obtained (both analytically and numerically) the dependence of the wave-front speed c on the four model parameters and the wave-front curvature κ. By requiring that the major characteristics of c(κ) in our CA model coincide with those obtained from solutions of a specific RD model, we find a unique set of CA parameter values for a given excitable medium. The basic structure of our CA solutions is remarkably similar to that found in typical RD systems (similar behavior is observed when the analogous model parameters are varied). Most notably, the ``turn-on'' of the inhibitory process is accompanied by the appearance of a solution branch of slow speed, unstable waves. Additionally, when κ is small, we obtain a family of ``eikonal'' relations c(κ) that are suitable for the kinematic analysis of traveling waves in the CA medium. We compared the solutions of the CA equations to CA simulations for the case of plane waves and circular (target) waves and found excellent agreement. We then studied a spiral wave using the CA model adjusted to a specific RD system and found good

  6. Structural and optical characterization of NaGdF{sub 4}: Ho{sup 3+}/Yb{sup 3+} UC nano-particles for lateral finger mark detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A., E-mail: ak.phy87@gmail.com; Tiwari, S. P.; Krishna, K. M.

    2016-05-23

    Ho{sup 3+}/Yb{sup 3+} co-doped NaGdF{sub 4} up-conversion (UC) nano-particles were synthesized by thermal decomposition method. X-ray diffraction and FE-SEM image analysis were done to confirm the structure, morphology and determination of particle size. The UC emission spectra for as prepared as well as 100°C, 200°C, 300°C, 400°C, 800°C, 1000°C and 1200°C heated for 3h samples were recorded and there emission intensities were compared at a constant pump power of excitations 98.1 W/cm{sup 2}. The effect of emission intensity on decay time was also studied through focused and unfocused excitations. The synthesized material was successfully utilized in lateral finger mark detections onmore » the glass substrate through powder dusting method.« less

  7. The effects of energy transfer on the Er3+ 1.54 μm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants

    NASA Astrophysics Data System (ADS)

    Hoang, J.; Schwartz, Robert N.; Wang, Kang L.; Chang, J. P.

    2012-09-01

    We report the effects of heterogeneous Yb3+ and Er3+ codoping in Y2O3 thin films on the 1535 nm luminescence. Yb3+:Er3+:Y2O3 thin films were deposited using sequential radical enhanced atomic layer deposition. The Yb3+ energy transfer was investigated for indirect and direct excitation of the Yb 2F7/2 state using 488 nm and 976 nm sources, respectively, and the trends were described in terms of Forster and Dexter's resonant energy transfer theory and a macroscopic rate equation formalism. The addition of 11 at. % Yb resulted in an increase in the effective Er3+ photoluminescence (PL) yield at 1535 nm by a factor of 14 and 42 under 488 nm and 976 nm excitations, respectively. As the Er2O3 local thickness was increased to greater than 1.1 Å, PL quenching occurred due to strong local Er3+ ↔ Er3+ excitation migration leading to impurity quenching centers. In contrast, an increase in the local Yb2O3 thickness generally resulted in an increase in the effective Er3+ PL yield, except when the Er2O3 and Yb2O3 layers were separated by more than 2.3 Å or were adjacent, where weak Yb3+ ↔ Er3+ coupling or strong Yb3+ ↔ Yb3+ interlayer migration occurred, respectively. Finally, it is suggested that enhanced luminescence at steady state was observed under 488 nm excitation as a result of Er3+ → Yb3+ energy back transfer coupled with strong Yb3+ ↔ Yb3+ energy migration.

  8. Up-conversion routines of Er{sup 3+}–Yb{sup 3+} doped Y{sub 6}O{sub 5}F{sub 8} and YOF phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sangmoon, E-mail: spark@silla.ac.kr; Yang, Wonseok; Park, Chu-Young

    2015-11-15

    Highlights: • Single-phase optical materials of Y{sub 6}O{sub 5}F{sub 8}:Er and YOF:Er were prepared. • Effective spectral converting properties were observed in Y{sub 6}O{sub 5}F{sub 8}:Er,Yb. • 980 nm diode laser was irradiated for up-converting analysis. • A multi-photon process in the phosphors was investigated. - Abstract: Optical materials composed of a Y{sub 6(1−p−q)}Er{sub 6p}Yb{sub 6q}O{sub 5}F{sub 8} (p = 0.001–0.1, q = 0.005–0.1) solid solution with Y{sub 0.99}Er{sub 0.01}OF were prepared via a solid-state reaction using excess NH{sub 4}F flux at 950 °C for 30 min. X-ray diffraction patterns of Y{sub 6(1−p−q)}Er{sub 6p}Yb{sub 6q}O{sub 5}F{sub 8} and Y{sub 0.99}Er{submore » 0.01}OF were compared upon altering the synthesis temperature and the molar ratio of the NH{sub 4}F flux to the Y{sup 3+} (Er{sup 3+}, Yb{sup 3+}) ions. The effective spectral-conversion properties of Er{sup 3+} and Er{sup 3+}–Yb{sup 3+} ions in Y{sub 6}O{sub 5}F{sub 8} phosphors were monitored during excitation with a 980 nm wavelength diode-laser. Selection of appropriate Er{sup 3+} and/or Yb{sup 3+} concentrations in the Y{sub 6}O{sub 5}F{sub 8} structure led to achievement of the desired up-conversion emission, from the green to the red regions of the spectra. Furthermore, the mechanism of up-conversion in the phosphors was described by an energy-level schematic. Up-conversion emission spectra and the dependence of the emission intensity on pump power (between 193 and 310 mW) in the Y{sub 6(0.995−q)}Er{sub 0.03}Yb{sub 6q}O{sub 5}F{sub 8} phosphors were also investigated.« less

  9. Ytterbium-doped Y 2O 3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Kalita, M. P.; Boyland, A. J.; Webb, A. S.; Standish, R. J.; Sahu, J. K.; Paul, M. C.; Das, S.; Bhadra, S. K.; Pal, M.

    2010-09-01

    We report efficient laser demonstration and spectroscopic characteristics of a Yb-doped Y 2O 3 (or Y 3Al 5O 12) nanoparticle silica fiber developed by conventional fiber fabrication technique. The spectroscopy study evidences modification in the environment of Yb ions by the Y 2O 3 nanoparticles. As a result, photodarkening induced loss is reduced by 20 times relative to Yb-doped aluminosilicate fibers. The fiber is suitable for power scaling with good laser slope efficiency of 79%.

  10. 980 nm all-fiber NPR mode-locking Yb-doped phosphate fiber oscillator and its amplifier

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Chi, Junjie; Hu, Haowei; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    We report on a 980 nm all-fiber passively mode-locking Yb-doped phosphate fiber oscillator with the nonlinear polarization rotation (NPR) technique and its amplifier. In order to obtaining the stable self-starting mode-locking oscillator at 980 nm, a bandpass filter with 30 nm transmission bandwidth around 980 nm is inserted into the cavity. The oscillator generates the average output power of 26.1 mW with the repetition rate of 20.38 MHz, corresponding to the single pulse energy of 1.28 nJ. The pulse width is 159.48 ps. The output spectrum of the pulses is centered at 977 nm with a full width half maximum (FWHM) of 10 nm and has the characteristic steep spectral edges of dissipative soliton. No undesired ASE and harmful oscillation around 1030 nm is observed. Moreover, through two stage all-fiber-integrated amplifier by using the 980 nm oscillator as seed source, an amplified output power of 205 mW at 980 nm and pulse duration of 178.10 ps is achieved.

  11. Time delay and excitation mode induced tunable red/near-infrared to green emission ratio of Er doped BiOCl

    NASA Astrophysics Data System (ADS)

    Avram, Daniel; Florea, Mihaela; Tiseanu, Ion; Tiseanu, Carmen

    2015-09-01

    Herein, we report on the emission color tunability of Er doped BiOCl measured under up—conversion as well as x-ray excitation modes. The dependence of red (670 nm) to green emission (543 nm) ratio on Er concentration (1 and 5%), excitation wavelength into different (656.4, 802 and 976 nm) or across single Er absorption levels (965 ÷ 990 nm) and delay after the laser pulse (0.001 ÷ 1 ms) is discussed in terms of ground state absorption/excited state absorption and energy transfer up-conversion mechanisms. A first example of extended Er x-ray emission measured in the range of 500 to 1700 nm shows comparable emission intensities corresponding to 543 nm and 1500 nm based transitions. The present results together with our earlier report on the upconversion emission of Er doped BiOCl excited at 1500 nm, suggest that Er doped BiOCl may be considered an attractive system for optical and x-ray imaging applications.

  12. Three-dimensional modeling of CPA to the multimillijoule level in tapered Yb-doped fibers for coherent combining systems.

    PubMed

    Andrianov, Alexey; Anashkina, Elena; Kim, Arkady; Meyerov, Iosif; Lebedev, Sergey; Sergeev, Alexander; Mourou, Gerard

    2014-11-17

    We developed a three-dimensional numerical model of Large-Mode-Area chirped pulse fiber amplifiers which includes nonlinear beam propagation in nonuniform multimode waveguides as well as gain spectrum dynamics in quasi-three-level active ions. We used our model in tapered Yb-doped fiber amplifiers and showed that single-mode propagation is maintained along the taper even in the presence of strong Kerr nonlinearity and saturated gain, allowing extraction of up to 3 mJ of output energy in 1 ns pulse. Energy scaling and its limitation as well as the influence of fiber taper bending and core irregularities on the amplifier performance were studied. We also investigated numerically the capabilities for compression and coherent combining of up to 36 perturbed amplifying channels and showed more than 70% combining efficiency, even with up to 11% of high-order modes in individual channels.

  13. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter.

    PubMed

    Zhang, Z X; Xu, Z W; Zhang, L

    2012-11-19

    We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.

  14. Survey and research on up-conversion emission character and energy transition of Yb3+/Er3+/Tm3+ co-doped phosphate glass and glass ceramic

    NASA Astrophysics Data System (ADS)

    Yu, Yin; Song, Feng; Ming, Chengguo; Liu, Jiadong; Li, Wei; Liu, Yanling; Zhao, Hongyan

    2012-11-01

    By conventional high-temperature melting method, Yb3+/Er3+/Tm3+ co-doped phosphate glass was synthesized. After annealing the precursor glass, the phosphate glass ceramic (GC) was obtained. By measuring the X-ray diffraction (XRD) spectrum, it is proved that the LiYbP4O12 and Li6P6O18 nano-crystals have existed in the phosphate GC. The up-conversion (UC) emission intensity of the GC is obvious stronger compared to that of the glass. The reason is that the shorter distance between rare earth ions in the glass ceramic increases the energy transitions from the sensitized ions (Yb3+) to the luminous ions (Er3+ and Tm3+). By studying the dependence of UC emissions on the pump power, the 523 and 546 nm green emissions of Er3+ ions in the glass are two-photon processes. But in the glass ceramic, they are two/three-photon processes. The phenomenon implies that a three-photon process has participated in the population of the two green emissions. Using Dexter theory, we discuss the energy transitions of Er3+ and Tm3+. The results indicate the energy transition of Tm3+ to Er3+ is very strong in the GC, which changes the population mechanism of UC emissions of Er3+.

  15. Size-tunable and monodisperse Tm³⁺/Gd³⁺-doped hexagonal NaYbF₄ nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging.

    PubMed

    Damasco, Jossana A; Chen, Guanying; Shao, Wei; Ågren, Hans; Huang, Haoyuan; Song, Wentao; Lovell, Jonathan F; Prasad, Paras N

    2014-08-27

    Hexagonal NaYbF4:Tm(3+) upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm(3+) nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd(3+)) can convert NaYbF4:Tm(3+) 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm(3+) 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd(3+) 30%/Tm(3+) 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline.

  16. Optical properties of Er 3+/Yb 3+-codoped transparent PLZT ceramic

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiqiang; Li, Xiaoyan; Liu, Jing; Feng, Zhuohong; Li, Baozeng; Yang, Jiwen; Li, Kewen; Jiang, Hua; Chen, Xuesheng; Xie, Jianping; Ming, Hai

    2008-01-01

    Optical absorption and emission spectra of Er 3+/Yb 3+ ions in PLZT (Pb 1-xLa xZr yTi 1-yO 3) ceramic have been studied. Based on the Judd-Ofelt (J-O) theory, the J-O intensity parameters were calculated to be Ω2=2.021×10 -20 cm 2, Ω4=0.423×10 -20 cm 2, Ω6=0.051×10 -20 cm 2 from the absorption spectrum of Er 3+/Yb 3+-codoped PLZT. The J-O intensity parameters have been used to calculate the radiative lifetimes and the branching ratios for some excited 4I 13/2, 4I 11/2, 4I 9/24F 9/2, and 4S 3/2 levels of Er 3+ ion. The stimulated emission cross-section (8.24×10 -21 cm 2) was evaluated for the 4I 13/2→ 4I 15/2 transition of Er 3+. The upconversion emissions at 538, 564, and 666 nm have been observed in Er 3+/Yb 3+-codoped PLZT by exciting at 980 nm, and their origins were identified and analyzed.

  17. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.

    PubMed

    Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V

    2013-09-01

    This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.

  18. Combining spiral and target wave detection to analyze excitable media dynamics

    NASA Astrophysics Data System (ADS)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2010-01-01

    Excitable media dynamics is the lossless active transmission of waves of excitation over a field of coupled elements, such as electrical excitation in heart tissue or nerve fibers, cAMP signaling in the slime mold Dictyostelium discoideum or waves of chemical activity in the Belousov-Zhabotinsky reaction. All these systems follow essentially the same generic dynamics, including undamped wave transmission and the self-organized emergence of circular target and self-sustaining spiral waves. We combine spiral recognition, using the established phase singularity technique, and a novel three-dimensional fitting algorithm for noise-resistant target wave recognition to extract all important events responsible for the layout of the asymptotic large-scale pattern. Space-time plots of these combined events reveal signatures of events leading to spiral formation, illuminating the microscopic mechanisms at work. This strategy can be applied to arbitrary excitable media data from either models or experiments, giving insight into for example the microscopic causes for formation of pathological spiral waves in heart tissue, which could lead to novel techniques for diagnosis, risk evaluation and treatment.

  19. Mechanism of spiral formation in heterogeneous discretized excitable media.

    PubMed

    Kinoshita, Shu-ichi; Iwamoto, Mayuko; Tateishi, Keita; Suematsu, Nobuhiko J; Ueyama, Daishin

    2013-06-01

    Spiral waves on excitable media strongly influence the functions of living systems in both a positive and negative way. The spiral formation mechanism has thus been one of the major themes in the field of reaction-diffusion systems. Although the widely believed origin of spiral waves is the interaction of traveling waves, the heterogeneity of an excitable medium has recently been suggested as a probable cause. We suggest one possible origin of spiral waves using a Belousov-Zhabotinsky reaction and a discretized FitzHugh-Nagumo model. The heterogeneity of the reaction field is shown to stochastically generate unidirectional sites, which can induce spiral waves. Furthermore, we found that the spiral wave vanished with only a small reduction in the excitability of the reaction field. These results reveal a gentle approach for controlling the appearance of a spiral wave on an excitable medium.

  20. Highly-efficient multi-watt Yb:CaLnAlO4 microchip lasers

    NASA Astrophysics Data System (ADS)

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady

    2017-02-01

    Tetragonal rare-earth calcium aluminates, CaLnAlO4 where Ln = Gd or Y (CALGO and CALYO, respectively), are attractive laser crystal hosts due to their locally disordered structure and high thermal conductivity. In the present work, we report on highly-efficient power-scalable microchip lasers based on 8 at.% Yb:CALGO and 3 at.% Yb:CALYO crystals grown by the Czochralski method. Pumped by an InGaAs laser diode at 978 nm, the 6 mm-long Yb:CALGO microchip laser generated 7.79 W at 1057-1065 nm with a slope efficiency of η = 84% (with respect to the absorbed pump power) and an optical-to-optical efficiency of ηopt = 49%. The 3 mm-long Yb:CALYO microchip laser generated 5.06 W at 1048-1056 nm corresponding to η = 91% and ηopt = 32%. Both lasers produced linearly polarized output (σ- polarization) with an almost circular beam profile and beam quality factors M2 x,y <1.1. The output performance of the developed lasers was modeled yielding a loss coefficient as low as 0.004-0.007 cm-1. The results indicate that the Yb3+- doped calcium aluminates are very promising candidates for high-peak-power passively Q-switched microchip lasers.

  1. Optical thermometry through infrared excited green upconversion in monoclinic phase Gd2(MoO4)3:Yb3+/Er3+ phosphor

    NASA Astrophysics Data System (ADS)

    Xu, Weijiang; Li, Dongyu; Hao, Haoyue; Song, Yinglin; Wang, Yuxiao; Zhang, Xueru

    2018-04-01

    Monoclinic phase Gd2(MoO4)3: Yb3+/Er3+ phosphor is synthesized via a simple sol-gel method. The XRD result reveals that the phosphor possesses monoclinic structure with space group C2/c(15). Under the excitation of a 980 nm laser, its emission spectra shows remarkably intense green and negligible red emissions, which are all two-photon process. By investigating effect of temperature on green emission of the sample, the competition between the thermal agitation and non-radiative relaxation of 2H11/2 level can be found, which is verified by the measurement of lifetime. In addition, the sensitivity of optical thermometry is studied based on the fluorescence intensity ratio technique through infrared excited green upconversion. The maximum sensitivity is found to be about 0.02574 K-1 at 510.2 K, suggesting that the phosphor can be used as an excellent material for optical temperature sensing.

  2. Microscopic analysis of shape transition in neutron-deficient Yb isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Tong, H.; Wang, X. F.; Wang, H.; Wang, D. Q.; Wang, X. Y.; Yao, J. M.

    2018-01-01

    The development of nuclear collectivity in even-even Yb-170152 is studied with three types of mean-field calculations: the nonrelativistic Hartree-Fock plus BCS calculation using the Skyrme SLy4 force plus a density-dependent δ pairing force and the relativistic mean-field calculation using a point-coupling energy functional supplemented with either a density-independent δ pairing force or a separable pairing force. The low-lying states are obtained by solving a five-dimensional collective Hamiltonian with parameters determined from the three mean-field solutions. The energy surfaces, excitation energies, electric multiple transition strengths, and differential isotope shifts are presented in comparison with available data. Our results show that different treatments of pairing correlations have a significant influence on the speed of developing collectivity as the increase of neutron number. All the calculations demonstrate the important role of dynamic shape-mixing effects in resolving the puzzle in the dramatic increase of charge radius from 152Yb to 154Yb and the role of triaxiality in Yb 160 ,162 ,164 .

  3. Local structure investigation of Ga and Yb dopants in Co 4 Sb 12 skutterudites

    DOE PAGES

    Hu, Yanyun; Chen, Ning; Clancy, J. P.; ...

    2017-12-29

    We report our x-ray absorption spectroscopy studies at both Ga K-edge and Yb L 2-edge to elucidate the local structure of Ga and Yb dopants in Yb xGa yCo 4Sb 12. Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24g site replacing Sb, and the other is the 2a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2a on-center site. At low concentrations of Yb,more » Ga 24g and Ga 2a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Mater. 23, 3194 (2013)]. The Ga 24g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24g site for the highest Yb concentration (x = 0.4). In addition to the local crystal structure evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K-edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga 2a to Ga 24g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co 4Sb 12 skutterudites is due to the increased Ga 24g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.« less

  4. Local structure investigation of Ga and Yb dopants in Co 4 Sb 12 skutterudites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yanyun; Chen, Ning; Clancy, J. P.

    We report our x-ray absorption spectroscopy studies at both Ga K-edge and Yb L 2-edge to elucidate the local structure of Ga and Yb dopants in Yb xGa yCo 4Sb 12. Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24g site replacing Sb, and the other is the 2a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2a on-center site. At low concentrations of Yb,more » Ga 24g and Ga 2a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Mater. 23, 3194 (2013)]. The Ga 24g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24g site for the highest Yb concentration (x = 0.4). In addition to the local crystal structure evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K-edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga 2a to Ga 24g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co 4Sb 12 skutterudites is due to the increased Ga 24g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.« less

  5. Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging

    PubMed Central

    Thi Kim Dung, Doan; Fukushima, Shoichiro; Furukawa, Taichi; Niioka, Hirohiko; Sannomiya, Takumi; Kobayashi, Kaori; Yukawa, Hiroshi; Baba, Yoshinobu; Hashimoto, Mamoru; Miyake, Jun

    2016-01-01

    Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL), and near-infrared (NIR), as favored by imaging probe Gd2O3 co-doped lanthanide nanophosphors (NPPs). A series of Gd2O3:Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide range of emissions spanning from the visible to the NIR region under 980 nm excitation. The dependence of the upconverting (UC)/downconverting (DC) emission intensity on the dopant ratio is investigated. The optimum ratios of dopants obtained for emissions in the NIR regions at 810 nm, 1200 nm, and 1530 nm are applied to produce nanoparticles by the homogeneous precipitation (HP) method. The nanoparticles produced from the HP method are used to investigate the dual NIR and CL imaging modalities. The results indicate the possibility of using Gd2O3 co-doped Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) in correlation with NIR and CL imaging. The use of Gd2O3 promises an extension of the object dimension to the whole-body level by employing magnetic resonance imaging (MRI). PMID:28335291

  6. Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging.

    PubMed

    Thi Kim Dung, Doan; Fukushima, Shoichiro; Furukawa, Taichi; Niioka, Hirohiko; Sannomiya, Takumi; Kobayashi, Kaori; Yukawa, Hiroshi; Baba, Yoshinobu; Hashimoto, Mamoru; Miyake, Jun

    2016-09-06

    Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL), and near-infrared (NIR), as favored by imaging probe Gd₂O₃ co-doped lanthanide nanophosphors (NPPs). A series of Gd₂O₃:Ln 3+ /Yb 3+ (Ln 3+ : Tm 3+ , Ho 3+ , Er 3+ ) NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide range of emissions spanning from the visible to the NIR region under 980 nm excitation. The dependence of the upconverting (UC)/downconverting (DC) emission intensity on the dopant ratio is investigated. The optimum ratios of dopants obtained for emissions in the NIR regions at 810 nm, 1200 nm, and 1530 nm are applied to produce nanoparticles by the homogeneous precipitation (HP) method. The nanoparticles produced from the HP method are used to investigate the dual NIR and CL imaging modalities. The results indicate the possibility of using Gd₂O₃ co-doped Ln 3+ /Yb 3+ (Ln 3+ : Tm 3+ , Ho 3+ , Er 3+ ) in correlation with NIR and CL imaging. The use of Gd₂O₃ promises an extension of the object dimension to the whole-body level by employing magnetic resonance imaging (MRI).

  7. Hydrothermal synthesis infrared to visible upconversion luminescence of SrMoO4: Er3+/Yb3+ phosphor

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Kumar, Kaushal

    2018-04-01

    The upconversion emission properties in Er3+/Yb3+ doped SrMoO4 phosphor synthesized via hydrothermal method is investigated upon 980 nm laser light excitation. The crystal structure and morphology of the synthesized phosphor are characterized by X-ray diffraction and field emission scanning electron microscopy. The X-ray diffraction pattern suggests that SrMoO4 phosphor has tetragonal phase structure. The phosphor emits strong green (525 and 552 nm) and red (665 nm) UC emissions along with weak blue (410 and 488 nm) and near infrared (798 nm) emission bands. The color emitted from the phosphor is shifted from yellow to green region with increasing the power density from 15 to 65 W/cm2. The result indicates that the present material is suitable for making infrared to visible up-converts and display devices.

  8. Doping Evolution of Magnetic Order and Magnetic Excitations in (Sr1 -xLax)3Ir2O7

    NASA Astrophysics Data System (ADS)

    Lu, Xingye; McNally, D. E.; Moretti Sala, M.; Terzic, J.; Upton, M. H.; Casa, D.; Ingold, G.; Cao, G.; Schmitt, T.

    2017-01-01

    We use resonant elastic and inelastic x-ray scattering at the Ir-L3 edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr1 -xLax )3Ir2 O7 (0 ≤x ≤0.065 ). With increasing doping x , the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x =0 to 0.05, followed by a transition to two-dimensional short range order between x =0.05 and 0.065. Because of the interactions between the Jeff=1/2 pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr1 -xLax )3Ir2 O7 into a correlated metallic state with two-dimensional short range antiferromagnetic order. Strong antiferromagnetic fluctuations of the Jeff=1/2 moments persist deep in this correlated metallic state, with the magnon gap strongly suppressed.

  9. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  10. NaLa(MoO{sub 4}){sub 2}: RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}, Er{sup 3+}/Yb{sup 3+}) microspheres: the synthesis and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiyi; Wang, Zhiying; Fu, Linlin

    The strong green upconversion (UC) emission were observed in various Er{sup 3+}, Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} samples synthesized via a hydrothermal route. The UC intensity depends on the dopant concentration, and the optimal UC emission was obtained in NaLa(MoO{sub 4}){sub 2}: 0.02Er{sup 3+}/0.10 Yb{sup 3+}. - Highlights: • The NaLa(MoO{sub 4}){sub 2} microspheres doped with Eu{sup 3+}, Sm{sup 3+} and Er{sup 3+}/Yb{sup 3+} were synthesized by a hydrothermal method. • The effects of the EDTA in the initial solution crystal phase and morphology were studied. • The down-conversion luminescence properties of NaLa(MoO{sub 4}){sub 2}: RE{sup 3+} (RE{sup 3+}more » = Eu{sup 3+}, Sm{sup 3+}) were investigated. • The UC luminescence properties and mechanism of Er{sup 3+}/Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} was discussed. - Abstract: NaLa(MoO{sub 4}){sub 2}: RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}) microspheres have been synthesized at 180 °C via a facile EDTA-mediated hydrothermal route. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) spectra were employed to characterize the samples. It was found that the amount of EDTA in the initial solution was responsible for crystal phase and shape determination. The effect of Eu{sup 3+} and Sm{sup 3+} doping concentrations on the luminescent intensity was also investigated in details. Furthermore, the up-conversion (UC) emissions have been observed in a series of Er{sup 3+}/Yb{sup 3+} co-doped NaLa(MoO{sub 4}){sub 2} samples. Concentration dependent studies revealed that the optimal composition was realized for a 2% Er{sup 3+} and 10% Yb{sup 3+}-doping concentration.« less

  11. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd{sub 2}O{sub 3}:Er{sup 3},Yb{sup 3+} nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei Yanqiang; Song Hongwei; Yang Linmei

    2005-11-01

    In this paper, the upconversion luminescent properties of Gd{sub 2}O{sub 3}:Er{sup 3+},Yb{sup 3+} nanowires as a function of Yb concentration and excitation power were studied under 978-nm excitation. The results indicated that the relative intensity of the red emission ({sup 4}F{sub 9/2}-{sup 4}I{sub 15/2}) increased with increasing the Yb{sup 3+} concentration, while that of the green emission ({sup 4}S{sub 3/2}/{sup 2}H{sub 11/2}-{sup 4}I{sub 15/2}) decreased. As a function of excitation power in ln-ln plot, the green emission of {sup 4}S{sub 3/2}-{sup 4}I{sub 15/2} yielded a slope of {approx}2, while the red emission of {sup 4}F{sub 9/2}-{sup 4}I{sub 15/2} yielded amore » slope of {approx}1. Moreover, the slope decreased with increasing the Yb{sup 3+} concentration. This was well explained by the expanded theory of competition between linear decay and upconversion processes for the depletion of the intermediate excited states. As the excitation power density was high enough, the emission intensity of upconversion decreased due to thermal quenching. The thermal effect caused by the exposure of the 978-nm laser was studied according to the intensity ratio of {sup 2}H{sub 11/2}-{sup 4}I{sub 15/2} to {sup 4}S{sub 3/2}-{sup 4}I{sub 15/2}. The practical sample temperature at the exposed spot as a function of excitation power and Yb{sup 3+} concentration was deduced. The result indicated that at the irradiated spot (0.5x0.5 mm{sup 2}) the practical temperature considerably increased.« less

  12. Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb(3+), Er(3+)-incorporated nanocrystalline TiO2 electrodes.

    PubMed

    Zhu, Guang; Wang, Hongyan; Zhang, Quanxin; Zhang, Li

    2015-08-01

    Near infrared to visible up-conversion of light by rare earth ion-doped phosphors (NaYF4:Yb(3+), Er(3+)) that convert multiple photons of lower energy to higher energy photons offer new possibilities for improved performance of photovoltaic devices. Here, up-conversion phosphor NaYF4:Yb(3+), Er(3+) doped nanocrystalline TiO2 films are designed and used as a electrode for dye-sensitized solar cells, and the photovoltaic performance of DSSCs based on composite electrodes are investigated. The results show the cell with NaYF4:Yb(3+), Er(3+) achieves a power conversion efficiency of 7.65% under one sun illumination (AM 1.5G, 100mWcm(-2)), which is an increase of 14% compared to the cell without NaYF4:Yb(3+), Er(3+) (6.71%). The performance improvement is attributed to the dual effects of enhanced light harvesting from extended light absorption range and increased light scattering, and lower electron transfer resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser.

    PubMed

    Sotsuka, Yohei; Nishimoto, Soh; Tsumano, Tomoko; Kawai, Kenichiro; Ishise, Hisako; Kakibuchi, Masao; Shimokita, Ryo; Yamauchi, Taisuke; Okihara, Shin-ichiro

    2014-05-01

    Currently, laser radiation is used routinely in medical applications. For infrared lasers, bone ablation and the healing process have been reported, but no laser systems are established and applied in clinical bone surgery. Furthermore, industrial laser applications utilize computer and robot assistance; medical laser radiations are still mostly conducted manually nowadays. The purpose of this study was to compare the histological appearance of bone ablation and healing response in rabbit radial bone osteotomy created by surgical saw and ytterbium-doped fiber laser controlled by a computer with use of nitrogen surface cooling spray. An Ytterbium (Yb)-doped fiber laser at a wavelength of 1,070 nm was guided by a computer-aided robotic system, with a spot size of 100 μm at a distance of approximately 80 mm from the surface. The output power of the laser was 60 W at the scanning speed of 20 mm/s scan using continuous wave system with nitrogen spray level 0.5 MPa (energy density, 3.8 × 10(4) W/cm(2)). Rabbits radial bone osteotomy was performed by an Yb-doped fiber laser and a surgical saw. Additionally, histological analyses of the osteotomy site were performed on day 0 and day 21. Yb-doped fiber laser osteotomy revealed a remarkable cutting efficiency. There were little signs of tissue damage to the muscle. Lased specimens have shown no delayed healing compared with the saw osteotomies. Computer-assisted robotic osteotomy with Yb-doped fiber laser was able to perform. In rabbit model, laser-induced osteotomy defects, compared to those by surgical saw, exhibited no delayed healing response.

  14. Study of radiation induced effects in the luminescence of nanostructured Al2O3: Yb, Er crystals

    NASA Astrophysics Data System (ADS)

    Gonçalves, K. A.; Bitencourt, J. F. S.; Mittani, J. C. R.; Tatumi, S. H.

    2010-11-01

    Alumina crystals doped with Yb and Er were obtained by sol gel process and their morphologies and luminescence properties were discussed. Nanocrystals formations composed by Er2O3, Yb2O3 e Yb3Al5O12 were observed by TEM images, EDS, electron beam diffraction and XRD, at the surface of the alumina grains. The size of the nanocrystals were of about (36±2) nm and (182±8) nm for the samples calcinated at 1200oC and 1600oC, respectively. The sample codoped with 1mol% of Er and 2 mol% of Yb supplied the best results for Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL). The growth intensity of dosimetric TL peak at 205oC was linear with gamma radiation doses and the same behavior was observed in OSL results.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng, C. L., E-mail: hengcl@bit.edu.cn, E-mail: terje.finstad@fys.uio.no; Wang, T.; Su, W. Y.

    We have studied down-conversion photoluminescence (PL) from (Ce, Yb) co-doped “oxygen rich” silicon oxide films prepared by sputtering and annealing. The Ce{sup 3+} ∼510 nm PL is sensitive to the Ce concentration of the films and is much stronger for 3 at. % Ce than for 2 at. % Ce after annealing at 1200 °C. The PL emission and excitation spectroscopy results indicate that the excitation of Yb{sup 3+} is mainly through an energy transfer from Ce{sup 3+} to Yb{sup 3+}, oxide defects also play a role in the excitation of Yb{sup 3+} after lower temperature (∼800 °C) annealing. The Ce{sup 3+} 510 nm photon excitesmore » mostly only one Yb{sup 3+} 980 nm photon. Temperature-dependent PL measurements suggest that the energy transfer from Ce{sup 3+} to Yb{sup 3+} is partly thermally activated.« less

  16. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb 2 Ti 2 O 7

    DOE PAGES

    Gaudet, J.; Maharaj, D. D.; Sala, G.; ...

    2015-10-27

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb 3+ ion in the candidate quantum spin ice pyrochlore magnet Yb 2Ti 2O 7. The precise ground state of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, approximately 2%, of the nonmagnetic Ti 4+ sites are occupied by excess Yb 3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Ybmore » 2Ti 2O 7, as well as a crushed single crystal with weak stuffing and an approximate composition of Yb 2+xTi 2–xO 7+y with x = 0.046. All samples display three crystalline electric field transitions out of the ground state, and the ground state doublet itself is identified as primarily composed of m J = ±1/2, as expected. However, stuffing at low temperatures in Yb 2+xTi 2–xO 7+y induces a similar finite crystalline electric field lifetime as is induced in stoichiometric Yb 2Ti 2O 7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random crystalline electric field environments in the lightly stuffed Yb 2+xTi 2–xO 7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different crystalline electric field eigenvalues and eigenvectors.« less

  17. Local structure investigation of Ga and Yb dopants in Co4Sb12 skutterudites

    NASA Astrophysics Data System (ADS)

    Hu, Yanyun; Chen, Ning; Clancy, J. P.; Salvador, James R.; Kim, Chang-Yong; Shi, Xiaoya; Li, Qiang; Kim, Young-June

    2017-12-01

    We report comprehensive x-ray absorption spectroscopy studies at both the Ga K edge and Yb L2 edge to elucidate the local structure of Ga and Yb dopants in YbxGayCo4Sb12 . Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24 g site replacing Sb, and the other is the 2 a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2 a on-center site. At low concentrations of Yb, Ga24 g and Ga2 a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Funct. Mater. 23, 3194 (2013), 10.1002/adfm.201202571]. The Ga24 g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24 g site for the highest Yb concentration studied (x =0.4 ). In addition to the local structural evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K -edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga2 a to Ga24 g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co4Sb12 skutterudites is due to the increased Ga24 g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.

  18. Emergent global oscillations in heterogeneous excitable media: The example of pancreatic β cells

    NASA Astrophysics Data System (ADS)

    Cartwright, Julyan H. E.

    2000-07-01

    Using the standard van der Pol-FitzHugh-Nagumo excitable medium model, I demonstrate a generic mechanism, diversity, that provokes the emergence of global oscillations from individually quiescent elements in heterogeneous excitable media. This mechanism may be operating in the mammalian pancreas, where excitable β cells, quiescent when isolated, are found to oscillate when coupled, despite the absence of a pacemaker region.

  19. Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles.

    PubMed

    Li, Xiyan; Liu, Xiaowang; Chevrier, Daniel M; Qin, Xian; Xie, Xiaoji; Song, Shuyan; Zhang, Hongjie; Zhang, Peng; Liu, Xiaogang

    2015-11-02

    We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core-shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core-shell nanoparticles, we have realized upconversion emission of Mn(2+) at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn(2+) emission, enabled by trapping the excitation energy through a Gd(3+) lattice, was validated by the observation of a decreased lifetime from 941 to 532 μs in the emission of Gd(3+) at 310 nm ((6)P(7/2)→(8)S(7/2)). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn(2+) doping in the lanthanide-based host lattice arising from the formation of F(-) vacancies around Mn(2+) ions to maintain charge neutrality in the shell layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Near-infrared luminescence from Y2O3:Eu3+, Yb3+ prepared by sol-gel method.

    PubMed

    Xie, Ying; Xiao, Lin J; Yan, Feng Q; Chen, Yong J; Li, Wen Z; Geng, Xiu J

    2014-06-01

    Eu3+ and Yb3+ codoped Y2O3 phosphors were synthesized by the sol-gel method. The phosphors possess absorption in the region of 300-550 nm, exhibiting an intense NIR emission of Yb3+ around 1000 nm, which is suitable for matching the maximum spectral response of c-Si solar cells. The optimum composition of Eu3+ and Yb3+ codoped Y2O3 was (Y1.94Yb0.04Eu0.02)2O3. It is observed that two-step energy transfer occurs from the 5D2 level of Eu3+ situated around (466 nm) exciting two neighboring Yb3+ ions to the 2F5/2 level (1000 nm). The down-conversion material based on Eu(3+)- Yb3+ couple may have great potential applications in c-Si solar cells to enhance their photovoltaic conversion efficiency via spectral modification.

  1. Near-infrared photoluminescence in La{sub 0.98}AlO{sub 3}: {sub 0.02}Ln{sup 3+}(Ln = Nd/Yb) for sensitization of c-Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawala, N. S., E-mail: nssawala@gmail.com; Koparkar, K. A.; Omanwar, S. K.

    2016-05-06

    The host matrix LaAlO{sub 3} was synthesized by conventional solid state reaction method in which the Nd{sup 3+} ions and Yb{sup 3+} ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd{sup 3+} ion doped LaAlO{sub 3} converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb{sup 3+} ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La{sub 0.98}AlO{sub 3}: {sub 0.02}Ln{supmore » 3+}(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.« less

  2. Coulomb scattering rates of excited states in monolayer electron-doped germanene

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsin; Chiu, Chih-Wei; Wu, Jhao-Ying; Do, Thi-Nga; Lin, Ming-Fa

    2018-05-01

    Excited conduction electrons, conduction holes, and valence holes in monolayer electron-doped germanene exhibit unusual Coulomb decay rates. The deexcitation processes are studied using the screened exchange energy. They might utilize the intraband single-particle excitations (SPEs), the interband SPEs, and the plasmon modes, depending on the quasiparticle states and the Fermi energies. The low-lying valence holes can decay through the undamped acoustic plasmon, so that they present very fast Coulomb deexcitations, nonmonotonous energy dependence, and anisotropic behavior. However, the low-energy conduction electrons and holes are similar to those in a two-dimensional electron gas. The higher-energy conduction states and the deeper-energy valence ones behave similarly in the available deexcitation channels and have a similar dependence of decay rate on the wave vector k .

  3. Structural and optical properties of nano-sized K3Nd(PO4)2:Yb3+ orthophosphate.

    PubMed

    Mizer, D; Macalik, L; Tomaszewski, P E; Lisiecki, R; Godlewska, P; Matraszek, A; Szczygieł, I; Zawadzki, M; Hanuza, J

    2009-09-01

    Nanocrystals of tripotassium neodymium bis-phosphate(V) doped with ytterbium ions, K3Nd(PO4)2: Yb3+, were synthesized by Pechini method. The obtained grains, having an average size of about 40 nm, were characterised by X-ray, electron microscopic, electron absorption, luminescence and IR studies. Moreover, fluorescence decay studies were carried out at room temperature. The energy transfer from the Nd3+ to Yb3+ was described and discussed. The results were compared to those of the K3Nd(PO4)2 bulk crystal.

  4. Low-temperature magnetoelectric effect in multiferroic h-Yb1-xHoxMnO3

    NASA Astrophysics Data System (ADS)

    Zhang, Jincang; Gang, Qiang; Fang, Yifei

    In this work, we study the low-temperature ferroelectricity, magnetic property and ME effect in Yb1-xHoxMnO3. In YbMnO3, ferroelectric polarization (P) is closely related with the structure change derived from spin-reorientation process. The initial symmetric relationship of P between the upper and lower half of magnetic sublattice will be broken, which gives rise to the detectable polarization. Additionally, the asymmetry of the P - T curves revealed the pinning effect of the defects in the material. In Ho-doped samples 2D antiferromagnetic perturbation as well as the second AFM ordering have been observed. Substitution of Yb by Ho atoms shows great influences on electric properties and the lowdoping concentration tend to be more favorable for the enhancement of P. The maximum polarization has been promoted hugely in Yb0.8Ho0.2MnO3. We suggested the variation of P is closely related with the stronger exchange interaction in Mn-O-Ho as well as the establishment of new Ho layers with the increase of Ho.

  5. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  6. Spin re-orientation in heavy fermion system α - YbAl1 - x FexB4

    NASA Astrophysics Data System (ADS)

    Wu, Shan; Broholm, C.; Kuga, K.; Suzuki, Shintaro; Nakatsuji, S.; Mourigal, M.; Stone, M.; Tian, Wei; Qiu, Y.; Rodriguez-Rivera, Jose

    Non centro-symmetric α - YbAlB4 has a heavy Fermi liquid ground state and shares many characteristics with centro-symmetric β - YbAlB4 . Both isomorphs display intermediate valence, associated with a fluctuation scale of T0 = 200 K and a Kondo lattice scale of T* = 8 K. Unlike β - YbAlB4 , α - YbAlB4 is at the boundary of a transition from a Fermi liquid metallic state to an antiferromagnetic (AFM) insulating state, driven by Fe substitution of Al. Magnetization and specific heat measurements reveal two different antiferromagnetic phases with TN = 9 K and TN = 2 K for Fe concentration above and below x =0.07. We report single crystal neutron scattering experiments on Fe doped YbAlB4 with x =0.035 and x =0.125. While the ordering wave vector is identical, k -> = (1 , 0 , 0) , the spin orientation switches from c to a with increasing Fe concentration. This suggests different anisotropic hybridization between 4f and conduction electrons that we confirmed by determining the crystal field levels. Supported by DOE, BES through DE-FG02-08ER46544.

  7. The effects of energy transfer on the Er{sup 3+} 1.54 {mu}m luminescence in nanostructured Y{sub 2}O{sub 3} thin films with heterogeneously distributed Yb{sup 3+} and Er{sup 3+} codopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, J.; Chang, J. P.; Schwartz, Robert N.

    2012-09-15

    We report the effects of heterogeneous Yb{sup 3+} and Er{sup 3+} codoping in Y{sub 2}O{sub 3} thin films on the 1535 nm luminescence. Yb{sup 3+}:Er{sup 3+}:Y{sub 2}O{sub 3} thin films were deposited using sequential radical enhanced atomic layer deposition. The Yb{sup 3+} energy transfer was investigated for indirect and direct excitation of the Yb {sup 2}F{sub 7/2} state using 488 nm and 976 nm sources, respectively, and the trends were described in terms of Forster and Dexter's resonant energy transfer theory and a macroscopic rate equation formalism. The addition of 11 at. % Yb resulted in an increase in themore » effective Er{sup 3+} photoluminescence (PL) yield at 1535 nm by a factor of 14 and 42 under 488 nm and 976 nm excitations, respectively. As the Er{sub 2}O{sub 3} local thickness was increased to greater than 1.1 A, PL quenching occurred due to strong local Er{sup 3+}{r_reversible} Er{sup 3+} excitation migration leading to impurity quenching centers. In contrast, an increase in the local Yb{sub 2}O{sub 3} thickness generally resulted in an increase in the effective Er{sup 3+} PL yield, except when the Er{sub 2}O{sub 3} and Yb{sub 2}O{sub 3} layers were separated by more than 2.3 A or were adjacent, where weak Yb{sup 3+}{r_reversible} Er{sup 3+} coupling or strong Yb{sup 3+}{r_reversible} Yb{sup 3+} interlayer migration occurred, respectively. Finally, it is suggested that enhanced luminescence at steady state was observed under 488 nm excitation as a result of Er{sup 3+}{yields} Yb{sup 3+} energy back transfer coupled with strong Yb{sup 3+}{r_reversible} Yb{sup 3+} energy migration.« less

  8. High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings.

    PubMed

    Palmer, Guido; Gross, Simon; Fuerbach, Alexander; Lancaster, David G; Withford, Michael J

    2013-07-15

    We report the first Yb:ZBLAN and Yb:IOG10 waveguide lasers fabricated by the fs-laser direct-writing technique. Pulses from a Titanium-Sapphire laser oscillator with 5.1 MHz repetition rate were utilized to generate negative refractive index modifications in both glasses. Multiple modifications were aligned in a depressed cladding geometry to create a waveguide. For Yb:ZBLAN we demonstrate high laser slope efficiency of 84% with a maximum output power of 170 mW. By using Yb:IOG10 a laser performance of 25% slope efficiency and 72 mW output power was achieved and we measured a remarkably high refractive index change exceeding Δn = 2.3 × 10(-2).

  9. Synthesis and Characterization of Monodisperse Core-shell Lanthanide Upconversion Nanoparticles NaYF4: Yb,Tm/SiO2

    NASA Astrophysics Data System (ADS)

    Manurung, R. V.; Wiranto, G.; Hermida, I. D. P.

    2018-05-01

    Lanthanide up-converting luminescent nanoparticles (UCNPs) are exciting and promising materials for optical bioimaging, biosensor and theranostic due to their unique and advantageous optical and chemical properties. The UCNPs absorb low energy near-infrared (NIR) light and emit high-energy shorter wavelength photons (visible light). Their unique features allow them to overcome various problems associated with conventional imaging probes such as photostability, lack of toxicity, and to provide versatility for creating nanoplatforms with both imaging and therapeutic modalities. This paper reports synthesis and characterization of core-shell structured of NaYF4:Yb,Tm/SiO2 microspheres. The synthesis of lanthanide upconversion nanoparticles NaYF4:Yb,Tm was prepared by thermal decomposition process which involves dissolving organic precursors in high-boiling-point solvents oleic acid (OA) and octadecene (ODE). After that, the NaYF4:Yb,Tm phosphors was coated by silica via reverse microemulsion process to obtain core-shell structured NaYF4:Yb,Tm/SiO2. Scanning electron microscopy, transmission electron microscopy, specific area electron diffraction, and photoluminescence were applied to characterize these samples. The obtained core-shell structured NaYF4:Yb,Tm/SiO2 phosphors exhibit a perfect cubic morphology with narrow size distribution and smooth surface. Upon IR excitation at 980 nm, the NaYF4:Yb,Tm/SiO2 samples exhibit whitish blue upconversion (UC) luminescence, respectively. These phosphors show potential applications in the displaying on biological fields and biosensing.

  10. Core-shell-shell heterostructures of α-NaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) with remarkably enhanced upconversion luminescence.

    PubMed

    Su, Yue; Liu, Xiuling; Lei, Pengpeng; Xu, Xia; Dong, Lile; Guo, Xianmin; Yan, Xingxu; Wang, Peng; Song, Shuyan; Feng, Jing; Zhang, Hongjie

    2016-07-05

    Core-shell-shell heterostructures of α-NaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) have been successfully fabricated via the thermal decomposition method. Upconversion nanoparticles (UCNPs) were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), upconversion luminescence (UCL) spectroscopy, etc. Under 980 nm excitation, the emission intensities of the UCNPs are remarkably enhanced after coating the MF2 (M = Ca, Sr, and Ba) shell. Among these samples, CaF2 coated UCNPs show the strongest overall emission, while BaF2 coated UCNPs exhibit the longest lifetime. These results demonstrate that alkaline earth metal fluorides are ideal materials to improve the UCL properties. Meanwhile, although the lattice mismatch between the ternary NaREF4 core and the binary MF2 (M = Sr and Ba) shell is relatively large, the successfully synthesized NaLuF4:Yb/Er@NaLuF4:Yb@MF2 indicates a new outlook on the fabrication of heterostructural core-shell UCNPs.

  11. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuping, E-mail: yupingtai@126.com; Zheng, Guojun, E-mail: zhengguojun88@126.com; Wang, Hui, E-mail: huiwang@nwu.edu.cn

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfermore » (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.« less

  12. Effect of Yb(3+) on the Crystal Structural Modification and Photoluminescence Properties of GGAG:Ce(3+).

    PubMed

    Luo, Zhao-Hua; Liu, Yong-Fu; Zhang, Chang-Hua; Zhang, Jian-Xin; Qin, Hai-Ming; Jiang, Hao-Chuan; Jiang, Jun

    2016-03-21

    Gadolinium gallium aluminum garnet (GGAG) is a very promising host for the highly efficient luminescence of Ce(3+) and shows potential in radiation detection applications. However, the thermodynamically metastable structure would be slanted against it from getting high transparency. To stabilize the crystal structure of GGAG, Yb(3+) ions were codoped at the Gd(3+) site. It is found that the decomposition of garnet was suppressed and the transparency of GGAG ceramic was evidently improved. Moreover, the photoluminescence of GGAG:Ce(3+),xYb(3+) with different Yb(3+) contents has been investigated. When the Ce(3+) ions were excited under 475 nm, a typical near-infrared region emission of Yb(3+) ions can be observed, where silicon solar cells have the strongest absorption. Basing on the lifetimes of Ce(3+) ions in the GGAG:Ce(3+),xYb(3+) sample, the transfer efficiency from Ce(3+) to Yb(3+) and the theoretical internal quantum efficiency can be calculated and reach up to 86% and 186%, respectively. This would make GGAG:Ce(3+),Yb(3+) a potential attractive downconversion candidate for improving the energy conversion efficiency of crystalline silicon (c-Si) solar cells.

  13. Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm

    NASA Astrophysics Data System (ADS)

    Braud, A.; Girard, S.; Doualan, J. L.; Thuau, M.; Moncorgé, R.; Tkachuk, A. M.

    2000-02-01

    Energy-transfer processes have been quantitatively studied in various Tm:Yb-doped fluoride crystals. A comparison between the three host crystals which have been examined (KY3F10, LiYF4, and BaY2F8) shows clearly that the efficiency of the Yb-->Tm energy transfers is larger in KY3F10 than in LiYF4 or BaY2F8. The dependence of the energy-transfer parameters upon the codopant concentrations has been experimentally measured and compared with the results calculated on the basis of migration-assisted energy-transfer models. Using these energy-transfer parameters and a rate equation model, we have performed a theoretical calculation of the laser thresholds for the 3H4-->3F4 and 3H4-->3H5 laser transitions of the Tm ion around 1.5 and 2.3 μm, respectively. Laser experiments performed at 1.5 μm in Yb:Tm:LiYF4 then led to laser threshold values in good agreement with those derived theoretically. Based on these results, optimized values for the Yb and Tm dopant concentrations for typical values of laser cavity and pump modes were finally derived to minimize the threshold pump powers for the laser transitions around 1.5 and 2.3 μm.

  14. Kondo interactions from band reconstruction in YbInCu 4

    DOE PAGES

    Jarrige, I.; Kotani, A.; Yamaoka, H.; ...

    2015-03-27

    We combine resonant inelastic X-ray scattering (RIXS) and model calculations in the Kondo lattice compound YbInCu₄, a system characterized by a dramatic increase in Kondo temperature and associated valence fluctuations below a first-order valence transition at T≃42 K. In this study, the bulk-sensitive, element-specific, and valence-projected charge excitation spectra reveal an unusual quasi-gap in the Yb-derived state density which drives an instability of the electronic structure and renormalizes the low-energy effective Hamiltonian at the transition. Our results provide long-sought experimental evidence for a link between temperature-driven changes in the low-energy Kondo scale and the higher-energy electronic structure of this system.

  15. One-step synthesis of NaLu80-xGdxF4:Yb183+/Er23+(Tm3+) upconversion nanoparticles for in vitro cell imaging.

    PubMed

    Gerelkhuu, Zayakhuu; Huy, Bui The; Sharipov, Mirkomil; Jung, Dasom; Phan, The-Long; Conte, Eric D; Lee, Yong-Ill

    2018-05-01

    Upconversion nanoparticles (UCNPs) possess a unique type of photoluminescence (PL) in which lower-energy excitation is converted into higher-energy emission via multi-photon absorption processes. In this work, we have used a facile one-step hydrothermal method promoted water solubility to synthesis NaLuGdF 4 :Yb 3+ /Er 3+ (Tm 3+ ) UCNPs coated with malonic acid (MA). Scanning electron microscopy images and X-ray diffraction patterns reveal sphere-shaped UCNPs with an average size of ~80nm crystallized in the cubic NaLuF 4 structure. The characteristic vibrations of cubic UCNPs have been taken into account by using Fourier-transform infrared spectroscopy. Based on PL studies, we have determined an optimal concentration of Gd 3+ doping. The dependence of upconversion PL intensity on Gd 3+ concentration is discussed via the results of magnetization measurements, which is related to the coupling/uncoupling of Gd 3+ ions. Particularly, our study reveals that carboxyl-functionalized NaLuGdF 4 :Yb 3+ /Er 3+ (Tm 3+ ) UCNPs have a relatively high cell viability with HeLa cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Progress Toward an Neutral Yb Frequency Standard

    NASA Astrophysics Data System (ADS)

    Cramer, Claire; Hong, Tao; Nagourney, Warren; Fortson, Norval

    2004-05-01

    We report recent progress toward a direct observation of the ^1S_0^ -- ^3P0 clock transition at 578 nm in atomic Yb and review the experimental path to an optical frequency standard based on neutral Yb confined in a Stark-free optical lattice. Lamb-Dicke confinement in an optical lattice at the ``magic wavelength'' (λ _M) at which ground and excited state light shifts cancel will free the spectrum from Doppler and recoil shifts, providing an optimal environment for a clock consisting of an ensemble of cold, trapped atoms. In^171Yb the ^3P0 level has a hfs induced lifetime of 21 s. With this isotope in a Stark-free lattice at λ M ng 750 nm, perturbations to the clock energy levels can be held below the mHz level, providing an accuracy of a few parts in 10^18[1]. To observe the clock transition we use a shelving scheme that creates a leak in a MOT on the ^1S_0^ -- ^1P1 transition. A laser resonant with the clock transition drives atoms into the ^3P0 state, in which they can escape the MOT, leading to an observable decrease in MOT fluorescence. [1] S. Porsev and A. Derevianko, to be published in PRA

  17. Narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using multimode interference filter.

    PubMed

    Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S

    2017-05-01

    A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240  ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.

  18. Diode-pumped Yb:Sr{sub 5}(PO{sub 4}){sub 3}F laser performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C.D.; Payne, S.A.; Smith, L.K.

    The performance of the first diode-pumped Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) laser is discussed. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0 x 10{sup -20} cm{sup 2} that falls within error bars of the previously reported value of 7.3 x 10{sup -20} cm{supmore » 2}, obtained from spectroscopic techniques. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz and 500 {mu}s pulses.« less

  19. Role of the stimulated radiation of Yb3+ ions in the formation of luminescence of the Y0.8Yb0.2F3:Tm3+ solid solution

    NASA Astrophysics Data System (ADS)

    Mikheev, A. V.; Kazakov, B. N.

    2015-09-01

    A new mechanism has been proposed for the transfer of the energy of exciting laser radiation through the donor subsystem (Yb3+) to acceptors (Tm3+), which induces multiphoton transitions in the acceptor subsystem. The coherence of the induced radiation of donors is of key importance in this mechanism. An analytical dependence of the intensity of the up-conversion luminescence of Tm3+ (1G4 → 3H6) ions in the Y0.8Yb0.2F3:Tm3+ system on the pump power at the steady-state excitation by 934-nm infrared radiation of a laser diode has been obtained using the mathematical technique of the theory of Poisson processes. In contrast to known mechanisms, this dependence approximates the experimental dependence well in a wide power range (200-1200 mW). The proposed model is applicable for any system where the energy of pump radiation is transferred to acceptors through the subsystem of donor ions.

  20. Large size crystalline vs. co-sintered ceramic Yb(3+):YAG disk performance in diode pumped amplifiers.

    PubMed

    Albach, Daniel; Chanteloup, Jean-Christophe

    2015-01-12

    A comprehensive experimental benchmarking of Yb(3+):YAG crystalline and co-sintered ceramic disks of similar thickness and doping level is presented in the context of high average power laser amplifier operation. Comparison is performed considering gain, depolarization and wave front deformation quantitative measurements and analysis.

  1. The doping sites in Eu2+-doped AIBIIPO4 phosphors and their consequence on the photoluminescence excitation spectra

    NASA Astrophysics Data System (ADS)

    Amer, M.; Boutinaud, P.

    2018-02-01

    The energy corresponding to the excitation edge in Eu2+-doped phosphate phosphors of the type AIBIIPO4 (AI = monovalent cation, BII = divalent cation) is calculated from the knowledge of two crystal-structure-related factors he(X(i)) and Fc(X(i)) which are connected respectively to the crystal field splitting (CFS) and the centroid energy (Ec) of the excited 4f65d1 electron configuration of Eu2+. The calculation is carried out for each cation site X(i) available for Eu2+ in 25 different compositions of AIBIIPO4 including NaZnPO4-Eu2+ for which the luminescence is firstly reported. Our results indicate (1) that is it possible to identify the nature of the cation site that contributes to the excitation edge of Eu2+ in AIBIIPO4 within an accuracy of±1000 cm-1 and (2) that the method can be used as a tool for the predictive design of AIBIIPO4 - Eu2+ phosphors applicable in solid state LED-based lighting.

  2. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE PAGES

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito; ...

    2017-11-02

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  3. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  4. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE PAGES

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.; ...

    2018-05-31

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  5. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  6. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiberamplifiers

    NASA Astrophysics Data System (ADS)

    Cheng, Ming-Yuan; Chang, Yu-Chung; Galvanauskas, Almantas; Mamidipudi, Pri; Changkakoti, Rupak; Gatchell, Peter

    2005-02-01

    We explored high-energy and high-peak-power pulse generation in large-core multimode fiber amplifiers, achieving what is to our knowledge the highest reported energies, up to 82 mJ for 500-ns pulses, 27 mJ for 50-ns pulses, and 2.4-MW peak power for 4-ns pulses at 1064 nm, using 200-µm-diameter and 0.062-N.A. core Yb-doped double-clad fiber amplifiers. The highly multimode nature of the fiber core was mitigated by use of a coiling-induced mode-filtering effect to yield a significant improvement in output-beam quality from M^2 = 25 from an uncoiled fiber to M^2 = 6.5 from a properly coiled fiber, with the corresponding reduction in number of propagating transverse modes from >or=200 to <or=20.

  7. [The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping].

    PubMed

    Zheng, Long-Jiang; Gao, Xiao-Yang; Liu, Hai-Long; Li, Bing; Xu, Chen-Xi

    2013-01-01

    The Er3+ and Yb3+ doped Y2O3 Nano powder was prepared by sol-gel method. Based on 2H11/2 --> 4I15/2 and 4S3/2 --> 4I15/2 green conversion luminescence intensity rate of Er3+, the sample surface temperature changes caused by the increase in 980 nm diode laser pump power were studied. The results show that with pump power increasing, the sample surface temperature substantially rises. And the surface temperature reached to 820 K when the pump power was 1 000 mW. The phenomenon plays an important role in the analysis of upconversion process, especially with saturation power. And this feature has a potential application prospect in the biomedicine, soft tissue hole burning as well as the field of temperature sensing materials.

  8. Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, non-conservative, harmonic and optical forces

    NASA Astrophysics Data System (ADS)

    Nome, Rene A.; Sorbello, Cecilia; Jobbágy, Matías; Barja, Beatriz C.; Sanches, Vitor; Cruz, Joyce S.; Aguiar, Vinicius F.

    2017-03-01

    The stochastic dynamics of individual co-doped Er:Yb upconversion nanoparticles (UCNP) were investigated from experiments and simulations. The UCNP were characterized by high-resolution scanning electron microscopy, dynamic light scattering, and zeta potential measurements. Single UCNP measurements were performed by fluorescence upconversion micro-spectroscopy and optical trapping. The mean-square displacement (MSD) from single UCNP exhibited a time-dependent diffusion coefficient which was compared with Brownian dynamics simulations of a viscoelastic model of harmonically bound spheres. Experimental time-dependent two-dimensional trajectories of individual UCNP revealed correlated two-dimensional nanoparticle motion. The measurements were compared with stochastic trajectories calculated in the presence of a non-conservative rotational force field. Overall, the complex interplay of UCNP adhesion, thermal fluctuations and optical forces led to a rich stochastic behavior of these nanoparticles.

  9. Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7

    PubMed Central

    Tokiwa, Y.; Yamashita, T.; Udagawa, M.; Kittaka, S.; Sakakibara, T; Terazawa, D.; Shimoyama, Y.; Terashima, T.; Yasui, Y.; Shibauchi, T.; Matsuda, Y.

    2016-01-01

    The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids. PMID:26912080

  10. Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7.

    PubMed

    Tokiwa, Y; Yamashita, T; Udagawa, M; Kittaka, S; Sakakibara, T; Terazawa, D; Shimoyama, Y; Terashima, T; Yasui, Y; Shibauchi, T; Matsuda, Y

    2016-02-25

    The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids.

  11. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  12. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  13. Color Tunable and Upconversion Luminescence in Yb-Tm Co-Doped Yttrium Phosphate Inverse Opal Photonic Crystals.

    PubMed

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2016-04-01

    For this paper, YPO4: Tm, Yb inverse opals with the photonic band gaps at 475 nm and 655 nm were prepared by polystyrene colloidal crystal templates. We investigated the influence of photonic band gaps on the Tm-Yb upconversion emission which was in the YPO4: Tm Yb inverse opal photonic crystals. Comparing with the reference sample, significant suppression of both the blue and red upconversion luminescence of Tm3+ ions were observed in the inverse opals. The color purity of the blue emission was improved in the inverse opal by the suppression of red upconversion emission. Additionally, mechanism of upconversion emission in the inverse opal was discussed. We believe that the present work will be valuable for not only the foundational study of upconversion emission modification but also the development of new optical devices in upconversion lighting and display.

  14. Energy transfer and up-conversion in rare-earth doped dielectric crystals

    NASA Astrophysics Data System (ADS)

    Tkachuk, Alexandra M.

    1996-01-01

    In this work, we consider the prospects of development of the visible, and IR laser-diode pumped lasers based on TR3+-doped double-fluoride crystals. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes obtained from the experiments and theoretical calculations, the conclusions are drawn on the efficiency of up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the efficiency of up-conversion processes is demonstrated on the example of the YLF:Nd, YLF:Er, BaY2F8:Er, and BaY2F8:Er,Yb crystals. The transfer microparameters for most important cross-relaxation transitions are determined and the conclusions about interaction mechanisms are drawn.

  15. Excited State Atom-Ion Charge-Exchange

    NASA Astrophysics Data System (ADS)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2017-04-01

    We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.

  16. Enhanced red emission of 808 nm excited upconversion nanoparticles by optimizing the composition of shell for efficient generation of singlet oxygen

    NASA Astrophysics Data System (ADS)

    Liu, Jinxue; Zhang, Tingbin; Song, Xiaoyan; Xing, Jinfeng

    2018-01-01

    With the aim to enhance the upconversion luminescence (UCL) intensity, much attention was paid to reduce the energy-back transfer from Er3+ ions to Nd3+ ions by constructing various kinds of multilayer upconversion nanoparticles (UCNPs). However, the energy-back transfer was difficult to be completely eliminated. Also, the thick shell of multilayer UCNPs is not favourable for effective Förster resonance energy transfer (FRET) in photodynamic therapy (PDT) system. Herein, an effective and facile method was applied to prepare UCNPs by optimizing the composition to largely enhance the red emission (at 660 nm) for efficient generation of singlet oxygen (1O2). In detail, the concentrations of Nd3+ ions and Yb3+ ions doped in the sensitizing shell were systematically researched to balance the energy back-transfer and the light harvest ability. The optimal emission and a relatively high Red/Green (R/G) ratio of NaYF4:Yb,Er,Nd@NaYF4:Yb0.1Nd0.2 UCNPs were obtained simultaneously. Furthermore, the emission under 980 nm excitation demonstrated the energy back-transfer from Er3+ to Yb3+ ions was also notable which was largely ignored previously. Then, UCNPs were encapsulated into mesoporous silica shell, and the photosensitizer Chlorin e6 (Ce6) was covalently conjugated to form a non-leaking nanoplatform. The efficiency of 1O2 generation obviously increased with the enhanced emission of UCNPs.

  17. Anisotropic magnetic susceptibility of erbium and ytterbium in zircon, ZrSiO4

    USGS Publications Warehouse

    Thorpe, A.N.; Briggs, Charles; Tsang, T.; Senftle, F.; Alexander, Corrine

    1977-01-01

    Magnetic susceptibility measurements have been made for both Er- and Yb-doped (1̃03ppm) zircon single crystals with the magnetic field perpendicular and parallel to the [001] axis. Large susceptibility anisotropies were found in both cases. Our observed anisotropies of ZrSiO4: Yb indicate small populations (1̃9%) of Yb ions at the axial (tetragonal) sites, as the susceptibility of ZrSiO4: Yb would be nearly isotropic if the Yb ions only occupied the orthorhombic sites. For Er3+ in orthorhombic sites of zircon, our data indicate that the first excited state is paramagnetic with gx = 9 and gy 5̃ at 20 cm-1 above the ground state (gx 0̃, gy 1̃5). The first excited state is quite similar to the ground states observed for Er3+ in many host lattices. ?? 1977.

  18. Analysis of intrinsic optical bistability in Tm-doped laser-related crystals

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Vondrova, M.; Casimir, D.

    2003-11-01

    We predict and theoretically study intrinsic optical bistability (IOB) mediated by nonlinear energy transfer processes in rare-earth-doped laser-related crystals. In particular, we investigate Tm-Ho and Tm-Yb systems, in which avalanche pumping is overimposed by energy transfer up-conversion. We predict that IOB can be experimentally observed in (Tm,Yb):BaY2F8 crystals in a wide range of experimentally achievable parameters.

  19. Giant enhancement of upconversion in ultra-small Er3+/Yb3+:NaYF4 nanoparticles via laser annealing

    NASA Astrophysics Data System (ADS)

    Bednarkiewicz, A.; Wawrzynczyk, D.; Gagor, A.; Kepinski, L.; Kurnatowska, M.; Krajczyk, L.; Nyk, M.; Samoc, M.; Strek, W.

    2012-04-01

    Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner, which may lead to many applications like 2D and 3D data storage, anti-counterfeiting protection, novel design bio-sensors and, potentially, to fabrication of metamaterials, 3D photonic crystals or plasmonic devices. Here we demonstrate irreversible spatially confined infrared-laser-induced annealing (LIA) achieved in a thin layer of dried colloidal solution of ultra-small ˜8 nm NaYF4 nanocrystals (NCs) co-doped with 2% Er3+ and 20% Yb3+ ions under a localized tightly focused beam from a continuous wave 976 nm medium power laser diode excitation. The LIA results from self-heating due to non-radiative relaxation accompanying the NIR laser energy upconversion in lanthanide ions. We notice that localized LIA appears at optical power densities as low as 15.5 kW cm-2 (˜354 ± 29 mW) threshold in spots of 54 ± 3 µm diameter obtained with a 10 × microscope objective. In the course of detailed studies, a complete recrystallization to different phases and giant 2-3 order enhancement in luminescence yield is found. Our results are highly encouraging and let us conclude that the upconverting ultra-small lanthanide-doped nanophosphors are particularly promising for direct laser writing applications.

  20. Doping Dependence of Collective Spin and Orbital Excitations in the Spin-1 Quantum Antiferromagnet La 2 - x Sr x NiO 4 Observed by X Rays

    DOE PAGES

    Fabbris, G.; Meyers, D.; Xu, L.; ...

    2017-04-12

    Here, we report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S=1 systems by probing the Ni L 3 edge of La 2$-$xSr xNiO 4 (x=0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi-spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital charactermore » of the doped holes in these two families. Lastly, this work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultrafast pump-probe experiments.« less

  1. Doping Dependence of Collective Spin and Orbital Excitations in the Spin-1 Quantum Antiferromagnet La 2 - x Sr x NiO 4 Observed by X Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbris, G.; Meyers, D.; Xu, L.

    Here, we report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S=1 systems by probing the Ni L 3 edge of La 2$-$xSr xNiO 4 (x=0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi-spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital charactermore » of the doped holes in these two families. Lastly, this work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultrafast pump-probe experiments.« less

  2. REVIEW: Excited states in the active media of oxygen — iodine lasers

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.

    2009-11-01

    A review of investigations of kinetic processes in active media oxygen — iodine lasers (OILs) performed in the last decade is presented. The mechanisms of pumping and quenching of electronically and vibrationally excited O2 and I2 molecules are considered, and dissociation mechanisms of I2 in the active medium of the OIL are analysed. The values of kinetic constants of processes proceeding in the active media of OILs are recommended.

  3. Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal.

    PubMed

    Cheng, Ying; Dong, Jun; Ren, Yingying

    2012-10-22

    Highly efficient, laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers by bonding Yb:YAG crystal have been demonstrated for the first time to our best knowledge. The effect of transmission of output coupler (T(oc)) on the enhanced performance of Yb:YAG/Cr,Yb:YAG microchip lasers has been investigated and found that the best laser performance was achieved with T(oc) = 50%. Slope efficiency of over 38% was achieved. Average output power of 0.8 W was obtained at absorbed pump power of 2.5 W; corresponding optical-to-optical efficiency of 32% was obtained. Laser pulses with pulse width of 1.68 ns, pulse energy of 12.4 μJ, and peak power of 7.4 kW were obtained. The lasers oscillated in multi-longitudinal modes. The wide separation of longitudinal modes was attributed to the mode selection by combined etalon effect of Cr,Yb:YAG, Yb:YAG thin plates and output coupler. Stable periodical pulse trains at different pump power levels have been observed owing to the longitudinal modes coupling and competition.

  4. Efficient lasing in Yb:(YLa){sub 2}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snetkov, I L; Mukhin, I B; Palashov, O V

    2015-02-28

    A high-optical-quality sample of Yb{sub 0.1}Y{sub 1.7}La{sub 0.2}O{sub 3} ceramics is prepared using a recently developed technique of selfpropagating high-temperature synthesis of rare-earth-doped yttrium oxide nanopowder from acetate – nitrates of metals. Its optical and spectral characteristics are studied, and quasi-cw lasing at a wavelength of 1033 nm is achieved with a power of 7 W and a slope efficiency of 25%. (lasers)

  5. Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security.

    PubMed

    Kim, Won Jin; Nyk, Marcin; Prasad, Paras N

    2009-05-06

    We report a method for fabricating predefined photopatterns of upconversion nanophosphors using a chemical amplification reaction for direct writing of films with multilayer color-coded patterning for security applications. To photopattern the nanocrystal film we have synthesized rare-earth ion (Er(3+)/Yb(3+) or Tm(3+)/Yb(3+)) co-doped sodium yttrium fluoride (alpha-NaYF(4)) nanophosphors and functionalized the nanocrystal surfaces by incorporation of a photopatternable ligand such as t-butoxycarbonyl (t-BOC). The surface modification allows photopatterning of the nanophosphor solid state film. Furthermore, upconversion nanophosphors show a nearly quadratic dependence of the upconversion photoluminescence (PL) intensity on the excitation light power, and tailoring of the PL wavelength is possible by changing the lanthanide ions. We have demonstrated the capability of anchoring nanophosphors at desirable locations by a photolithography technique. The photopatterned films exhibit fixed nanophosphor structures clearly identifiable by strong upconversion photoluminescence under IR illumination which is useful for a number of applications in security.

  6. Blue and white light emission in Tm3+ and Tm3+/Dy3+ doped zinc phosphate glasses upon UV light excitation

    NASA Astrophysics Data System (ADS)

    Meza-Rocha, A. N.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2016-08-01

    A spectroscopic study based on photoluminescence spectra and decay time profiles in Tm3+ and Tm3+/Dy3+ doped Zn(PO3)2 glasses is reported. The Tm3+ doped Zn(PO3)2 glass, upon 357 nm excitation, exhibits blue emission with CIE1931 chromaticity coordinates, x = 0.157 and y = 0.030, and color purity of about 96%. Under excitations at 348, 352 and 363 nm, which match with the emissions of AlGaN and GaN based LEDs, the Tm3+/Dy3+ co-doped Zn(PO3)2 glass displays natural white, bluish white and cool white overall emissions, with correlated color temperature values of 4523, 10700 and 7788 K, respectively, depending strongly on the excitation wavelength. The shortening of the Dy3+ emission decay time in presence of Tm3+ suggests that Dy3+→Tm3+ non-radiative energy transfer occurs. By using the Inokuti-Hirayama model, it is inferred that an electric quadrupole-quadrupole interaction might be the dominant mechanism involved in the energy transfer. The efficiency and probability of this energy transfer are 0.12 and 126.70 s-1, respectively.

  7. Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions

    NASA Astrophysics Data System (ADS)

    Chen, Chen; He, Ruiyun; Tan, Yang; Wang, Biao; Akhmadaliev, Shavkat; Zhou, Shengqiang; de Aldana, Javier R. Vázquez; Hu, Lili; Chen, Feng

    2016-01-01

    This work reports on the fabrication of ridge waveguides in Er3+/Yb3+ co-doped phosphate glass by the combination of femtosecond laser ablation and following swift carbon ion irradiation. The guiding properties of waveguides have been investigated at 633 and 1064 nm through end face coupling arrangement. The refractive index profile on the cross section of the waveguide has been constructed. The propagation losses can be reduced considerably after annealing treatment. Under the optical pump laser at 980 nm, the upconversion emission of both green and red fluorescence has been realized through the ridge waveguide structures.

  8. Optimized design of Yb3+/Er3+-codoped cross-coupled integrated microring resonator arrays

    NASA Astrophysics Data System (ADS)

    Gǎlǎtus, Ramona; Vallés, Juan A.

    2014-09-01

    In this work the analytical model of the scattering response of a highly Yb3+/Er3+-codoped phosphate glass microring resonator array is developed. The microscopic statistical formalism is used to simulate its performance as a wavelengthselective amplifier. The performance of the integrated add-drop filter was investigated based on the signal transfer functions for Through and Drop ports, correlated the with gain coefficient and its dependence on pump power, signal power and Yb3+/Er3+- dopants concentration. In consequence, microring arrays with gain operating in the near infrared spectral range and, in particular, in the 1.5-mm wavelength band (emission band of Er-doped fiber amplifiers and lasers, already used in several bio/chemical sensing tasks) are highly attractive.

  9. Magnetic behavior of the nanophase of YbNi2 alloys

    NASA Astrophysics Data System (ADS)

    Ivanshin, V. A.; Gataullin, E. M.; Sukhanov, A. A.; Ivanshin, N. A.; Rojas, D. P.; Fernández Barquín, L.

    2017-04-01

    Variations in magnetic properties of the heavy-fermion YbNi2 alloy when milled in a high energy ball milling system have been investigated. The ferromagnetic transition ( T C = 10.4 K) in the initial sample almost vanishes after milling, which leads to the appearance of a magnetic transition at T* = 3.2 K in nanocrystallites. Before milling, processes of spin-lattice relaxation of the Orbach-Aminov type with the participation of the first excited Stark sublevel of the Yb3+ ion located at 75 K are dominating in the electron spin dynamics in the paramagnetic phase of the alloy. A comparative study of the temperature dependence of the magnetic properties and spectra of electron paramagnetic resonance in poly- and nanocrystalline samples indicates the existence of a magnetic inhomogeneity of the compound arising upon milling.

  10. Investigations on the spectroscopic properties of Dy3 + ions doped Zinc calcium tellurofluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Arunkumar, S.; Annapoorani, K.; Marimuthu, K.

    2018-03-01

    A new series of Dy3 + doped (30-x)B2O3 + 30TeO2 + 20CaCO3 + 10ZnO + 10ZnF2 + xDy2O3 (x = 0.01, 0.1, 0.5, 1, 2 and 3 in wt%) Zinc calcium tellurofluoroborate glasses were prepared and their structural, luminescence and excited state dynamics have been studied and reported. The structural properties have been characterized through XRD and FTIR studies to confirm the amorphous nature and to explore the presence of fundamental stretching vibrations. The bonding parameters (δ and β), optical band gap, Urbach's energy, oscillator strengths and Judd-Ofelt (JO) intensity parameters were calculated from the absorption spectra. The JO intensity parameters and the Y/B intensity ratio values have been used to explore the nature of the bonding and asymmetry around the Dy-ligand field environment. The luminescence properties of the present Dy3 + doped glasses have been analyzed through luminescence excited state dynamics and radiative properties such as transition probability (A), stimulated emission cross-section (σPE) branching ratio (β) and radiative lifetime (τR) values. The combination of dominant blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emissions generates white light emission in the CIE chromaticity diagram thus suggests that the present Dy3 + doped glasses are suitable for white light applications. The lifetime of the 4F9/2 excited state is found to decrease with the increase in Dy3 + ion content and the concentration quenching of the Dy3 + ions emission could be ascribed due to the resonant energy transfer and cross-relaxation processes. The non-exponential behavior of the decay curves has been analyzed with Inokuti-Hirayama model and the interaction between the Dy3 + ions is of electric dipole-dipole in nature.

  11. Mechanism for Spiral Wave Breakup in Excitable and Oscillatory Media

    NASA Astrophysics Data System (ADS)

    Yang, Junzhong; Xie, Fagen; Qu, Zhilin; Garfinkel, Alan

    2003-10-01

    We study spiral wave breakup using a Fitzhugh-Nagumo type system. We find that spiral wave breakup can occur near the core or far from it in both excitable and oscillatory regimes. There is a faraway breakup scenario in both excitable and oscillatory media that depends on long wavelength modulation modes. We observed three distinct scenarios, including one that involves breakup that does not develop into turbulence. However, we find that the mechanisms behind these three scenarios are the same: they are caused by the interaction between the dispersion relation and the asymptotic behavior of the modulation mode. The difference in phenomenology is due to the asymptotic behavior of the modulation mode.

  12. Structural, thermal and optical investigations of Dy3+ ions doped lead containing lithium fluoroborate glasses for simulation of white light

    NASA Astrophysics Data System (ADS)

    Zulfiqar Ali Ahamed, Sd.; Madhukar Reddy, C.; Deva Prasad Raju, B.

    2013-05-01

    Lead containing barium zinc lithium fluoroborate (LBZLFB) glasses doped with different concentrations of trivalent dysprosium ions were synthesized by conventional melt quenching method and characterized through the XRD, DSC, FTIR, FT-Raman, optical absorption, photoluminescence and decay curve analysis. X-ray diffraction studies revealed amorphous nature of the studied glass matrices. The thermal behavior has been reported by recording DSC thermograms. Coexistence of trigonal BO3 and tetrahedral BO4 units was evidenced by IR and Raman spectroscopy. Judd-Ofelt intensity parameters have been evaluated for 1.0 mol% Dy3+ ions doped LBZLFB glass. The measuring branching ratios are reasonably high for transitions 4F9/2 → 6H15/2 and 6H13/2 suggesting that the emission at 486 and 577 nm, respectively can give rise to lasing action in the visible region. From the visible emission spectra, the yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were estimated. A combination of blue and yellow emissions has emerged in the glasses, which allows the observation of white light when the glasses are excited by the ultraviolet/blue light. These Dy3+ doped glasses are studied for their utility for white light generation under 454 nm excitation and the present LBZLFB glass is more suitable for generation of white light for blue LED chips.

  13. High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber.

    PubMed

    Guan, Bai-Ou; Zhang, Yang; Wang, Hong-Jun; Chen, Da; Tam, Hwa-Yaw

    2008-03-03

    We present a high-temperature-resistant distributed Bragg reflector fiber laser photowritten in Er/Yb codoped phosphosilicate fiber that is capable of long-term operation at 500 degrees C. Highly saturated Bragg gratings are directly inscribed into the Er/Yb fiber without hydrogen loading by using a 193 nm excimer laser and phase mask method. After annealing at elevated temperature, the remained gratings are strong enough for laser oscillation. The laser operates in robust single mode with output power more than 1 dBm and signal-to-noise ratio better than 70 dB over the entire temperature range from room temperature to 500 degrees C.

  14. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    PubMed

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The influence of co-sintering Bi2O3 on Yb0.2Ce0.8O2-δ ceramic SOFC

    NASA Astrophysics Data System (ADS)

    Budiana, B.; Suasmoro, S.

    2017-01-01

    Ceramic Yb-doped CeO2 were prepared through two ways. First, sintering of mixed 20 mol % Yb2O3 and 80 mol % CeO2 at 1350 °C for 20 h and second sintering of mixed 96 mol % calcined Yb-doped CeO2 with 4 mol % Bi2O3 as a co-sintering agent at 1100 °C for 8h. Phase identification revealed that for the first sample was a cubic phase (a=5,3939Å) while the second sample showed three phases, CeO2 (cubic a=5,4254Å), YbxCe1-xO2-δ (cubic a=5,3980Å) and Bi5Yb3O12 (cubic a=10,5343Å). Cole-cole plot of impedance revealed 3 semicircles as marked of grain, grain boundary and electrode responses for B1 while for B2 showed two semicircles as marked of grain, grain boundary+electrode responses. Plot of log (σt) versus 1/T for both samples possed 2 activation energy regime, for the Sample B1 at T>650 °C Ea grain =1,01±0,04 eV and T<650 °C Ea grain =0,76±0,06 eV while for the sample B2 at T>650 °C, Ea grain =0,99±0,03 eV and T<650 °C Ea grain=0,70±0,09 eV.

  16. Systematic analysis of hot Yb* isotopes using the energy density formalism

    NASA Astrophysics Data System (ADS)

    Jain, Deepika; Sharma, Manoj K.; Rajni; Kumar, Raj; Gupta, Raj K.

    2014-10-01

    A systematic study of the spin-orbit density interaction potential is carried out, with spherical as well as deformed choices of nuclei, for a variety of near-symmetric and asymmetric colliding nuclei leading to various isotopes of the compound nucleus Yb*, using the semiclassical extended Thomas-Fermi formulation (ETF) of the Skyrme energy density formalism (SEDF). We observe that the spin-orbit density interaction barrier height ( and barrier position ( increase systematically with the increase in number of neutrons in both the projectile and target, for spherical systems. On allowing deformation effects with optimum orientations, the barrier-height increases by a large order of magnitude, as compared to the spherical case, in going from 156Yb* to 172Yb* nuclear systems formed via near-symmetric Ni+Mo or asymmetric O+Sm colliding nuclei, except that for the oblate-shaped nuclei, the is the highest and shifts towards a smaller (compact) interaction radius. The temperature does not change the behavior of spin-orbit density dependent ( and independent ( interaction potentials, except for some minor changes in the magnitude. The orientation degree of freedom also plays an important role in modifying the barrier characteristics and hence produces a large effect on the fusion cross section. The fusion excitation function of the compound nuclei 160, 164Yb* formed in different incoming channels, show clearly that the new forces GSkI and KDE0v1 respond better than the old SIII force. Among the first two, KDE0v1 seems to perform better. The fusion cross-sections are also predicted for a few other isotopes of Yb*.

  17. Interaction between the exchanged Mn2+ and Yb3+ ions confined in zeolite-Y and their luminescence behaviours

    PubMed Central

    Ye, Shi; Sun, Jiayi; Yi, Xiong; Wang, Yonggang; Zhang, Qinyuan

    2017-01-01

    Luminescent zeolites exchanged with two distinct and interacted emissive ions are vital but less-studied for the potential applications in white light emitting diodes, solar cells, optical codes, biomedicine and so on. Typical transition metal ion Mn2+ and lanthanide ion Yb3+ are adopted as a case study via their characteristic transitions and the interaction between them. The option is considered with that the former with d-d transition has a large gap between the first excited state 4T1 and the ground state 6A1 (normally >17,000 cm−1) while the latter with f-f transition has no metastable excited state above 10,000 cm−1, which requires the vicinity of these two ions for energy transfer. The results of various characterizations, including BET measurement, photoluminescence spectroscopy, solid-state NMR, and X-ray absorption spectroscopy, etc., show that Yb3+ would preferably enter into the zeolite-Y pores and introduction of Mn2+ would cause aggregation of each other. Herein, cation-cation repulsion may play a significant role for the high valence of Mn2+ and Yb3+ when exchanging the original cations with +1 valence. Energy transfer phenomena between Mn2+ and Yb3+ occur only at elevated contents in the confined pores of zeolite. The research would benefit the design of zeolite composite opto-functional materials. PMID:28393920

  18. Interaction between the exchanged Mn2+ and Yb3+ ions confined in zeolite-Y and their luminescence behaviours

    NASA Astrophysics Data System (ADS)

    Ye, Shi; Sun, Jiayi; Yi, Xiong; Wang, Yonggang; Zhang, Qinyuan

    2017-04-01

    Luminescent zeolites exchanged with two distinct and interacted emissive ions are vital but less-studied for the potential applications in white light emitting diodes, solar cells, optical codes, biomedicine and so on. Typical transition metal ion Mn2+ and lanthanide ion Yb3+ are adopted as a case study via their characteristic transitions and the interaction between them. The option is considered with that the former with d-d transition has a large gap between the first excited state 4T1 and the ground state 6A1 (normally >17,000 cm-1) while the latter with f-f transition has no metastable excited state above 10,000 cm-1, which requires the vicinity of these two ions for energy transfer. The results of various characterizations, including BET measurement, photoluminescence spectroscopy, solid-state NMR, and X-ray absorption spectroscopy, etc., show that Yb3+ would preferably enter into the zeolite-Y pores and introduction of Mn2+ would cause aggregation of each other. Herein, cation-cation repulsion may play a significant role for the high valence of Mn2+ and Yb3+ when exchanging the original cations with +1 valence. Energy transfer phenomena between Mn2+ and Yb3+ occur only at elevated contents in the confined pores of zeolite. The research would benefit the design of zeolite composite opto-functional materials.

  19. Laser-diode-excited blue upconversion in Tm3+/Yb3+ -codoped TeO2-Ga2O3-R2O (R=Li, Na, K) glasses.

    PubMed

    Zhao, Chun; Zhang, Qinyuan; Yang, Gangfeng; Jiang, Zhonghong

    2008-01-01

    This paper reports on intense blue upconversion in Tm(3+)/Yb(3+) codoped TeO(2)-Ga(2)O(3)-R(2)O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of 1G4-->3H6, and 1G4-->3H4 and/or 3F(2,3)-->3H6 of Tm(3+), respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K(+) for Na(+) and Li(+).

  20. Intense blue up-conversion luminescence in Tm 3+/Yb 3+ codoped oxyfluoride glass-ceramics containing β-PbF 2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Duan, Zhongchao; He, Dongbing; Dai, Shixun; Zhang, Liyan; Hu, Lili

    2005-12-01

    Up-conversion luminescence properties of a Tm 3+/Yb 3+ codoped oxyfluoride glass-ceramics under 980 nm excitation are investigated. Intense blue emission centered at 476 nm, corresponding to 1G 4 → 3H 6 transitions of Tm 3+ was simultaneously observed in the transparent oxyfluoride glass ceramics at room temperature. The intensity of the blue up-conversion luminescence in a 1 mol% YbF 3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The reason for the intense Tm 3+ up-conversion luminescence in the oxyfluoride glass-ceramics is discussed. The dependence of up-conversion intensities on excitation power and possible up-conversion mechanism are also evaluated.

  1. Intense blue up-conversion luminescence in Tm3+/Yb3+ codoped oxyfluoride glass-ceramics containing beta-PbF2 nanocrystals.

    PubMed

    Zhang, Junjie; Duan, Zhongchao; He, Dongbing; Dai, Shixun; Zhang, Liyan; Hu, Lili

    2005-12-01

    Up-conversion luminescence properties of a Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980 nm excitation are investigated. Intense blue emission centered at 476 nm, corresponding to 1G4-->3H6 transitions of Tm3+ was simultaneously observed in the transparent oxyfluoride glass ceramics at room temperature. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The reason for the intense Tm3+ up-conversion luminescence in the oxyfluoride glass-ceramics is discussed. The dependence of up-conversion intensities on excitation power and possible up-conversion mechanism are also evaluated.

  2. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging

    PubMed Central

    Fukushima, S.; Furukawa, T.; Niioka, H.; Ichimiya, M.; Sannomiya, T.; Tanaka, N.; Onoshima, D.; Yukawa, H.; Baba, Y.; Ashida, M.; Miyake, J.; Araki, T.; Hashimoto, M.

    2016-01-01

    This paper presents a new correlative bioimaging technique using Y2O3:Tm, Yb and Y2O3:Er, Yb nanophosphors (NPs) as imaging probes that emit luminescence excited by both near-infrared (NIR) light and an electron beam. Under 980 nm NIR light irradiation, the Y2O3:Tm, Yb and Y2O3:Er, Yb NPs emitted NIR luminescence (NIRL) around 810 nm and 1530 nm, respectively, and cathodoluminescence at 455 nm and 660 nm under excitation of accelerated electrons, respectively. Multimodalities of the NPs were confirmed in correlative NIRL/CL imaging and their locations were visualized at the same observation area in both NIRL and CL images. Using CL microscopy, the NPs were visualized at the single-particle level and with multicolour. Multiscale NIRL/CL bioimaging was demonstrated through in vivo and in vitro NIRL deep-tissue observations, cellular NIRL imaging, and high-spatial resolution CL imaging of the NPs inside cells. The location of a cell sheet transplanted onto the back muscle fascia of a hairy rat was visualized through NIRL imaging of the Y2O3:Er, Yb NPs. Accurate positions of cells through the thickness (1.5 mm) of a tissue phantom were detected by NIRL from the Y2O3:Tm, Yb NPs. Further, locations of the two types of NPs inside cells were observed using CL microscopy. PMID:27185264

  3. Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, Stefan, E-mail: stefan.kuhn84@googlemail.com; Tiegel, Mirko; Herrmann, Andreas

    2015-09-14

    In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information aboutmore » the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.« less

  4. 5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser.

    PubMed

    Cheng, Huihui; Wang, Wenlong; Zhou, Yi; Qiao, Tian; Lin, Wei; Xu, Shanhui; Yang, Zhongmin

    2017-10-30

    A passively mode-locked Yb 3+ -doped fiber laser with a fundamental repetition rate of 5 GHz and wavelength tunable performance is demonstrated. A piece of heavily Yb 3+ -doped phosphate fiber with a high net gain coefficient of 5.7 dB/cm, in conjunction with a fiber mirror by directly coating the SiO 2 /Ta 2 O 5 dielectric films on a fiber ferrule is exploited for shortening the laser cavity to 2 cm. The mode-locked oscillator has a peak wavelength of 1058.7 nm, pulse duration of 2.6 ps, and the repetition rate signal has a high signal-to-noise ratio of 90 dB. Moreover, the wavelength of the oscillator is found to be continuously tuned from 1056.7 to 1060.9 nm by increasing the temperature of the laser cavity. Simultaneously, the repetition rate correspondingly decreases from 4.945874 to 4.945496 GHz. Furthermore, the long-term stability of the mode-locked operation in the ultrashort laser cavity is realized by exploiting temperature controls. This is, to the best of our knowledge, the highest fundamental pulse repetition rate for 1-μm mode-locked fiber lasers.

  5. Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO4

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Wang, Jinghui; Dong, Zhao-Yang; Zhang, Jun; Li, Shichao; Zheng, Shu-Han; Yu, Yunjie; Wang, Wei; Che, Liqiang; Ran, Kejing; Bao, Song; Cai, Zhengwei; Čermák, P.; Schneidewind, A.; Yano, S.; Gardner, J. S.; Lu, Xin; Yu, Shun-Li; Liu, Jun-Ming; Li, Shiyan; Li, Jian-Xin; Wen, Jinsheng

    2018-02-01

    We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO4 as a spin glass, including no long-range magnetic order, prominent broad excitation continua, and the absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature ac susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion holds also for its sister compound YbMgGaO4 , which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.

  6. Polarized spectral properties and 1.5-1.6 μm laser operation of Er:Sr3Yb2(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Lin, F. L.; Huang, J. H.; Chen, Y. J.; Gong, X. H.; Lin, Y. F.; Luo, Z. D.; Huang, Y. D.

    2013-10-01

    Undoped and Er3+-doped Sr3Yb2(BO3)4 crystals were grown by the Czochralski method. Room temperature polarized spectral properties of the Er:Sr3Yb2(BO3)4 crystal were investigated. The efficiency of the energy transfer from Yb3+ to Er3+ ions in this crystal was calculated to be about 95%. End-pumped by a diode laser at 970 nm in a hemispherical cavity, a 0.75 W quasi-CW laser at 1.5-1.6 μm with a slope efficiency of 7% and an absorbed pump threshold of 3.8 W was achieved in a 0.5-mm-thick Z-cut crystal glued on a 5-mm-thick pure YAG crystal with UV-curable adhesive.

  7. An efficient polymeric micromotor doped with Pt nanoparticle@carbon nanotubes for complex bio-media.

    PubMed

    Li, Yana; Wu, Jie; Xie, Yuzhe; Ju, Huangxian

    2015-04-14

    A highly efficient polymeric tubular micromotor doped with Pt nanoparticle@carbon nanotubes is fabricated by template-assisted electrochemical growth. The micromotors preserve good navigation in multi-media and surface modification, along with simple synthesis, easy functionalization and good biocompatibility, displaying great promise in biological applications.

  8. Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping

    NASA Astrophysics Data System (ADS)

    Selleri, S.; Poli, F.; Passaro, D.; Cucinotta, A.; Lægsgaard, J.; Broeng, J.

    2009-05-01

    Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Ybdoped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has been applied to properly design the low refractive index ring in the fiber core, which can provide an increase of the differential overlap between the fundamental and the higher-order mode. Then, the gain competition among the guided modes along the Yb-doped rod-type fibers has been investigated with a spatial and spectral amplifier model. Simulation results have shown the effectiveness of the sectioned core doping in worsening the higher-order mode overlap on the doped area, thus providing an effective single-mode behavior of the Yb-doped rod-type photonic crystal fibers.

  9. Anisotropic Exchange within Decoupled Tetrahedra in the Quantum Breathing Pyrochlore Ba 3 Yb 2 Zn 5 O 11

    DOE PAGES

    Rau, J. G.; Wu, L. S.; May, A. F.; ...

    2016-06-24

    Tmore » he low energy spin excitation spectrum of the breathing pyrochlore Ba 3 Yb 2 Zn 5 O 11 has been investigated with inelastic neutron scattering. Several nearly resolution limited modes with no observable dispersion are observed at 250 mK while, at elevated temperatures, transitions between excited levels become visible. o gain deeper insight, a theoretical model of isolated Yb 3+ tetrahedra parametrized by four anisotropic exchange constants is constructed. he model reproduces the inelastic neutron scattering data, specific heat, and magnetic susceptibility with high fidelity. he fitted exchange parameters reveal a Heisenberg antiferromagnet with a very large Dzyaloshinskii-Moriya interaction. Ultimately, using this model, we predict the appearance of an unusual octupolar paramagnet at low temperatures and speculate on the development of inter-tetrahedron correlations.« less

  10. Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics.

    PubMed

    Xu, Caixia; Zhang, Jingwen; Zou, Yingyin K; Zhao, Hua

    2016-03-21

    The enhancement of green upconverted emission from the Er3+/Yb3+ co-doped (Pb,La)(Zr,Ti)O3 ceramic powder under a pumping light with a wavelength of 1480 nm was observed to be greater than 30 times that from the bulk of the same sample. Weak localization of light supported by the spatial profile of scattered light facilitated the three-photon process contributing to stronger green upconverted emission. Significant backward light amplification was also observed and studied in detail. Additionally, the distribution of the localization zones in the sample was investigated using a probing laser beam with a wavelength of 532 nm. The findings in this work could be used in improving the solar cell efficiency, modulating color, and designing smart devices.

  11. Observing spatio-temporal dynamics of excitable media using reservoir computing

    NASA Astrophysics Data System (ADS)

    Zimmermann, Roland S.; Parlitz, Ulrich

    2018-04-01

    We present a dynamical observer for two dimensional partial differential equation models describing excitable media, where the required cross prediction from observed time series to not measured state variables is provided by Echo State Networks receiving input from local regions in space, only. The efficacy of this approach is demonstrated for (noisy) data from a (cubic) Barkley model and the Bueno-Orovio-Cherry-Fenton model describing chaotic electrical wave propagation in cardiac tissue.

  12. Yb:S-FAP Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaffers, K I

    It has recently been reported that several high power, diode-pumped laser systems have been developed based on crystals of Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F]. The Mercury Laser, at Lawrence Livermore National Laboratory, is the most prominent system using Yb:S-FAP and is currently producing 23J at 5 Hz in a 15 nsec pulse, based on partial activation of the system. In addition, a regenerative amplifier is being developed at Waseda University in Japan and has produced greater than 12 mJ with high beam quality at 50Hz repetition rate. Q-peak has demonstrated 16 mJ of maximum energy/output pulse in a multi-pass,more » diode side-pumped amplifier and ELSA in France is implementing Yb:S-FAP in a 985 nm pump for an EDFA, producing 250 mW. Growth of high optical quality crystals of Yb:S-FAP is a challenge due to multiple crystalline defects. However, at this time, a growth process has been developed to produce high quality 3.5 cm diameter Yb:S-FAP crystals and a process is under development for producing 6.5 cm diameter crystals.« less

  13. Proceedings for Lunch and Learn: Making science fun and exciting through social media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biron, Lauren; Haffner, Julie; Nellist, Clara

    Social media channels are vital for outreach and offer huge opportunities for scientists to directly engage with the public using nontraditional methods – including lots of creativity and humor. The physics community’s presence is growing more significant, and this session (designed for early career researchers) provided a lively discussion with experts in the domain. We covered how to best use social media to raise public awareness of science, share excitement and progress, and cultivate support from followers. We also discussed some of the thornier issues in social media, such as capturing the complexity of both the scientific process and themore » science itself.« less

  14. Temperature dependent fluorescence spectra arise from change in excited-state intramolecular proton transfer potential of 4‧-N,N-dimethylamino-3-hydroxyflavone-doped acetonitrile crystals

    NASA Astrophysics Data System (ADS)

    Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi

    2016-01-01

    The effect of intermolecular interaction on excited-state intramolecular proton transfer (ESIPT) in 4‧-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring the temperature dependence of fluorescence excitation and fluorescence spectra. A solid/solid phase transition of DMHF-doped acetonitrile crystals occurred in the temperature between 210 and 218 K. Significant differences in the spectral profiles and shifts in the fluorescence spectra were observed in the low- and high-temperature regions of the phase transition. The temperature dependence of the ESIPT potential of DMHF is discussed.

  15. Electronic Structure of Ytterbium-Doped Strontium Fluoroapatite: Photoemission and Photoabsorption Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Art J.; Van Buuren, Tony W.; Bostedt, C

    X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium-doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure and Sr 3d, P 2p and 2s, Yb 4d and 4p, F 1s and O 1s core lines were used to evaluate the surface and near surface chemistry of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N4,5-edge), Sr 3d (M4,5-edge), P 2p (L2,3-edge), F 1s and O 1s (K-edges) absorption edges. These results provide themore » first measurements of the electronic structure and surface chemistry of this material.« less

  16. Characterization of bubble core and cloudiness in Yb3+:Sr5(PO4)3F crystals using Micro-Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Y; Roy, U N; Bai, L

    Ytterbium doped strontium fluoroapatite Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb: S-FAP) crystals have been used in High Average Power Laser systems as gain medium. Growth induced defects associated with the crystal often affect their performance. In order to improve the crystal quality and its optical applications, it is imperative to understand the nature of these defects. In this study, we utilize Micro-Raman spectroscopy to characterize two common growth-induced defects: bubble core and cloudiness. We find the bubble core consist of voids and microcrystals of Yb: S-FAP. These microcrystals have very different orientation from that of the pure crystal outside themore » bubble core. In contrast to a previous report, neither Sr{sub 3}(PO{sub 4}){sub 2} nor Yb{sub 2}O{sub 3} are observed in the bubble core regions. On the other hand, the cloudy regions are made up of the host materials blended with a structural deformation along with impurities which include CaCO{sub 3}, YbPO{sub 4}, SrHPO{sub 4} and Sr{sub 2}P{sub 2}O{sub 7}. The impurities are randomly distributed in the cloudy regions. This analysis is necessary for understanding and eliminating these growth defects in Yb:S-FAP crystals.« less

  17. Luminescence and Excitation Spectra of U 3+ doped RbY 2 Cl 7 Single Crystals

    DOE PAGES

    Karbowiak, M.; Murdoch, K.; Drożdżyński, J.; ...

    1996-08-01

    Uranium(3+) doped single crystals of RbY 2 Cl 7 with a uranium concentration of 0.05% and 0.2% were grown by the Bridgman-Stockbarger method using RbU 2 Cl 7 as the doping substance. Polished plates of ca. 5 mm in diameter were used for measurements of luminescence and excitation spectra. And since the U 3+ ions occupy two somewhat different site symmetries, a splitting of all observed f-f bands was observed. Furthermore, the analysis of the spectra enabled definitively an assignment of 22 crystal field bands for both site symmetries as well as the total crystal field splitting of the groundmore » level, equal to 473 cm -1 and 567 cm -1 for the first and second site symmetry, respectively.« less

  18. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun

    2017-11-01

    Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.

  19. Zero-field quantum critical point in Ce0.91Yb0.09CoIn5

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Adhikari, R. B.; Haney, D. J.; White, B. D.; Maple, M. B.; Dzero, M.; Almasan, C. C.

    2018-05-01

    We present results of specific heat, electrical resistance, and magnetoresistivity measurements on single crystals of the heavy-fermion superconducting alloy Ce0.91Yb0.09CoIn5 . Non-Fermi-liquid to Fermi-liquid crossovers are clearly observed in the temperature dependence of the Sommerfeld coefficient γ and resistivity data. Furthermore, we show that the Yb-doped sample with x =0.09 exhibits universality due to an underlying quantum phase transition without an applied magnetic field by utilizing the scaling analysis of γ . Fitting of the heat capacity and resistivity data based on existing theoretical models indicates that the zero-field quantum critical point is of antiferromagnetic origin. Finally, we found that at zero magnetic field the system undergoes a third-order phase transition at the temperature Tc 3≈7 K.

  20. Upconversion luminescence of CsScF4 crystals doped with erbium and ytterbium

    NASA Astrophysics Data System (ADS)

    Ikonnikov, D. A.; Voronov, V. N.; Molokeev, M. S.; Aleksandrovsky, A. S.

    2016-10-01

    Tetragonal CsScF4 crystals doped with (5 at.%) Er and Er/Yb (0.5 at.%/5 at.%) are grown and their crystal structure is determined to belong to Pmmn space group. Er and Yb ions are shown to occupy distorted octahedral Sc sites with the center of inversion. Bright visible upconversion luminescence was observed under 970-980 nm pumping with red (4F9/2), yellow (4S3/2) and green (2H11/2) bands of comparable intensity. UCL tuning curves maximize at 972 nm (CSF:Er) and at 969.7 nm (CSF:Er,Yb) pumping wavelengths. Different ratios between yellow-green and red luminescence intensities in CSF:Er and CSF:Er, Yb are explained by contribution of cross-relaxation in CSF:Er UCL. UC in CSF:Er is a three stage process while UC in CSF:Er, Yb is a two stage process. The peculiarities of power dependences are explained by the power-dependent repopulation between starting levels of UC.

  1. A "win-win" nanoplatform: TiO2:Yb,Ho,F for NIR light-induced synergistic therapy and imaging.

    PubMed

    Zhou, Jie; Luo, Pei; Sun, Chong; Meng, Lingchang; Ye, Weiran; Chen, Shanshan; Du, Bin

    2017-03-23

    To avoid the defect of low energy transfer efficiency in core-shell UCNP-TiO 2 NPs, doping rare earth into TiO 2 and improving the photocatalytic activity of TiO 2 itself under Vis-NIR light might be a more direct and efficient strategy for high 1 O 2 production. Here, we designed a TiO 2 :Yb,Ho,F-β-CD@DTX/HA nanoplatform using TiO 2 :Yb,Ho,F as the core, β-CD as the drug carrier, hyaluronic acid (HA) as the capping agent and target, and then applied it for 808 nm induced photodynamic-chemotherapy and 980 nm upconversion fluorescence/MR imaging. The results were as follows: (i) for TiO 2 as a photosensitizer, after doping Yb, Ho, F into TiO 2 , it could directly generate reactive oxygen species under an 808 nm laser; the dopants enhanced the absorption under the UV-Vis-NIR region and increased the electron-hole pair separation. (ii) For TiO 2 as the upconversion host, F and Ho also endowed TiO 2 :Yb,Ho,F with enhanced upconversion fluorescence under a 980 nm laser and T 2 -MRI contrast performance (r 2 = 30.71 mM -1 s -1 ), respectively, thus, facilitating imaging for deep tissues. (iii) The HA shell outside of β-CD prevented the unexpected leaking of DTX, which improved the target abilities and achieved the enzyme-responsive drug release. The in vitro and in vivo studies also demonstrated the nanosystem could efficiently suppress tumor growth by combination therapy and had excellent imaging (UCL/MR) ability. Particularly, our work was the first example that utilized TiO 2 simultaneously as a photosensitizer and upconversion host, which simplified the core-shell UCNP-TiO 2 nanocomposites and reached a "win-win" cooperation in NIR-induced photodynamic therapy and UCL imaging.

  2. Y{sub 2}O{sub 3}:Yb/Er nanotubes: Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Weishi; Shen, Jianfeng; Wan, Lei

    2012-11-15

    Graphical abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer assembly on carbon nanotubes templates followed by a subsequent heat treatment process. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm. Display Omitted Highlights: ► Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized. ► CNTs were used as templates for Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► LBL assembly and calcination were used for preparation of Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► The as-preparedmore » Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission. -- Abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer (LBL) assembly on carbon nanotubes (CNTs) templates followed by a subsequent heat treatment process. The crystal structure, element analysis, morphology and upconversion luminescence properties were characterized. XRD results demonstrate that the diffraction peaks of the samples calcinated at 800 °C or above can be indexed to the pure cubic phase of Y{sub 2}O{sub 3}. SEM images indicate that a large quantity of uniform and rough nanotubes with diameters of about 30–60 nm can be observed. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm, which have potential applications in such fields as nanoscale devices, molecular catalysts, nanobiotechnology, photonics and optoelectronics.« less

  3. Plasmon-photon conversion to near-infrared emission from Yb(3+): (Au/Ag-nanoparticles) in tungsten-tellurite glasses.

    PubMed

    Rivera, V A G; Ledemi, Yannick; Pereira-da-Silva, Marcelo A; Messaddeq, Younes; Marega, Euclydes

    2016-01-04

    This manuscript reports on the interaction between (2)F5/2→(2)F7/2 radiative transition from Yb(3+) ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb(3+) emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb(3+) ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb(3+) ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity's quality factor (Q) and the coupling (g) between the nanoparticles and the Yb(3+) ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb(3+) ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance.

  4. Plasmon-photon conversion to near-infrared emission from Yb3+: (Au/Ag-nanoparticles) in tungsten-tellurite glasses

    PubMed Central

    Rivera, V. A. G.; Ledemi, Yannick; Pereira-da-Silva, Marcelo A.; Messaddeq, Younes; Marega Jr, Euclydes

    2016-01-01

    This manuscript reports on the interaction between 2F5/2→2F7/2 radiative transition from Yb3+ ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb3+ emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb3+ ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb3+ ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity’s quality factor (Q) and the coupling (g) between the nanoparticles and the Yb3+ ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb3+ ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance. PMID:26725938

  5. Ti : sapphire laser synchronised with femtosecond Yb pump laser via nonlinear pulse coupling in Ti : sapphire active medium

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Konyashchenko, D. A.; Kostryukov, P. V.; Kuritsyn, I. I.; Lutsenko, A. P.; Mavritskiy, A. O.

    2017-02-01

    A laser system utilising the method of synchronous pumping of a Ti : sapphire laser by a high-power femtosecond Yb3+-doped laser is described. The pulse repetition rate of the Ti : sapphire laser is successfully locked to the repetition rate of the Yb laser for more than 6 hours without the use of any additional electronics. The measured timing jitter is shown to be less than 1 fs. A simple qualitative model addressing the synchronisation mechanism utilising the cross-phase modulation of oscillation and pump pulses within a Ti : sapphire active medium is proposed. Output parameters of the Ti : sapphire laser as functions of its cavity length are discussed in terms of this model.

  6. Correspondence between discrete and continuous models of excitable media: trigger waves

    NASA Technical Reports Server (NTRS)

    Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.

    1997-01-01

    We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.

  7. Spin excitations in optimally P-doped BaFe 2 ( As 0.7 P 0.3 ) 2 superconductor

    DOE PAGES

    Hu, Ding; Yin, Zhiping; Zhang, Wenliang; ...

    2016-09-02

    We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe 2(As 0:7P 0:3) 2 superconductor (T c = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe 2As 2 stem from antiferromagnetic (AF) ordering wave vector QAF = ( 1; 0) and peaks near zone boundary at ( 1; 1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe 2(As 0:7P 0:3) 2 form a resonance in the superconducting state and high-energy spin excitations nowmore » peaks around 220 meV near ( 1; 1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe 2(As 0:7P 0:3) 2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.« less

  8. Enhanced light emission near 2.7 μm from Er-Nd co-doped germanate glass

    NASA Astrophysics Data System (ADS)

    Bai, Gongxun; Tao, Lili; Li, Kefeng; Hu, Lili; Tsang, Yuen Hong

    2013-04-01

    Laser glass gain medium that can convert low cost 808 nm diode laser into 2.7 μm has attracted considerable interest due to its potential application for medical surgery fiber laser system. In this study, enhanced 2.7 μm emission has been achieved in Er3+:germanate glass by co-doping with Nd3+ ions under the excitation of an 808 nm diode laser. In the co-doped sample, the experimental results show that the harmful visible emissions via up-conversion were effectively restricted. The reduction of 1.5 μm emission was also detected in the co-doped sample, which indicates significant de-excitation of 4I13/2 Er3+ ion through energy transfer and non-radiative decay in Nd3+ ions. In conclusion, the 2.7 μm emission enhancement achieved was due to the increased optical absorption of 808 nm, efficient energy transfer (ET) with efficiency of 81.73% between Er3+ and Nd3+ ions, and shortening the lifetime of the lower lasing level 4I13/2 Er3+ in the co-doped sample. Therefore, Er3+/Nd3+ co-doped germanate glass could be used to fabricate fiber optical gain media for 2.7 μm laser generation.

  9. Rugosity and hardness determination in obsidianus lapis for the design of an Yb3+-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Alvarez-Chavez, J. A.; Aguilar-Morales, A. I.; Perez-Sanchez, G. G.; Morales-Ramirez, A. J.

    2015-01-01

    Obsidianus lapis is a volcanic rock that has been worked into tools for cutting or weaponry by Teotihuacan people for hundreds of years. Currently, it is used in jewelry or for house decorative items such as elaborated sculptures. From the physico-chemical properties point of view, obsidianus lapis is considered a glass as its composition is 80% silicon dioxide. In México, there are different kinds of obsidianus lapis which are classified according to its colour: rainbow, black, brown, red, silver, golden and snowflake. The traditional grinding process for working with obsidianus lapis includes fixed grinders and sandpaper for the polishing process, where the craftsman grinds the rock manually for obtaining a variety of shapes. Laser processing of natural stones is a relatively new area. We propose the use of an Yb3+-doped fibre laser for cutting and ablating obsidianus lapis into spherical, rectangular and oval shapes. By means of a theoretical analysis of roughness and hardness, which affect the different surfaces and final shapes, and by considering the changes in material temperature during laser interaction, this work will focus on parameter determination such as: laser fluence, incidence angle, laser average power and peak pulse energy, from the proposed Q-switched fibre laser design. Full optical, hardness and rugosity, initial and final characterization will be included in the presentation.

  10. Energy transfer and visible-infrared quantum cutting photoluminescence modification in Tm-Yb codoped YPO(4) inverse opal photonic crystals.

    PubMed

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2015-08-01

    YPO4:  Tm, Yb inverse opal photonic crystals were successfully synthesized by the colloidal crystal templates method, and the visible-infrared quantum cutting (QC) photoluminescence properties of YPO4:  Tm, Yb inverse opal photonic crystals were investigated. We obtained tetragonal phase YPO4 in all the samples when the samples sintered at 950°C for 5 h. The visible emission intensity of Tm3+ decreased significantly when the photonic bandgap was located at 650 nm under 480 nm excitation. On the contrary, the QC emission intensity of Yb3+ was enhanced as compared with the no photonic bandgap sample. When the photonic bandgap was located at 480 nm, the Yb3+ and Tm3+ light-emitting intensity weakened at the same time. We demonstrated that the energy transfer between Tm3+ and Yb3+ is enhanced by the suppression of the red emission of Tm3+. Additionally, the mechanisms for the influence of the photonic bandgap on the energy transfer process of the Tm3+, Yb3+ codoped YPO4 inverse opal are discussed.

  11. Photoemission and Photoabsorption Investigation of the Electronic Structure of Ytterbium Doped Strontium Fluoroapatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, A J; van Buuren, T; Bostedt, C

    X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure was used to evaluate the density of occupied states of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N{sub 4,5}-edge), Sr 3d (M{sub 4,5}-edge), P 2p (L{sub 2,3}-edge), F 1s and O 1s (K-edges) absorption edges. These results provide the first measurements of the electronic structure and surface chemistry of this material.

  12. Yb7Ni4InGe12: a quaternary compound having mixed valent Yb atoms grown from indium flux.

    PubMed

    Subbarao, Udumula; Jana, Rajkumar; Chondroudi, Maria; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G; Peter, Sebastian C

    2015-03-28

    The new intermetallic compound Yb7Ni4InGe12 was obtained as large silver needle shaped single crystals from reactive indium flux. Single crystal X-ray diffraction suggests that Yb7Ni4InGe12 crystallizes in the Yb7Co4InGe12 structure type, and tetragonal space group P4/m and lattice constants are a = b = 10.291(2) Å and c = 4.1460(8) Å. The crystal structure of Yb7Ni4InGe12 consists of columnar units of three different types of channels filled with the Yb atoms. The crystal structure of Yb7Ni4InGe12 is closely related to Yb5Ni4Ge10. The effective magnetic moment obtained from the magnetic susceptibility measurements in the temperature range 200-300 K is 3.66μB/Yb suggests mixed/intermediate valence behavior of ytterbium atoms. X-ray absorption near edge spectroscopy (XANES) confirms that Yb7Ni4InGe12 exhibits mixed valence.

  13. UV-visible-NIR light generation through frequency upconversion in Tm3+-doped low silica calcium aluminosilicate glasses using multiple excitation around 1.2 μm

    NASA Astrophysics Data System (ADS)

    Trindade, C. M.; Rego-Filho, F. G.; Astrath, N. G. C.; Jacinto, C.; Gouveia-Neto, A. S.

    2018-04-01

    Intense ultraviolet upconversion emission was produced in single Tm3+-doped OH--free low silica calcium aluminosilicate glasses. A new excitation route based upon multi-Stokes Raman emissions generated in an optical fiber pumped at 1.064 μm, and exploiting the absorption band around 1.2 μm by means of the 3H5 thulium excited state, was used. Furthermore, the other bands of the stimulated Raman scattering spectrum resonantly enhances all the upconversion processes, resulting in efficient ultraviolet (295 nm, 360 nm), blue (456 nm, 480 nm), red (650 nm, 667 nm), and near-infrared (800 nm) emissions. The population of the 1P0, 1D2, 1G4, 3F2 and 3H4 excited-state emitting levels was accomplished through stepwise multi-photon absorption. Results indicate competing cross-relaxation processes involving Tm3+ ion-pairs producing UV emission population quenching Simplified energy-level diagram of Tm3+- doped sample excited using multi-stokes emissions. The λp indication describes all excitation wavelengths, represented by a single arrow for the sake of simplicity.

  14. Etudes optiques de nouveaux materiaux laser: Des orthosilicates dopes a l'ytterbium: Le yttrium (lutetium,scandium) pentoxide de silicium

    NASA Astrophysics Data System (ADS)

    Denoyer, Aurelie

    La decouverte et l'elaboration de nouveaux materiaux laser solides suscitent beaucoup d'interet parmi la communaute scientifique. En particulier les lasers dans la gamme de frequence du micron debouchent sur beaucoup d'applications, en telecommunication, en medecine, dans le domaine militaire, pour la, decoupe des metaux (lasers de puissance), en optique non lineaire (doublage de frequence, bistabilite optique). Le plus couramment utilise actuellement est le Nd:YAG dans cette famille de laser, mais des remplacants plus performants sont toujours recherches. Les lasers a base d'Yb3+ possedent beaucoup d'avantages compares aux lasers Nd3+ du fait de leur structure electronique simple et de leur deterioration moins rapide. Parmi les matrices cristallines pouvant accueillir l'ytterbium, les orthosilicates Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5 se positionnent tres bien, du fait de leur bonne conductivite thermique et du fort eclatement de leur champ cristallin necessaire a l'elaboration de lasers quasi-3 niveaux. De plus l'etude fine et systematique des proprietes microscopiques de nouveaux materiaux s'avere toujours tres interessante du point de vue de la recherche fondamentale, c'est ainsi que de nouveaux modeles sont concus (par exemple pour le champ cristallin) ou que de nouvelles proprietes inhabituelles sont decouvertes, menant a de nouvelles applications. Ainsi d'autres materiaux dopes a l'ytterbium sont connus pour leurs proprietes de couplage electron-phonon, de couplage magnetique, d'emission cooperative ou encore de bistabilite optique, mais ces proprietes n'ont encore jamais ete mises en evidence dans Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5. Ainsi, cette these a pour but l'etude des proprietes optiques et des interactions microscopiques dans Yb:Y2SiO 5, Yb:Lu2SiO5 et Yb:Sc2SiO5. Nous utilisons principalement les techniques d'absorption IR et de spectroscopie Raman pour determiner les excitations du champ cristallin et les modes de vibration dans le materiau

  15. Influence of doping on thermal diffusivity of single crystals used in photonics: measurements based on thermal wave methods.

    PubMed

    Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław

    2009-03-01

    Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally.

  16. Stabilization of Fermi level via electronic excitation in Sn doped CdO thin films

    NASA Astrophysics Data System (ADS)

    Das, Arkaprava; Singh, Fouran

    2018-04-01

    Pure and Sn doped CdO sol-gel derived thin films were deposited on corning glass substrate and further irradiated by swift heavy ion (SHI) (Ag and O) with fluence upto 3×1013 ions/cm2. The observed tensile stress from X-ray diffraction pattern at higher fluence for Ag ions can be corroborated to the imbrications of cylindrical tracks due to multiple impacts. The anomalous band gap enhancement after irradiation may be attributed to the consolidated effect of Burstein-Moss shift (BMS) and impurity induced virtual gap states (ViGs). At higher excitation density as Fermi stabilization level (EFS) tends to coincide with charge neutrality level (CNL), band gap enhancement saturates as further creation of additional defects inside the lattice becomes unsustainable. Raman spectroscopy divulges an intensity enhancement of 478 cm-1 LO phonon mode with Sn doping and irradiation induces further asymmetric peak broadening due to damage and disordering inside the lattice. However for 3% Sn doped thin film irradiated with Ag ions having 3×1013 fluence shows a drastic change in structural properties and reduction in band gap which might be attributed to the generation of localized energy levels between conduction and valance band due to high density of defects.

  17. Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media

    NASA Technical Reports Server (NTRS)

    Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.

    1998-01-01

    The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.

  18. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    PubMed

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles.

  19. Synthesis and evaluation of rare-earth doped glasses and crystals for optical refrigeration

    NASA Astrophysics Data System (ADS)

    Patterson, Wendy

    This research focused on developing and characterizing rare-earth doped, solid-state materials for laser cooling. In particular, the work targeted the optimization of the lasercooling efficiency in Yb3+ and Tm3+ doped fluorides. The first instance of laser-induced cooling in a Tm3+-doped crystal, BaY2F8 was reported. Cooling by 3 degrees Kelvin below ambient temperature was obtained in a single-pass pump geometry at lambda = 1855 nm. Protocols were developed for materials synthesis and purification which can be applied to each component of ZBLANI:Yb 3+/Tm3+ (ZrF4 -- BaF2 -- LaF3 -- AlF3 -- NaF -- InF3: YbF3/TmF3) glass to enable a material with significantly reduced transition-metal impurities. A method for OH- impurity removal and ultra-drying of the metal fluorides was also improved upon. Several characterization tools were used to quantitatively and qualitatively verify purity, including inductively-coupled plasma mass spectrometry (ICP-MS). Here we found a more than 600-fold reduction in transition-metal impurities in a ZrCl2O solution. A non-contact spectroscopic technique for the measurement of laser-induced temperature changes in solids was developed. Two-band differential luminescence thermometry (TBDLT) achieved a sensitivity of ˜7 mK and enabled precise measurement of the zero-crossing temperature and net quantum efficiency. Several Yb3+-doped ZBLANI glasses fabricated from precursors of varying purity and by different processes were analyzed in detail by TBDLT. Laser-induced cooling was observed at room temperature for several of the materials. A net quantum efficiency of 97.39+/-0.01% at 238 K was found for the best ZBLANI:1%Yb 3+ laser-cooling sample produced from purified metal-fluoride precursors, and proved competitive with the best commercially procured material. The TBDLT technique enabled rapid and sensitive benchmarking of laser-cooling materials and provided critical feedback to the development and optimization of high-performance optical

  20. Self-propagating high-temperature synthesis and luminescent properties of ytterbium doped rare earth (Y, Sc, Lu) oxides nanopowders

    NASA Astrophysics Data System (ADS)

    Permin, D. A.; Novikova, A. V.; Balabanov, S. S.; Gavrishchuk, E. M.; Kurashkin, S. V.; Savikin, A. P.

    2018-04-01

    This paper describes a comparative study of structural and luminescent properties of 5%Yb-doped yttrium, scandium, and lutetium oxides (Yb:RE2O3) powders and ceramics fabricated by self-propagating high-temperature synthesis. According to X-ray diffractometry and electron microscopy the chosen method ensures preparation of low-agglomerated cubic Ctype crystal structured powders at one step. No crucial differences in luminescence spectra were found the Yb:RE2O3 powders and ceramics. It was shown that the emission lifetimes of the Yb:RE2O3 powders are lowered by crystal structure defects, while its values for ceramics samples are compared to that of monocrystals and more influenced by rare earth impurities.

  1. Doped luminescent materials and particle discrimination using same

    DOEpatents

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  2. [Color-tunable nano-material alpha-NaYF4 : Yb, Er, Tm prepared by microemulsion-hydrothermal method].

    PubMed

    Long, Dan-Dan; Zhang, Qing-Xia; Wang, Yu; Zhang, Fan; Wang, Yan-Fei; Zhou, Xin; Qi, Xiao-Hua; Zhang, Heng; Yan, Jing-Hui; Zou, Ming-Qiang

    2013-08-01

    NaYF4 : Yb3+, Er3+, Tm3+ nanoparticles were prepared by microemulsion-hydrothermal method. Crystal phase, morphology and structure of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The luminescence properties were studied by up-conversional fluorescence spectroscopy. The XRD patterns of as-prepared samples were in agreement with the PDF # 77-2042 of cubic NaYF4. SEM images of the particles showed that the samples were cotton-like spherical in shape and which were assembled by smaller nano-particles. The average size was 120 nm, while the shape was regular and the particle size was homogeneous. Under the excitation of 980 nm, the as-prepared particles could emit blue (438 and 486 nm), green (523 and 539 nm) and red (650 nm) light simultaneously. It can be seen from the color coordinates figure (CIE) that when doping concentration ratio of Tm3+ and E3+ increased from 0 to 2, the whole emitting light color of samples movedto green region. While the ratio was 1 : 1, pseudo white light was obtained. As the ratio changed from 2 to 7, the luminous color was moved to red region.

  3. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time.

    PubMed

    Hwang, Yoon-Hyung; Kim, Soon-Kap; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-04-01

    Rice Os NF - YB and Os NF - YC complement the late flowering phenotype of Arabidopsis nf - yb double and nf - yc triple mutants, respectively. In addition, OsNF-YB and OsNF-YC interact with AtNF-YC and AtNF-YB, respectively. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein-protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  4. Synthesis, Structural Characterization and Up-Conversion Luminescence Properties of NaYF4:Er3+,Yb3+@MOFs Nanocomposites

    NASA Astrophysics Data System (ADS)

    Giang, Lam Thi Kieu; Marciniak, Lukasz; Huy, Tran Quang; Vu, Nguyen; Le, Ngo Thi Hong; Binh, Nguyen Thanh; Lam, Tran Dai; Minh, Le Quoc

    2017-10-01

    This paper describes a facile synthesis of NaYF4:Er3+,Yb3+ nanoparticles embraced in metal-organic frameworks (MOFs), known as NaYF4:Er3+, Yb3+@MOFs core/shell nanostructures, by using iron(III) carboxylate (MIL-100) and zeolitic imidazolate frameworks (ZIF-8). Morphological, structural and optical characterization of these nanostructures were investigated by field emission-scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, and up-conversion luminescence measurements. Results showed that spherical-shaped NaYF4:Er3+,Yb3+@MIL-100 nanocomposites with diameters of 150-250 nm, and rod-shaped NaYF4:Er3+,Yb3+@ZIF-8 nanocomposites with lengths of 300-550 nm, were successfully synthesized. Under a 980-nm laser excitation at room temperature, the NaYF4:Er3+,Yb3+@MOFs nanocomposites exhibited strong up-conversion luminescence with two emission bands in the green part of spectrum at 520 nm and 540 nm corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ ions, respectively, and a red emission band at 655 nm corresponding to the 4F9/2 → 4I15/2 transition of Er3+ ions. The above properties of NaYF4:Er3+,Yb3+@MOFs make them promising candidates for applications in biotechnology.

  5. Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing.

    PubMed

    Bednarkiewicz, A; Wawrzynczyk, D; Gagor, A; Kepinski, L; Kurnatowska, M; Krajczyk, L; Nyk, M; Samoc, M; Strek, W

    2012-04-13

    Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner, which may lead to many applications like 2D and 3D data storage, anti-counterfeiting protection, novel design bio-sensors and, potentially, to fabrication of metamaterials, 3D photonic crystals or plasmonic devices. Here we demonstrate irreversible spatially confined infrared-laser-induced annealing (LIA) achieved in a thin layer of dried colloidal solution of ultra-small ∼8 nm NaYF₄ nanocrystals (NCs) co-doped with 2% Er³⁺ and 20% Yb³⁺ ions under a localized tightly focused beam from a continuous wave 976 nm medium power laser diode excitation. The LIA results from self-heating due to non-radiative relaxation accompanying the NIR laser energy upconversion in lanthanide ions. We notice that localized LIA appears at optical power densities as low as 15.5 kW cm⁻² (∼354 ± 29 mW) threshold in spots of 54 ± 3 µm diameter obtained with a 10 × microscope objective. In the course of detailed studies, a complete recrystallization to different phases and giant 2-3 order enhancement in luminescence yield is found. Our results are highly encouraging and let us conclude that the upconverting ultra-small lanthanide-doped nanophosphors are particularly promising for direct laser writing applications.

  6. 100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier

    NASA Astrophysics Data System (ADS)

    Smith, J. M.; Butcher, T. J.; Mason, P. D.; Ertel, K.; Phillips, P. J.; Banerjee, S.; De Vido, M.; Chekhlov, O.; Divoky, M.; Pilar, J.; Shaikh, W.; Hooker, C.; Lucianetti, A.; Hernandez Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2018-02-01

    We report on the successful demonstration of the world's first kW average power, 100 Joule-class, high-energy, nanosecond pulsed diode-pumped solid-state laser (DPSSL), DiPOLE100. Results from the first long-term test for amplification will be presented; the system was operated for 1 hour with 10 ns duration pulses at 10 Hz pulse repetition rate and an average output energy of 105 J and RMS energy stability of approximately 1%. The laser system is based on scalable cryogenic gas-cooled multi-slab ceramic Yb:YAG amplifier technology. The DiPOLE100 system comprises three major sub-systems, a spatially and temporally shaped front end, a 10 J cryo-amplifier and a 100 J cryo-amplifier. The 10 J cryo-amplifier contain four Yb:YAG ceramic gain media slabs, which are diode pumped from both sides, while a multi-pass architecture configured for seven passes enables 10 J of energy to be extracted at 10 Hz. This seeds the 100 J cryo-amplifier, which contains six Yb:YAG ceramic gain media slabs with the multi-pass configured for four passes. Our future development plans for this architecture will be introduced including closed-loop pulse shaping, increased energy, higher repetition rates and picosecond operation. This laser architecture unlocks the potential for practical applications including new sources for industrial materials processing and high intensity laser matter studies as envisioned for ELI [1], HiLASE [2], and the European XFEL [3]. Alternatively, it can be used as a pump source for higher repetition rate PW-class amplifiers, which can themselves generate high-brightness secondary radiation and ion sources leading to new remote imaging and medical applications.

  7. Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging.

    PubMed

    Qin, Qing-Song; Zhang, Pei-Zhi; Sun, Ling-Dong; Shi, Shuo; Chen, Nai-Xiu; Dong, Hao; Zheng, Xiao-Yu; Li, Le-Min; Yan, Chun-Hua

    2017-04-06

    Lanthanide-doped luminescent nanoparticles with both emission and excitation in the near-infrared (NIR-to-NIR) region hold great promise for bioimaging. Herein, core@shell structured LiLuF 4 :Nd@LiLuF 4 (named as Nd@Lu) nanoparticles (NPs) with highly efficient NIR emission were developed for high-performance in vivo bioimaging. Strikingly, the absolute quantum yield of Nd@Lu NPs reached as high as 32%. After coating with polyethylene glycol (PEG), the water-dispersible Nd@Lu NPs showed good bio-compatibility and low toxicity. With efficient NIR emission, the Nd@Lu NPs were clearly detectable in tissues at depths of up to 20 mm. In addition, long-term in vivo biodistribution with a high signal-to-noise ratio of 25.1 was distinctly tracked upon an ultralow-power-density excitation (10 mW cm -2 ) of 732 nm for the first time.

  8. Latent fingermark detection for NaYF4:Er3+/Yb3+ upconversion phosphor synthesized by thermal decomposition route

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Tiwari, S. P.; Kumar, A.; Kumar, K.

    2018-04-01

    The synthesis and spectroscopy of the upconverting nanoparticles, cubic NaYF4:Er3+/Yb3+ phosphor is developed for latent fingermark detection. The cubic phase of NaYF4: Er3+/Yb3+ phosphor is synthesized by thermal decomposition method using trifluoroacetate precursor with coordinating ligand octadecene and oleic acid in a mixture of technical grade. The synthesized samples showed intense green emission using 976 nm diode laser as an excitation source. Because of excellent property of luminescence in green regime the sample is used to detect the latent fingermark on a porous glass surface.

  9. Electronic excitations in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Unger, P.; Fulde, P.

    1995-04-01

    We calculate the electronic single-particle spectrum of an electron-doped cuprate superconductor such as Nd2-xCexCuO4-y. The dynamics of holes in the Cu-O planes is described by the extended Hubbard or Emery model. We consider the system at half-filling (one hole per unit cell, nh=1) and in the case of electron doping where the ground state is paramagnetic. The projection technique of Mori and Zwanzig is applied to derive the equations of motion for the Green's functions of Cu and O holes. These equations are solved self-consistently as in a previous calculation, where we considered the case of hole doping. At half-filling the system exhibits a charge-transfer gap bounded by Zhang-Rice singlet states and the upper Hubbard band. Upon electron doping the upper Hubbard band crosses the Fermi level and the system becomes metallic. With increasing electron doping the singlet band loses intensity and finally vanishes for nh=0. The corresponding spectral weight is transferred to the upper Hubbard band, which becomes a usual tight-binding band for zero hole concentration. The shape of the flat band crossing the Fermi level fits well to angle-resolved photoemission spectra of Nd2-xCexCuO4-y for x=0.15 and 0.22. Furthermore, our findings are in excellent agreement with exact diagonalization studies of 2×2 CuO2 cluster with periodic boundary conditions.

  10. Labeling of HeLa cells using ZrO2:Yb3+-Er3+ nanoparticles with upconversion emission

    NASA Astrophysics Data System (ADS)

    Ceja-Fdez, Andrea; López-Luke, Tzarara; Oliva, Jorge; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana Lilia; Rojas, Ruben A. Rodriguez; Martínez-Pérez, Andrea; de la Rosa, Elder

    2015-04-01

    This work reports the synthesis, structural characterization, and optical properties of ZrO2:Yb3+-Er3+ (2-1 mol%) nanocrystals. The nanoparticles were coated with 3-aminopropyl triethoxysilane (APTES) and further modified with biomolecules, such as Biotin-Anti-rabbit (mouse IgG) and rabbit antibody-AntiKi-67, through a conjugation method. The conjugation was successfully confirmed by Fourier transform infrared, zeta potential, and dynamic light scattering. The internalization of the conjugated nanoparticles in human cervical cancer (HeLa) cells was followed by two-photon confocal microscopy. The ZrO2:Yb3+-Er3+ nanocrystals exhibited strong red emission under 970-nm excitation. Moreover, the luminescence change due to the addition of APTES molecules and biomolecules on the nanocrystals was also studied. These results demonstrate that ZrO2:Yb3+-Er3+ nanocrystals can be successfully functionalized with biomolecules to develop platforms for biolabeling and bioimaging.

  11. Dehybridization of f and d states in the heavy-fermion system YbRh 2 Si 2

    DOE PAGES

    Leuenberger, D.; Sobota, J. A.; Yang, S. -L.; ...

    2018-04-06

    Here, we report an optically induced reduction of the f-d hybridization in the prototypical heavy-fermion compound YbRh 2Si 2. We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4f and Rh 4d states before the lattice temperature increases after pumping. Overall, the f-d hybridization decreases smoothly with increasing electronic temperature up to ~ 250 K but changes slope at ~ 100 K. This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, wemore » observe a persistent f-d hybridization up to at least ~ 250 K, which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.« less

  12. Dehybridization of f and d states in the heavy-fermion system YbRh 2 Si 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuenberger, D.; Sobota, J. A.; Yang, S. -L.

    Here, we report an optically induced reduction of the f-d hybridization in the prototypical heavy-fermion compound YbRh 2Si 2. We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4f and Rh 4d states before the lattice temperature increases after pumping. Overall, the f-d hybridization decreases smoothly with increasing electronic temperature up to ~ 250 K but changes slope at ~ 100 K. This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, wemore » observe a persistent f-d hybridization up to at least ~ 250 K, which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.« less

  13. Security writing application of thermal decomposition assisted NaYF4:Er3+/Yb3+ upconversion phosphor

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Tiwari, S. P.; Esteves da Silva, Joaquim C. G.; Kumar, K.

    2018-07-01

    The authors have synthesized water-dispersible NaYF4:Er3+/Yb3+ upconversion particles via a thermal decomposition route and optimized the green upconversion emission through a concentration variation of the Yb3+ sensitizer. The prepared particles were found to be ellipsoid in shape having an average particle dimension of 600  ×  150 nm. It is observed that the sample with 18 mmol% Yb3+ ion concentration and 2 mmol% Er3+ ion gives optimum upconversion intensity in the green region under 980 nm excitation. Colloidal dispersibility of the sample in different solvents was checked and hexane was found to be the best medium for the prepared particles. The particle size of the sample was found to be suitable for the preparation of colloidal ink and security writing on a plain sheet of paper. This was demonstrated successfully using ink prepared in polyvinyl chloride gold medium.

  14. Dehybridization of f and d states in the heavy-fermion system YbRh2Si2

    NASA Astrophysics Data System (ADS)

    Leuenberger, D.; Sobota, J. A.; Yang, S.-L.; Pfau, H.; Kim, D.-J.; Mo, S.-K.; Fisk, Z.; Kirchmann, P. S.; Shen, Z.-X.

    2018-04-01

    We report an optically induced reduction of the f -d hybridization in the prototypical heavy-fermion compound YbRh2Si2 . We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4 f and Rh 4 d states before the lattice temperature increases after pumping. Overall, the f -d hybridization decreases smoothly with increasing electronic temperature up to ˜250 K but changes slope at ˜100 K . This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, we observe a persistent f -d hybridization up to at least ˜250 K , which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.

  15. Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals.

    PubMed

    Zhou, Jia-Cai; Yang, Zheng-Lin; Dong, Wei; Tang, Ruo-Jin; Sun, Ling-Dong; Yan, Chun-Hua

    2011-12-01

    In vitro or in vivo bioimaging utilizing the upconversion (UC) luminescence of rare earth fluoride nanocrystals (NCs) has attracted much attention, especially for Yb(3+)/Tm(3+) doped NCs with a near-infrared (NIR) UC emission at 800 nm. Herein, water-soluble NaYF(4):Yb,Tm NCs with strong NIR UC emission were synthesized with a solvothermal method. In vitro and in vivo bioimaging and toxicity assessments were carried out with HeLa cell and Caenorhabditis elegans (C. elegans) cases, respectively. NaYF(4):Yb,Tm NCs afforded an efficient NIR image of the HeLa cells with an incubation concentration of 10 μg mL(-1), and CCK-8 assay revealed a low cytotoxicity. Fed with Escherichia coli (E. coli) and NCs together, the C. elegans showed a NIR image in the gut from the pharynx to the anus. Further, these NCs could be excreted out when those worms were then fed with only E. coli. Toxicity studies were further addressed with protein expression, life span, egg production, egg viability, and growth rate of the worms in comparison with those of the intact ones. The feeding of rare earth fluoride NCs with a dose of 100 μg does not arise obvious toxicity effect from the growth to procreation. The in vitro and in vivo studies confirm that NaYF(4):Yb,Tm NCs could be served as an excellent NIR emission bioprobe with low toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Real-space visualization of remnant Mott gap and magnon excitations.

    PubMed

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  17. Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors

    NASA Astrophysics Data System (ADS)

    Pang, Tao; Wang, Jiajun

    2018-01-01

    The hexagonal NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors are synthesized by a hydrothermal method. Under 980 nm excitation, the phosphor emits green, red and far-red light in the visible wavelength region, corresponding to the 5S2/5F4 → 5I8, 5F5 → 5I8 and 5S2/5F4 → 5I7 transitions of Ho3+ ions, respectively. When adjusting the Ce3+ concentration from 0% to 16%, the dominant wavelength shifts ˜43 nm toward the longer wavelength. Two cross-relaxation processes between Ho3+ and Ce3+ are responsible for the change in chromaticity. Also, the ability of the Ce3+ concentration to regulate the luminescence color depends on the pumping power and temperature of samples. More interestingly, the phosphors are potentially applicable as the optical thermometric materials. In the case of 16% Ce3+ doping, the maximum sensitivity (0.1446 K-1) about 4-35 times as high as the reported values of several typical thermometric materials is obtained.

  18. Enhancement of red upconversion emission of cubic phase NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wei, E-mail: gaowei@xupt.edu.com; Dong, Jun, E-mail: dongjun@xupt.edu.cn; Liu, Jihong

    Highlights: • The upconversion emission of Ho{sup 3+} ions was tuned from green to red. • The upconversion mechanism of Ho{sup 3+} ions was discussed based on emission spectrum. • The conversion efficiency between Ho{sup 3+} and Ce{sup 3+} were studied and calculated. - Abstract: The red upconversion emission of lanthanide-doped fluoride nanocrystals have great potential applications in color display and anticounterfeiting applications, especially for biological imaging and biomedical. In this work, a significant enhancement of red upconversion emission of Ho{sup 3+} ions was successfully obtained in the cubic phase NaLuF{sub 4} nanocrystals through codoping Ce{sup 3+} ions under NIRmore » 980 nm excitation. The ratio of red-to-green emission of Ho{sup 3+} ions was enhanced about 10-fold, which is due to two efficient cross relaxation processes derived from Ho{sup 3+} and Ce{sup 3+} ions promoted the red emission and quenched the green emission. The upconversion emission and luminescent colors of NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+} nanocrystals were carefully investigated by a confocal microscopy setup. The possible upconversion emission mechanism and conversion efficiency of cross relaxation between Ho{sup 3+} and Ce{sup 3+} ions were discussed in detail. The current study suggests that strong red emission of NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} nanomaterials can be used for color display and anticounterfeiting techniques.« less

  19. Four nucleocytoplasmic-shuttling proteins and p53 interact specifically with the YB-NLS and are involved in anticancer reagent-induced nuclear localization of YB-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toru; Ohashi, Sachiyo; Kobayashi, Shunsuke

    In cancer cells, anticancer reagents often trigger nuclear accumulation of YB-1, which participates in the progression of cancer malignancy. YB-1 has a non-canonical nuclear localization signal (YB-NLS). Here we found that four nucleocytoplasmic-shuttling RNA-binding proteins and p53 interact specifically with the YB-NLS and co-accumulate with YB-1 in the nucleus of actinomycin D-treated cells. To elucidate the roles of these YB-NLS-binding proteins, we performed a dominant-negative experiment in which a large excess of YB-NLS interacts with the YB-NLS-binding proteins, and showed inhibitory effects on actinomycin D-induced nuclear transport of endogenous YB-1 and subsequent MDR1 gene expression. Furthermore, the YB-NLS-expressing cells weremore » also found to show increased drug sensitivity. Our results suggest that these YB-NLS-associating proteins are key factors for nuclear translocation/accumulation of YB-1 in cancer cells. - Highlights: • Four nucleocytoplasmic-shuttling proteins and p53 associate with YB-NLS. • They showed nuclear co-accumulation with YB-1 in actinomycin D-treated cells. • Overexpression of YB-NLS was carried out to take YB-NLS-binding proteins from YB-1. • YB-NLS inhibited actinomycin D-induced nuclear localization of endogenous YB-1. • YB-NLS suppressed actinomycin D-induced expression of MDR1.« less

  20. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    NASA Astrophysics Data System (ADS)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.