Sample records for yba2cu3o7-delta band conductors

  1. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using X-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  2. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using x-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  3. Large area ion beam sputtered YBa2Cu3O(7-delta) films for novel device structures

    NASA Astrophysics Data System (ADS)

    Gauzzi, A.; Lucia, M. L.; Kellett, B. J.; James, J. H.; Pavuna, D.

    1992-03-01

    A simple single-target ion-beam system is employed to manufacture large areas of uniformly superconducting YBa2Cu3O(7-delta) films which can be reproduced. The required '123' stoichiometry is transferred from the target to the substrate when ion-beam power, target/ion-beam angle, and target temperature are adequately controlled. Ion-beam sputtering is experimentally demonstrated to be an effective technique for producing homogeneous YBa2Cu3O(7-delta) films.

  4. TOPICAL REVIEW: Importance of low-angle grain boundaries in YBa2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    Durrell, J. H.; Rutter, N. A.

    2009-01-01

    Over the past ten years the perception of grain boundaries in YBa2Cu3O7conductors has changed greatly. They are now not a problem to be eliminated, but an inevitable and potentially favourable part of the material. This change has arisen as a consequence of new manufacturing techniques which result in excellent grain alignment, reducing the spread of grain boundary misorientation angles. At the same time there is considerable recent evidence which indicates that the variation of properties of grain boundaries with mismatch angle is more complex than a simple exponential decrease in critical current. This is due to the fact that low-angle grain boundaries represent a qualitatively different system to high-angle boundaries. The time is therefore right for a targeted review of research into low-angle YBa2Cu3O7-δ grain boundaries. This article does not purport to be a comprehensive review of the physics of grain boundaries as found in YBa2Cu3O7-δ in general; for a broader overview we would recommend that the reader consult the comprehensive review of Hilgenkamp and Mannhart (2002 Rev. Mod. Phys. 74 485). The purpose of this article is to review the origin and properties of the low-angle grain boundaries found in YBa2Cu3O7-δ coated conductors both individually and as a collective system.

  5. Uncovering a new quasi-2D CuO2 plane between the YBa2Cu3O7 and CeO2 buffer layer of coated conductors

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Xin; Cao, Jin-Jin; Gou, Xiao-Fan; Wang, Tian-Ge; Xue, Feng

    2018-01-01

    We report a discovery of the quasi-two-dimensional (quasi-2D) CuO2 plane between the superconductor YBa2Cu3O7 (YBCO) and CeO2 buffer layer (mostly used in the fabrication) of coated conductors through the atomistic computer simulations with the molecular dynamics (MD) and first-principle calculations. For an YBCO coated conductor with multilayer structures, the buffer layers deposited onto a substrate are mainly considered to transfer a strong biaxial texture from the substrate to the YBCO layer. To deeply understand the tuning mechanism of the texture transfer, exploring the complete atomic-level picture of the structure between the YBa2Cu3O7/CeO2 interfaces is firstly required. However, the related observation data have not been available due to some big challenges of experimental techniques. With the MD simulations, having tested the accuracy of the potential functions for the YBa2Cu3O7/CeO2 interface, we constructed a total of 54 possible atom stacking models of the interface and identified its most appropriate and stable structure according to the criterion of the interface adhesion energy and the coherent characterization. To further verify the stability of the identified structure, we performed the first-principle calculations to obtain the adhesion energy and developed the general knowledge of the interface structure. Finally, a coherent interface formed with a new built quasi-2D CuO2 plane that is structurally similar to the CuO2 plane inside bulk YBCO was determined.

  6. Oxygen isotope effect in YBa2Cu3O7 prepared by burning YBa2Cu3 in 16O and 18O

    NASA Astrophysics Data System (ADS)

    Yvon, Pascal J.; Schwarz, R. B.; Pierce, C. B.; Bernardez, L.; Conners, A.; Meisenheimer, R.

    1989-04-01

    We prepared YBa2Cu3 powder by ball milling a 2:1 molar mixture of the intermetallics BaCu and CuY. We synthesized YBa2Cu3(16O)7-x and YBa2Cu3(18O)7-x by oxidizing the YBa2Cu3 powder in 16O and 18O. The 16O/18O ratios were determined by laser-ionization and sputtering-ionization mass spectroscopy. The YBa2Cu3(160)7-x sample had 99.8 at. %16O, and the YBa2Cu3(18O)7-x sample had 96.5 at. %18O. Susceptibility measurements of the superconducting transition temperature (Tc=91.7 K for 16O; half-point transition at 84 K show an isotope effect of 0.4+/-0.1 K.

  7. Distribution of flux-pinning energies in YBa2Cu3O(7-delta) and Bi2Sr2CaCu2O(8+delta) from flux noise

    NASA Astrophysics Data System (ADS)

    Ferrari, M. J.; Johnson, Mark; Wellstood, Frederick C.; Clarke, John; Mitzi, D.

    1990-01-01

    The spectral density of the magnetic flux noise measured in high-temperature superconductors in low magnetic fields scales approximately as the inverse of the frequency and increases with temperature. The temperature and frequency dependence of the noise are used to determine the pinning energies of individual flux vortices in thermal equilibrium. The distribution of pinning energies below 0.1 eV in YBa(2)Cu(3)O(7-delta) and near 0.2 eV in Bi(2)Sr(2)CaCu(2)O(8+delta). The noise power is proportional to the ambient magnetic field, indicating that the vortex motion is uncorrelated.

  8. Flux Pinning Enhancement in YBa2Cu3O7-x Films for Coated Conductor Applications (Postprint)

    DTIC Science & Technology

    2010-01-01

    YBa2Cu3O7–x Films for Coated Conductor Applications Maiorov , B. , Civale , L. , Lin , Y. , Hawley , M.E. , Maley , M.P. , and Peterson , D.E...L. , Maiorov , B. , Hawley , M.E. , Maley , M.P. , and Peterson , D.E. ( 2004 ) Nat. Mater. , 3 , 439 . 30 Kang , S. , Goyal...1864 . 47 Civale , L. , Maiorov , B. , Serquis , A. , Willis , J.O. , Coulter , J.Y. , Wang , H. , Jia , Q.X. , Arendt , P.N

  9. Electronic correlations in YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ from Auger spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balzarotti, A.; De Crescenzi, M.; Giovannella, C.

    1987-12-01

    Cu L/sub 3/VV Auger spectra of the superconducting compound YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ have been measured above and below the critical temperature T/sub c/ = 90 K and compared with those of CuO. In the superconductor a localized peak whose intensity increases with temperature is found. Such a structure, lacking in copper oxide, is attributed to electronic correlations in the Cu 3d/sup 8/ configuration.

  10. XANES and EXAFS study of Au-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1990-01-01

    The near-edge structure (XANES) of the Au L3 and Cu K edges of YBa2Au(0.3)Cu(2.7)O(7-delta) was studied. X ray diffraction suggests that Au goes on the Cu(1) site and XANES shows that this has little effect on the oxidation state of the remaining copper. The gold L3 edge develops a white line feature whose position lies between that of trivalent gold oxide (Au2O3) and monovalent potassium gold cyanide (KAu(CN)2) and whose intensity relative to the edge step is smaller than in the two reference compounds. The L3 EXAFS for Au in the superconductor resembles that of Au2O3. However, differences in the envelope of the Fourier filtered component for the first shell suggest that the local structure of the Au in the superconductor is not equivalent to Au2O3.

  11. Formation of high-Tc YBa2Cu3O(7-delta) films on Y2BaCuO5 substrate

    NASA Astrophysics Data System (ADS)

    Wang, W. N.; Lu, H. B.; Lin, W. J.; Yao, P. C.; Hsu, H. E.

    1988-07-01

    High-Tc superconducting YBa2Cu3O(7-delta) films have been successfully prepared on green Y2BaCuO5 (2115) ceramic substrate. The films have been formed by RF sputtering and screen printing with post annealing at 925 C. Regarding superconducting features, the sharp resistivity drop with Tc onset around 95 K (midpoint 84 K) and 99 K (midpoint 89 K) has been observed for RF sputtered and printed films respectively. Both films show the excellent adhesion towards the 2115 substrate. Powder X-ray diffraction profiles indicate a majority of 1237 phase with preferred orientation for RF sputtered thin film.

  12. Oxygen desorption from YBa2Cu3O(7-x) and Bi2CaSr2Cu2O(8 + delta) superconductors

    NASA Technical Reports Server (NTRS)

    Mesarwi, A.; Levenson, L. L.; Ignatiev, A.

    1991-01-01

    Oxygen desorption experiments from YBa2Cu3O(7-x) (YBCO) and Bi2CaSr2Cu2O(8 + delta) (BSCCO) superconductors were carried out using a quadrupole mass spectrometer for monitoring the desorbing species and X-ray photoemission spectroscopy for surface characterization. Molecular oxygen was found to desorb from both superconductors following photoirradiation with ultraviolet/optical radiation and subsequent heating at over 150 C. Both YBCO and BSCCO were found to have similar oxygen desorption rates and similar activation energies. The desorption data as well as the X-ray photoemission data indicate that the oxygen desorption is not intrinsic to the superconductors but rather due to molecular oxygen entrapped in the material.

  13. Millimeter-wave surface resistance of laser-ablated YBa2Cu3O(7-delta) superconducting films

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Warner, J. D.

    1990-01-01

    The millimeter-wave surface resistance of YBa2Cu3O(7-delta) superconducting films was measured in a gold-plated copper host cavity at 58.6 GHz between 25 and 300 K. High-quality laser-ablated films of 1.2-micron thickness were deposited on SrTiO3 and LaGaO3 substrates. Their transition temperatures were 90.0 and 88.9 K, with a surface resistance at 70 K of 82 and 116 milliohms, respectively. These values are better than the values for the gold-plated cavity at the same temperature and frequency.

  14. Critical current density in (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x melt-textured composites

    NASA Astrophysics Data System (ADS)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto; Siqueira, Ezequiel Costa

    2018-06-01

    Melt textured (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7-δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, respectively. The YBa2Cu3O7-δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4.72 × 105 A/cm2, respectively. This paper also discusses the importance of Pr substitution on nano- and micro-meter scales to enhance JC(H).

  15. Ten Ghz YBa2Cu3O(7-Delta) Superconducting Ring Resonators on NdGaO3 Substrates

    NASA Technical Reports Server (NTRS)

    To, H. Y.; Valco, G. J.; Bhasin, K. B.

    1993-01-01

    YBa2Cu3O(7-delta) thin films were formed on NdGaO3 substrates by laser ablation. Critical temperatures greater than 89 K and critical current densities exceeding 2 x 10(exp 8) Acm(sub -2) at 77 K were obtained. The microwave performance of films patterned into microstrip ring resonators with gold ground planes was measured. An unloaded quality factor six times larger than that of a gold resonator of identical geometry was achieved. The unloaded quality factor decreased below 70 K for both the superconducting and gold resonators due to increasing dielectric losses in the substrate. The temperature dependence of the loss tangent of NdGaO3 was extracted from the measurements.

  16. La0.7Sr0.3MnO3: A single, conductive-oxide buffer layer for the development of YBa2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    Aytug, T.; Paranthaman, M.; Kang, B. W.; Sathyamurthy, S.; Goyal, A.; Christen, D. K.

    2001-10-01

    Coated conductor applications in power technologies require stabilization of the high-temperature superconducting (HTS) layers against thermal runaway. Conductive La0.7Sr0.3MnO3 (LSMO) has been epitaxially grown on biaxially textured Ni substrates as a single buffer layer. The subsequent epitaxial growth of YBa2Cu3O7-δ (YBCO) coatings by pulsed laser deposition yielded self-field critical current densities (Jc) of 0.5×106A/cm2 at 77 K, and provided good electrical connectivity over the entire structure (HTS+conductive-buffer+metal substrate). Property characterizations of YBCO/LSMO/Ni architecture revealed excellent crystallographic and morphological properties. These results have demonstrated that LSMO, used as a single, conductive buffer layer, may offer potential for use in fully stabilized YBCO coated conductors.

  17. Preparation of YBa2Cu3O7 High Tc Superconducting Coatings by Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Danroc, J.; Lacombe, J.

    The following sections are included: * INTRODUCTION * THE COMPOUND YBa2Cu3O7-δ * Structure * Critical temperature * Critical current density * Phase equilibria in the YBaCuO system * PREPARATION OF YBa2Cu3O7 COATINGS * General organisation of the preparation process * The powder * Hot plasma spraying of YBa2Cu3O7 * The post-spraying thermal treatment * CHARACTERISTICS OF THE YBa2Cu3O7-δ COATINGS * Chemical composition * Crystalline structure * Morphology of the coatings * Electrical and magnetic characteristics * Conclusion * REFERENCES

  18. Epitaxial YBa2Cu3O7-x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions

    NASA Astrophysics Data System (ADS)

    Obradors, X.; Puig, T.; Li, Z.; Pop, C.; Mundet, B.; Chamorro, N.; Vallés, F.; Coll, M.; Ricart, S.; Vallejo, B.; Pino, F.; Palau, A.; Gázquez, J.; Ros, J.; Usoskin, A.

    2018-04-01

    Superconducting nanocomposites are the best material choice to address the performance required in power applications and magnets working under high magnetic fields. However, it is still challenging to sort out how to achieve the highest superconducting performance using attractive and competitive manufacturing processes. Colloidal solutions have been recently developed as a novel and very promising low cost route to manufacture nanocomposite coated conductors. Well dispersed and stabilized preformance nanoparticle solutions are first prepared with high concentrations and then mixed with the YBa2Cu3O7 metalorganic precursor solutions to generate colloidal solutions to grow the nanocomposite films. Here we demonstrate, for the first time, that non-reactive BaZrO3 and BaHfO3 perovskite preformed nanoparticles are suitable for growing high quality thin and thick films, and coated conductors with a homogeneous distribution and controlled particle size using this fabrication method. Additionally, we extend the nanoparticle content of the nanocomposites up to 20%-25% mol without any degradation of the superconducting properties. Thick nanocomposite films, up to 0.8 μm, have been prepared with a single deposition of low-fluorine solutions using an ink jet printing dispenser and we demonstrate that the preformed nanoparticles display only a very limited coarsening during the growth process and so high critical current densities J c (B) under high magnetic fields. These films show the highest critical currents achieved so far based on the colloidal solution approach, I c = 220 A/cm-w at 77 K and self-field, and they still have a high potential for further increase in the film thickness. Finally, we also show that nanocomposite YBa2Cu3O7-BaZrO3 coated conductors based on an alternating beam assisted deposited YSZ buffer layer on stainless steel metallic substrates can be developed based on these novel colloidal solutions. Non-reactive preformed oxide perovskite

  19. Phase compatibilities of YBa2Cu3O(9-delta) type structure in quintenary systems Y-Ba-Cu-O-X (impurity)

    NASA Technical Reports Server (NTRS)

    Karen, P.; Fjellvag, H.; Kjekshus, A.

    1990-01-01

    Electrical transport properties of the oxidic high T(sub c) superconductors are significantly affected by the presence of minor amounts of various elements adventing as impurities, e.g., from the chemical environment during manufacturing. YBa2Cu3O(9-delta) is prone to an extinction of the superconductivity on (partial) substitution of all four elemental components. E.g., Pr (for Y), La (for Ba), Zn (for Cu) or peroxygroup (for O) substituents will alter some of the superconductivity preconditions, like mixed valence state in Cu3O7/O(9-delta) network or structural distortion of the network. Although various pseudoternary chemical equilibrium phase diagrams of the Y(O)-Ba(O)-Cu(O) system now are available, no consensus is generally shown, however, this is partly due to lack of compatible definitions of the equilibrium conditions. Less information is available about the phase compatibilities in the appropriate quaternary phase diagram (including oxygen) and virtually no information exists about any pentenary phase diagrams (including one impurity). Unfortunately, complexity of such systems, stemming both from number of quaternary or pentenary compounds and from visualizing the five-component phase system, limits this presentation to more or less close surroundings of the YBa2Cu3O(9-delta) type phase in appropriate pseudoquaternary or pseudopseudoternary diagrams, involving Y-Ba-Cu and O, O-CO2, alkaline metals, Mg and alkaline earths, and Sc and most of the 3-d and 4-f elements. The systems were investigated by means of x ray diffraction, neutron diffraction and chemical analytical methods on samples prepared by sol-gel technique from citrates. The superconductivity was characterized by measuring the diamagnetic susceptibility by SQUID.

  20. Valence charge fluctuations in YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ from core-level spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balzarotti, A.; De Crescenzi, M.; Motta, N.

    1988-10-01

    From x-ray photoemission and Auger measurements of the Cu 2p and O 1s core levels of YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ as a function of the oxygen concentration delta, the average copper charge is determined. Evidence is found of dynamic charge fluctuations on the oxygen sublattice giving rise to a greater concentration of trivalent copper at the Cu(1) sites with respect to that determined by the analysis of neutron-diffraction data. On the basis of our experimental results, we introduce a molecular cluster description for the Cu states. The lowest final-states configurations of Cu/sup 2+/ and Cu/sup 3+/ are c3d/sup 10/Lmore » and c3d/sup 10/L/sup 2/, respectively, where c and L denote core holes on copper and oxygen atoms. Oxygen holes have high mobility and a Hubbard correlation energy less than 2 eV, a signature of their delocalization. The effect of temperature on the spectra is minor. Surface degradation modifies the relative intensity of the structures, particularly those of the O spectrum.« less

  1. Coaxial line configuration for microwave power transmission study of YBa2Cu3O(7-delta) thin films

    NASA Technical Reports Server (NTRS)

    Chorey, C. M.; Miranda, F. A.; Bhasin, K. B.

    1991-01-01

    Microwave transmission measurements through YBa2Cu3O(7-delta) (YBCO) high-transition-temperature superconducting thin films on lanthanum aluminate (LaAlO3) have been performed in a coaxial line at 10 GHz. LaAlO3 substrates were ultrasonically machined into washer-shaped discs, polished, and coated with laser-ablated YBCO. These samples were mounted in a 50-ohm coaxial air line to form a short circuit. The power transmitted through the films as a function of temperature was used to calculate the normal state conductivity and the magnetic penetration depth for the films.

  2. Theoretical calculation of electron-positron momentum density in YBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Massidda, S.

    1990-07-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor YBa 2Cu 3O 7-δ for δ=0 and for the insulating parent compound YBa 2Cu 3O 6, based on first-principle electronic structure calculations performed within the local density approximation (LDA) using the full potential linearized augmented plane wave (FLAPW) method. Our results indicate a small overlap of the positron wave function with the CuO 2 plane electrons and, as a consequence, relatively small signals due to the related Fermi surfaces. By contrast, the present calculations show, after the folding of Umklapp terms according to Lock, Crisp and West, clear Fermi surface breaks arising from the Cu-O chain bands. No general agreement with existing experiments allows a clear definition of Fermi surface structures in the latter. A comparison of the calculated momentum with the experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) recently measured in Geneva shows an overall agreement for the insulating compound, despite the spurious LDA metallic state, and possibly suggests the importance of O vacancies in experiments performed on non-stoichiometric YBa 2Cu 3O 7-δ samples.

  3. Fermi surface measurements in YBa2Cu3O(7-x) and La(1.874)Sr(126)CuO4

    NASA Astrophysics Data System (ADS)

    Howell, R. H.; Sterne, P. A.; Solal, F.; Fluss, M. J.; Haghighi, H.; Kaiser, J. H.; Rayner, S. L.; West, R. N.; Liu, J. Z.; Shelton, R.

    1991-06-01

    We report new, ultra high precision measurements of the electron-positron momentum spectra of YBa2Cu3O(7-x) and La(1.874)Sr(126)CuO4. The YBCO experiments were performed on twin free, single crystals and show discontinuities with the symmetry of the Fermi surface of the CuO chain bands. Conduction band and underlying features in LSCO share the same symmetry and can only be separated with the aid of LDA calculations.

  4. Fermi surface measurements in YBa 2Cu 3O 7- x and La 1.874Sr .126CuO 4

    NASA Astrophysics Data System (ADS)

    Howell, R. H.; Sterne, P. A.; Solal, F.; Fluss, M. J.; Haghight, H.; Kaiser, J. H.; Rayner, S. L.; West, R. N.; Liu, J. Z.; Shelton, R.; Kojima, H.; Kitazawa, K.

    1991-12-01

    We report new, ultra high precision measurements of the electron-positron momentum spectra of YBa 2Cu 3O 7- x and La 1.874Sr .126CuO 4. The YBCO experiments were performed on twin free, single crystals and show discontinuities with the symmetry of the Fermi surface of the CuO chain bands. Conduction band and underlying features in LSCO share the same symmetry and can only be separated with the aid of LDA calculations.

  5. Influence of calcium on transport properties, band spectrum and superconductivity of YBa2Cu3O(y) and YBa(1.5)La(0.5)Cu3O(y)

    NASA Technical Reports Server (NTRS)

    Gasumyants, V. E.; Vladimirskaya, E. V.; Patrina, I. B.

    1995-01-01

    The comparative investigation of transport phenomena in Y(1-x)Ca(x)Ba2Cu3O(y) (0 is less than x is less than 0.25; 6.96 is greater than y is greater than 6.87 and 6.73 is less than x is less than 6.53); Y(1-x)Ca(x)Ba(1.5)La(0.5)Cu3O(y) (0 is less than x is less than 0.5; 7.12 is greater than y is greater than 6.96) and YBa(2-x)La(x)Cu3O(y) (0 is less than x is less than 0.5; 6.95 is less than y is less than 7.21) systems have been carried out. The temperature dependencies of resistivity and thermopower have been measured. It was found that the S(T) dependencies take some additional features with Ca content increase. The results obtained have been analyzed on the basis of the phenomenological theory of electron transport in the case of the narrow conductive band. The main parameters of the band spectrum (the band filling with electrons degree and the total effective band width) have been determined. The dependencies of these from contents of substituting elements are discussed. Analyzing the results obtained simultaneously with the tendencies in oxygen content and critical temperature change we have confirmed the conclusion that the oxygen sublattice disordering has a determinant effect on band structure parameters and superconductive properties of YBa2Cu3O(y). The results obtained suggest that Ca gives rise to some peculiarities in band spectrum of this compound.

  6. Synthesis of YBa2CU3O7 using sub-atmospheric processing

    DOEpatents

    Wiesmann, Harold; Solovyov, Vyacheslav

    2004-09-21

    The present invention is a method of forming thick films of crystalline YBa.sub.2 Cu.sub.3 O.sub.7 that includes forming a precursor film comprising barium fluoride (BaF.sub.2), yttrium (Y) and copper (Cu). The precursor film is heat-treated at a temperature above 500.degree. C. in the presence of oxygen, nitrogen and water vapor at sub-atmospheric pressure to form a crystalline structure. The crystalline structure is then annealed at about 500.degree. C. in the presence of oxygen to form the crystalline YBa.sub.2 Cu.sub.3 O.sub.7 film. The YBa.sub.2 Cu.sub.3 O.sub.7 film formed by this method has a resistivity of from about 100 to about 600 .mu.Ohm-cm at room temperature and a critical current density measured at 77 K in a magnetic field of 1 Tesla of about 1.0.times.10.sup.5 Ampere per square centimeter (0.1 MA/cm.sup.2) or greater.

  7. Epitaxial growth of YBa2Cu3O7 - delta films on oxidized silicon with yttria- and zirconia-based buffer layers

    NASA Astrophysics Data System (ADS)

    Pechen, E. V.; Schoenberger, R.; Brunner, B.; Ritzinger, S.; Renk, K. F.; Sidorov, M. V.; Oktyabrsky, S. R.

    1993-09-01

    A study of epitaxial growth of YBa2Cu3O7-δ films on oxidized Si with yttria- and zirconia-based buffer layers is reported. Using substrates with either SiO2 free or naturally oxidized (100) surfaces of Si it was found that a thin SiO2 layer on top of the Si favors high-quality superconducting film formation. Compared to yttria-stabilized ZrO2 (YSZ) single layers, YSZY2O3 double and YSZ/Y2O3YSZ triple layers allows the deposition of thin YBa2Cu3O7-δ films with improved properties including reduced aging effects. In epitaxial YBa2Cu3O7-δ films grown on the double buffer layers a critical temperature Tc(R=0)=89.5 K and critical current densities of 3.5×106 A/cm2 at 77 K and 1×107 A/cm2 at 66 K were reached.

  8. Improved epitaxial texture of thick YBa2Cu3O7-δ/GdBa2Cu3O7-δ films with periodic stress releasing

    NASA Astrophysics Data System (ADS)

    Lin, Jianxin; Yang, Wentao; Gu, Zhaohui; Shu, Gangqiang; Li, Minjuan; Sang, Lina; Guo, Yanqun; Liu, Zhiyong; Cai, Chuanbing

    2015-04-01

    Thick high-Tc superconducting films consisting of a YBa2Cu3O7-δ/GdBa2Cu3O7-δ periodic architecture are developed on oxid-buffered Hastelloy tapes using a pulsed laser deposition process. It is revealed that multilayer intermittent structures for superconducting layers are effective to avoid the presence of a-axis grains and microcracks that occur with increasing thickness, which are frequently observed in monolayer films of REBa2Cu3O7-δ (RE = Y, Gd, or other rare earths), such grains and cracks being the significant challenge for obtaining high critical current in coated conductors. Presently, the thicknesses of multilayer films vary from 0.5 μm to 3 μm and, based on the SEM images and x-ray φ-scans, hardly show the influences on the microstructures and grain orientation of the c-axis. Also, the characteristic Raman spectrum patterns and their shifting with increasing the thickness of YBCO/GdBCO imply that the superior texture is obtained due to the evolution of stress dominated by the compressive stress rather than tensile stress.

  9. Wet chemical passivation of YBa2Cu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Hunt, B. D.; Foote, M. C.

    1990-01-01

    Wet chemical techniques are described for treatment of YBa2Cu3O(7-x) surfaces, which result in the formation of native compounds known to have little or no reactivity to water. Suitable native compounds include CuI, BaSO4, CuS, Cu2S, YF3, and the oxalates. Formation of surface layers in which these nonreactive native compounds are major constituents is verified with X-ray photoelectron spectroscopy (XPS) measurements on YBa2Cu3O(7-x) films treated with dilute solutions of HI, H2SO4, Na2S, HF, or H2C2O4. No significant changes are observed in the XPS spectra when the sulfide, sulfate, or oxalate films are dipped in water, while the iodide and fluoride films show evidence of reaction with water. X-ray diffraction measurements show that the superconducting phase is absent in the sulfide film, but is unaffected by the oxalate and sulfate treatments.

  10. Compatibilities of YBa2Cu3O(9-delta) type phase in quintenary systems Y-Ba-Cu-O-X (impurity)

    NASA Technical Reports Server (NTRS)

    Karen, P.; Braaten, O.; Fjellvag, H.; Kjekshus, A.

    1991-01-01

    Isothermal phase diagrams at various oxygen pressures were studied by powder diffraction and chemical analytical methods. The components, Y, Ba, Cu, and O (specifically O2, O2-, and O2 sup 2-) are treated, together with C (specifically CO2 and CO2 sup 2-), alkaline metals, Mg, alkaline earths, Sc, 3-d and 4-f elements. Effects of the substitutions at the structural sites of YBa2Cu3O(9-delta) on T sub c are discussed with respect to changes in crystallochemical characteristics of the substituted phase and to the nature of the substituents.

  11. Critical current density enhancement by phase decomposition of YBa 2Cu 4O 8 into YBa 2Cu 3O 7-σ and CuO

    NASA Astrophysics Data System (ADS)

    Krelaus, J.; Heinemann, K.; Ullmann, B.; Freyhardt, H. C.

    1995-02-01

    Bulk YBa 2Cu 4O 8 (Y-124) is prepared from YBa 2Cu 3O 7-σ (Y-123) and CuO by a powder-metallurgical method. The superconducting features of the Y-124, in particular critical current densities and activation energies, are measured resistively using a four-probe technique and magnetically using a Faraday magnetometer. In a second step the Y-124 is decomposed at high temperatures. The intragranular critical current density is measured at different annealing times, tA, in order to determine and discuss the characteristics of the jc( tA) curves.

  12. Reaction of YBa2Cu3O(7-beta) with Gold, Silver, Bismuth and Lead: Substitution Chemistry and Composite Fabrication

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Gaier, James R.

    1993-01-01

    The reaction of YBa2Cu3O(7-beta) with Au, Ag, Bi, and Ph ions or metal is described. Three types of materials were produced: a well-defined series of homogeneous superconductors was obtained for Au ion substitution with little effect on T(sub c); attempted Ag and Bi ion substitution resulted in multi-phase samples with slightly enhanced T(sub c); finally, attempts to produce superconducting metal/superconducting ceramic composites with Pb and Bi powders resulted in multi-phase samples with drastically diminished superconducting properties. For Au- substituted superconductors, YBa2(Cu(l-x)Au(x))3O(7-beta), a substitution series (x = 0 - 0.1) has been synthesized. For x = 0.1 there was no change in the a and b lattice parameters (a = 3.826 A and b = 3.889 A) but a 0.06 A c axis expansion to 11.75 A was observed. The valence of Cu and Au in YBa2Au(0.3)Cu(2.7)O(7-beta) was investigated using X-ray Absorption Near-Edge Structure (XANES). X-ray studies indicate that Au goes into the Cu(l) site and Cu K edge XANES shows that this has little effect on the oxidation state of the remaining copper. A small effect on T(sub c) is observed (T(sub c) = 89 K for x = 0.10). Ag and Bi addition results in a rise in T(sub c) and a decrease in (delta)T(sub c) at low levels (x = 0.10 Ag, T(sub c) = 94 K and (delta)T(sub c) = 0.5 K; x = 0.02 Bi, T(sub c) = 94 K and (delta)T(sub c) = 1K) relative to typical values for YBa2Cu3O(7-beta) (T(sub c) = 91 K, (delta)T(sub c) = 2 K). Attempts at fabrication of Pb- and Pb(1-x)Bi(x)-superconductor composites are described. Cold pressing followed by low temperature (200 C) sintering resulted in a composite which excluded flux below 90 K but did not show zero electrical resistance until the metal (alloy) superconducting transition. X-ray diffraction showed the presence of pervoskite and metal. Processing at moderate (450 C) or high (950 C) temperatures resulted in oxygen-depleted pervoskite and/or metal oxides. These materials displayed greatly

  13. Tuning Vortex Creep in Irradiated YBa2Cu3O7-δ Coated Conductors

    NASA Astrophysics Data System (ADS)

    Eley, Serena; Kihlstrom, Karen; Holleis, Sigrid; Leroux, Maxime; Rupich, Martin; Miller, Dean; Kayani, Asghar; Welp, Ulrich; Kwok, Wai-Kwong; Civale, Leonardo

    YBa2Cu3O7-δ coated conductors (CCs) show non-monotonic changes in the temperature-dependent creep rate, S (T) , due to mixed pinning landscapes comprised of twin boundaries, planar defects, point defects, and nanoparticle precipitates. Notably, in low fields, there is a conspicuous dip in S as T increases from ~20K to ~65K. The source of this dip is poorly understood. Moreover, pinning landscapes that are favorable for high critical currents, Jc, are not necessarily optimal for low S. We have found that, though oxygen irradiation introduces few-nm-sized defects that result in significant increases in Jc, it is detrimental to creep, increasing S (reducing the dip depth) for T > 20K. Understanding the source of this dip is crucial to engineering pinning landscapes that concurrently promote high Jc and low S. To this end, we study changes in S (T) as we tune the ratio of smaller (point to few-nm-sized) defects to larger nanoparticles in an oxygen-irradiated CC by annealing in O2 at 250°C to 600°C. We observe a steady decrease in S (T > 20K) with increasing annealing temperature. This suggests that pre-existing nanoparticle precipitates are likely responsible for the dip in S (T) , and underlines the fact that the effects of defects are not additive, but rather can be competitive.

  14. Studies of iron impurities in YxPr1-xBa2Cu3O7-delta

    NASA Technical Reports Server (NTRS)

    Swartzendruber, L. J.; Bennett, L. H.; Ritter, J.; Rubinstein, M.; Harford, M. Z.

    1990-01-01

    Pr is the only rare earth which, when substituted for Y in YBa2Cu3O7, significantly alters the superconducting transition temperature T(sub c) without changing the crystal structure. For YxPr1-xBa2Cu3O7-delta with delta approx. equal to 0, T(sub c) is reduced rapidly as x is increased, reaching zero for x about 0.5. For x above 0.5 the compound is antiferromagnetic with a Neel temperature that increases with increasing x, rising to above room temperature for x near 1. A similar behavior is observed when the oxygen deficit delta is increased from zero to 1 with x=0. For the case of Pr substitution, the drop in T(sub c) is believed due to magnetic interactions. For the case of varying delta with x=0, the drop can be attributed to a combination of magnetic interactions, band filling, and changes in crystal structure. To study these effects, the Mossbauer effect of 57 Fe atoms substituted for the Cu atoms has been observed as a function of delta, x, and temperature. The observed spectra are all well described by a two quadrupole-split pairs, a central singlet, and a six-line magnetic hyperfine field pattern. For several Pr compositions both delta and temperature were varied, and the results support the hypothesis that a magnetic interaction exists between the Fe in the Cu lattice and the substitutional Pr atoms.

  15. Positron trapping in Y1-xPrxBa2Cu3O7-δ and the Fermi surface of YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Hoffmann, L.; Manuel, A. A.; Walker, E.; Barbiellini, B.; Peter, M.

    1995-03-01

    Temperature-dependent positron lifetime measurements in ceramic Y1-xPrxBa2Cu3O7-δ samples reveal positron trapping, in particular at low temperature and for small x. Positrons appear to be completely delocalized for T~400 K and higher. At high temperatures the lifetime for YBa2Cu3O7-δ and PrBa2Cu3O7-δ is identical (~165 ps) and close to the theoretical value. For these reasons a two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectrum was measured in YBa2Cu3O7 at T=400 K. The spectrum width confirms the delocalization of the positron and the 2D-ACAR shows, apart from the one-dimensional Fermi surface due to CuO chains, a smaller Fermi surface sheet centered around the S point, in the first Brillouin zone.

  16. Magnetic penetration depth of YBa2Cu3O(7-delta) thin films determined by the power transmission method

    NASA Technical Reports Server (NTRS)

    Heinen, Vernon O.; Miranda, Felix A.; Bhasin, Kul B.

    1992-01-01

    A power transmission measurement technique was used to determine the magnetic penetration depth (lambda) of YBa2Cu3O(7-delta) superconducting thin films on LaAlO3 within the 26.5 to 40.0 GHz frequency range, and at temperatures from 20 to 300 K. Values of lambda ranging from 1100 to 2500 A were obtained at low temperatures. The anisotropy of lambda was determined from measurements of c-axis and a-axis oriented films. An estimate of the intrinsic value of lambda of 90 +/- 30 nm was obtained from the dependence of lambda on film thickness. The advantage of this technique is that it allows lambda to be determined nondestructively.

  17. Low resistivity contacts to YBa2Cu3O(7-x) superconductors

    NASA Technical Reports Server (NTRS)

    Hsi, Chi-Shiung; Haertling, Gene H.

    1991-01-01

    Silver, gold, platinum, and palladium metals were investigated as electroding materials for the YBa2Cu3O(7-x) superconductors. Painting, embedding, and melting techniques were used to apply the electrodes. Contact resistivities were determined by: (1) type of electrode; (2) firing conditions; and (3) application method. Electrodes fired for long times exhibited lower contact resistivities than those fired for short times. Low-resistivity contacts were found for silver and gold electrodes. Silver, which made good ohmic contact to the YBa2Cu3O(7-x) superconductor with low contact resistivities was found to be the best electroding material among the materials evaluated in this investigation.

  18. Low frequency electrical noise across contacts between a normal conductor and superconducting bulk YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hall, J.; Chen, T. M.

    1991-01-01

    Virtually every device that makes use of the new ceramic superconductors will need normal conductor to superconductor contacts. The current-voltage and electrical noise characteristics of these contacts could become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quantity often used to characterize electrical noise, very closely followed an empirical relationship given by S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.

  19. Nonaqueous slip casting of YBa2Cu3O(7-x) superconductive ceramics. Ph.D. Thesis - 1993

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.; Taylor, Theodore D.

    1994-01-01

    This study investigates the slip casting of YBa2Cu3O(7-x) powders using nonaqueous carrier liquids and fired ceramic molds. The parameters of the process examined here include the rheological properties of YBa2Cu3O(7-x) powder dispersed in various solvent/dispersant systems, the combination of nonaqueous slips with fired ceramic molds to form the superconductive ceramics, the process-property relationships using a four-factor factorial experiment, and the applicability of magnetic fields to align the YBa2Cu3O(7-x) grains during the casting process.

  20. Boson localization and universality in YBa2Cu(3-x)M(x)O(7-delta)

    NASA Technical Reports Server (NTRS)

    Kallio, A.; Apaja, V.; Poykko, S.

    1995-01-01

    We consider a two component mixture of charged fermions on neutralizing background with all sign combinations and arbitrarily small mass ratios. In the two impurity limit for the heavier component we show that the pair forms a bound state for all charge combinations. In the lowest order approximation we derive a closed form expression Veff(r) for the binding potential which has short-range repulsion followed by attraction. In the classical limit, when the mass of embedded particles is large m2 much greater than m, we can calculate from Veff(r) also the cohesive energy E and the bond length R of a metallic crystal such as lithium. The lowest order result is R = 3.1 A, E = -0.9 eV, not entirely different from the experimental result for lithium metal. The same interaction for two holes on a parabolic band with m2 greater than m gives the quantum mechanical bound state which one may interpret as a boson or local pair in the case of high-Te and heavy fermion superconductors. We also show that for compounds of the type YBa2Cu(3 - x)M(x)O(7 - delta) one can understand most of the experimental results for the superconducting and normal states with a single temperature dependent boson breaking function f(T) for each impurity content x governing the decay of bosons into pairing fermions. In the normal state f(T) turns out to be a linear, universal function, independent of the impurity content I and the oxygen content delta. We predict with universality a depression in Tc(x) with slight down bending in agreement with experiment. As a natural consequence of the model the bosons become localized slightly above Tc due to the Wigner crystallization, enhanced with lattice local field minima. The holes remain delocalized with a linearly increasing concentration in the normal state, thus explaining the rising Hall density. The boson localization temperature T(sub BL) shows up as a minimum in the Hall density R(sub ab)(exp -1). We also give explanation for very recently observed

  1. Boson localization and universality in YBa2Cu(3-x)M(x)O(7-delta)

    NASA Astrophysics Data System (ADS)

    Kallio, A.; Apaja, V.; Poykko, S.

    1995-04-01

    We consider a two component mixture of charged fermions on neutralizing background with all sign combinations and arbitrarily small mass ratios. In the two impurity limit for the heavier component we show that the pair forms a bound state for all charge combinations. In the lowest order approximation we derive a closed form expression Veff(r) for the binding potential which has short-range repulsion followed by attraction. In the classical limit, when the mass of embedded particles is large m2 much greater than m, we can calculate from Veff(r) also the cohesive energy E and the bond length R of a metallic crystal such as lithium. The lowest order result is R = 3.1 A, E = -0.9 eV, not entirely different from the experimental result for lithium metal. The same interaction for two holes on a parabolic band with m2 greater than m gives the quantum mechanical bound state which one may interpret as a boson or local pair in the case of high-Te and heavy fermion superconductors. We also show that for compounds of the type YBa2Cu(3 - x)M(x)O(7 - delta) one can understand most of the experimental results for the superconducting and normal states with a single temperature dependent boson breaking function f(T) for each impurity content x governing the decay of bosons into pairing fermions. In the normal state f(T) turns out to be a linear, universal function, independent of the impurity content I and the oxygen content delta. We predict with universality a depression in Tc(x) with slight down bending in agreement with experiment. As a natural consequence of the model the bosons become localized slightly above Tc due to the Wigner crystallization, enhanced with lattice local field minima. The holes remain delocalized with a linearly increasing concentration in the normal state, thus explaining the rising Hall density. The boson localization temperature T(sub BL) shows up as a minimum in the Hall density R(sub ab)(exp -1). We also give explanation for very recently observed

  2. Epitaxial growth of SrTiO3/YBa2Cu3O7 - x heterostructures by plasma-enhanced metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liang, S.; Chern, C. S.; Shi, Z. Q.; Lu, P.; Safari, A.; Lu, Y.; Kear, B. H.; Hou, S. Y.

    1994-06-01

    We report heteroepitaxial growth of SrTiO3 on YBa2Cu3O7-x/LaAlO3 substrates by plasma-enhanced metalorganic chemical vapor deposition. X-ray diffraction results indicated that SrTiO3 films were epitaxially grown on a (001) YBa2Cu3O7-x surface with [100] orientation perpendicular to the surface. The film composition, with Sr/Ti molar ratio in the range of 0.9 to 1.1, was determined by Rutherford backscattering spectrometry and energy dispersive spectroscopy. The thickness of the SrTiO3 films is 0.1-0.2 μm. The epitaxial growth was further evidenced by high-resolution transmission electron microscopy and selected area diffraction. Atomically abrupt SrTiO3/YBa2Cu3O7-x interface and epitaxial growth with [100]SrTiO3∥[001]YBa2Cu3O7-x were observed in this study. The superconducting transition temperature of the bottom YBa2Cu3O7-x layer, as measured by ac susceptometer, did not significantly degrade after the growth of overlayer SrTiO3. The capacitance-voltage measurements showed that the dielectric constant of the SrTiO3 films was as high as 315 at a signal frequency of 100 KHz. The leakage current density through the SrTiO3 films is about 1×10-6 A/cm2 at 2-V operation. Data analysis on the current-voltage characteristic indicated that the conduction process is related to bulk-limited Poole-Frenkel emission.

  3. Dependence of the critical temperature of laser-ablated YBa2Cu3O(7-delta) thin films on LaAlO3 substrate growth technique

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Bhasin, Kul B.; Miranda, Felix A.

    1991-01-01

    Samples of LaAlO3 made by flame fusion and Czochralski method were subjected to the same temperature conditions that they have to undergo during the laser ablation deposition of YBa2Cu3O(7 - delta) thin films. After oxygen annealing at 750 C, the LaAlO3 substrate made by two methods experienced surface roughening. The degree of roughening on the substrate made by Czochralski method was three times greater than that on the substrate made by flame fusion. This excessive surface roughening may be the origin of the experimentally observed lowering of the critical temperature of a film deposited by laser ablation on a LaAlO3 substrate made by Czochralski method with respect to its counterpart deposited on LaAlO3 substrates made by flame fusion.

  4. ESR and nonresonant microwave absorption of ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals

    NASA Astrophysics Data System (ADS)

    Tagaya, Kimihito; Fukuoka, Nobuo; Nakanishi, Shigemitsu

    1990-12-01

    ESR measurements were performed for ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals from 77 K to room temperature. The ESR signals of Er2BaCuO5 and Ho2BaCuO5 were observed, and their temperature variations were investigated. Nonresonant microwave absorption was also observed below the superconducting critical temperature of 93 K. The principal values of lower critical field were determined.

  5. Fabrication and characterization of La2Zr2O7 films on different buffer architectures for YBa2Cu3O7-δ coated conductors by RF magnetron sputtering.

    PubMed

    Xu, Da; Liu, Linfei; Xiao, Guina; Li, Yijie

    2013-02-27

    La2Zr2O7 (LZO) films were grown on different buffer architectures by radio frequency magnetron sputtering for the large-scale application of YBa2Cu3O7-x (YBCO)-coated conductors. The three different buffer architectures were cerium oxide (CeO2), yttria-stabilized zirconia (YSZ)/CeO2, and CeO2/YSZ/CeO2. The microstructure and surface morphology of the LZO film were studied by X-ray diffraction, optical microscopy, field emission scanning electron microscopy, and atomic force microscopy. The LZO films prepared on the CeO2, YSZ/CeO2, and CeO2/YSZ/CeO2 buffer architectures were preferentially c-axis-oriented and highly textured. The in-plane texture of LZO film on CeO2 single-buffer architecture was ∆ φ = 5.5° and the out-of-plane texture was ∆ ω = 3.4°. All the LZO films had very smooth surfaces, but LZO films grown on YSZ/CeO2 and CeO2/YSZ/CeO2 buffer architectures had cracks. The highly textured LZO film grown on CeO2-seed buffered NiW tape was suitable for the epitaxial growth of YBCO film with high currents.

  6. Study of deposition of YBa2Cu3O7-x on cubic zirconia

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Meola, Joseph E.; Jenkins, Kimberly A.

    1989-01-01

    Films of YBa2Cu3O7-x were grown on (100) cubic zirconia with 8 percent yttria by laser ablation from sintered targets of YBa2Cu3O7-x. The temperature of the zirconia substrate during growth was varied between 700 and 780 C. The atmosphere during growth was 170 mtorr of O2. The films were subsequently slowly cooled in-situ in 1 atm of O2. The best films were c-axis aligned and had a transition temperature of 87.7 K. The superconducting transition temperature and the X-ray diffraction analysis is reported as a function of the substrate temperature and of the angle between the laser beam and the target's normal.

  7. Vibrational spectra and lattice instabilities in the high-Tc superconductors YBa2Cu3O7 and GdBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Bozović, I.; Mitzi, D.; Beasley, M.; Kapitulnik, A.; Geballe, T.; Perkowitz, S.; Carr, G. L.; Lou, B.; Sudharsanan, R.; Yom, S. S.

    1987-09-01

    The exceptionally high Tc of layered cuprates was proposed recently as originating from electronically driven structural instabilities. We have studied the infrared and Raman spectra of YBa2Cu3O7-δ and GdBa2Cu3O7-δ over a broad range of temperatures, from 10 to 300 K. We observed neither mode softening nor any other spectroscopic signature of lattice instabilities.

  8. Low frequency electrical noise across contacts between a normal conductor and superconducting bulk YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hall, J.; Chen, T. M.

    1990-01-01

    Virtually every device that makes use of the new ceramic superconductors will need normal conductor to supercondutor contacts. The current-voltage and electrical noise characteristics of these contacts could be become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quanity often used to characterize electrical noise, very closely followed an empirical relationship given by, S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.

  9. Temperature and depth dependence of positron annihilation parameters in YBa2Cu3O7-x and La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.; Usmar, S. G.; Nielsen, B.; van der Kolk, G. J.; Kanazawa, I.; Sferlazzo, P.; Moodenbaugh, A. R.

    1988-02-01

    The temperature dependence of the positron annihilation parameters for YBa2Cu3O7-x x=0.7, 0.4 and 0.0 and La1.85Sr0.15CuO4 were measured. The depth dependence of the YBa2Cu3O7 was studied using a variable-energy positron beam showing a strong depth dependence in the Doppler line-shape extending up to an average depth of ˜5.0 μm. It was found that a transition in the Doppler line-shape parameter, ``S'', was associated with the superconducting transition temperature (Tc) in YBa2Cu3O7-x x=0.4 and 0.0 while no transition was observed in the nonsuperconducting YBa2Cu3O6.3. Positron lifetime parameters in YBa2Cu3O7 were found to be consistent with positrons localized at open volume regions (probably unoccupied crystallographic sites) in this material with a lifetime of 210 psec at 300 K. These results indicate that the electron density at these unoccupied sites increases, using a free electron model, approximately 9% between 100 and 12 K.

  10. Single liquid source plasma-enhanced metalorganic chemical vapor deposition of high-quality YBa2Cu3O(7-x) thin films

    NASA Technical Reports Server (NTRS)

    Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John

    1992-01-01

    High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.

  11. Momentum Dependence of Charge Excitations in YBa2Cu3O7-δ and Nd2-xCexCuO4

    NASA Astrophysics Data System (ADS)

    Ishii, Kenji

    2006-03-01

    Resonant inelastic x-ray scattering (RIXS) studies at Cu K-edge on high-Tc superconducting cuprates, YBa2Cu3O7-δ and Nd2-xCexCuO4 are presented. The superconductivity occurs in the vicinity of the Mott insulating state and it is important to clarify the nature of the Mott gap and its doping dependence. Because RIXS has an advantage that we can measure charge excitation in a wide energy-momentum space, it gives a unique opportunity to study the electronic structure of materials. We apply this technique to high-Tc superconducting cuprates. In particular the electronic structure of strongly correlated metals is in the focus of our RIXS study. The experiments were performed at BL11XU of SPring-8, Japan, where a specially designed spectrometer for inelastic x-ray scattering is installed. In optimally doped YBa2Cu3O7-δ, anisotropic spectra are observed in the ab plane of a twin-free crystal. The Mott gap excitation from the one-dimensional CuO chain is enhanced at 2 eV near the zone boundary of the chain direction, while the excitation from the CuO2 plane is broad at 1.5-4 eV and almost independent of momentum. Theoretical calculation based on the one-dimensional and two-dimensional Hubbard model reproduces the observed features in the RIXS spectra when smaller values of the on-site Coulomb energy of the chain than that of the plane are assumed. This means that the charge transfer gap of the chain is smaller than that of the plane. On the other hand, both interband excitation across the Mott gap and intraband excitation in the upper Hubbard band are observed in the electron-doped Nd2-xCexCuO4. The intensity of the interband excitation is concentrated at ˜ 2 eV near the zone boundary while a dispersion relation with a momentum-dependent width emerges in the intraband excitation. The author would like to acknowledge to his collaborators, K. Tsutsui, Y. Endoh, T. Tohyama, K. Kuzushita, T. Inami, K. Ohwada, M. Hoesch, M. Tsubota, Y. Murakami, J. Mizuki, S. Maekawa, T

  12. Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Tang, Xiao; Wu, Wei; Grivel, Jean-Claude

    2014-05-01

    In order to understand the all-chemical-solution-deposition (CSD) processes for manufacturing coated conductors, we investigated the phase evolution of YBa2Cu3O7 (YBCO) films deposited by a low-fluorine metal-organic solution deposition (LF-MOD) method on CSD derived Ce0.9La0.1O2/Gd2Zr2O7/NiW. It is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical TFA-MOD cases. Moreover, we found that the formation of impurities (mainly BaCeO3, NiWO4 and NiO) is strongly related to the annealing temperature, i.e., the diffusion controlled reactions become intensive from 760 oC, which might be connected with the poor structural and superconducting properties of the films deposited at high sintering temperatures. Based on these results, the optimized growth conditions of YBCO films were established, and a high critical current density (Jc) of about 2 MA/cm2 (77 K, self field) is achieved in a 200 nm thick YBCO film in the architecture made by our all CSD route.

  13. Crystalline orientation engineering and charge transport in thin film YBa(2)Cu(3)O(7-x) superconducting surface-coated conductors

    NASA Astrophysics Data System (ADS)

    Chudzik, Michael Patrick

    The weak-link behavior of grain boundaries in polycrystalline high-T c superconductors adversely affects the current density in these materials. The development of wire technology based on polycrystalline high-Tc materials requires understanding and controlling the development of low-angle grain boundaries in these conductors. The research goal is to comprehensively examine the methodology in fabrication and characterization to understand the structure-transport correlation in YBa2Cu3O 7-x (YBCO) surface-coated conductors. High current density YBCO coated conductors were fabricated and characterized as candidates for second generation high-Tc wire technology. Critical current densities (Jc) greater than 1 x 106 A/cm2 at 77 K and zero magnetic field were obtained using thin films epitaxially grown by metalorganic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD) on oriented buffer layers. The biaxially textured oxide buffer layers were deposited by ion-beam-assisted deposition (IBAD). The transport properties of coated conductors were evaluated in high magnetic fields for intrinsic and extrinsic flux vortex pinning effects for improved high-field properties. Transport Jc's of these coated conductors at 7 tesla (77 K) were measured at values greater than 105 A/cm 2 with the magnetic field perpendicular to the YBCO c-axis (B⊥ c) in both MOCVD and PLD derived conductors. The Jc's in B || c orientation fell an order of magnitude lower at 7 tesla to values near 10 4 A/cm2 due to decreased intrinsic flux pinning. The critical current densities as a function of grain boundary misorientation were found to deviate from the general trend determined for single grain boundary junctions, due to the mosaic structure, which allows meandering current flow. Extensive parametric investigations of relevant thin film growth techniques were utilized to establish growth-property relationships that led to optimized fabrication of high-Tc conductors. The work contained

  14. Electronic Structure of TlBa2CaCu2O(7-Delta)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Novikov, D. L.; Freeman, A. J.; Siegal, M. P.

    1997-01-01

    The core levels of TlBa2CaCu2O(7-delta) (Tl-1212) epitaxial films have been measured with X-ray photoelectron spectroscopy (XPS). The valence electronic structure has been determined using the full-potential linear muffin-tin-orbital band-structure method and measured with XPS. The calculations show that a van Hove singularity (VHS) lies above the Fermi level (E(sub F)) for the stoichiometric compound (delta = 0.5), while for 50% oxygen vacancies in the Tl-O layer (delta = 0.5) E(sub F) is in close proximity to the VHS. Samples annealed in nitrogen (to reduce the hole overdoping by the removal of oxygen) exhibit higher core-level binding energies and a higher T(sub c), consistent with a shift of E(sub F) closer to the VHS. Comparisons are made to the core levels and valence bands of Tl2Ba2CaCu2O(8 + delta)(Tl-2212) and HgBa2CaCu2O)6 + delta) (Hg- 1212). The similarity of the Cu 2p(sub 3/2) spectra for Tl-1212 and Tl-2212 indicates that the number of Tl-O layers has little effect on the Cu-O bonding. However, the Tl-1212 and Hg-1212 Cu 2p(sub 3/2) signals exhibit differences which suggest that the replacement of T(sup 3+) with Hg(sup 2+) results in a decrease in the O 2p right arrow Cu 3d charge-transfer energy and differences in the probabilities of planar vs apical oxygen charge transfer and/or Zhang-Rice singlet-state formation. Differences between the Tl-1212 and the Tl-2212 and Hg-1212 measured valence bands are consistent with the calculated Cu 3d and (Tl,Hg) 6s/5d partial densities of states.

  15. Synthesis and characterization of YBaCu2O5-δ compound

    NASA Astrophysics Data System (ADS)

    Ehsandoust, A.; Sandoghchi, M.; Mokhtari, P.; Akhavan, M.

    2018-05-01

    YBaCu2O5 compound as one of the possible microstructures of Y3Ba5Cu8O19 has been synthesized. The X-ray diffraction analysis of this compound indicates that its formation is accompanied with the formation of YBa2Cu3O7-δ. The observed superconductivity around ∼92 K supports this. So, it seems that YBa2Cu3O7-δ is responsible for the observed superconductivity in YBaCu2O5, and this phase is not an independent superconducting phase. Consequently, the overall effect of the YBaCu2O5 formation during the Y3Ba5Cu8O19 fabrication process could be a reduction in Tc.

  16. Controlling particle properties in {{YBa}}_{2}{{Cu}}_{3}{{\\rm{O}}}_{7-\\delta } nanocomposites by combining PLD with an inert gas condensation system

    NASA Astrophysics Data System (ADS)

    Sparing, M.; Reich, E.; Hänisch, J.; Gottschall, T.; Hühne, R.; Fähler, S.; Rellinghaus, B.; Schultz, L.; Holzapfel, B.

    2017-10-01

    The critical current density {J}{{c}} in {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films, which limits their application in external magnetic fields, can be enhanced by the introduction of artificial pinning centers such as non-superconducting nanoparticles inducing additional defects and local strain in the superconducting matrix. To understand the correlation between superconductivity, defect structures and particles, a controlled integration of particles with adjustable properties is essential. A powerful technique for the growth of isolated nanoparticles in the range of 10 nm is dc-magnetron sputtering in an inert gas flow. The inert gas condensation (IGC) of particles allows for an independent control of both the particle diameter distribution and the areal density. We report on the integration of such gas-phase-condensed {{HfO}}2 nanoparticles into pulsed laser deposited (PLD) {{YBa}}2{{Cu}}3{{{O}}}7-δ thin film multilayers with a combined PLD-IGC system. The particles and the structure of the multilayers are analyzed by transmission electron microscopy on cross-sectional FIB lamellae. As a result of the IGC particle implementation, randomly as well as biaxially oriented {{BaHfO}}3 precipitates are formed in the {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films. With as few as three interlayers of nanoparticles, the pinning force density is enhanced in the low-field region.

  17. Disorder-controlled superconductivity at YBa2Cu3O7/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Garcia-Barriocanal, J.; Perez-Muñoz, A. M.; Sefrioui, Z.; Arias, D.; Varela, M.; Leon, C.; Pennycook, S. J.; Santamaria, J.

    2013-06-01

    We examine the effect of interface disorder in suppressing superconductivity in coherently grown ultrathin YBa2Cu3O7 (YBCO) layers on SrTiO3 (STO) in YBCO/STO superlattices. The termination plane of the STO is TiO2 and the CuO chains are missing at the interface. Disorder (steps) at the STO interface cause alterations of the stacking sequence of the intracell YBCO atomic layers. Stacking faults give rise to antiphase boundaries which break the continuity of the CuO2 planes and depress superconductivity. We show that superconductivity is directly controlled by interface disorder outlining the importance of pair breaking and localization by disorder in ultrathin layers.

  18. Low-pressure large-area magnetron sputter deposition of YBa2Cu3O7-δ films for industrial applications

    NASA Astrophysics Data System (ADS)

    Wördenweber, Roger; Hollmann, Eugen; Poltiasev, Michael; Neumüller, Heinz-Werner

    2003-05-01

    This paper addresses the development of a technically relevant sputter-deposition process for YBa2Cu3O7-delta films. First, the simulation of the particle transport from target to substrate indicates that only at a reduced pressure of p approx 1-10 Pa can a sufficiently large deposition rate and homogeneous stoichiometric distribution of the particles during large-area deposition be expected. The results of the simulations are generally confirmed by deposition experiments on CeO2 buffered sapphire and LaAlO3 substrates using a magnetron sputtering system suitable for large-area deposition. However, it is shown that in addition to the effect of scattering during particle transport, the conditions at the substrate lead to a selective growth of Y-Ba-Cu-O phases that, among others, strongly affect the growth rate. For example, the growth rate is more than three times larger for optimized parameters compared to the same set of parameters but at 100 K lower substrate temperature. Stoichiometrical and structural perfect films can be grown at low pressure (p < 10 Pa). However, the superconducting transition temperature of these films is reduced. The Tc reduction seems to be correlated with the c-axis length of YBa2Cu3O7-delta. Two possible explanations for the increased c-axis length and the correlated reduced transition temperature are discussed, i.e. reduced oxygen content and strong cation site disorder due to the heavy particle bombardment.

  19. Millimeter wave transmission studies of YBa2Cu3O7-delta thin films in the 26.5 to 40.0 GHz frequency range

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.; Valco, G. J.

    1989-01-01

    Millimeter wave transmission measurements through YBa2Cu3O(7-delta) thin films on MgO, ZrO2 and LaAlO3 substrates, are reported. The films (approx. 1 micron) were deposited by sequential evaporation and laser ablation techniques. Transition temperatures T sub c, ranging from 89.7 K for the Laser Ablated film on LaAlO3 to approximately 72 K for the sequentially evaporated film on MgO, were obtained. The values of the real and imaginary parts of the complex conductivity, sigma 1 and sigma 2, are obtained from the transmission data, assuming a two fluid model. The BCS approach is used to calculate values for an effective energy gap from the obtained values of sigma sub 1. A range of gap values from 2 DELTA o/K sub B T sub c = 4.19 to 4.35 was obtained. The magnetic penetration depth is evaluated from the deduced values of sigma 2. These results are discussed together with the frequency dependence of the normalized transmission amplitude, P/P sub c, below and above T sub c.

  20. Fluctuation-induced conductivity in melt-textured Pr-doped YBa2Cu3O7-δ composite superconductor

    NASA Astrophysics Data System (ADS)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Siqueira, Ezequiel Costa; Rodrigues, Pedro Júnior; Jurelo, Alcione Roberto

    2018-04-01

    In this study, the effects of thermal fluctuations on the electrical conductivity in melt-textured YBa2Cu3O7-δ, Y0.95Pr0.05Ba2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 composite superconductor were considered. The composite superconductor samples were prepared through the top seeding method using melt-textured NdBa2Cu3O7-d seeds. The resistivity measurements were performed with a low-frequency, low-current AC technique in order to extract the temperature derivative and analyze the influence of the praseodymium ion on the normal superconductor transition and consequently on the fluctuation regimes. The results show that the resistive transition is a two-step process. In the normal phase, above the critical temperature, Gaussian and critical fluctuation regimes were identified, while below the critical temperature, in the regime near the approach to the zero-resistance state, the fluctuation conductivity diverges as expected in a paracoherent-coherent transition.

  1. Structural morphology of YBa 2Cu 3O 7- x

    NASA Astrophysics Data System (ADS)

    Sun, B. N.; Hartman, P.; Woensdregt, C. F.; Schmid, H.

    1990-03-01

    The structural morphology of YBa 2Cu 3O 7- x (YBCO) has been investigated by application of the periodic bond chain (PBC) theory. For x=1, the F forms were found to be {001}, {011}, {013}, {112} and {114}. Attachment energies have been calculated in broken bond model and in an electrostatic point charge model. For x=1 the theoretical growth habit is tabular to platy {001} with {011} as side faces. For x=0 {010} also becomes an F form. The habit is isometric with large {001} and {011} and small {010} faces. The outermost layer of {001} contains half of the Cu + ( x=1) or Cu 3+ and O 2- ( x=0) ions in an ordered arrangement based on a c(2x2) quadratic lattice. For the outermost layer of (010) ( x=0) an ordering scheme of the copper and oxygen ions is proposed. The occurrence of {010} rather than {011} on grown crystals has to be ascribed to external factors.

  2. Epitaxial growth and properties of YBa2Cu3O(x)-Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) trilayer structure by laser ablation

    NASA Astrophysics Data System (ADS)

    Boikov, Iu. A.; Esaian, S. K.; Ivanov, Z. G.; Brorsson, G.; Claeson, T.; Lee, J.; Safari, A.

    1992-08-01

    YBa2Cu3O(x)Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) multilayer structure has been grown on SrTiO3 and Al2O3 substrates using laser ablation. The deposition conditions for the growth of trilayers and their properties are studied in this investigation. Scanning electron microscope images and X-ray diffraction analyses indicate that all the constituent films in the trilayer grow epitaxially on SrTiO3 and were highly oriented on Al2O3. Transport measurements on these multilayers show that top YBa2Cu3O(x) films have good superconducting properties.

  3. Peak effect in untwinned YBa 2Cu 3O 7-δ single crystals

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; André, M.-O.; Indenbom, M. V.; Benoit, W.

    1994-12-01

    We report on the observation of a weak effect of the critical current density in untwinned YBa 2Cu 3O 7-δ single crystals of different purity, using a low frequency torsion pendulum. We construct the peak effect line and the irreversibility line.

  4. Magnetoresistivity of thin YBa2Cu3O7-δ films on sapphire substrate

    NASA Astrophysics Data System (ADS)

    Probst, Petra; Il'in, Konstantin; Engel, Andreas; Semenov, Alexei; Hübers, Heinz-Wilhelm; Hänisch, Jens; Holzapfel, Bernhardt; Siegel, Michael

    2012-09-01

    Magnetoresistivity of YBa2Cu3O7-δ films with thicknesses between 7 and 100 nm deposited on CeO2 and PrBa2Cu3O7-δ buffer layers on sapphire substrate has been measured to analyze the temperature dependence of the second critical magnetic field Bc2. To define Bc2, the mean-field transition temperature Tc was evaluated by fitting the resistive transition in zero magnetic field with the fluctuation conductivity theory of Aslamazov and Larkin. At T → Tc the Bc2(T) dependence shows a crossover from downturn to upturn curvature with the increase in film thickness.

  5. YBa_2Cu_3O_{7-δ} : in pursuit of the ideal microstructure

    NASA Astrophysics Data System (ADS)

    Smith, D. S.; Suasmoro, S.; Lejeune, M.; Rabier, J.; Denanot, M. F.; Heintz, J. M.; Magro, C.; Bonnet, J. P.

    1992-02-01

    This paper examines the role of different factors in the microstructure of ceramic YBa2Cu3O{7-δ} with emphasis on its electrical response. In particular we discuss : 1. the effect of microstructural variations on j_c and ρ_{300}, 2. measurement of j_c, 3. the presence of minor phases and carbonates, 4. oxygen uptake and microcracks, 5. plastic deformation and related structural defects. Dans cet article, nous examinons d'une part la réponse électrique de céramiques supraconductrices massives de type YBa2Cu3O{7-δ} et d'autre part sa relation avec la microstructure. Nous présenterons successivement : 1. L'incidence de modifications microstructurales sur les valeurs de j_c et ρ_{300}, 2. les mesures expérimentales de j_c, 3. la présence de phases minoritaires et de carbonates, 4. la reprise d'oxygène et la microfissuration, 5. la déformation plastique et les défauts structuraux associés.

  6. Fermi surface ridge at second and third Umklapp positron annihilations in Y Ba2Cu3O(7-delta)

    NASA Astrophysics Data System (ADS)

    Adam, G.; Adam, S.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Massidda, S.; Peter, M.

    1993-06-01

    Results of statistical noise smoothing of the electron momentum distribution obtained by two-dimensional angular correlation of the electron-positron annihilation radiation technique on untwinned YBa2Cu3O(7-delta) single crystals are reported. Two distinct signatures of the sheet of Fermi surface related to the CuO chains (the ridge) are resolved. The first occurs at second Umklapp processes, in agreement with previous evidence. The second one, identified for the first time, occurs at third Umklapp processes. Comparison with FLAPW calculations confirms this result.

  7. Defect ordering in YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6: Synthesis and characterization by neutron and electron diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.

    1990-02-01

    Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.

  8. Thickness effect of Gd2Zr2O7 buffer layer on performance of YBa2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    Qiu, Wenbin; Fan, Feng; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing

    2014-12-01

    Bilayer buffer architecture of Gd2Zr2O7 (GZO)/Y2O3 was prepared on the biaxially textured tape of Ni-5 at% W (NiW) by reactive sputtering deposition technique. The buffer layer of GZO films were deposited with different thicknesses on Y2O3 seeding layer with a given thickness of 20 nm. According to the results of φ-scan, the in-plane FWHMs of GZO films decreased and then reversed with increasing thickness of GZO, which corresponded with the in-plane FWHMs and superconducting properties of YBa2Cu3O7-δ (YBCO) films. Reflection High-Energy Electron Diffraction (RHEED) was carried out to examine the surface texture of GZO films and the deteriorated surface alignment was found for thicker films. The thickness effect of GZO on performance of YBCO is the coupling result of surface texture and blocking effect caused by thickness. With the balance of these two factors, the YBCO/GZO(120 nm)/Y2O3/NiW architecture exhibit relatively high performance with the transition temperature Tc of 92 K, a transition width ΔTc below 1 K, and a critical current density Jc of 0.65 MA/cm2.

  9. Forming YBa2Cu3O7-x Superconductors On Copper Substrates

    NASA Technical Reports Server (NTRS)

    Mackenzie, J. Devin; Young, Stanley G.

    1991-01-01

    Experimental process forms layer of high-critical-temperature ceramic superconductor YBa2Cu3O7-x on surface of copper substrate. Offers possible solution to problem of finishing ceramic superconductors to required final sizes and shapes (difficult problem because these materials brittle and cannot be machined or bent). Further research necessary to evaluate superconducting qualities of surface layers and optimize process.

  10. Wet chemical techniques for passivation of YBa2Cu3O7(7-x)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Foote, M. C.; Hunt, B. D.

    1989-01-01

    Wet chemical techniques are described for treatment of YBa2Cu3O(7-x) surfaces, resulting in the formation of native compounds with little or no reactivity to water. Promising native compounds include CuI, BaSO4, CuS, Cu2S, and the oxalates, all of which are either insoluble or have very low solubility in water. Treatment with dilute HI results in the formation of a native iodide film which is 80-90 percent CuI with small amounts of YI3 and BaI2. Treatment with dilute H2SO4 results in the formation of a film which is 95 percent BaSO4 and 5 percent Y2(SO4)3. Cu2S is formed on the surface with a dilute Na2S solution. An oxalate film with equal amounts of Y2(C2O4)3 and BaC2O4 results from treatment with dilute oxalic acid. X-ray photoelectron spectra show no significant changes when the sulfide, sulfate, or oxalate films are dipped in water, while the iodide film shows evidence of Cu(OH)2 formation.

  11. A two-dimensional ACAR study of untwinned YBa2Cu3O(7-x)

    NASA Astrophysics Data System (ADS)

    Smedskjaer, L. C.; Bansil, A.

    1991-12-01

    We have carried out 2D-ACAR measurements on an untwinned single crystal of YBa2Cu3O(sub 7-x) as a function of temperature, for five temperatures ranging from 30K to 300K. We show that these temperature-dependent 2D-ACAR spectra can be described to a good approximation as a superposition of two temperature independent spectra with temperature-dependent weighting factors. We show further how the data can be used to correct for the 'background' in the experimental spectrum. Such a 'background corrected' spectrum is in remarkable accord with the corresponding band theory predictions, and displays, in particular, clear signatures of the electron ridge Fermi surface.

  12. Laser-induced voltages at room temperature in YBa{sub 2}Cu{sub 3}O{sub 7} and Pr{sub x}Y{sub 1{minus}x}Ba{sub 2}Cu{sub 3}O{sub 7} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habermeier, H.U.; Jisrawi, N.; Jaeger-Waldau, G.

    Recent reports on high transient transverse voltages at room temperature in YBa{sub 2}Cu{sub 3}O{sub 7} and Pr{sub x}Y{sub 1{minus}x}Ba{sub 2}Cu{sub 3}O{sub 7} thin films grown on SrTiO{sub 3} single crystal substrates, with a tilt angle between the [001] cubic axis and the substrate surface plane, have been interpreted by thermoelectric fields transverse to a laser-induced temperature gradient which are caused by the non-zero off diagonal elements of the Seebeck tensor. The authors have studied this effect in epitaxially grown Pr-doped, as well as undoped YBa{sub 2}Cu{sub 3}O{sub 7}, thin films and observed for a 2 mm long YBa{sub 2}Cu{sub 3}O{submore » 7} strip exposed to a UV photon fluence of 100 mJ/cm{sup 2} signals as large as 30 V. The unexpected high values for the signals and their doping dependence are discussed within the frame of a model based on a thermopile arrangement, the growth induced defect structure and the doping induced modifications of the material properties.« less

  13. YBa2Cu3O x superconducting nanorods

    NASA Astrophysics Data System (ADS)

    Rieken, William; Bhargava, Atit; Horie, Rie; Akimitsu, Jun; Daimon, Hiroshi

    2018-02-01

    Herein, we report the synthesis of YBa2Cu3O x superconducting nanorods performed by solution chemistry. Initially, a mixture of fine-grained coprecipitated powder was obtained and subsequently converted to YBa2Cu3O x nanorods by heating to 1223 K in oxygen for 12 h. The nanorods are superconducting without the need for any further sintering or oxygenation, thereby providing an avenue for direct application to substrates at room temperature or direct use as formed nanorods. A critical superconducting transition temperature T c of about 92 K was achieved at a critical magnetic field of 10 Oe.

  14. Secondary ion mass spectroscopy study of Au trapping and migration in the Au-irradiated YBa2Cu3O7 - delta film

    NASA Astrophysics Data System (ADS)

    Li, Yupu; Kilner, J. A.; Liu, J. R.; Chu, W. K.; Wagner, G. A.; Somekh, R. E.

    1996-05-01

    The range data and migration of Au in YBa2Cu3O7-δ film were studied with implanted 197Au (1.5 MeV 5×1015 Au+/cm2) as a tracer. The film was a c-axis oriented film, ˜750 nm thick, deposited by high-pressure planar dc sputtering on <100> LaAlO3. Analysis by secondary ion mass spectroscopy shows that the as-implanted Au concentration distribution is essentially Gaussian-like and the depth (R̂p) of maximum Au concentration (˜1.2 wt %) is 201 nm. The projected range (R¯p) and (R̂p) are found to be in very good agreement with the simulated data by TRIM-95, whereas the measured ``straggle'' (ΔRp*) is about 20% larger than that by TRIM-95 simulation. It has also been found that the implanted 197Au starts to migrate within the film at a temperature between 650 and 700 °C, which is much higher than that for the implanted 2H (˜175 °C) and the implanted 18O (between 250 and 300 °C) in c-oriented YBa2Cu3O7-δ films.

  15. Heteroepitaxial growth of Ba1 - xSrxTiO3/YBa2Cu3O7 - x by plasma-enhanced metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chern, C. S.; Liang, S.; Shi, Z. Q.; Yoon, S.; Safari, A.; Lu, P.; Kear, B. H.; Goodreau, B. H.; Marks, T. J.; Hou, S. Y.

    1994-06-01

    Epitaxial Ba1-xSrxTiO3(BST)/YBa2Cu3O7-x heterostructures with superior electrical and dielectric properties have been fabricated by plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD). Data of x-ray diffraction and high resolution transmission electron microscopy showed that <100> oriented Ba1-xSrxTiO3 layers were epitaxially deposited on epitaxial (001) YBa2Cu3O7-x layers. The leakage current density through the Ba1-xSrxTiO3 films was about 10-7 A/cm2 at 2 V (about 2×105 V/cm) operation. Moreover, the results of capacitance-temperature measurements showed that the PE-MOCVD Ba1-xSrxTiO3 films had Curie temperatures of about 30 °C and a peak dielectric constant of 600 at zero bias voltage. The Rutherford backscattering spectrometry and x-ray diffraction results showed that the BST film composition was controlled between Ba0.75Sr0.25TiO3 and Ba0.8Sr0.2TiO3. The structural and electrical properties of the Ba1-xSrxTiO3/YBa2Cu3O7-x heterostructure indicated that conductive oxide materials with close lattice to Ba1-xSrxTiO3 can be good candidates for the bottom electrode.

  16. Processing of La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.

    1988-03-01

    High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.

  17. Study of Substitution of Zn FOR Cu in YBa2Cu3O7 System

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Samariya, A.; Dhawan, M. S.; Singhal, R. K.

    The polycrystalline YBa2(Cu1-XZnX)3O7-δ samples (x=0.0 to 0.06) were synthesized and studied using X Ray diffraction, titration, resistivity, magnetization and X ray photoelectron spectroscopy (XPS). Results show that O2 stoichiometry (δ) changes on Zn substitution which affects their normal state resistivity as well as the TC. Zn also induces local magnetic moment as evidenced from magnetization results. A combination of change in O2 stoichiometry and magnetic pair breaking is found to be responsible for a rapid suppression of superconductivity.

  18. Elliptical flux vortices in YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hickman, H.; Dekker, A. J.; Chen, T. M.

    1991-01-01

    The most energetically favorable vortex in YBa2Cu3O7 forms perpendicular to an anisotropic plane. This vortex is elliptical in shape and is distinguished by an effective interchange of London penetration depths from one axis of the ellipse to another. By generalizing qualitatively from the isotropic to the anisotropic case, we suggest that the flux flow resistivity for the vortex that forms perpendicular to an anistropic plane should have a preferred direction. Similar reasoning indicates that the Kosterlitz-Thouless transition temperature for a vortex mediated transition should be lower if the vortex is elliptical in shape.

  19. Atomic scale real-space mapping of holes in YBa2Cu3O(6+δ).

    PubMed

    Gauquelin, N; Hawthorn, D G; Sawatzky, G A; Liang, R X; Bonn, D A; Hardy, W N; Botton, G A

    2014-07-15

    The high-temperature superconductor YBa2Cu3O(6+δ) consists of two main structural units--a bilayer of CuO2 planes that are central to superconductivity and a CuO(2+δ) chain layer. Although the functional role of the planes and chains has long been established, most probes integrate over both, which makes it difficult to distinguish the contribution of each. Here we use electron energy loss spectroscopy to directly resolve the plane and chain contributions to the electronic structure in YBa2Cu3O6 and YBa2Cu3O7. We directly probe the charge transfer of holes from the chains to the planes as a function of oxygen content, and show that the change in orbital occupation of Cu is large in the chain layer but modest in CuO2 planes, with holes in the planes doped primarily into the O 2p states. These results provide direct insight into the local electronic structure and charge transfers in this important high-temperature superconductor.

  20. Laser ablated YBa2Cu3O(7-x) high temperature superconductor coplanar waveguide resonator

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Blemker, A. R.; Bhasin, K. B.

    1992-01-01

    Several 8.8-GHz coplanar waveguide resonators are fabricated and tested that are made from laser ablated YBa2Cu3O(7-x) thin films on LaAlO3 substrates. A quality factor of 1250 at 77 K was measured. A correlation between the microwave performance of the resonators and the critical temperature and morphology of the films was observed.

  1. A new method for measuring low resistivity contacts between silver and YBa2Cu3O(7-x) superconductor

    NASA Technical Reports Server (NTRS)

    Hsi, Chi-Shiung; Haertling, Gene H.; Sherrill, Max D.

    1991-01-01

    Several methods of measuring contact resistivity between silver electrodes and YBa2Cu3O(7-x) superconductors were investigated; including the two-point, the three point, and the lap-joint methods. The lap-joint method was found to yield the most consistent and reliable results and is proposed as a new technique for this measurement. Painting, embedding, and melting methods were used to apply the electrodes to the superconductor. Silver electrodes produced good ohmic contacts to YBa2Cu3O(7-x) superconductors with contact resistivities as low as 1.9 x 10 to the -9th ohm sq cm.

  2. Microwave Conductivity of Laser Ablated YBa2Cu3O7-delta Superconducting Films and Its Relation to Microstrip Transmission Line Performance

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Chorey, C. M.; Ebihara, B. T.; Romanofsky, R. R.; Heinen, V. O.

    1990-01-01

    We report on the values of the microwave conductivity in the normal (sigma(subN)) and superconducting (sigma*=sigma(sub1)-j sigma(sub2)) states of two laser ablated YBa2CU3O7(sigma) thin films at 35 GHz, in the temperature range from 20 to 300 K. The films 0.7 and 0.4 micrometers) were deposited on LaA10(sub3) by laser ablation. The conductivity was obtained from the microwave power transmitted through the films and assuming a two-fluid model. Values of sigma(subN) approximately 2.3 X 10(exp5) S/m at room temperature for both films, and of sigma(sub1) approximately 6.3 X 10(exp5) and 4.6 X 10(exp5) S/m at temperatures around 80 K were obtained for the 0.7 and 0.4 micrometer films respectively. For sigma(sub2) values of 4.9 X 10(exp6) and 5.4 X 10(exp6) S/m were obtained for the 0.7 and 0.4 micrometer films at 80 K. The expected conductor losses and Q-factor of a superconducting ring resonator were calculated using these conductivity values. The theoretical values were then compared with the experimental results obtained for a resonator fabricated from one of these films.

  3. Investigation of flux penetration in YBa 2Cu 3O 7-δ filaments

    NASA Astrophysics Data System (ADS)

    Devos, P.; Buekenhoudt, A.; D'Anna, G.; André, M.-O.; Indenbom, M. V.; Benoit, W.; De Batist, R.; Cornelis, J.

    1994-12-01

    ac Susceptibility measurements using a low frequency torsion pendulum and an ac susceptometer were conducted on YBa 2Cu 3O 7-δ filaments in low magnetic dc fields (≤1T). Different dissipation peaks are observed, dependent on the temperature and the applied amplitude. The peak at low temperatures, which is of intergranular nature is studied in detail. The penetration follows the Bean model and the intergranular creep is observed.

  4. Sequentially evaporated thin film YBa2Cu3O(7-x) superconducting microwave ring resonator

    NASA Technical Reports Server (NTRS)

    Rohrer, Norman J.; To, Hing Y.; Valco, George J.; Bhasin, Kul B.; Chorey, Chris; Warner, Joseph D.

    1990-01-01

    There is great interest in the application of thin film high temperature superconductors in high frequency electronic circuits. A ring resonator provides a good test vehicle for assessing the microwave losses in the superconductor and for comparing films made by different techniques. Ring resonators made of YBa2Cu3O(7-x) have been investigated on LaAlO3 substrates. The superconducting thin films were deposited by sequential electron beam evaporation of Cu, Y, and BaF2 with a post anneal. Patterning of the superconducting film was done using negative photolithography. A ring resonator was also fabricated from a thin gold film as a control. Both resonators had a gold ground plane on the backside of the substrate. The ring resonators' reflection coefficients were measured as a function of frequency from 33 to 37 GHz at temperatures ranging from 20 K to 68 K. The resonator exhibited two resonances which were at 34.5 and 35.7 GHz at 68 K. The resonant frequencies increased with decreasing temperature. The magnitude of the reflection coefficients was in the calculation of the unloaded Q-values. The performance of the evaporated and gold resonator are compared with the performance of a laser ablated YBa2Cu3O(7-x) resonator. The causes of the double resonance are discussed.

  5. Subtle porosity variation in the YBa2Cu3O(7-x) high-temperature superconductor revealed by ultrasonic imaging

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Generazio, E. R.; Stang, D. B.; Hepp, A. F.

    1990-01-01

    The characterization of global porosity variation within a nominally 93-percent-dense specimen of YBa2Cu3O(7-x) high-temperature superconductor is reported. With a computer-controlled scanning system, precision ultrasonic velocity measurements were obtained at 100 micron increments over an 8- by 8-mm area of the YBa2Cu3O(7-x) specimen. The measurements were used to form a color map of velocity variation across the scanned region of the specimen. Subtle velocity variation on the order of 1 percent was observed. The specimen was shown by experimental methods to be single-phase, untextured, and free of nonuniform residual microstresses. From this knowledge and an established velocity-density relationship, a likely conclusion is that the observed velocity variations are solely due to porosity variations of similar magnitude. Locating these subtle porosity variations is critical since they can result in an order of magnitude variation in J(sub c) for dense YBCO specimens. Thus, mapping the global porosity distribution within YBa2Cu3O(7-x) may reveal regions that have poorer superconducting properties. Ultrasonic velocity results are translated into useful microstructural information for the material scientist.

  6. Desorption of oxygen from YBa2Cu3O6+x films studied by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bock, A.; Kürsten, R.; Brühl, M.; Dieckmann, N.; Merkt, U.

    1996-08-01

    Phonons of laser-deposited YBa2Cu3O6+x films on MgO(100) substrates are investigated in a Raman setup as a function of laser power density. Investigations of YBa2Cu3O7 films allow us to study oxygen out-diffusion, where the onset of out-diffusion is indicated by the appearance of disorder-induced modes in the Raman spectra. At a pressure of 5×10-6 mbar the temperature threshold of the out-diffusion is (490+/-15) K. With increasing oxygen pressure the observed temperature thresholds rise only moderately in contrast to the behavior expected from the pox-T phase diagram of YBa2Cu3O6+x. Even at 1 bar oxygen partial pressure out-diffusion is observed and tetragonal sites with x=0 develop. These observations can be explained by photon-stimulated desorption of oxygen. Investigations of YBa2Cu3O6 films allow us to study oxygen in-diffusion. In 1 bar oxygen we observe competing oxygen fluxes due to thermally activated diffusion and photon-stimulated desorption. From these measurements we determine an upper bound of the thermal activation energy of the oxygen in-diffusion into YBa2Cu3O6 films of (0.19+/-0.01) eV.

  7. Composition dependence of superconductivity in YBa2(Cu(3-x)Al(x))O(y)

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.

    1993-01-01

    Eleven different compositions in the system YBa2(Cu(3-x)Al(x))O(y) (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder X-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T sub c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa2Cu3O(7-x). However, T sub c(R = 0) gradually decreased, and the resistive tails became longer with increasing Al2O3 concentration. This was probably due to formation of BaAl2O4 and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al2O3.

  8. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1991-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.

  9. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1990-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approx. 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approx. 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approx. 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition temperature superconducting thin films at microwave frequencies.

  10. High sensitivity of positrons to oxygen vacancies and to copper-oxygen chain disorder in YBa2Cu3O(7-x)

    NASA Astrophysics Data System (ADS)

    von Stetten, E. C.; Berko, S.; Li, X. S.; Lee, R. R.; Brynestad, J.

    1988-05-01

    Temperature-dependent positron-electron momentum densities have been studied by two-dimensional angular correlation of annihilation radiation from 10 to 320 K in YBa2Cu3O(7-x) samples. The positron ground-state charge density, computed by the linearized augmented-plane-wave method, indicates that in YBa2Cu3O7 delocalized positrons sample preferentially the linear copper-oxygen chains. Positron localization due to disorder in these chains is invoked to explain the striking differences observed between superconducting (x = about 0.02) and nonsuperconducting (x = about 0.70) samples.

  11. Thermoelectric power of high-pressure synthesized CuBa{sub 2}Ca{sub 3}Cu{sub 4}O{sub 11{minus}{delta}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Jin, C.; Yamauchi, H.

    We report measurements of thermoelectric power (TEP) for high-pressure synthesized CuBa{sub 2}Ca{sub 3}Cu{sub 4}O{sub 11{minus}{delta}} superconductors. The magnitude of TEP for the sample with {ital T}{sub {ital c},zero}=115.9 K is very small and shows a sign crossover at {approximately}160 K. The TEP shows a peak behavior and displays an approximately linear temperature dependence with a negative slope {minus}0.033 {mu}V/K{sup 2} for 120{le}{ital T}{le}240 K. These features resemble those for other known high-{ital T}{sub {ital c}} cuprate superconductors, in particular {ital S}{sub {ital a}} in the {ital a} direction for an untwinned YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} single crystal and polycrystalline Tl-2201more » samples. A brief discussion is given on the TEP behavior in comparison with CuBa{sub 2}YCu{sub 2}O{sub 7{minus}{delta}} cuprate superconductors by considering their similar structure of building blocks and type of charge reservoir. {copyright} {ital 1996 The American Physical Society.}« less

  12. Superconducting YBa2Cu3O7- δ Thin Film Detectors for Picosecond THz Pulses

    NASA Astrophysics Data System (ADS)

    Probst, P.; Scheuring, A.; Hofherr, M.; Wünsch, S.; Il'in, K.; Semenov, A.; Hübers, H.-W.; Judin, V.; Müller, A.-S.; Hänisch, J.; Holzapfel, B.; Siegel, M.

    2012-06-01

    Ultra-fast THz detectors from superconducting YBa2Cu3O7- δ (YBCO) thin films were developed to monitor picosecond THz pulses. YBCO thin films were optimized by the introduction of CeO2 and PrBaCuO buffer layers. The transition temperature of 10 nm thick films reaches 79 K. A 15 nm thick YBCO microbridge (transition temperature—83 K, critical current density at 77 K—2.4 MA/cm2) embedded in a planar log-spiral antenna was used to detect pulsed THz radiation of the ANKA storage ring. First time resolved measurements of the multi-bunch filling pattern are presented.

  13. Flux Pinning Enhancement in YBa2Cu3O7-x Films with BaSnO3 Nanoparticles

    DTIC Science & Technology

    2008-10-01

    SUPERCONDUCTOR SCIENCE AND TECHNOLOGY Supercond. Sci. Technol. 19 (2006) L37 –L41 doi:10.1088/0953-2048/19/10/L01 RAPID COMMUNICATION Flux pinning enhancement in...2006 Online at stacks.iop.org/SUST/19/ L37 Abstract Nanoparticles of BaSnO3 were incorporated into YBa2Cu3O7−x (YBCO) films on LaAlO3 substrates for...0953-2048/06/100037+05$30.00 © 2006 IOP Publishing Ltd Printed in the UK L37 1 Rapid Communication materials and sintered together to form a composite

  14. Spectrophotometric Determination of the Hole Concentration in the Superconductor YBa2Cu3O(sub 7-x)

    ERIC Educational Resources Information Center

    Hoppe, Jack I.; Malati, Mounir A.

    2005-01-01

    An experimental study of ceramic superconductors namely YBa2Cu3O(sub 7-x), which illustrates the use of spectrophotometry, based on the electronic spectra of complexes of Fe(II), Fe(III) and Cu(II) to better understand the stoichiometry of YBCO is described. The results from this experiment are in good agreement with those obtained by the…

  15. Growth of ultrathin twin-free b-oriented YBa{sub 2}Cu{sub 3}O{sub 7} {sub –} {sub x} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepantsov, E. A., E-mail: stepantsov@ns.crys.ras.ru; Arpaia, R.; Lombardi, F.

    2017-01-15

    Twin-free b-oriented YBa{sub 2}Cu{sub 3}O{sub 7–x} films with a thickness less than 40 nm have been epitaxially grown on (100)SrLaGaO{sub 4} crystals. Based on the temperature dependence of resistance, the onset temperature of the transition to the superconducting state is found to be 90 K; the transition width is 4 K. The film growth has been performed in two stages. A (100)PrBa{sub 2}Cu{sub 3}O{sub 7–x} buffer layer was previously grown on a (100)SrLaGaO{sub 4} substrate by rf magnetron sputtering in an Ar–O{sub 2} gas mixture at a continuous and monotonic increase in temperature from 660 to 830°C. The main YBa{submore » 2}Cu{sub 3}O{sub 7–x} film was grown on the buffer layer surface by pulsed laser deposition in an oxygen medium at a fixed temperature (800°C). The above processes were implemented in different chambers, which were connected by a vacuum channel for transporting samples. Both films were grown in situ, without contacting atmosphere in all growth stages. An X-ray diffraction study has shown that the YBa{sub 2}Cu{sub 3}O{sub 7–x} films are single-crystal and free of precipitates of other phases and domains of other orientations.« less

  16. Method for making high-critical-current-density YBa.sub.2 Cu.sub.3 O.sub.7 superconducting layers on metallic substrates

    DOEpatents

    Feenstra, Roeland; Christen, David; Paranthaman, Mariappan

    1999-01-01

    A method is disclosed for fabricating YBa.sub.2 Cu.sub.3 O.sub.7 superconductor layers with the capability of carrying large superconducting currents on a metallic tape (substrate) supplied with a biaxially textured oxide buffer layer. The method represents a simplification of previously established techniques and provides processing requirements compatible with scale-up to long wire (tape) lengths and high processing speeds. This simplification has been realized by employing the BaF.sub.2 method to grow a YBa.sub.2 Cu.sub.3 O.sub.7 film on a metallic substrate having a biaxially textured oxide buffer layer.

  17. Reduced reactivity to air on HF-treated YBa2Cu3O(7-x)surfaces

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Hunt, B. D.; Foote, M. C.

    1989-01-01

    Treatment of YBa2Cu3O(7-x) films with a nonaqueous solution of HF in absolute ethanol results in the formation of an oxyfluoride with relative Y:Ba:Cu concentrations of 1:4:3 on the surface, as determined by X-ray photoelectron spectroscopy. The passivation properties of chemically treated films were tested by monitoring the growth of the high binding energy O 1s peak, associated with nonsuperconducting surface species, as a function of air exposure time, for both HF-treated and untreated films. The native oxyfluoride is shown to reduce the reactivity of the superconductor to air.

  18. Shaping and reinforcement of melt textured YBa2Cu3O7-δ superconductors

    NASA Astrophysics Data System (ADS)

    Meslin, S.; Harnois, C.; Chubilleau, C.; Horvath, D.; Grossin, D.; Suddhakar, E. R.; Noudem, J. G.

    2006-07-01

    From porous Y2BaCuO5 (Y211) with various grain sizes, single domain ceramic composites YBa2Cu3Oy/Y2BaCuO5 have been prepared by combination of the infiltration and top seed growth (ITSG) process. In addition, perforated Y123 has been prepared from Y211 by the ITSG method in order to magnify the specific surface and then increase oxygen diffusion into the core of the material. Magnetic and electrical properties were determined and correlate well with the microstructure of the composites and were compared to the conventional doped or undoped YBa2Cu3Oy (Y123). From magnetic measurements, high critical current densities, Jc, of 86 000 A cm-2 have been measured. Transport Jc values higher than 10 600 A cm-2 are reached at 77 K and 0 T, corresponding to the nominal critical currents of 325 A injected reproducibly through sections less than 3.082 mm2. This confirms the high quality of single domains obtained with a well controlled ITSG process. On the other hand, the perforated samples were reinforced using resin impregnation and the flux mapping has been investigated.

  19. Room temperature degradation of YBa2Cu3O(7-x) superconductors in varying relative humidity environments

    NASA Technical Reports Server (NTRS)

    Hooker, M. W.; Wise, S. A.; Carlberg, I. A.; Stephens, R. M.; Simchick, R. T.; Farjami, A.

    1993-01-01

    An aging study was performed to determine the stability of YBa2Cu3O(7-x) ceramics in humid environments at 20 C. In this study, fired ceramic specimens were exposed to humidity levels ranging from 30.5 to 100 percent for 2-, 4-, and 6-week time intervals. After storage under these conditions, the specimens were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrical resistance measurements. At every storage condition evaluated, the fired ceramics were found to interact with H2O present in the surrounding environment, resulting in the decomposition of the YBa2Cu3O(7-x) phase. XRD data showed that BaCO3, CuO, and Y2BaCuO5 were present after aging and that the peak intensities of these impurity phases increased both with increasing humidity level and with increasing time of exposure. Additionally, SEM analyses of the ceramic microstructures after aging revealed the development of needle-like crystallites along the surface of the test specimens after aging. Furthermore, the superconducting transition temperature T(sub c) was found to decrease both with increasing humidity level and with increasing time of exposure. All the specimens aged at 30.5, 66, and 81 percent relative humidity exhibited superconducting transitions above 80 K, although these values were reduced by the exposure to the test conditions. Conversely, the specimens stored in direct contact with water (100 percent relative humidity) exhibited no superconducting transitions.

  20. Chemical durability of high-temperature superconductor YBa2Cu3O(7-x) in aqueous environments

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Sandkuhl, Ann L.

    1988-01-01

    The stability of YBa2Cu3O(7-x) in water and 100-percent humidity has been investigated at three temperatures, using pH measurements, X-ray diffraction, and scanning electron microscopy. The oxide-ceramic superconductor is highly unstable; it reacts rapidly with water and degrades in moisture. Dissolution of the oxide perovskite in water is highly incongruent. The corrosion products are found to be BaCO3, CuO, O2, etc. Barium hydroxide is first formed and further reacts with atmospheric CO2 to form needle-shaped crystals of BaCO3. For any practical applications, devices made from these materials would have to be protected with an impermeable coating to prevent deterioration from atmosphere.

  1. Induced Ferromagnetism at BiFeO 3/YBa 2Cu 3O 7 Interfaces

    DOE PAGES

    Zhu, Jian-Xin; Wen, Xiao-Dong; Haraldsen, J. T.; ...

    2014-06-20

    We report that transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO 3/YBa 2Cu 3O 7 interfaces. By comparing the total energy for various magnetic spin configurations inside BiFeO 3, we are able to show that a metallic ferromagnetism is induced near the interface. We further develop an interface exchange-coupling model and place the extracted exchange coupling interactionmore » strengths, from the first-principles calculations, into a resultant generic phase diagram. Our conclusion of interfacial ferromagnetism is confirmed by the presence of a hysteresis loop in field-dependent magnetization data. Lastly, the emergence of interfacial ferromagnetism should have implications to electronic and transport properties.« less

  2. Controlling BaZrO3 nanostructure orientation in YBa2Cu3O{}_{7-\\delta } films for a three-dimensional pinning landscape

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.

    2015-12-01

    The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.

  3. Selective interlayer ferromagnetic coupling between the Cu spins in YBa2Cu3O7−x grown on top of La0.7Ca0.3MnO3

    PubMed Central

    Huang, S. W.; Wray, L. Andrew; Jeng, Horng-Tay; Tra, V. T.; Lee, J. M.; Langner, M. C.; Chen, J. M.; Roy, S.; Chu, Y. H.; Schoenlein, R. W.; Chuang, Y.-D.; Lin, J.-Y.

    2015-01-01

    Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2Cu3O7−x (YBCO) superconductor when it is grown on top of ferromagnetic La0.7Ca0.3MnO3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO2 but not with La0.7Ca0.3O interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2 plane at the La0.7Ca0.3O and MnO2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems. PMID:26573394

  4. Transformational dynamics of BZO and BHO nanorods imposed by Y2O3 nanoparticles for improved isotropic pinning in YBa2Cu3O7 -δ thin films

    NASA Astrophysics Data System (ADS)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Shi, Jack; Haugan, Timothy; Xing, Zhongwen; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Osofsky, Mike; Prestigiacomo, Joseph; Wu, Judy Z.

    2017-07-01

    An elastic strain model was applied to evaluate the rigidity of the c-axis aligned one-dimensional artificial pinning centers (1D-APCs) in YBa2Cu3O7-δ matrix films. Higher rigidity was predicted for BaZrO3 1D-APCs than that of the BaHfO3 1D-APCs. This suggests a secondary APC doping of Y2O3 in the 1D-APC/YBa2Cu3O7-δ nanocomposite films would generate a stronger perturbation to the c-axis alignment of the BaHfO3 1D-APCs and therefore a more isotropic magnetic vortex pinning landscape. In order to experimentally confirm this, we have made a comparative study of the critical current density Jc (H, θ, T) of 2 vol.% BaZrO3 + 3 vol.%Y2O3 and 2 vol.%BaHfO3 + 3 vol.%Y2O3 double-doped (DD) YBa2Cu3O7-δ films deposited at their optimal growth conditions. A much enhanced isotropic pinning was observed in the BaHfO3 DD samples. For example, at 65 K and 9.0 T, the variation of the Jc across the entire θ range from θ=0 (H//c) to θ=90 degree (H//ab) is less than 18% for BaHfO3 DD films, in contrast to about 100% for the BaZrO3 DD counterpart. In addition, lower α values from the Jc(H) ˜ H-α fitting were observed in the BaHfO3 DD films in a large θ range away from the H//c-axis. Since the two samples have comparable Jc values at H//c-axis, the improved isotropic pinning in BaHfO3 DD films confirms the theoretically predicted higher tunability of the BaHfO3 1D-APCs in APC/YBa2Cu3O7-δ nanocomposite films.

  5. Phonon Dispersion Measurements of YBa 2Cu 3O 6.15 and YBa 2Cu 3O 6.95 by Time-of-Flight Neutron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J.-H.; Egami, T.; McQueeny, R. J.

    We measured the phonon dispersions of YBa{sub 2}Cu{sub 3}O{sub 6.15} and YBa{sub 2}Cu{sub 3}O{sub 6.95} by time-of-flight inelastic neutron scattering. The in-plane bond-stretching modes in the metallic phase showed a distinct a-b plane anisotropy beyond what is expected for structural origin. Such anisotropy in the longitudinal optical modes, which is absent in the TO, suggests strong in-plane anisotropy in the underlying electronic structure. Apical oxygen bond-stretching modes showed a large frequency change between the insulating and the metallic phases. This large softening also is beyond structural origin, and suggests the effect of local electronic environment.

  6. Theoretical calculations of oxygen relaxation in YBa2Cu3O6+x ceramics

    NASA Astrophysics Data System (ADS)

    Mi, Y.; Schaller, R.; Sathish, S.; Benoit, W.

    1991-12-01

    A two-dimensional theoretical model of stress-induced point-defect relaxation in a layered structure is presented, with a detailed discussion of the special case of YBa2Cu3O6+x. The experimental results of oxygen relaxation in YBa2Cu3O6+x can be explained qualitatively by this model.

  7. Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, D.; Nair, Saritha K.; He, Mi

    The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less

  8. Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers

    DOE PAGES

    Springer, D.; Nair, Saritha K.; He, Mi; ...

    2016-02-12

    The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less

  9. Atomic-scale identification of novel planar defect phases in heteroepitaxial YBa2Cu3O7-δ thin films

    NASA Astrophysics Data System (ADS)

    Gauquelin, Nicolas; Zhang, Hao; Zhu, Guozhen; Wei, John Y. T.; Botton, Gianluigi A.

    2018-05-01

    We have discovered two novel types of planar defects that appear in heteroepitaxial YBa2Cu3O7-δ (YBCO123) thin films, grown by pulsed-laser deposition (PLD) either with or without a La2/3Ca1/3MnO3 (LCMO) overlayer, using the combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and electron energy loss spectroscopy (EELS) mapping for unambiguous identification. These planar lattice defects are based on the intergrowth of either a BaO plane between two CuO chains or multiple Y-O layers between two CuO2 planes, resulting in non-stoichiometric layer sequences that could directly impact the high-Tc superconductivity.

  10. Selective interlayer ferromagnetic coupling between the Cu spins in YBa 2Cu 3O 7–x grown on top of La 0.7Ca 0.3MnO 3

    DOE PAGES

    Huang, S. W.; Wray, L. Andrew; Jeng, Horng -Tay; ...

    2015-11-17

    Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa 2Cu 3O 7–x (YBCO) superconductor when it is grown on top of ferromagnetic La 0.7Ca 0.3MnO 3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO 2 but not withmore » La 0.7Ca 0.3O interfacial termination. Thus, such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO 2 plane at the La 0.7Ca 0.3O and MnO 2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.« less

  11. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    NASA Astrophysics Data System (ADS)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  12. Method for preparation of textured YBa.sub.2 Cu.sub.3 O.sub.x superconductor

    DOEpatents

    Selvamanickam, Venkat; Goyal, Amit; Kroeger, Donald M.

    1998-01-01

    The present invention relate to textured YBa.sub.2 Cu.sub.3 O.sub.x (Y-123) superconductors and a process of preparing them by directional recrystallization of compacts fabricated from quenched YBCO powders at temperatures about 100.degree. C. below the peritectic temperature to provide a superconductor where more than 75% of the YBa.sub.2 Cu.sub.3 O.sub.x phase is obtained without any Y.sub.2 BaCuO.sub.5 .

  13. Pinning-to-barrier crossover in YBa2Cu3O7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Konczykowski, M.; Holtzberg, F.; Benoit, W.

    1996-03-01

    The behaviour of magnetic flux in high purity untwinned YBa2Cu3O7-δ (YBCO) single crystals is visualised by means of the magneto-optical technique. It is observed that after zero field-cooling at high temperatures near T c , flux penetrates directly to the sample center over a flux free edge area, in contrast to the usual Bean-like flux penetration from the edges. This fact clearly shows that volume pinning becomes negligible compared with the edge barrier. The role of the recently rediscovered geometrical barrier in the crystal magnetisation is discussed.

  14. Bulk modulus and its pressure derivative of YBa2Cu3O7-x

    NASA Astrophysics Data System (ADS)

    Cankurtaran, M.; Saunders, G. A.; Willis, J. R.; Al-Kheffaji, A.; Almond, D. P.

    1989-02-01

    Pressure dependences of the ultrasonic wave velocities in polycrystalline YBa2Cu3O7-x are reported. Porosity effects are taken into account using wave-scattering theory in a porous medium. The bulk modulus B0 at atmospheric pressure for the nonporous matrix is 65 GPa, much smaller than B(P) obtained at high pressures from lattice-parameter measurements. This discrepancy accrues from the large value of (∂B/∂P). The comparatively small B0 and large (∂B/∂P) are due to vacant anion sites in this defect perovskite.

  15. Investigation of Pb doping on electrical, structural and superconducting properties of YBa2-xPbxCu3O7-δ superconductors

    NASA Astrophysics Data System (ADS)

    Ezzatpour, S.; Sharifzadegan, L.; Sarvari, F.; Sedghi, H.

    2018-06-01

    In this study the high temperature superconductor YBa2-xPbxCu3O7-δ with doping x = ,0.05,0.1,0.15 were prepared by the standard solid-state reaction method. The effect of Pb substitution on Ba site of YBCO superconducting system, structural, electrical and superconducting properties of Y-based superconductor has been investigated. The measurements of dc resisitivity were performed on all samples with four-probe method using low frequency/lowAC current (4 mA) . The superconducting temperature, Tc, were determined from the resistivity versus temperature (R-T) curves. Results show that Pb doping reduced the cirtical temperature(Tc) and superconductivity properties of our samples. The maximum and the minimum Tc were observed for the samples with x = 0.15 and x = 0.1 respectively. The structure and phase purity of samples were examined by the X-ray powder diffraction technique (XRD) performed by means of D8 Advance Bruker diffractometer with Cu kα radiation. The grain morphology of surface of the samples was analyzed by sacanning electron microscopy (SEM). XRD patterns of polycrystalline materials of composition YBa2-xPbxCu3O7-δ revealed that all prepared samples are orthorhombic. All of the peaks of YBCO and YBa2-xPbxCu3O7-δ have been used for the estimation of volume fractions of the phases and ignored the void peaks.

  16. Optical Studies of Thin Film and Bulk Superconductor Yttrium BARIUM(2) COPPER(3) OXYGEN(7-DELTA)

    NASA Astrophysics Data System (ADS)

    Sengupta, Louise Clare

    This dissertation summarizes a systematic study of the optical properties of YBa_2Cu _3O_{7-delta } using the nondestructive techniques of spectroscopic ellipsometry, Raman scattering, and infrared absorption spectroscopy. In order to complete this research, a spectroscopic ellipsometric system has been designed and the fully automated system has been developed in this laboratory. Using the ellipsometric study, we have determined the effect of metallic replacement for Cu by Co, Fe, Ni, and Zn in YBa _2Cu_3O_ {7-delta} on the 1.7 eV electronic transition. The transition is observed in the case of doping by trivalent Co and Fe and in the case of oxygen deficiency. In all cases, it was established as result of a decrease in the hole concentration. The Raman spectra show a decrease in the frequency of the 500 cm ^{-1} mode with increase in Co and Fe concentration and an upward shift in frequency of the 435 cm^{-1} mode. These results, along with those for Ni and Zn doping are discussed in terms of the normal mode calculations for the material. The infrared phonon spectra also indicate a reduction in the electronic screening for trivalent dopants Co and Fe. All the optical experiments support evidence of the occurrence of a charge transfer mechanism in the high T_ {rm c} material YBa_2 Cu_3O in which the more insulating chains act as reservoirs of charge for the conducting copper -oxygen planes. As part of investigating the effects of orientation of the films on the optical constants of the material, studies on YBa_2Cu_3 O_{7-delta} deposited at various thicknesses on SrTiO_3 substrates have been completed using spectroscopic ellipsometry. The results indicate that the metallic behavior associated with the ab planes decreases with increasing film thickness. This behavior is well characterized by an exponential relationship between the relaxation time and the critical energy position at which the real part of the dielectric function becomes zero. The anisotropy of the

  17. Chemical nature of the barrier in Pb/YBa2Cu3O(7-x) tunneling structures

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Foote, M. C.; Hunt, B. D.; Bajuk, L.

    1991-01-01

    Several reports of reproducible tunneling measurements on YBa2Cu3O(7-x) thin films or single crystals with a Pb counterelectrode have recently appeared. The nature of the tunnel barrier, formed by air exposure, in these structures has been unknown. In the present work, the chemical nature of the tunnel barrier is studied with X-ray photoelectron spectroscopy (XPS). Laser-ablated films grown on LaAlO3 which have been chemically etched and heated in air are found to form nonsuperconducting surface Ba species, evident in an increase of the high binding energy Ba 3d and O 1s signals. A deposited Pb film about 10 A thick is found to be oxidized, and Cu(+2) is partially reduced to Cu(+1). The tunneling barrier thus appears to consist of species resulting from a combination of the air exposure and a reaction between the superconductor and the deposited Pb counterelectrode.

  18. Evidence for three-dimensional XY critical properties in underdoped YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Schneider, T.

    2007-05-01

    We perform a detailed analysis of the reversible magnetization data of Salem-Sugui and Babíc of underdoped and optimally doped YBa2Cu3O7-δ single crystals. Near the zero field transition temperature we observe extended consistency with the properties of the three-dimensional XY universality class, even though the attained critical regime is limited by an inhomogeneity induced finite size effect. Nevertheless, as Tc falls from 93.5to41.5K , the critical amplitude of the in-plane correlation length ξab0 , the anisotropy γ=ξab0/ξc0 and the critical amplitude of the in-plane penetration depth λab0 increase substantially, while the critical amplitude of the c -axis correlation length ξc0 does not change much. As a consequence, the correlation volume Vcorr- increases and the critical amplitude of the specific heat singularity A- decreases dramatically, while the rise of λab0 reflects the behavior of the zero temperature counterpart. Conversely, although ξab0 and λab0 increase with reduced Tc , the ratio λab0/ξab0- , corresponding to the Ginzburg-Landau parameter κab , decreases substantially and YBa2Cu3O7-δ crosses over from an extreme to a weak type-II superconductor.

  19. Fermi surface ridge at second and third UMKLAPP positron annihilations in YBa 2Cu 3O 7- δ

    NASA Astrophysics Data System (ADS)

    Adam, Gh.; Adam, S.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Peter, M.; Massida, S.

    1993-12-01

    Results of statistical noise smoothing of the electron momentum distribution got by two-dimensional angular correlation of the electron-positron annihilation radiation technique on untwinned YBa 2Cu 3O 7- δ single crystals are reported. Two distinct signatures of the sheet of Fermi surface related to the CuO chains (the ridge) are resolved. The first occurs at second Umklapp processes, in agreement with previous evidence. The second one, identified for the first time, occurs at third Umklapp processes. Comparison with FLAPW calculations confirms this result.

  20. Growth, patterning, and weak-link fabrication of superconducting YBa2Cu3O(7-x) thin films

    NASA Astrophysics Data System (ADS)

    Hilton, G. C.; Harris, E. B.; van Harlingen, D. J.

    1988-09-01

    Thin films of the high-temperature superconducting ceramic oxides have been grown, and techniques for fabricating weak-link structures have been investigated. Films of YBa2Cu3O(7-x) grown on SrTiO3 by a combination of dc magnetron sputtering and thermal evaporation from the three sources have been patterned into microbridges with widths down to 2 microns. Evidence is found that the bridges behave as arrays of Josephson-coupled superconducting islands. Further weak-link behavior is induced by in situ modification of the coupling by ion milling through the bridge.

  1. Thermodynamic evidence for the Bose glass transition in twinned YBa 2 Cu 3 O 7 - δ crystals

    DOE PAGES

    Pérez-Morelo, D. J.; Osquiguil, E.; Kolton, A. B.; ...

    2015-07-21

    We used a micromechanical torsional o scillator to measure the magnetic response of a twinned YBaBa2Cu3O7-δ single crystal disk near the Bose glass transition. We observe an anomaly in the temperature dependence of the magnetization consistent with the appearance of a magnetic shielding perpendicular to the correlated pinning of the twin boundaries. This effect is related to the thermodynamic transition from the vortex liquid phase to a Bose glass state.

  2. Decoupling and tuning competing effects of different types of defects on flux creep in irradiated YBa 2Cu 3O 7-δ coated conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, S.; Leroux, M.; Rupich, M. W.

    YBa 2Cu 3O 7-δ coated conductors (CCs) have achieved high critical current densities (J c) that can be further increased through the introduction of additional defects using particle irradiation. However, these gains are accompanied by increases in the flux creep rate, a manifestation of competition between the different types of defects. In this paper, we study this competition to better understand how to design pinning landscapes that simultaneously increase J c and reduce creep. CCs grown by metal organic deposition show non-monotonic changes in the temperature-dependent creep rate, S(T). Notably, in low fields, there is a conspicuous dip to lowmore » S as the temperature (T) increases from ~20 to ~65 K. Oxygen-, proton-, and Au-irradiation substantially increase S in this temperature range. Focusing on an oxygen-irradiated CC, we investigate the contribution of different types of irradiation-induced defects to the flux creep rate. Specifically, we study S(T) as we tune the relative density of point defects to larger defects by annealing both an as-grown and an irradiated CC in O 2 at temperatures T A = 250 °C–600 °C. Finally, we observe a steady decrease in S(T > 20 K) with increasing T A, unveiling the role of pre-existing nanoparticle precipitates in creating the dip in S(T) and point defects and clusters in increasing S at intermediate temperatures.« less

  3. Decoupling and tuning competing effects of different types of defects on flux creep in irradiated YBa 2Cu 3O 7-δ coated conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, S.; Leroux, M.; Rupich, M. W.

    YBa 2Cu 3O 7-δ coated conductors (CCs) have achieved high critical current densities (J c) that can be further increased through the introduction of additional defects using particle irradiation. However, these gains are accompanied by increases in the flux creep rate, a manifestation of competition between the different types of defects. Here, we study this competition to better understand how to design pinning landscapes that simultaneously increase J c and reduce creep. CCs grown by metal organic deposition show non-monotonic changes in the temperature-dependent creep rate, S(T). Notably, in low fields, there is a conspicuous dip to low S asmore » the temperature (T) increases from ~20 to ~65 K. Oxygen-, proton-, and Au-irradiation substantially increase S in this temperature range. Focusing on an oxygen-irradiated CC, we investigate the contribution of different types of irradiation-induced defects to the flux creep rate. Specifically, we study S(T) as we tune the relative density of point defects to larger defects by annealing both an as-grown and an irradiated CC in O 2 at temperatures T A = 250 °C–600 °C. We observe a steady decrease in S(T > 20 K) with increasing T A, unveiling the role of pre-existing nanoparticle precipitates in creating the dip in S(T) and point defects and clusters in increasing S at intermediate temperatures.« less

  4. Shear at Twin Domain Boundaries in YBa2Cu3O7-x

    NASA Astrophysics Data System (ADS)

    Caldwell, W. A.; Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Geballe, T. H.; Koster, G.; Batterman, B. W.; Patel, J. R.

    2004-05-01

    The microstructure and strain state of twin domains in YBa2Cu3O7-x are discussed based upon synchrotron white-beam x-ray microdiffraction measurements. Intensity variations of the fourfold twin splitting of Laue diffraction peaks are used to determine the twin domain structure. Strain analysis shows that interfaces between neighboring twin domains are strained in shear, whereas the interior of these domains are regions of low strain. These measurements are consistent with the orientation relationships of twin boundaries within and across domains and show that basal plane shear stresses can exceed 100MPa where twin domains meet. Our results support stress field pinning of magnetic flux vortices by twin domain boundaries.

  5. Structural transition of secondary phase oxide nanorods in epitaxial YBa2Cu3O7-δ films on vicinal substrates

    NASA Astrophysics Data System (ADS)

    Shi, Jack J.; Wu, Judy Z.

    2012-12-01

    A theoretical study of a structural transition of secondary phase oxide nanorods in epitaxial YBa2Cu3O7-δ films on vicinal SrTiO3 substrates is presented. Two possible types of film/substrate interface are considered, with one assuming complete coherence, while the other is defective as manifested by the presence of antiphase grain boundaries. Only in the former case does the increase of the vicinal angle of the substrate lead to a substantial change of the strain field in the film, resulting in a transition of the nanorod orientation from the normal to the in-plane direction of the film. The calculated threshold vicinal angle for the onset of the transition and lattice deformation of the YBa2Cu3O7-δ film due to the inclusion of the nanorods is in very good agreement with experimental observations. This result sheds lights on the understanding of the role of the film/substrate lattice mismatch in controlling self-assembly of dopant nanostructures in matrix films.

  6. Characteristics of YBa2Cu3O7 high-Tc superconductor with KCl

    NASA Astrophysics Data System (ADS)

    Yoon, Ki Hyun; Chang, Sung Sik

    1990-03-01

    The lattice parameters, microstructural change, transition temperature, and electrical properties of the YBa2-xKxCu3O7 high-Tc superconductor in the range from x=0 to x=0.25 have been investigated. The high-Tc orthorhombic phase increases with increasing KCl up to x=0.20, above which it decreases. The lattice parameters decrease with increasing KCl up to x=0.10, and then become nearly uniform. The grain size increases with increasing KCl up to x=0.20 due to its role as sintering agent. The specimens with x=0.2 have transition temperatures of 96 K and high magnetic susceptibility due to the contraction of lattice parameters a and b and the increase of orthorhombic distortion.

  7. Crystal growth of YBa2Cu3O(7-x) and reaction of gold crucible with Ba-Cu-rich flux

    NASA Technical Reports Server (NTRS)

    Tao, Y. K.; Chen, H. C.; Martini, L.; Bechtold, J.; Huang, Z. J.; Hor, P. H.

    1991-01-01

    YBa2Cu3O(7-x) crystals are grown in a gold crucible by a self-flux method. The flux moves along the gold surface due to surface wetting and leaves Y123 crystals behind. The obtained crystals are clean and have a size up to two millimeters and a Tc is greater than 90 K. In an effort to recycle the used crucibles, it is found that the used gold is contaminated by copper. A CuO thin film is easily formed on the surface of the crucible that is made of the used gold. This film provides good surface wetting and a buffer layer, which reduces the reaction between gold and the Y-Ba-Cu-oxide melt.

  8. High Tc screen-printed YBa2Cu3O(7-x) films - Effect of the substrate material

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.; Simons, Rainee N.; Farrell, D. E.

    1988-08-01

    Thick films of YBa2Cu3O(7-x) have been deposited on highly polished alumina, magnesia spinel, nickel aluminum titanate (Ni-Al-Ti), and barium tetratitanate (Ba-Ti) substrates by the screen printing technique. Properties of the films were found to be highly sensitive to the choice of the substrate material. The film on Ba-Ti turned green after firing, due to a reaction with the substrate and were insulating. A film on Ni-Al-Ti had a Tc (onset) of about 95 K and lost 90 percent of its resistance by about 75 K. However, even at 4 K it was not fully superconducting, possibly due to a reaction between the film and the substrate and interdiffusion of the reaction products. The film on alumina had Tc (onset) of about 96 K, Tc (zero) of about 66 K, and Delta Tc of about 10 K. The best film was obtained on spinel and had Tc (onset) of about 94 K, zero resistance at 81 K, and a transition width of about 7 K.

  9. High Tc screen-printed YBa2Cu3O(7-x) films - Effect of the substrate material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Simons, Rainee N.; Farrell, D. E.

    1988-01-01

    Thick films of YBa2Cu3O(7-x) have been deposited on highly polished alumina, magnesia spinel, nickel aluminum titanate (Ni-Al-Ti), and barium tetratitanate (Ba-Ti) substrates by the screen printing technique. Properties of the films were found to be highly sensitive to the choice of the substrate material. The film on Ba-Ti turned green after firing, due to a reaction with the substrate and were insulating. A film on Ni-Al-Ti had a Tc (onset) of about 95 K and lost 90 percent of its resistance by about 75 K. However, even at 4 K it was not fully superconducting, possibly due to a reaction between the film and the substrate and interdiffusion of the reaction products. The film on alumina had Tc (onset) of about 96 K, Tc (zero) of about 66 K, and Delta Tc of about 10 K. The best film was obtained on spinel and had Tc (onset) of about 94 K, zero resistance at 81 K, and a transition width of about 7 K.

  10. Temperature dependence of superfluid density in YBa 2Cu 3O 7- δ and Y 0.7Ca 0.3Ba 2Cu 3O 7- δ thin films: A doping dependence study of the linear slope

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Gou, Y. S.

    2005-11-01

    By using a microstrip ring resonator to measure the temperature dependence of the in-plane magnetic penetration depth λ(T) in YBa2Cu3O7-δ (YBCO) and Y0.7Ca0.3Ba2Cu3O7-δ (Ca-YBCO) epitaxially grown thin films, the linear temperature dependence of the superfluid density ρs/m∗ ≡ 1/λ2(T) was observed from the under- to the overdoped regime at the temperatures below T/Tc ≈ 0.3 . For the underdoped regime of YBCO and Ca-YBCO thin films, the magnitude of the slope d(1/λ2(T))/dT is insensitive to doping, and it can be treated in the framework of projected d-density-wave model. Combining these slope values with the thermal conductivity measurements, the Fermi-liquid correction factor α2 from the Fermi-liquid model, suggested by Wen and Lee, was revealed here with various doping levels.

  11. Electronic state and superconductivity of YBa2Cu3-xO7-y (M=Al,Zn and Sn) systems

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Zhang, Q. R.; Zhang, H.

    1990-01-01

    A series of YBa2Cu(3-x)MxO(7-y) (M=Al,Zn and Sn) single phase samples were prepared, and the measurements of the crystal structure, oxygen content, electric resistivity, thermoelectric power, Mossbauer spectrum, XPS and superconductivity were performed. The experimental results of X ray powder diffraction, Mossbauer spectrum and oxygen content show that the Zn(2+) and the Al(3+) occupy the Cu(2) site in Cu-O planes and the Cu(1) site in Cu-O chains respectively, but the Sn(4+) occupies both the Cu(1) sites. As regards the properties in superconducting state, both the Zn(2+) and the Al(3+) depress T(sub c) strongly, but the Sn(4+) does not. As for the electronic transport properties in normal state, the system doped by Al(3+) displays a rapid increase of resistivity and some electron localization-like effects, and the thermoelectric power enhances obviously; the series contained Zn(2+) almost shows no changes of electric resistivity but the sign of the thermoelectric power is reversed. Other results are given and briefly discussed.

  12. Macroscopic shape change of melt-processed YBa{sub 2}Cu{sub 3}O{sub x-}Y{sub 2}BaCuO{sub 5} bulk superconductors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diko, P.; Goretta, K. C.; Energy Technology

    A macroscopic change in the shape of five-domain melt-processed YBa{sub 2}Cu{sub 3}O{sub x}/Y{sub 2}BaCuO{sub 5} bulk superconductors is reported and explained. The change, a distortion from circular cross-section, is attributed to liquid transport from a slower growth front in an a-axis direction to a faster growth front in a c-axis direction at the edge between the a- and c-growth fronts, a phenomenon that we call the edge melt distribution (EMD) effect. Formation of bands of higher Y{sub 2}BaCuO{sub 5} particle density along the a/c growth boundaries, which nearly coincide with {l_brace}110{r_brace}-type planes, is explained by the EMD effect.

  13. Electronic structure of Pr{sub 1{minus}x}Y{sub x}Ba{sub 2}Cu{sub 3}O{sub y} (x=0, 0.5, and 1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, K.; Fueki, K.

    1997-08-01

    In order to elucidate the reason why PrBa{sub 2}Cu{sub 3}O{sub y}is not a superconductor, we examined the Pr valence and measured the oxygen nonstoichiometry and the conductivity at temperatures up to 1200 K for three kinds of oxides, PrBa{sub 2}Cu{sub 3}O{sub y}, (Pr{sub 0.5}Y{sub 0.5})Ba{sub 2}Cu{sub 3}O{sub y}, and YBa{sub 2}Cu{sub 3}O{sub y}. The valence of Pr was found to be +3. Any difference was not found in oxygen nonstoichiometry and conductivity among three kinds of oxides. We analyzed the data of oxygen nonstoichiometry on the basis of defect thermodynamics and calculated the numbers of Cu{sup +}, Cu{sup 2+}, andmore » Cu{sup 3+} ions in the unit cell as a function of y. The number of Cu{sup 3+} ions (the amount of holes) was found to be proportional to ({Delta}y){sup 1.6}({Delta}y=y{minus}6.0), whereas the conductivity was found to be proportional to ({Delta}y){sup 3.2} in these oxides. We interpreted the remarkable increase of {sigma} with {Delta}y as an evidence of the increase of both mobility and hole concentration with {Delta}y. At high temperatures, we detected the conductivity minimum {sigma}{sub min} which was found in the log{sub 10}{sigma}{minus}log{sub 10}P{sub O{sub 2}} plot at constant temperatures. From the slope of the Arrhenius plot for {sigma}{sub min}, the band gap was determined to be 1.21, 1.32, and 1.37 eV for PrBa{sub 2}Cu{sub 3}O{sub y}, (Pr{sub 0.5}Y{sub 0.5})Ba{sub 2}Cu{sub 3}O{sub y} and YBa{sub 2}Cu{sub 3}O{sub y}, respectively. We determined the conductivity of the same oxygen content as a function of temperature from 4.2 to 1200 K. The energy gap {Delta}E between the acceptor level and the top of the valence band was calculated from the slope of the Arrhenius plot for conductivity. {Delta}E for superconducting YBa{sub 2}Cu{sub 3}O{sub y} and (Pr{sub 0.5}Y{sub 0.5})Ba{sub 2}Cu{sub 3}O{sub y} were zero at 300 K but that for nonsuperconducting PrBa{sub 2}Cu{sub 3}O{sub y} was 20 meV at 100 K even for y=6.93. (Abstract

  14. Observation of a three-dimensional quasi-long-range electronic supermodulation in YBa 2Cu 3O 7-x/La 0.7Ca 0.3MnO 3 heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Junfeng; Shafer, Padraic; Mion, Thomas R.

    Recent developments in high-temperature superconductivity highlight a generic tendency of the cuprates to develop competing electronic (charge) supermodulations. While coupled with the lattice and showing different characteristics in different materials, these supermodulations themselves are generally conceived to be quasi-two-dimensional, residing mainly in individual CuO 2 planes, and poorly correlated along the c axis. Here we observed with resonant elastic X-ray scattering a distinct type of electronic supermodulation in YBa 2Cu 3O 7–x (YBCO) thin films grown epitaxially on La 0.7Ca 0.3MnO 3 (LCMO). This supermodulation has a periodicity nearly commensurate with four lattice constants in-plane, eight out of plane, withmore » long correlation lengths in three dimensions. It sets in far above the superconducting transition temperature and competes with superconductivity below this temperature for electronic states predominantly in the CuO 2 plane. Our finding sheds light on the nature of charge ordering in cuprates as well as a reported long-range proximity effect between superconductivity and ferromagnetism in YBCO/LCMO heterostructures.« less

  15. Observation of a three-dimensional quasi-long-range electronic supermodulation in YBa 2Cu 3O 7-x/La 0.7Ca 0.3MnO 3 heterostructures

    DOE PAGES

    He, Junfeng; Shafer, Padraic; Mion, Thomas R.; ...

    2016-03-01

    Recent developments in high-temperature superconductivity highlight a generic tendency of the cuprates to develop competing electronic (charge) supermodulations. While coupled with the lattice and showing different characteristics in different materials, these supermodulations themselves are generally conceived to be quasi-two-dimensional, residing mainly in individual CuO 2 planes, and poorly correlated along the c axis. Here we observed with resonant elastic X-ray scattering a distinct type of electronic supermodulation in YBa 2Cu 3O 7–x (YBCO) thin films grown epitaxially on La 0.7Ca 0.3MnO 3 (LCMO). This supermodulation has a periodicity nearly commensurate with four lattice constants in-plane, eight out of plane, withmore » long correlation lengths in three dimensions. It sets in far above the superconducting transition temperature and competes with superconductivity below this temperature for electronic states predominantly in the CuO 2 plane. Our finding sheds light on the nature of charge ordering in cuprates as well as a reported long-range proximity effect between superconductivity and ferromagnetism in YBCO/LCMO heterostructures.« less

  16. Electronic structure of the La 1 + xBa 2 - xCu 3O 7 + δ system studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Hwang, J.; Shih, C. K.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-01-01

    Photoemission experiments utilizing synchrotron radiation have been carried out on the high temperature superconductor La 1.075Ba 1.925Cu 3O 7.0. The valence band spectra show similar spectral features as those of YBa 2Cu 3O 6.9, even though large differences in relative peak intensities are observed. Oxygen-related states are identified by scanning the photon energy through the O2 s → O2 p absorption edge. The stability of the sample surface, and changes in the valence band spectra after annealing in ultrahigh vacuum are also briefly discussed.

  17. Influence of γ-Irradiation on the Optical Properties of the Polyimide-YBa2Cu3O6.7 System

    NASA Astrophysics Data System (ADS)

    Muradov, A. D.; Korobova, N. E.; Kyrykbaeva, A. A.; Yar-Mukhamedova, G. Sh.; Mukashev, K. M.

    2018-05-01

    Influence of γ-irradiation on the optical properties of a polyimide film and its polymer compositions with fillers of a dispersed powder of a high-temperature superconductor ҮBa2Cu3O6.7 (YBaCuO) with concentrations of 0.05, 0.10, and 0.50 wt.% was studied. It was established that γ-irradiation with a dose up to 600 kGy does not affect the transparency of polyimide films in the visible region of the spectrum. However, at irradiation doses of 250 and 600 kGy, a weakly expressed fine structure appears in the spectra of polyimide films in the range of 220-300 nm due to the contribution of the resulting diene structures to the optical transmission and the increased content of oxygen atoms. The YBaCuO filler and γ-irradiation cause the polyimide transition from the amorphous state to the crystalline state, which is manifested in a sharp change in the spectrum in the range of 2.3-3.9 eV. A significant increase in the extinction coefficient was found in the composite containing 0.50 wt.% of the filler that is associated with an increase in the radius of action of structurally active fillers on the macromolecules of the matrix.

  18. Simulation of the Vortex Dynamics in a Real Pinning Landscape of YBa 2 Cu 3 O 7 - δ Coated Conductors

    DOE PAGES

    Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.; ...

    2016-01-01

    The ability of high-temperature superconductors (HTSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. The development and further improvement of HTS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. We present a critical current analysis of a real HTS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2Cu 3O 7-δ. This methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsiblemore » for the high-current-carrying-capacity characteristic of commercial HTS wires. Finally, our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HTS wire designs.« less

  19. Simulation of the Vortex Dynamics in a Real Pinning Landscape of YBa 2 Cu 3 O 7 - δ Coated Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.

    The ability of high-temperature superconductors (HTSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. The development and further improvement of HTS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. We present a critical current analysis of a real HTS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2Cu 3O 7-δ. This methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsiblemore » for the high-current-carrying-capacity characteristic of commercial HTS wires. Finally, our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HTS wire designs.« less

  20. Simulation of the Vortex Dynamics in a Real Pinning Landscape of YBa 2 Cu 3 O 7 - δ Coated Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.

    Tmore » he ability of high-temperature superconductors (HSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. he development and further improvement of HS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. Here, we present a critical current analysis of a real HS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2 Cu 3 O 7 - δ . his methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsible for the high-current-carrying-capacity characteristic of commercial HS wires. Our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HS wire designs.« less

  1. Epitaxial Growth of YBa2Cu3O7 Films onto LaAlO3 (100) by Using Oxalates

    NASA Astrophysics Data System (ADS)

    Dominguez, A. Bustamante; Felix, L. León; Garcia, J.; Santibañez, J. Flores; Valladares, L. De Los Santos; Gonzalez, J. C.; Anaya, A. Osorio; Pillaca, M.

    Due to the current necessity to obtain epitaxial superconductor films at low cost, we report the growth of YBa2Cu3O7 (Y123) films by chemical deposition. The procedure involved simple steps such as precipitation of stoichiometric amounts of yttrium, barium and copper acetates in oxalic acid (H2C2O4). The precursor solution was dripped onto LaAlO3 (100) substrates with the help of a Fisher pipette. The films were annealed in oxygen atmosphere during 12 h at three different temperatures: 820 °C, 840 °C and 860 °C. After 820 °C and 860 °C annealing, X-ray diffraction (XRD) analysis revealed high intensity of the (00l) reflections denoting that most of the Y123 grains were c-axis oriented. In addition, we also observed a-axis oriented grains ((h00) reflexion), minor randomly oriented grains and other phases (such as Y2BaCuO5 and CuO). In contrast, the sample treated at 840 °C, we noticed c - and a-axis oriented grains, very small amounts of randomly oriented grains without formation of other phases. From the magnetization versus temperature measurements, the critical temperatures were estimated at 70K and 90K for the samples annealed at 820 °C and 860 °C respectively.

  2. Method of producing superconducting fibers of YBa[sub 2]Cu[sub 3]O[sub x

    DOEpatents

    Schwartzkopf, L.A.; Ostenson, J.E.; Finnemore, D.K.

    1990-11-13

    Fibers of YBa[sub 2]Cu[sub 3]O[sub x] have been produce by pendant drop melt extraction. This technique involves the end of a rod of YBa[sub 2]Cu[sub 3]O[sub x] melted with a hydrogen-oxygen torch, followed by lowering onto the edge of a spinning wheel. The fibers are up to 10 cm in length with the usual lateral dimensions, ranging from 20 [mu]m to 125 [mu]m. The fibers require a heat treatment to make them superconducting.

  3. Electronic structures of the YBa2Cu3O7-x surface and its modification by sputtering and adatoms of Ti and Cu

    NASA Astrophysics Data System (ADS)

    Meyer, H. M., III; Hill, D. M.; Wagener, T. J.; Gao, Y.; Weaver, J. H.; Capone, D. W., II; Goretta, K. C.

    1988-10-01

    We present x-ray and inverse photoemission results for fractured surfaces of YBa2Cu3O6.9 before and after surface modification by Ar ion bombardment and the deposition of adatoms of Ti and Cu. Representative results are compared for samples prepared in three different ways. Two of the sample types exhibit substantial emission from grain-boundary phases because of both intergranular and transgranular fracture; they produce results that are very similar to those presented thus far in the literature. A third type was nearly free of contamination and clearly showed spectral features characteristic of the superconductor. Comparison of these nearly contamination-free valence-band results to those for clean La1.85Sr0.15CuO4 shows remarkably similar x-ray photoemission spectroscopy densities of states, with subtle differences near the Fermi level and at 3 eV. Inverse photoemission results show the top of the Cu-O hybrid orbitals to be 2 eV above EF and the empty states of Y and Ba at higher energy. Comparison with one-electron densities of states shows reasonable agreement, but there are large differences within the set of calculated results, and it is unclear from the valence bands alone how to account for final-state Cu d-d Coulomb correlation effects (satellite features show these effects very clearly). Argon sputtering for both types of samples shows destruction of the superconductor, with differences that can be related to sample surface quality. The deposition of adatoms of Ti and Cu results in reaction associated with oxygen withdrawal from the near-surface region. Studies of the Cu 2p3/2 line shape show that the deposition of as little as ~1 monolayer equivalent of Ti or Cu reduces the formal Cu2+ emission within the probed volume (30-50 Å deep). Core-level analysis shows that this chemical reduction of Cu is accompanied by crystal-structure modifications as well. Studies of Cu adatom interactions reveal the progression from Cu2+ to Cu1+ and ultimately, to Cu

  4. Modification of structural disorder by hydrostatic pressure in the superconducting cuprate YBa2Cu3O6.73

    NASA Astrophysics Data System (ADS)

    Huang, H.; Jang, H.; Fujita, M.; Nishizaki, T.; Lin, Y.; Wang, J.; Ying, J.; Smith, J. S.; Kenney-Benson, C.; Shen, G.; Mao, W. L.; Kao, C.-C.; Liu, Y.-J.; Lee, J.-S.

    2018-05-01

    Compelling efforts to improve the critical temperature (Tc) of superconductors have been made through high-pressure application. Understanding the underlying mechanism behind such improvements is critically important; however, much remains unclear. Here we studied ortho-III YBa2Cu3O6.73 (YBCO) using x-ray scattering under hydrostatic pressure (HP) up to ˜6.0 GPa . We found the reinforced oxygen order of YBCO under HP, revealing an oxygen rearrangement in the Cu-O layer, which evidently shows the charge-transfer phenomenon between the Cu O2 plane and Cu-O layer. Concurrently, we also observed no disorder-pinned charge-density-wave signature in Cu O2 plane under HP. This indicates that the oxygen rearrangement modifies the quenched disorder state in the Cu O2 plane. Using these results, we appropriately explain why pressure condition can achieve higher Tc compared with the optimal Tc under ambient pressure in YBa2Cu3O6 +x . As an implication of these results, finally we have discussed that the change in disorder could make it easier for YBa2Cu3O6 +x to undergo a transition to the nematic order under an external magnetic field.

  5. The role of a-axis grains in the transition to the normal state of YBa{sub 2}Cu{sub 3}O{sub 7−δ} films and of 2G-coated conductors when induced by high electrical current densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, P., E-mail: pierre.bernstein@ensicaen.fr; Harnois, C.; Mc Loughlin, C.

    The influence of surface defects, in particular of a-axis grains, on the transition to the normal state induced by high current densities in YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films and in a commercial 2G-coated conductor is investigated. For that purpose, the surface of the samples is observed by scanning electron microscopy and isothermal current-voltage curves are measured at different temperatures with pulsed currents up to the quenching value I*. The results show that the ratio of I* to the critical current is large if a-axis grains are not visible at the surface of the YBCO films, while it ismore » much lower if the surface includes a-axis grains as this is the case for the coated conductor. The connection between the transition onset and the vortex dynamics, as well as the role of the a-axis grains in this process are discussed. The relation between the I* values obtained from thermal calculations and those resulting from vortex dynamics considerations is also discussed, as well as the possible consequences suggested by this work for the different applications of the coated conductors.« less

  6. Influence of planar macrodefects on the anisotropy of magnetic-flux penetration in YBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Cuche, E.; Indenbom, M. V.; André, M.-O.; Richard, P.; Benoit, W.; Wolf, Th.

    1996-02-01

    The magnetic flux penetration in a high-quality YBa 2Cu 3O 7-δ single crystal with an external field applied perpendicular to the crystalline c axis is directly visualized by means of the magneto-optical technique. The observations show that the field penetrates preferentially along the ab planes. Scanning acoustic microscopy reveals macrodefects along ab planes which strongly affect this anisotropy of the field penetration.

  7. Atomic layer epitaxy of YBaCuO for optoelectronic applications

    NASA Technical Reports Server (NTRS)

    Skogman, R. A.; Khan, M. A.; Van Hove, J. M.; Bhattarai, A.; Boord, W. T.

    1992-01-01

    An MOCVD-based atomic-layer epitaxy process is being developed as a potential solution to the problems of film-thickness and interface-abruptness control which are encountered when fabricating superconductor-insulator-superconductor devices using YBa2Cu3O(7-x). In initial studies, the atomic-layer MOCVD process yields superconducting YBa2Cu3O(7-x) films with substrate temperatures of 605 C during film growth, and no postdeposition anneal. The low temperature process yields a smooth film surface and can reduce interface degradation due to diffusion.

  8. Environment-resistive coating for the thin-film-based superconducting fault-current limiter Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Kondo, W.; Tsukada, K.; Sohma, M.; Yamaguchi, I.; Kumagai, T.; Manabe, T.; Arai, K.; Yamasaki, H.

    2010-02-01

    We have studied environment-resistive coatings (ERC) for the thin-film-based superconducting fault-current limiter (SFCL) Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3. We evaluated nine candidate ERC materials by two accelerating-environment tests, and revealed that the shellac- and the fluorine-resin have a high environmental resistance. Especially, the shellac resin almost completely protected Jc of an element exposed to 60 °C saturated water vapor for 2 h (3.4->3.2 MA/cm 2). We also performed a practical operation test of SFCL using an element half covered by shellac, and found that the ERC does not diminish the current limiting properties similarly to the previous results of the Teflon-coated SFCL [1].

  9. Defects and anharmonicity induced electron spectra of YBa2Cu3O7-δ superconductors

    NASA Astrophysics Data System (ADS)

    Singh, Anu; Indu, B. D.

    2018-05-01

    The effects of defects and anharmonicities on the electron density of states (EDOS) have been studied in high-temperature superconductors (HTS) adopting the many body quantum dynamical theory of electron Green's functions via a generalized Hamiltonian that includes the effects of electron-phonon interactions, anharmonicities and point impurities. The automatic emergence of pairons and temperature dependence of EDOS are appear as special feature of the theory. The results thus obtained and their numerical analysis for YBa2Cu3O7-δ superconductors clearly demonstrate that the presence of defects, anharmonicities and electron-phonon interactions modifies the behavior of EDOS over a wide range of temperature.

  10. Ellipsometric study of YBa2Cu3O(7-x) laser ablated and co-evaporated films

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Warner, J. D.; Stan, M. A.; Vitta, S.

    1990-01-01

    High temperature superconducting films of YBa2Cu3O(7-x) (YBCO were grown on SrTiO3, LaA1O3, and YSZ substrates using two techniques: excimer laser ablation with in situ annealing and co-evaporation of Y, Cu, and BaF2 with ex-situ annealing. Film thicknesses were typically 5000 A, with predominant c-axis alignment perpendicular to the substrate. Critical temperatures up to Tc(R=O)=90 K were achieved by both techniques. Ellipsometric measurements were taken in the range 1.6 to 4.3 eV using a variable angle spectroscopic ellipsometer. The complex dielectric function of the laser ablated films was reproducible from run to run, and was found to be within 10 percent of that previously reported for (001) oriented single crystals. A dielectric overlayer was observed in these films, with an index of refraction of approximately 1.55 and nearly zero absorption. For the laser ablated films the optical properties were essentially independent of substrate material. The magnitude of the dielectric function obtained for the co-evaported films was much lower than the value reported for single crystals, and was sample dependent.

  11. Modification of structural disorder by hydrostatic pressure in the superconducting cuprate YBa 2 Cu 3 O 6.73

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Jang, H.; Fujita, M.

    Here, compelling efforts to improve the critical temperature (T c) of superconductors have been made through high-pressure application. Understanding the underlying mechanism behind such improvements is critically important; however, much remains unclear. Here we studied ortho-III YBa 2Cu 3O 6.73 (YBCO) using x-ray scattering under hydrostatic pressure (HP) up to ~6.0GPa. We found the reinforced oxygen order of YBCO under HP, revealing an oxygen rearrangement in the Cu-O layer, which evidently shows the charge-transfer phenomenon between the CuO 2 plane and Cu-O layer. Concurrently, we also observed no disorder-pinned charge-density-wave signature in CuO 2 plane under HP. This indicates thatmore » the oxygen rearrangement modifies the quenched disorder state in the CuO 2 plane. Using these results, we appropriately explain why pressure condition can achieve higher T c compared with the optimal T c under ambient pressure in YBa 2Cu 3O 6+x. As an implication of these results, finally we have discussed that the change in disorder could make it easier for YBa 2Cu 3O 6+x to undergo a transition to the nematic order under an external magnetic field.« less

  12. Modification of structural disorder by hydrostatic pressure in the superconducting cuprate YBa 2 Cu 3 O 6.73

    DOE PAGES

    Huang, H.; Jang, H.; Fujita, M.; ...

    2018-05-09

    Here, compelling efforts to improve the critical temperature (T c) of superconductors have been made through high-pressure application. Understanding the underlying mechanism behind such improvements is critically important; however, much remains unclear. Here we studied ortho-III YBa 2Cu 3O 6.73 (YBCO) using x-ray scattering under hydrostatic pressure (HP) up to ~6.0GPa. We found the reinforced oxygen order of YBCO under HP, revealing an oxygen rearrangement in the Cu-O layer, which evidently shows the charge-transfer phenomenon between the CuO 2 plane and Cu-O layer. Concurrently, we also observed no disorder-pinned charge-density-wave signature in CuO 2 plane under HP. This indicates thatmore » the oxygen rearrangement modifies the quenched disorder state in the CuO 2 plane. Using these results, we appropriately explain why pressure condition can achieve higher T c compared with the optimal T c under ambient pressure in YBa 2Cu 3O 6+x. As an implication of these results, finally we have discussed that the change in disorder could make it easier for YBa 2Cu 3O 6+x to undergo a transition to the nematic order under an external magnetic field.« less

  13. Effects of oxygen stoichiometry on the scaling behaviors of YBa2Cu3O(x) grain boundary weak-links

    NASA Technical Reports Server (NTRS)

    Wu, K. H.; Fu, C. M.; Jeng, W. J.; Juang, J. Y.; Uen, T. M.; Gou, Y. S.

    1995-01-01

    The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa2Cu3O(x) bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealing processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e with x = 7.0 in YBa2Cu3O(x) stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g with x = 6.9 in YBa2Cu3O(x) stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given.

  14. Magnetic flux relaxation in YBa2Cu3O(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, Joseph D.; Alterovitz, Samuel A.

    1992-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H parallel c was studied in the range of 4.2-40 k and 0.2-1.0 T. Both the normalized flux relaxation rate (S) and the net flux pinning energy (U) increase continuously from 1.3 x 10 exp -2 to 3.0 x 10 exp -2 and from 70-240 meV respectively, as the temperature (T) increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  15. Micro-Raman study of isotope substitution in YBa2Cu183O6.2 during local laser annealing

    NASA Astrophysics Data System (ADS)

    Ivanov, V. G.; Iliev, M. N.; Thomsen, C.

    1995-11-01

    The local laser heating of YBa2Cu183O6.2 in air was used to study the oxygen diffusion and oxygen ordering in sample volumes of the order of a few μm3. Raman microprobe at points corresponding to different annealing temperatures was applied to monitor both the stages of substitution of 16O for 18O at different oxygen sites and the structural changes in the basal [Cu(1)-O(1)] planes occurring during the oxygen in-diffusion. The population of the O(1) sites initially results in the formation of short Cu(1)-O(1) fragments which later conjunct into long chains. The results can be applied for a better understanding of oxygen reordering processes in YBa2Cu3O7-δ during thermal treatment.

  16. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    NASA Technical Reports Server (NTRS)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-01-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  17. YBa2Cu307 superconducting microbolometer linear arrays

    NASA Astrophysics Data System (ADS)

    Johnson, Burgess R.; Ohnstein, Thomas R.; Marsh, Holly A.; Dunham, Scott B.; Kruse, Paul W.

    1992-09-01

    Single pixels and linear arrays of microbolometers employing the high-T(subscript c) superconductor YBa(subscript 2)Cu(subscript 3)O(subscript 7) have been fabricated by silicon micromachining techniques. The substrates are 3 in. diameter silicon wafers upon which buffer layers of Si(subscript 3)N(subscript 4) and yttria-stabilized zirconia (YSZ) have been deposited. The YBa(subscript 2)Cu(subscript 3)O(subscript 7) was deposited by ion beam sputtering upon the yttria-stabilized zirconia (YSZ), then photolithographically patterned into serpentines 4 micrometers wide. Anisotropic etching in KOH removed the silicon underlying each pixel, thereby providing the necessary thermal isolation. When operated at 70 degree(s)K with 1 (mu) A dc bias, the D(superscript *) is 7.5 X 10(superscript 8) cm Hz(superscript 1/2)/Watt with a thermal response time of 24 msec.

  18. Lower critical field measurements in YBa2Cu3O(6+x) single crystals

    NASA Technical Reports Server (NTRS)

    Kaiser, D. L.; Swartzendruber, L. J.; Gayle, F. W.; Bennett, L. H.

    1991-01-01

    The temperature dependence of the lower critical field in YBa2Cu3O(6+x) single crystals was determined by magnetization measurements with the applied field parallel and perpendicular to the c-axis. Results are compared with data from the literature and fitted to Ginzberg-Landau equations by assuming a linear dependence of the parameter kappa on temperature. A value of 7 plus or minus 2 kOe was estimated for the thermodynamic critical field at T = O by comparison of calculated H (sub c2) values with experimental data from the literature.

  19. Knight shift and spin-echo decay time of YBa{sub 2}Cu{sub 4}O{sub 8} and YBa{sub 2}Cu{sub 3}O{sub 7} in the superconducting state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pines, D.; Wrobel, P.

    1996-03-01

    We report on calculations of the Knight shift and spin-echo decay time, {ital T}{sub 2{ital G}}, in the superconducting state which are based on a nearly antiferromagnetic Fermi-liquid description of the spin-fluctuation spectrum, in which a single spin component is responsible for the dynamic spin behavior and the magnetic interaction between the planar quasiparticles brings the system close to antiferromagnetic behavior. The dynamic spin susceptibility is described by a random-phase-approximation-like expression, with a restoring force which is unchanged from the normal state, and an irreducible particle-hole susceptibility which reflects the {ital d}{sub {ital x}{sup 2}{minus}{ital y}{sup 2}} symmetry of themore » gap parameter and a quasiparticle Fermi surface consistent with photoemission experiments. We obtain a quantitative fit to the Knight shift results for YBa{sub 2}Cu{sub 4}O{sub 8} with a {ital d}{sub {ital x}{sup 2}{minus}{ital y}{sup 2}} strong coupling gap of maximum magnitude 2.8{ital k}{sub {ital BT}}{sub {ital c}}, and show that quantitative agreement with the recent measurements of {ital T}{sub 2{ital G}} by Corey {ital et al}. may be obtained with this {ital d}{sub {ital x}{sup 2}-{ital y}{sup 2}} pairing state and a quite substantial antiferromagnetic enhancement ({approximately}140) of the static {open_quote}{open_quote}band structure{close_quote}{close_quote} spin susceptibility at wave vectors in the vicinity of {bold Q}=({pi},{pi}). We demonstrate that the experimental results of Corey {ital et al}. rule out an anisotropic {ital s}-wave state. Analogous calculations for the Knight shift of YBa{sub 2}Cu{sub 3}O{sub 7} suggest that the {ital d}{sub {ital x}{sup 2}-{ital y}{sup 2}} strong coupling gap possesses a maximum magnitude, 2.6{ital k}{sub {ital BT}}{sub {ital c}}, and on this basis, we predict a reduction in {ital T}{sup -1}{sub 2{ital G}} of some 5% for the smaller antiferromagnetic enhancement ({approximately}38) expected for this

  20. Geometric and compositional factors on critical current density in YBa2Cu3O7‑δ films containing nanorods

    NASA Astrophysics Data System (ADS)

    Horide, Tomoya; Nagao, Sho; Izutsu, Ryosuke; Ishimaru, Manabu; Kita, Ryusuke; Matsumoto, Kaname

    2018-06-01

    Critical current density (J c) was investigated in YBa2Cu3O7‑δ films containing nanorods prepared with various nanorod materials, with variation of nanorod content, substrate temperature, and oxidization condition. Three types of compositional situation were realized: films containing strain induced oxygen vacancies; fully oxidized films containing cation compositional deviation; and oxygen deficient films. Normalized J c‑B behavior was determined via the matching field, which is a geometric factor, regardless of the compositional details. A J c‑critical temperature (T c) relation depending on distribution and fraction of compositional deviation (cation compositional deviation and strain induced oxygen vacancies) was found: the J c values decreased with decreasing T c due to the effect of T c on nanorod pinning strength in the fully oxidized films; J c decreased with decreasing oxygen pressure in the film cooling process after film deposition in spite of T c remaining almost the same, due to reduction of the effective area for current flow in the oxygen deficient films. Thus, a J c landscape based on geometric and compositional factors was obtained. The study highlights the importance of the J c‑T c analysis in the understanding of J c in YBa2Cu3O7‑δ films containing nanorods.

  1. Positron annihilation study of Y 1- xPr xBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Zhao, Y. G.; Cao, B. S.; Yu, W. Z.; Du, Z. H.; Wang, Y. J.; Luo, C. Y.; Hu, H.; Wang, S.; Yang, J. H.; He, A. S.; Gu, B. L.

    1995-02-01

    A positron annihilation study of Y 1- xPr xBa 2Cu 3O 7 was performed. The results showed that charge transfer between the CuO 2 planes and 1D CuO chains upon Pr doping, as proposed in the literature, did not occur. Pr doping suppressed the anomaly of positron annihilation lifetime near and below Tc which has been observed in YBa 2Cu 3O 7. The perfection of the 1D CuO chains was reduced by Pr doping and this may be partly responsible for the increase of resistivity with Pr doping, and finally the semiconducting behaviour of DC resistivity in Y 1- xPr xBa 2Cu 3O 7 with x > 0.6.

  2. Magnetization and transport properties of silver-sheathed (Hg, Re)Ba2Ca2Cu3O8+delta tapes

    NASA Astrophysics Data System (ADS)

    Su, J. H.; Sastry, P. V. P. S. S.; Schwartz, J.

    2003-10-01

    (Hg, Re)Ba2Ca2Cu3O8+delta ((Hg, Re)-1223) samples have been fabricated by wrapping Re0.2Ba2Ca2Cu3Oy precursor powder within Ag foil and pressing or rolling. The Ag/precursor composite is then reacted with CaHgO2 in sealed reaction tubes. X-ray diffraction (XRD) patterns showed only one superconducting phase, (Hg, Re)-1223, in agreement with magnetization measurements showing an onset critical temperature (Tc) of 132 K. The magnetization properties were studied by dc magnetic measurements. The irreversibility line (Hirr), deduced from magnetization hysteresis loops, is approximated by a power law, Hirr ~ (1 - T/Tc)n, with n ~ 2.5, indicating moderate coupling between CuO2 layers compared to YBa2Cu3O7 (n ~ 1.5) and Bi/Tl-based superconductors (n ~ 5.5). The temperature dependence of the magnetization hysteresis loop width DeltaM showed three regimes, dominated by weak links at low temperature (regime I), thermally activated depinning of vortices at intermediate temperature (regime II) and giant flux creep at high temperature (regime III), respectively. Two field dependences were found in the intragrain critical current density (Jmagc) versus applied field at various temperatures: a weak one at lower temperature (leq50 K) and a stronger one at high temperature (geq65 K), indicating a transition from vortex lattice to vortex liquid in the tapes. The transport critical current density (Jtranc) of ~3 × 103 A cm-2 at 4.2 K and self-field was comparable to those for bulk Hg-based superconductors, indicating granular nature of the samples, which was confirmed further by XRD, scanning electron microscopy (SEM) and magneto-optical imaging (MOI).

  3. Study of photoirradiation for YBa 2Cu 3O 6+ x compounds and the electron structure by positron experiment

    NASA Astrophysics Data System (ADS)

    Guosheng, Cheng; Jiaxiang, Shang; Xigui, Li; xianqi, Dai; Xizhong, Wang; Jincang, Zhang

    1997-08-01

    We present positron lifetime data of YBa 2Cu 3O 6+ x (x=0.92, 0.43) compounds for different photo-irradiation time. It is given that change of the local electron density and vacancy concentration with photoirradiation time. It is found that there is transform at the electronic structure of CuO chains. We also have discussed the effect of photoirradiations time on the electronic structure of YBa 2Cu 3O 6+ x systems and their charge reservoir layer and CuO 2 plane conduction.layer. The positron experimental results support the model of photoinduced oxygen-diffusion mechanism.

  4. [Effect of Eu(Pr) substitution at Ba sites on microstructure and superconductivity in EuBa2Cu3O7-delta ceramics].

    PubMed

    Peng, Zhen-sheng; Wang, Zhi-he

    2004-04-01

    Ceramics of Eu1+xBa2-xCu3O7-delta with x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and EuBa2-xPrxCu3O7-delta with x=0.0, 0.05, 0.1, 0.2, 0.3, 0.4 have been synthesized and investigated by X-ray diffraction, resistivity, and Raman spectroscopy. The results show that the transition of crystal structure from orthorhombic to tetragonal occurs and the criticaltemperature decreases withthe increase in doping concentration x. The Raman spectra show that the frequency of the Cu(1)-O(4) stretching mode andthe Cu(2)-(2, 3) out-of-phase mode shifts to higher wave number with increasing doping concentration x.

  5. Processing-property relations in YBa2Cu3O(6+x) superconductors

    NASA Astrophysics Data System (ADS)

    Safari, A.; Wachtman, J. B., Jr.; Parkhe, V.; Caracciolo, R.; Jeter, D.

    Processing of YBa2Cu3O(6+x) superconducting samples by employing different precursor powder preparation techniques such as ball milling, attrition milling, and narrow particle size distribution powder preparation through coprecipitation by spraying will be discussed. CuO coated with oxalates shows the lowest resistance above Tc up to room temperature. The extent of corrosion by water has been studied by employing magnetic susceptibility, XPS, and X-ray diffraction. Superconducting samples are affected to a considerable extent when treated in water at 60 C and the severity of the attack increases with time.

  6. Laser ablated high T(sub c) superconducting thin YBa2Cu3O(7-x) films on substrates suitable for microwave applications

    NASA Astrophysics Data System (ADS)

    Warner, J. D.; Meola, J. E.; Jenkins, K. A.; Bhasin, K. B.

    1990-04-01

    The development of high temperature superconducting YBa2Cu3O(7-x) thin films on substrates suitable for microwave applications is of great interest for evaluating their applications for space radar, communication, and sensor systems. Thin films of YBa2Cu3O(7-x) were formed on SrTiO3, ZrO2, MgO, and LaAlO3 substrates by laser ablation. The wavelength used was 248 nm from a KrF excimer laser. During deposition the films were heated to 600 C in a flowing oxygen environment, and required no post annealing. The low substrate temperature during deposition with no post annealing gave films which were smooth, which had their c-axis aligned to the substrates, and which had grains ranging from 0.2 to 0.5 microns in size. The films being c-axis aligned gave excellent surface resistance at 35 GHz which was lower than that of copper at 77 K. At present, LaAlO3 substrates with a dielectric constant of 22, appears suitable as a substrate for microwave and electronic applications. The films were characterized by resistance-temperature measurements, scanning electron microscopy, and x ray diffraction. The highest critical transition temperatures (T sub c) are above 89 K for films on SrTiO3 and LaAlO3, above 88 K for ZrO2, and above 86 K for MgO. The critical current density (J sub c) of the films on SrTiO3 is above 2 x 10(exp 6) amperes/sq cm at 77 K. The T(sub c) and J(sub c) are reported as a function of laser power, composition of the substrate, and temperature of the substrate during deposition.

  7. Crossover between superconductivity and magnetism in SrRuO3 mesocrystal embedded YBa2Cu3O7-x heterostructures.

    PubMed

    Suresh, Vandrangi; Lin, Jheng-Cyuan; Liu, Heng-Jui; Zhang, Zaoli; Chiang, Ping-Chih; Hsun, Yu-Ching; Chen, Yi-Chun; Lin, Jiunn-Yuan; Chu, Ying-Hao

    2016-11-03

    The competition between superconductivity and ferromagnetism poses great challenges and has attracted renewed interest for applications in novel spintronic devices. In order to emphasize their interactions, we fabricated a heterostructure composed of superconducting YBa 2 Cu 3 O 7-δ (YBCO) film embedded with itinerant ferromagnetic SrRuO 3 (SRO) mesocrystals. Starting from a doping concentration of 10 vol% of SRO mesocrystal in a YBCO matrix, corresponding to the density of SRO nanocrystals ∼5 × 10 9 cm -2 , which exhibits the typical characteristic of a metal-superconductor transition, and then increasing the magnetic interactions as a function of SRO embedment, the electronic correlation and the interplay between superconductivity and magnetism throughout the temperature regime were investigated. A metal-insulator transition in the normal state of YBCO and a crossover between superconductivity and magnetism at low temperatures were found upon increasing the density of nano-size SRO crystallites in the YBCO matrix as a consequence of competing interactions between these two ordered phases.

  8. Comparative study of flux pinning, creep and critical currents between YBaCuO crystals with and without Y2BaCuO5 inclusions

    NASA Technical Reports Server (NTRS)

    Murakami, Masato; Gotoh, Satoshi; Fujimoto, Hiroyuki; Koshizuka, Naoki; Tanaka, Shoji

    1991-01-01

    In the Y-Ba-Cu-O system, YBa2Cu3O(x) phase is produced by the following peritectic reaction: Y2BaCuO5 + liquid yields 2YBa2Cu3O(x). Through the control of processing conditions and starting compositions, it becomes possible to fabricate large crystals containing fine Y2BaCuO5(211) inclusions. Such crystals exhibit Jc values exceeding 10000 A/sq cm at 77 K and 1T. Recently, researchers developed a novel process which can control the volume fraction of 211 inclusions. Elimination of 211 inclusions is also possible. In this study, researchers prepared YBaCuO crystals with and without 211 inclusions using the novel process, and compared flux pinning, flux creep and critical currents. Magnetic field dependence of Jc for YBaCuO crystals with and with 211 inclusions is shown. It is clear that fine 211 inclusions can contribute to flux pinning. It was also found that flux creep rate could be reduced by increasing flux pinning force. Critical current density estimates based on the conventional flux pinning theory were in good agreement with experimental results.

  9. Growth and patterning of laser ablated superconducting YBa2Cu3O7 films on LaAlO3 substrates

    NASA Technical Reports Server (NTRS)

    Warner, J. D.; Bhasin, K. B.; Varaljay, N. C.; Bohman, D. Y.; Chorey, C. M.

    1989-01-01

    A high quality superconducting film on a substrate with a low dielectric constant is desired for passive microwave circuit applications. In addition, it is essential that the patterning process does not effect the superconducting properties of the thin films to achieve the highest circuit operating temperatures. YBa2Cu3O7 superconducting films were grown on lanthanum aluminate substrates using laser ablation with resulting maximum transition temperature (T sub c) of 90 K. The films were grown on a LaAlO3 which was at 775 C and in 170 mtorr of oxygen and slowly cooled to room temperature in 1 atm of oxygen. These films were then processed using photolithography and a negative photoresist with an etch solution of bromine and ethanol. Results are presented on the effect of the processing on T(sub c) of the film and the microwave properties of the patterned films.

  10. Comparative study of electrical transport and magnetic measurements of Y3Ba5Cu8O18±δ and YBa2Cu3O7-δ compounds: intragranular and intergranular superconducting properties

    NASA Astrophysics Data System (ADS)

    Slimani, Y.; Hannachi, E.; Ben Salem, M. K.; Ben Azzouz, F.; Ben Salem, M.

    2018-02-01

    We compare the superconducting properties and flux pinning characteristics between YBa2Cu3O7-δ (called Y-123) and Y3Ba5Cu8O18±δ (called Y-358) compounds. Both samples were synthesized through the solid-state reaction. The samples were examined by X-ray diffraction, and scanning electron microscope coupled with energy dispersive spectrometry. The critical current densities of the prepared samples were investigated using current-voltage, magnetization measurements and ac-susceptibility. It is demonstrated that the Y-358 exhibits better superconducting and pinning properties than the Y-123 one. This may be ascribed to the layered structure and the occurrence of a greater number of insulating layers between the CuO2 planes that act as effective pinning sites and consequently conduce to a better fundamental pinning capacity in Y-358.

  11. Room-temperature annealing effects on the basal-plane resistivity of optimally doped YBa2Cu3O7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Khadzhai, G. Ya.; Vovk, R. V.; Vovk, N. R.; Kamchatnaya, S. N.; Dobrovolskiy, O. V.

    2018-02-01

    We reveal that the temperature dependence of the basal-plane normal-state electrical resistance of optimally doped YBa2Cu3O7-δ single crystals can be with great accuracy approximated within the framework of the model of s-d electron-phonon scattering. This requires taking into account the fluctuation conductivity whose contribution exponentially increases with decreasing temperature and decreases with an increase of oxygen deficiency. Room-temperature annealing improves the sample and, thus, increases the superconducting transition temperature. The temperature of the 2D-3D crossover decreases during annealing.

  12. Effects of oxygen stoichiometry on the scaling behaviors of YBa{sub 2}Cu{sub 3}O{sub x} grain boundary weak-links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, K.H.; Fu, C.M.; Jeng, W.J.

    1994-12-31

    The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa{sub 2}Cu{sub 3}O{sub x} bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealling processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e. with x=7.0 in YBa{sub 2}Cu{sub 3}O{sub x} stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g. with x=6.9 in YBa{sub 2}Cu{sub 3}O{sub x}more » stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given.« less

  13. Observation of Caroli-de Gennes-Matricon Vortex States in YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Berthod, Christophe; Maggio-Aprile, Ivan; Bruér, Jens; Erb, Andreas; Renner, Christoph

    2017-12-01

    The copper oxides present the highest superconducting temperature and properties at odds with other compounds, suggestive of a fundamentally different superconductivity. In particular, the Abrikosov vortices fail to exhibit localized states expected and observed in all clean superconductors. We have explored the possibility that the elusive vortex-core signatures are actually present but weak. Combining local tunneling measurements with large-scale theoretical modeling, we positively identify the vortex states in YBa2Cu3O7 -δ . We explain their spectrum and the observed variations thereof from one vortex to the next by considering the effects of nearby vortices and disorder in the vortex lattice. We argue that the superconductivity of copper oxides is conventional, but the spectroscopic signature does not look so because the superconducting carriers are a minority.

  14. Influence of water vapor on the formation of pinning centers in YBa2Cu3O y upon low-temperature annealing

    NASA Astrophysics Data System (ADS)

    Bobylev, I. B.; Gerasimov, E. G.; Zyuzeva, N. A.

    2017-08-01

    The influence of the double heat treatment ( T = 300 and 930°C) on the critical parameters of highly textured YBa2Cu3O6.96 and YBa2Cu3O6.8 ceramics has been investigated. It has been shown that, upon low-temperature annealing in humid air, planar stacking faults are formed in these ceramics. These defects are partly retained after reduction annealing (at T = 930°C) and are efficient pinning centers in magnetic fields applied parallel and perpendicular to the c axis. Due to the absorption of water, the oxygen content is increased in the ceramics, which is accompanied by an increase in the critical temperature of superconducting transition up to 94 K for YBa2Cu3O6.96 and up to 90 K for YBa2Cu3O6.8. Optimal conditions of the double annealing have been established, after which the critical-current density increased to j c ≥ 104 A/cm2 in an external magnetic field of up to 6 T. The low-temperature treatment in the neutral atmosphere saturated by water vapors deteriorates the current-carrying capacity of the highly textured ceramics, which is connected with the disappearance of texture due to the copper reduction and the precipitation of impurity phases.

  15. High T c superconductivity in YBa2Cu3O7- x studied by PAC and PAS

    NASA Astrophysics Data System (ADS)

    Zhu, Shengyun; Li, Anli; Zheng, Shengnan; Huang, Hanchen; Li, Donghong; Din, Honglin; Du, Hongshan; Sun, Hancheng

    1993-03-01

    High T c superconductivity has been investigated in YBaCuO by both perturbed angular correlation and positron annihilation spectroscopy techniques as a function of temperature from 77 to 300 K. An abrupt change has been observed in the positron lifetime and Doppler broadening and the electric field gradient and its asymmetry parameter across T c, indicating a transition of two- to one-dimensional Cu-O-Cu chain structure and a charge transfer from CuO layers to CuO chains. An anomaly of the normal state has been demonstrated around 125 K, which is attributed to the structural instability.

  16. Superconducting YBa2Cu3O7 Powder: Reduction of Carbon, Moisture, and Impurity Phase Concentrations in Commercial Powders and the Reactivity with Moisture and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Stecura, Stephan

    1994-01-01

    The purpose of this study was to determine the experimental parameters under which commercially pure YBa2Cu3O7 (1237) powders would be converted into a single phase (1237) powder only. Carbon (present as carbonate) and impurity phase concentrations in the (1237) powder are very dependent upon the firing temperatures, heat-treating temperatures and times, and atmosphere, while the moisture concentration is not. YBa2Cu3O7 powder with about 0.03 wt/%, carbon, 0.03 wt% moisture, and low impurity phase concentrations was obtained. Moisture and carbon concentrations in heat-treated powders did not increase significantly after 48 and 72 h of exposure to air, respectively, and after 144 h of exposure they were less than 0.26 and 0.08 wt/%, respectively. The (1237) powder first reacts with moisture and then hydroxide reacts with CO2. Firing the as received powders in air led to the decomposition of the superconducting (1237) phase.

  17. Direct, experimental evidence of the Fermi surface in YBa2Cu3O(7-x)

    NASA Astrophysics Data System (ADS)

    Haghighi, H.; Kaiser, J. H.; Rayner, S. L.; West, R. N.; Liu, J. Z.; Shelton, R.; Howell, R. H.; Sterne, P. A.; Solal, F. R.; Fluss, M. J.

    1991-04-01

    We report new measurements of the electron positron momentum spectra of YBa2Cu3O(7-x) performed with ultra-high statistical precision. These data differ from previous results in two significant respects: They show the D(sub 2) symmetry appropriate for untwinned crystals and, more importantly, they show unmistakable, statistically significant, discontinuities that are evidence of a major Fermi surface section. These results provide a partial answer to a question of special significance to the study of high temperature superconductors i.e., the distribution of the electrons in the material, the electronic structure. Special consideration has been given both experimentally and theoretically to the existence and shape of a Fermi surface in the materials and to the superconducting gap. There are only three experimental techniques that can provide details of the electronic structure at useful resolutions. They are angular correlation of positron annihilation radiation, ACAR, angle resolved photo emission, PE, and de Haas van Alphen measurements.

  18. Charge Order and Superconductivity in Underdoped YBa2 Cu3 O7 -δ under Pressure

    NASA Astrophysics Data System (ADS)

    Putzke, Carsten; Ayres, Jake; Buhot, Jonathan; Licciardello, Salvatore; Hussey, Nigel E.; Friedemann, Sven; Carrington, Antony

    2018-03-01

    In underdoped cuprates, an incommensurate charge density wave (CDW) order is known to coexist with superconductivity. A dip in Tc at the hole doping level where the CDW is strongest (np≃0.12 ) suggests that CDW order may suppress superconductivity. We investigate the interplay of charge order with superconductivity in underdoped YBa2 Cu3 O7 -δ by measuring the temperature dependence of the Hall coefficient RH(T ) at high magnetic field and at high hydrostatic pressure. We find that, although pressure increases Tc by up to 10 K at 2.6 GPa, it has very little effect on RH(T ). This suggests that pressure, at these levels, only weakly affects the CDW and that the increase in Tc with pressure cannot be attributed to a suppression of the CDW. We argue, therefore, that the dip in Tc at np≃0.12 at ambient pressure is probably not caused by the CDW formation.

  19. Artificial in-plane ordering of textured YBa2Cu3O(7-x) films deposited on polycrystalline yttria-stabilized zirconia substrates

    NASA Astrophysics Data System (ADS)

    Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T. D.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.; Johnson, L.

    1992-12-01

    Anisotropic surface texturing of the polycrystalline yttria-stabilized zirconia substrates, prior to YBa2Cu3O(7-x) film deposition, is shown to promote in-plane (basal plane) ordering of the film growth in addition to the c-axis texturing. The Jc's of the films in the weak-link-dominated low-field regime are enhanced considerably, and this result is attributed to the reduction of weak links resulting from a reduction in the number of in-plane large-angle grain boundaries.

  20. Mechanical response of the flux lines in ceramic YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Luzuriaga, J.; André, M.-O.; Benoit, W.

    1992-06-01

    We have studied the mechanical response of the flux-line lattice (FLL) in ceramic samples of YBa2Cu3O7 by means of a low-frequency forced pendulum. The internal friction and elastic modulus variation of the FLL have been measured as a function of temperature for different values of the applied stress. A somewhat different behavior was observed whether a zero-field-cooling or field-cooling procedure was followed. Measurements of the internal friction and elastic modulus as a function of the applied stress at constant temperature show amplitude-dependent dissipation, with a maximum dissipation at intermediate values of the stress. This dependence is well fitted by a rheological model of extended dry friction, if we restrict ourselves to the dissipation and modulus at fixed temperature. The agreement is not so good when attempting to extend the model to fit the temperature dependence.

  1. Levitation of YBa2Cu3O(7-x) superconductor in a variable magnetic field

    NASA Technical Reports Server (NTRS)

    Terentiev, Alexander N.; Kuznetsov, Anatoliy A.

    1992-01-01

    The influence of both a linear alternating and rotational magnetic field component on the levitation behavior of a YBa2Cu3O(7-x) superconductor was examined. The transition from a plastic regime of levitation to an elastic one, induced by an alternating field component, was observed. An elastic regime in contrast to a plastic one is characterized by the unique position of stable levitation and field frequency dependence of relaxation time to this position. It was concluded that the vibrations of a magnet levitated above the superconductor can induce a transition from a plastic regime of levitation to an elastic one. It was found that a rotational magnetic field component induced rotations of a levitated superconductor. Rotational frictional motion of flux lines is likely to be an origin of torque developed. A prototype of a motor based on a levitated superconductor rotor is proposed.

  2. SQUID picovoltometry of single crystal Bi2Sr2CaCu2O(8+delta) - Observation of the crossover from high-temperature Arrhenius to low-temperature vortex-glass behavior

    NASA Astrophysics Data System (ADS)

    Safar, H.; Gammel, P. L.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.

    1992-04-01

    A SQUID voltmeter has been used to measure current-voltage curves in untwinned crystals of Bi2Sr2CaCu2O(8+delta) as a function of temperature and magnetic field. The data show a clear crossover from high-temperature Arrhenius behavior to a critical region associated with the low-temperature three-dimensional vortex-glass phase transition. The critical exponents v(z - 1) = 7 +/- 1 in this system are in accord with theoretical models and previous measurements in YBa2Cu3O7. The width of the critical region collapses below 2 T, reflecting the changing role of dimensionality with field.

  3. Disappearance of the force-free current configuration at the first order vortex lattice phase transition in YBa 2Cu 3O 7-δ single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Benoit, W.; Erb, A.; Flükiger, R.

    1997-08-01

    The anisotropy in the transverse AC susceptibility of YBa2Cu3O7-δ single crystals, induced by the periodic appearance of a force-free current configuration upon rotation of a superimposed DC field in the crystal plane, disappears at the vortex phase transition, indicating the loss of the vortex lines' stability against mutual cutting.

  4. Preparation, Iodometric Analysis, and Classroom Demonstration of Superconductivity in YBa2Cu3O8-x.

    ERIC Educational Resources Information Center

    Harris, Daniel C.; And Others

    1987-01-01

    Described is a student preparation of YBa2Cu3O8-x, a classroom demonstration of its superconductivity, and an analytical chemistry experiment dealing with the oxidation state of copper in the material. (RH)

  5. Preparation and Physical Properties of Segmented Thermoelectric YBa2Cu3O7-x -Ca3Co4O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Wannasut, P.; Keawprak, N.; Jaiban, P.; Watcharapasorn, A.

    2018-01-01

    Segmented thermoelectric ceramics are now well known for their high conversion efficiency and are currently being investigated in both basic and applied energy researches. In this work, the successful preparation of the segmented thermoelectric YBa2Cu3O7-x -Ca3Co4O9 (YBCO-CCO) ceramic by hot pressing method and the study on its physical properties were presented. Under the optimum hot pressing condition of 800 °C temperature, 1-hour holding time and 1-ton weight, the segmented YBCO-CCO sample showed two strongly connected layers with the relative density of about 96%. The X-ray diffraction (XRD) patterns indicated that each segment showed pure phase corresponding to each respective composition. Scanning electron microscopy (SEM) results confirmed the sharp interface and good adhesion between YBCO and CCO layers. Although the chemical analysis indicated the limited inter-layer diffusion near the interface, some elemental diffusion at the boundary was expected to be the source of this strong bonding.

  6. Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Dadras, S.; Falahati, S.; Dehghani, S.

    2018-05-01

    In this research we reported the effects of graphene oxide (GO) doping on the structural and superconducting properties of YBa2Cu3O7-δ (YBCO) high temperature superconductors. We synthesized YBCO powder by sol-gel method. After calcination, the powder mixed with different weight percent (0, 0.1, 0.3, 0.7, 1 wt.%) of GO. Refinement of X-ray diffraction (XRD) was carried out by material analysis using diffraction (MAUD) program to obtain the structural parameters such as lattice parameters, site occupancy of different atoms and orthorhombicity value for the all samples. Results show that GO doping does not change the structure of YBCO compound, Cu (1), Cu (2) and oxygen sites occupancy. It seems that GO remains between the grains and can play the role of weak links. We found that GO addition to YBCO compound increases transition temperature (TC). The oxygen contents of the all GO-doped samples are increased with respect to the pure one. The strain (ɛ) of the samples obtained from Williamson-Hall method, varies with increasing of GO doping. The scanning electron microscopy (SEM) images of the samples show better YBCO grain connections by GO doping.

  7. RAPID COMMUNICATION: Large-area uniform ultrahigh-Jc YBa2Cu3O7-x film fabricated by the metalorganic deposition method using trifluoroacetates

    NASA Astrophysics Data System (ADS)

    Araki, Takeshi; Yamagiwa, Katsuya; Hirabayashi, Izumi; Suzuki, Katsumi; Tanaka, Shoji

    2001-07-01

    Ultrahigh-Jc YBa2Cu3O7-x (YBCO) films have been successfully fabricated by the metalorganic deposition method using a trifluoroacetate coating solution which is prepared by a newly developed purification technique, the solvent-into-gel (SIG) method. The prepared pure coating solution has less than 0.25% impurities and has a wide flexibility in process conditions to obtain high-Jc YBCO film. Using this feature, we have successfully formed 50 mm diameter YBCO films, which have a critical current density over 10 MA cm-2 (77 K, 0 T) on LaAlO3 single crystalline substrates.

  8. In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-X

    PubMed Central

    Perez-Muñoz, Ana M.; Schio, Pedro; Poloni, Roberta; Fernandez-Martinez, Alejandro; Rivera-Calzada, Alberto; Salas-Colera, Eduardo; Kinney, Joseph; Leon, Carlos; Santamaria, Jacobo; Garcia-Barriocanal, Javier; Goldman, Allen M.

    2017-01-01

    Field-effect experiments on cuprates using ionic liquids have enabled the exploration of their rich phase diagrams [Leng X, et al. (2011) Phys Rev Lett 107(2):027001]. Conventional understanding of the electrostatic doping is in terms of modifications of the charge density to screen the electric field generated at the double layer. However, it has been recently reported that the suppression of the metal to insulator transition induced in VO2 by ionic liquid gating is due to oxygen vacancy formation rather than to electrostatic doping [Jeong J, et al. (2013) Science 339(6126):1402–1405]. These results underscore the debate on the true nature, electrostatic vs. electrochemical, of the doping of cuprates with ionic liquids. Here, we address the doping mechanism of the high-temperature superconductor YBa2Cu3O7-X (YBCO) by simultaneous ionic liquid gating and X-ray absorption experiments. Pronounced spectral changes are observed at the Cu K-edge concomitant with the superconductor-to-insulator transition, evidencing modification of the Cu coordination resulting from the deoxygenation of the CuO chains, as confirmed by first-principles density functional theory (DFT) simulations. Beyond providing evidence of the importance of chemical doping in electric double-layer (EDL) gating experiments with superconducting cuprates, our work shows that interfacing correlated oxides with ionic liquids enables a delicate control of oxygen content, paving the way to novel electrochemical concepts in future oxide electronics. PMID:28028236

  9. In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-X.

    PubMed

    Perez-Muñoz, Ana M; Schio, Pedro; Poloni, Roberta; Fernandez-Martinez, Alejandro; Rivera-Calzada, Alberto; Cezar, Julio C; Salas-Colera, Eduardo; Castro, German R; Kinney, Joseph; Leon, Carlos; Santamaria, Jacobo; Garcia-Barriocanal, Javier; Goldman, Allen M

    2017-01-10

    Field-effect experiments on cuprates using ionic liquids have enabled the exploration of their rich phase diagrams [Leng X, et al. (2011) Phys Rev Lett 107(2):027001]. Conventional understanding of the electrostatic doping is in terms of modifications of the charge density to screen the electric field generated at the double layer. However, it has been recently reported that the suppression of the metal to insulator transition induced in VO 2 by ionic liquid gating is due to oxygen vacancy formation rather than to electrostatic doping [Jeong J, et al. (2013) Science 339(6126):1402-1405]. These results underscore the debate on the true nature, electrostatic vs. electrochemical, of the doping of cuprates with ionic liquids. Here, we address the doping mechanism of the high-temperature superconductor YBa 2 Cu 3 O 7-X (YBCO) by simultaneous ionic liquid gating and X-ray absorption experiments. Pronounced spectral changes are observed at the Cu K-edge concomitant with the superconductor-to-insulator transition, evidencing modification of the Cu coordination resulting from the deoxygenation of the CuO chains, as confirmed by first-principles density functional theory (DFT) simulations. Beyond providing evidence of the importance of chemical doping in electric double-layer (EDL) gating experiments with superconducting cuprates, our work shows that interfacing correlated oxides with ionic liquids enables a delicate control of oxygen content, paving the way to novel electrochemical concepts in future oxide electronics.

  10. RAPID COMMUNICATION: Effect of strain, magnetic field and field angle on the critical current density of Y Ba2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    van der Laan, D. C.; Ekin, J. W.; Douglas, J. F.; Clickner, C. C.; Stauffer, T. C.; Goodrich, L. F.

    2010-07-01

    A large, magnetic-field-dependent, reversible reduction in critical current density with axial strain in Y Ba2Cu3O7-δ coated conductors at 75.9 K has been measured. This effect may have important implications for the performance of Y Ba2Cu3O7-δ coated conductors in applications where the conductor experiences large stresses in the presence of a magnetic field. Previous studies have been performed only under tensile strain and could provide only a limited understanding of the in-field strain effect. We now have constructed a device for measuring the critical current density as a function of axial compressive and tensile strain and applied magnetic field as well as magnetic field angle, in order to determine the magnitude of this effect and to create a better understanding of its origin. The reversible reduction in critical current density with strain becomes larger with increasing magnetic field at all field angles. At 76 K the critical current density is reduced by about 30% at - 0.5% strain when a magnetic field of 5 T is applied parallel to the c-axis of the conductor or 8 T is applied in the ab-plane, compared to a reduction of only 13% in self-field. Differences in the strain response of the critical current density at various magnetic field angles indicate that the pinning mechanisms in Y Ba2Cu3O7-δ coated conductors are uniquely affected by strain. Contribution of NIST, not subject to US copyright.

  11. Superconductor to Mott insulator transition in YBa2Cu3O7/LaCaMnO3 heterostructures.

    PubMed

    Gray, B A; Middey, S; Conti, G; Gray, A X; Kuo, C-T; Kaiser, A M; Ueda, S; Kobayashi, K; Meyers, D; Kareev, M; Tung, I C; Liu, Jian; Fadley, C S; Chakhalian, J; Freeland, J W

    2016-09-15

    The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa2Cu3O7 (YBCO) and colossal magnetoresistance ferromagnet La0.67Ca0.33MnO3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.

  12. Frequency and amplitude response of the flux-line lattice to mechanical perturbation in ceramic YBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Luzuriaga, J.; André, M.-O.; Benoit, W.

    1992-10-01

    The mechanical response of the flux-line lattice has been measured with a low-frequency forced pendulum in ceramic YBa 2Cu 3O 7. A dissipation peak observed in temperature sweeps is frequency-independent between 1 mHz and 5 Hz. Dissipation depends strongly on applied torque, and for fixed temperatures this dependence is well fitted by a rheological model of extended dry friction. If the model is extended to take account of thermal activation, however, it does not agree with the measured frequency independence, which is hard to explain within simple models of thermal activation.

  13. Effects of process variables on the properties of YBa2Cu3O(7-x) ceramics formed by investment casting

    NASA Technical Reports Server (NTRS)

    Hooker, M. W.; Taylor, T. D.; Leigh, H. D.; Wise, S. A.; Buckley, J. D.; Vasquez, P.; Buck, G. M.; Hicks, L. P.

    1993-01-01

    An investment casting process has been developed to produce net-shape, superconducting ceramics. In this work, a factorial experiment was performed to determine the critical process parameters for producing cast YBa2Cu3O7 ceramics with optimum properties. An analysis of variance procedure indicated that the key variables in casting superconductive ceramics are the particle size distribution and sintering temperature. Additionally, the interactions between the sintering temperature and the other process parameters (e.g., particle size distribution and the use of silver dopants) were also found to influence the density, porosity, and critical current density of the fired ceramics.

  14. Microscopic adaptation of BaHfO3 and Y2O3 artificial pinning centers for strong and isotropic pinning landscape in YBa2Cu3O7-x thin films

    NASA Astrophysics Data System (ADS)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Haugan, Timothy; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Wu, Judy Z.

    2018-07-01

    A study of 3 vol% Y2O3 + 2-6 vol% BaHfO3 double-doped YBa2Cu3O7-x (BHO DD) epitaxial thin films was carried out to explore the morphology adaption of c-axis aligned one-dimensional BHO artificial pinning centers (1D APCs) to secondary Y2O3 nanoparticles (3D APCs). BHO 1D APCs have been predicted to have the least rigidity in an elastic strain energy model in APC/YBa2Cu3O7-x nanocomposite films. Consequently, they could be best ‘tuned’ away from the c-axis alignment by local strains generated by the Y2O3 3D APCs. This provides an opportunity to generate mixed-morphology APCs, especially at high BHO concentrations. Motivated by this, we have carried out a systematic study of the transport critical current density J c(H, T, θ) on the BHO DD samples in magnetic fields (H) up to 90 kOe at different H orientations from H//c-axis (θ = 0), to θ = 45°, and to H//ab-plane (θ = 90°). Enhanced pinning at all three orientations was observed as illustrated in the comparable low alpha (α) values in the range of 0.13-0.25 at 65 K, which is consistent with the mixed 1D (in c-axis) + 2D (in ab-plane) + 3D APCs observed in transmission electron microscopy (TEM). Upon increasing BHO concentration from 2 to 4 vol%, a monotonic increase of the accommodation field H* at θ = 0°, 45° and 90° was observed, indicative of the APC concentration increase of the mixed morphologies. At 6 vol% BHO, the H* continues the increase to 85 kOe at H//c-axis (θ = 0), and >90 kOe H//ab-plane (θ = 90°), while it decreases from 80 to 85 kOe at 2-4 vol% to 60 kOe at 6 vol% at θ = 45°, which is consistent with the TEM observation of the connection of 3D APCs, appeared at lower BHO concentration into 2D ones in ab-plane at the higher BHO concentrations. These results shed light on the quantitative adaptation of APCs of mixed morphologies with increasing BHO doping in the BHO DD thin films and are important for controlling the APC pinning landscape towards minimal angular dependence.

  15. Electrical and magnetic properties of conductive Cu-based coated conductors

    NASA Astrophysics Data System (ADS)

    Aytug, T.; Paranthaman, M.; Thompson, J. R.; Goyal, A.; Rutter, N.; Zhai, H. Y.; Gapud, A. A.; Ijaduola, A. O.; Christen, D. K.

    2003-11-01

    The development of YBa2Cu3O7-δ (YBCO)-based coated conductors for electric power applications will require electrical and thermal stabilization of the high-temperature superconducting (HTS) coating. In addition, nonmagnetic tape substrates are an important factor in order to reduce the ferromagnetic hysteresis energy loss in ac applications. We report progress toward a conductive buffer layer architecture on biaxially textured nonmagnetic Cu tapes to electrically couple the HTS layer to the underlying metal substrate. A protective Ni overlayer, followed by a single buffer layer of La0.7Sr0.3MnO3, was employed to avoid Cu diffusion and to improve oxidation resistance of the substrate. Property characterizations of YBCO films on short prototype samples revealed self-field critical current density (Jc) values exceeding 2×106 A/cm2 at 77 K and good electrical connectivity. Magnetic hysteretic loss due to Ni overlayer was also investigated.

  16. Quasiparticle properties at microwave frequencies in the underdoped YBa2Cu3O7-δ thin films

    NASA Astrophysics Data System (ADS)

    Hsing, Lai

    2004-03-01

    Microstrip ring resonators with quality factor (Q) over 10^4 at temperature 5 K were fabricated using the double-side YBa_2Cu_3O_7-δ (YBCO) films deposited on LaAlO3 (LAO) substrates. By placing a narrow gap in the ring resonator, the original fundamental resonating mode (3.61 GHz) splits into two modes (1.80 GHz and 5.33 GHz) with distinct resonating frequencies. The samples allow us to determine the temperature and the frequency dependences of penetration depth and microwave conductivity for various underdoped-cuprates by using Drude formula and the modified two-fluid model. The natures of the order parameter of high-Tc superconductivity in the underdoped cases are shown to be of d-wave type in an exact manner. In particular, the Fermi-liquid correction factor α ^2 and the vertex correction factor β from the model, proposed by Wen and Lee, can be estimated that α ^2 is doping independent in the underdoped regime and β decreases as oxygen content is decreasing in our experiment data. All these results are independent of frequencies as well. The results reveal that the interaction between quasiparticles is insensitive dependence of the impurity concentrations due to oxygen deficiency on the CuO chain and the impurity potential for forward scattering approaches the same as back scattering with more oxygen deficiency.

  17. Conductive buffer layers and overlayers for the thermal stability of coated conductors

    NASA Astrophysics Data System (ADS)

    Cantoni, C.; Aytug, T.; Verebelyi, D. T.; Paranthaman, M.; Specht, E. D.; Norton, D. P.; Christen, D. K.

    2001-03-01

    We analyze fundamental issues related to the thermal and electrical stability of a coated conductor during its operation. We address the role of conductive buffer layers in the stability of Ni-based coated conductors, and the effect of a metallic cap layer on the electrical properties of Ni alloy-based superconducting tapes. For the first case we report on the fabrication of a fully conductive RABiTS architecture formed of bilayers of conductive oxides SrRuO3 and LaNiO3 on textured Ni tapes. For the second case we discuss measurements of current-voltage relations on Ag/YBa2Cu3O7-d and Cu/Ag/ YBa2Cu3O7-d prototype multilayers on insulating substrates. Limitations on the overall tape structure and properties that are posed by the stability requirement are presented.

  18. Magnetic flux relaxation in YBa2Cu3)(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, J. D.; Alterovitz, S. A.

    1991-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H is parallel to c was studied in the range 4.2 - 40 K and 0.2 - 1.0 T. Both the normalized flux relaxation rate S and the net flux pinning energy U increase continuously from 1.3 x 10(exp -2) to 3.0 x 10(exp -2) and from 70 to 240 meV respectively, as the temperature T increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  19. Mapping the magnetic field generated by a supercurrent in a ring of YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Sulca, P. D.; Gómez, R. W.

    2017-11-01

    We design and construct a device to map the magnetic field generated by a supercurrent in a rectangular cross section ring of YBa2Cu3O7-δ . For the measurements of the magnetic field, we develop a Gaussmeter based on a commercial Hall effect sensor coupled to an Arduino microprocessor. Our results show an asymmetric distribution of the magnetic field intensity measured at a certain distance along a plane parallel to the ring surface. The behavior of the magnetic field intensity with distance along the ring axis is closely related to what is expected for a toroid. Using the Biot-Savart law and the measured magnetic field values, the induced supercurrent is determined.

  20. Effectiveness of BaTiO 3 dielectric patches on YBa 2Cu 3O 7 thin films for MEM switches

    DOE PAGES

    Vargas, J.; Hijazi, Y.; Noel, J.; ...

    2014-05-12

    A micro-electro-mechanical (MEM) switch built on a superconducting microstrip filter will be utilized to investigate BaTiO 3 dielectric patches for functional switching points of contact. Actuation voltage resulting from the MEM switch provokes static friction between the bridge membrane and BaTiO 3 insulation layer. Furthermore, the dielectric patch crystal structure and roughness affect the ability of repetitively switching cycles and lifetime. We performed a series of experiments using different deposition methods and RF magnetron sputtering was found to be the best deposition process for the BaTiO 3 layer. The effect examination of surface morphology will be presented using characterization techniquesmore » as x-ray diffraction, SEM and AFM for an optimum switching device. The thin film is made of YBa 2Cu 3O 7 deposited on LaAlO 3 substrate by pulsed laser deposition. In our work, the dielectric material sputtering pressure is set at 9.5x10 -6 Torr. The argon gas is released through a mass-flow controller to purge the system prior to deposition. RF power is 85 W at a distance of 9 cm. The behavior of Au membranes built on ultimate BaTiO 3 patches will be shown as part of the results. These novel surface patterns will in turn be used in modelling other RF MEM switch devices such as distributed-satellite communication system operating at cryogenic temperatures.« less

  1. The effect of fluctuations on the electrical transport behavior in YBa2Cu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Alterovitz, S. A.; Stan, M. A.

    1993-01-01

    The excess conductivity behavior of highly oriented YBa2Cu3O(7-x) thin films prepared by both coevaporation and laser ablation was studied in detail in the reduced-temperature range 9 x 10(exp -4) is less than t is less than 1. The excess conductivity in all the films studied was found to diverge sharply near T(sub c), in agreement with the conventional mean-field theory. However, the detailed temperature dependence could not be fitted to either the power-law or the logarithmic functional forms as predicted by the theory. The excess conductivity of all the films was found to be exponentially dependent on the temperature over nearly three decades for 9 x 10(exp -4) is less than t is less than 10(exp -1), in contradiction to the mean-field theory.

  2. Transport properties of ultrathin YBa2Cu3O7 -δ nanowires: A route to single-photon detection

    NASA Astrophysics Data System (ADS)

    Arpaia, Riccardo; Golubev, Dmitri; Baghdadi, Reza; Ciancio, Regina; Dražić, Goran; Orgiani, Pasquale; Montemurro, Domenico; Bauch, Thilo; Lombardi, Floriana

    2017-08-01

    We report on the growth and characterization of ultrathin YBa2Cu3O7 -δ (YBCO) films on MgO (110) substrates, which exhibit superconducting properties at thicknesses down to 3 nm. YBCO nanowires, with thicknesses down to 10 nm and widths down to 65 nm, have also been successfully fabricated. The nanowires protected by a Au capping layer show superconducting properties close to the as-grown films and critical current densities, which are limited by only vortex dynamics. The 10-nm-thick YBCO nanowires without the Au capping present hysteretic current-voltage characteristics, characterized by a voltage switch which drives the nanowires directly from the superconducting to the normal state. We associate such bistability to the presence of localized normal domains within the superconductor. The presence of the voltage switch in ultrathin YBCO nanostructures, characterized by high sheet resistance values and high critical current values, makes our nanowires very attractive devices to engineer single-photon detectors.

  3. Composition dependence of the in-plane Cu-O bond-stretching LO phonon mode in YBa2Cu3O6+x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stercil, F.; Egami, T.; Mook Jr, Herbert A

    An inelastic pulsed neutron scattering study was performed on the dependence of the dispersion and spectral intensity of the in-plane Cu-O bond-stretching LO phonon mode on doped charge density. The measurements were made in the time-of-flight mode with the multiangle position sensitive spectrometer of the ISIS facility on single crystals of YBa{sub 2}Cu{sub 3}O{sub 6+x} (x=0.15, 0.35, 0.6, 0.7, and 0.95). The focus of the study is the in-plane Cu-O bond-stretching LO phonon mode, which is known for strong electron-phonon coupling and unusual dependence on composition and temperature. It is shown that the dispersions for the samples with x=0.35, 0.6,more » and 0.7 are similar to the superposition of those for x=0.15 and 0.95 samples, and cannot be explained in terms of the structural anisotropy. It is suggested that the results are consistent with the model of nanoscale electronic phase separation, with the fraction of the phases being dependent on the doped charge density.« less

  4. Ultra low noise YBa{sub 2}Cu{sub 3}O{sub 7−δ} nano superconducting quantum interference devices implementing nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arpaia, R.; CNR-SPIN, Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II,” I-80125 Napoli; Arzeo, M.

    2014-02-17

    We present results on ultra low noise YBa{sub 2}Cu{sub 3}O{sub 7–δ} (YBCO) nano Superconducting QUantum Interference Devices (nanoSQUIDs). To realize such devices, we implemented high quality YBCO nanowires, working as weak links between two electrodes. We observe critical current modulation as a function of an externally applied magnetic field in the full temperature range below the transition temperature T{sub C}. The white flux noise below 1μΦ{sub 0}/√(Hz) at T=8 K makes our nanoSQUIDs very attractive for the detection of small spin systems.

  5. Superconductor to Mott insulator transition in YBa 2Cu 3O 7/LaCaMnO 3 heterostructures

    DOE PAGES

    Gray, B. A.; Middey, S.; Conti, G.; ...

    2016-09-15

    The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In this paper, in pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa 2Cu 3O 7 (YBCO) and colossal magnetoresistance ferromagnet La 0.67Ca 0.33MnO 3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping inmore » cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Finally, such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.« less

  6. Direct observation of twin deformation in YBa2Cu3O7-x thin films by in situ nanoindentation in TEM

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hwan; Zhang, Xinghang; Wang, Haiyan

    2011-04-01

    The deformation behaviors of YBa2Cu3O7-x (YBCO) thin films with twinning structures were studied via in situ nanoindentation experiments in a transmission electron microscope. The YBCO films were grown on SrTiO3 (001) substrates by pulsed laser deposition. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of the YBCO films from the directions perpendicular and parallel to the twin interfaces. The hardness measured perpendicular to the twin interfaces is ˜50% and 40% higher than that measured parallel to the twin interfaces ex situ and in situ, respectively. Detailed in situ movie analysis reveals that the twin structures play an important role in deformation and strengthening mechanisms in YBCO thin films.

  7. Structural and electrical characterization of ultra-thin SrTiO3 tunnel barriers grown over YBa2Cu3O7 electrodes for the development of high Tc Josephson junctions.

    PubMed

    Félix, L Avilés; Sirena, M; Guzmán, L A Agüero; Sutter, J González; Vargas, S Pons; Steren, L B; Bernard, R; Trastoy, J; Villegas, J E; Briático, J; Bergeal, N; Lesueur, J; Faini, G

    2012-12-14

    The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was used to obtain critical parameters regarding the structural and electrical properties of the system. The STO layers present an energy barrier of 0.9 eV and an attenuation length of 0.23 nm, indicating very good insulating properties for the development of high-quality Josephson junctions.

  8. H-modulated microwave absorption and resistive transition in the high- Tc superconductor YBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Buluggiu, E.; Vera, A.; Amoretti, G.

    1990-11-01

    The derivative microwave absorption near Tc in presence of a sufficiently high field ( H⩾1 kOe) is related to the temperature variation of resistivity. This idea, originally proposed by Kim et al. (1988), is extended to take into account the effects of the anomalous resistive tail by using the thermoactivated flux-creep model proposed by Tinkham (1988). This gives a simple explanation for some relevant features observed in the temperature behaviour of the ESR absorption, as the asymmetry of the peak at Tc, with the long tail extending toward low temperatures, and the field dependence of height and linewidth, for which the model provides H-1 and H2/3 behaviour, respectively, ESR data on YBa 2Cu 3O 7 powder are in satisfactory agreement with this picture, when the role of the intrinsic 2D-character of this compound is properly taken into account. This allows us to deduce consistent values for the parameters a‖ and a⊥ of the anisotropic resistivity.

  9. Direct observation of vortex structure in a high-{Tc} YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} thin film by Bitter decoration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Akira; Yamaguchi, Tetsuji; Iguchi, Ienari

    1999-12-01

    The Bitter decoration technique is one of the most powerful techniques to study the vortex structure of superconductor. The authors report the observation of vortex structure in a high {Tc} YBa{sub 2}Cu{sub 3}O{sub 7{minus}y} (YBCO) thin film by Bitter decoration method. The image of vortex structure was monitored by SEM, AFM and high resolution optical microscope. For magnetic field about 4--6mT, a vortex structure is seen. The vortex image varied with changing magnetic field. As compared with the vortex image of a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal, the observed image appeared to be more randomly distributed.

  10. Redistribution of oxygen ions in single crystal YBa2Cu3O7-x owing to external hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Boiko, Yu. I.; Bogdanov, V. V.; Vovk, R. V.; Khadzhai, G. Ya.; Savich, S. V.

    2018-01-01

    The effect of high hydrostatic pressure on the temperature dependences of the electrical resistance in the basal plane of single crystal YBa2Cu3O7-x with an oxygen deficit is studied. It is found that an external hydrostatic pressure P ≈ 7 kbar substantially intensifies the diffusive coalescence of oxygen clusters, i.e., causes an increase in their average size. This, in turn, produces an increased number of negative U-centers whose presence leads to the appearance of a phase capable of generating paired carriers of electrical charge and is, therefore, characterized by a higher transition temperature Tc. Changes in the form of the temperature and time dependences of the electrical resistivity under external hydrostatic pressure are discussed in terms of this same hypothesis regarding the mechanism of diffusive coalescence of oxygen clusters.

  11. Physical properties of YBa 2Cu 3O 7- δ thin films using microstrip ring resonators technique

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Zeng, H. K.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Lin, J. Y.; Gou, Y. S.

    2006-09-01

    Microstrip ring resonators with quality factor ( Q) over 10 4 at temperature 5 K, were fabricated using the double-side YBa 2Cu 3O 7- δ (YBCO) epitaxial films deposited on LaAlO 3 (LAO) substrates. By placing a narrow gap in the ring resonator, we observed that the original fundamental resonating mode (resonance frequency f = 3.61 GHz) splits into a dual-mode with different resonating frequencies ( f = 1.80 GHz and f = 5.33 GHz). These two kinds of the resonator allow us to determine the temperature and frequency dependences of the magnetic penetration depth λ( T, f) and the surface loss. Several salient features of the above findings related to the nature of low-lying excitations for high- Tc superconductivity as a function of oxygen content will be elucidated. In particular, the current models, suggested by Wen and Lee, will be examined in a quantitative manner. It allows us to give a justification of quasiparticle as Fermi-liquid in the superconducting state. In addition, an equivalent inductance circuit model is suggested to account for the occurrence of the dual-mode resonance.

  12. Novel configuration of processing bulk textured YB 2Cu 3O 7-x superconductor by seeded infiltration growth method

    NASA Astrophysics Data System (ADS)

    Cao, Haitao; Moutalbi, Nahed; Harnois, Christelle; Hu, Rui; Li, Jinshan; Zhou, Lian; Noudem, Jacques G.

    2010-01-01

    Mono-domain YBa 2Cu 3O 7-x (Y123) bulk superconductors have been processed using seeded infiltration growth technique (SIG). The combination of melt infiltrated liquid source (Ba 3Cu 5O 8) into the Y 2BaCuO 5 (Y211) pre-form and the nucleation of Y123 domain from SmBa 2Cu 3O 7 crystal seed has been investigated. The different configurations of SIG process were compared in this study. In addition, the effect of the starting Y211 particles size has been studied. The results reveal that, the Y211 particle size and different configurations strongly influence the properties of the final bulk superconductor sample.

  13. Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa_{2}Cu_{3}O_{y}.

    PubMed

    Zhou, R; Hirata, M; Wu, T; Vinograd, I; Mayaffre, H; Krämer, S; Horvatić, M; Berthier, C; Reyes, A P; Kuhns, P L; Liang, R; Hardy, W N; Bonn, D A; Julien, M-H

    2017-01-06

    We report the NMR observation of a skewed distribution of ^{17}O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa_{2}Cu_{3}O_{y}. This distribution is explained by an inhomogeneous pattern of the local density of states N(E_{F}) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.

  14. Dominant pinning mechanisms in YBa2Cu3O7-x films on single and polycrystalline yttria stabilized zirconia substrates

    NASA Astrophysics Data System (ADS)

    Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.

    1992-04-01

    Critical-current densities have been measured in YBa2Cu3O7-x films deposited on (100) yttria stabilized zirconia (YSZ) and polycrystalline YSZ substrates as a function of temperature (4.5-88 K), magnetic field (0-1 T) and orientation relative to the applied field. The results indicate that in films on polycrystalline substrates, surface and interface pinning play a dominant role at high temperatures. In films on (100) YSZ, pinning is mainly due to intrinsic layer pinning as well as extrinsic pinning associated with the interaction of the fluxoids with point defects and low energy planar (2D) boundaries. The differences are attributed to the intrinsic rigidity of single fluxoids which is reduced in films on polycrystalline substrates thereby weakening the intrinsic layer pinning.

  15. Impact of oxygen diffusion on superconductivity in YBa2Cu3O7 -δ thin films studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.

    2018-04-01

    The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.

  16. Study on the photo-induced oxygen reordering in YBa2Cu3O6+x

    NASA Astrophysics Data System (ADS)

    Milić, M. M.; Lazarov, N. Dj.; Cucić, D. A.

    2012-05-01

    Effect of the long term illumination of the YBa2Cu3O6+x with visible light or ultraviolet irradiation on its superconducting properties was studied in the frame of a simple theoretical model, which assumes that photodoping triggers rearrangement of oxygen monomers in the chain layers thus causing the enhancement of the average chain length, lav. Since, according to the model of charge transfer mechanism, long CuO chains are better electronic hole donors than the short ones, increase of the average chain length induces additional holes transfer from chain layers to the superconducting CuO2 planes which in turn leads to the increase of the superconducting transition temperature Tc. By the use of the expression for the chain length probability distribution and numerically calculated values for the average chain length in the non-excited system, we were able to estimate the doping p (number of holes per one Cu atom in the superconducting CuO2 planes) and Tc enhancement due to photo-induced oxygen reordering. The theoretical results are compared with available experimental data.

  17. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa2Cu3O7 thin films

    NASA Technical Reports Server (NTRS)

    Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.

    1995-01-01

    Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  18. Comparison of the Microstructure and Flux Pinning Properties of Polycrystalline YBa2Cu3O7-d Containing Zn0.95Mn0.05O or Al2O3 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.

    2018-07-01

    Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.

  19. Comparison of the Microstructure and Flux Pinning Properties of Polycrystalline YBa2Cu3O7-d Containing Zn0.95Mn0.05O or Al2O3 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.

    2018-03-01

    Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.

  20. Moessbauer spectroscopy analysis of {sup 57}Fe-doped YBaCo{sub 4}O{sub 7+{delta}}: Effects of oxygen intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipis, E.V.; Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro; Waerenborgh, J.C.

    2009-03-15

    Moessbauer spectroscopy of layered YBaCo{sub 3.96}Fe{sub 0.04}O{sub 7+{delta}} ({delta}=0.02 and 0.80), where 1% cobalt is substituted with {sup 57}Fe isotope, revealed no evidence of charge ordering at 4-293 K. The predominant state of iron cations was found trivalent, irrespective of their coordination and oxygen stoichiometry variations determined by thermogravimetric analysis. The extremely slow kinetics of isothermal oxidation at 598 K in air, and the changes of Fe{sup 3+} fractions in the alternating triangular and Kagome layers in oxidized YBaCo{sub 3.96}Fe{sub 0.04}O{sub 7.80}, may suggest that oxygen intercalation is accompanied with a substantial structural reconstruction stagnated due to sluggish cation diffusion.more » Decreasing temperature below 75-80 K leads to gradual freezing of the iron magnetic moments in inverse correlation with the content of extra oxygen. The formation of metal-oxygen octahedra and resultant structural distortions extend the temperature range where the paramagnetic and frozen states co-exist, down to 45-50 K. - Graphical abstract: Moessbauer spectroscopy of layered YBaCo{sub 3.96}Fe{sub 0.04}O{sub 7+{delta}} ({delta}=0.02 and 0.80), with 1% {sup 57}Fe isotope substituted for cobalt, revealed no evidence of charge ordering at 4-293 K. The predominant state of iron cations was found trivalent, irrespective of their coordination and oxygen stoichiometry variations determined by thermogravimetric analysis. Decreasing temperature below 75-80 K leads to gradual freezing of the iron magnetic moments in inverse correlation with the content of extra oxygen extending the temperature range where the paramagnetic and frozen states co-exist down to 45-50 K.« less

  1. Nonthermal response of YBa2Cu3O7-δ thin films to picosecond THz pulses

    NASA Astrophysics Data System (ADS)

    Probst, P.; Semenov, A.; Ries, M.; Hoehl, A.; Rieger, P.; Scheuring, A.; Judin, V.; Wünsch, S.; Il'in, K.; Smale, N.; Mathis, Y.-L.; Müller, R.; Ulm, G.; Wüstefeld, G.; Hübers, H.-W.; Hänisch, J.; Holzapfel, B.; Siegel, M.; Müller, A.-S.

    2012-05-01

    The photoresponse of YBa2Cu3O7-δ thin film microbridges with thicknesses between 15 and 50 nm was studied in the optical and terahertz frequency range. The voltage transients in response to short radiation pulses were recorded in real time with a resolution of a few tens of picoseconds. The bridges were excited by either femtosecond pulses at a wavelength of 0.8 μm or broadband (0.1-1.5 THz) picosecond pulses of coherent synchrotron radiation. The transients in response to optical radiation are qualitatively well explained in the framework of the two-temperature model with a fast component in the picosecond range and a bolometric nanosecond component whose decay time depends on the film thickness. The transients in the THz regime showed no bolometric component and had amplitudes up to three orders of magnitude larger than the two-temperature model predicts. Additionally THz field-dependent transients in the absence of DC bias were observed. We attribute the response in the THz regime to a rearrangement of vortices caused by high-frequency currents.

  2. Superconductor-to-insulator transition and transport properties of underdoped YBa2Cu3O(y) crystals.

    PubMed

    Semba, K; Matsuda, A

    2001-01-15

    The carrier-concentration-driven superconductor-to-insulator (SI) transition as well as transport properties in underdoped YBa2Cu3O(y) twinned crystals is studied. The SI transition takes place at y approximately 6.3, carrier concentration n(SI)H approximately 3x10(20) cm(-3), anisotropy rho(c)/rho(ab) approximately 10(3), and the threshold resistivity rho(SI)ab approximately 0.8 mOmega cm which corresponds to a critical sheet resistance h/4e2 approximately 6.5 kOmega per CuO2 bilayer. The evolution of a carrier, nH infiniti y - 6.2, is clearly observed in the underdoped region. The resistivity and Hall coefficient abruptly acquire strong temperature dependence at y approximately 6.5 indicating a radical change in the electronic state.

  3. Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates

    PubMed Central

    Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; Van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens

    2016-01-01

    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it. PMID:26887291

  4. Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates

    NASA Astrophysics Data System (ADS)

    Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens

    2016-02-01

    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7-δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.

  5. Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7-δ thin films

    NASA Astrophysics Data System (ADS)

    Molina-Luna, Leopoldo; Duerrschnabel, Michael; Turner, Stuart; Erbe, Manuela; Martinez, Gerardo T.; Van Aert, Sandra; Holzapfel, Bernhard; Van Tendeloo, Gustaaf

    2015-11-01

    Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7-δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm-2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (˜1.5 nm) and the determination of 0.25 nm dislocation cores.

  6. Fabrication of YBa2Cu3O7 twin-boundary-junction dc SQUID by using a focused-ion-beam pattern technique

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hoon; Lee, Soon-Gul

    2017-09-01

    We have fabricated YBa2Cu3O7 (YBCO) dc SQUIDs containing nanobridges across twin boundaries of LaAlO3 (LAO) substrates as Josephson elements by using a focused ion beam (FIB) etching method and measured their transport properties. The beam energy was 30 keV and the current was 1.5 pA for the nanobridge pattern. Each bridge with a nominal width of 200 nm crossed a twin boundary in the (100) direction. The SQUID loop had a 10 μm × 10 μm hole with a 5.7 μm average linewidth. The SQUID voltage showed modulations in response to the external flux with a maximum modulation depth of 350 μV at 77.0 K. HR-XRD spectra showed that the epitaxially grown YBCO film was twinned in commensurate with the twinning of the LAO substrate. Tilting of the c-axis of YBCO across the twin boundary is believed to play a role as a tunnel barrier.

  7. Method of producing superconducting fibers of YBA2CU30X

    DOEpatents

    Schwartzkopf, Louis A.; Ostenson, Jerome E.; Finnemore, Douglas K.

    1990-11-13

    Fibers of YBa.sub.2 Cu.sub.3 O.sub.x have been produce by pendant drop melt extraction. This technique involves the end of a rod of YBa.sub.2 Cu.sub.3 O.sub.x melted with a hydrogen-oxygen torch, followed by lowering onto the edge of a spinning wheel. The fibers are up to 10 cm in length with the usual lateral dimensions, ranging from 20 .mu.m to 125 .mu.m. The fibers require a heat treatment to make them superconducting.

  8. High-performance linear arrays of YBa2Cu3O7 superconducting infrared microbolometers on silicon

    NASA Astrophysics Data System (ADS)

    Johnson, Burgess R.; Foote, Marc C.; Marsh, Holly A.

    1995-06-01

    Single detectors and linear arrays of microbolometers utilizing the superconducting transition edge of YBa(subscript 2)Cu(subscript 3)O(subscript 7) have been fabricated by micromachining on silicon wafers. A D* of 8 +/- 2 X 10(superscript 9) cm Hz(superscript 1/2)/watt has been measured on a single detector. This is the highest D* reported on any superconducting microbolometer operating at temperatures higher than about 70 K. The NEP of this device was 1.5 X 10(superscript -12) watts/Hz(superscript HLF) at 2 Hz, at a temperature of 80.7 K. The thermal time constant was 105 msec, and the detector area was 140 micrometers X 105 micrometers . The use of batch silicon processing makes fabrication of linear arrays of these detectors relatively straightforward. The measured responsivity of detectors in one such array varied by less than 20% over the 6 mm length of the 64-element linear array. This measurement shows that good uniformity can be achieved at a single operating temperature in a superconductor microbolometer array, even when the superconducting resistive transition is a sharp function of temperature. The thermal detection mechanism of these devices gives them broadband response. This makes them especially useful at long wavelengths (e.g. (lambda) > 20 micrometers ), where they provide very high sensitivity at relatively high operating temperatures.

  9. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  10. Valence-band states in Bi2(Ca,Sr,La)3Cu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.

    1989-09-01

    We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La-doped superconductor Bi2(Ca,Sr,La)3Cu2O8. While the oxygen states near the bottom of the 7-eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence-band features for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence-band features, are not consistent with either simple final-state effects or direct O 2s transitions to unoccupied O 2p states.

  11. Atom-replaced pins in a Y-based superconductor—single-crystalline perovskite structure including both PrBa2Cu3O7‑x and YBa2Cu3O7‑y

    NASA Astrophysics Data System (ADS)

    Hayashi, Mariko; Araki, Takeshi; Ishii, Hirotaka; Nishijima, Gen; Matsumoto, Akiyoshi

    2018-05-01

    Metal organic deposition using trifluoroacetates (TFA-MOD) provides many uniform superconductors on long metal tapes. The large numbers of long wires have been applied for power grids or superconducting fault current limiters. The related applications worked for a long time without fatal trouble. The quasi-liquid produced during the firing process assisted the perfectly uniform structure in TFA-MOD. On the other hand, when it was desired to introduce artificial pinning centers, the quasi-liquid also enlarged the diameter of the artificial pinning centers to several tens of nanometers. In other words, due to the nature of TFA-MOD, there is very little chance of using TFA-MOD to prepare several nm-sized artificial pinning centers. By proposing atom-replaced pins (ARPs), we aim to overcome the impasse. ARPs are realized by replacing yttrium (Y) with praseodymium (Pr) whose valence number changes from 3+ to approximately 4+. Analytical results suggested that Pr makes pinning centers on a PrBa2Cu3O7‑x (PrBCO) unit cell, and the weak-linked superconductivity derived from PrBCO extends to the adjacent unit cells in the a/b-plane. J c decrease by Pr is five times as large as the volume fraction of Pr in the Y-site of the perovskite structure. On the other hand, T c does not show large degradation in YBCO including 10% PrBCO. These results suggest that PrBCO unit cells are fully dispersed in YBa2Cu3O7‑y matrix. With regard to J c in the magnetic field, (Y0.98, Pr0.02)BCO has been slightly improved compared with pure YBCO only in the region of high temperature and low magnetic field of less than 1 T.

  12. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    DTIC Science & Technology

    2008-07-01

    Maiorov, M. E. Hawley , M. P. Maley, D. E. Peterson, ―Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3...2nd ed., New York: Taylor and Francis, 2001. [23] S. P. Ashworth, M. Maley, M. Suenaga, S. R. Foltyn, and J. O. Willis , J. Appl. Phys., vol. 88

  13. Electronic Structure of HgBa2CaCu2O(6+delta) Epitaxial films measured by x-ray Photoemission

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Rupp, M.; Gupta, A.; Tsuei, C. C.

    1995-01-01

    The electronic structure and chemical states of HgBa2CaCu20(sub 6 + delta), epitaxial films have been studied with x-ray photelectron spectroscopy. Signals from the superconducting phase dominate all the core-level spectra, and a clear Fermi edge is observed in the valence-band region. The Ba, Ca, Cu, and O core levels are similar to those of Tl2Ba2CaCu208(+)O(sub 6 + delta), but distinct differences are observed in the valence bands which are consistent with differences in the calculated densities of states.

  14. Current-induced vortex motion and the vortex-glass transition in YBa{sub 2}Cu{sub 3}O{sub y} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojima, T.; Kakinuma, A.; Kuwasawa, Y.

    1997-12-01

    Measurements of current-voltage characteristics have been performed on YBa{sub 2}Cu{sub 3}O{sub y} films for two components of electric fields in the ab plane, E{sub x} and E{sub y}, in magnetic fields of the form (H{sub 0},H{sub 0},{delta}H{sub 0}), where x {parallel} the current density J, z {parallel} the c axis, and {delta}{lt}1. The simultaneous measurements of E{sub x} and E{sub y} under these conditions make it possible to analyze the situation of the vortex motion due to the Lorentz force. Our results indicate that vortices move as long-range correlated lines only below the glass transition temperature in a low-current limit.more » We also show that applying high-current density destroys line motion and induces a structural change of vortex lines in the glass state. {copyright} {ital 1997} {ital The American Physical Society}« less

  15. Nucléation et croissance de films YBa_{2Cu3O_{7 - δ}} déposés par ablation laser sur substrat de MgO(001)

    NASA Astrophysics Data System (ADS)

    Keller, D.; Gervais, A.; Chambonnet, D.; Belouet, C.; Audry, C.

    1995-02-01

    In the field of superconducting devices devoted to microwave applications, the crystalline texture of high quality thin films based on YBa{2}Cu{3}O{7 - δ} is of primary importance. This study presents the formation of this texture on MgO substrates with the nucleation and growth steps up to a film thickness of 300 nm as observed by means of AFM, HRTEM and XRD. The influence of deposition temperature on the growth mode is shown and a nucleation/growth model is discussed. The minimum roughness of c_{bot 0}{(^1)} textured films, 300 nm thick and 20 × 20 mm2 in size is as slow as 2 nm. Dans le cadre de la réalisation de composants supraconducteurs de haute qualité à base du composé YBa{2}Cu{3}O{7 - δ} destinés aux applications en hyperfréquences, le contrôle de la texture cristalline des films est de première importance. La formation de celle-ci sur substrat MgO est étudiée depuis la nucléation jusqu'à une épaisseur de 300 nm au moyen de la microscopie à force atomique, de la microscopie électronique en transmission à haute résolution et de la diffraction des rayons X. L'influence de la température de dépôt sur le mode de croissance est abordée et un modèle de nucléation/croissance est discuté. La rugosité minimale des films d'épaisseur 300 nm et de dimensions 20 × 20 mm2 de texture c_{bot 0}{(^1)} est voisine de 2 nm.

  16. Élaboration et performances de matériaux supraconducteurs {YBa_2Cu_3O_7} massifs texturés de taille croissante

    NASA Astrophysics Data System (ADS)

    Chaud, X.; Gautier-Picard, P.; Beaugnon, E.; Porcar, L.; Bourgault, D.; Tournier, R.; Erraud, A.; Tixador, P.

    1998-03-01

    Industrial applications of the bulk superconducting YBa_2Cu_3O_7 material imply to control the growth of large oriented monodomains in samples of big size (several centimeters). The laboratory EPM-Matformag is committed to produce such materials according to three different methods (zone melting, solidification controlled by a magnetic field, crystal growth from a seed). The results obtained show that it is possible by such methods to elaborate a material with high performances at the centimeter scale and to produce it in series. The availability of such materials allows the measure of physical properties on a large scale and the testing of prototypes for cryo-electrotechnical applications (magnetic bearing, flywheel, coupling device, current lead...). Les applications industrielles des matériaux supraconducteurs massifs YBa_2Cu_3O_7 impliquent de contrôler la croissance de larges monodomaines orientés dans des échantillons de grande taille (plusieurs centimètres). Le laboratoire EPM-Matformag s'est appliqué à produire de tels matériaux selon trois techniques différentes (fusion de zone, solidification contrôlée sous champ magnétique, croissance cristalline à partir d'un germe). Les résultats obtenus montrent qu'il est possible par de telles techniques d'obtenir un matériau performant à l'échelle des centimètres et de le produire en série. La disponibilité de tels matériaux permet de mesurer des propriétés physiques à grande échelle et de tester des prototypes d'applications cryo-électrotechniques (palier magnétique, volant d'inertie, coupleur, amenée de courant, limiteur de courant...).

  17. Pulsed laser deposition of thick BaHfO3-doped YBa2Cu307-δ films on highly alloyed textured Ni-W tapes

    NASA Astrophysics Data System (ADS)

    Sieger, M.; Hänisch, J.; Iida, K.; Gaitzsch, U.; Rodig, C.; Schultz, L.; Holzapfel, B.; Hühne, R.

    2014-05-01

    YBa2Cu3O7-δ (YBCO) films with a thickness of up to 3 μm containing nano-sized BaHfO3 (BHO) have been grown on Y2O3/Y-stabilized ZrO2/CeO2 buffered Ni-9at% W tapes by pulsed laser deposition (PLD). Structural characterization by means of X-ray diffraction confirmed that the YBCO layer grew epitaxial. A superconducting transition temperature Tc of about 89 K with a transition width of 1 K was determined, decreasing with increasing BHO content. Critical current density in self-field and at 0.3 T increased with increasing dopant level.

  18. The effect of temperature cycling typical of low earth orbit satellites on thin films of YBa2Cu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.

    1991-01-01

    Thin films of YBa2Cu3O(7-x) (YBCO) were temperature cycled to simulate conditions of a low earth orbit satellite. In one series of tests, epitaxial and polycrystalline YBCO films were cycled between temperatures of +/- 80 C in vacuum and in nitrogen for hundreds of cycles. The room temperature resistance of an epitaxial YBCO film increased by about 10 percent, but the superconducting transition temperature was unchanged. The largest changes were for a polycrystalline YBCO film on oxidized silicon with a zirconia buffer layer, for which the transition temperature decreased by 3 K. An extended test was carried out for epitaxial films. After 3200 cycles (corresponding to about 230 days in space), transition temperatures and critical current densities remained unchanged.

  19. Superconducting Generators for Airborne Applications and YBCO-Coated Conductors (Preprint)

    DTIC Science & Technology

    2008-10-01

    Maiorov, M. E. Hawley , M. P. Maley, D. E. Peterson, “Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3...ed., New York: Taylor and Francis, 2001. [17] S. P. Ashworth, M. Maley, M. Suenaga, S. R. Foltyn, and J. O. Willis , J. Appl. Phys., vol. 88, p

  20. Disentangling vortex pinning landscape in chemical solution deposited superconducting YBa2Cu3O7-x films and nanocomposites

    NASA Astrophysics Data System (ADS)

    Palau, A.; Vallès, F.; Rouco, V.; Coll, M.; Li, Z.; Pop, C.; Mundet, B.; Gàzquez, J.; Guzman, R.; Gutierrez, J.; Obradors, X.; Puig, T.

    2018-07-01

    In-field angular pinning performances at different temperatures have been analysed on chemical solution deposited (CSD) YBa2Cu3O7-x (YBCO) pristine films and nanocomposites. We show that with this analysis we are able to quantify the vortex pinning strength and energies, associated with different kinds of natural and artificial pinning defects, acting as efficient pinning centres at different regions of the H-T phase diagram. A good quantification of the variety of pinning defects active at different temperatures and magnetic fields provides a unique tool to design the best vortex pinning landscape under different operating conditions. We have found that by artificially introducing a unique defect in the YBCO matrix, the stacking faults, we are able to modify three different contributions to vortex pinning (isotropic-strong, anisotropic-strong, and isotropic-weak). The isotropic-strong contribution, widely studied in CSD YBCO nanocomposites, is associated with nanostrained regions induced at the partial dislocations surrounding the stacking faults. Moreover, the stacking fault itself acts as a planar defect which provides a very effective anisotropic-strong pinning at H//ab. Finally, the large presence of Cu-O cluster vacancies found in the stacking faults have been revealed as a source of isotropic-weak pinning sites, very active at low temperatures and high fields.

  1. Nanostructural Characterization of Low Resistance Joints Using Ag Pastes for GdBa2Cu3O7-x Coated Conductors

    NASA Astrophysics Data System (ADS)

    Kato, Tomohiro; Machi, Takato; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Izumi, Teruo; Hirayama, Tsukasa; Shiohara, Yuh

    2017-07-01

    GdBa2Cu3O7-x coated conductors were splice jointed by a face-to-face manner using a paste containing nano-sized Ag particles under a pressure of about 50 MPa at 150 °C for 1 hr. The low electrical resistance of 6 nΩ at the joint was attained. Nanostructural characterizations of the starting Ag paste and the jointed region of the coated conductors were carried out using scanning electron microscopy and transmission electron microscopy. The size of the Ag particles in the starting pastes were confirmed to be a few tens of nanometers in diameter. The size of Ag particles became larger during the jointing process. Both the surfaces of the stabilizing Ag layers were partially bonded by the Ag particles. No oxides or other elements were detected in the region of the bonding parts.

  2. Strongly suppressed proximity effect and ferromagnetism in topological insulator/ferromagnet/superconductor thin film trilayers of Bi2Se3/SrRuO3/underdoped YBa2Cu3O x : a possible new platform for Majorana nano-electronics

    NASA Astrophysics Data System (ADS)

    Koren, Gad

    2018-07-01

    We report properties of a topological insulator–ferromagnet–superconductor trilayers comprised of thin films of 20 nm thick {Bi}}2{Se}}3 on 10 nm SrRuO3 on 30 nm {YBa}}2{Cu}}3{{{O}}}x. As deposited trilayers are underdoped and have a superconductive transition with {{T}}{{c}} onset at 75 K, zero resistance at 65 K, {{T}}Cueri} at 150 K and {{T}}* of about 200 K. Further reannealing under vacuum yields the 60 K phase of {YBa}}2{Cu}}3{{{O}}}x which still has zero resistance below about 40 K. Only when 10 × 100 microbridges were patterned in the trilayer, some of the bridges showed resistive behavior all the way down to low temperatures. Magnetoresistance versus temperature of the superconductive ones showed the typical peak due to flux flow against pinning below {{T}}{{c}}, while the resistive ones showed only the broad leading edge of such a peak. All this indicates clearly weak-link superconductivity in the resistive bridges between superconductive {YBa}}2{Cu}}3{{{O}}}x grains via the topological and ferromagnetic cap layers. Comparing our results to those of a reference trilayer (RTL) with the topological {Bi}}2{Se}}3 layer substituted by a non-superconducting highly overdoped {La}}1.65{Sr}}0.35{CuO}}4, indicates that the superconductive proximity effect as well as ferromagnetism in the topological trilayer are actually strongly suppressed compared to the non-topological RTL. This strong suppression could originate in lattice and Fermi levels mismatch as well as in short coherence length and unfavorable effects of strong spin–orbit coupling in {Bi}}2{Se}}3 on the d-wave pairing of {YBa}}2{Cu}}3{{{O}}}x. Proximity induced edge currents in the SRO/YBCO layer could lead to Majorana bound states, a possible signature of which is observed in the present study as zero bias conductance peaks.

  3. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, W.; Heinrich, B.; Zhou, H.

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less

  4. High Temperature Superconductivity in Praseodymium Doped (0%, 2%, 4%) in Melt-Textured Y(1-x)Pr(x)Ba2Cu3O(7-delta) Systems

    NASA Technical Reports Server (NTRS)

    James, Claudell

    1995-01-01

    A study of the magnetic and structural properties of the alloy Y(1-x)Pr(x)Ba2Cu3O(7-delta) of 0%, 2%, and 4% doping of praseodymium is presented. The resulting oxides of the alloy series are a high-temperature superconductor Y-Ba-Cu-O, which has an orthorhombic superconducting crystal-lattice. Magnetic relaxation studies have been performed on the Y-Pr-Ba-CuO bulk samples for field orientation parallel to the c-axis, using a vibrating sample magnetometer. Relaxation was measured at several temperatures to obtain the irreversible magnetization curves used for the Bean model. Magnetization current densities were derived from the relaxation data. Field and temperature dependence of the logarithmic flux-creep relaxation was measured in critical state. The data indicates that the effective activation energy U(eff) increases with increasing T between 77 K and 86 K. Also, the data shows that U(eff)(T) and superconducting transition temperature, Tc, decreased as the lattice parameters increased with increasing Pr ion concentration, x, for the corresponding Y(1-x)Pr(x)Ba(x)Cu3O(7-delta) oxides. One contribution to Tc decrease in this sampling is suspected to be due to the larger ionic radius of the Pr(3+) ion. The upper critical field (H(sub c2)) was measured in the presence of magnetic field parallel to the c axis. A linear temperature dependence with H(sub c2) was obtained.

  5. The YBa2Cu3O7- anomalous second peak and irreversible magnetic field in the magnetization hysteresis cycles

    NASA Astrophysics Data System (ADS)

    Taoufik, A.; Ramzi, A.; Senoussi, S.; Labrag, A.

    2004-05-01

    The flux jumps, the second peak and the irreversible magnetic field in the magnetization hysteresis cycles have been investigated in the high temperature superconductor YBa2Cu3O7- single crystals. These cycles were obtained for different temperature values, the applied magnetic fields up to 6 T and the angle between the applied magnetic field and c-axis. The magnetization curves exhibit a remarkable second peak fishtail, this second peak was not observed for the low temperature, but we observed the flux jumps saw tooth. The temperature dependence of the irreversible magnetic field, Hirr, for the applied magnetic field perpendicular to the ab planes is given by an extended expression, Hirr α (1-T/Tc )α, where α is a constant, the Abrikosov flux dynamics can explain this behavior. The Hirr as a function of has been strongly influenced by the flux pinning and the thermally assisted flux motion.

  6. Tl sub 1-x Pr sub x Sr sub 2-y Pr sub y CuO sub 5-. delta. : First member of the family TlA sub 2 Ca sub m-1 Cu sub m O sub 2m+3 (A = Ba, Sr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgault, D.; Martin, C.; Michel, C.

    1989-02-01

    The synthesis, structure, and superconducting properties of the first member obtained during the investigation of the Tl-Sr-Cu-O and Tl-Sr-Pr-Cu-O systems are described. In order to check out the structural model corresponding to the first member of the series, TlSr{sub 2}Ca{sub m-1}Cu{sub m}O{sub 2m+3}, structure calculations were performed from x-ray powder data of the oxide Tl{sub 0.8}Sr{sub 1.6}Pr{sub 0.6}CuO{sub 5}. Magnetic measurements show only traces of diamagnetism for Tl{sub 0.7}Pr{sub 0.3}Sr{sub 2}CuO{sub 5-{delta}} and TlSr{sub 2}CuO{sub 5-{delta}}; however, Tl{sub 0.8}Pr{sub 0.6}Sr{sub 1.6}Cu{sub 5-{delta}} exhibits diamagnetism below 40K. 21 refs., 2 figs.

  7. Investigations of YBa2Cu3O y films sputtered onto a substrate of amorphous quartz with a platinum buffer layer

    NASA Astrophysics Data System (ADS)

    Blinova, Yu. V.; Snigirev, O. V.; Porokhov, N. V.; Evlashin, S. A.

    2017-10-01

    Results of investigations using X-ray diffraction and scanning electron microscopy of composite materials made from YBa2Cu3O y films sputtered (using various regimes) onto a substrate of amorphous quartz with a platinum buffer layer, have been given.

  8. Spin glass freezing and superconductivity in YBa2(Cu(1-x)Fe(x))3O7 alloys

    NASA Technical Reports Server (NTRS)

    Mirebeau, I.; Hennion, M.; Dianoux, J.; Caignaert, V.; Phillips, T. E.; Moorjani, K.

    1991-01-01

    The dynamics were studied of the iron spins in superconducting YBa2(Cu(0.94)Fe(0.06))3O7 by neutron time of flight measurements. Two samples were studied with slightly different characteristics, as shown by resistivity and neutron diffraction measurements. The same dynamical anomalies are observed by neutrons in both samples. Differences appear qualitative but not quantitative. In the whole temperature range, the q-dependence of the magnetic intensity mainly reflects the magnetic form factor of iron which shows that the iron spins are almost uncorrelated. The elastic and quasielastic intensities strongly vary with temperature. A spin glass like freezing is revealed at low temperature by a sharp decrease of the quasielastic intensity, an increase of the 'elastic' or resolution limited intensity and a minimum in the quasielastic width. The freezing temperature (T sub f - 18 K) corresponds to that already determined by a magnetic splitting in Mossbauer experiments. Above T sub f, the relaxation of the iron spins in the paramagnetic state is modified by the occurrence of superconductivity. An increase was observed of the quasielastic intensity and of the quasielastic width at the superconducting transition.

  9. Studies of anisotropic in-plane aligned a-axis oriented YBa(2)Cu(3)O(7-x) thin films

    NASA Astrophysics Data System (ADS)

    Trajanovic, Zoran

    1997-12-01

    Due to their layered planar structure, cuprate oxide superconductors possess remarkable anisotropic properties which may be related to their high transition temperatures. In-plane aligned a-axis YBa2Cu3O7 (YBCO) films are good candidates for such anisotropic studies. Furthermore, the full advantage of favorable material characteristics can be then utilized in applications such as vertical SNS junctions with the leads along the b-direction of YBCO and other novel junction configurations. High quality, smooth, in-plane aligned films are obtained on (100) LaSrGaO4. Form x-ray data, the films show complete b- and c-axes separation for the measured a-axis orientation. The anisotropic resistivity ratio (ρ c/ρ b), measured along the two crystallographic axes of single films gives ρ c/ρ b of ≈20 near the transition, with T cs near 90 K. In such films the grain boundary effects can be decoupled from the intrinsic anisotropic properties of YBCO. From oxygen annealing studies it was estimated that the CuO chains supply about 60% of the carriers. From J c measurements it is determined that the orientation of magnetic field with respect to the crystallographic film axes is the primary factor governing the J c values. The angular dependence of J c on the applied magnetic field is compared against various theoretical models showing the best agreement with the modified Ginzburg-Landau's anisotropic mass model (at T ≈ T c) and Tinkham's thin film model (at T < T c). By utilizing the Co-dopant, the coupling between CuO2 planes and the resulting enhancement of the intrinsic anisotropy of YBCO can be studied. Deposition and cooling conditions are shown to be the primary factor that influence the quality of dopant incorporation and the resulting oxygen ordering within the YBCO lattice. Various complex structures and devices utilizing in-plane aligned, a-axis films are presented. Other materials exhibiting in-plane alignment and a-axis growth are described. Optional substrates

  10. Optical characterization of sputtered YBaCo 4O 7+ δ thin films

    NASA Astrophysics Data System (ADS)

    Montoya, J. F.; Izquierdo, J. L.; Causado, J. D.; Bastidas, A.; Nisperuza, D.; Gómez, A.; Arnache, O.; Osorio, J.; Marín, J.; Paucar, C.; Morán, O.

    2011-02-01

    Thin films of YBaCo 4O 7+ δ were deposited on r (1012)-oriented Al 2O 3 substrates by dc magnetron sputtering. The as-grown films were characterized after their structural, morphological and optical properties. Special attention is devoted to the analysis of the optical response of these films as reports on optical properties of YBaCo 4O 7+ δ, especially in thin film form, are not frequently reported in the literature. Transmittance/absorbance measurements allow for determining two well defined energy gaps at 3.7 and 2.2 eV. In turn, infrared (IR) measurements show infrared transparency in the wave length range 4000-2500 nm with a sharp absorption edge at wave lengths less than 2500 nm. Complementary Raman spectra measurements on the thin films allowed for identifying bands associated with vibrating modes of CoO 4 and YO 6 in tetrahedral and octahedral oxygen coordination, respectively. Additional bands which seemed to stem from Co ions in octahedral oxygen coordination were also clearly identified.

  11. Magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) prepared by various heat treatments

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Katsuyama, Shigeru; Yoshimura, Kazuyoshi; Kosuge, Koji

    1991-02-01

    The magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) specimens was measured following a standard heat treatment and a special heat treament stabilizing the orthorhombic phase to higher Fe concentrations. The values of the effective magnetic moment per Fe in the Cu1 site, estimated from the magnetic susceptibility and Mossbauer effect measurements, were 4.4 and 2.2 muB for the standard and specially treated specimens, respectively. The smaller effective magnetic moment in the case of specially treated specimens is attributed to the antiferromagnetic coupling between Fe spins at high temperatures.

  12. Momentum density and Fermi surface of Nd2-xCexCuO4-δ

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Sadowski, W.; Walker, E.; Peter, M.

    1996-02-01

    High-temperature positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) measurements have recently been succesfully applied to map parts of the Fermi surface of YBa2Cu3O7-δ. Using the same principle, we have been able to observe with a bulk sensitive method, the Fermi surface of Nd2-xCexCuO4-δ. Although positron trapping by defects and correlation effects are strong, positron 2D-ACAR measurements provide a signal from the Fermi surface which agrees with band-structure calculations, confirming earlier surface sensitive photoemission experiments.

  13. Mechanisms of weak thickness dependence of the critical current density in strong-pinning ex situ metal organic-deposition-route YBa2Cu3O7-x coated conductors

    NASA Astrophysics Data System (ADS)

    Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.

    2006-09-01

    We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.

  14. Coherence and superconductivity in coupled one-dimensional chains: a case study of YBa2Cu3Oy.

    PubMed

    Lee, Y-S; Segawa, Kouji; Ando, Yoichi; Basov, D N

    2005-04-08

    We report the infrared (IR) response of Cu-O chains in the high-T(c) superconductor YBa(2)Cu(3)O(y) over the doping range spanning y=6.28-6.75. We find evidence for a power law scaling at mid-IR frequencies consistent with predictions for Tomonaga-Luttinger liquid, thus supporting the notion of one-dimensional transport in the chains. We analyze the role of coupling to the CuO2 planes in establishing metallicity and superconductivity in disordered chain fragments.

  15. Structural and electrical properties of (La,Nd){sub 2}(Cu,Ni)O{sub 4+{delta}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suck, S.I.; Park, D.S.; Park, S.J.

    The temperature dependence of electrical properties for K{sub 2}NiF{sub 4} type oxide, La{sub 2}Cu{sub 1{minus}{ital x}}Ni{sub {ital x}}O{sub 4+{delta}} and La{sub 1.8}Nd{sub 0.2}Cu{sub 1{minus}{ital x}}Ni{sub {ital x}}O{sub 4+{delta}} ({ital x}=0.0, 0.025, 0.05, 0.10, and 0.20), were investigated between R.T and 1173 K in view of potential thermoelectric material. Structural studies were made using a Rietveld pattern fitting refinement with X-ray powder diffraction data. Lattice parameter in {ital c} axis decreases with Ni content, while {ital a} increases and {ital b} is almost invariant. The electrical conductivity increases with a substitution of Ni ion in Cu sites, showing the transition betweenmore » quasi-metallic and semiconducting. However, the absolute value of 5 and 10 mol % Ni-doped composition are lower than that of un-doped La{sub 2}CuO{sub 4+{delta}}. The thermoelectric power decreases continuously with Ni content. These behaviors were considered to an ability of Ni ion for incorporating an excess oxygen owing to the easier accessibility of Ni{sup 3+} and deleting of the local Cu 3d band by 3d{sup 8} configuration of Ni{sup 2+}. Power factors with doping of Ni are not enhanced. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less

  16. Effect of hydrogen intercalation on the critical parameters of YBa2Cu3O y

    NASA Astrophysics Data System (ADS)

    Bobylev, I. B.; Gerasimov, E. G.; Zyuzeva, N. A.; Terent'ev, P. B.

    2017-10-01

    The effect of hydrogenation at T = 150 and 200°C on the electrophysical properties of highly textured YBa2Cu3O y ceramics with different oxygen content has been investigated. Like hydration, hydrogenation results in the deterioration of these properties. However, in samples with high oxygen contents ( y = 6.96) hydrogenated at T = 150°C after oxidation (400°C) or recovery annealing with subsequent oxidation, the critical current density and first critical field increase compared to the initial state. The improvement of the properties occurs mainly in a magnetic field applied perpendicularly to the c axis. As after hydration, this is connected with the formation of planar defects in the course of low-temperature annealing. In addition, in the process of the hydrogenation, the partial reduction of copper occurs with the formation of microinclusions of Cu2O and other products of chemical decomposition, which are extra pinning centers of magnetic vortices.

  17. Investigation of magnetic properties of superconductors Y0.98 - x Cax Co0.02 Ba2 Cu3O7 - δ

    NASA Astrophysics Data System (ADS)

    Pourasad, Sepideh; Shakeripour, Hamideh; Hosseini, SeyedSajad; Salamati, Hadi

    2018-06-01

    The effect of Co2+, 3+ and Ca2+ substitution in Y3+ site in YBa2Cu3O7-δ superconductor has been studied. The series of high temperature superconducting samples of Y1-y-xCoyCaxBa2Cu3O7-δ with 0 ≤ x ≤ 0.015 and y = 0.020 were prepared by solid-state reaction method. The samples were characterized for phase purity and lattice parameter variations by X-ray diffraction. The AC susceptibility curves, χ'(T), show that in reserving cobalt fixed sample with the optimum Tc, by substitution of divalent Ca2+ at the trivalent Y3+ site no sensitive increasing happen in the superconducting transition temperature.

  18. Single domain YBa2Cu3Oy thick films on metallic substrates

    NASA Astrophysics Data System (ADS)

    Reddy, E. S.; Noudem, J. G.; Goodilin, E. A.; Tarka, M.; Schmitz, G. J.

    2003-03-01

    The fabrication of single domain YBa2Cu3Oy (123) thick films (10-100 mum) on metallic substrates is reported. The process involves the formation of the 123 phase by a peritectic reaction between an air-brushed dense Y2BaCuO5 (211) layer on a Ag12Pd substrate and infiltrated liquid phases containing barium cuprates and copper oxides. Single domain growth is achieved by seeding the green films with a c-axis oriented NdBa2Cu3Oy crystal prior to processing. The maximum processing temperatures are lowered to 970 °C by modifying the characteristics of the liquid phases meant for infiltration by addition of Ag powder. The fabrication technique, processing conditions for single domain growth and the resulting microstructures are discussed.

  19. On the substitution of Sr ions at Y sites in YB(suba2)Cu3O(sub7-d)

    NASA Astrophysics Data System (ADS)

    Siddiqi, S. A.; Sreedhar, K.; Drobac, D.; Infante, C.; Matacotta, F. C.; Ganguly, P.

    1989-10-01

    The effect of Sr substitution at the Ba sites in YBa2 Cu3 O sub 7-d has been studied; attempts to substitute Sr exclusively at Y sites have not been successful. We have been able to substitute Sr at Y sites only when the Ba ions are simultaneously substituted by Sr to give solid solutions of the type Y sub 1-x Sr sub x Ba sub 2-2x Sr sub 2x Cu3 O(sub 7-)x(sub /2-d). These examples show superconducting transitions higher than 78 K without significant deterioration in the magnitude of the ac susceptibility. The substitutions are best understood in terms of site constraints on the ions occupying the Y and Ba sites.

  20. Trimming the electrical properties on nanoscale YBa2Cu3O7-x constrictions by focus ion beam technique

    NASA Astrophysics Data System (ADS)

    Lam, Simon K. H.; Bendavid, Avi; Du, Jia

    2017-09-01

    High temperature superconducting (HTS) nanostructure has a great potential in photon sensing at high frequency due to its fast recovery time. For maximising the coupling efficiency, the normal resistance of the nanostructure needs to be better matched to that of the thin-film antenna, which is typically few tens of ohm. We report on the fabrication of nanoscale high temperature superconducting YBa2Cu3O7-x (YBCO) constrictions using Gallium ion focus ion beam (FIB) technique. The FIB has been used to both remove the YBCO in lateral dimension and also tune its critical current and normal resistance by a combination of surface etching and implantation on the YBCO top layer. High critical current density of 2.5 MA/cm2 at 77 K can be obtained on YBCO nanobridges down to 100 nm in width. Subsequent trimming of the naobridges can lead to a normal resistance value over 50 Ω. Simulation of the Ga ion trajectory has also been performed to compare the measurement results. This method provides a simple step of fabricating nanoscale superconducting detectors such as hot electron bolometer.

  1. Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Robertson, John

    2011-07-01

    We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.

  2. Ultrasonic evaluation of oxidation and reduction effects on the elastic behavior and global microstructure of YBa2Cu3O7-x

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.

    1991-01-01

    Ultrasonic velocity measurement techniques were used to evaluate the effects of oxidation and reduction on the elastic properties, global microstructure and oxygen content of the YBa2Cu3O(7-x) ceramic superconductor for samples ranging from 70 to 90 pct. of theoretical density. Bulk density, velocity, and elastic modulus generally increased with increasing oxygen content upon oxidation, and this behavior was reversible. Velocity image patterns were similar after oxidation and reduction treatments for a 90 pct. dense sample, although the velocity value at any given point on the sample was changed following the treatments. The unchanging pattern correlated with destructive measurements showing that the spatial pore distribution (fraction and size) was not measurably altered after the treatments. Changes in superconducting behavior, crystal structure, and grain structure were observed consistent with changes in oxygen content.

  3. Nature of the valence band states in Bi2(Ca, Sr, La)3Cu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.

    1990-01-01

    We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La doped superconductor Bi2(Ca, Sr, La)3Cu2O8. While the oxygen states near the bottom of the 7 eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence band feature for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence band features, are not consistent with either simple final state effects or direct O2s transitions to unoccupied O2p states.

  4. Correlation between superfluid density and T(C) of underdoped YBa2Cu3O6+x near the superconductor-insulator transition.

    PubMed

    Zuev, Yuri; Kim, Mun Seog; Lemberger, Thomas R

    2005-09-23

    We report measurements of the ab-plane superfluid density n(s) (magnetic penetration depth lambda) of heavily underdoped films of YBa2Cu3O6+x, with T(C)'s from 6 to 50 K. We find the characteristic length for vortex unbinding transition equal to the film thickness, suggesting strongly coupled CuO2 layers. At the lowest dopings, T(C) is as much as 5 times larger than the upper limit set by the 2D Kosterlitz-Thouless-Berezinskii transition temperature calculated for individual CuO2 bilayers. Our main finding is that T(C) is not proportional to n(s)(0); instead, we find T(C) proportional to ns(1/2.3+/-0.4). This conflicts with a popular point of view that quasi-2D thermal phase fluctuations determine the transition temperature.

  5. Fabrication of Large Domain YBa2Cu3O(x) for Magnetic Suspension Applications

    NASA Technical Reports Server (NTRS)

    Sengupta, S.; Corpus, J.; Gaines, J. R., Jr.; Todt, V. R.; Zhang, X.; Miller, D. J.

    1996-01-01

    Large domain YBa2Cu3O(x) levitators have been fabricated using a seeded melt processing technique. Depending upon the seed, either a single or five domained sample can be obtained. The grain boundaries separating each domains in the five domain levitator are found to be 90 degrees. Similar levitation forces can be observed for single and five domained samples. After thermal cycling, however, a small decrease in the levitation force of the five domain levitator was observed as a function of thermal cycles while nearly no change in force was observed in the single domain levitator. Finally, it is shown that both, single and five domain YBCO, behave similarly as a function of sample thickness.

  6. Spatial variations in ac susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.; Hepp, Aloysius F.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu3O(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  7. Electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7 - delta interfaces as studied by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dessau, D. S.; Shen, Z.-X.; Wells, B. O.; Spicer, W. E.; List, R. S.; Arko, A. J.; Bartlett, R. J.; Fisk, Z.; Cheong, S.-W.; Mitzi, D. B.; Kapitulnik, A.; Schirber, J. E.

    1990-07-01

    High-resolution photoemission has been used to probe the electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7-δ interface formed by a low-temperature (20 K) gold evaporation on cleaved high quality single crystals. We find that the metallicity of the EuBa2Cu3O7-δ substrate in the near surface region (˜5 Å) is essentially destroyed by the gold deposition, while the near surface region of Bi2Sr2CaCu2O8 remains metallic. This has potentially wide ranging consequences for the applicability of the different types of superconductors in real devices.

  8. Spin susceptibility of charge-ordered YBa2Cu3Oy across the upper critical field

    NASA Astrophysics Data System (ADS)

    Zhou, Rui; Hirata, Michihiro; Wu, Tao; Vinograd, Igor; Mayaffre, Hadrien; Krämer, Steffen; Reyes, Arneil P.; Kuhns, Philip L.; Liang, Ruixing; Hardy, W. N.; Bonn, D. A.; Julien, Marc-Henri

    2017-12-01

    The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility χspin of the CuO2 planes at low temperature in charge-ordered YBa2Cu3Oy. We find that χspin increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 T to 40 T. This result is consistent with the lowest Hc2 values claimed previously and with the interpretation that the charge density wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in χspin(H) at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDW order. Above Hc2, the relatively low values of T= 2 K show that the pseudogap is a ground-state property, independent of the superconducting gap.

  9. High field charge order across the phase diagram of YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Laliberté, Francis; Frachet, Mehdi; Benhabib, Siham; Borgnic, Benjamin; Loew, Toshinao; Porras, Juan; Le Tacon, Mathieu; Keimer, Bernhard; Wiedmann, Steffen; Proust, Cyril; LeBoeuf, David

    2018-03-01

    In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy.

  10. Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Matl, Peter; Ong, N. P.; Gagnon, R.; Taillefer, L.

    2002-06-01

    The complex resistivity ρ^(ω) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7 has been measured at frequencies ω/2π from 100 kHz to 20 MHz in a 2-T field H||c, using a four-probe rf transmission technique that enables continuous measurements versus ω and temperature T. As T is increased, the inductance Ls(ω)=Imρ^(ω)/ω increases steeply to a cusp at the melting temperature Tm, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66. We discuss in detail the separation of the vortex-lattice inductance from the ``volume'' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω) over 2 decades in ω. Values of the pinning parameter κ and shear modulus c66 obtained show that c66 collapses by over 4 decades at Tm, whereas κ remains finite.

  11. Dynamic nesting and the incommensurate magnetic response in superconducting YBa 2Cu 3O 6+ y

    NASA Astrophysics Data System (ADS)

    Brinckmann, Jan; Lee, Patrick A.

    1999-05-01

    The dynamic magnetic susceptibility χ″( q, ω) of the t- t‧- J-model for YBCO compounds is studied in slave-boson mean-field theory. Within a renormalized random-phase approximation χ″ is compared for different fixed energies ω in the superconducting state. At the energy ω= ω0, where χ″(( π, π), ω) shows a sharp peak (the `41 meV resonance'), the response is commensurate in wave vector space. At lower energies around ωi=0.7 ω0, however, we find four peaks at q=( π± δ, π) and ( π, π± δ). The results are in agreement with inelastic neutron scattering experiments, in particular with the incommensurate response recently observed in YBa 2Cu 3O 6.6 by Mook et al. We argue that dynamic nesting in the dispersion of quasi particles causes this effect.

  12. Magnetic Quantum Oscillations in YBa2Cu3O6.61 and YBa2Cu3O6.69 in Fields of Up to 85 T: Patching the Hole in the Roof of the Superconducting Dome

    NASA Astrophysics Data System (ADS)

    Singleton, John; de La Cruz, Clarina; McDonald, R. D.; Li, Shiliang; Altarawneh, Moaz; Goddard, Paul; Franke, Isabel; Rickel, Dwight; Mielke, C. H.; Yao, Xin; Dai, Pengcheng

    2010-02-01

    We measure magnetic quantum oscillations in the underdoped cuprates YBa2Cu3O6+x with x=0.61, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at hole doping p≈0.11-0.12. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T=0 limit of the metal-insulator crossover (low-p side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high p side).

  13. Energy band engineering and controlled p-type conductivity of CuAlO2 thin films by nonisovalent Cu-O alloying

    NASA Astrophysics Data System (ADS)

    Yao, Z. Q.; He, B.; Zhang, L.; Zhuang, C. Q.; Ng, T. W.; Liu, S. L.; Vogel, M.; Kumar, A.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Jiang, X.

    2012-02-01

    The electronic band structure and p-type conductivity of CuAlO2 films were modified via synergistic effects of energy band offset and partial substitution of less-dispersive Cu+ 3d10 with Cu2+ 3d9 orbitals in the valence band maximum by alloying nonisovalent Cu-O with CuAlO2 host. The Cu-O/CuAlO2 alloying films show excellent electronic properties with tunable wide direct bandgaps (˜3.46-3.87 eV); Hall measurements verify the highest hole mobilities (˜11.3-39.5 cm2/Vs) achieved thus far for CuAlO2 thin films and crystals. Top-gate thin film transistors constructed on p-CuAlO2 films were presented, and the devices showed pronounced performance with Ion/Ioff of ˜8.0 × 102 and field effect mobility of 0.97 cm2/Vs.

  14. Self-adjusted flux for the traveling solvent floating zone growth of YBaCuFeO5 crystal

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Chung; Shu, Guo-Jiun; Chen, Wei-Tin; Du, Chao-Hung; Chou, Fang-Cheng

    2015-03-01

    A modified traveling solvent floating zone (TSFZ) technique was used to successfully grow a large size and high quality single crystal of multiferroic material YBaCuFeO5. This modified TSFZ growth uses a stoichiometric feed rod and pure copper oxide as the initial flux without prior knowledge of the complex phase diagram involving four elements, and the optimal flux for the growth of incongruently melt crystal is self-adjusted after a prolonged stable pulling. The wetting of the feed rod edge that often perturbs the molten zone stability was avoided by adding 2 wt% B2O3. The optimal flux concentration for the YBaCuFeO5 growth can be extracted to be near YBaCuFeO5:CuO=13:87 in molar ratio. The crystal quality was confirmed by the satisfactory refinement of crystal structure of space group P4mm and the two consecutive anisotropic antiferromagnetic phase transitions near 455 K and 170 K.

  15. Introduction of pinning centers into Sm1+xBa2Cu3+YO7-d coated conductor by reactive co-evaporation method

    NASA Astrophysics Data System (ADS)

    Kim, Gwan-Tae; Kim, Ho-Sup; Ha, Dong-Woo; Chung, Kook-Chae; Shinde, Kiran

    2018-02-01

    Sm1+xBa2Cu3+yO7-d (SmBCO)-coated conductors containing pinning centers were prepared by a reactive co-evaporation method using the EDDC (Evaporation using Drum in Dual Chamber) deposition system. Superconducting materials based on Sm, Ba, and Cu were evaporated in the evaporation chamber and deposited onto the drum-mounted substrate, while the deposited element reacted with oxygen and resulting in the SmBCO superconducting phase inside the reaction chamber. Tape-type samples (length = 30 cm, width = 4 mm, thickness = 0.1 mm) with the structure of Ag/SmBCO/LMO/MgO/Y2O3/Al2O3/Hastelloy were prepared, where the SmBCO film was spread along the tape length. The critical current was measured using the non-contact Hall-probe method, and the field dependences of the critical current under a high magnetic field were measured. The superconducting properties of the samples under a magnetic field were highly influenced by the composition of the SmBCO film. Furthermore, elemental mapping of the high-Jc SmBCO-coated conductor was measured by transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM-EDX). Finally, we confirmed the Sm-related secondary phases take the role of pinning centers.

  16. High-temperature change of the creep rate in YBa2Cu3O7-δ films with different pinning landscapes

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Miura, M.; Baca, J.; Maiorov, B.; Usov, I.; Dowden, P.; Foltyn, S. R.; Holesinger, T. G.; Willis, J. O.; Marken, K. R.; Izumi, T.; Shiohara, Y.; Civale, L.

    2012-05-01

    Magnetic relaxation measurements in YBa2Cu3O7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (Jc). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high Jc values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.

  17. Analysis of low-field isotropic vortex glass containing vortex groups in YBa2Cu3O7−x thin films visualized by scanning SQUID microscopy

    PubMed Central

    Wells, Frederick S.; Pan, Alexey V.; Wang, X. Renshaw; Fedoseev, Sergey A.; Hilgenkamp, Hans

    2015-01-01

    The glass-like vortex distribution in pulsed laser deposited YBa2Cu3O7 − x thin films is observed by scanning superconducting quantum interference device microscopy and analysed for ordering after cooling in magnetic fields significantly smaller than the Earth's field. Autocorrelation calculations on this distribution show a weak short-range positional order, while Delaunay triangulation shows a near-complete lack of orientational order. The distribution of these vortices is finally characterised as an isotropic vortex glass. Abnormally closely spaced groups of vortices, which are statistically unlikely to occur, are observed above a threshold magnetic field. The origin of these groups is discussed, but will require further investigation. PMID:25728772

  18. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Forgan, E. M.; Blackburn, E.; Holmes, A. T.; Briffa, A. K. R.; Chang, J.; Bouchenoire, L.; Brown, S. D.; Liang, Ruixing; Bonn, D.; Hardy, W. N.; Christensen, N. B.; Zimmermann, M. V.; Hücker, M.; Hayden, S. M.

    2015-12-01

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.

  19. Transport properties of YBa2Cu3Ox /La0.67Sr0.33MnO3 nanostrips and YBa2Cu3Ox/La0.67Sr0.33MnO3/YBa2Cu3Ox nanojunctions

    NASA Astrophysics Data System (ADS)

    Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Chromik, Š.; Gál, N.; Knoška, J.; Sojková, M.; Pisarčík, M.

    2016-03-01

    A metallic ferromagnet (F) in proximity with a superconductor (S) can transport supercurrent on a long distance through conversion of opposite-spin singlet Cooper pairs (CP) into equal-spin triplet CP (long range triplet component, LRTC), which are not broken by the exchange energy of F. The optimal conditions for the conversion are yet to be clarified; however, it is accepted that the key point to this process include high interface transparency and magnetic inhomogeneity at the SF interface. The aim of our paper is to study SF nanostrips (length of about 1500 nm and width down to 300 nm) and lateral SFS nanojunctions based on high critical temperature YBa2Cu3Ox (YBCO) and half-metallic La0.67Sr0.33MnO3 (LSMO) thin films. We applied a focused Ga+ ion beam (FIB) for patterning the SF nanostrips, as well as lateral SFS nanojunctions, by creating a slot in the nanostrip after removing the YBCO film in the slot along a length of about 200 nm. The temperature dependences of the samples resistance R(T) show critical temperature TCn ≈ 89 K of the SF nanostrips; however, the SFS nanojunctions at T < TCn show a residual resistance R < 100 Ω corresponding to a dirty LSMO (ρ≈ 10 mΩ cm) in the slot. The LRTC was not observed in our lateral SFS nanojunctions until now.

  20. Interplay between current driven ferromagnetism in charge ordered antiferromagnetic Pr0.5Ca0.5MnO3 and superconducting YBa2Cu3O7-δ thin film multilayer

    NASA Astrophysics Data System (ADS)

    Baisnab, Dipak Kumar; Sardar, Manas; Amaladass, E. P.; Vaidhyanathan, L. S.; Baskaran, R.

    2018-07-01

    Thin film multilayer heterostructure of alternate YBa2Cu3O7-δ (YBCO) and Pr0.5Ca0.5MnO3 (PCMO) with thickness of each layer ∼60 nm has been deposited on (100) oriented SrTiO3 substrate by Pulsed Laser Deposition technique. A half portion of the base YBCO layer was masked in situ using mechanical shadow mask and in the remaining half portion, five alternate layers of PCMO and YBCO thin films were deposited. Magnetoresistance measurements were carried out under externally applied magnetic field and injection current. A noticeable damped oscillation of the superconducting transition temperature (TC) of this multilayer with respect to magnetic field is seen. Curiously, the field at which the first minimum in TC occurs, decreases as an injection current is driven perpendicular/parallel to the multilayers. Both these phenomena indicate that ferromagnetic correlation can be induced in antiferromagnetic PCMO thin films by (1) external magnetic field, or (2) injection current. While (1) is well researched, our study indicates that ferromagnetism can be induced by small amount of current in PCMO thin films. This unusual behavior points towards the strongly correlated nature of electrons in PCMO.

  1. Spin susceptibility of charge-ordered YBa2Cu3Oy across the upper critical field

    PubMed Central

    Zhou, Rui; Hirata, Michihiro; Wu, Tao; Vinograd, Igor; Mayaffre, Hadrien; Krämer, Steffen; Reyes, Arneil P.; Kuhns, Philip L.; Liang, Ruixing; Hardy, W. N.; Bonn, D. A.; Julien, Marc-Henri

    2017-01-01

    The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility χspin of the CuO2 planes at low temperature in charge-ordered YBa2Cu3Oy. We find that χspin increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 T to 40 T. This result is consistent with the lowest Hc2 values claimed previously and with the interpretation that the charge density wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in χspin(H) at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDW order. Above Hc2, the relatively low values of χspin at T= 2 K show that the pseudogap is a ground-state property, independent of the superconducting gap. PMID:29183974

  2. Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.

    2018-03-01

    It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.

  3. Hydrostatic pressure study on high temperature superconductors: HgBa(2)Casb(m-1)Cu(m)O(2m+2+delta) (m = 1 to 6) and (Cu,C)Ba(2)Ca(m-1)Cu(m)O(2m+3) (m = 3 and 4)

    NASA Astrophysics Data System (ADS)

    Cao, Yong

    1998-12-01

    Over the last decade, numerous extensive as well as intensive experimental and theoretical investigations have been carried out since the great discovery of high temperature superconductivity (HTSy) in cuprate superconductors Lasb{2-x}Basb{x}CuOsb4,\\ YBasb2Cusb2Osb{7-delta} and other compounds. Although there is still no widely accepted microscopic theory on the mechanism responsible for such high superconducting transition temperatures (Tsb{c}), systematic trends of the evolution of HTSy with various parameters have been studied and analyzed. One of them is the universal inverse parabolic correlation between the Tsb{c} and the number of carriers per CuOsb2 plane (n) in various cuprate superconductors. The high pressure technique provides a clean way to change the distance between atoms without causing the side effects typical of chemical doping, and thus has long been used to test and provide guidance for theoretical models, as well as give hints about the synthesis of compounds with higher Tsb{c}. Therefore, we have done a systematic study on the pressure effect on Tsb{c} of two homologous superconducting compound series: HgBasb2Casb{m-1}Cusb{m}Osb{2m+2+delta} (Hg-12(m-1)m) (m = 1 to 6) and (Cu,C)Basb2Casb{m-1}Cusb{m}Osb{2m+3+delta} ((Cu,C)-12(m-1)m) (m = 3 and 4). Several factors which influence the hydrostatic pressure effect on Tsb{c} have been systematically analyzed. They include the n, the type of charge reservoir layer, and the number of CuOsb2 layers per unit cell (m). We came to several conclusion: (1) The inverse parabolic Tsb{c}(n) correlation and its universal parameters are valid only under conditions more restrictive than originally expected, and the rigid band model may not hold for some cuprate superconductors under pressure. (2) The pressure coefficient (dTsb{c}/dP) may have a different dependence on n. The compounds with Cu-O chains in their charge reservoir usually show a large linear variation of dTsb{c}/dP with n, while no significant

  4. Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sharma, Dipika; Satsangi, Vibha R.; Dass Kaura, Sahab; Shrivastav, Rohit; Waghmare, Umesh V.

    2016-10-01

    Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment Dipika Sharmaa, Vibha R. Satsangib, Rohit Shrivastava, Umesh V. Waghmarec, Sahab Dassa aDepartment of Chemistry, Dayalbagh Educational Institute, Agra-282 110 (India) bDepartment of Physics and Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 (India) cTheoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India) * Phone: +91-9219695960. Fax: +91-562-2801226. E-mail: drsahabdas@gmail.com. Study on photoelectrochemical activity of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction has been carried out using DFT based band offsets and charge carriers effective mass calculations and their experimental verification. The results of DFT calculations show that BaTiO3 and Cu2O have staggered type band alignment after the heterojunction formation and high mobility of electrons in Cu2O as compared to the electrons in BaTiO3. Staggered type band edges alignment and high mobility of electrons and holes improved the separation of photo-generated charge carriers in BaTiO3/Cu2O heterojunction. To validate the theoretical results experiments were carried out on pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction with varying thickness of Cu2O. All samples were characterized by X- Ray Diffractometer, SEM and UV-Vis spectrometry. Nanostructured thin films of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 1.44 mA/cm2 at 0.90 V/SCE was exhibited by 442 nm thick BaTiO3/Cu2O heterojunction photoelectrode Increased photocurrent density and enhanced photoconversion efficiency, exhibited by the heterojunction may be attributed to improved conductivity and enhanced separation of the photogenerated carriers at the BaTiO3/Cu2O interface. The experimental results and first

  5. Structural chemistry of Au(III)-substituted Ba2YCu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    A series of gold-substituted perovskite superconductors Ba2Y(Cu/1-x/Aux)3O(7-delta)(x = 0-0.1) was synthesized. For x = 0.1, there was no change in the a and b lattice parameters (a = 3.826 A and b = 3.889 A), but a 0.06 A c-axis expansion to 11.75 A was observed. Substituted gold was found to be trivalent by X-ray photoelectron spectroscopy. Replacing Cu(1) in the copper oxide chain with a slight reordering of oxygen is consistent with c-axis expansion. The formal charge of the site remains trivalent, while remaining Cu in the chains is reduced to Cu(I), resulting in an oxygen stoichiometry of less than 7. Finally, no large effect on Tc is observed (Tc = 89 K for x = 0.10), in contrast to the effect of a number of other metal ion dopants. These results are discussed relative to the chemistry of Au(III) and to the use of the metal in structures containing gold and ceramic superconductors.

  6. Nonstoichiometric La(2 - x)GeO(5 - delta) monoclinic oxide as a new fast oxide ion conductor.

    PubMed

    Ishihara, T; Arikawa, H; Akbay, T; Nishiguchi, H; Takita, Y

    2001-01-17

    Oxide ion conductivity in La(2)GeO(5)-based oxide was investigated and it was found that La-deficient La(2)GeO(5) exhibits oxide ion conductivity over a wide range of oxygen partial pressure. The crystal structure of La(2)GeO(5) was estimated to be monoclinic with P2(1)/c space group. Conductivity increased with increasing the amount of La deficiency and the maximum value was attained at x = 0.39 in La(2 - x)GeO(5 - delta). The oxide ion transport number in La(2)GeO(5)-based oxide was estimated to be unity by the electromotive force measurement in H(2)-O(2) and N(2)-O(2) gas concentration cells. At a temperature higher than 1000 K, the oxide ion conductivity of La(1.61)GeO(5 - delta) was almost the same as that of La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O(3 - delta) or Ce(0.85)Gd(0.15)O(2 - delta), which are well-known fast oxide ion conductors. On the other hand, a change in the activation energy for oxide ion conductivity was observed at 973 K, and at intermediate temperature, the oxide ion conductivity of La(1.61)GeO(5 - delta) became much smaller than that of these well-known fast oxide ion conductors. The change in the activation energy of the oxide ion conductivity seems to be caused by a change in the local oxygen vacancy structure. However, doping a small amount of Sr for La in La(2)GeO(5) was effective to stabilize the high-temperature crystal structure to low temperature. Consequently, doping a small amount of Sr increases the oxide ion conductivity of La(2)GeO(5)-based oxide at low temperature.

  7. Effect of Load-Induced Oxygen Absorption in YBa2Cu3O6 + x on Mechanical Properties of the "Polyimide-YBa2Cu3O6 + x " System

    NASA Astrophysics Data System (ADS)

    Muradov, A. D.; Kyrykbaeva, A. A.

    2018-05-01

    We have studied the effect of oxygen absorption by disperse powder fillers made of high-temperature superconductor YBa2Cu3O6 + x (YBCO) with concentrations of 0.05, 0.1, and 0.5 mass % on mechanical properties of polyimide composite materials (PCMs) in the form of films. It has been established that an adsorption boundary layer consisting of an aggregate of several transition layers with a varying structure is formed between filler particles and the matrix. A sharp increase in relative elongation (strain) Δɛ c , which is observed for a PCM with YBCO fillers in the form of a jump in the region of loads of 40-47 MPa, is due to the fact that the bonds between the matrix macromolecules and the molecules in the vicinity of the upper boundary layer are ruptured, leading to a strain jump. An increase in the filler concentration increases the rigidity of the bonds between macromolecules in the boundary layers, leads to a shift of Δɛ c to the region of low stresses, and reduces its value.

  8. Orbital symmetry of charge-density-wave order in La 1.875Ba 0.125CuO 4 and YBa 2Cu 3O 6.67

    DOE PAGES

    A. J. Achkar; He, F.; Sutarto, R.; ...

    2016-02-15

    Recent theories of charge density wave (CDW) order in high temperature superconductors have predicted a primarily d CDW orbital symmetry. Here, we report on the orbital symmetry of CDW order in the canonical cuprate superconductors La 1.875Ba 0.125CuO 4 (LBCO) and YBa 2Cu 3O 6.67 (YBCO), using resonant soft x-ray scattering and a model mapped to the CDW orbital symmetry. From measurements sensitive to the O sublattice, we conclude that LBCO has predominantly s0 CDW orbital symmetry, in contrast to the d orbital symmetry recently reported in other cuprates. Additionally, we show for YBCO that the CDW orbital symmetry differsmore » along the a and b crystal axes and that these both differ from LBCO. This work highlights CDW orbital symmetry as an additional key property that distinguishes the di erent cuprate families.« less

  9. Effects of critical fluctuations and dimensionality on the jump in specific heat at the superconducting transition temperature: Application to YBa_{2}Cu_{3}O_{7-δ},Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}, and KOs_{2}O_{6} compounds.

    PubMed

    Keumo Tsiaze, R M; Wirngo, A V; Mkam Tchouobiap, S E; Fotue, A J; Baloïtcha, E; Hounkonnou, M N

    2016-06-01

    We report on a study of the superconducting order parameter thermodynamic fluctuations in YBa_{2}Cu_{3}O_{7-δ},Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}, and KOs_{2}O_{6} compounds. A nonperturbative technique within the framework of the renormalized Gaussian approach is proposed. The essential features are reported (analytically and numerically) through Ginzburg-Landau (GL) model-based calculations which take into account both the dimension and the microscopic parameters of the system. By presenting a self-consistent approach improvement on the GL theory, a technique for obtaining corrections to the asymptotic critical behavior in terms of nonuniversal parameters is developed. Therefore, corrections to the specific heat and the critical transition temperature for one-, two-, and three-dimensional samples are found taking into account the fact that fluctuations occur at all length scales as the critical point of a system is approached. The GL model in the free-field approximation and the 3D-XY model are suitable for describing the weak and strong fluctuation regimes respectively. However, with a modified quadratic coefficient, the renormalized GL model is able to explain certain experimental observations including the specific heat of complicated systems, such as the cup-rate superconductors and the β-pyrochlore oxides. It is clearly shown that the enhancement, suppression, or rounding of the specific heat jump of high-T_{c} cup-rate superconductors at the transition are indicative of the order parameter thermodynamic fluctuations according to the dimension and the nature of interactions.

  10. Effect of microwave-enhanced superconductivity in YBa{sub 2}Cu{sub 3}O{sub 7} bi-crystalline grain boundary weak-links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, C.M.; Chen, C.M.; Lin, H.C.

    1994-12-31

    We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity R(T) and the current-voltage (I-V) characteristics of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bicrystalline grain boundary weak-links (GBWLs), with grain boundary of three different tilt angles. The superconducting transition temperature, T{sub c}, has significant enhancement upon microwave irradiation. The microwave enhanced T{sub c} is increased as a function of incidence microwave power, but limited to an optimum power level. The GBWLs of 45{degrees} tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWLs of 36.8{degrees} tilt boundary has displayed a moderatemore » response. In contrast, no enhancement of T{sub c} was observed in the GBWLs of 24{degrees} tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependence is hysteretic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.« less

  11. The microscopic structure of charge density waves in underdoped YBa 2Cu 3O 6.54 revealed by x-ray diffraction

    DOE PAGES

    E. M. Forgan; Huecker, M.; Blackburn, E.; ...

    2015-12-09

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa 2Cu 3O 6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO 2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO 2 planes, and are out of phase with each other. The planar oxygen atomsmore » have the largest displacements, perpendicular to the CuO 2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For example, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.« less

  12. The study of ultrasonic irradiation effects on solid state powders of HTc superconductor YBa2Cu3O7-x

    NASA Astrophysics Data System (ADS)

    Kargar, Mahboubeh; Khoshnevisan, Bahram

    2016-03-01

    In this paper, an ultrasound assisted solid state synthesis method for high-temperature (HTc) YBa2Cu3O7-x (YBCO) superconductor nanostructures with different morphologies is presented. Here, the routine heat treatment of the powder mixture of as-prepared precursors is followed by the ultrasound irradiation inside various alcoholic solutions. Not only the influence of the ultrasound irradiation intensity and duration but also the influence of different solvents such as ethanol, methanol and 1-butanol with various vapor pressures and so various destruction powers were also studied on the morphology and particle size of the products. The various morphologies were studied by scanning electron microscope (SEM) which not only have been affected by intensity and type of alcoholic solvent but also sonication time and ultrasound power have significant role as well. Formation of the YBCO superconducting phase was examined by using Rietveld refinement of X-ray diffraction (XRD) which indicates the crystalline preferred growth in c-axis orientation in crystal. Magnetic susceptibility measurements showed the ultrasound waves had no important effect on the onset critical temperature of the prepared nanorods (about 91.64 K) which is compared with the bulk samples (Tc ˜ 92K).

  13. Optical and electrical properties of CuMO2 transparent p-type conductors

    NASA Astrophysics Data System (ADS)

    Draeseke, A. D.; Jayaraj, M. K.; Ulbrich, T.; Kroupp, M.; Tate, J.; Nagarajan, R.; Oblezov, A.; Sleight, A. W.

    2001-03-01

    Wide band gap oxides of the type CuMO2 with the delafossite structure are p-type conductors and many of them are transparent. Films of these p-type oxides have been grown by sputtering and thermal evaporation, and characterized electrically and optically. We present transport and optical transmission measurements for CuY_1-xCa_xO_2, CuScO_2+x and other similar materials. Conductivities are in the range 1 200 S/cm and depend on details of film preparation. The carriers are p-type as determined by thermopower measurements, and typical Seebeck coefficients are several hundred µV/K. Optical transparency varies considerably, but is about 40% at 550 nm for the highest conductivity films. Excellent transparency can be achieved at the expense of conductivity, and optimization is being studied. Band gaps derived from optical transmission are larger than 3.1 eV. Prototype all-oxide pn diodes have been fabricated. This work was partially supported by the NSF under DMR-0071727 and by the Research Corporation under RA0291.

  14. Low temperature internal friction spectrum of YBa 2Cu 3O x

    NASA Astrophysics Data System (ADS)

    Mi, Y.; Schaller, R.; Berger, H.; Benoit, W.; Sathish, S.

    1991-01-01

    The elastic and anelastic behaviours of polycrystalline YBa 2Cu 3O x specimens have been studied between 80 and 300 K, by means of a resonant bar technique. Three damping peaks have been observed at 90, 115 and 220 K. The stability of these peaks during annealing in vacuum has been carefully examined. The 90 K peak is not related to the superconducting transition because it is still observed after thermal treatments leading to the disappearance of superconductivity. The 115 K is due to a relaxation mechanism. The activation energy is ∼0.17 eV and the frequency factor is ∼10 12s -1. Also this peak is certainly correlated with the excess oxygen atoms, because it disappears with annealing in vacuum. The 220 K maximum, which was also observed by ultrasonic measurements, seems to be affected by the sample preparation, i.e. by the sintering conditions. Finally, a frequency hysteresis has been observed in every superconducting sample, which accounts for an anomalous behaviour of the elastic modulus.

  15. In situ hydrostatic pressure induced improvement of critical current density and suppression of magnetic relaxation in Y(Dy0.5)Ba2Cu3O7‑δ coated conductors

    NASA Astrophysics Data System (ADS)

    Sang, Lina; Gutiérrez, Joffre; Cai, Chuanbing; Dou, Shixue; Wang, Xiaolin

    2018-07-01

    We report on the effect of in situ hydrostatic pressure on the enhancement of the in-magnetic-field critical current density parallel to the crystallographic c-axis and vortex pinning in epitaxial Y(Dy0.5)Ba2Cu3O7‑δ coated conductors prepared by metal organic deposition. Our results show that in situ hydrostatic pressure greatly enhances the critical current density at high fields and high temperatures. At 80 K and 5 T we observe a ten-fold increase in the critical current density under the pressure of 1.2 GPa, and the irreversibility line is shifted to higher fields without changing the critical temperature. The normalized magnetic relaxation rate shows that vortex creep rates are strongly suppressed due to applied pressure, and the pinning energy is significantly increased based on the collective creep theory. After releasing the pressure, we recover the original superconducting properties. Therefore, we speculate that the in situ hydrostatic pressure exerted on the coated conductor enhances the pinning of existing extended defects. This is totally different from what has been observed in REBa2Cu3O7‑δ melt-textured crystals, where the effect of pressure generates point-like defects.

  16. Effect of high pressure on the electrical resistivity of optimally doped YBa2Cu3O7-δ single crystals with unidirectional planar defects

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.

    2013-08-01

    In the present work the effect of hydrostatic pressure up to 10 kbar on in-plane electrical resistivity of well-structured YBa2Cu3O7-δ (δ<0.15, Тс≈91 K, ΔТс≈0.3 K) single crystals was investigated. The influence of the twin boundaries on the electrical resistivity was minimized. The resistivities temperature dependences in the interval Тс up to 300 K can be approximated by taking into account the linear term at high temperatures and the fluctuation conductivity (Maki-Thompson model) near Тс. The parameters of the linear dependence of R(T) are decreasing as the pressure is increasing. Тс increases linearly when the pressure increases with the derivative dTc/dP≈0.080 K/kbar. Among the Maki-Thompson model parameters the inter-layer distance, d, can be considered to be independent from pressure, the transverse coherence length, ξc(0)∼0.1d.

  17. Specific heats and thermodynamic critical fields in Zn-doped YBa2Cu3O(7-x) according to an induced-pairing model

    NASA Technical Reports Server (NTRS)

    Eagles, D. M.

    1993-01-01

    Electronic specific heats and thermodynamic critical fields are calculated in a mean-field version of an induced-pairing model for superconductivity, and compared with results of Loram et al. (1990) on YBa2(Cu(1-y)Zn(y))3O(7-x). This model involves induction of pairing of holes in a wideband by strongly bound electronlike pairs. It is assumed that the planar hole concentration for no Zn addition is close to, but slightly higher than, that for the maximum Tc, and that it increases by 0.015 per planar Cu ion for each increase of y by 0.01. Parameters of the model are taken to be the same as in a previous publication in which energy gaps were discussed, except that an effective hybridization parameter is adjusted for each Zn concentration to give agreement with the observed Tc. Results are presented for y = 0.0, 0.01, and 0.03. The agreement with experiment is good for thermodynamic critical fields, and is fair for specific heats. For specimens with larger y, with relatively low T(c)s, it is argued that the model should be supplemented to include effects of a BCS-type interaction amongst the wideband carriers.

  18. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O(6+δ) superconductors identified by resonant elastic x-ray scattering.

    PubMed

    Achkar, A J; Sutarto, R; Mao, X; He, F; Frano, A; Blanco-Canosa, S; Le Tacon, M; Ghiringhelli, G; Braicovich, L; Minola, M; Sala, M Moretti; Mazzoli, C; Liang, Ruixing; Bonn, D A; Hardy, W N; Keimer, B; Sawatzky, G A; Hawthorn, D G

    2012-10-19

    Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.

  19. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.

    1988-12-01

    Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.

  20. Microwave heating of a high-Tc YBa2Cu3O6.9 superconductor through a Josephson-junction system

    NASA Astrophysics Data System (ADS)

    Stankowski, J.; Czyak, B.; Martinek, J.

    1990-12-01

    An overheating of a Josephson-junction system (JJS) in ceramic YBa2Cu3O6.9 samples was induced by microwave irradiation in a microwave cavity. The amplitude of the Josephson microwave absorption (JMA) was used as a monitor of the local JJS temperature. The difference between the JJS temperature and a sample temperature depends linearly on the power of the microwave field. A thermal hysteresis of Tc for heating and cooling is proportional to the microwave power applied in the JMA experiment.

  1. Fixed-frequency and Frequency-agile (au, HTS) Microstrip Bandstop Filters for L-band Applications

    NASA Technical Reports Server (NTRS)

    Saenz, Eileen M.; Subramanyam, Guru; VanKeuls, Fred W.; Chen, Chonglin; Miranda, Felix A.

    2001-01-01

    In this work, we report on the performance of a highly selective, compact 1.83 x 2.08 cm(exp 2) (approx. 0.72 x 0.82 in(exp 2) microstrip line bandstop filter of YBa2CU3O(7-delta) (YBCO) on LaAlO3 (LAO) substrate. The filter is designed for a center frequency of 1.623 GHz for a bandwidth at 3 dB from reference baseline of less than 5.15 MHz, and a bandstop rejection of 30 dB or better. The design and optimization of the filter was performed using Zeland's IE3D circuit simulator. The optimized design was used to fabricate gold (Au) and High-Temperature Superconductor (HTS) versions of the filter. We have also studied an electronically tunable version of the same filter. Tunability of the bandstop characteristics is achieved by the integration of a thin film conductor (Au or HTS) and the nonlinear dielectric ferroelectric SrTiO3 in a conductor/ferroelectric/dielectric modified microstrip configuration. The performance of these filters and comparison with the simulated data will be presented.

  2. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa 2Cu 3O 6.48

    DOE PAGES

    Mankowsky, R.; Fechner, M.; Forst, M.; ...

    2017-02-28

    Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa 2Cu 3O 6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of themore » CuO 2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. As a result, femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.« less

  3. Electron tunneling and the energy gap in Bi2Sr2CaCu2Ox

    NASA Astrophysics Data System (ADS)

    Lee, Mark; Mitzi, D. B.; Kapitulnik, A.; Beasley, M. R.

    1989-01-01

    Results of electron tunneling on single crystals of the Bi2Sr2CaCu2Ox superconductor are reported. The junctions show a gap structure with Δ~=25 meV, whose temperature dependence exhibits a qualitatively Bardeen-Cooper-Schrieffer-like behavior with a gap-closing Tc~=81-85 K. Comparisons of these tunneling spectra to those obtained on YBa2Cu3O7-x are made. Evidence that 2Δ/kTc~7 for both Ba2Sr2CaCu2Ox and YBa2Cu3O7-x is also discussed.

  4. Charge-screening role of c -axis atomic displacements in YBa 2 Cu 3 O 6 + x and related superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Božin, E. S.; Huq, A.; Shen, Bing

    2016-02-01

    The importance of charge reservoir layers for supplying holes to the CuO 2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa 2 Cu 3 O 6 + x , where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this modelmore » to the temperature-dependent shifts of ions along the c axis, we infer a charge transfer of 5–10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c -axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi 2 Sr 2 CaCu 2 O 8 + δ .« less

  5. Charge-screening role of c -axis atomic displacements in YBa 2 Cu 3 O 6 + x and related superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Božin, E. S.; Huq, A.; Shen, Bing

    2016-02-01

    The importance of charge reservoir layers for supplying holes to the CuO2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers.We address this issue in the case of YBa2Cu3O6+x , where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts of ions along the cmore » axis, we infer a charge transfer of 5–10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c-axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi2Sr2CaCu2O8+δ .« less

  6. Charge-screening role of c-axis atomic displacements in YBa 2Cu 3O 6+x and related superconductors

    DOE PAGES

    E. S. Bozin; Huq, A.; Shen, Bing; ...

    2016-02-29

    The importance of charge reservoir layers for supplying holes to the CuO 2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa 2Cu 3O 6+x, where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts ofmore » ions along the c axis, we infer a charge transfer of 5-10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c-axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. Furthermore, this line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi 2Sr 2CaCu 2O 8+δ.« less

  7. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  8. Detection and imaging of the oxygen deficiency in single crystalline YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films using a scanning positron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiner, M.; Gigl, T.; Hugenschmidt, C.

    2015-03-16

    Single crystalline YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films were grown by pulsed laser deposition in order to probe the oxygen deficiency δ using a mono-energetic positron beam. The sample set covered a large range of δ (0.191 < δ < 0.791) yielding a variation of the critical temperature T{sub c} between 25 and 90 K. We found a linear correlation between the Doppler broadening of the positron electron annihilation line and δ determined by X-ray diffraction. Ab-initio calculations have been performed in order to exclude the presence of Y vacancies and to ensure the negligible influence of potentially present Ba or Cu vacancies tomore » the found correlation. Moreover, scanning with the positron beam allowed us to analyze the spatial variation of δ, which was found to fluctuate with a standard deviation of up to 0.079(5) within a single YBCO film.« less

  9. The early growth and interface of YBa 2Cu 3O y thin films deposited on YSZ substrates

    NASA Astrophysics Data System (ADS)

    Gao, J.; Tang, W. H.; Yau, C. Y.

    2001-11-01

    Epitaxial thin films of YBa 2Cu 3O y (YBCO) have been prepared on yttrium-stabilized zirconia substrates with and without a buffer layer. The early growth, crystallinity and surface morphology of these thin films have been characterized by X-ray diffraction, rocking curves, scanning electron microscope, in situ conductance measurements, and surface step profiler. The full width at half maximum of the ( 0 0 5 ) peak of rocking curve was found to be less than 0.1°. Over a wide scanning range of 2000 μm the average surface roughness is just 5 nm, indicating very smooth films. Grazing incident X-ray reflection and positron annihilation spectroscopy shows well-defined interfaces between layers and substrate. By applying a new Eu 2CuO 4 (ECO) buffer layer the initial formation of YBCO appears to grow layer-by-layer rather than the typical island growth mode. The obtained results reveal significant improvements at the early formation and crystallinity of YBCO by using the 214-T ‧ ECO as a buffer layer.

  10. Comprehensive Study of Pr-Doped GdBa2Cu3O7 - y System

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    1997-09-01

    An extensive study of the magnetic, electrical transport, and structural properties of the normal and superconducting states of Gd1 - xPrxBa2Cu3O7 - y (GdPr-123) is presented. Ceramic compounds have been synthesized by the solid state reaction technique, and characterized by XRD, SEM, TGA, and DT techniques. The parent compound GdBa2Cu3O7 - y (Gd-123) is a high-Tc superconductor and the endpoint compound, PrBa2Cu3O7 - y (Pr-123) is a magnetic insulator, both having the crystal structures isomorphic to the 123 phase structure. The superconducting transition temperature is reduced with increasing Pr content in a non-linear manner, in contrast to the Abrikosov-Gorkov pair breaking theory. A metal-insulator transition is observed at the critical Pr content, xcr 0.45, at which superconductivity completely disappears. Magnetic susceptibility measurements show that the nominal Pr valence is 3.86+, independent of the Pr content. The metal-insulator transition in this system is similar to that in the oxygen-deficient RBa2Cu3O7 - y (R-123) system. Based on this resemblance, we suggest that Pr doping reduces the carrier concentration (either by hole filling/localization or changes in the band structure) similar to the deoxygenated case. Hence, the environment surrounding the Cu-O layers is important to high-Tc superconductivity (HTSC). In this sense, HTSC cannot completely be two dimensional feature. A chain-plane correlation (CPC) effect is plausible. The normal state conduction mechanism has been interpreted by the quantum percolation theory based on localized states. Localization is probably caused by the Pr valence fluctuations in the GdPr-123 system.

  11. Electronic Structure of Tl2Ba2CuO(6+Delta) Epitaxial Films Measured by X-Ray Photoemission

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Ren, Z. F.; Wang, J. H.

    1996-01-01

    The valence electronic structure and core levels of Tl2Ba2CuO(6 + delta) (Tl-2201) epitaxial films have been measured with X-ray photoelectron spectroscopy and are compared to those of Tl2Ba2CaCu2O(8 + delta) (Tl-2212). Changes in the Tl-2201 core-level binding energies with oxygen doping are consistent with a change in the chemical potential. Differences between the Tl-2201 and Tl-2212 measured densities of states are consistent with the calculated Cu 3d and Tl 6s partial densities of states.

  12. Calorimetric determination of the magnetic phase diagram of underdoped ortho II YBa2Cu3O6.54 single crystals

    PubMed Central

    Marcenat, C.; Demuer, A.; Beauvois, K.; Michon, B.; Grockowiak, A.; Liang, R.; Hardy, W.; Bonn, D. A.; Klein, T.

    2015-01-01

    The recent discovery of a charge order in underdoped YBa2Cu3Oy raised the question of the interplay between superconductivity and this competing phase. Understanding the normal state of high-temperature superconductors is now an essential step towards the description of the pairing mechanism in those materials and determining the upper critical field is therefore of fundamental importance. We present here a calorimetric determination of the field–temperature phase diagram in underdoped YBa2Cu3Oy single crystals. We show that the specific heat saturates in high magnetic fields. This saturation is consistent with a normal state without any significant superconducting contribution and a total Sommerfeld coefficient γN∼6.5±1.5 mJ mol−1 K−2 putting strong constraints on the theoretical models for the Fermi surface reconstruction. PMID:26294047

  13. Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR

    NASA Technical Reports Server (NTRS)

    Brinkmann, D.

    1995-01-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

  14. Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9.

    PubMed

    Magnuson, M; Schmitt, T; Strocov, V N; Schlappa, J; Kalabukhov, A S; Duda, L-C

    2014-11-12

    The interplay between the quasi 1-dimensional CuO-chains and the 2-dimensional CuO2 planes of YBa(2)Cu(3)O(6+x) (YBCO) has been in focus for a long time. Although the CuO-chains are known to be important as charge reservoirs that enable superconductivity for a range of oxygen doping levels in YBCO, the understanding of the dynamics of its temperature-driven metal-superconductor transition (MST) remains a challenge. We present a combined study using x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) revealing how a reconstruction of the apical O(4)-derived interplanar orbitals during the MST of optimally doped YBCO leads to substantial hole-transfer from the chains into the planes, i.e. self-doping. Our ionic model calculations show that localized divalent charge-transfer configurations are expected to be abundant in the chains of YBCO. While these indeed appear in the RIXS spectra from YBCO in the normal, metallic, state, they are largely suppressed in the superconducting state and, instead, signatures of Cu trivalent charge-transfer configurations in the planes become enhanced. In the quest for understanding the fundamental mechanism for high-Tc-superconductivity (HTSC) in perovskite cuprate materials, the observation of such an interplanar self-doping process in YBCO opens a unique novel channel for studying the dynamics of HTSC.

  15. Electronic structure of PrBa2Cu3O7: A local-spin-density approximation with on-site Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Biagini, M.; Calandra, C.; Ossicini, Stefano

    1995-10-01

    Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa2Cu3O7 (PBCO). We have performed linear muffin-tin orbital-atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a CuII oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between CuI and CuII. The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa2Cu3O7.

  16. Investigation of thick PLD-GdBCO and ZrO2 doped GdBCO coated conductors with high critical current on PLD-CeO2 capped IBAD-GZO substrate tapes

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Kobayashi, H.; Yamada, Y.; Ibi, A.; Fukushima, H.; Konishi, M.; Miyata, S.; Shiohara, Y.; Kato, T.; Hirayama, T.

    2006-09-01

    In order to increase the critical current, Ic, we have fabricated thick GdBa2Cu3O7-δ (GdBCO) coated conductors (CCs) by the pulsed laser deposition (PLD) method on PLD-CeO2/ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO)/hastelloy metal substrate tapes. The highest critical current value was 522 A cm-1 for a thickness of 3.6 µm in self-field at 77 K. It was found that a low volume fraction of a-axis orientated grains was obtained in the thick GdBCO CCs, compared to YBa2Cu3O7-δ (YBCO) CCs. Consequently, the GdBCO CCs showed higher critical current density (Jc) than YBCO CCs in all thicknesses from 0.2 to 3.6 µm. Furthermore, we have succeeded in improving Ic in a magnetic field by the introduction of artificial pinning centres using a 5 mol% ZrO2 doped GdBCO target. In the measurement of the Ic dependence on the magnetic field angle, θ, Ic was much improved, especially at 0°, i.e., with the magnetic field parallel to the c-axis. The Ic value at 3 T was 59.5 A cm-1 at 0° and it showed a minimum of 42.3 A cm-1 at 82° for 2.28 µm thick CC. The minimum value in the angular dependence of Ic at 3 T was about five times higher than that of YBCO CC and two times higher than that of pure GdBCO CC.

  17. Metal-to-insulator crossover in YBa2Cu3Oy probed by low-temperature quasiparticle heat transport.

    PubMed

    Sun, X F; Segawa, Kouji; Ando, Yoichi

    2004-09-03

    It was recently demonstrated that in La2-xSrxCuO4 the magnetic-field (H) dependence of the low-temperature thermal conductivity kappa up to 16 T reflects whether the normal state under high magnetic field is a metal or an insulator. We measure the H dependence of kappa in YBa(2)Cu(3)O(y) (YBCO) at subkelvin temperatures for a wide doping range, and find that at low doping the kappa(H) behavior signifies the change in the ground state in this system as well. Surprisingly, the critical doping is found to be located deeply inside the underdoped region, about the hole doping of 0.07 hole/Cu; this critical doping is apparently related to the stripe correlations as revealed by the in-plane resistivity anisotropy.

  18. The effect of temperature cycling typical of low earth orbit satellites on thin films of YBa2Cu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.

    1990-01-01

    The refrigeration of superconductors in space poses a challenging problem. The problem could be less severe if superconducting materials would not have to be cooled when not in use. Thin films of the YBa2Cu3O(7-x) (YBCO) superconductor were subjected to thermal cycling, which was carried out to simulate a large number of eclipses of a low earth orbit satellite. Electrical measurements were performed to find the effect of the temperature cycling. Thin films of YBCO were formed by coevaporation of Y, BaF2, and Cu and postannealing in wet oxygen at 850 C for 3.5 h. The substrates used were (100) SrTiO3, polycrystalline alumina, and oxidized silicon; the last two have an evaporated zirconia layer. Processing and microstructure studies of these types of films have been published. THe zero resistance transition temperatures of the samples used in this study were 91, 82, and 86 K, respectively. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were: the zero resistance transition temperature, the 10 to 90 percent transition width, and the room temperature resistance, normalized to that measured before temperature cycling. The results for two samples are presented. Each sample had a cumulative exposure. Cycling in atmospheric pressure nitrogen was performed at a rate of about 60 cycles per day, whereas in vacuum the rate was only about 10 cycles per day. The results indicate only little or no changes in the parameters measured. Degradation of superconducting thin films of YBCO has been reported due to storage in nitrogen. It is believed that the relatively good performance of films after temperature cycling is related to the fact that BaF2 was used as an evaporation source. The latest result on extended temperature cycling indicates significant degradation. Further tests of extended cycling will be carried out to provide additional data and to clarify this preliminary finding.

  19. Kinetics of O{sub 2}({sup 1{Sigma}}) formation in the reaction O{sub 2}({sup 1{Delta}}) + O{sub 2}({sup 1{Delta}}) {yields} O{sub 2}({sup 1{Sigma}}) + O{sub 2}({sup 3{Sigma}})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagidullin, M V; Khvatov, N A; Nyagashkin, A Yu

    2011-02-28

    The dependence of the ratio of specific powers of dimole radiation of singlet oxygen in the 634 nm band and in the b - X band of the O{sub 2}({sup 1{Sigma}}) molecule in the O{sub 2}(X) - O{sub 2}({sup 1{Delta}}) - O{sub 2}({sup 1{Sigma}}) - H{sub 2}O - CO{sub 2} mixture on the CO{sub 2} concentration is measured. As a result, the rate constant of the reaction O{sub 2}({sup 1{Delta}}) + O{sub 2}({sup 1{Delta}}) {yields} O{sub 2}({sup 1{Sigma}}) + O{sub 2}({sup 3{Sigma}}) at the temperature {approx}330 K is found to equal (4.5 {+-} 1.1) 10{sup -17} cm{sup 3} s{sup -1}.more » (active media)« less

  20. Investigation of the Effects of Oxygen Content in YBa2Cu3Ox on the Depth and Profile of Direct Ion Milled Trenches

    DTIC Science & Technology

    2014-09-01

    fashion, thereby providing an experimental resolution previously unobtainable. Josephson junctions can be fabricated via many known methods; however... junction formation geometry. The objective of this study is to systematically investigate and de- termine the impact of local oxygen content on the ion...used advantageously in the fabrication of Josephson junction on films of YBa2Cu3O7−δ, wherein the film is annealed such that the oxygen content of the

  1. Thermal conversion of Cu4O3 into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films

    NASA Astrophysics Data System (ADS)

    Murali, Dhanya S.; Aryasomayajula, Subrahmanyam

    2018-03-01

    Among the three oxides of copper (CuO, Cu2O, and Cu4O3), Cu4O3 phase (paramelaconite is a natural, and very scarce mineral) is very difficult to synthesize. It contains copper in both + 1 and + 2 valence states, with an average composition Cu2 1+Cu2 2+O3. We have successfully synthesized Cu4O3 phase at room temperature (300 K) by reactive DC magnetron sputtering by controlling the oxygen flow rate (Murali and Subrahmanyam in J Phys D Appl Phys 49:375102, 2016). In the present communication, Cu4O3 thin films are converted to CuO phases by annealing in the air at 680 K and to Cu2O phase when annealed in argon at 720 K; these phase changes are confirmed by temperature-dependent Raman spectroscopy studies. Probably, this is the first report of the conversion of Cu4O3-CuO and Cu2O by thermal annealing. The temperature-dependent (300-200 K) electrical transport properties of Cu4O3 thin films show that the charge transport above 190 K follows Arrhenius-type behavior with activation energy of 0.14 eV. From photo-electron spectroscopy and electrical transport measurements of Cu4O3 thin films, a downward band bending is observed at the surface of the thin film, which shows its p-type semiconducting nature. The successful preparation of phase pure p-type semiconducting Cu4O3 could provide opportunities to further explore its potential applications.

  2. Critical current enhancement in large grains of YBa(2)Cu(3)O(7-delta) through microstructural engineering

    NASA Astrophysics Data System (ADS)

    Chopra, Manoj

    High temperature superconductors (HTS) have many potential applications e.g. magnetically levitated trains, power transmission, mechanical energy storage, dent pullers, Nuclear Magnetic Resonance (N.M.R), magnetic resonance imaging (M.R.I) etc. However, one of the most daunting tasks for the applicability of HTS is the enhancement of critical current density (Jc) and flux-pinning at liquid nitrogen temperatures by microstructure design. The addition of Ysb2BaCuOsb5 (211) particles to large grain melt textured YBasb2Cusb3Osb{7-delta} (Y123) have significantly improved the transport and magnetic properties of this material. Here, a systematic quantitative analysis on the effects of the 211 addition was performed on a microscopic scale with a systematic variation in the initial volume percentage of 211. From the correlation between critical current measurements and quantitative microscopy of both (001) and (110) sections, a maximum value of Jc was observed corresponding to a measured Y123 volume percent of 20% ± 3%. Accounting for the loss of liquid phase for the present processing, the corresponding optimum initial volume of 211 for the highest measured Jc was 40%. Further comparison between the weighted Jc and the true flux pinning force (Fp) also showed a maximum pinning force for an initial 211 addition of 40%. Although, the weighted Jc starts to decrease with an initial 211 volume of above 40%, the pinning efficiency at higher magnetic fields (2-4T) of the superconducting Y123 matrix was actually improved with an increasing 211 addition to at least 50%. Though an increasing addition of 211 was effective in producing efficient flux pinning sites in the Y123 matrix, percolation paths in the Y123 matrix became limited for supercurrent flow. Hence, a measured 211 volume corresponding to 80% 211 was shown to have the best possible critical current density. Furthermore, crack opening and crack spacing of the superficial cracks were found to decrease with an increasing

  3. Pair momentum distribution in Bi2Sr2CaCu2O(8+delta) measured by positron annihilation - Existence and nature of the Fermi surface

    NASA Astrophysics Data System (ADS)

    Chan, L. P.; Lynn, K. G.; Harshman, D. R.; Massidda, S.; Mitzi, D. B.

    1991-09-01

    The first measurement is reported of the position-electron momentum density in superconducting single-crystal Bi2Sr2CaCu2O(8+delta)(Tc roughly 90 K). The observed anisotropy exhibits a twofold (rather than fourfold) symmetry, which is attributed to the superlattice modulation along the b axis of the BiO2 layers. Subtraction of the superlattice contribution also reveals a pair momentum distribution consistent with the CuO2 and BiO2 Fermi surfaces, and in reasonable agreement with the theoretical pair momentum density derived from band theory.

  4. Three-dimensional characterization of BaHfO3 precipitates in GdBa2Cu3O7-y flim using STEM tomography.

    PubMed

    Nishiyama, T; Kaneko, K; Yamada, K; Teranishi, R; Kato, T; Hirayama, T; Tobita, H; Izumi, T; Shiohara, Y

    2014-11-01

    IntroductionSince the discovery of REBa2Cu3O7-y (RE: Rare Earth element, REBCO) superconductors, they have been expected as the best candidates for the power cable application due to its high critical temperature (Tc) and critical current density (Jc). Among those REBCO superconductors, GdBa2Cu3O7-y (GdBCO) have been receiving great interest because they have higher Tc and Jc than YBa2Cu3O7-y [1].GdBCO with various types of precipitates as artificial pinning centers (APCs) have been proposed to minimize the anisotropy of Jc characteristics under the magnetic field. Among those precipitates, BaHfO3 (BHO) was found most effective precipitates as APCs in GdBCO film prepared by pulsed laser deposition (PLD) method [2]. It is therefore necessary to investigate not only the morphologies but also the dispersion of BHO precipitates within the GdBCO, to understand the role of BHO for the superconducting characteristics. In this study, morphologies and dispersions of BHO precipitates were characterized three-dimensional by scanning transmission electron tomography ExperimentalBHO dispersed GdBCO films were fabricated on Hastelloy C-276TM substrates with buffer layers of CeO2/LaMnO3/MgO/ Gd2ZrO7 by PLD method.To observe microstructure of GdBCO film with BHO precipitates, cross-section TEM specimens were prepared by FIB method using Quanta 3D-200 (FEI, USA) with acceleration voltage from 2 to 30 kV. Three-dimensional information such as morphology and dispersion, of BHO precipitates were characterized by electron tomography using STEM-HAADF. Result and discussionFigure 1 shows three-dimensional reconstructed volume of BHO precipitates in GdBCO, which revealed that fine BHO precipitates have rod- and plate-like morphologies with homogeneous dispersion in GdBCO. In addition, growth directions of these precipitates were found with wide angular distributions from growth direction of GdBCO. Anisotropy of Jc in the magnetic fields was probably enhanced by various growth directions

  5. Approaches in controllable generation of artificial pinning center in REBa2Cu3O y -coated conductor for high-flux pinning

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Miura, S.; Tsuchiya, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ichinose, A.

    2017-10-01

    This paper reviews the progress of studies to determine optimum shapes of the artificial pinning center (APC) of REBa2Cu3O y thin films and coated conductors towards superconducting magnets operating at temperatures of 77 K or less. Superconducting properties vary depending on the kind and quantity of BaMO3 materials. Therefore, we study changes in the shapes of nanorods that are due to the difference in the quality of additives and growth temperature. In addition, we aim to control the APC using an optimum shape that matches the operating temperature. In particular, we describe the shape control of nanorods in SmBCO thin films and coated conductors by employing lower temperature growth (LTG) technology using seed layers. From the cross-sectional transmission electron microscopy observations, we confirmed that using the LTG method, the BaHfO3 (BHO) nanorods, which were comparatively thin and short in length, formed a firework structure in the case of SmBCO films with coated conductors. The superconducting properties in the magnetic field of the SmBCO-coated conductor with the optimum amount of BHO showed that {F}{{p}}\\max = 1.6 TN m-3 on a single crystalline substrate and 1.5 TN m-3 on metallic substrate with a biaxially textured MgO layer fabricated by ion-beam assisted deposition method tape 4.2 K.

  6. Effect of magnetic ion Ni doping for Cu in the CuO 2 plane on electronic structure and superconductivity on Y123 cuprate

    NASA Astrophysics Data System (ADS)

    Cao, Shixun; Li, Pinglin; Cao, Guixin; Zhang, Jincang

    2003-05-01

    The YBa2Cu3-xNixO7-δ with x=0-0.4 have been studied using positron annihilation technique. The changes of positron annihilation parameters with the Ni substitution concentration x are given. From the change of electronic density ne and Tc, it would prove that the localized carriers (electron and hole) in Cu-O chain and CuO2 planes have enormous influence on superconductivity by affecting charge transfer between the reservoir layer and CuO2 planes.

  7. Effect of O2 partial pressure on post annealed Ba2YCu3O(7-delta) thin films

    NASA Astrophysics Data System (ADS)

    Phillps, J. M.; Siegal, M. P.; Hou, S. Y.; Tiefel, T. H.; Marshall, J. H.

    1992-04-01

    Epitaxial films of Ba2YCu3O(7-delta) (BYCO) as thin as 250 A and with J(sub c)'s approaching those of the best in situ grown films can be formed by co-evaporating BaF2, Y, and Cu followed by a two-stage anneal. High quality films of these thicknesses become possible if low oxygen partial pressure (p(O2) = 4.3 Torr) is used during the high temperature portion of the anneal (T(sub a)). The BYCO melt line is the upper limit for T(sub a). The use of low p(O2) shifts the window for stable BYCO film growth to lower temperature, which allows the formation of smooth films with greater microstructural disorder than is found in films grown in p(O2) = 740 Torr at higher T(sub a). The best films annealed in p(O2) = 4.3 Torr have J(sub c) values a factor of four higher than do comparable films annealed in p(O2) = 740 Torr. The relationship between the T(sub a) required to grow films with the strongest pinning force and p(O2) is log (p(O2)) proportional to T(sub a) exp(1 exp a) independent of growth method (in situ or ex situ) over a range of five orders of magnitude of p(O2).

  8. All high Tc edge-geometry weak links utilizing Y-Ba-Cu-O barrier layers

    NASA Technical Reports Server (NTRS)

    Hunt, B. D.; Foote, M. C.; Bajuk, L. J.

    1991-01-01

    High quality YBa2Cu3O(7-x) normal-metal/YBa2Cu3O(7-x) edge-geometry weak links have been fabricated using nonsuperconducting Y-Ba-Cu-O barrier layers deposited by laser ablation at reduced growth temperatures. Devices incorporating 25-100 A thick barrier layers exhibit current-voltage characteristics consistent with the resistively shunted junction model, with strong microwave and magnetic field response at temperatures up to 85 K. The critical currents vary exponentially with barrier thickness, and the resistances scale linearly with Y-Ba-Cu-O interlayer thickness and device area, indicating good barrier uniformity, with an effective mormal metal coherence length of 20 A.

  9. Pulsed laser deposition of {CeO_2} and {Ce_{1-x}M_xO_2} (M = La, Zr): Application to insulating barrier in cuprate heterostructures

    NASA Astrophysics Data System (ADS)

    Berger, S.; Contour, J.-P.; Drouet, M.; Durand, O.; Khodan, A.; Michel, D.; Régi, F.-X.

    1998-03-01

    SrTiO_3 had been often tentatively used as an insulating barrier for HT superconductor/insulator heterostructures. Unfortunately, the deposition of SrTiO_3 on the YBa_2Cu_3O_7 inverse interface results in a poor epitaxial regrowth producing a high roughness dislocated titanate layer. Taking into account the good matching with YBa_2Cu_3O_7 and LaAlO_3, CeO_2 and Ce_{1-x}M_xO_2 (M = La, Zr), epitaxial layers were grown by pulsed laser deposition on LaAlO_3 substrates and introduced into YBa_2Cu_3O_7 based heterostructures as insulating barrier. After adjusting the growth parameters from RHEED oscillations, epitaxial growth is achieved, the oxide crystal axes being rotated by 45^circ from those of the substrate. The surface roughness of 250 nm thick films is very low with a rms value lower than 0.5 nm over 1;μ m^2. The YBa_2Cu_3O_7 layers of a YBa_2Cu_3O_7/CeO_2 /YBa_2Cu_3O_7 heterostructures grown using these optimized parameters show an independent resistive transition, when the thickness is larger than 25 nm, respectively at T_c_1 = 89.6;K and T_c_2 = 91.4;{K}. SrTiO3 est souvent utilisé comme barrière isolante dans des hétérostructures SIS de cuprates supraconducteurs, cependant les défauts générés lors de la croissance de ce titanate sur l'interface inverse de YBa2Cu3O7 conduisent à un matériau dont la qualité cristalline et les propriétés physiques sont médiocres. L'oxyde de cérium CeO2 est également une barrière isolante potentielle intéressante pour ces structures SIS basées sur YBa2Cu3O7 car cet oxyde cubique (a = 0,5411 nm, asqrt{2}/2 = 0,3825 nm) qui est peu désaccordé par rapport au plan ab du cuprate (Δ a/a = - 0,18 %, Δ b/a = 1,6 %) présente de plus un coefficient de dilatation thermique (10,6 × 10^{-6 circ}C^{-1}) très voisin de celui de YBa2Cu3O7 (13 × 10^{-6 circ}C^{-1}). Nous avons donc étudié l'épitaxie de CeO2 et des oxydes de type Ce{1-x}MxO2 (M = La, Zr) en ablation laser pulsée afin de définir des conditions de

  10. Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.

    2008-05-01

    High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.

  11. Dependence of millimeter wave surface resistance on the deposition parameters of laser ablated YBa2Cu3O(x) thin films

    NASA Technical Reports Server (NTRS)

    Wosik, J.; Robin, T.; Davis, M.; Wolfe, J. C.; Forster, K.; Deshmukh, S.; Bensaoula, A.; Sega, R.; Economou, D.; Ignatiev, A.

    1990-01-01

    Measurements of millimeter-wave surface resistance versus temperature have been performed for YBa2Cu3O(x) thin films on 100 line-type SrTiO(3) substrates using a TE(011) cylindrical copper cavity at 80 GHz. The 0.6-micron thick films were grown at several deposition temperatures in the range 690 C to 810 C by means of a pulsed excimer laser ablation technique. A surface resistance minimum (60 milliohm at 77 K) near 770 C is shown to correlate with a minimum in c-axis lattice parameter (11.72 A). The highest value of Tc also occurs near this temperature. The surface resistance of films deposited at 790 C on 110 line-type LaAlO3 subtrates is lower, reaching 8 milliohm at 98 GHz and 80 K, demonstrating the influence of substate material on film quality.

  12. Effect of template post-annealing on Y(Dy)BaCuO nucleation on CeO2 buffered metallic tapes

    NASA Astrophysics Data System (ADS)

    Hu, Xuefeng; Zhong, Yun; Zhong, Huaxiao; Fan, Feng; Sang, Lina; Li, Mengyao; Fang, Qiang; Zheng, Jiahui; Song, Haoyu; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing

    2017-08-01

    Substrate engineering is very significant in the synthesis of the high-temperature superconductor (HTS) coated conductor. Here we design and synthesize several distinct and stable Cerium oxide (CeO2) surface reconstructions which are used to grow epitaxial films of the HTS YBa2Cu3O7-δ (YBCO). To identify the influence of annealing and post-annealing surroundings on the nature of nucleation centers, including Ar/5%H2, humid Ar/5%H2 and O2 in high temperature annealing process, we study the well-controlled structure, surface morphology, crystal constants and surface redox processes of the ceria buffers by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electronic microscopy (FE-SEM), respectively. The ceria film post-annealed under humid Ar/5%H2 gas shows the best buffer layer properties. Furthermore, the film absorbs more oxygen ions, which appears to contribute to oxygenation of superconductor film. The film is well-suited for ceria model studies as well as a perfect substitute for CeO2 bulk material.

  13. Fostered Thermomagnetic Stabilities and Boosted Mechanical Reliability Related to High Trapped Field in Composite Bulk YBa2Cu3O(7-δ) Cryomagnets.

    PubMed

    Kenfaui, Driss; Sibeud, Pierre-Frédéric; Gomina, Moussa; Louradour, Eric; Chaud, Xavier; Noudem, Jacques G

    2015-08-06

    In the quest of YBa2Cu3O(7-δ) (Y123) bulk superconductors providing strong magnetic fields without failure, it is of paramount importance to achieve high thermal stabilities to safeguard the magnetic energy inside them during the trapping-field process, and sufficient mechanical reliability to withstand the stresses derived from the Lorenz force. Herein, we experimentally demonstrate a temperature rise induced by dissipative flux motion inside an Y123 thin-wall superconductor, and a significant thermal exchange in a composite bulk Y123 cryomagnet realized by embedding this superconductor with high thermal-conductivity metal network. It resulted in stimulating the maximum trapped field Bm, which reached 6.46 T on 15.9 mm-diameter single disk superconductor after magnetization by field cooling to 17 K under 7 T, leading to an improvement of 18% compared to the thin-wall superconductor. The composite cryomagnet particularly revealed the potential to trap stronger fields if larger magnetic activation is available. By virtue of the pore-free and crack-free microstructure of this cryomagnet, its strength σR was estimated to be 363 MPa, the largest one obtained so far for Y123 bulk superconductors, thus suggesting a striking mechanical reliability that seems to be sufficient to sustain stresses derived from trapped fields stronger than any values hitherto reported.

  14. Pinning, thermally activated depinning and their importance for tuning the nanoprecipitate size and density in high J c YBa 2Cu 3O 7-x films

    NASA Astrophysics Data System (ADS)

    Chen, Zhijun; Kametani, Fumitake; Gurevich, Alex; Larbalestier, David

    2009-12-01

    YBa 2Cu 3O 7-x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature ( T) and magnetic field ( H) ranges and by transmission electron microscopy (TEM). The critical current density J c was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of J c on c-axis pin spacing d c. At low T and H, J c increased with decreasing d c, reaching the very high J c ∼ 48 MA/cm 2 ∼20% of the depairing current density J d at 10 K, self-field and d c ∼ 10 nm, but at higher T and H when TAD effects become significant, J c was optimized at larger d c because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields H irr(77 K) greater than 7 T and maximum bulk pinning forces F p,max(77 K) greater than 7-8 GN/m 3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes J c at all T and H.

  15. Symmetry of the oxygen hole states in Bi 2Sr 2CaCu 2O 8 investigated by XAS

    NASA Astrophysics Data System (ADS)

    Kuiper, P.; Grioni, M.; Sawatzky, G. A.; Mitzi, D. B.; Kapitulnik, A.; Santaniello, A.; de Padova, P.; Thiry, P.

    1989-02-01

    We have observed strong polarization dependence in the X-ray absorption near the oxygen K edge in a single crystal of Bi 2Sr 2CaCu 2O 8 ( Tc=85 K). The results show that O-derived holes near the Fermi-level have p x, y (perpendicular to the c-axis) symmetry. Some consequences for models of superconductivity are discussed. The concentration of holes is estimated to be about equal to that in YBa 2Cu 3O 7.

  16. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    NASA Astrophysics Data System (ADS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  17. Structure study of Ba 2CeCu 3O 7.4

    NASA Astrophysics Data System (ADS)

    Chen, Gao; Hsin, Wang; Tingzhu, Cheng; Ying, Liu; Wenhan, Liu; Yitai, Qian; Zhuyao, Chen

    1989-05-01

    Single phase Ba 2CeCu 3O 7.4 was prepared. EXAFS, X-ray diffraction and plasma spectroscopy measurements were performed. A structure model with the cell parameter: a=6.208 Å, b=6.232 Å and c=8.759 Å is proposed based on these experiments. The lack of superconductivity in this system may be caused by the entrance of Ce +4 in Cu-site and the formation of asymmetric [CuO 2] plane.

  18. Dynamics of oxygen ordering in YBa2CU3O6+x studied by neutron and high-energy synchrotron x-ray diffiaction.

    NASA Astrophysics Data System (ADS)

    Frello, T.; Andersen, N. H.; Madsen, J.; Ka¨ll, M.; von Zimmermann, M.; Schmidt, O.; Poulsen, H. F.; Schneider, J. R.; Wolf, Th.

    1997-08-01

    The dynamics of the ortho-II oxygen structure in a high purity YBa 2Cu 3O 6+ x single crystal with x=0.50 has been studied by neutron and by X-ray diffraction with a photon energy of 100 keV. Our data show that the oxygen order develops on two different time-scales, one of the order of seconds and a much slower of the order of weeks and months. The mechanism dominating the slow time-scale is related to oxygen diffusion, while the fast mechanism may result from a temperature-dependent change in the average oxygen chain length.

  19. TOPICAL REVIEW: Review of a chemical approach to YBa2Cu3O7-x-coated superconductors—metalorganic deposition using trifluoroacetates

    NASA Astrophysics Data System (ADS)

    Araki, Takeshi; Hirabayashi, Izumi

    2003-11-01

    Large-area, uniform, high critical current density (Jc) YBa2Cu3O7-x (YBCO) superconductor films are now routinely obtained by metalorganic deposition using trifluoroacetates (TFA-MOD). This method does not require any expensive vacuum apparatus at any time during the whole process. Thus, TFA-MOD is regarded as one of the most suitable candidates for fabricating a YBCO tape for many high-power applications. This method originated from an electron beam process using BaF2 developed by Mankiewich et al. Afterwards, Gupta et al reported using TFA-MOD to prepare a similar precursor film. These two ex situ processes used fluorides instead of BaCO3 to avoid the fatal deterioration in Jc, which is caused in the resulting films through metal carboxylic groups. Fluorides not only avoid such deterioration but also lead to perfectly c-axis-oriented epitaxial crystal growth. In conventional metalorganic deposition, nucleation in the precursor film causes random orientation in the resulting film. However, in TFA-MOD, nanocrystallites in the precursor film never cause such disorder. Furthermore, during the firing process of TFA-MOD, water and HF gas diffuse quickly between the film surface and growth front of the YBCO layer. This diffusion never limits the growth rate of YBCO. What distinguishes TFA-MOD from conventional metalorganic deposition? What happens during heat treatment? In this paper, we discuss all the TFA-MOD processes and the peculiar growth scheme of the YBCO layer in TFA-MOD using the model of a quasi-liquid network. In addition, we review the history of TFA-MOD and recent results and discuss the prospects of future applications.

  20. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Reade, R. P.; Mao, X. L.; Russo, R. E.

    1991-08-01

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.

  1. Flux Pinning Enhancement in YBa2Cu3O7-x Films for Coated Conductor Applications (Postprint)

    DTIC Science & Technology

    2012-02-01

    the nanocolumns with a certain constant diameter. Since BSO and YBCO are both perovskites, they tend to grow along the c - axis perpendicular to LAO ...20 0 20 40 60 80 100 YBCO+BaSnO 3 / LAO YBCO/MS-6 YBCO+BaSnO 3 /MS-6 J c /J c( h // a b ) Angle (Degs) H//C H//ab Figure 5.18 Transport current...density data of YBCO+BSO fi lm on a LaAlO 3 and a buffered metallic substrate as compared to YBCO fi lm on a metallic substrate. ( LAO = LaAlO 3 , MS

  2. Evaluation of Characteristic Energy Scales of Pressure Stabilized Oxygen Chain States in YBa2Cu3Ox Films

    DTIC Science & Technology

    2017-03-14

    2], and [4]. In the case of YBa2Cu3O∇x, the application of sufficient uniaxial pressure results in the film having discrete regions of uniform...that discrete regions of uniform oxygen content are stabilized where x ≈ [6, 6.5, 6.72, 6.81, 7]. The latter four oxygen content levels correspond to...associated energy levels of the stabilized lattice states ᝺>, �>, >, and ə>, and find evidence for discrete energy levels of the pressure

  3. Flux pinning properties of YBa2Cu3O7-δ thin films containing a high density of nanoprecipitates: A comparative study to reveal size effects

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hirofumi; Yamada, Hiroshi

    2017-11-01

    Temperature dependence of critical current density Jc(H, T) was measured in moderate magnetic fields (H ⊥ film) in two thermally co-evaporated YBa2Cu3O7-δ (YBCO) thin films (A, B) and two YBCO films (C, D) deposited using a pulsed-laser deposition method. All sample films were grown epitaxially with the c-axis perpendicular to the surface of a single-crystalline substrate. Transmission electron microscopy observation revealed that these four films contained a high density of nanoprecipitates with typical sizes of 3.6 - 5.0 nm (A), 5.0 - 7.1 nm (B), 7.0 - 10.1 nm (C) and 8.7 - 14.3 nm (D). Films A and B contained very fine nanoprecipitates, whose typical diameters Dtyp are smaller than double the estimated Ginzburg-Landau coherence length 2ξab at T = 77 K, and exhibited a steep increase of Jc with decreasing temperature. Whereas, film D, which contained relatively large nanoprecipitates (Dtyp > 2ξab at T ≤ 70 K), exhibited a gradual increase in Jc. This led to a remarkable crossing of the Jc(T) curves. The temperature dependence of Jc(H//c) under a fixed magnetic field is approximated by Jc ∼ (1 - T/Tc)m(1 + T/Tc)2 where the index m is larger for films containing finer precipitates; that is, m(A) > m(B) > m(C) > m(D). This means that finer nanoprecipitates generally cause steeper Jc increase at low temperatures, which is the origin of the observed crossing phenomenon. The experimental results are reasonably explained by several theoretical models based on the direct summation of elementary pinning forces fp calculated by core pinning interactions.

  4. Spectral analysis of Cu 2+: B 2O 3-ZnO-PbO glasses

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Buddhudu, S.

    2005-11-01

    A new series of heavy metal oxide (PbO) based zinc borate glasses in the chemical composition of (95 - x)B 2O 3-5ZnO- xPbO ( x = 10, 15, 20, 25, 30, 35, 40, 45 and 50 mol%) have been prepared to verify their UV filtering performance. Both direct and indirect optical band gaps ( Eopt) have been evaluated for these glasses. For a reference glass of 45B 2O 3-5ZnO-50PbO, refractive indices at different wavelengths are measured and found the results satisfactorily correlated with the theoretical data upon the computation of Cauchy's constants of A = 1.766029949, B = 159531.024 nm 2 and C = -1.078 × 10 10 nm 4. Measurements concerning X-ray diffraction (XRD), FT-IR, differential scanning colorimeter (DSC) profiles have been carried out for this glass. The FT-IR profile has revealed that the glass has both BO 3 and BO 4 units. From DSC thermogram, glass transition temperature ( Tg), crystallization temperature ( Tc) and melting temperature ( Tm) have been located and from them, other related parameters of the glass have also been calculated. Visible absorption spectra of 45B 2O 3-5ZnO-(50 - x)PbO- xCuO ( x = 0. 1, 0.2, 0.5 and 1.0 mol%) have revealed two absorption bands at around 400 nm ( 2B 1g → 2E g) and 780 nm ( 2B 1g → 2B 2g) of Cu 2+ ions, respectively. Emission bands at 422 and 512 nm are found for the 1 mol% CuO doped glass with excitations at 306 and 332 nm.

  5. Solution-Based Approaches to Fabrication of YBa2Cu3O7-δ (YBCO): Precursors of Tri-Fluoroacetate (TFA) and Nanoparticle Colloids

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S. M.; Su, J.; Chintamaneni, V.

    2007-10-01

    Detailed investigation of superconducting films of YBa2Cu3O7-δ (YBCO) prepared from solution-based precursors have been performed. Two precursors have been compared in this study: the presently used trifluoroacetate (TFA) solution and a recently developed colloidal suspension containing nanoparticles of mixed oxide. Detailed analyses of the evolution of microstructure and chemistry of the films have been performed, and process parameters have been correlated with final superconducting properties. Both films need two heating steps: a low temperature calcination and a higher temperature crystallization step. For TFA films, it was seen that the heating rate during calcination needs to be carefully optimized and is expected to be slow. For the alternate process using a nanoparticle precursor, a significantly faster calcination rate is possible. In the TFA process, the Ba ion remains as fluoride and the Y remains as oxyfluoride after calcination. This implies that, during the final crystallization stage to form YBCO, fluorine-containing gases will evolve, resulting in residual porosity. On the other hand, the film from the nanoparticle process is almost fully oxidized after calcination. Therefore, no gases evolve at the final firing (crystallization) stage, and the film has much lower porosity. The superconducting properties of both types of films are adequate, but the nanoparticle films appear to have persistently higher J c values. Moreover, they show improved flux pinning in higher magnetic fields, probably due to nanoscale precipitates of a Cu-rich phase. In addition, the nanocolloid films seem to show additionally enhanced flux pinning when doped with minute amounts of second phase precipitates. It therefore appears that, whereas the TFA process is already quite successful, the newly developed nanoparticle process has significant scope for additional improvement. It can be scaled-up with ease, and can be easily adapted to incorporate nanoscale flux pinning defects

  6. Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics

    PubMed Central

    Yang, F.; Han, M. Y.; Chang, F. G.

    2015-01-01

    We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10–8 mV at 50 K with a laser intensity of 502 mW/cm2. Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface. PMID:26099727

  7. Ideal band shape in the potential thermoelectric material CuAlO2: Comparison to NaxCoO2

    NASA Astrophysics Data System (ADS)

    Mori, Kouta; Sakakibara, Hirofumi; Usui, Hidetomo; Kuroki, Kazuhiko

    2013-08-01

    A potential thermoelectric material CuAlO2 is theoretically studied. We first construct a model Hamiltonian of CuAlO2 based on the first principles band calculation, and calculate the Seebeck coefficient. Then, we compare the model with that of a well-known thermoelectric material NaxCoO2, and discuss the similarities and the differences. It is found that the two materials are similar from an electronic structure viewpoint in that they have a peculiar pudding-mold type band shape, which is advantageous for thermoelectric materials. There are, however, some differences, and we analyze the origin of the difference from a microscopic viewpoint. The band shape (a very flat band top but with an overall wide bandwidth) of CuAlO2 is found to be even more ideal than that of NaxCoO2, and we predict that once a significant amount of holes is doped in CuAlO2, thermoelectric properties (especially the power factor) even better than those of NaxCoO2 can be expected.

  8. Tunable Microwave Components for Ku- and K-Band Satellite Communications

    NASA Technical Reports Server (NTRS)

    Miranada, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Subramanyam, G.

    1998-01-01

    The use of conductor/ferroelectric/dielectric thin film multilayer structures for frequency and phase agile components at frequencies at and above the Ku-band will be discussed. Among these components are edge coupled filters, microstripline ring resonators, and phase shifters. These structures were implemented using SrTiO3 (STO) ferroelectric thin films, with gold or YBa2Cu3O7-d (YBCO) high temperature superconducting (HTS) microstrip fines deposited by laser ablation on LaAlO3 (LAO) substrates. The performance of these structures in terms of tunability, operating temperature, frequency, and dc bias will be presented. Because of their small size, light weight, and low loss, these tunable microwave components are being studied very intensely at NASA as well as the commercial communication industry. An assessment of the progress made so far, and the issues yet to be solved for the successful integration of these components into the aforementioned communication systems will be presented.

  9. Three-dimensional charge density wave order in YBa 2Cu 3O 6.67 at high magnetic fields

    DOE PAGES

    Gerber, S.; Jang, H.; Nojiri, H.; ...

    2015-11-20

    In this study, charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa 2Cu 3O 6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. Themore » field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.« less

  10. Raman study of the thermal stability of HgBa 2CaCu 2O 6+δ and HgBa 2Ca 2Cu 3O 8+δ

    NASA Astrophysics Data System (ADS)

    Chang, H.; He, Z. H.; Meng, R. L.; Xue, Y. Y.; Chu, C. W.

    1995-02-01

    We studied the thermal stability of HgBa 2CaCu 2O 6+δ and HgBa 2Ca 2Cu 3O 8+δ at varying laser irradiation power. Each compound has two Raman bands around 570 and 590 cm -1 which are assigned to the vibrations of the interstitial oxygen in HgO δ layers and the apical oxygen in BaO layers, respectively. The 590 cm -1 band shifts position slightly with irradiation, and both the intensity and position of the 570 cm -1 band vary significantly with the laser power. The occupation factor of the interstitial oxygen is sensitive to the annealing temperature. At higher temperatures (550-600°C), both compounds decompose into various (Ba,Cu)-oxides such as Ba 1- xCa xCuO 2.

  11. Effect of microwave-enhanced superconductivity in YBa2Cu3O7 Bi-crystalline grain bounda ry weak-links

    NASA Technical Reports Server (NTRS)

    Fu, C. M.; Chen, C. M.; Lin, H. C.; Wu, K. H.; Juang, J. Y.; Uen, T. M.; Gou, Y. S.

    1995-01-01

    We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity (R(I) and the current-voltage (I-V) characteristics of YBa2Gu3O(7 - x) (YBCO) bicrystalline grain boundary weak-links (GBWL's), with grain boundary of three different tilt angles. The superconducting transition temperature, T(sub c), has significant enhancement upon microwave irradiation. The microwave enhanced T(sub c) is increased as a function of incident microwave power, but limited to an optimum power level. The GBWL's of 45 deg tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWL's of 36.8 deg tilt boundary has displayed a moderate response. In contrast, no enhancement of T(sub c) was observed in the GBWL's of 24 deg tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependent is hystertic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.

  12. Copper(II) perrhenate Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}: Synthesis from isopropanol and CuReO{sub 4}, structure and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailova, D., E-mail: d.mikhailova@ifw-dresden.de; Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden; Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden

    2015-12-15

    The crystal structure of Cu{sup +}Re{sup 7+}O{sub 4} is capable of a quasi-reversible incorporation of C{sub 3}H{sub 7}OH molecules. A room-temperature reaction between CuReO{sub 4} and C{sub 3}H{sub 7}OH under oxidizing conditions leads to the formation of a novel metal-organic hybrid compound Cu{sup 2+}(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}. Upon heating under reducing conditions, this compound transforms back into CuReO{sub 4}, albeit with ReO{sub 2} and metallic Cu as by-products. The crystal structure of Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} solved from single-crystal X-ray diffraction (Pbca, a=10.005(3) Å, b=7.833(2) Å, and c=19.180(5) Å) reveals layers of corner-sharing CuO{sub 6}-octahedra andmore » ReO{sub 4}-tetrahedra, whereas isopropyl groups are attached to both sides of these layers, thus providing additional connections within the layers through hydrogen bonds. Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} is paramagnetic down to 4 K because the spatial arrangement of the Cu{sup 2+} half-filled orbitals prevents magnetic superexchange. The paramagnetic effective moment of 2.0(1) μ{sub B} is slightly above the spin-only value and typical for Cu{sup 2+} ions. - Highlights: • Novel Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} compound has a sequence of inorganic and organic layers. • Hydrogen bonds provide an additional bonding Isopropanol molecules serve as a reducing agent during decomposition. • No direct Cu-O-Re-O-Cu connections via d{sub x2-y2} orbital of Cu{sup 2+} explain paramagnetism. • Hydrogen bonds provide an additional bonding. • Isopropanol molecules serve as a reducing agent during decomposition.« less

  13. Electronic structures of C u 2 O , C u 4 O 3 , and CuO: A joint experimental and theoretical study

    DOE PAGES

    Wang, Y.; Lany, S.; Ghanbaja, J.; ...

    2016-12-14

    We present a joint experimental and theoretical study for the electronic structures of copper oxides including Cu 2O, CuO, and the metastable mixed-valence oxide Cu 4O 3. The optical band gap is determined by experimental optical absorption coefficient, and the electronic structure in valence and conduction bands is probed by photoemission and electron energy loss spectroscopies, respectively. Furthermore, we compare our experimental results with many-body GW calculations utilizing an additional on-site potential for d-orbital energies that facilitates tractable and predictive computations. The side-by-side comparison between the three oxides, including a band insulator (Cu2O) and two Mott/charge-transfer insulators (CuO, Cu 4Omore » 3) leads to a consistent picture for the optical and band-structure properties of the Cu oxides, strongly supporting indirect band gaps of about 1.2 and 0.8 eV in CuO and Cu 4O 3, respectively. This comparison also points towards surface oxidation and reduction effects that can complicate the interpretation of the photoemission spectra.« less

  14. Unconventional critical state in YBa2Cu3O7-δ thin films with a vortex-pin lattice fabricated by masked He+ ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Zechner, G.; Mletschnig, K. L.; Lang, W.; Dosmailov, M.; Bodea, M. A.; Pedarnig, J. D.

    2018-04-01

    Thin superconducting YBa2Cu3O7-δ films are patterned with a vortex-pin lattice consisting of columnar defect regions (CDs) with 180 nm diameter and 300 nm spacing. They are fabricated by irradiation with 75 keV He+ ions through a stencil mask. Peaks of the critical current reveal the commensurate trapping of vortices in domains near the edges of the sample. Upon ramping an external magnetic field, the positions of the critical current peaks are shifted from their equilibrium values to lower magnetic fields in virgin and to higher fields in field-saturated down-sweep curves, respectively. Based on previous theoretical predictions, this irreversibility is interpreted as a nonuniform, terrace-like critical state, in which individual domains are occupied by a constant number of vortices per pinning site. The magnetoresistance, probed at low current densities, is hysteretic and angle dependent and exhibits minima that correspond to the peaks of the critical current. The minima’s positions scale with the component of the magnetic field parallel to the axes of the CDs, as long as the tilted vortices can be accommodated within the CDs. This behavior, different from unirradiated films, confirms that the CDs dominate the pinning.

  15. Etude de l'halogénation de EuBa2Cu3O6

    NASA Astrophysics Data System (ADS)

    Tshimanga Kabeya, D.; Mokhtari, M.; Perrin, C.; Sergent, M.; Grushko, Yu.; Kokovina, L.; Rozhniakova, N.

    1994-11-01

    Sintered samples of EuBa2Cu3O6 have been halogenated at low temperature (t < 300 ^circC) by treatments under NF3 or CCl4 flow diluted in nitrogen, or by reaction with iodine in sealed tubes. Such mild conditions of synthesis allowed to avoid the decomposition of the material during the reactions. The incorporation of the halogen in the sample has been evidenced by the weight gain, by the evolution of the unit-cell parameters and by SEM and EDS analyses. After fluorination and chlorination, the samples become superconducting, but no superconducting behaviour is observed after iodination. These results are compared to the ones previously obtained during the halogenation of YBa2Cu3O6. Des échantillons frittés de EuBa2Cu3O6 ont été halogénés à basse température (t < 300 ^circC) par traitement sous courant de NF3 ou de CCl4 dilué dans de l'azote, ou par réaction avec de l'iode en tube scellé. De telles conditions de synthèse ont permis de limiter la décomposition du matériau au cours de la réaction. L'incorporation de l'halogène dans l'échantillon est mise en évidence par variation de masse, par l'évolution des paramètres de maille, par observations au MEB et analyses EDS. Après fluoration et chloration l'échantillon devient supraconducteur, tandis qu'aucun comportement supraconducteur n'est observé après iodation. Ces résultats sont comparés avec ceux qui avaient été obtenus préalablement lors de l'halogénation de YBa2Cu3O6.

  16. Influence of magnetic materials on the transport properties of superconducting composite conductors

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Majoros, M.; Campbell, A. M.; Hopkins, S. C.; Rutter, N. A.; Kozlowski, G.; Peterson, T. L.

    2009-03-01

    Magnetic materials can help to improve the performance of practical superconductors on the macro/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces ac losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On the one hand, magnetic components reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause the destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  17. Effect of synthesis method on structure, band gap and surface morphology of delafossite oxides, CuAlO2 and CuFeO2

    NASA Astrophysics Data System (ADS)

    Shah, Aadil Abass; Azam, Ameer

    2018-04-01

    In this research work we have reported the synthesis of two different delafossites, CuAlO2 and CuFeO2 by two different synthesis methods viz hydrothermal method and the combustion method. The effect of synthesis on structure, band gap and morphology of the synthesized delafossites was carried out using various techniques. The phase and structure of the synthesized delafossites were studied and confirmed using X-ray diffraction and the crystallite size was calculated. FTIR measurements showed the presence of different stretching modes and functional groups in the synthesized oxides. The surface morphology was studied using the scanning electron microscopy. The band gap of the synthesized delafossite oxides was found to be in the range of 2.8 and 3.3 eV.

  18. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    PubMed Central

    Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  19. a Reexamination of the Red Band of CuO: Analysis of the [16.5] ^{2}Σ^{-} - X ^{2}Π_{i} Transition of ^{63}CuO and ^{65}CuO

    NASA Astrophysics Data System (ADS)

    Harms, Jack C.; Grames, Ethan M.; Yun, Sirkhoo; Ahmed, Bushra; O'Brien, Leah C.; O'Brien, James J.

    2017-06-01

    The red band of CuO has been observed at high resolution using Intracavity Laser Spectroscopy (ILS). The red band was rotationally analyzed in 1974 by Appelblad and Lagerqvist and a portion of the band structure was assigned as the spectrum of the [16.5] A ^{2}Σ^{+} - X ^{2}Π_{i} transition. Subsequent analyses of CuO showed that the character of the A state was ^{2}Σ^{-} in character, and thus the Λ-doubling parameter, p, was inverted, and the e/f parity assignments were reversed. In this study, the spectrum of CuO was recorded in the in the regions 16,150 \\wn - 16,270 \\wn and 16,405 \\wn - 16,545 \\wn. The CuO molecules were produced in the plasma discharge of a copper hollow cathode within the cavity of a tunable dye laser, using 0.6 torr of argon as the sputter gas and a trace amount of O_2 as the source of oxygen. The plasma spectra were recorded intermittently with spectra from an external I_2 cell, and line positions from the widely used Iodine Atlas were used for calibration. In uncongested regions of the spectrum, both ^{63}CuO and ^{65}CuO were observed with appreciable intensity. The resulting spectra were rotationally analyzed for both isotopologues, fitting the data as a ^{2}Σ^{-} - ^{2}Π_{i} transition using PGOPHER. Line positions from the millimeter wave and FTIR studies of ^{63}CuO performed in the late 1990s were included in the fit to overcome potential complications due to the ambiguous parity assignments prevalent in the CuO literature. Previously unreported molecular constants were obtained from the fit for ^{65}CuO, and the constants of ^{63}CuO are determined to at least an order of magnitude greater than the results of Appelblad and Lagerqvist. Results of this analysis will be presented.

  20. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    NASA Astrophysics Data System (ADS)

    Srisittipokakun, N.; Ruangtaweep, Y.; Rachniyom, W.; Boonin, K.; Kaewkhao, J.

    In this research, glass productions from rice husk ash (RHA) and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g) due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration) in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm) and Fe2+ (1050 nm) ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction.

  1. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, AX; Khatri, N; Liu, YH

    BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 Kmore » to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.« less

  2. Preparation, patterning, and properties of thin YBa2Cu3O(7-delta) films

    NASA Astrophysics Data System (ADS)

    de Vries, J. W. C.; Dam, B.; Heijman, M. G. J.; Stollman, G. M.; Gijs, M. A. M.

    1988-05-01

    High T(c) superconducting thin films were prepared on (100) SrTiO3 substrates by dc triode sputtering and subsequent annealing. In these films Hall-bar structures having a width down to 5 microns were patterned using a reactive ion-etching technique. Superconductivity above 77 K was observed. When compared with the original film there is only a small reduction in T(c). The critical current density determined by electrical measurements is substantially reduced. On the other hand, the critical current density in the bulk of the grains as measured by the torque on a film is not reduced by the patterning process. It is suggested that superconductor-normal metal-superconductor junctions between the grains account for this difference.

  3. Photoemission study of the electronic structure (Pr 0.2La 0.8)(Ba 1.875La 0.125)Cu 3O 7- gd

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-11-01

    Photoemission results from the Pr and La doped 1 2 3 system (Pr 0.2La 0.8) (Ba 1.875La 0.125)Cu 3O 7-gd are reported. The core level spectra show strong resemblance to those of other compounds of the 1 2 3 and 2 1 4 systems. The Cu 2 p satellite intensity is found to be ˜ 35% of the main Cu 2 p line, and the O 1 s core level spectra, exhibiting a clear doublet, show evidence of extrinsic oxygen. The clear correlation between the intensities of certain features in the valence band and the amount of extrinsic oxygen, as monitored by the O 1 s core level spectra, is explicitly addressed.

  4. The robustness of high-Tc superconductivity in underdoped YBa2Cu3O6+x investigated in under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Harrison, Neil; Hsu, Y.-T.; Hartstein, M.; Chan, M.; Porras, J.; Loew, T.; Le Tacon, M.; Lonzarich, G.; Keimer, B.; Flux, V.; Sebastian, S.

    A central unresolved mystery in high-Tc superconductivity is whether the pairing amplitude is small in the underdoped regime and relates to the superfluid density or whether it is large and relate to the intrinsic energy scales of the Mott insulating parent state. The magnetic field provides a sensitive probe of the pairing amplitude. However, experimental probes of the extent of the vortex state in temperature and magnetic field have thus far been indirect and hence subject to debate. Here we report measurements over a broad range of temperature and magnetic fields which we use to probe the extent of the vortex region in underdoped YBa2Cu3O6+x. and its interplay with quantum oscillations. N.H. acknowledges UU DOE BES Support for ''Science of 100 Tesla''.

  5. Formation Mechanism of CuAlO2 Prepared by Rapid Thermal Annealing of Al2O3/Cu2O/Sapphire Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shih, C. H.; Tseng, B. H.

    Single-phase CuAlO2 films were successfully prepared by thin-film reaction of an Al2O3/Cu2O/sapphire sandwich structure. We found that the processing parameters, such as heating rate, holding temperature and annealing ambient, were all crucial to form CuAlO2 without second phases. Thermal annealing in pure oxygen ambient with a lower temperature ramp rate might result in the formation of CuAl2O4 in addition to CuAlO2, since part of Cu2O was oxidized to form CuO and caused the change in reaction path, i.e. CuO + Al2O3CuAl2O4. Typical annealing conditions successful to prepare single-phase CuAlO2 would be to heat the sample with a temperature rampt rate higher than 7.3 °C/sec and hold the temperature at 1100 °C in air ambient. The formation mechanism of CuAlO2 has also been studied by interrupting the reaction after a short period of annealing. TEM observations showed that the top Al2O3 layer with amorphous structure reacted immediately with Cu2O to form CuAlO2 in the early stage and then the remaining Cu2O reacted with the sapphire substrate.

  6. Spinel, YbFe2O4, and Yb2Fe3O7 types of structure for compounds in the In2O3 and Sc2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn) at temperatures over 1000C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    In the Sc2O3-Ga2O3-CuO, Sc2O3-Ga2O3-ZnO, and Sc2O3-Al2O3-CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFeT MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAl-CuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations. 5more » references, 2 tables.« less

  7. First principles Study on Transparent High-Tc Superconductivity in hole-doped Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-02-01

    The CuAlO2 is the transparent p-type conductor without any intentional doping. Transparent superdoncutivity and high thermoelectric power are suggested in p-type CuAlO2 [1]. Katayama-Yoshida et al. proposed that it may cause a strong electron-phonon interaction and a superconductivity. But, the calculation of superconducting critical temperature Tc is not performed. We performed the first principles calculation about the Tc of hole-doped CuAlO2 by shifting the Fermi level rigidly. In lightly hole-doped CuAlO2, the Fermi level is located at Cu and O anti-bonding band. The electrons of this band strongly interact with the A1L1 phonon mode because the direction of O-Cu-O dumbbell is parallel to the oscillation direction of the A1L1 phonon mode. As a result, Tc of lightly hole-doped CuAlO2 is about 50 K. We also discuss the materials design to enhance the Tc based on the charge-excitation-induced negative effective U system.[4pt] [1] H. Katayama-Yoshida, T. Koyanagi, H. Funashima, H. Harima, A. Yanase: Solid State Communication 126 (2003) 135. [0pt] [2] A. Nakanishi and H. Katayama-Yoshida: Solid State Communication, in printing. (arXiv:1107.2477v3

  8. Phase relationships and cation disorder in RE{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7+{delta}}, RE = Pr, Nd, Sm, Gd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, M.J.; Wu, H.; Dennis, K.W.

    1995-12-31

    Unlike Y123 which forms only a stoichiometric compound, the light arare earth elements (LRE) form a solid solution LRE{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7+{delta}} (LRE123ss), with increasing substitution of the LRE{sup 3+} for the Ba{sup 2+} as the ionic radii of the LRE increases. The sub-solidus phase relationships around the LRE123ss change for La, Pr and Nd, but are similar for Sm and Gd. However, the solubility limit decreases with decreasing ionic radii. In addition, the solubility limits for Sm and Gd are strongly influenced by PO{sub 2} during high temperature annealing. The range of solubility is, for any given LREmore » system, strongly dependent on the oxygen partial pressure (PO{sub 2}) providing a new means by which to control the microstructure in the RE123 system.« less

  9. Unravelling the low thermal expansion coefficient of cation-substituted YBaCo 4O 7

    DOE PAGES

    Manthiram, Arumugam; Huq, Ashfia; Kan, Wang Hay; ...

    2016-01-12

    With an aim to understand the origin of the low thermal expansion coefficients (TECs), cation substituted YBaCo 4O 7-type oxides have been investigated by in-situ neutron diffraction, bond valence sum (BVS), thermogravimetric analysis, and dilatometry. The compositions YBaCo 4O 7+δ, Y 0.9ln 0.1BaCo 3ZnO 7+δ, and Y 0.9ln 0.1BaCo 3Zn 0.6Fe 0.4O 7+δ) were synthesized by solid-state reaction at 1200 °C. Here, Rietveld refinement of the joint synchrotron X-ray and neutron diffraction data shows that the Zn and Fe dopants have different preferences to substitute the Co ions in the 6c and 2a sites.

  10. Development of Long REBCO with BMO Coated Conductors by PLD Method with High Production Rate

    NASA Astrophysics Data System (ADS)

    Ibi, A.; Yoshida, T.; Taneda, T.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.

    We have been developing long REBa2Cu3O7-δ (RE: Y, Gd and Eu etc.) with BaMO3 (M: Zr, Sn and Hf etc.) coated conductors by the combination of the ion-beam assisted deposition (IBAD) and the pulsed laser deposition (PLD) methods. REBa2Cu3O7-δ with BaMO3 coated conductors showed high in-field performance, therefore, these coated conductors could be expected for the industrial and commercial applications at high temperatures in magnetic fields. However, to realize the low production cost for long REBa2Cu3O7-δ with BaMO3 coated conductors, improvement of the production rate of the REBa2Cu3O7-δ layers containing BaMO3 rods with maintaining high superconducting properties is required. To solve these problems, we have tried deposition of the REBa2Cu3O7-δ layers with high superconducting properties by the PLD method with high production rate. As a result, we have successfully fabricated EuBa2Cu3O7-δ layers containing BaHfO3 rods with high in-field Jc and Ic by the PLD method with high production rate. This EuBa2Cu3O7-δ with BaHfO3 coated conductor exhibit a high Ic value of 412 and 48.7 A/cm-width at 77 K in self-field and 3 T, respectively at the deposition rate of about 40 μm/h and the production rate of 10 m/h for a 1.35 μm EuBCO layer thick.

  11. The cause of ‘weak-link’ grain boundary behaviour in polycrystalline Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Guanmei; Raine, Mark J.; Hampshire, Damian P.

    2018-02-01

    The detrimental effects of grain boundaries have long been considered responsible for the low critical current densities ({J}{{c}}) in high temperature superconductors. In this paper, we apply the quantitative approach used to identify the cause of the ‘weak-link’ grain boundary behaviour in YBa2Cu3O7 (Wang et al 2017 Supercond. Sci Technol. 30 104001), to the Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 materials that we have fabricated. Magnetic and transport measurements are used to characterise the grain and grain boundary properties of micro- and nanocrystalline materials. Magnetisation measurements on all nanocrystalline materials show non-Bean-like behaviour and are consistent with surface pinning. Bi2Sr2CaCu2O8: our microcrystalline material has very low grain boundary resistivity ({ρ }{{GB}}), which is similar to that of the grains ({ρ }{{G}}) such that {ρ }{{GB}}≈ {ρ }{{G}}=2× {10}-5 {{Ω }}{{m}} (assuming a grain boundary thickness (d) of 1 nm) equivalent to an areal resistivity of {ρ }{{G}}=2× {10}-14 {{{Ω }}{{m}}}2. The transport {J}{{c}} values are consistent with well-connected grains and very weak grain boundary pinning. However, unlike low temperature superconductors (LTS) in which decreasing grain size increases the pinning along the grain boundary channels, any increase in pinning produced by making the grains in our Bi2Sr2CaCu2O8 materials nanocrystalline was completely offset by a decrease in the depairing current density of the grain boundaries caused by their high resistivity. We suggest a different approach to increasing {J}{{c}} from that used in LTS materials, namely incorporating additional strong grain and grain boundary pinning sites in microcrystalline materials to produce high {J}{{c}} values. Bi2Sr2Ca2Cu3O10: both our micro- and nanocrystalline samples have {ρ }{{GB}}/{ρ }{{G}} of at least 103. This causes strong suppression of {J}{{c}} across the grain boundaries, which explains the low transport {J}{{c}} values we find

  12. Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces

    NASA Astrophysics Data System (ADS)

    Li, Peiqiang; Wang, Huying; Xu, Jinfeng; Jing, Hua; Zhang, Jun; Han, Haixiang; Lu, Fusui

    2013-11-01

    In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1 cm-2 after 6 h, respectively. This high-efficiency catalyst with photoelectric dual catalytic interfaces has a great guidance and reference significance for CO2 reduction to liquid carbon fuels.In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1

  13. New Phases of YBaCuGeO Superconductors Identified from X-ray Diffraction and Infra-red Absorption Measurements

    NASA Astrophysics Data System (ADS)

    Abo-Arais, Ahmed; Dawoud, Mohamad Ahmad Taher

    2005-01-01

    X-ray powder diffraction patterns and infra-red absorption spectra have been evaluated and analysed for the Y1 Ba2 Cu3 O7-d - Gex compound samples prepared by the solid state reaction with x values ranging from 0.0 to 1.13. All samples show bulk superconductivity above liquid nitrogen temperature using the levitation test (Meissner effect). Samples with Ge content up to x = 0.2 have offset Tc between 83K and 92K while the sample with x = 1.13 shows semiconducting behavior above 100K. As a result of the solid state interaction between YBCO and Ge, new phases are observed and determined, mainly three phases are concluded from X-ray powder diffraction analysis: (i) Ba2GeO4 (ii) Y2BaCuO5 (iii) BaCO3. The unit cell parameters a, b and c of the orthorhombic superconducting phase are calculated for all the prepared samples. The anisotropy factor is evaluated and related to the new structural phases in YBCO-Ge composite system. The I-R absorption spectra for the samples with orthorhombic symmetry have been determined. The phonon modes between ~ 400 cm-1 and 630 cm-1 are attributed to the Cu - O octahedron and pyramid vibrations for the CuO2 -planes and CuO-chains, while the peaks in the range from ~ 700 cm-1 to ~ 860 cm-1 may be due to defects such as the new phase Ba2GeO4 and the green phase Y2BaCuO5. The obtained results are discussed according to the superconductor - semi-conductor composite model and with the phonon-mediated charge transfer between CuO2 -planes and CuO- chains through apex oxygen (BaO).

  14. On the role of precursor powder composition in controlling microstructure, flux pinning, and the critical current density of Ag/Bi$$_2$$Sr$$_2$$CaCu$$_2$$O$$_x$$ conductors

    DOE PAGES

    Li, Pei; Naderi, Golsa; Schwartz, Justin; ...

    2017-01-04

    Precursor powder composition is known to strongly affect the critical current density (J c) of Ag/Bimore » $$_2$$Sr$$_2$$CaCu$$_2$$O$$_x$$ (Bi-2212) wires. However, reasons for such J c dependence have not yet been fully understood, compromising our ability to achieve further optimization. In this paper, we systematically examined superconducting properties, microstructural evolution and phase transformation, and grain boundaries of Bi-2212 conductors fabricated from precursor powders with a range of compositions using a combination of transport-current measurements, a quench technique to freeze microstructures at high temperatures during heat treatment, and scanning transmission electron microscopy (STEM). Samples include both dip-coated tapes and round wires, among which a commercial round wire carries a high J c of 7600 A mm -2 at 4.2 K, self-field and 2600 A mm -2 at 4.2 K, 20 T, respectively. In the melt, this high-J c conductor, made using a composition of Bi 2.17Sr 1.94Ca 0.89Cu 2O x, contains a uniform dispersion of fine alkaline-earth cuprate (AEC) and copper-free solid phases, whereas several low-J c conductors contain large AEC particles. Such significant differences in the phase morphologies in the melt are accompanied by a drastic difference in the formation kinetics of Bi-2212 during recrystallization cooling. STEM studies show that Bi-2212 grain colonies in the high-J c conductors have a high density of Bi 2Sr 2CuO y (Bi-2201) intergrowths, whereas a low-J c conductor, made using Bi 2.14Sr 1.66Ca 1.24Cu 1.96O x , is nearly free of them. STEM investigation shows grain boundaries in low-J c conductors are often insulated with a Bi-rich amorphous phase. Finally, high-J c conductors also show higher flux-pinning strength, which we ascribe to their higher Bi-2201 intergrowth density.« less

  15. On the role of precursor powder composition in controlling microstructure, flux pinning, and the critical current density of Ag/Bi$$_2$$Sr$$_2$$CaCu$$_2$$O$$_x$$ conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Pei; Naderi, Golsa; Schwartz, Justin

    Precursor powder composition is known to strongly affect the critical current density (J c) of Ag/Bimore » $$_2$$Sr$$_2$$CaCu$$_2$$O$$_x$$ (Bi-2212) wires. However, reasons for such J c dependence have not yet been fully understood, compromising our ability to achieve further optimization. In this paper, we systematically examined superconducting properties, microstructural evolution and phase transformation, and grain boundaries of Bi-2212 conductors fabricated from precursor powders with a range of compositions using a combination of transport-current measurements, a quench technique to freeze microstructures at high temperatures during heat treatment, and scanning transmission electron microscopy (STEM). Samples include both dip-coated tapes and round wires, among which a commercial round wire carries a high J c of 7600 A mm -2 at 4.2 K, self-field and 2600 A mm -2 at 4.2 K, 20 T, respectively. In the melt, this high-J c conductor, made using a composition of Bi 2.17Sr 1.94Ca 0.89Cu 2O x, contains a uniform dispersion of fine alkaline-earth cuprate (AEC) and copper-free solid phases, whereas several low-J c conductors contain large AEC particles. Such significant differences in the phase morphologies in the melt are accompanied by a drastic difference in the formation kinetics of Bi-2212 during recrystallization cooling. STEM studies show that Bi-2212 grain colonies in the high-J c conductors have a high density of Bi 2Sr 2CuO y (Bi-2201) intergrowths, whereas a low-J c conductor, made using Bi 2.14Sr 1.66Ca 1.24Cu 1.96O x , is nearly free of them. STEM investigation shows grain boundaries in low-J c conductors are often insulated with a Bi-rich amorphous phase. Finally, high-J c conductors also show higher flux-pinning strength, which we ascribe to their higher Bi-2201 intergrowth density.« less

  16. Metal-organic framework: Structure and magnetic properties of [Cu3(BTC)2 (L)x·(CuO)y]n (L=H2O, DMF)

    NASA Astrophysics Data System (ADS)

    da Silva, Gilvaldo G.; Machado, F. L. A.; Junior, S. Alves; Padrón-Hernández, E.

    2017-09-01

    The compounds [Cu3(BTC)2(L)x·(CuO)y], with BTC (benzene 1,3,5-tricarboxylate) and L (H2O or DMF) were prepared using electrochemical synthesis. Structural and morphologic characterizations were performed by X-ray diffraction and scanning electronic microscopy. The [Cu3(BTC)2 (L)x·(CuO)y] contain dimeric [Cu2(O2CR)]4 units with three possible spin configurations arising from Cu(II) 3d9 states and Cu-Cu δ bond. We observed an unusual very strong antiferromagnetic coupling in temperatures ranging from 100 K to 350 K for [Cu3(BTC)2.(H2O)3. (CuO)y]n. The inverse susceptibility versus temperature shows a linearity from 20 K up to 65 K fitting the Curie-Weiss law, for L = DMF. The CW X-band electron paramagnetic resonance spectroscopy (EPR) was important to explore the coordination state for DMF in the network. It was observed that DMF is located in an equatorial geometry of the coordination network experimenting interactions from the nitrogen and copper ions.

  17. Strong flux pinning at 4.2 K in SmBa2Cu3O y coated conductors with BaHfO3 nanorods controlled by low growth temperature

    NASA Astrophysics Data System (ADS)

    Miura, S.; Tsuchiya, Y.; Yoshida, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ibi, A.; Izumi, T.

    2017-08-01

    In order to apply REBa2Cu3O y (REBCO, RE = rare earth elements or Y) coated conductors in high magnetic field, coil-based applications, the isotropic improvement of their critical current performance with respect to the directions of the magnetic field under these operating conditions is required. Most applications operate at temperatures lower than 50 K and magnetic fields over 2 T. In this study, the improvement of critical current density (J c) performance for various applied magnetic field directions was achieved by controlling the nanostructure of the BaHfO3 (BHO)-doped SmBa2Cu3O y (SmBCO) films on metallic substrates. The corresponding minimum J c value of the films at 40 K under an applied 3 T field was 5.2 MA cm-2, which is over ten times higher than that of a fully optimized Nb-Ti wire at 4.2 K. At 4.2 K, under a 17.5 T field, a flux pinning force density of 1.4 TN m-3 for B//c was realized; this value is among the highest values reported for REBCO films to date. More importantly, the F p for B//c corresponds to the minimum value for various applied magnetic field directions. We investigated the dominant flux pinning centers of films at 4.2 K using the anisotropic scaling approach based on the effective mass model. The dominant flux pinning centers are random pinning centers at 4.2 K, i.e., a high pinning performance was achieved by the high number density of random pins in the matrix of the BHO-doped SmBCO films.

  18. Upper critical field of high temperature Y(1.2)Ba(0.8)CuO(4-delta) superconductor

    NASA Technical Reports Server (NTRS)

    Hor, P. H.; Meng, R. L.; Huang, J. Z.; Chu, C. W.; Huang, C. Y.

    1987-01-01

    A 20-T high-field magnet is used to measure electrical resistance as a function of temperature in the Y(1.2)Ba(0.8)CuO(4-delta) superconductor. The temperature dependence of the critical field, Hc2(T), is obtained from the superconduction transition. A Hc2(O) value of 166T is determined which is the highest critical field yet reported. Results show Y(1.2)Ba(0.8)CuO(4-delta) to be a 90K Type-II superconductor, with a lower critical field Hc1(O) of about 0.2T and a penetration depth of about 290 A.

  19. Chemical Trend of Superconducting Critical Temperatures in Hole-Doped CuBO2, CuAlO2, CuGaO2, and CuInO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi; Ishikawa, Takahiro; Shimizu, Katsuya

    2016-09-01

    We calculated the superconducting critical temperature (Tc) for hole-doped CuXO2 (X = B, Al, Ga, and In) compounds using first-principles calculations based on rigid band model. The compounds with X = Al, Ga, and In have delafosite-type structures and take maximum Tc values at 0.2-0.3 with respect to the number of holes (Nh) in the unit-cell: 50 K for CuAlO2, 10 K for CuGaO2, and 1 K for CuInO2. The decrease of Tc for this change in X is involved by covalency reduction and lattice softening associated with the increase of ionic mass and radius. For CuBO2 which is a lighter compound than CuAlO2, the delafosite structure is unstable and a body-centered tetragonal structure emerges as the most stable structure. As the results, the electron-phonon interaction is decreased and Tc is lower by approximately 43 K than that of CuAlO2 at the hole-doping conditions of Nh = 0.2-0.3.

  20. Spatial variations in a.c. susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hepp, Aloysius F.; Deguire, Mark R.; Dolhert, Leonard E.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu30(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  1. Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3

    NASA Astrophysics Data System (ADS)

    Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.

    2012-05-01

    The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.

  2. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Majoros, M.

    2009-06-01

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  3. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7-x high-Tc superconducting bulks and NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Li, Jipeng; Zheng, Jun; Huang, Huan; Li, Yanxing; Li, Haitao; Deng, Zigang

    2017-10-01

    The flux pinning effect of YBa2Cu3O7-x high temperature superconducting (HTS) bulk can achieve self-stable levitation over a permanent magnet or magnet array. Devices based on this phenomenon have been widely developed. However, the self-stable flux pinning effect is not unconditional, under disturbances, for example. To disclose the roots of this amazing self-stable levitation phenomenon in theory, mathematical and mechanical calculations using Lyapunov's stability theorem and the Hurwitz criterion were performed under the conditions of magnetic levitation and suspension of HTS bulk near permanent magnets in Halbach array. It is found that the whole dynamical system, in the case of levitation, has only one equilibrium solution, and the singular point is a stable focus. In the general case of suspension, the system has two singular points: one is a stable focus, and the other is an unstable saddle. With the variation of suspension force, the two first-order singular points mentioned earlier will get closer and closer, and finally degenerate to a high-order singular point, which means the stable region gets smaller and smaller, and finally vanishes. According to the center manifold theorem, the high-order singular point is unstable. With the interaction force varying, the HTS suspension dynamical system undergoes a saddle-node bifurcation. Moreover, a deficient damping can also decrease the stable region. These findings, together with existing experiments, could enlighten the improvement of HTS devices with strong anti-interference ability.

  4. DSC and optical studies on BaO-Li{sub 2}O-B{sub 2}O{sub 3}-CuO glass system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok, E-mail: ashokbhogi@gmail.com; Kumar, R. Vijaya; Ahmmad, Shaik Kareem

    2016-05-06

    Glasses with composition 15BaO-25Li{sub 2}O-(60-x)B{sub 2}O{sub 3} -xCuO (x= 0, 0.2, 0.4, 0.6, 0.8 and 1 mol%) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and density measurements. Optical absorption studies were carried out as a function of copper ion concentration. The optical absorption spectra of studied glasses containing copper oxide exhibit a single broad band around 761nm which has been assigned to the 2B{sub 1g}→2B{sub 2g} transition. From these studies, the variations in the values of glass transition temperature (T{sub g}) have been observed. The fundamental absorption edgemore » has been determined from the optical absorption spectra. The values of optical band gap and Urbach energy were determined with increase in concentration of CuO. The variations in density, glass transition temperature, optical band gap and Urbach energy with CuO content have been discussed in terms of changes in the glass structure. The analysis of these results indicated that copper ions mostly exist in Cu{sup 2+} state in these glasses when the concentration of CuO ≤ 0.8 mol% and above this concentration copper ions seem to subsist in Cu{sup 1+} state.« less

  5. Thermal response of large area high temperature superconducting YBaCuO infrared bolometers

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1991-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.

  6. Magnetic texturing due to the partial ordering of Fe+3 and Cu+2 in NdBaCuFeO5

    NASA Astrophysics Data System (ADS)

    Pissas, M.

    2017-06-01

    The crystal and magnetic structure of the oxygen deficient double perovskite NdBaCuFeO5 was studied, using neutron powder diffraction data. The structure was refined from neutron powder diffraction data using the space groups P 4 / mmm and P 4 mm . For 2K ⩽ T ⩽TN2 = 260K three families of magnetic Bragg peaks exist. These peaks can be indexed with commensurate propagation vectors k1 =[1/2 1/2 1/2], k2 =[1/2 1/2 0] and the incommensurate k3 =[1/2 1/2 0.4]. Above TN2 only magnetic Bragg peaks originated from k1 and k2 propagation, were observed. The incommensurate magnetic structure can be attributed to a circular inclined spiral ordering as in YBaCuFeO5 compound.

  7. Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1988-12-01

    High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.

  8. Magnetic phase diagram of underdoped YBa 2 Cu 3 O y inferred from torque magnetization and thermal conductivity

    DOE PAGES

    Yu, Fan; Hirschberger, Max; Loew, Toshinao; ...

    2016-10-24

    We obtain the magnetic phase diagram in the underdoped cuprate YBa2Cu3Oy using torque magnetometry at temperatures 0.3–70 K and magnetic fields up to 45 T. At low fields, vortices (quantized flux tubes) form a vortex solid that is strongly pinned to the lattice. At large fields, melting of the solid to a vortex liquid produces nonzero dissipation. However, the vortex liquid persists to fields above 41 T. We have also mapped out the “transition” fields at which the charge-density–wave state (observed in X-ray diffraction experiments) becomes stable. Our results show that, in intense fields, superconductivity adjusts to coexist with themore » charge-density wave, but the Cooper pairs, which define the superconducting fluid, survive to fields well above 41 T.« less

  9. Oxygen Vacancies in Shape Controlled Cu2O/Reduced Graphene Oxide/In2O3 Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants.

    PubMed

    Liu, Jie; Ke, Jun; Li, Degang; Sun, Hongqi; Liang, Ping; Duan, Xiaoguang; Tian, Wenjie; Tadé, Moses O; Liu, Shaomin; Wang, Shaobin

    2017-04-05

    A novel shape controlled Cu 2 O/reduced graphene oxide/In 2 O 3 (Cu 2 O/RGO/In 2 O 3 ) hybrid with abundant oxygen vacancies was prepared by a facile, surfactant-free method. The hybrid photocatalyst exhibits an increased photocatalytic activity in water oxidation and degradation of environmental pollutants (methylene blue and Cr 6+ solutions) compared with pure In 2 O 3 and Cu 2 O materials. The presence of oxygen vacancies in Cu 2 O/RGO/In 2 O 3 and the formation of heterojunction between In 2 O 3 and Cu 2 O induce extra diffusive electronic states above the valence band (VB) edge and reduce the band gap of the hybrid consequently. Besides, the increased activity of Cu 2 O/RGO/In 2 O 3 hybrid is also attributed to the alignment of band edge, a process that is assisted by different Fermi levels between In 2 O 3 and Cu 2 O, as well as the charge transfer and distribution onto the graphene sheets, which causes the downshift of VB of In 2 O 3 and the significant increase in its oxidation potential. Additionally, a built-in electric field is generated on the interface of n-type In 2 O 3 and p-type Cu 2 O, suppressing the recombination of photoinduced electron-hole pairs and allowing the photogenerated electrons and holes to participate in the reduction and oxidation reactions for oxidizing water molecules and pollutants more efficiently.

  10. Phase relations in the system Cu-Gd-O and Gibbs energy of formation of CuGd[sub 2]O[sub 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, K.T.; Mathews, T.; Hajra, J.P.

    1993-07-01

    The phase relations in the system Cu-Gd-O have been determined at 1,273 K by X-ray diffraction, optical microscopy, and electron microprobe analysis of samples equilibrated in quartz ampules and in pure oxygen. Only one ternary compound, CuGd[sub 2]O[sub 4], was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt, Cu[sub 2]O + CuGd[sub 2]O[sub 4] + Gd[sub 2]O[sub 3]//(Y[sub 2]O[sub 3])ZrO[sub 2]//CuO + Cu[sub 2]O, Pt in the temperature range of 900 to 1,350 K. For the formation of CuGd[sub 2]O[sub 4] from its binary component oxides, CuOmore » (s) + Gd[sub 2]O[sub 3] (s) [r arrow] CuGd[sub 2]O[sub 4] (s) [Delta]G[degree] = 8230 - 11.2T([plus minus]50)J/mol. Since the formation is endothermic, CuGd[sub 2]O[sub 4] becomes thermodynamically unstable with respect to CuO and Gd[sub 2]O[sub 3] below 735 K. When the oxygen partial pressure over CuGd[sub 2]O[sub 4] is lowered, it decomposes according to the reaction 4CuGd[sub 2]O[sub 4] (s) [r arrow] 4Gd[sub 2]O[sub 3] (s) + 2Cu[sub 2]O (s) + O[sub 2] (g) for which the equilibrium oxygen potential is given by [Delta][mu][sub o][sub 2] = [minus]227,970 + 143.2T([plus minus]500)J/mol. An oxygen potential diagram for the system Cu-Gd-O at 1,273 is presented.« less

  11. Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion

    NASA Astrophysics Data System (ADS)

    Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak

    2018-02-01

    The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.

  12. The Superconductors That Magnets Really Want: What Stands in the Way? (Superconductors for Accelerator Use: What Next and How Close is the Ideal Conductor?)

    ScienceCinema

    Larbalestier, David

    2018-01-11

    There are over 5000 superconducting materials but only about 5 have ever been useful for applications in magnets, while HEP, which has been so vital for the development of superconducting magnet technology has made virtually every magnet out of just one, the simple bcc alloy Nb-Ti with Tc of 9 K and upper critical field ~ 14T (at 2K). Significant demonstrations of the capability of the brittle intermetallic Nb3Sn have shown that fields of more than 15 T can be generated in dipole form. But Nb-Ti and Nb3Sn are staid, conventional superconductors, far from the cutting edge of superconducting science research where cuprates like YBa2Cu3O7-x and Bi2Sr2CaCu2Ox remain at the scientific forefront and in 2008 were joined by the recently discovered Fe-As pnictide superconductors. What could it mean to have materials for magnets with 10 times the Tc of Nb-Ti (90-120 K) and 3 or more times the critical field (100-240 T)? One enormous barrier is that higher Tc so far always means more complexity and a more localized superconducting interaction which is sensitive to local loss of superconductivity. The issue that has made the cuprate high temperature superconductors so hard to apply is that grain boundaries which form a 3D network in any practical wire form, easily acquire degraded superconducting properties. But conductors can now be made with extreme texture so that grain boundaries are minimized. Moreover almost practical conductors of Bi2Sr2CaCu2Ox and YBa2Cu3O7-x are now are in production and in late 2008 we were, at the Magnet Lab, able to make small solenoids operating at high current density in fields of 32 and almost 34 T respectively. Within the HEP community, there is enthusiasm to embrace HTS conductors for new very high field machines that could, like the Muon Collider, use fields of 30-50 T. In my talk I would like to explore the underlying science controlling such potential applications.

  13. Doped Y.sub.2O.sub.3 buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2007-08-21

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  14. Formation of qualified BaHfO3 doped Y0.5Gd0.5Ba2Cu3O7-δ film on CeO2 buffered IBAD-MgO tape by self-seeding pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liu, Linfei; Wang, Wei; Yao, Yanjie; Wu, Xiang; Lu, Saidan; Li, Yijie

    2018-05-01

    Improvement in the in-filed transport properties of REBa2Cu3O7-δ (RE = rare earth elements, REBCO) coated conductor is needed to meet the performance requirements for various practical applications, which can be accomplished by introducing artificial pinning centers (APCs), such as second phase dopant. However, with increasing dopant level the critical current density Jc at 77 K in zero applied magnetic field decreases. In this paper, in order to improve Jc we propose a seed layer technique. 5 mol% BaHfO3 (BHO) doped Y0.5Gd0.5Ba2Cu3O7-δ (YGBCO) epilayer with an inserted seed layer was grown on CeO2 buffered ion beam assisted deposition MgO (IBAD-MgO) tape by pulsed laser deposition. The effect of the conditions employed to prepare the seed layer, including tape moving speed and chemical composition, on the quality of 5 mol% BHO doped YGBCO epilayer was systematically investigated by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM) observations. It was found that all the samples with seed layer have higher Jc (77 K, self-field) than the 5 mol% BHO doped YGBCO film without seed layer. The seed layer could inhibit deterioration of the Jc at 77 K and self-filed. Especially, the self-seed layer (5 mol% BHO doped YGBCO seed layer) was more effective in improving the crystal quality, surface morphology and superconducting performance. At 4.2 K, the 5 mol% BHO doped YGBCO film with 4 nm thick self-seed layer had a very high flux pinning force density Fp of 860 GN/m3 for B//c under a 9 T field, and more importantly, the peak of the Fp curve was not observed.

  15. Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} As a Model System for Fundamental Studies of High Temperature Superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Z.F.; Wang, J.H.

    2000-05-22

    During the past year, the Principal Investigator (PI) (Z. F. Ren) moved from SUNY-Buffalo to Boston College as an Associate Professor in the Department of Physics to further enhance the future success of this program. Due to the moving and set up of the new laboratory at Boston College, the project was slowed down in some extent. Nevertheless, the PI and his associates have been able to accomplish the following: (1) The upper critical field study has been carried out on the early samples (made when the PI was still with SUNY-Buffalo). Those samples have either high {Tc} (>20K) withmore » single transition or low TC but with double transitions. Therefore, there has no definitive conclusion been drawn yet. (2) X-ray photoemission has been used to study the Tl-2201 thin films. (3) In addition, J. Y. Lao has synthesized the epitaxial thallium-containing 1212 films with critical current density up to 10{sup 6}/cm{sup 2} at 77K and zero magnetic field as part of his Ph.D thesis. The success of this research has enabled us to consider using this material as an alternative for Yba{sub 2}Cu{sub 3}O{sub 7} (YBCO) or TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 9} (Tl-1223) for long length wire development for applications such as transmission cables, motors, generators, etc.« less

  16. Evidence for Weakly Correlated Oxygen Holes in the Highest-Tc Cuprate Superconductor HgBa2 Ca2 Cu3 O8 +δ

    NASA Astrophysics Data System (ADS)

    Chainani, A.; Sicot, M.; Fagot-Revurat, Y.; Vasseur, G.; Granet, J.; Kierren, B.; Moreau, L.; Oura, M.; Yamamoto, A.; Tokura, Y.; Malterre, D.

    2017-08-01

    We study the electronic structure of HgBa2 Ca2 Cu3 O8 +δ (Hg1223; Tc=134 K ) using photoemission spectroscopy (PES) and x -ray absorption spectroscopy (XAS). Resonant valence band PES across the O K edge and Cu L edge identifies correlation satellites originating in O 2 p and Cu 3 d two-hole final states, respectively. Analyses using the experimental O 2 p and Cu 3 d partial density of states show quantitatively different on-site Coulomb energy for the Cu site (Ud d=6.5 ±0.5 eV ) and O site (Up p=1.0 ±0.5 eV ). Cu2 O7 -cluster calculations with nonlocal screening explain the Cu 2 p core level PES and Cu L -edge XAS spectra, confirm the Ud d and Up p values, and provide evidence for the Zhang-Rice singlet state in Hg1223. In contrast to other hole-doped cuprates and 3 d -transition metal oxides, the present results indicate weakly correlated oxygen holes in Hg1223.

  17. Quantum oscillations in a bilayer with broken mirror symmetry: A minimal model for YBa 2 Cu 3 O 6 + δ

    DOE PAGES

    Maharaj, Akash V.; Zhang, Yi; Ramshaw, B. J.; ...

    2016-03-01

    Using an exact numerical solution and semiclassical analysis, we investigate quantum oscillations (QOs) in a model of a bilayer system with an anisotropic (elliptical) electron pocket in each plane. Key features of QO experiments in the high temperature superconducting cuprate YBCO can be reproduced by such a model, in particular the pattern of oscillation frequencies (which reflect “magnetic breakdown” between the two pockets) and the polar and azimuthal angular dependence of the oscillation amplitudes. However, the requisite magnetic breakdown is possible only under the assumption that the horizontal mirror plane symmetry is spontaneously broken and that the bilayer tunneling t ⊥ is substantially renormalized from its ‘bare’ value. Lastly, under the assumption that t ⊥ =more » $$\\sim\\atop{Z}_t$$ $$(0)\\atop{⊥}$$, where $$\\sim\\atop{Z}$$ is a measure of the quasiparticle weight, this suggests that $$\\sim\\atop{Z}$$ ≲ 1/20. Detailed comparisons with new YBa 2Cu 3O 6.58 QO data, taken over a very broad range of magnetic field, confirm specific predictions made by the breakdown scenario.« less

  18. No evidence for orbital loop currents in charge-ordered YBa2Cu3O6 +x from polarized neutron diffraction

    NASA Astrophysics Data System (ADS)

    Croft, T. P.; Blackburn, E.; Kulda, J.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Hayden, S. M.

    2017-12-01

    It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa2Cu3O6 +x with doping levels p =0.104 and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-θI I pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 μB for p =0.104 .

  19. Effect of processing parameters on the characteristics of high-Tc superconductor YBa2Cu3Oy

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    SEM, thermogravimetric analysis, powder X-ray diffraction,and measurements of electrical resistivity and magnetic susceptibility, are presently used to characterize the influence of sintering temperature, sintering and annealing atmospheres, and quench-rate on the properties of the YBa2Cu3Oy superconducting oxide. It is established that annealing in oxygen, together with slow cooling rates, are required for preparation of high-Tc superconductors with sharp transitions; rapid quenching from high temperature does not yield good superconductors, due to low oxygen content.

  20. First-principles study of direct and narrow band gap semiconducting β -CuGaO 2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  1. Room-Temperature-Synthesized High-Mobility Transparent Amorphous CdO-Ga2O3 Alloys with Widely Tunable Electronic Bands.

    PubMed

    Liu, Chao Ping; Ho, Chun Yuen; Dos Reis, Roberto; Foo, Yishu; Guo, Peng Fei; Zapien, Juan Antonio; Walukiewicz, Wladek; Yu, Kin Man

    2018-02-28

    In this work, we have synthesized Cd 1-x Ga x O 1+δ alloy thin films at room temperature over the entire composition range by radio frequency magnetron sputtering. We found that alloy films with high Ga contents of x > 0.3 are amorphous. Amorphous Cd 1-x Ga x O 1+δ alloys in the composition range of 0.3 < x < 0.5 exhibit a high electron mobility of 10-20 cm 2 V -1 s -1 with a resistivity in the range of 10 -2 to high 10 -4 Ω cm range. The resistivity of the amorphous alloys can also be controlled over 5 orders of magnitude from 7 × 10 -4 to 77 Ω cm by controlling the oxygen stoichiometry. Over the entire composition range, these crystalline and amorphous alloys have a large tunable intrinsic band gap range of 2.2-4.8 eV as well as a conduction band minimum range of 5.8-4.5 eV below the vacuum level. Our results suggest that amorphous Cd 1-x Ga x O 1+δ alloy films with 0.3 < x < 0.4 have favorable optoelectronic properties as transparent conductors on flexible and/or organic substrates, whereas the band edges and electrical conductivity of films with 0.3 < x < 0.7 can be manipulated for transparent thin-film transistors as well as electron transport layers.

  2. Dynamic Field and Current Distributions in Multifilamentary YBa2Cu3O7-delta Thin Films with Magnetic Coupling (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    INTRODUCTION The separation of high-temperature superconducting HTS tapes into filaments is a viable approach to reduce ac and hysteretic losses in...generation HTS coated conductors. However, ac losses of finely striated tapes can still be larger than desired as predicted by analytical expressions.6...necessitates an in-depth understanding of the flux and current dynamics in multifilamentary HTS structures as both depend strongly on temperature and history of

  3. Enhanced visible light photocatalytic activity of sulfated CuO-Bi2O3 photocatalyst

    NASA Astrophysics Data System (ADS)

    Liu, Xinlu; Zeng, Jun; Zhong, Junbo; Li, Jianzhang

    2015-09-01

    Sulfate (SO4 2-)-modified CuO-Bi2O3 composite photocatalysts with different loadings of SO4 2- were prepared by a facile pore impregnating method using ammonium persulfate (NH4)2S2O8 solution. The surface parameters, structure, morphology, the response ability to light, the binding energy of Bi 4 f and O 1 s, the hydroxyl content on the surface and the separation rate of photoinduced hole-electron pairs were characterized by Brunauer-Emmett-Teller method, X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and surface photovoltage spectroscopy, respectively. The results reveal that sulfating of CuO-Bi2O3 decreases the band gap, increases the hydroxyl content on the surface, the separation rate of photoinduced hole-electron pairs and the adsorption of Rhodamine B on the sulfated photocatalysts. The photocatalytic activity of SO4 2-/CuO-Bi2O3 for decolorization of Rhodamine B aqueous solution was evaluated. The result shows that when the molar ratio of S/Bi is 5 %, SO4 2-/CuO-Bi2O3 exhibits the best photocatalytic activity under visible light irradiation and the possible reason is discussed.

  4. Thermoelectric power of YBa2Cu3Ox in equilibrium with gas phases

    NASA Astrophysics Data System (ADS)

    Nowotny, J.; Rekas, M.; Weppner, W.

    1988-10-01

    Thermoelectric power (TP) and electrical conductivity (EC) measurements were performed for YEa2Cu3Ox at 1128 K under controlled oxygen partial pressure varying between 50 and 105 Pa. Three regimes are observed for the electrical properties. At lowp_{{text{O}}_{text{2}} } (< 1.6{text{ }} × {text{ 10}}^{text{2}} {text{ }}{text{Pa}}) both TP and EC remain constant withp_{{text{O}}_{text{2}} } . In the medium range(1.6{text{ }} × {text{ 10}}^{text{2}}< p_{{text{O}}_{text{2}} }< 7.6{text{ }} × {text{ 10}}^{text{3}} {text{ Pa)}} sharp changes of both electrical parameters occur; TP changes sign from positive above 4×102 Pa to negative below thisp_{{text{O}}_{text{2}} } value. In the highp_{{text{O}}_{text{2}} } region (>7.6×103 Pa) TP vs logp_{{text{O}}_{text{2}} } exhibits two slopes; 5.1 below 1.5×104 Pa and 8.4 above thisp_{{text{O}}_{text{2}} } value. The slopes can be discussed in terms of the defect structure involving singly and doubly ionized oxygen vacancies below and above 7.6×103 Pa, respectively.

  5. Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction

    NASA Astrophysics Data System (ADS)

    Choi, Jaesuk; Song, Jun Tae; Jang, Ho Seong; Choi, Min-Jae; Sim, Dong Min; Yim, Soonmin; Lim, Hunhee; Jung, Yeon Sik; Oh, Jihun

    2017-01-01

    Photoelectrochemical (PEC) water splitting has emerged as a potential pathway to produce sustainable and renewable chemical fuels. Here, we present a highly active Cu2O/TiO2 photocathode for H2 production by enhancing the interfacial band-edge energetics of the TiO2 layer, which is realized by controlling the fixed charge density of the TiO2 protection layer. The band-edge engineered Cu2O/TiO2 (where TiO2 was grown at 80 °C via atomic layer deposition) enhances the photocurrent density up to -2.04 mA/cm2 at 0 V vs. RHE under 1 sun illumination, corresponding to about a 1,200% enhancement compared to the photocurrent density of the photocathode protected with TiO2 grown at 150 °C. Moreover, band-edge engineering of the TiO2 protection layer prevents electron accumulation at the TiO2 layer and enhances both the Faraday efficiency and the stability for hydrogen production during the PEC water reduction reaction. This facile control over the TiO2/electrolyte interface will also provide new insight for designing highly efficient and stable protection layers for various other photoelectrodes such as Si, InP, and GaAs. [Figure not available: see fulltext.

  6. Structural investigation of Y1-xNixBa2Cu3O7-δ superconductor

    NASA Astrophysics Data System (ADS)

    Hadi-Sichani, Behnaz; Shakeripour, Hamideh; Salamati, Hadi

    2018-07-01

    Y1-xNixBa2Cu3O7-δ superconducting samples with 0 ≤ x ≤ 0.02 were synthesized by standard solid-state reaction and characterized by the X-ray powder diffraction technique. The Rietveld fitted XRD refinements show that all samples are crystallized in single phase, having orthorhombic structure with Pmmm space group. We investigated the effect of adding a magnetic element on the structure of this superconductor. The c cell parameter increases by doping of Ni until to an optimal value of Ni content, x ∼ 0.004, and then starts to decrease by higher value of Ni substitution. Moreover, it is seen that Cu(2)sbnd O(2) bond length decreases with increasing Ni up to the optimal concentration of Ni, too. The CuO2 planes become more distorted and hence charge carriers may have better chances of transportation to the CuO2 planes. By further increasing of Ni content than the optimal value, the Cu(2)sbnd O(2) bond lengths start to increase, and cause CuO2 planes to be flatten. We suggest, besides affecting the magnetic characteristic of Ni impurity, the Ni substitution leads to interesting crystallographic changes.

  7. Orthorhombic YBaCo{sub 4}O{sub 8.4} crystals as a result of saturation of hexagonal YBaCo{sub 4}O{sub 7} crystals with oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podberezskaya, N. V., E-mail: podberez@niic.nsc.ru; Bolotina, N. B., E-mail: nb-bolotina@mail.ru; Komarov, V. Yu., E-mail: komarov-v-y@niic.nsc.ru

    Hexagonal YBaCo{sub 4}O{sub 7} crystals (sp. gr. P6{sub 3}mc, a{sub h} = 6.3058(4) Å, c{sub h} = 10.2442(7) Å, Z = 2) are saturated with oxygen to the YBaCo{sub 4}O{sub 8.4} composition and studied by X-ray diffraction (XRD) analysis. The saturation is completed by a structural first-order phase transition to orthorhombic crystals (sp. gr. Pbc2{sub 1}, a{sub o} = 31.8419(2) Å, b{sub o} = 10.9239(5) Å, c{sub o} = 10.0960(5) Å, Z = 20). The connection of two lattices is expressed in terms of the action of matrix (500/120/001) on the hexagonal basis. Five structural fragments of the same typemore » but with different degrees of order alternate along the long axis of the oxygen-saturated orthorhombic structure. The XRD data on single crystals differ from the results obtained by other researchers on ceramic samples; possible causes of these differences are discussed.« less

  8. Fabrication Of SNS Weak Links On SOS Substrates

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D.

    1995-01-01

    High-quality superconductor/normal-conductor/superconductor (SNS) devices ("weak links") containing epitaxial films of YBa(2)Cu(3)O(7-x) and SrTiO(3) fabricated on silicon-on-sapphire (SOS) substrates with help of improved multilayer buffer system. Process for fabrication of edge-defined SNS weak links described in "Edge-Geometry SNS Devices Made of Y/Ba/Cu" (NPO-18552).

  9. Yttrium enrichment and improved magnetic properties in partially melted Y-Ba-Cu-O materials

    NASA Technical Reports Server (NTRS)

    Alterescu, Sidney; Hojaji, Hamid; Barkatt, Aaron; Michael, Karen A.; Hu, Shouxiang

    1990-01-01

    The yttrium-rich compositions in the Y-Ba-Cu-O system were mapped out in a systematic manner to quantify their magnetic properties and to correlate them with the microstructure and phase composition as determined by scanning electron microscopy and X-ray diffraction analysis. It is found that the microstructure of Y-Ba-Cu-O compositions is a sensitive function of both their composition and processing conditions. Measurements of magnetic susceptibility and maximum (low-field) and remanent magnetization for the system Y:Ba:Cu = x:2:3 show highest values for x = 2. The corresponding structures involve numerous small crystals of Y2BaCuO5 (211) embedded in highly ordered assemblages of continous YBa2Cu3O(7-y) (123) layers.

  10. High Throughput Discovery of Solar Fuels Photoanodes in the CuO-V 2 O 5 System

    DOE PAGES

    Zhou, Lan; Yan, Qimin; Shinde, Aniketa; ...

    2015-08-26

    Solar photoelectrochemical generation of fuel is a promising energy technology yet the lack of an efficient, robust photoanode remains a primary materials challenge in the development and deployment of solar fuels generators. Metal oxides comprise the most promising class of photoanode materials, but no known material meets the demanding requirements of low band gap energy, photoelectrocatalysis of the oxygen evolution reaction, and stability under highly oxidizing conditions. Here, we report the identification of new photoelectroactive materials through a strategic combination of combinatorial materials synthesis, high-throughput photoelectrochemistry, optical spectroscopy, and detailed electronic structure calculations. We identify 4 photoelectrocatalyst phases - α-Cumore » 2V 2O 7, β-Cu 2V 2O 7, γ-Cu 3V 2O 8, and Cu 11V 6O 26 - with band gap energy at or below 2 eV. The photoelectrochemical properties and 30-minute stability of these copper vanadate phases are demonstrated in 3 different aqueous electrolytes (pH 7, pH 9, and pH 13), with select combinations of phase and electrolyte exhibiting unprecedented photoelectrocatalytic stability for metal oxides with sub-2 eV band gap. Through integration of experimental and theoretical techniques, we determine new structure-property relationships and establish CuO-V 2O 5 as the most prominent composition system for OER photoelectrocatalysts, providing crucial information for materials genomes initiatives and paving the way for continued development of solar fuels photoanodes.« less

  11. Can Positron 2D-ACAR Resolve the Electronic Structure of HIGH-Tc Superconductors?

    NASA Astrophysics Data System (ADS)

    Chan, L. P.; Lynn, K. G.; Harshman, D. R.

    We examine the ability of the positron Two-Dimensional Angular Correlation Annihilation Radiation (2D-ACAR) technique to resolve the electronic structures of high-Tc cuprate superconductors. Following a short description of the technique, discussions of the theoretical assumptions, data analysis and experimental considerations, in relation to the high-Tc superconductors, are given. We briefly review recent 2D-ACAR experiments on YBa2Cu3O7-x, Bi2Sr2CaCuO8+δ and La2-xSrxCuO4. The 2D-ACAR technique is useful in resolving the band crossings associated with the layers of the superconductors that are preferentially sampled by the positrons. Together with other Fermi surface measurements (namely angle-resolved photoemission), 2D-ACAR can resolve some of the electronic structures of high-Tc cuprate superconductors. In addition, 2D-ACAR measurements of YBa2Cu3O7-x and Bi2Sr2CaCuO8+δ also reveal an interesting temperature dependence in the fine structures, and a change in the positron lifetime in the former.

  12. Microwave surface resistance of bulk YBa2Cu3O6+x material

    NASA Astrophysics Data System (ADS)

    Fathy, A.; Kalokitis, D.; Belohoubek, E.; Sundar, H. G. K.; Safari, A.

    1988-10-01

    Superconducting Y-Ba-Cu-O samples were prepared by conventional solid-state reaction. The microwave surface resistance of 1:2:3 compound superconductor material was measured in a special disk resonator structure at 10 GHz. At liquid-nitrogen temperatures the microwave surface resistance is comparable to that of Au. At lower temperature (~10 K) the surface resistance is an order of magnitude lower than that of Au at the same temperature.

  13. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    NASA Astrophysics Data System (ADS)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  14. Room temperature radiolytic synthesized Cu@CuAlO(2)-Al(2)O(3) nanoparticles.

    PubMed

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO(2)-Al(2)O(3) bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a (60)Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO(2)-Al(2)O(3) nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation.

  15. Site-selective doping and superconductivity in (La1-yPry)(Ba2-xLax)Cu3O7

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.; Feffer, P. T.; Newsam, J. M.; Webb, D. J.; Klavins, P.; Jacobson, A. J.; Kapitulnik, A.

    1988-10-01

    Samples in the quaternary system (La1-yPry)(Ba2-xLax)Cu3O7+δ have been prepared and characterized using x-ray and neutron diffraction, thermogravimetric analysis, and transport and magnetic measurements. Pr substitutes on the oxygen-depleted La layers for y>0.0, while La substitutes on the Ba sites for x>0.0. The effect of doping on each site is inferred to be primarily local, affecting immediately adjacent Cu-O layers. The similar suppression of superconductivity that accompanies doping on each of the two distinct sites apparently correlates with the degree of oxidation of the Cu-O sheets (and not the chains), indicating that the sheets support the high temperature superconductivity. Comparison of orthorhombic and tetragonal samples with similar Ba:La ratios (and y=0) demonstrates that the orthorhombic phase yields the largest Meissner signals and highest transition temperatures in the La(Ba2-xLax)Cu3O7+δ system. The effect on superconductivity of oxygen-vacancy configuration in the Cu-O chain layers is proposed to derive, indirectly, from their influence on the Cu-O sheets. In addition, optimally superconducting La(Ba2-xLax)Cu3O7+δ samples exhibit interesting normal-state magnetic properties, with a paramagnetic susceptibility that decreases steadily with temperature between 350 K and Tc.

  16. A K-band Frequency Agile Microstrip Bandpass Filter using a Thin Film HTS/Ferroelectric/dielectric Multilayer Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.

    1998-01-01

    We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.

  17. Attikaite, Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O, a new mineral species

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm-1; sh is shoulder; w is a weak band): 3525 sh, 3425, 3180, 1642, 1120 w, 1070 w, 1035 w, 900 sh, 874, 833, 820, 690 w, 645 w, 600 sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) ( X = c) 2 V means = 10(8)°, and 2 V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu{1.93/2+} Al1.97Mg0.04Fe{0.02/2+} [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128 140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O

  18. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  19. Room Temperature Radiolytic Synthesized Cu@CuAlO2-Al2O3 Nanoparticles

    PubMed Central

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO2-Al2O3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO2-Al2O3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO2-Al2O3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  20. Chemical Quenching of Positronium in CuO/Al2O3 Catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Jun; Liu, Zhe-Wen; Chen, Zhi-Quan; Wang, Shao-Jie

    2011-01-01

    CuO/Al2O3 catalysts were prepared by mixing CuO and γ-Al2O3 nanopowders. Microstructure and chemical environment of the catalysts are characterized by positron annihilation spectroscopy. The positron annihilation lifetime measurements reveal two long lifetime components τ3 and τ4, which correspond to ortho-positronium (o-Ps) annihilating in microvoids and large pores, respectively. With increasing CuO content from 0 to 40 wt%, both τ4 and its intensity I4 show significant decrease, which indicates quenching effect of o-Ps. The para-positronium (p-Ps) intensities derived from multi-Gaussian fitting of the coincidence Doppler broadening spectra also decreases gradually with increasing CuO content. This excludes the possibility of spin-conversion of positronium. Therefore, the chemical quenching by CuO is probably responsible for the decrease of o-Ps lifetime. Variation in the o-Ps annihilation rate λ4 (1/τ4) as a function of CuO content can be well fitted by a straight line, and the slope of the fitting line is (1.83 ± 0.05) × 10-7 s-1.

  1. Enhanced low-temperature critical current by reduction of stacking faults in REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Puichaud, A.-H.; Wimbush, S. C.; Knibbe, R.

    2017-07-01

    The effect of stacking faults (SF) on flux pinning and critical current (I c) in rare earth based coated conductors was investigated. The SF density in YBa2Cu3O7-δ (YBCO) films with and without Dy addition, produced by metal organic deposition, was modified by altering the oxygenation temperature. A detailed microstructural analysis of the coated conductors was performed by x-ray diffraction, scanning and transmission electron microscopy and energy dispersive spectroscopy, and the observed defect population was correlated with both the self-field and in-field I c. We report that the best self-field I c was obtained for samples having a low SF density, in spite of the SF being effective flux pinning defects at 77 K for magnetic fields applied within the ab plane. We also show that the SF have no observable flux pinning effect at low temperatures. This study demonstrates that for devices operated at low temperatures, the elimination of SF in the conductor wires is essential to attain higher I c.

  2. The influence of apical oxygen on the increase of Tc in Y Ba2Cu3O7-X

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.

    2004-07-01

    The direct current (DC) bulk resistance and acoustic emission of Y Ba2Cu3O7-X ceramic samples have simultaneously been measured during heating in a temperature region of 400-700 K. Near 560 K, an anomaly of rgr, accompanied by an acoustic emission, has been observed. After this anomaly rgr reached a lower value than had previously been measured. The observed rgr decrease and acoustic emission signals confirm that Y Ba2Cu3O7-X ceramic samples absorb oxygen during heating in the temperature region of 500-600 K, as shown by previous dilatometric measurements (Dul'kin 2001 J. Superconductivity 14 497). It is shown that absorbed oxygen atoms enter O4 apical oxygen sites and are able to increase the Tc in Y Ba2Cu3O7-X material.

  3. CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Castillo-Hernández, G.; Mayén-Hernández, S.; Castaño-Tostado, E.; DeMoure-Flores, F.; Campos-González, E.; Martínez-Alonso, C.; Santos-Cruz, J.

    2018-06-01

    CuAlO2 and CuAl2O4 thin films were synthesized by the deposition of the precursor metals using the physical vapor deposition technique and subsequent annealing. Annealing was carried out for 4-6 h in open and nitrogen atmospheres respectively at temperatures of 900-1000 °C with control of heating and cooling ramps. The band gap measurements ranged from 3.3 to 4.5 eV. Electrical properties were measured using the van der Pauw technique. The preferred orientations of CuAlO2 and CuAl2O4 were found to be along the (1 1 2) and (3 1 1) planes, respectively. The phase percentages were quantified using a Rietveld refinement simulation and the energy dispersive X-ray spectroscopy indicated that the composition is very close to the stoichiometry of CuAlO2 samples and with excess of aluminum and deficiency of copper for CuAl2O4 respectively. High resolution transmission electron microscopy identified the principal planes in CuAlO2 and in CuAl2O4. Higher purities were achieved in nitrogen atmosphere with the control of the cooling ramps.

  4. Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS

    NASA Astrophysics Data System (ADS)

    Sawicka-Chudy, Paulina; Sibiński, Maciej; Wisz, Grzegorz; Rybak-Wilusz, Elżbieta; Cholewa, Marian

    2018-05-01

    In the presented work, the Cu2O/TiO2 and CuO/TiO2 heterojunction solar cells have been analyzed by the help of Solar Cell Capacitance Simulator (SCAPS). The effects of various layer parameters like thickness and defect density on the cell performance have been studied in details. Numerical analysis showed how the absorber (CuO, Cu2O) and buffer (TiO2) layers thickness influence the short-circuit current density (Jsc) and efficiency (η) of solar cells. Optimized solar cell structures of Cu2O/TiO2 and CuO/TiO2 showed a potential efficiency of ∼9 and ∼23%, respectively, under the AM1.5G spectrum. Additionally, external quantum efficiency (EQE) curves of the CuO/TiO2 and Cu2O/TiO2 solar cells for various layers thickness of TiO2 were calculated and the optical band gap (Eg) for CuO and Cu2O was obtained. Finally, we examined the effects of defect density on the photovoltaic parameters.

  5. Studies of High Critical Transition Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Xue Zhi

    1990-01-01

    In early 1987 the high-T_{ rm c} superconductor, YBa_2 Cu_3O_{7 -delta}, with T_{ rm c} ~eq 90K was successfully made in our laboratory by a standard ceramic technique. Later Tl_2Ca _2Ba_2Cu_3 O_{10} with T _{rm c} ~eq 120K was produced by a special procedure. Structural analysis by x-ray diffraction showed that YBa_2 Cu_3O_{7 -delta} was responsible for the high -T_{rm c}, the so called 123 phase. It is an oxygen deficient perovskite with the orthorhombic structure, space group Pmmm, lattice constant a = 3.8243, b = 3.8862 and c = 11.667 A. Oxygen vacancies are very important to the superconducting properties. An impurity, Y_2BaCuO_5 , with a green colour, was identified as a semiconducting phase. A technique to grow single crystals of YBa _2Cu_3O_ {7-delta} is described. The crystals are rectangular up to 2 x 2 x 0.2 mm^3 in size. Two phases, Tl_2CaBa _2Cu_2O_8 (the 2122 phase) and Tl_2Ca _2Ba_2Cu _3O_{10} (the 2223 phase), are responsible for the high-T _{rm c} in the Tl-system; they have a tetragonal or pseudotetragonal structure with space group I4/mmm. Resistivity and magnetic ac susceptibility results show that high-T_{rm c} materials have a sharp superconducting transition and many properties in common with conventional superconductors. The shielding effect is closely related to the properties of grain boundaries. Magnetic ordering at low temperature (below 10K) of high-T_{rm c} materials was discovered by Mossbauer experiments with ^{57}Fe doped samples. Substitution of Fe for Cu reduced the superconducting transition temperature and the shielding effect. Theories of superconductivity for conventional and the new superconductors are reviewed and related to the experimental results.

  6. Anisotropy of the Irreversibility Field for Zr-doped (Y,Gd)Ba 2<\\sub>Cu3<\\sub>O<7-x<\\sub> Thin Films up to 45 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarantini, C.; Jaroszynski, J.; Kametani, F.

    2011-01-01

    The anisotropic irreversibility fieldBIrr of twoYBa2Cu3O7 x thin films dopedwith additional rare earth (RE)= (Gd, Y) and Zr and containing strong correlated pins (splayed BaZrO3 nanorods and RE2O3 anoprecipitates) has been measured over a very broad range up to 45 T at temperatures 56 K < T < Tc. We found that the experimental angular dependence of BIrr ( ) does not follow the mass anisotropy scaling BIrr ( ) = BIrr (0)(cos2 + 2 sin2 ) 1/2, where = (mc/mab)1/2 = 5 6 for the RE-doped Ba2Cu3O7 x (REBCO) crystals, mab and mc are the effective masses along themore » ab plane and the c-axis, respectively, and is the angle between B and the c-axis. For B parallel to the ab planes and to the c-axis correlated pinning strongly enhances BIrr , while at intermediate angles, BIrr ( ) follows the scaling behavior BIrr ( ) (cos2 + 2 RP sin2 ) 1/2 with the effective anisotropy factor RP 3 significantly smaller than the ass anisotropy would suggest. In spite of the strong effects of c-axis BaZrO3 nanorods, we found even greater enhancements of BIrr for fields along the ab planes than for fields parallel to the c-axis, as well as different temperature dependences of the correlated pinning contributions to BIrr for B//ab and B//c. Our results show that the dense and strong pins, which can now be incorporated into REBCO thin films in a controlled way, exert major and diverse effects on the measured vortex pinning anisotropy and the irreversibility field over wide ranges of B and T . In particular, we show that the relative contribution of correlated pinning to BIrr for B//c increases as the temperature increases due to the suppression of thermal fluctuations of vortices by splayed distribution of BaZrO3 nanorods.« less

  7. Crystal Chemical Substitutions of YBa2Cu3O7-d to Enhance Flux Pinning (Postprint)

    DTIC Science & Technology

    2012-02-01

    ionic radii (1.42 A for 8-fold coordination), specifically including larger RE ions La, Pr, and Nd and Ca 2+ and Sr +2. Note also that Pm is normal1y...ng is especially critical for the larger RE ions or mixtures with these ions , which pre vents partial substitution of these RE io ns for Ba ...similar 123 phase can be formed with th e composition ThSr2Cu27Meo 30?. This 123 p hase can be formed by substituting Sr for Ba an d a small amount of

  8. Growth And Patterning Of High-Tc Superconducting Films

    NASA Technical Reports Server (NTRS)

    Warner, J. D.; Bhasin, K. B.; Varaljay, N. C.; Bohman, D. Y.; Chorey, C. M.

    1992-01-01

    Superconducting films of YBa(2)Cu(3)O(7-delta), having high superconducting-transition temperatures (Tc's), deposited on LaAlO3 substrates and etched into patterns representative of passive microwave devices, with no deterioration of superconducting properties.

  9. Formation of [Cu 2 O 2 ] 2+ and [Cu 2 O] 2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ipek, Bahar; Wulfers, Matthew J.; Kim, Hacksung

    Cu-exchanged small-pore zeolites (CHA and AEI) form methanol from methane (>95% selectivity) using a 3-step cyclic procedure (Wulfers et al. Chem. Commun. 2015, 51, 4447-4450) with methanol amounts higher than Cu-ZSM-5 and Cu-mordenite on a per gram and per Cu basis. Here, the CuxOy species formed on Cu-SSZ-13 and Cu-SSZ-39 following O2 or He activation at 450 °C are identified as trans-μ-1,2-peroxo dicopper(II) ([Cu2O2]2+) and mono-(μ-oxo) dicopper(II) ([Cu2O]2+) using synchrotron X-ray diffraction, in situ UV–vis, and Raman spectroscopy and theory. [Cu2O2]2+ and [Cu2O]2+ formed on Cu-SSZ-13 showed ligand-to-metal charge transfer (LMCT) energies between 22,200 and 35,000 cm–1, Cu–O vibrations atmore » 360, 510, 580, and 617 cm–1 and an O–O vibration at 837 cm–1. The vibrations at 360, 510, 580, and 837 cm–1 are assigned to the trans-μ-1,2-peroxo dicopper(II) species, whereas the Cu–O vibration at 617 cm–1 (Δ18O = 24 cm–1) is assigned to a stretching vibration of a thermodynamically favored mono-(μ-oxo) dicopper(II) with a Cu–O–Cu angle of 95°. On the basis of the intensity loss of the broad LMCT band between 22,200 and 35,000 cm–1 and Raman intensity loss at 571 cm–1 upon reaction, both the trans-μ-1,2-peroxo dicopper(II) and mono-(μ-oxo) dicopper(II) species are suggested to take part in methane activation at 200 °C with the trans-μ-1,2-peroxo dicopper(II) core playing a dominant role. A relationship between the [Cu2Oy]2+ concentration and Cu(II) at the eight-membered ring is observed and related to the concentration of [CuOH]+ suggested as an intermediate in [Cu2Oy]2+ formation.« less

  10. Effects of Conductor Baton Use on Band and Choral Musicians' Perceptions of Conductor Expressivity and Clarity

    ERIC Educational Resources Information Center

    Nápoles, Jessica; Silvey, Brian A.

    2017-01-01

    The purpose of this study was to examine participants' (college band and choral musicians, N = 143) perceptions of conductor clarity and expressivity after viewing band and choral directors conducting with or without a baton. One band and one choral conductor each prepared and conducted two excerpts of Guy Forbes's "O Nata Lux", a piece…

  11. Characterization of Hybrid Ferroelectric/HTS Thin Films for Tunable Microwave Components

    NASA Technical Reports Server (NTRS)

    Winters, M. D.; Mueller, C. H.; Bhasin, K. B.; Miranda, F. A.

    1996-01-01

    Since the discovery of High-Temperature-Superconductors (HTS) in 1986, a diversity of HTS-based microwave components has been demonstrated. Because of their low conductor losses, HTS-based components are very attractive for integration into microwave circuits for space communication systems. Recent advancements have made deposition of ferroelectric thin films onto HTS thin films possible. Due to the sensitivity of the ferroelectric's dielectric constant (epsilon(sub r)) to an externally applied electric field (E), ferroelectric/superconducting structures could be used in the fabrication of low loss, tunable microwave components. In this paper, we report on our study of Ba(0.5)Sr(0.5)TiO3/YBa2Cu3O(7-delta) and Ba(0.08)Sr(0.92)TiO3/YBa2Cu3O(7-delta) ferroelectric/superconducting thin films on lanthanum aluminate (LaAlO3) substrates. For the (Ba:Sr, 0.50:0.50) epitaxial sample, a epsilon(sub r) of 425 and a loss tangent (tan delta) of 0.040 were measured at 298 K, 1.0 MHz, and zero applied E. For the same sample, a epsilon(sub r) of 360 and tan delta of 0.036 were obtained at 77 K, 1.0 MHz, and zero applied E. Variations in epsilon(sub r) from 180 to 360 were observed over an applied E range of 0V/cm less than or equal to E less than or equal to 5.62 x 10(exp 4) V/cm with little change in tan delta. However, the range of epsilon(sub r) variation for the polycrystalline (Ba:Sr, 0.08:0.92) sample over 0V/cm less than or equal to E less than or equal to 4.00 x 10(exp 4) V/cm was only 3.6 percent while tan delta increased markedly. These results indicate that a lack of epitaxy between the ferroelectric and superconducting layers decreases tuning and increases microwave losses.

  12. A novel fabrication of Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell micro/nanocrystals from Cu{sub 2}O temples and enhanced photocatalytic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junqi, E-mail: sfmlab@163.com; Sun, Long; Yan, Ying

    2016-08-15

    Highlights: • The Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell crystals maintained the same morphology with template. • The crystals exhibit enhanced photocatalytic activity than the pure Cu{sub 2}O crystals. • The photocatalytic activity of different R crystals is diverse from each other. • A possible formation mechanism has been proposed. - Abstract: Uniform and monodispersed Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell micro/nanocrystals have been synthesized successfully at room temperature via a simple chemical etching reaction, using Cu{sub 2}O as sacrificial template. The structure and properties of the crystals were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM),more » X-ray photoelectron spectra (XPS). The photocatalytic activity of the Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals was evaluated by photocatalytic decolorization of MeO (methyl orange) aqueous solution at ambient temperature under visible-light irradiation. The results show that the as-prepared Cu{sub 2}O@Cu{sub 7}S{sub 4} crystals revealed core-shell structure, which maintained the same morphology with corresponding template and were composed of cuboctahedron Cu{sub 7}S{sub 4} shell and active Cu{sub 2}O core. Due to the unique Cu{sub 2}O@Cu{sub 7}S{sub 4} core-shell structure, the crystals exhibit enhanced photocatalytic activity than that of the pure Cu{sub 2}O crystals, and the photocatalytic activity of different R crystals is diverse from each other. A possible formation mechanism has been proposed.« less

  13. Electronic structure of Mott-insulator CaCu3Ti4O12: Photoemission and inverse photoemission study

    NASA Astrophysics Data System (ADS)

    Im, H. J.; Iwataki, M.; Yamazaki, S.; Usui, T.; Adachi, S.; Tsunekawa, M.; Watanabe, T.; Takegahara, K.; Kimura, S.; Matsunami, M.; Sato, H.; Namatame, H.; Taniguchi, M.

    2015-09-01

    We have performed the photoemission and inverse photoemission experiments to elucidate the origin of Mott insulating states in A-site ordered perovskite CaCu3Ti4O12 (CCTO). Experimental results have revealed that Cu 3d-O 2p hybridized bands, which are located around the Fermi level in the prediction of the local-density approximation (LDA) band calculations, are actually separated into the upper Hubbard band at ~1.5 eV and the lower Hubbard band at ~-1.7 eV with a band gap of ~1.5-1.8 eV. We also observed that Cu 3d peak at ~-3.8 eV and Ti 3d peak at ~3.8 eV are further away from each other than as indicated in the LDA calculations. In addition, it is found that the multiplet structure around -9 eV includes a considerable number of O 2p states. These observations indicate that the Cu 3d and Ti 3d electrons hybridized with the O 2p states are strongly correlated, which originates in the Mott-insulating states of CCTO.

  14. Interaction of Superconducting YBa2Cu(sub 3-x)Zn(sub x)O(sub 7-y) with MeV Radiation

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Robertson, G. A.

    2005-01-01

    When the high Tc superconductor Y-Ba-Cu-O is cooled with liquid nitrogen, the conduction holes form a macroscopic collective or entangled state. While collective effects have been observed with radiation energies up to 5 eV, no high-sensitivity experiments have previously been carried out to search for comparable effects with MeV radiation. Here an experiment using a pair of scintillation counters arranged to search for changes in the natural background of high energy radiation adjacent to a warm and cold Y-Ba-Cu-O superconductor is described. The experiment showed a shift toward higher pulse heights when the SC was cooled, with a 4 standard deviation excess of 9.12+/-2.28 events/ksec over the range of 0 to 18 MeV. The net difference spectrum shows a 5.5 standard deviation excess signal for the range of 3 to 6 MeV.

  15. Analysis and Optimization of Thin Film Ferroelectric Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; VanKeuls, Fred W.; Warner, Joseph D.; Mueller, Carl H.; Alterovitz, Samuel A.; Miranda, Felix A.; Qureshi, A. Haq; Romanofsky, Robert R. (Technical Monitor)

    2000-01-01

    Microwave phase shifters have been fabricated from (YBa2Cu3O(7-delta) or Au)/SrTiO3 and Au/Ba(x)Sr(1-x)TiO3 films on LaAlO3 and MgO substrates. These coupled microstrip devices rival the performance of their semiconductor counter-parts parts at Ku- and K-band frequencies. Typical insertion loss for room temperature ferroelectric phase shifters at K-band is approximately equal 5 dB. An experimental and theoretical investigation of these novel devices explains the role of the ferroelectric film in overall device performance. A roadmap to the development of a 3 dB insertion loss phase shifter that would enable a new type of phased array antenna is discussed.

  16. Stability of a Cu0.7Co2.3O4 electrode during the oxygen evolution reaction for alkaline anion-exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Eun; Kim, Chi Ho; Lee, Myung Sup; Jung, Chang Wook; Kim, Yang Do; Lee, Jae Ho

    2018-01-01

    The electrode materials for oxygen evolution, especially non-platinum group metal oxides, have attracted increasing attention. Among the spinel-type transition metal oxides, Cu0.7Co2.3O4 powders were evaluated as a potential replacement for expensive dimensionally stabilized anode materials. Cu0.7Co2.3O4 powder for use as an electrode material for oxygen evolution in an alkaline anion-exchange membrane water electrolyzer was prepared using a thermal decomposition method. The Cu0.7Co2.3O4 powders heat-treated at 250 °C exhibited the same X-ray diffraction patterns without any secondary phases as the Co3O4 spinel structure did. The Cu0.7Co2.3O4 powders heat-treated at 250 °C for 30 minutes showed the smallest mean particle size of approximately 376 nm with the powders having a homogeneous shape and size distribution. The fine powders with a relatively homogeneous size distribution showed a higher current density during the oxygen evolution reaction. The lifetime of the Cu0.7Co2.3O4 electrode was relatively long at a low current density, but was quickly shortened due to physical detachment of the Cu0.7Co2.3O4 powders as the current density was increased. This study showed that the efficiency and the stability of Cu0.7Co2.3O4 powders during the oxygen evolution reaction were related directly to the active electrode area.

  17. Crystallographic and optical properties and band diagrams of CuGaS2 and CuGa5S8 phases in Cu-poor Cu2S-Ga2S3 pseudo-binary system

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Yu, Ying; Chen, Qing; Ueda, Kenta; Wada, Takahiro

    2017-04-01

    We synthesized Cu-poor Cu-Ga-S samples such, as CuGaS2 and CuGa5S8 with the composition of (1 - x)Cu2S-(x)Ga2S3 with 0.5 ≤ x ≤ 1.0, by a mechanochemical process and sequential heating. The crystal structure changes from tetragonal chalcopyrite-type CuGaS2 (0.5 ≤ x ≤ 0.55) to tetragonal stannite-type CuGa5S8 (x = 0.8). For samples with 0.60 ≤ x ≤ 0.75, the diffraction peaks were identified to be those of a mixed phase of the chalcopyrite- and stannite-type structures. The band-gap energies of Cu-poor Cu-Ga-S samples increase in a stepwise manner with increasing x. The band-gap energy of CuGa5S8 (x = 0.8) with the tetragonal stannite-type structure is approximately 2.66 eV, which is wider than that of chalcopyrite-type CuGaS2 (2.45 eV). The energy levels of valence band maxima (VBMs) were estimated from the ionization energies measured by photoemission yield spectroscopy (PYS). The energy levels of the VBM and conduction band minimum (CBM) of the Cu-poor Cu-Ga-S samples decrease significantly with increasing x (decreasing Cu/Ga ratio). The energy level of the VBM of CuGaS2 (-5.8 eV) is considerably deeper than those of CuInSe2 (-5.2 eV) and CuInS2 (-5.5 eV). The VBM of stannite-type CuGa5S8 with x = 0.8 (-6.4 eV) is much deeper than that of chalcopyrite-type CuGaS2 (-5.8 eV) and stannite-type CuIn3Se5 (-5.6 eV). In order to understand the band structures of chalcopyrite-type CuGaS2 and stannite-type CuGa5S8, we performed first-principles calculations using the Heyd-Scuseria-Ernzerhof (HSE06), nonlocal screened hybrid density functional method. The theoretical band-gap energy of stannite-type CuGa5S8 (2.2 eV) is wider than that of chalcopyrite-type CuGaS2 (2.0 eV). Both the theoretical and experimental band gaps of stannite-type CuGa5S8 are about 0.2 eV wider than those of chalcopyrite-type CuGaS2.

  18. High-temperature superconducting superconductor/normal metal/superconducting devices

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Hunt, B. D.; Bajuk, L. J.

    1991-01-01

    We describe the fabrication and characterization of superconductor/normal metal/superconductor (SNS) devices made with the high-temperature superconductor (HTS) YBa2Cu3O(7-x). Structures of YBa2Cu3O(7-x)/Au/Nb on c-axis-oriented YBa2Cu3O(7-x) were made in both sandwich and edge geometries in order to sample the HTS material both along and perpendicular to the conducting a-b planes. These devices display fairly ideal Josephson properties at 4.2 K. In addition, devices consisting of YBa2Cu3O(7-x)/YBa2Cu3O(y)/YBa2Cu3O(7-x), with a 'normal metal' layer of reduced transition temperature YBa2Cu3O(7-x) were fabricated and show a great deal of promise for applications near 77 K. Current-voltage characteristics like those of the Resistively-Shunted Junction model are observed, with strong response to 10 GHz radiation above 60 K.

  19. Electronic structure and the van Hove singularity scenario in high-T(sub c)H(g)Ba2CuO(4+delta) superconductors

    NASA Technical Reports Server (NTRS)

    Agrawal, Bal K.; Agrawal, Savitri

    1995-01-01

    The electronic structure and the hole concentrations in the high Tc superconductor HgBa2CuO(4+delta) (delta = O, 1) has been investigated by employing a first principles full potential self-consistent LMTO method with the local density functional theory. The scalar relativistic effects have been considered. The hole concentrations of the Cu-d and O-p(x,y) orbitals are seen to be larger for the HgBaCuO5 system than those of the HgBaCuO4 solid. However, the van Hove singularity (vHs) induced Cu-d and O-p peak which is seen to lie comparatively away and above the Fermi level in the delta = 1 system shifts towards the Fermi level in the delta = 0 system. Thus, the superconducting behavior appears to originate from the occurrence of the vHs peak at the Fermi level. The Fermi surface nesting area in the delta = 0 compound is seen to be larger than in the delta = 1 compound. The calculation reveals that the increase in pressure on the crystal enhances the hole concentrations but without showing any optimum value, On the other hand, the vHs peak approaches to-wards the Fermi level with pressure and crosses the Fermi surface near V/Vo approximately equals 0.625 (V and Vo are the crystal volumes at high and normal pressures, respectively). Our calculated value of the bulk modulus equal to 0.626 Mbar predicts the occurrence of this crossover at about 24 GPa which is in complete agreement with the experimental value. At this pressure the compound has maximum nesting area and self-doped behavior.

  20. Investigations on the local structures of Cu2+ at various BaO concentrations in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO glasses

    NASA Astrophysics Data System (ADS)

    Jin, Jia-Rui; Wu, Shao-Yi; Hong, Jian; Liu, Shi-Nan; Song, Min-Xian; Teng, Bao-Hua; Wu, Ming-He

    2017-11-01

    The local structures and electron paramagnetic resonance (EPR) parameters for Cu2+ in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO (BKZBC) glasses are theoretically investigated with distinct modifier BaO concentrations x (= 0, 6, 12, 18, 24 and 30 mol %). The ? clusters are found to undergo the relative tetragonal elongations of about 13.5 and 5.0% at zero and higher BaO concentrations. The concentration dependences of the measured d-d transition bands, g factors and A// are suitably reproduced from the Fourier type functions or sign functions of the relevant quantities with x by using only six adjustable parameters. The features of the EPR parameters and the local structures of Cu2+ are analysed in a consistent way by considering the differences in the local ligand field strength and electronic cloud admixtures around Cu2+ under addition of Ba2+ with the highest ionicity and polarisability. The present theoretical studies would be helpful to the researches on the structures, optical and EPR properties for the similar potassium barium zinc borate glasses containing copper with variation concentration of modifier BaO.

  1. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Ellis, W. P.; Borg, A.; Kang, J.-S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-11-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO3 than in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO3 and Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d-->4f, La 4d-->4f, and Nd 4d-->4f transitions) are also reported.

  2. Fermi Surface Studies and Temperature Dependence of the Electron-Positron Momentum Density in the High Critical Temperature Superconducting Yttrium BARIUM(2) COPPER(3) OXYGEN(7-X) System by Two-Dimensional Acar

    NASA Astrophysics Data System (ADS)

    von Stetten, Eric Carl

    The electron-positron momentum density has been measured by the two dimensional angular correlation of annihilation radiation (2D ACAR) technique for single crystal and polycrystalline (sintered powder) YBa_2 Cu_3O_{7-x} samples. For sintered superconducting and nonsuperconducting samples, the shape and temperature variation of the momentum density was investigated using the high sensitivity 2D ACAR technique. The possible existence of Fermi surfaces (FS's) in the YBa_2Cu _3O_{7-x} system was investigated in high precision 2D ACAR experiments on an oriented (twinned) single crystal superconducting YBa_2Cu _3O_{7-x} (x ~ 0.1) sample, at temperatures above and below the superconducting transition temperature (~85 K). These experiments were performed in the c-axis projection, in order to observe the theoretically predicted cylindrical FS's (if they exist) in a single experiment, without a full reconstruction of the three dimensional momentum density. Large differences were observed between the room temperature 2D ACAR spectra for superconducting and nonsuperconducting sintered powder samples, and smaller differences were observed between the spectra for similarly prepared superconducting samples. For sintered superconducting samples, complex sample dependent temperature variations of the momentum density were observed, in contrast to the small linear temperature variation observed for a sintered powder nonsuperconducting sample. These results are interpreted as manifestations of the theoretically predicted preferential sampling of the linear Cu-O chain region by the positron in the YBa _2Cu_3O _{7-x} system. High precision experiments on the single crystal superconducting sample revealed a nearly isotropic 2D ACAR spectrum, with only four small (~3% of the height at p_{x} = p _{y} = 0) peaks centered along the (110) symmetry lines. A small narrowing of the 2D ACAR spectrum was observed above T_{c}. The Brillouin-zone-reduced momentum density was formed using the "Lock

  3. Electrical and magnetic properties of superconducting-insulating Pr-doped GdBa2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    1997-10-01

    An extensive study of magnetic, electrical transport, and structural properties of the normal and superconducting states of Gd1-xPrxBa2Cu3O7-y (GdPr-123) are presented. Ceramic compounds have been synthesized by the solid-state reaction technique, and characterized by x-ray-diffraction, scanning-electron-microscopy, thermogravimetric, and differential-thermal analyses. The superconducting transition temperature is reduced with increasing Pr content x in a nonlinear manner, in contrast to Abrikosov-Gor'kov pair-breaking theory. Magnetic susceptibility measurements show that the nominal Pr valence is 3.86+, independently of x. A metal-insulator transition is observed at xcr~0.45, similar to that in the oxygen-deficient RBa2Cu3O7-y (R-123) system. Based on this resemblance, we suggest that both Pr doping and oxygen deficiency act through the same mechanism. Hence, the environment surrounding the CuO2 layers is important to high-Tc superconductivity (HTSC). In this sense, HTSC cannot completely be a two-dimentional feature. A chain-plane-correlation effect is plausible.

  4. Modification of structural and transport properties in epitaxial YBa2CU3Ox films by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Chechenin, N. G.; Chernysh, A. V.; Korneev, V. V.; Monakhov, E. V.; Seleznev, B. V.

    1993-12-01

    Pulsed (~20 ns) laser effects in epitaxial YBa2CU3Ox/SrTiO3 thin films were investigated, using RBS/channeling for compositional and structural characterization and 4-point technique for electrical measurements. It was found that laser pulse melting and following quenching lead to a transition from a single-crystalline to a polycrystalline state in films. The formation of grain boundaries causes a room temperature electrical resistivity increase by a factor 10-40, depending on the initial film properties and on the irradiation conditions. Unlike corpuscular (ions, neutrons) irradiation, the laser pulse induced structural damage did not lead to the disappearance of HTS, which persisted up to the highest laser fluences used. It was found, that a thermal model can consistently describe the fluence dependence of disorder, depth of surface relief and helps, with a simple two-layer model, in understanding of fluence dependence of room temperature resistivity in a relatively thick film. Les effects de pulses laser (~20 ns) sur des films minces épitaxiés d'YBa2Cu3Ox/SrTiO3 ont été étudiés par rétrodiffusion Rutherford et canalisation afin de caractériser leur composition et leur structure et à l'aide de la technique des 4 points pour les mesures électriques. On a trouvé que la fusion par pulse laser suivie par une trempe entraîne une transition d'un film monocristallin vers un film polycristallin. La formation de joints de grains s'accompagne d'une augmentation d'un facteur 10-40, de la résistivité électrique à température ambiante, dépendante des propriétés initiales du film et des conditions d'irradiation. Contrairement à l'irradiation corpusculaire (ions, neutrons) l'endommagement produit par la pulse laser n'entraîne pas la disparition de la superconductivité à haute température (HTS), qui persiste jusqu'aux plus hautes doses utilisées. On a trouvé qu'un modèle thermique peut décrire de façon consistante, la profondeur de la rugosité de

  5. TL and EPR studies of Cu, Ag and P doped Li2B4O7 phosphor

    NASA Astrophysics Data System (ADS)

    Can, N.; Karali, T.; Townsend, P. D.; Yildiz, F.

    2006-05-01

    Key characteristics of a newly prepared tissue-equivalent, highly sensitive thermoluminescence dosimeter, Li2B4O7:Cu,Ag,P, are presented. The material was developed at the Institute of Nuclear Sciences, Belgrade, in the form of sintered pellets. A new preparation procedure has greatly increased the sensitivity of the basic copper activated lithium borate and the glow curve of Li2B4O7 : Cu,Ag,P consists of a well-defined main dosimetric peak situated at about 460-465 K with a sensitivity which is about four to five times higher than that of LiF : Mg,Ti (TLD-100). The exceptionally good response features of Li2B4O7 : Cu,Ag,P are attributed to the incorporation of Cu as a dopant. Both low and high temperature emission spectra are presented and the origins of the various emission bands are considered. Additional data are provided from electron paramagnetic resonance measurements.

  6. Reactions of small negative ions with O2(a 1[Delta]g) and O2(X 3[Sigma]g-)

    NASA Astrophysics Data System (ADS)

    Midey, Anthony; Dotan, Itzhak; Seeley, J. V.; Viggiano, A. A.

    2009-02-01

    The rate constants and product ion branching ratios were measured for the reactions of various small negative ions with O2(X 3[Sigma]g-) and O2(a 1[Delta]g) in a selected ion flow tube (SIFT). Only NH2- and CH3O- were found to react with O2(X) and both reactions were slow. CH3O- reacted by hydride transfer, both with and without electron detachment. NH2- formed both OH-, as observed previously, and O2-, the latter via endothermic charge transfer. A temperature study revealed a negative temperature dependence for the former channel and Arrhenius behavior for the endothermic channel, resulting in an overall rate constant with a minimum at 500 K. SF6-, SF4-, SO3- and CO3- were found to react with O2(a 1[Delta]g) with rate constants less than 10-11 cm3 s-1. NH2- reacted rapidly with O2(a 1[Delta]g) by charge transfer. The reactions of HO2- and SO2- proceeded moderately with competition between Penning detachment and charge transfer. SO2- produced a SO4- cluster product in 2% of reactions and HO2- produced O3- in 13% of the reactions. CH3O- proceeded essentially at the collision rate by hydride transfer, again both with and without electron detachment. These results show that charge transfer to O2(a 1[Delta]g) occurs readily if the there are no restrictions on the ion beyond the reaction thermodynamics. The SO2- and HO2- reactions with O2(a) are the only known reactions involving Penning detachment besides the reaction with O2- studied previously [R.S. Berry, Phys. Chem. Chem. Phys., 7 (2005) 289-290].

  7. Microwave response of high transition temperature superconducting thin films

    NASA Technical Reports Server (NTRS)

    Miranda, Felix Antonio

    1991-01-01

    We have studied the microwave response of YBa2Cu3O(7 - delta), Bi-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O high transition temperature superconducting (HTS) thin films by performing power transmission measurements. These measurements were carried out in the temperature range of 300 K to 20 K and at frequencies within the range of 30 to 40 GHz. Through these measurements we have determined the magnetic penetration depth (lambda), the complex conductivity (sigma(sup *) = sigma(sub 1) - j sigma(sub 2)) and the surface resistance (R(sub s)). An estimate of the intrinsic penetration depth (lambda approx. 121 nm) for the YBa2Cu3O(7 - delta) HTS has been obtained from the film thickness dependence of lambda. This value compares favorably with the best values reported so far (approx. 140 nm) in single crystals and high quality c-axis oriented thin films. Furthermore, it was observed that our technique is sensitive to the intrinsic anisotropy of lambda in this superconductor. Values of lambda are also reported for Bi-based and Tl-based thin films. We observed that for the three types of superconductors, both sigma(sub 1) and sigma(sub 2) increased when cooling the films below their transition temperature. The measured R(sub s) are in good agreement with other R(sub S) values obtained using resonant activity techniques if we assume a quadratic frequency dependence. Our analysis shows that, of the three types of HTS films studied, the YBa2Cu3O(7 - delta) thin film, deposited by laser ablation and off-axis magnetron sputtering are the most promising for microwave applications.

  8. Flux pinning enhancement in thin films of Y3 Ba5 Cu8O18.5 + d

    NASA Astrophysics Data System (ADS)

    Aghabagheri, S.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.

    2018-06-01

    YBa2Cu3O7 (Y123) and Y3Ba5Cu8O18 (Y358) thin films were deposited by pulsed laser deposition method. XRD analysis shows both films grow in c axis orientation. Resistivity versus temperature analysis shows superconducting transition temperature was about 91.2 K and 91.5 K and transition width for Y358 and Y123 films was about 0.6 K and 1.6 K, respectively. Analysis of the temperature dependence of the AC susceptibility near the transition temperature, employing Bean's critical state model, indicates that intergranular critical current density for Y358 films is more than twice of intergranular critical current density of Y123 films. Thus, flux pining is stronger in Y358 films. Weak links in the both samples is of superconductor-normal-superconductor (SNS) type irrespective of stoichiometry.

  9. Raman spectroscopy of the multianion mineral gartrellite-PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.

    2012-04-01

    The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The vibrational spectra of two gartrellite samples from Durango and Ashburton Downs were compared. Gartrellite is one of the tsumcorite mineral group based upon arsenate and sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with 2 water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the minerals enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO4 anion.

  10. Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi 2O 4 and Ag-Doped CuBi 2O 4 Photocathodes

    DOE PAGES

    Kang, Donghyeon; Hill, James C.; Park, Yiseul; ...

    2016-06-09

    Here, electrochemical synthesis methods were developed to produce CuBi 2O 4, a promising p-type oxide for use in solar water splitting, as high surface area electrodes with uniform coverage. These methods involved electrodepositing nanoporous Cu/Bi films with a Cu:Bi ratio of 1:2 from dimethyl sulfoxide or ethylene glycol solutions, and thermally oxidizing them to CuBi 2O 4 at 450°C in air. Ag-doped CuBi 2O 4 electrodes were also prepared by adding a trace amount of Ag+ in the plating medium and codepositing Ag with the Cu/Bi films. In the Ag-doped CuBi 2O 4, Ag+ ions substitutionally replaced Bi3+ ions andmore » increased the hole concentration in CuBi 2O 4. As a result, photocurrent enhancements for both O 2 reduction and water reduction were achieved. Furthermore, while undoped CuBi 2O 4 electrodes suffered from anodic photocorrosion during O 2 reduction due to poor hole transport, Ag-doped CuBiO 4 effectively suppressed anodic photocorrosion. The flat-band potentials of CuBi 2O 4 and Ag-doped CuBi 2O 4 electrodes prepared in this study were found to be more positive than 1.3 V vs RHE in a 0.1 M NaOH solution (pH 12.8), which make these photocathodes highly attractive for use in solar hydrogen production. The optimized CuBi 2O 4/Ag-doped CuBi 2O 4 photocathode showed a photocurrent onset for water reduction at 1.1 V vs RHE, achieving a photovoltage higher than 1 V for water reduction. The thermodynamic feasibility of photoexcited electrons in the conduction band of CuBi 2O 4 to reduce water was also confirmed by detection of H 2 during photocurrent generation. This study provides new understanding for constructing improved CuBi 2O 4 photocathodes by systematically investigating photocorrosion as well as photoelectrochemical properties of high-quality CuBi 2O 4 and Ag-doped CuBi 2O 4 photoelectrodes for photoreduction of both O 2 and water.« less

  11. Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi 2O 4 and Ag-Doped CuBi 2O 4 Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Donghyeon; Hill, James C.; Park, Yiseul

    Here, electrochemical synthesis methods were developed to produce CuBi 2O 4, a promising p-type oxide for use in solar water splitting, as high surface area electrodes with uniform coverage. These methods involved electrodepositing nanoporous Cu/Bi films with a Cu:Bi ratio of 1:2 from dimethyl sulfoxide or ethylene glycol solutions, and thermally oxidizing them to CuBi 2O 4 at 450°C in air. Ag-doped CuBi 2O 4 electrodes were also prepared by adding a trace amount of Ag+ in the plating medium and codepositing Ag with the Cu/Bi films. In the Ag-doped CuBi 2O 4, Ag+ ions substitutionally replaced Bi3+ ions andmore » increased the hole concentration in CuBi 2O 4. As a result, photocurrent enhancements for both O 2 reduction and water reduction were achieved. Furthermore, while undoped CuBi 2O 4 electrodes suffered from anodic photocorrosion during O 2 reduction due to poor hole transport, Ag-doped CuBiO 4 effectively suppressed anodic photocorrosion. The flat-band potentials of CuBi 2O 4 and Ag-doped CuBi 2O 4 electrodes prepared in this study were found to be more positive than 1.3 V vs RHE in a 0.1 M NaOH solution (pH 12.8), which make these photocathodes highly attractive for use in solar hydrogen production. The optimized CuBi 2O 4/Ag-doped CuBi 2O 4 photocathode showed a photocurrent onset for water reduction at 1.1 V vs RHE, achieving a photovoltage higher than 1 V for water reduction. The thermodynamic feasibility of photoexcited electrons in the conduction band of CuBi 2O 4 to reduce water was also confirmed by detection of H 2 during photocurrent generation. This study provides new understanding for constructing improved CuBi 2O 4 photocathodes by systematically investigating photocorrosion as well as photoelectrochemical properties of high-quality CuBi 2O 4 and Ag-doped CuBi 2O 4 photoelectrodes for photoreduction of both O 2 and water.« less

  12. Ba3CuOs2O9 and Ba3ZnOs2O9, a comparative study

    NASA Astrophysics Data System (ADS)

    Feng, Hai L.; Jansen, Martin

    2018-02-01

    Polycrystalline samples of Ba3CuOs2O9 and Ba3ZnOs2O9 were synthesized by solid-state reactions. Ba3CuOs2O9 crystallizes in Cmcm, while Ba3ZnOs2O9 adopts the hexagonal space group P63/mmc. Both the crystal structures consist of face-sharing Os-centered octahedra forming dimer-like Os2O9 units, which are interconnected by corner-sharing CuO6, or ZnO6 octahedra, respectively. In Ba3CuOs2O9, the CuO6 octahedra show a characteristic Jahn-Teller distortion. Both, Ba3CuOs2O9 and Ba3ZnOs2O9, are electrically insulating. Magnetic and specific heat measurements confirm that Ba3CuOs2O9 is antiferromagnetically ordered below 47 K. Analysis of the magnetic data indicated that its magnetic properties are dominated by Cu2+ ions. The magnetic susceptibility of Ba3ZnOs2O9 is weakly temperature-dependent with a broad maximum ≈ 280 K, indicating the presence of strong exchange interactions within the Os2O9 dimer. The residual magnetic susceptibility at low temperatures also suggests the presence of appreciable exchange coupling between the dimers.

  13. Dependence of transition temperature on hole concentration per CuO2 sheet in the Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Seehra, M. S.

    1991-01-01

    The recently observed variations of the transition temperature (T sub c) with oxygen content in the Bi based (2212) and (2223) superconductors are analyzed in terms of p+, the hole concentration per CuO2 sheet. This analysis shows that in this system, T sub c increases with p+ initially, reaching maxima at p+ = 0.2 approx. 0.3, followed by monotonic decrease of T sub c with p+. The forms of these variations are similar to those observed in the La(2-x)Sr(x)CuO4 and YBa2Cu3Oy systems, suggesting that p+ may be an important variable governing superconductivity in the cuprate superconductors.

  14. Near-midnight observations of nitric oxide delta- and gamma-band chemiluminescence

    NASA Technical Reports Server (NTRS)

    Tennyson, P. D.; Feldman, P. D.; Hartig, G. F.; Henry, R. C.

    1986-01-01

    Chemiluminescent nightglow emission of the nitric oxide delta and gamma bands was measured from a sounding rocket launched on April 27, 1981, near local midnight. The integrated band emission rates for this near zenith observation above 205 km were less than 10 Rayleighs. The solar zenith angle was 127 deg. The branching ratio from the C2Pi state to the A2Sigma(+) state of NO was determined from comparison of the total emission rate of the delta band system to that of the gamma band system and found to be 0.30 + or - 0.06. The branching ratios within each of the band systems were found to be consistent with previous theoretical and experimental determinations. The vertical atomic nitrogen distribution, derived with the use of a model atmosphere, was found to have a peak density of 2.0 x 10 to the 7th atoms/cu cm at an altitude of 205 km. The analysis of these data indicate the presence of residual NO emission above 270 km at local midnight on the order of 1 Rayleigh of total band emission.

  15. The structural phase diagram and oxygen equilibrium partial pressure of YBa 2Cu 3O 6+ x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Andersen, N. H.; Lebech, B.; Poulsen, H. F.

    1990-12-01

    An experimental technique based on neutron powder diffraction and gas volumetry is presented and used to study the structural phase diagram of YBa 2Cu 3O 6+ x under equilibrium conditions in an extended part of ( x, T)-phase (0.15< x<0.92 and 25° C< T<725°C). Our experimental observations lend strong support to a recent two-dimensional anisotropic next-nearest-neighbour Ising model calculation (the ASYNNNI model) of the basal plane oxygen ordering based of first principle interaction parameters. Simultaneous measurements of the oxygen equilibrium partial pressure show anomalies, one of which proves the thermodynamic stability of the orthorhombic OII double cell structure. Striking similarity with predictions of recent model calculations support that another anomaly may be interpreted to result from local one-dimensional fluctuations in the distribution of oxygen atoms in the basal plane of tetragonal YBCO. Our pressure data also indicate that x=0.92 is a maximum obtainable oxygen concentration for oxygen pressures below 760 Torr.

  16. Synthesis and characterization of high-Tc superconductors in the Tl-Ca-Ba-Cu-O system

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Farrell, D. E.

    1989-01-01

    Both Tl2Ca2Ba2Cu3O10 and TlCa3BaCu3O8.5 are investigated for superconductivity as a function of the sintering temperature, time, atmosphere, and quench rate in an effort to synthesize the high-Tc superconducting phase in the thallium system. The samples are characterized by electrical resistivity measurements, X-ray diffraction, and scanning electron microscopy. Samples of starting composition Tl2Ca2Ba2Cu3O10 fired in air at 860-900 C and rapidly quenched show a Tc of 96-107 K. In contrast, specimens of starting composition TlCa3BaCu3O8.5 when baked at 900 C and slowly cooled in oxygen superconduct at 116 K and above and consist of Tl2Ca2Ba2Cu3O(10+x) as the dominant phase. The results also show that, in contrast to the case of YBa2Cu3O(7-x), doping with a small concentration of fluorine sharpens the resistive transition and produces a large Tc increase in thallium-based superconductors.

  17. A determination of the oxygen non-stoichiometry of the oxygen storage material YBaMn{sub 2}O{sub 5+δ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana

    2015-10-15

    The A-site ordered double-perovskite oxide, YBaMn{sub 2}O{sub 5+δ}, has been of recent interest for possible application as an oxygen storage material. In the present study, the oxygen non-stoichiometry of YBaMn{sub 2}O{sub 5+δ} has been determined as a function of pO{sub 2} at 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that this perovskite oxide has three distinct phases on oxidation/reduction with δ≈0, 0.5 and 1. The stabilities of the YBaMn{sub 2}O{sub 5+δ} phases span a wide range of oxygen partial pressures (∼10{sup −20}≤pO{sub 2}(atm)≤∼1 ) depending on temperature. The phases interconvert at higher pO{submore » 2} values at higher temperatures. The partial molar free energies (Δμ{sub O}) corresponding to the oxidation of YBaMn{sub 2}O{sub 5} to YBaMn{sub 2}O{sub 5.5} and of YBaMn{sub 2}O{sub 5.5} to YBaMn{sub 2}O{sub ∼6} were determined. The value of Δμ{sub O} in both oxidation steps becomes less negative with increasing temperature. At some T and pO{sub 2} conditions, YBaMn{sub 2}O{sub 5+δ} is unstable with respect to decomposition to BaMnO{sub 3−δ} and YMnO{sub 3}. This instability is anticipated from the previous studies of the synthesis of YBaMn{sub 2}O{sub 5+δ} but is more apparent in the present experiments which are necessarily slow in order to achieve equilibrium with respect to the oxygen content. - Highlights: • Determination of the oxygen non-stoichiometry of YBaMn{sub 2}O{sub 5+δ} as a function of pO{sub 2} and T. • Establishments of pO{sub 2} ranges of stability of O{sub 5} and O{sub 5.5} at 650 °C, 700 °C and 750 °C. • Discovery of the kinetic instability of YBaMn{sub 2}O{sub 5+δ} with respect to decomposition to BaMnO{sub 3}−{sub x} and YMnO{sub 3}. • Evaluation of the thermodynamics of the oxidation of YBaMnO{sub 5}.« less

  18. Inductance Jump at Melting of Vortex Lattice in Untwinned YBaCuO

    NASA Astrophysics Data System (ADS)

    Matl, P.; Wu, H.; Ong, N. P.; Gagnon, R.; Taillefer, L.

    1997-03-01

    We have measured the complex resistivity in an untwinned single crystal YBaCuO between 70K and 120K at a fixed magnetic field. As T increases towards the melting temperature Tm the inductance increases rapidly. At Tm the inductance undergoes a discontinuous jump, which we correlate with the collapse of the shear modulus c_66. We describe how the magnitude of the jump varies with temperature, field, and frequency. We have also extracted the viscosity of the vortex lattice from a Bardeen-Stephen fit to the low field complex resistivity measured at 1 to 15 MHz between 80K and T_c. We find that the viscosity decreases as 1.2x10-13 kg m-1 s-1 K-1 as the temperature approaches T_c.

  19. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Fu, Qishu; Qu, Timing; Mu, Hui; Gu, Chen; Yue, Yubin; Wang, Linli; Yang, Zhirong; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    A high-temperature superconducting coated conductor can be practically applied in electric equipment due to its favorable mechanical properties and critical current (I c) performance. However, the coated conductor can easily delaminate because of its poor stress tolerance along the thickness direction. It would be interesting to investigate whether the I c of the delaminated YBa2Cu3O7-δ (YBCO) layer can be preserved. In this study, coated conductor samples manufactured through the metal organic deposition route were delaminated by liquid nitrogen immersion. Delaminated samples, including the YBCO layer and silver stabilizer, were obtained. Delamination occurred inside the YBCO layer and near the YBCO-CeO2 interface, as suggested by the results of scanning electron microscopy (SEM) and x-ray diffraction. A scanning Hall probe system was employed to measure the I c distribution of the original sample and the delaminated sample. It was found that approximately 50% of the I c can be preserved after delamination, which was verified by I c measurements using the four-probe method. Dense and crack-free morphologies of the delaminated surfaces were observed by SEM, which accounts for the I c survival of the delaminated YBCO layer. The potential application of the delaminated sample in superconducting joints was discussed based on the oxygen diffusion estimation.

  20. Effect of the seed layer on the Y0.5Gd0.5Ba2Cu3O7-σ film fabricated by PLD

    NASA Astrophysics Data System (ADS)

    Yao, Yanjie; Wang, Wei; Liu, Linfei; Lu, Saidan; Wu, Xiang; Zheng, Tong; Liu, Shunfan; Li, Yijie

    2018-06-01

    The surface morphology and internal residual stress have influence on the critical current density (Jc) of REBa2Cu3O7-σ (REBCO) coated conductor. In order to modulate them, a series of Y0.5Gd0.5Ba2Cu3O7-σ (YGBCO) films were prepared by pulsed laser deposition (PLD) through introducing a seed layer in this paper. The thicknesses of seed layer changes from about 2 nm to 30 nm. For comparison, a standard sample without seed layer was fabricated at the same deposition condition. The surface morphology was illustrated by Scanning electron microscopy (SEM). The surface roughness was scanned by Atomic force microscopy (AFM). The microstructure and internal strain were measured by X-ray Diffraction (XRD). DC four-probe method was used to measure the critical current of the samples at 77 K and self-field. As a result, all samples have high Jc of about 4 MA/cm2, while the self-field Jc of the YGBCO films can be promoted by the seed layer. The results of our research work are as follows. First of all, seed layer makes the deposition of the YGBCO layer much easier to control. By this way, we can decrease the surface roughness of the samples. Furthermore, the internal residual stress of the YGBCO films with seed layer decrease. Finally, the best thickness of the seed layer was found by summarizing and analyzing the conditions of seed layer.

  1. Formation of Y(x)Nd(1-x) Ba2Cu3O(7-delta) (0 = or < x < or = 0.7) Superconductors from an Undercooled Melt Via Aero-Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Gustafson, D. E.; Hofmeister, W. H.; Bayuzick, R. J.

    2001-01-01

    Melt processing of RE123 superconductors has gained importance in recent years. While the first high temperature superconductors (HTSCs) were made using traditional ceramic press and sinter technology, recent fabrication efforts have employed alternate processing techniques including laser ablation and ion beam assisted deposition for thin film fabrication of tapes and wires and melt growth for bulk materials. To optimize these techniques and identify other potential processing strategies, phase relation studies on HTSCs have been conducted on a wide variety of superconducting compounds using numerous processing strategies. This data has enhanced the understanding of these complex systems and allowed more accurate modeling of phase interactions. All of this research has proved useful in identifying processing capabilities for HTSCs but has failed to achieve a breakthrough for wide spread application of these materials. This study examines the role of full to partial substitution of Nd in the Y123 structure under rapid solidification conditions. Aero-acoustic levitation (AAL) was used to levitate and undercool RE123 in pure oxygen binary alloys with RE = Nd an Y along a range of compositions corresponding to Y(x)Nd(1-x) Ba2Cu3O(7-delta) (0 = or < x < or = 0.7) which were melted by a CO2 laser. Higher Y content spheres could not be melted in the AAL and were excluded from this report. Solidification structures were examined using scanning electron microscopy, electron dispersive spectroscopy, and powder x-ray diffraction to characterize microstructures and identify phases.

  2. Superconducting and magnetic properties of RBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaheen, S.A.; Jisrawi, N.; Lee, Y.H.

    Superconducting properties of RBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ compounds (R = Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Yb) have been studied by dc electrical resistivity and ac magnetic susceptibility techniques. Except for R = La, which is superconducting below 50 K, RBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ compounds exhibit sharp resistive and inductive transitions in the 90-K range. The nearly constant value of T/sub c/ for magnetic R ions indicates a very weak interaction between R ions, as anticipated from the known crystal structure of these materials. The effects of annealing in oxygen and argon, andmore » air quenching, on the superconducting properties are also discussed.« less

  3. Mesure de la conductivité complexe et de la résistance de surface de films supraconducteurs YBaCuO

    NASA Astrophysics Data System (ADS)

    Mehri, F.; Lepercq, P.; Carru, J. C.; Playez, E.; Thivet, C.; Perrin, A.; Chambonnet, D.

    1994-11-01

    We describe in this paper 2 non destructive measurement methods in microwaves (18-26 GHz) well-suited to the characterization of conducting and superconducting thin films. From the experimental values we show that it is possible to infer, without any hypothesis, the following parameters : σ^*, R_s, X_s and λ between 20 K and 300 K. Some examples are given with metallic and superconducting samples from various origins. At 22 GHz and below 75 K, YBaCuO films deposited on MgO have a surface resistance inferior to bulk copper one. Dans cet article nous décrivons 2 méthodes de mesure non destructives adaptées à la caractérisation en microondes (18-26 GHz) de films minces conducteurs et supraconducteurs. A partir des valeurs expérimentales nous montrons qu'il est possible d'en déduire les grandeurs caractéristiques à savoir σ^*, R_s, X_s et λ entre 20 K et 300 K. Nous donnons des exemples de caractérisation de films métalliques et supraconducteurs provenant de différentes origines. A 22 GHz, en dessous de 75 K, les films YBaCuO déposés sur MgO ont une résistance de surface inférieure à celle du cuivre massif.

  4. Twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Poulsen, H. F.; Andersen, N. H.; Lebech, B.

    1991-02-01

    We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.

  5. Narrow-band far-infrared interference filters with high-T c, superconducting reflectors

    NASA Astrophysics Data System (ADS)

    Schönberger, R.; Prückl, A.; Pechen, E. V.; Anzin, V. B.; Brunner, B.; Renk, K. F.

    1994-10-01

    We report on experiments showing that high-T c, superconductors are well suitable for constructing of high-quality far-infrared Fabry-Perot interference filters in the terahertz frequency range. In an interference filter we use two plane-parallel MgO plates with YBa 2 Cu 3 O 7 thin films as partly transparent reflectors on adjacent surfaces. For the first-order main resonances adjusted to frequencies around 2 THz a quality factor of ≅200 and a peak-transmissivity of 0˜.5 have been reached. Study of the filters with YBa 2 Cu 3 O 7 films of different thickness indicate the possibility of reaching still higher selectivity. An analysis of the filter characteristics delivered the dynamical conductivity of the high-T c films.

  6. Band alignment of atomic layer deposited SiO2 and HfSiO4 with (\\bar{2}01) β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H., IV; Ren, Fan; Hays, David C.; Gila, Brent P.; Pearton, Stephen J.; Jang, Soohwan; Kuramata, Akito

    2017-07-01

    The valence band offset at both SiO2/β-Ga2O3 and HfSiO4/β-Ga2O3 heterointerfaces was measured using X-ray photoelectron spectroscopy. Both dielectrics were deposited by atomic layer deposition (ALD) onto single-crystal β-Ga2O3. The bandgaps of the materials were determined by reflection electron energy loss spectroscopy as 4.6 eV for Ga2O3, 8.7 eV for Al2O3 and 7.0 eV for HfSiO4. The valence band offset was determined to be 1.23 ± 0.20 eV (straddling gap, type I alignment) for ALD SiO2 on β-Ga2O3 and 0.02 ± 0.003 eV (also type I alignment) for HfSiO4. The respective conduction band offsets were 2.87 ± 0.70 eV for ALD SiO2 and 2.38 ± 0.50 eV for HfSiO4, respectively.

  7. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor.

    PubMed

    Lei, Hongwei; Yang, Guang; Guo, Yaxiong; Xiong, Liangbin; Qin, Pingli; Dai, Xin; Zheng, Xiaolu; Ke, Weijun; Tao, Hong; Chen, Zhao; Li, Borui; Fang, Guojia

    2016-06-28

    Efficient planar antimony sulfide (Sb2S3) heterojunction solar cells have been made using chemical bath deposited (CBD) Sb2S3 as the absorber, low-temperature solution-processed tin oxide (SnO2) as the electron conductor and poly (3-hexylthiophene) (P3HT) as the hole conductor. A solar conversion efficiency of 2.8% was obtained at 1 sun illumination using a planar device consisting of F-doped SnO2 substrate/SnO2/CBD-Sb2S3/P3HT/Au, whereas the solar cells based on a titanium dioxide (TiO2) electron conductor exhibited a power conversion efficiency of 1.9%. Compared with conventional Sb2S3 sensitized solar cells, the high-temperature processed mesoscopic TiO2 scaffold is no longer needed. More importantly, a low-temperature solution-processed SnO2 layer was introduced for electron transportation to substitute the high-temperature sintered dense blocking TiO2 layer. Our planar solar cells not only have simple geometry with fewer steps to fabricate but also show enhanced performance. The higher efficiency of planar Sb2S3 solar cell devices based on a SnO2 electron conductor is attributed to their high transparency, uniform surface, efficient electron transport properties of SnO2, suitable energy band alignment, and reduced recombination at the interface of SnO2/Sb2S3.

  8. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  9. Synthesis and characterization of high-T(sub c) screen-printed Y-Ba-Cu-O films on alumina

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Simons, Rainee N.; Farrell, D. E.

    1988-01-01

    Thick films of YBa2Cu3O(sub 7-x) have been deposited on highly polished alumina substrates by the screen printing technique. To optimize the post-printing heat treatment, the films were baked at various temperatures for different lengths of time and oxygen-annealed at a lower temperature. The resulting films were characterized by electrical resistivity measurements, x-ray diffraction, and optical and scanning electron microscopy. Properties of the films were found to be highly sensitive to the post-printing thermal treatment. Films baked for 15 min at 1000 C in oxygen were hard, adherent, near single phase, and superconducting with T(sub c)(onset) approx 96 K, T(sub c)(zero) approx 66 K and Delta T sub c (10 to 90 percent) approx 10 K.

  10. Magnetization Losses in Multiply Connected YBa2Cu3O6+x-Coated Conductors (Postprint)

    DTIC Science & Technology

    2012-02-01

    time-varying magnetic field. In these samples, the superconducting layer is divided into parallel stripes segregated by nonsuperconducting grooves... superconducting bridges is superimposed on the striated film. We find that the presence of the bridges does not substantially increase the magnetization ...perature of 10 K and then the field was turned off. As the result, the magnetic flux was trapped in the superconducting stripes bright bands

  11. Investigations on the Local Structures and the Spin Hamiltonian Parameters for Cu2+ in (90-x)TeO2-10GeO2-xWO3 Glasses

    NASA Astrophysics Data System (ADS)

    Feng, Chun-Rong; Jian, Jun; Chen, Xiao-Hong; Du, Quan; Wang, Ling

    2017-12-01

    The local structures and the spin Hamiltonian parameters (SHPs) for Cu2+ in (90-x)TeO2-10GeO2-xWO3 glasses are theoretically investigated at various WO3 concentrations (x=7.5, 15, 22.5 and 30 mol%). Subject to the Jahn-Teller effect, the [CuO6]10- groups are found to experience the small or moderate tetragonal elongation distortions (characterised by the relative tetragonal elongation ratios ρ≈0.35-3.09%) in C4 axis. With only three adjusted coefficients a, b and ω, the relevant model parameters (Dq, k and ρ) are described by the Fourier type and linear functions, respectively, and the measured concentration dependences of the d-d transition bands and SHPs are reproduced. The maximum of g∥ and the minimum of |A∥| at x=15 mol% are illustrated from the abrupt decrease of the copper-oxygen electron cloud admixtures or covalency and the obvious decline of the copper 3d-3s (4s) orbital admixtures due to the decreasing electron cloud density around oxygen ligands spontaneously bonding with Cu2+ and Te4+ (W6+), respectively.

  12. Search for solid conductors of Na(+) and K(+) ions: Five new conductors

    NASA Technical Reports Server (NTRS)

    Singer, J.; Kautz, H.; Fielder, W. L.; Fordyce, J.

    1975-01-01

    Five conductors of three structure types were discovered which, as solids, can transport Na(+) or K(+) ions with conductivities of approximately .00001/(omega cm) at 300 K. These compounds are: (1) the pyrochlores NaTaWO6 and NaTa2O5F, both with an activation energy for conduction delta E of 21 kJ/mole; (2) the bodycentered cubic form of NaSbO3, with delta E = 42 kJ/mole; and (3) the niobates 2Na2O with 3Nb2O5 and 2K2O with 3Nb2O5, with the alkali ions probably in open layers of the incompletely determined structure; delta E = 17 kJ/mole. On the basis of approximately 40 structure types, some generalizations were made regarding the relation between structure and ionic transport.

  13. Low-frequency Electronic Transport Noise in La2-xBaxCuO4 Nanowires

    NASA Astrophysics Data System (ADS)

    Weis, Adam; Xin, Yizhou; van Harlingen, Dale

    2013-03-01

    In the pseudogap regime, high temperature superconductors often exhibit electronic structure, such as charge stripes. Charge stripes pinned to disorder have been predicted to contribute to low-frequency resistance fluctuations when sample dimensions are comparable to the size of stripe domains (Carlson, 2006). We are extending our previous studies of resistance fluctuations in YBa2Cu3O7-δ (Bonetti, 2004; Caplan, 2010) to thin films of La-based cuprates expected to have a more stable stripe phase, particularly in the regime near 1/8-filling. We present measurements of the low-frequency electronic transport in La2-xBaxCuO4 nanowires fabricated by pulsed laser deposition and lithographic techniques. We discuss temperature dependence of the power spectral density and its relevance to correlated electron phases above Tc. This research was supported by the DOE-DMS under grant DE-FG02-07ER46453, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.

  14. On the role of precursor powder composition in controlling microstructure, flux pinning, and the critical current density of Ag/Bi2Sr2CaCu2Ox conductors

    NASA Astrophysics Data System (ADS)

    Li, Pei; Naderi, Golsa; Schwartz, Justin; Shen, Tengming

    2017-03-01

    Precursor powder composition is known to strongly affect the critical current density (J c) of Ag/Bi2Sr2CaCu2Ox (Bi-2212) wires. However, reasons for such J c dependence have not yet been fully understood, compromising our ability to achieve further optimization. We systematically examined superconducting properties, microstructural evolution and phase transformation, and grain boundaries of Bi-2212 conductors fabricated from precursor powders with a range of compositions using a combination of transport-current measurements, a quench technique to freeze microstructures at high temperatures during heat treatment, and scanning transmission electron microscopy (STEM). Samples include both dip-coated tapes and round wires, among which a commercial round wire carries a high J c of 7600 A mm-2 at 4.2 K, self-field and 2600 A mm-2 at 4.2 K, 20 T, respectively. In the melt, this high-J c conductor, made using a composition of Bi2.17Sr1.94Ca0.89Cu2Ox, contains a uniform dispersion of fine alkaline-earth cuprate (AEC) and copper-free solid phases, whereas several low-J c conductors contain large AEC particles. Such significant differences in the phase morphologies in the melt are accompanied by a drastic difference in the formation kinetics of Bi-2212 during recrystallization cooling. STEM studies show that Bi-2212 grain colonies in the high-J c conductors have a high density of Bi2Sr2CuO y (Bi-2201) intergrowths, whereas a low-J c conductor, made using Bi2.14Sr1.66Ca1.24Cu1.96O x , is nearly free of them. STEM investigation shows grain boundaries in low-J c conductors are often insulated with a Bi-rich amorphous phase. High-J c conductors also show higher flux-pinning strength, which we ascribe to their higher Bi-2201 intergrowth density.

  15. Thermochemical process for recovering Cu from CuO or CuO.sub.2

    DOEpatents

    Richardson, deceased, Donald M.; Bamberger, Carlos E.

    1981-01-01

    A process for producing hydrogen comprises the step of reacting metallic Cu with Ba(OH).sub.2 in the presence of steam to produce hydrogen and BaCu.sub.2 O.sub.2. The BaCu.sub.2 O.sub.2 is reacted with H.sub.2 O to form Cu.sub.2 O and a Ba(OH).sub.2 product for recycle to the initial reaction step. Cu can be obtained from the Cu.sub.2 O product by several methods. In one embodiment the Cu.sub.2 O is reacted with HF solution to provide CuF.sub.2 and Cu. The CuF.sub.2 is reacted with H.sub.2 O to provide CuO and HF. CuO is decomposed to Cu.sub.2 O and O.sub.2. The HF, Cu and Cu.sub.2 O are recycled. In another embodiment the Cu.sub.2 O is reacted with aqueous H.sub.2 SO.sub.4 solution to provide CuSO.sub.4 solution and Cu. The CuSO.sub.4 is decomposed to CuO and SO.sub.3. The CuO is decomposed to form Cu.sub.2 O and O.sub.2. The SO.sub.3 is dissolved to form H.sub.2 SO.sub.4. H.sub.2 SO.sub.4, Cu and Cu.sub.2 O are recycled. In another embodiment Cu.sub.2 O is decomposed electrolytically to Cu and O.sub.2. In another aspect of the invention, Cu is recovered from CuO by the steps of decomposing CuO to Cu.sub.2 O and O.sub.2, reacting the Cu.sub.2 O with aqueous HF solution to produce Cu and CuF.sub.2, reacting the CuF.sub.2 with H.sub.2 O to form CuO and HF, and recycling the CuO and HF to previous reaction steps.

  16. Variation of crystal structure and optical properties of wurtzite-type oxide semiconductor alloys of β-Cu(Ga,Al)O2

    NASA Astrophysics Data System (ADS)

    Nagatani, Hiraku; Mizuno, Yuki; Suzuki, Issei; Kita, Masao; Ohashi, Naoki; Omata, Takahisa

    2017-06-01

    Band-gap engineering of β-CuGaO2 was demonstrated by the alloying of gallium with aluminum, that is, Cu(Ga1-xAlx)O2. The ternary wurtzite β-NaFeO2-type alloys were obtained in the range 0 ≤ x ≤ 0.7, and γ-LiAlO2-type phase appeared in the range 0.7 ≤ x ≤ 1. The energy band gap of wurtzite β-CuGaO2 was controlled in the range between 1.47 and 2.09 eV. A direct band gap for x < 0.6 and indirect band gap for x ≥ 0.6 were proposed based on the structural distortion in the β-NaFeO2-type phase and density functional theory (DFT) calculation of β-CuAlO2. The DFT calculation also indicated that the γ-LiAlO2-type phases appeared in 0.7 ≤ x ≤ 1 are also indirect-gap semiconductors.

  17. Phase Equilibria and Crystal Chemistry in Portions of the System SrO-CaO-Bi2O3-CuO, Part II—The System SrO-Bi2O3-CuO

    PubMed Central

    Roth, R. S.; Rawn, C. J.; Burton, B. P.; Beech, F.

    1990-01-01

    New data are presented on the phase equilibria and crystal chemistry of the binary systems Sr0-Bi203 and SrO-CuO and the ternary system SrO-Bi2O3-CuO. Symmetry data and unit cell dimensions based on single crystal and powder x-ray diffraction measurements are reported for all the binary SrO-Bi2O3 phases, including a new phase identified as Sr6Bi2O9. The ternary system contains at least four ternary phases which can be formed in air at ~900 °C. These are identified as Sr2Bi2CuO6, Sr8Bi4Cu5O19+x, Sr3Bi2Cu2O8 and a solid solution (the Raveau phase) which, for equilibrium conditions at ~900 °C, corresponds approximately to the formula Sr1.8−xBi2.2+xCu1±x/2Oz.(0.0⩽x⩽~0.15). Superconductivity in this phase apparently occurs only in compositions that correspond to negative values of x. Compositions that lie outside the equilibrium Raveau-phase field often form nearly homogeneous Raveau-phase products. Typically this occurs after relatively brief heat treatments, or in crystallization of a quenched melt. PMID:28179779

  18. Physical and optical studies of BaO-TeO2-TiO2-B2O3 glasses containing Cu2+ transition metal ion

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Kumar, R. Vijaya; Hameed, Abdul; Sagar, D. Karuna; Chary, M. Narasimha; Shareefuddin, Md.

    2018-05-01

    Glasses with the composition xBaO-(30-x) TeO2-10TiO2-59B2O3-1CuO (where x = 10, 15, 20 and 25 mole %) were prepared by melt quenching technique. The XRD studies were made on these glass samples at room temperature. The amorphous nature of the glass samples was confirmed from the XRD patterns. The physical parameters such as density (ρ), molar volume (Vm), average boron-boron separation (dB-B) and oxygen packing density (OPD) were calculated. The change in density and molar volume has been investigated in terms of the variation of BaO in the glass composition. The optical absorption spectra have been recorded at room temperature. The values of optical band gap have been estimated from the ASF and Tauc's methods. Both Tauc's and ASF methods have been showing progressively increasing indirect optical band gap values with the increase of BaO concentrations.

  19. Electron phonon interactions and intrinsic nonadiabatic state of superconductors

    NASA Astrophysics Data System (ADS)

    Baňacký, Pavol

    2007-09-01

    Study of band structure of YBa 2Cu 3O 7 has shown that electron coupling to A g, B 2g and B 3g modes results in fluctuation of saddle point of one of the CuO plane d-pσ band in Y point of 1st BZ across Fermi level. It represents breakdown of adiabatic Born-Oppenheimer approximation and transition of the system into intrinsic nonadiabatic state, ω > EF. Results show that system is stabilized in this state at distorted nuclear geometry. Stabilization effect is mainly due to strong dependence of the electronic motion on instantaneous nuclear momenta. On the lattice scale, the intrinsic nonadiabatic state is geometrically degenerate at broken translation symmetry - system has fluxional nuclear configuration of O2, O3 atoms in CuO planes. It enables formation of mobile bipolarons that can move in the lattice without dissipation. Described effects are absent in non-superconducting YBa 2Cu 3O 6.

  20. Highly stable CuO incorporated TiO(2) catalyst for photo-catalytic hydrogen production from H(2)O.

    PubMed

    Bandara, J; Udawatta, C P K; Rajapakse, C S K

    2005-11-01

    A CuO incorporated TiO(2) catalyst was found to be an active photo-catalyst for the reduction of H(2)O under sacrificial conditions. The catalytic activity originates from the photogeneration of excited electrons in the conduction bands of both TiO(2) and CuO resulting in a build-up of excess electrons in the conduction band of CuO. Consequently, the accumulation of excess electrons in CuO causes a negative shift in the Fermi level of CuO. The efficient inter-particle charge transfer leads to a higher catalytic activity and the formation of highly reduced states of TiO(2)/CuO, which are stable even under oxygen saturated condition. Negative shift in the Fermi level of CuO of the catalyst TiO(2)/CuO gains the required over-voltage necessary for efficient water reduction reaction. The function of CuO is to help the charge separation and to act as a water reduction site. The amount of CuO and crystalline structure were found to be crucial for the catalytic activity and the optimum CuO loading was ca. approximately 5-10%(w/w).

  1. Efficient photocatalytic degradation of tetrabromodiphenyl ethers and simultaneous hydrogen production by TiO2-Cu2O composite films in N2 atmosphere: Influencing factors, kinetics and mechanism.

    PubMed

    Hu, Zhe; Wang, Xi; Dong, Haitai; Li, Shangyi; Li, Xukai; Li, Laisheng

    2017-10-15

    TiO 2 -Cu 2 O photocatalyst composite film with a heterostructure was synthesized on a copper substrate for 2,2',4,4'-tetrabromodiphenyl ether (BDE47) reduction. First, Cu 2 O film was synthesized by the electrochemical deposition method, and then TiO 2 was coated on the surface of the Cu 2 O film. The morphology, surface chemical composition and optical characteristics of TiO 2 -Cu 2 O film were characterized. The degradation efficiency of BDE47 and hydrogen production by TiO 2 -Cu 2 O films was higher than those by pure TiO 2 or Cu 2 O films. The highest BDE47 degradation efficiency of 90% and hydrogen production of 12.7mmolL liq -1 after 150min were achieved by 67%TiO 2 -Cu 2 O films. The influencing factors were investigated in terms of film component, solvent condition, and initial pH. A kinetics study demonstrated that BDE47 degradation followed a pseudo-first-order model. Photocatalytic apparent reaction rate constant of BDE47 by TiO 2 -Cu 2 O films was 0.0070min -1 , which was 3.3 times of that by directly photolysis process. During photocatalytic debrmination process, the photogenerated holes were reserved in the valance band of Cu 2 O to oxidize methanol. Meanwhile, the partial photogenerated electrons transferred to the conduction band of TiO 2 and directly eliminated the ortho-Br of BDE47 and yielded BDE28 and BDE15. The other partial photogenerated electrons reduced protons (H + ) to form atomic hydrogen (H°), which could substitute the para-Br of BDE47 and generated BDE17 and produce hydrogen. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Visible light CrO4(2-) reduction using the new CuAlO2/CdS hetero-system.

    PubMed

    Brahimi, R; Bessekhouad, Y; Nasrallah, N; Trari, M

    2012-06-15

    In this study, 64% of hexavalent chromium Cr(VI) reduction from the initial concentration (10(-4) M) is reported under visible light using the (CuAlO(2)/CdS) hetero-system. In this new hetero-system, low doped CuAlO(2) delafossite, synthesized by sol-gel works as an electrons reservoir with a wide space charge region (440 nm). In this case, the electron transfer to chromate is mediated via the hexagonal CdS variety, whose conduction band level is at -1.08 V with respect to the saturated calomel electrode which is more negative than the CrO(4)(2-)/Cr(3+) level. This high reduction rate is achieved under optimized pH and CuAlO(2) percentage. Moreover, salicylic acid gives the best performance among hole scavengers and CuAlO(2) approaches 100% photostability at pH 7.5. The photo-catalytic process follows a pseudo first order kinetic with a half life of 2h. The reaction products are identified by UV-visible spectrophotometry and linear voltametry at a platinum rotating electrode. The results reveal the presence of Cr(3+) after irradiation. Copyright © 2012. Published by Elsevier B.V.

  3. Effects of Oxygen Deficiency and Dopping of pr in Gd1-x Prx Ba2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Zolfagharkhani, G.; Daadmehr, V.; Farzaneh, M.; Sedighiani, A.; Akhavan, M.

    2000-09-01

    Single phase crystalline samples of Gd1-x Prx Ba2Cu3O7-y with 0.0 ≤ x ≤ 0.2 have been prepared by standard solid state reaction technique and characterized by SEM and XRD. The electrical measurements show two plateaus in Tc versus y curve for GdBa2Cu3O7-y (0CuO2 planes. The experiments indicate that in GdPr-123 samples, presence of Pr causes the oxygen bond to become stronger than in undoped samples.

  4. Determination of the Electronic Density of States of YBa2Cu3O7-delta

    DTIC Science & Technology

    1991-10-01

    Junod in Physical Properties of High Temperature Superconductors II, ed. by D. M. Ginsberg (World Scientific, Singapore, 1990), p. 43. 3. J. E. Gordon...1987). 12. A. Junod , et al., Physica C159, 215-225 (1989). 13. W. Reichardt, private communication. A tabulation of Fca.c(w)/Gcac( ) was provided to us...1990). 25. A. junod , et al., Physica C1621 64 , 1401 (1989). 26. V. Kresin and S. Wolf, solid State Comm. 63, 1141 (1987). 27. Steven M. Anlage, et

  5. Manufacture of bulk superconducting YBa2Cu3O(7-delta) by a continuous process

    NASA Technical Reports Server (NTRS)

    Meng, R. L.; Kinalidis, C.; Sun, Y. Y.; Gao, L.; Tao, Y. K.

    1990-01-01

    The development of a continuous process for fabricating large bulk superconductors with a predetermined grain orientation is reported. A bar of the 123 compound with dimensions 5 x 0.5 x about 0.3 cm with excellent grain alignment has been fabricated continuously. The bulk 123 thus obtained has magnetically determined J(c)s of about 30,000 and 12,000 A/sq cm at 0 and 1 T, respectively, and transport J(c)s of 20,000, 11,000, and 7500 A-sq cm at 0, 0.54, and 0.83 T.

  6. Studies on interface between In2O3 and CuInTe2 thin films

    NASA Astrophysics Data System (ADS)

    Ananthan, M. R.; Malar, P.; Osipowicz, Thomas; Kasiviswanathan, S.

    2017-10-01

    Interface between dc sputtered In2O3 and stepwise flash evaporated CuInTe2 films were studied by probing Si/In2O3/CuInTe2 and Si/CuInTe2/In2O3 structures with the help of glancing angle X-ray diffraction, Rutherford backscattering spectrometry and micro-Raman spectroscopy. The results showed that in Si/In2O3/CuInTe2 structure, a ∼20 nm thick interface consisting of In, Cu and O had formed between In2O3 and CuInTe2 and was attributed to the diffusion of Cu from CuInTe2 into In2O3 film. On the other hand, in Si/CuInTe2/In2O3 structure, homogeneity of the underlying CuInTe2 film was found lost completely. An estimate of the masses of the constituent elements showed that the damage was caused by loss of Te from CuInTe2 film during the growth of In2O3 film on Si/CuInTe2.

  7. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations

    PubMed Central

    Liu, Yin; Gong, Yuxuan; Mellott, Nathan P.; Wang, Bu; Ye, Haitao; Wu, Yiquan

    2016-01-01

    Abstract CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations. PMID:27877870

  8. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Gong, Yuxuan; Mellott, Nathan P.; Wang, Bu; Ye, Haitao; Wu, Yiquan

    2016-01-01

    CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at 405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.

  9. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations.

    PubMed

    Liu, Yin; Gong, Yuxuan; Mellott, Nathan P; Wang, Bu; Ye, Haitao; Wu, Yiquan

    2016-01-01

    CuAlO 2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO 2 :Eu 3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO 2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO 2 and the f-f transition of the Eu 3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO 2 :Eu 3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.

  10. Ion beam sputtering of in situ superconducting Y-Ba-Cu-O films

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.; Clauson, S. L.

    1990-05-01

    Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria stabilized zirconia and SrTiO3 substrates by ion-beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 83.5 K without post-deposition anneals. Both the deposition rate and the c-lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c-dimensions and low Tc. Higher-power sputtering produced a continuous decrease in the c-lattice parameter and increase in critical temperature. Films having the smaller c-lattice parameters were Cu rich. The Cu content of films deposited at beam voltages of 800 V and above increased with increasing beam power.

  11. Effect of mixed pinning landscapes produced by 6 MeV oxygen irradiation on the resulting critical current densities Jc in 1.3 μm thick GdBa2Cu3O7-d coated conductors grown by co-evaporation

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Suárez, S.; Pérez, P. D.; Troiani, H.; Granell, P.; Golmar, F.; Lee, Jae-Hun; Moon, S. H.

    2017-11-01

    We report the influence of crystalline defects introduced by 6 MeV 16O3+ irradiation on the critical current densities Jc and flux creep rates in 1.3 μm thick GdBa2Cu3O7-δ coated conductor produced by co-evaporation. Pristine films with pinning produced mainly by random nanoparticles with diameter close to 50 nm were irradiated with doses between 2 × 1013 cm-2 and 4 × 1014 cm-2. The irradiations were performed with the ion beam perpendicular to the surface of the samples. The Jc and the flux creep rates were analyzed for two magnetic field configurations: magnetic field applied parallel (H║c) and at 45° (H║45°) to the c-axis. The results show that at temperatures below 40 K the in-field Jc dependences can be significantly improved by irradiation. For doses of 1 × 1014 cm-2 the Jc values at μ0H = 5 T are doubled without affecting significantly the Jc at small fields. Analyzing the flux creep rates as function of the temperature in both magnetic field configurations, it can be observed that the irradiation suppresses the peak associated with double-kink relaxation and increases the flux creep rates at intermediate and high temperatures. Under 0.5 T, the flux relaxation for H‖c and H||45° in pristine films presents characteristic glassy exponents μ = 1.63 and μ = 1.45, respectively. For samples irradiated with 1 × 1014 cm-2, these values drop to μ = 1.45 and μ = 1.24, respectively

  12. Influence of nitrogen-doping concentration on the electronic structure of CuAlO2 by first-principles studies

    NASA Astrophysics Data System (ADS)

    Liu, Wei-wei; Chen, Hong-xia; Liu, Cheng-lin; Wang, Rong

    2017-02-01

    Effect of N doping concentration on the electronic structure of N-doped CuAlO2 was investigated by density functional theory based on generalized-gradient approximation plus orbital potential. Lattice parameters a and c both increase with increasing N-doping concentration. Formation energies increase with increasing N doping concentration and all N-doped CuAlO2 were structurally stable. The calculated band gaps for N-doped CuAlO2 narrowed compared to pure CuAlO2, which was attributed to the stronger hybridization between Cu-3d and N-2p states and the downward shift of Cu-3p states in conduction bands. The higher the N-doping concentration is, the narrower the band gap. N-doped CuAlO2 shows a typical p-type semiconductor. The band structure changed from indirect to direct after N doping which will benefit the application of the CuAlO2 materials in optoelectronic and electronic devices.

  13. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-10-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.

  14. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    PubMed Central

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-01-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm−2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting. PMID:27748380

  15. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    PubMed

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-12-01

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba 2 Cu 3 O 7- x (REBCO, RE: rare earth) conductors have an advantage over Bi 2 Sr 2 Ca 2 Cu 3 O 10- x (Bi-2223) and Bi 2 Sr 2 CaCu 2 O 8- x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Yang, Hsiao-Ching; Hsu, Yung-Fu; Hsieh, Chung-Kai

    2015-01-01

    In this study, the effects of SnO2, WO3 and ZrO2 addition at levels up to 5 wt% on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. Only Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with a SnO2 addition of ≥3.5 wt% required a densification temperature of 1150 °C, while the others reached maximum densification at 1075 °C. All samples revealed a pure spinel phase and a uniform microstructure, except for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with the WO3 addition, which showed an exaggerated grain growth accompanied with a small amount of needle-shaped Cu0.85Zn0.15WO4 second phase. The fracture mode in the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic revealed a transgranular phase, as the CuO second phase increased the grain boundary strength; the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics sintered with 5 wt% additives showed an intergranular phase. The Vickers hardness and the bending strength of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic were 733.6 and 62.0 MPa, respectively. The Vickers hardness of the ferrite with added SnO2 or ZrO2 showed only a slight improvement, while an apparent change (832.7) was observed with the addition of 5.0 wt% WO3. The bending strength of the ferrite was optimized at 75.7 MPa with 2.0 wt% SnO2 and at 90.5 MPa with 3.5 wt% ZrO2, while that of the ferrite sintered with WO3 added dropped gradually from 62.0 to 47.7 MPa as the amount of WO3 was increased from 0 to 5.0 wt% due to the non-uniform microstructure. The pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic sintered at 1075 °C had an initial permeability of 356.9 and a quality factor of 71.2. The addition of ZrO2 led to a significant increase in the initial permeability (588.4 at 5.0 wt% ZrO2), but a slight decline in the quality factor (56.6 at 5.0 wt% ZrO2).

  17. Thin Film Multilayer Conductor/Ferroelectric Tunable Microwave Components for Communication Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert R.; VanKeuls, Frederick W.; Mueller, Carl H.; Treece, Randolph E.; Rivkin, Tania V.

    1997-01-01

    High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and

  18. Development of coated conductors by inclined substrate deposition

    NASA Astrophysics Data System (ADS)

    Balachandran, U.; Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Miller, D. J.; Dorris, S. E.

    2003-10-01

    Inclined substrate deposition (ISD) offers the potential for rapid production of high-quality biaxially textured buffer layers suitable for YBa 2Cu 3O 7- δ (YBCO)-coated conductors. We have grown biaxially textured magnesium oxide (MgO) films on Hastelloy C276 (HC) substrates by ISD at deposition rates of 20-100 Å/s. Scanning electron microscopy of the ISD MgO films showed columnar grain structures with a roof-tile-shaped surface. X-ray pole figure analysis revealed that the c-axis of the ISD MgO films is titled at an angle ≈32° from the substrate normal. A small full-width at half maximum of ≈9° was observed for the φ-scan of MgO films. YBCO films were grown on ISD MgO buffered HC substrates by pulsed laser deposition and were determined to be biaxially aligned with the c-axis parallel to the substrate normal. The orientation relationship between the ISD template and the top YBCO film was investigated by X-ray pole figure analysis and transmission electron microscopy. A transport critical current density of Jc=5.5×10 5 A/cm 2 at 77 K in self-field was measured on a YBCO film that was 0.46-μm thick, 4-mm wide, 10-mm long.

  19. The mixed anion mineral parnauite Cu 9[(OH) 10|SO 4|(AsO 4) 27H 2O—A Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Keeffe, Eloise C.

    2011-10-01

    The mixed anion mineral parnauite Cu 9[(OH) 10|SO 4|(AsO 4) 27H 2O from two localities namely Cap Garonne Mine, Le Pradet, France and Majuba Hill mine, Pershing County, Nevada, USA has been studied by Raman spectroscopy. The Raman spectrum of the French sample is dominated by an intense band at 975 cm -1 assigned to the ν1 (SO 4) 2- symmetric stretching mode and Raman bands at 1077 and 1097 cm -1 may be attributed to the ν3 (SO 4) 2- antisymmetric stretching mode. Two Raman bands 1107 and 1126 cm -1 are assigned to carbonate CO 32- symmetric stretching bands and confirms the presence of carbonate in the structure of parnauite. The comparatively sharp band for the Pershing County mineral at 976 cm -1 is assigned to the ν1 (SO 4) 2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm -1 is attributed to the ν3 (SO 4) 2- antisymmetric stretching mode. Two intense bands for the Pershing County mineral at 851 and 810 cm -1 are assigned to the ν1 (AsO 4) 3- symmetric stretching and ν3 (AsO 4) 3- antisymmetric stretching modes. Two Raman bands for the French mineral observed at 725 and 777 cm -1 are attributed to the ν3 (AsO 4) 3- antisymmetric stretching mode. For the French mineral, a low intensity Raman band is observed at 869 cm -1 and is assigned to the ν1 (AsO 4) 3- symmetric stretching vibration. Chemical composition of parnauite remains open and the question may be raised is parnauite a solid solution of two or more minerals such as a copper hydroxy-arsenate and a copper hydroxy sulphate.

  20. Hydrogenation of furfural at the dynamic Cu surface of CuOCeO2/Al2O3 in vapor phase packed bed reactor

    USDA-ARS?s Scientific Manuscript database

    The hydrogenation of furfural to furfuryl alcohol over a CuOCeO2/'-Al2O3 catalyst in a flow reactor is reported. The catalyst was prepared by the wet impregnation of Cu onto a CeO2/'-Al2O3 precursor. The calcined catalyst was then treated with HNO3 to remove surface CuO resulting in a mixed CuCe oxi...