Sample records for ybacuo bulk superconductor

  1. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  2. Dynamic levitation performance of Gd-Ba-Cu-O and Y-Ba-Cu-O bulk superconductors under a varying external magnetic field

    NASA Astrophysics Data System (ADS)

    Liao, Hengpei; Zheng, Jun; Jin, Liwei; Huang, Huan; Deng, Zigang; Shi, Yunhua; Zhou, Difan; Cardwell, David A.

    2018-07-01

    We report that the dynamic levitation force of bulk high temperature superconductors (HTS) in motion attenuates when exposed to an inhomogeneous magnetic field. This phenomenon has significant potential implications for the long-term stability and running performance of HTS in maglev applications. In order to suppress the attenuation of the levitation force associated with fluctuations in magnetic field, we compare the dynamic levitation performance of single grain Y-Ba-Cu-O (YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors with relatively high critical current densities. A bespoke HTS maglev dynamic measurement system (SCML-03) incorporating a rotating circular permanent magnet guideway was employed to simulate the movement of HTS in a varying magnetic field at different frequencies (i.e. speed of rotation). The attenuation of the levitation force during dynamic operation, which is key parameter for effective maglev operation, has been evaluated experimentally. It is found that GdBCO bulk superconductors that exhibit superior levitation force properties are more able to resist the attenuation of levitation force compared with YBCO bulk materials under the same operating conditions. This investigation indicates clearly that GdBCO bulk superconductors can play an important role in suppressing attenuation of the levitation force, therefore improving the long-term levitation performance under dynamic operating conditions. This result is potentially significant in the design and application of HTS in maglev systems.

  3. Trapped magnetic field of a mini-bulk magnet using YBaCuO at 77 K

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    2001-09-01

    Melt-processed rare earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field. Solidification processes for producing (L)RE123 superconductors and pinning centers in the (L)RE123 matrix are effective for obtaining high Jc, leading to high-field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated train. We fabricated a mini-superconducting bulk magnet of 200×100 mm2, consisting of 18 bulks, which are a square 33 mm on a side and 10 mm in thickness, and magnetized the mini-magnet by field cooling. The mini-magnet showed the trapped magnetic field of larger than 0.1 T on the surface of the outer vessel of the magnet. The present preliminary study discusses trapped magnetic field properties of the mini-bulk magnet using YBaCuO superconductors at 77 K.

  4. Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Weinstein, Roy

    1993-01-01

    For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.

  5. Point-contact electron tunneling into the high-Tc superconductor Y-Ba-Cu-O

    NASA Astrophysics Data System (ADS)

    Kirk, M. D.; Smith, D. P. E.; Mitzi, D. B.; Sun, J. Z.; Webb, D. J.

    1987-06-01

    Results are reported from a study of electron tunneling into bulk samples of the new high-Tc superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Delta = 100 MeV), implying 2Delta/kBTc = about 13. Similar values were found for La-Sr-Cu-O. The structure in the I-V curves is also similar to that seen in La-Sr-Cu-O. From the asymmetries observed in the I-V characteristics, it is inferred that the natural tunneling barrier on this material is of the Schottky type.

  6. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.

    PubMed

    Tomita, Masaru; Murakami, Masato

    2003-01-30

    Large-grain high-temperature superconductors of the form RE-Ba-Cu-O (where RE is a rare-earth element) can trap magnetic fields of several tesla at low temperatures, and so can be used for permanent magnet applications. The magnitude of the trapped field is proportional to the critical current density and the volume of the superconductor. Various potential engineering applications for such magnets have emerged, and some have already been commercialized. However, the range of applications is limited by poor mechanical stability and low thermal conductivity of the bulk superconductors; RE-Ba-Cu-O magnets have been found to fracture during high-field activation, owing to magnetic pressure. Here we present a post-fabrication treatment that improves the mechanical properties as well as thermal conductivity of a bulk Y-Ba-Cu-O magnet, thereby increasing its field-trapping capacity. First, resin impregnation and wrapping the materials in carbon fibre improves the mechanical properties. Second, a small hole drilled into the centre of the magnet allows impregnation of Bi-Pb-Sn-Cd alloy into the superconductor and inclusion of an aluminium wire support, which results in a significant enhancement of thermal stability and internal mechanical strength. As a result, 17.24 T could be trapped, without fracturing, in a bulk Y-Ba-Cu-O sample of 2.65 cm diameter at 29 K.

  7. Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing

    NASA Technical Reports Server (NTRS)

    Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.

    1992-01-01

    A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.

  8. The successful incorporation of Ag into single grain, Y-Ba-Cu-O bulk superconductors

    NASA Astrophysics Data System (ADS)

    Congreve, Jasmin V. J.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2018-07-01

    The use of RE-Ba-Cu-O [(RE)BCO] bulk superconductors, where RE = Y, Gd, Sm, in practical applications is, at least in part, limited by their mechanical properties and brittle nature, in particular. Alloying these materials with silver, however, produces a significant improvement in strength without any detrimental impact on their superconducting properties. Unfortunately, the top seeded melt growth technique, used routinely to process bulk (RE)BCO superconductors in the form of large, single grains required for practical applications, is complex and has a large number of inter-related variables, so the addition of silver increases the complexity of the growth process even further. This can make successful growth of this system extremely challenging. Here we report measurements of the growth rate of YBCO-Ag fabricated using a new growth technique consisting of continuous cooling and isothermal hold process. The resulting data form the basis of a model that has been used to derive suitable heating profiles for the successful single grain growth of YBCO-Ag bulk superconductors of up to 26 mm in diameter. The microstructure and distribution of silver within these samples have been studied in detail. The maximum trapped field at the top surface of the bulk YBCO-Ag samples has been found to be comparable to that of standard YBCO processed without Ag. The YBCO-Ag samples also exhibit a much more uniform trapped field profile compared to that of YBCO.

  9. Development of Y-Ba-Cu-O Superconductors for Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Selvamanickam, V.; Pfaffenbach, K.; Sokolowski, R. S.; Zhang, Y.; Salama, K.

    1996-01-01

    The material requirements, material manufacturing and magnetic properties that are relevant to fabrication of High Temperature Superconductor (HTS) magnetic bearings have been discussed. It is found that the seeded-melt-texturing method can be used to fabricate the single domain material that is required to achieve the best magnetic properties. Trapped-field mapping has been used as a non-destructive tool to determine the single-domain nature of the HTS material and quantity of the HTS disks. Both the trapped field and the levitation force of the Y-Ba-Cu-O disks are found to be strongly sensitive to the oxygen content.

  10. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  11. Preliminary study of superconducting bulk magnets for Maglev

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.

  12. Improvements in the processing of large grain, bulk Y-Ba-Cu-O superconductors via the use of additional liquid phase

    NASA Astrophysics Data System (ADS)

    Congreve, Jasmin V. J.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2017-01-01

    A major limitation to the widespread application of Y-Ba-Cu-O (YBCO) bulk superconductors is the relative complexity and low yield of the top seeded melt growth (TSMG) process, by which these materials are commonly fabricated. It has been demonstrated in previous work on the recycling of samples in which the primary growth had failed, that the provision of an additional liquid-rich phase to replenish liquid lost during the failed growth process leads to the reliable growth of relatively high quality recycled samples. In this paper we describe the adaptation of the liquid phase enrichment technique to the primary TSMG fabrication process. We further describe the observed differences between the microstructure and superconducting properties of samples grown with additional liquid-rich phase and control samples grown using a conventional TSMG process. We observe that the introduction of the additional liquid-rich phase leads to the formation of a higher concentration of Y species at the growth front, which leads, in turn, to a more uniform composition at the growth front. Importantly, the increased uniformity at the growth front leads directly to an increased homogeneity in the distribution of the Y-211 inclusions in the superconducting Y-123 phase matrix and to a more uniform Y-123 phase itself. Overall, the provision of an additional liquid-rich phase improves significantly both the reliability of grain growth through the sample thickness and the magnitude and homogeneity of the superconducting properties of these samples compared to those fabricated by a conventional TSMG process.

  13. Aspects of forming metal-clad melt-processed Y-Ba-Cu-O tapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlowski, G.; Oberly, C.E.; Ho, J.

    1991-03-01

    This paper reports on melt-processing of Y-Ba-Cu-O superconductor in a usable form for magnet winding which requires the development of a cladding with demanding properties. Numerous recent efforts in cold forming Bi-based superconductor tapes have been successful because a silver tube can be used to constrain the ceramic material, which is sintered at much lower temperature than the Y-Ba-Cu-O. Typical high temperature metals which can be used to encase Y-Ba-Cu-O during sintering do not permit ready diffusion of oxygen as silver does. Recently, the full or partial recovery of superconductivity has been achieved in transition-metal- doped Y-Ba-Cu-O due to themore » partial-melt processing.« less

  14. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T/sub c/ bulk material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dijkkamp, D.; Venkatesan, T.; Wu, X.D.

    We report the first successful preparation of thin films of Y-Ba-Cu-O superconductors using pulsed excimer laser evaporation of a single bulk material target in vacuum. Rutherford backscattering spectrometry showed the composition of these films to be close to that of the bulk material. Growth rates were typically 0.1 nm per laser shot. After an annealing treatment in oxygen the films exhibited superconductivity with an onset at 95 K and zero resistance at 85 and 75 K on SrTiO/sub 3/ and Al/sub 2/O/sub 3/ substrates, respectively. This new deposition method is relatively simple, very versatile, and does not require the usemore » of ultrahigh vacuum techniques.« less

  15. Improvement in trapped fields by stacking bulk superconductors

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Wongsatanawarid, A.; Seki, H.; Murakami, M.

    2009-10-01

    We studied the effects of stacking several bulk superconductor blocks on the field trapping properties. In order to avoid the detrimental effects of the bottom deteriorated parts, bulk Dy-Ba-Cu-O superconductors 45 mm in diameter and 10 mm in thickness were cut from the top parts of as-grown bulk blocks of 25 mm diameter. We stacked the superconductors and measured the field distribution as a function of the gap. The trapped field measurements were performed by field-cooling the samples inserted in between two permanent magnets with liquid nitrogen. It was found that the trapped field values are almost doubled when the number of stacked bulk superconductors increased from two to three. The present results clearly show that one can expect beneficial effects of increasing the ratio of the height to the diameter even in bulk high temperature superconductors.

  16. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  17. Influence of Waiting Time on the Levitation Force Between a Permanent Magnet and a Superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Xing-Yi; Zhou, You-He; Zhou, Jun

    This paper describes the experimental results of the levitation force of single-grained YBaCuO bulk superconductors preparing by the top-seeded melt-growth method with different waiting time tw below an NdFeB permanent magnet. It was found that waiting time has large effects on the zero-field-cooled (ZFC) and field-cooled (FC) levitation force, and the levitation force shows aging characteristics at the liquid nitrogen temperature.

  18. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  19. Microgravity Processing of Oxide Superconductors

    NASA Technical Reports Server (NTRS)

    Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus

    1999-01-01

    Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.

  20. Proposal of Magnetic Circuit using Magnetic Shielding with Bulk-Type High Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo; Tomita, Masaru; Murakami, Masato

    Recently, bulk-type high Tc superconductors having a characteristic of critical current density over 104 A/cm2 in liquid nitrogen temperature (77K) on 1T, can be produced. They are promising for many practical applications such as a magnetic bearing, a magnetic levitation, a flywheel, a magnetic shielding and others. In this research, we propose a magnetic circuit that is able to use for the magnetic shield of plural superconductors as an application of bulk-type high Tc superconductors. It is a closed magnetic circuit by means of a toroidal core. Characteristics of the magnetic circuit surrounded with superconductors are evaluated and the possibility is examined. As the magnetic circuit of the ferrite core is surrounded with superconductors, the magnetic flux is shielded even if it leaked from the ferrite core.

  1. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    NASA Astrophysics Data System (ADS)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  2. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  3. A novel pre-sintering technique for the growth of Y-Ba-Cu-O superconducting single grains from raw metal oxides

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Shi, Yun-Hua; Dennis, Anthony R.; Namburi, Devendra Kumar; Durrell, John H.; Yang, Wanmin; Cardwell, David A.

    2017-09-01

    Most established top seeded melt growth (TSMG) processes of bulk, single grain Y-Ba-Cu-O (YBCO) superconductors are performed using a mixture of pre-reacted precursor powders. Here we report the successful growth of large, single grain YBCO samples by TSMG with good superconducting properties from a simple precursor composition consisting of a sintered mixture of the raw oxides. The elimination of the requirement to synthesize precursor powders in a separate process prior to melt processing has the potential to reduce significantly the cost of bulk superconductors, which is essential for their commercial exploitation. The growth morphology, microstructure, trapped magnetic field and critical current density, J c, at different positions within the sample and maximum levitation force of the YBCO single grains fabricated by this process are reported. Measurements of the superconducting properties show that the trapped filed can reach 0.45 T and that a zero field J c of 2.5 × 104 A cm-2 can be achieved in these samples. These values are comparable to those observed in samples fabricated using pre-reacted, high purity commercial oxide precursor powders. The experimental results are discussed and the possibility of further improving the melt process using raw oxides is outlined.

  4. Numerical modelling of iron-pnictide bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Yamamoto, Akiyasu; Fujishiro, Hiroyuki; Weiss, Jeremy D.; Hellstrom, Eric E.

    2017-10-01

    Iron-based superconductors exhibit a number of properties attractive for applications, including low anisotropy, high upper critical magnetic fields (H c2) in excess of 90 T and intrinsic critical current densities above 1 MA cm-2 (0 T, 4.2 K). It was shown recently that bulk iron-pnictide superconducting magnets capable of trapping over 1 T (5 K) and 0.5 T (20 K) can be fabricated with fine-grain polycrystalline Ba0.6K0.4Fe2As2 (Ba122). These Ba122 magnets were processed by a scalable, versatile and low-cost method using common industrial ceramic processing techniques. In this paper, a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, is used to investigate the magnetisation properties of such iron-pnictide bulk superconductors. Using the measured J c(B, T) characteristics of a small specimen taken from a bulk Ba122 sample, experimentally measured trapped fields are reproduced well for a single bulk, as well as a stack of bulks. Additionally, the influence of the geometric dimensions (thickness and diameter) on the trapped field is analysed, with a view of fabricating larger samples to increase the magnetic field available from such trapped field magnets. It is shown that, with current state-of-the-art superconducting properties, surface trapped fields >2 T could readily be achieved at 5 K (and >1 T at 20 K) with a sample of diameter 50 mm. Finally, an aspect ratio of between 1 and 1.5 for R/H (radius/thickness) would be an appropriate compromise between the accessible, surface trapped field and volume of superconducting material for bulk Ba122 magnets.

  5. Permanent magnet with MgB{sub 2} bulk superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp; JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ishihara, Atsushi

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulkmore » magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.« less

  6. New method for introducing nanometer flux pinning centers into single domain YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Wang, Miao

    2013-10-01

    Single domain YBCO superconductors with different additions of Bi2O3 have been fabricated by top seeded infiltration and growth process (TSIG). The effect of Bi2O3 additions on the growth morphology, microstructure and levitation force of the YBCO bulk superconductor has been investigated. The results indicate that single domain YBCO superconductors can be fabricated with the additions of Bi2O3 less than 2 wt%; Bi2O3 can be reacted with Y2BaCuO5 and liquid phase and finally form Y2Ba4CuBiOx(YBi2411) nanoscale particles; the size of the YBi2411 particles is about 100 nm, which can act as effective flux pinning centers. It is also found that the levitation force of single domain YBCO bulks is increasing from 13 N to 34 N and decreasing to 11 N with the increasing of Bi2O3 addition from 0.1 wt% to 0.7 wt% and 2 wt%. This result is helpful for us to improve the physical properties of REBCO bulk superconductors.

  7. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2.

    PubMed

    Guan, Syu-You; Chen, Peng-Jen; Chu, Ming-Wen; Sankar, Raman; Chou, Fangcheng; Jeng, Horng-Tay; Chang, Chia-Seng; Chuang, Tien-Ming

    2016-11-01

    The search for topological superconductors (TSCs) is one of the most urgent contemporary problems in condensed matter systems. TSCs are characterized by a full superconducting gap in the bulk and topologically protected gapless surface (or edge) states. Within each vortex core of TSCs, there exists the zero-energy Majorana bound states, which are predicted to exhibit non-Abelian statistics and to form the basis of the fault-tolerant quantum computation. To date, no stoichiometric bulk material exhibits the required topological surface states (TSSs) at the Fermi level ( E F ) combined with fully gapped bulk superconductivity. We report atomic-scale visualization of the TSSs of the noncentrosymmetric fully gapped superconductor PbTaSe 2 . Using quasi-particle scattering interference imaging, we find two TSSs with a Dirac point at E ≅ 1.0 eV, of which the inner TSS and the partial outer TSS cross E F , on the Pb-terminated surface of this fully gapped superconductor. This discovery reveals PbTaSe 2 as a promising candidate for TSC.

  8. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    NASA Astrophysics Data System (ADS)

    Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun

    2016-12-01

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems.

  9. Fabrication of single domain GdBCO bulk superconductors by a new modified TSIG technique

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Zhi, X.; Chen, S. L.; Wang, M.; Li, J. W.; Ma, J.; Chao, X. X.

    2014-01-01

    Single domain GdBCO bulk superconductors have been fabricated with new and traditional solid phases by a top seeded infiltration and growth (TSIG) process technique. In the conventional TSIG process, three types of powders, such as Gd2BaCuO5, GdBa2Cu3O7-x and Ba3Cu5O8, must be prepared, but in our new modified TSIG technique, only BaCuO2 powders are required during the fabrication of the single domain GdBCO bulk superconductors. The solid phase used in the conventional process is Gd2BaCuO5 instead of the solid phase (Gd2O3 + BaCuO2) utilized in the new process. The liquid phase used in the conventional process is a mixture of (GdBa2Cu3O7-x + Ba3Cu5O8), and the liquid phase in the new process is a mixture of (Gd2O3 + 10BaCuO2 + 6CuO). Single domain GdBCO bulk superconductors have been fabricated with the new solid and liquid phases. The levitation force of the GdBCO bulk samples fabricated by the new solid phase is 28 N, which is slightly higher than that of the samples fabricated using the conventional solid phases (26 N). The microstructure and the levitation force of the samples indicate that this new method can greatly simplify the fabrication process, introduce nanometer-sized flux centers, improve the levitation force and working efficiency, and greatly reduce the cost of fabrication of single domain GdBCO bulk superconductors by the TSIG process.

  10. An overview of rotating machine systems with high-temperature bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro

    2012-10-01

    The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.

  11. Wigner-Seitz local-environment study of the high-T/sub c/ superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melamud, M.; Bennett, L.H.; Watson, R.E.

    The near-neighbor environments and the bonding of atoms in the high-T/sub c/ superconductors are studied using a Wigner-Seitz-cell contruction. Assuming metallic radii for the atoms, it is shown that the Ba, Y, and La atoms have large coordination numbers, implying a three-dimensional bonding scheme. The La-Cu-O type (approx. =40 K) and the Y-Ba-Cu-O type (approx. =90 K) superconductors both display the same bonding characteristics.

  12. In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    NASA Technical Reports Server (NTRS)

    Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.

    1990-01-01

    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectric having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writting capability, complex device structures like three-terminal hybrid semiconductors/superconductors transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray defraction, electron microscopy, and energy dispersive x-ray analysis are discussed.

  13. In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    NASA Technical Reports Server (NTRS)

    Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.

    1991-01-01

    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectrics having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writing capability, complex device structures like three terminal hybrid semiconductor/superconductor transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray deffraction, electron microscopy, and energy dispersive x-ray analysis are discussed.

  14. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  15. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  16. Processing of large grain Y-123 superconductors with pre-defined porous structures

    NASA Astrophysics Data System (ADS)

    Sudhakar Reddy, E.; Babu, N. Hari; Shi, Y.; Cardwell, D. A.; Schmitz, G. J.

    2005-02-01

    Porous superconductors have inherent cooling advantages over their bulk counterparts and, as a result, are emerging as an important class of materials for practical applications. Single-domain Y-Ba-Cu-O (YBCO) foams processed with a pre-defined, open porous structure, for example, have significant potential for use as elements in resistive superconducting fault current limiters. In this case, the interconnected porosity is ideal for producing reinforced composites with improved mechanical and heat conducting properties. In this paper we describe a few simple methods for fabricating large grain YBCO superconductors with various predefined porous structures via an infiltration process from tailored, porous Y2BaCuO5 (Y-211) pre-forms manufactured by a variety of techniques, including slurry-coating of standard polyurethane foams to replicate their structure. Foams produced by this method typically have a strut thickness of a few hundred µm and pore sizes ranging from 10 to 100 pores per inch (PPI). Foams with increased strut thickness of up to millimetre dimensions can be produced by embedding organic ball spacers within the Y-211 pre-form followed by a burn-out and sintering process. Single-domain YBCO bulk materials with cellular and pre-defined 3D interconnected porosity may be produced by a similar process using tailored wax structures in Y-211 castings.

  17. Plasmons in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Bozovic, Ivan

    1990-08-01

    The customary way of determining the complex dielectric constant from the measured reflectance spectra suffers from large uncertainties because of the extrapolations required for the Kramers-Kronig transformation. To avoid these, a method is introduced in which reflectance and ellipsometric data on single crystals and epitaxial films are combined. Utilizing this approach, the spectral functions of YBa2Cu3O7 (Y-Ba-Cu-O) and Bi2Sr2CaCu2O8 (Bi-Sr-Ca-Cu-O) are determined with substantially improved accuracy. This enables the unambiguous identification of optic plasmons at 1.4 eV in Y-Ba-Cu-O and at 1.1 eV in Bi-Sr-Ca-Cu-O. No other low-lying optic plasmons are detected, which likely rules out most plasmon-mediated superconductivity models. Next, the bare plasma frequency is found to be ħωp=3.2+/-0.3 eV in Y-Ba-Cu-O and ħωp=2.4+/-0.3 eV in Bi-Sr-Ca-Cu-O. These values support ascribing the strong infrared absorption to charge carriers which, however, are not free-electron-like, but rather show characteristic polaronic behavior. Finally, in both Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O, it is found that Im(-1/ɛ)=βω2 for small ω, and this law is conjectured to be universal for all layered cuprate superconductors. It is again not Drude-like; it may be compatible with the layered electron-gas model. The latter implies existence of a broad band of acoustic plasmon branches.

  18. Bulk boundary correspondence and the existence of Majorana bound states on the edges of 2D topological superconductors

    NASA Astrophysics Data System (ADS)

    Sedlmayr, Nicholas; Kaladzhyan, Vardan; Dutreix, Clément; Bena, Cristina

    2017-11-01

    The bulk-boundary correspondence establishes a connection between the bulk topological index of an insulator or superconductor, and the number of topologically protected edge bands or states. For topological superconductors in two dimensions, the first Chern number is related to the number of protected bands within the bulk energy gap, and is therefore assumed to give the number of Majorana band states in the system. Here we show that this is not necessarily the case. As an example, we consider a hexagonal-lattice topological superconductor based on a model of graphene with Rashba spin-orbit coupling, proximity-induced s -wave superconductivity, and a Zeeman magnetic field. We explore the full Chern number phase diagram of this model, extending what is already known about its parity. We then demonstrate that, despite the high Chern numbers that can be seen in some phases, these do not strictly always contain Majorana bound states.

  19. Process parameters, orientation, and functional properties of melt-processed bulk Y-Ba-Cu-O superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharchenko, I.V.; Terryll, K.M.; Rao, K.V.

    1995-03-01

    This study compared the microstructure, texturing, and functional properties (critical currents) of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}-based bulk pellets that were prepared by the quench-melt-growth-process (QMGP), melt-textured growth (MTG), and conventional solid-state reaction (SSR) approaches. Using two X-ray diffraction (XRD) methods, {theta}-2{theta}, and rocking curves, the authors found that the individual grains of two melt-processed pellets exhibited remarkable preferred orientational alignment (best rocking curve width = 3.2{degree}). However, the direction of the preferred orientation among the grains was random. Among the three types of bulk materials studied, the QMGP sample was found to have the best J{sub c} values, {approx} 4,500more » A/cm{sup 2} at 77 K in a field of 2 kG, as determined from SQUID magnetic data.« less

  20. Memory characteristics of ring-shaped ceramic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, A.; Hasunuma, M.; Sakaiya, S.

    1989-03-01

    For the practical application of ceramic superconductors, the authors investigated the residual magnetic field characteristics of ring-shaped ceramic superconductors in a Y-Ba-Cu-O system with high Tc. The residual magnetic field of a ring with asymmetric current paths, supplied by external currents, appeared when one of the branch currents was above the critical current. The residual magnetic field saturated when both brach currents exceeded the critical current of the ring and showed hysteresis-like characteristics. The saturated magnetic field is subject to the critical current of the ring. A superconducting ring with asymmetric current paths suggests a simple and quite new persistent-currentmore » type memory device.« less

  1. Possible charge analogues of spin transfer torques in bulk superconductors

    NASA Astrophysics Data System (ADS)

    Garate, Ion

    2014-03-01

    Spin transfer torques (STT) occur when electric currents travel through inhomogeneously magnetized systems and are important for the motion of magnetic textures such as domain walls. Since superconductors are easy-plane ferromagnets in particle-hole (charge) space, it is natural to ask whether any charge duals of STT phenomena exist therein. We find that the superconducting analogue of the adiabatic STT vanishes in a bulk superconductor with a momentum-independent order parameter, while the superconducting counterpart of the nonadiabatic STT does not vanish. This nonvanishing superconducting torque is induced by heat (rather than charge) currents and acts on the charge (rather than spin) degree of freedom. It can become significant in the vicinity of the superconducting transition temperature, where it generates a net quasiparticle charge and alters the dispersion and linewidth of low-frequency collective modes. This work has been financially supported by Canada's NSERC.

  2. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    NASA Astrophysics Data System (ADS)

    Seino, H.; Nagashima, K.; Arai, Y.

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  3. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    NASA Astrophysics Data System (ADS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  4. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  5. Processing of high performance (LRE)-Ba Cu O large, single-grain bulk superconductors in air

    NASA Astrophysics Data System (ADS)

    Hari Babu, N.; Iida, K.; Shi, Y.; Cardwell, D. A.

    2006-10-01

    We report the fabrication of large (LRE)BCO single-grains with improved superconducting properties for LRE = Nd, Sm and Gd using a practical process via both conventional top seeded melt growth (TSMG) and seeded infiltration-growth (SIG). This process uses a new generic seed crystal that promotes heterogeneous grain nucleation in the required orientation and suppresses the formation of solid solution in a controlled manner within individual grains by the addition of excess BaO2 to the precursor powder. The spatial distribution of the superconducting properties of LRE bulk superconductors as a function of BaO2 addition for large (LRE)BCO grains fabricated in air by TSMG and SIG for LRE = Gd, Sm and Nd are compared. The optimum BaO2 content required to fabricate single-grain (LRE)BCO with high and homogeneous Tc is determined from these experiments for each LRE system. The irreversibility fields of (LRE)BCO bulk superconductors processed in air are as high as those processed in reduced PO2. Critical current densities in excess of 105 A/cm2 at 77 K and higher trapped fields have been achieved in optimized (LRE)BCO superconductors fabricated in air for the first time.

  6. X-ray photoelectron spectroscopy characterization of a nonsuperconducting Y-Ba-Cu-O superconductor-normal-metal-superconductor barrier material

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Hunt, B. D.; Foote, M. C.; Bajuk, L. J.

    1992-01-01

    A film of a novel nonsuperconducting Y-Ba-Cu-O (YBCO) barrier material was grown using conditions similar to those reported by Agostinelli et al. (1991) for forming a cubic semiconducting (c-YBCO) phase, and the material was characterized using X-ray photoelectron spectroscopy (XPS). A comparison of the XPS spectra of this material to those obtained from the orthorhombic and tetragonal phases of YBCO (o-YBCO and t-YBCO, respectively) showed that the barrier material had spectral characteristics different from those of o-YBCO and t-YBCO, particularly in the O 1s region. Features associated with the Cu-O chain and surface-reconstructed Cu-O planes were absent, consistent with expectations for the simple perovskite crystal structure of c-YBCO proposed by Agostinelli et al.

  7. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  8. High-Temperature High-Current Superconductors: Preparation, Structure, Superconducting Properties, and Flux-Pinning Mechanisms

    NASA Astrophysics Data System (ADS)

    Hu, Shouxiang

    In bulk high-T_{rm c } superconductors, weak links at the grain boundaries and weak flux pinning are the two major causes of low critical current density (J_{ rm c}) at 77 K. In the present study, various processes designed and developed to address these problems are discussed. The novel pressurized-partial -melt-growth process, which leads to a relatively large improvement in the microstructure as well as in the superconducting properties of bulk Y-Ba-Cu-O superconductors, is described. The effects of introducing foreign elements to serve as pinning centers are reported, and the associated anomalous superconducting phenomena are explained on the basis of a detailed study of basic pinning mechanisms related to the presence of small defects. It is demonstrated that in certain cases the pinning force induced by the compression of the vortex line may be comparable to, or even larger than, the usually recognized pinning force due to the condensation energy. Studies of the pinning mechanism corresponding to large boundary defects show that boundary defects associated with certain non-superconducting inclusions and isolated weak links have a very positive role in the enhancement of both the critical current density and the effective activation energy for flux creep. However, even optimized theoretical estimates show that it will be difficult to reach J_ {rm c} values of 5 times 10^5 A/cm^2 at 77 K and H = 1 T by increasing the number of Y_2BaCuO inclusions alone. Although even higher J_{rm c} values may be achieved by introducing other types of defects using alternative approaches such as irradiation, and, probably, chemical doping, the presence of large amount of boundary defects is very important in causing a large increase in the effective activation energy for flux creep. Also studied are the anisotropic electromagnetic features of the grain-aligned YBa_2Cu _3O_{rm x} bulk superconductors. The development of novel processing methods guided by improved understanding

  9. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Wang, J.; Zheng, J.; Lin, Q.; Zhang, Y.; Wang, S.

    2009-05-01

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  10. Novel configuration of processing bulk textured YB 2Cu 3O 7-x superconductor by seeded infiltration growth method

    NASA Astrophysics Data System (ADS)

    Cao, Haitao; Moutalbi, Nahed; Harnois, Christelle; Hu, Rui; Li, Jinshan; Zhou, Lian; Noudem, Jacques G.

    2010-01-01

    Mono-domain YBa 2Cu 3O 7-x (Y123) bulk superconductors have been processed using seeded infiltration growth technique (SIG). The combination of melt infiltrated liquid source (Ba 3Cu 5O 8) into the Y 2BaCuO 5 (Y211) pre-form and the nucleation of Y123 domain from SmBa 2Cu 3O 7 crystal seed has been investigated. The different configurations of SIG process were compared in this study. In addition, the effect of the starting Y211 particles size has been studied. The results reveal that, the Y211 particle size and different configurations strongly influence the properties of the final bulk superconductor sample.

  11. Improvement of the field-trapping capabilities of bulk Nd Ba Cu O superconductors using Ba Cu O substrates

    NASA Astrophysics Data System (ADS)

    Matsui, Motohide; Nariki, Shinya; Sakai, Naomichi; Iwafuchi, Kengo; Murakami, Masato

    2006-07-01

    We used Ba-Cu-O substrates to fabricate bulk Nd-Ba-Cu-O superconductors using a top-seeded melt-growth method. There were several advantages for the use of Ba-Cu-O substrate compared to conventional substrate materials such as MgO, ZrO2, Al2O3, RE123 and RE211 (RE = rare earth). The Ba-Cu-O did not react with the precursor and minimized liquid loss. Accordingly, the introduction of large-sized cracks was suppressed. We also found that Tc values were high at the bottom regions, which was ascribed to the beneficial effect of Ba-Cu-O in suppressing Nd/Ba substitution. As a result, we obtained bulk Nd-Ba-Cu-O superconductors that exhibited fairly good field-trapping capabilities, even at the bottom surfaces.

  12. Effect of grain-alignment on the levitation force of melt-processed YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wan-min; Zhou, Lian; Feng, Yong; Zhang, Ping-xiang; Wu, Min-zhi; Wu, Xiao-zu; Gawalek, W.

    1999-07-01

    Single-domain YBCO bulk superconductors have been fabricated by Top Seeded Melt Slow Cooling Growth(TSSCG) process. Two typical YBCO cylinder samples with differential grain-alignment were selected for the investigation of the relationship between the grain-alignment and the levitation force under the same testing condition at liquid nitrogen temperature. It is found that the levitation force values is much different for the two samples, the levitation force of the sample with H par c-axis is more than two times higher than that of the samples with H ⊥ c-axis. So it is necessary to take account of this anisotropy in practical applications. The relationship between a magnet and a superconductor can be well described with a double exponential function. All the results are discussed in details.

  13. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    PubMed

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  14. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films

    PubMed Central

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.

    2016-01-01

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors. PMID:26853801

  15. Microwave surface resistance of bulk YBa2Cu3O6+x material

    NASA Astrophysics Data System (ADS)

    Fathy, A.; Kalokitis, D.; Belohoubek, E.; Sundar, H. G. K.; Safari, A.

    1988-10-01

    Superconducting Y-Ba-Cu-O samples were prepared by conventional solid-state reaction. The microwave surface resistance of 1:2:3 compound superconductor material was measured in a special disk resonator structure at 10 GHz. At liquid-nitrogen temperatures the microwave surface resistance is comparable to that of Au. At lower temperature (~10 K) the surface resistance is an order of magnitude lower than that of Au at the same temperature.

  16. Materials process and applications of single grain (RE)-Ba-Cu-O bulk high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Li, Beizhan; Zhou, Difan; Xu, Kun; Hara, Shogo; Tsuzuki, Keita; Miki, Motohiro; Felder, Brice; Deng, Zigang; Izumi, Mitsuru

    2012-11-01

    This paper reviews recent advances in the melt process of (RE)-Ba-Cu-O [(RE)BCO, where RE represents a rare earth element] single grain high-temperature superconductors (HTSs), bulks and its applications. The efforts on the improvement of the magnetic flux pinning with employing the top-seeded melt-growth process technique and using a seeded infiltration and growth process are discussed. Which including various chemical doping strategies and controlled pushing effect based on the peritectic reaction of (RE)BCO. The typical experiment results, such as the largest single domain bulk, the clear TEM observations and the significant critical current density, are summarized together with the magnetization techniques. Finally, we highlight the recent prominent progress of HTS bulk applications, including Maglev, flywheel, power device, magnetic drug delivery system and magnetic resonance devices.

  17. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    NASA Astrophysics Data System (ADS)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken

    2010-11-01

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  18. High T(sub c) superconductors fabricated by plasma aerosol mist deposition technique

    NASA Technical Reports Server (NTRS)

    Wang, X. W.; Vuong, K. D.; Leone, A.; Shen, C. Q.; Williams, J.; Coy, M.

    1995-01-01

    We report new results on high T(sub c) superconductors fabricated by a plasma aerosol mist deposition technique, in atmospheric environment. Materials fabricated are YBaCuO, BiPbSrCaCuO, BaCaCuO precursor films for TlBaCaCuO, and other buffers such as YSZ. Depending on processing conditions, sizes of crystallites and/or particles are between dozens of nano-meters and several micrometers. Superconductive properties and other material characteristics can also be tailored.

  19. Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Fagnard, Jean-François; Noudem, Jacques G.; Ausloos, Marcel; Vanderheyden, Benoit; Vanderbemden, Philippe

    2009-04-01

    We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30 to 130 mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.

  20. A portable magnetic field of >3 T generated by the flux jump assisted, pulsed field magnetization of bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Difan; Ainslie, Mark D.; Shi, Yunhua; Dennis, Anthony R.; Huang, Kaiyuan; Hull, John R.; Cardwell, David A.; Durrell, John H.

    2017-02-01

    A trapped magnetic field of greater than 3 T has been achieved in a single grain GdBa2Cu3O7-δ (GdBaCuO) bulk superconductor of diameter 30 mm by employing pulsed field magnetization. The magnet system is portable and operates at temperatures between 50 K and 60 K. Flux jump behaviour was observed consistently during magnetization when the applied pulsed field, Ba, exceeded a critical value (e.g., 3.78 T at 60 K). A sharp dBa/dt is essential to this phenomenon. This flux jump behaviour enables the magnetic flux to penetrate fully to the centre of the bulk superconductor, resulting in full magnetization of the sample without requiring an applied field as large as that predicted by the Bean model. We show that this flux jump behaviour can occur over a wide range of fields and temperatures, and that it can be exploited in a practical quasi-permanent magnet system.

  1. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Liao, X. L.; Jing, H. L.; Deng, Z. G.; Yen, F.; Wang, S. Y.; Wang, J. S.

    2013-10-01

    Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  2. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local

  3. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Niou, C. S.; Pradhan, M.; Schoenlein, L. H.

    1990-01-01

    While it is now well established that copper-oxide-based powder, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high-frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as

  4. Comparison of the effects of platinum and CeO2 on the properties of single grain, Sm-Ba-Cu-O bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Shi, Yunhua; Radušovská, Monika; Dennis, Anthony R.; Durrell, John H.; Diko, Pavel; Cardwell, David A.

    2016-12-01

    SmBa2Cu3O7-δ (Sm-123) is a light-rare-earth barium-cuprate (LRE-BCO) high-temperature superconductor (HTS) with significant potential for high field industrial applications. We report the fabrication of large, single grain bulk [Sm-Ba-Cu-O (SmBCO)] superconductors containing 1 wt% CeO2 and 0.1 wt% Pt using a top-seeded melt growth process. The performance of the SmBCO bulk superconductors containing the different dopants was evaluated based on an analysis of their superconducting properties, including critical transition temperature, T c and critical current density, J c , and on sample microstructure. We find that both CeO2 and Pt dopants refine the size of Sm2BaCuO5 (Sm-211) particles trapped in the Sm-123 superconducting phase matrix, which act as effective flux pinning centres, although the addition of CeO2 results in broadly improved superconducting performance of the fully processed bulk single grain. However, 1 wt% CeO2 is significantly cheaper than 0.1 wt% Pt, which has clear economic benefits for use in medium to large scale production processes for these technologically important materials. Finally, the use of CeO2 results generally in the formation of finer Sm-211 particles and to the generation of fewer macro-cracks and Sm-211 free regions in the sample microstructure.

  5. Stress analysis in high-temperature superconductors under pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe

    2018-04-01

    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  6. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  7. Tensile testing method for rare earth based bulk superconductors at liquid nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Kasaba, K.; Katagiri, K.; Murakami, A.; Sato, G.; Sato, T.; Murakami, M.; Sakai, N.; Teshima, H.; Sawamura, M.

    2005-10-01

    Bending tests have been commonly carried out to investigate the mechanical properties of melt-processed rare earth based bulk superconductors. Tensile tests by using small specimen, however, are preferable to evaluate the detailed distribution of the mechanical properties and the intrinsic elastic modulus because no stress distributions exist in the cross-section. In this study, the tensile test method at low temperature by using specimens with the dimensions of 3 × 3 × 4 mm from Y123 and Gd123 bulks was examined. They were glued to Al alloy rods at 400 K by using epoxy resin. Tests were carried out at liquid nitrogen temperature (LNT) by using the immersion type jig. Although the bending strength in the direction perpendicular to the c-axis of the bulks at LNT is higher than that at room temperature (RT), the tensile strength at LNT was lower than that at RT. Many of specimens fractured near the interface between the specimen and the Al alloy rod at LNT. According to the finite element method analysis, it was shown that there was a peak thermal stress in the loading direction near the interface and it was significantly higher at LNT than that at RT. It was also shown that the replacement of the Al alloy rod to Ti rod of which the coefficient of thermal expansion is close to that of bulks significantly increased the tensile strength.

  8. Proposal of a Bulk HTSC Staggered Array Undulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kii, Toshiteru; Kinjo, Ryota; Bakr, Mahmoud A.

    We proposed a new type of undulator based on bulk high-T{sub c} superconductors (HTSC) which consists of a single solenoid and a stacked array of bulk HTSC. The main advantage of this configuration is that a mechanical structure is not required to produce and control the undulator field. In order to perform a proof of principle experiment, we have developed a prototype of bulk HTSC staggered array undulator using 11 pairs of DyBaCuO bulk superconductors and a normal conducting solenoid. Experimental results obtained by using the prototype undulator and numerical results obtained by a loop current model based on themore » Bean mode for a type-II superconductor were compared.« less

  9. Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-08-01

    The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  10. Upper critical and irreversibility fields in Ni- and Co-doped pnictide bulk superconductors

    NASA Astrophysics Data System (ADS)

    Nikolo, Martin; Singleton, John; Solenov, Dmitry; Jiang, Jianyi; Weiss, Jeremy; Hellstrom, Eric

    2018-05-01

    A comprehensive study of upper critical and irreversibility magnetic fields in Ba(Fe0.95Ni0.05)2As2 (large grain and small grain samples), Ba(Fe0.94Ni0.06)2As2, Ba(Fe0.92Co0.08)2As2, and Ba(Fe0.92Co0.09)2As2 polycrystalline bulk pnictide superconductors was made in pulsed fields of up to 65 T. The full magnetic field-temperature (H-T) phase diagrams, starting at 1.5 K, were measured. The higher temperature, upper critical field Hc2 data are well described by the one-band Werthamer, Helfand, and Hohenberg (WHH) model. At low temperatures, the experimental data depart from the fitted WHH curves, suggesting an emergence of a new phase that could be attributed to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. The large values of the Maki fitting parameter α indicate that the Zeeman pair breaking dominates over the orbital pair breaking and spin-paramagnetic pair-breaking effect is significant in these materials. Possible multi-band structure of these materials is lumped into effective parameters of the single-band model. Table of measured physical parameters allows us to compare these pnictide superconductors for different Co- and Ni- doping levels and granularity.

  11. Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.

    2018-03-01

    It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.

  12. 3D Modeling Effect of Spherical Inclusions on the Magnetostriction of Bulk Superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Pan, Baocai

    2018-02-01

    In this paper, the dependence of the effective magnetostriction of bulk superconductors on the elastic parameters including the volume fraction and elastic modulus ratio is studied by a three-dimensional model consisting of a spherical inclusion-superconducting matrix system. The effect of the elastic modulus and volume fraction on the magnetostriction is also obtained through the magnetostriction loop. The results indicate that the elastic modulus and volume fraction have obvious effects on the effective magnetostriction of the superconducting composite, which gives an explanation about the differences between the experimental and the theoretical results. Furthermore, it is worth pointing out that the linear field dependence of magnetostriction is unique to the Bean model by comparing the curve shapes of the magnetostriction loop with and without inclusion.

  13. Technical issues of a high-Tc superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  14. International Workshop on Ion Beam Modification and Processing of High Tc- Superconductors: Physics and Devices: Program and Abstracts

    DTIC Science & Technology

    1989-04-12

    Karlsruhe, FRG The application of ion beams with energies in the region of about 0.3 to 3 MeV for the analysis and modification of superconductors is...Jolla Ca- lifornia 92093, USA It is now well cstablished that the oxygen content and ordering plays a crucial role ih thie transport and crystallographic...the Belgian F.K.F.O., C.V.l{. is a Reserch Associate of the Belian N.F.W.O. I I I I I IRRADIATION INDUCED DEPAIRING IN YBACUO J. Lesueur, P Nddtlec

  15. Equal-Spin Andreev Reflection on Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor.

    PubMed

    Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo

    2018-02-22

    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

  16. An efficient and economical way to enhance the performance of present HTS Maglev systems by utilizing the anisotropy property of bulk superconductors

    NASA Astrophysics Data System (ADS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a-b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a-b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications.

  17. Gd Ba Cu O bulk superconductors fabricated by a seeded infiltration growth technique under reduced oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Iida, K.; Babu, N. H.; Shi, Y. H.; Cardwell, D. A.; Murakami, M.

    2006-06-01

    Single-grain Gd-Ba-Cu-O (GdBCO) bulk superconductors have been grown by a seeded infiltration and growth (SIG) technique under a 1% O2+N2 atmosphere using a generic MgO-doped Nd-Ba-Cu-O (MgO-NdBCO) seed placed on the sample surface at room temperature (the so-called the cold-seeding method). Partial melting of the MgO-NdBCO seeds fabricated in air under notionally identical thermal processing conditions, however, limited the reliability of this bulk GdBCO single-grain process. The observed seed decomposition is attributed to the dependence of the peritectic temperature Tp of MgO-doped Nd1+xBa2-xCu3Oy solid solution (MgO-doped Nd-123ss, where ss indicates solid solution) compounds on both oxygen partial pressure during the melt process and the level of solid solution (x). The peritectic decomposition temperature of MgO-doped Nd-123ss, with x ranging from 0 to 0.5 under p(O2) = 1.00 atm, was observed to remain constant at 1120 °C. Tp was observed to decrease linearly as a function of solid solution level, on the other hand, under oxygen partial pressures of both p(O2) = 0.21 and 0.01 atm. Based on these results, MgO-doped NdBCO seed crystals should be grown under reduced oxygen partial pressure in order to obtain a stable MgO-doped NdBCO seed crystal suitable for cold-seeding processes of large-grain (RE)BCO bulk superconductors (where RE is a rare earth element).

  18. Topological surface states in nodal superconductors.

    PubMed

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  19. Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process

    NASA Astrophysics Data System (ADS)

    Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2016-03-01

    Bulk (RE)-Ba-Cu-O ((RE)BCO, where RE stands for rare-earth), single grain superconductors can trap magnetic fields of several tesla at low temperatures and therefore can function potentially as high field magnets. Although top seeded melt growth (TSMG) is an established process for fabricating relatively high quality single grains of (RE)BCO for high field applications, this technique suffers from inherent problems such as sample shrinkage, a large intrinsic porosity and the presence of (RE)2BaCuO5 (RE-211)-free regions in the single grain microstructure. Seeded infiltration and growth (SIG), therefore, has emerged as a practical alternative to TSMG that overcomes many of these problems. Until now, however, the superconducting properties of bulk materials processed by SIG have been inferior to those fabricated using the TSMG technique. In this study, we identify that the inferior properties of SIG processed bulk superconductors are related to the presence of a relatively large Y-211 content (˜41.8%) in the single grain microstructure. Controlling the RE-211 content in SIG bulk samples is particularly challenging because it is difficult to regulate the entry of the liquid phase into the solid RE-211 preform during the infiltration process. In an attempt to solve this issue, we have investigated the effect of careful control of both the infiltration temperature and the quantity of liquid phase powder present in the sample preforms prior to processing. We conclude that careful control of the infiltration temperature is the most promising of these two process variables. Using this knowledge, we have fabricated successfully a YBCO bulk single grain using the SIG process of diameter 25 mm that exhibits a trapped field of 0.69 T at 77 K, which is the largest value reported to date for a sample fabricated by the SIG technique.

  20. Microstructure and trapped field of YBCO bulk single-grain superconductors prepared by interior seeding

    NASA Astrophysics Data System (ADS)

    Radusovska, M.; Diko, P.; Piovarci, S.; Park, S.-D.; Jun, B.-H.; Kim, C.-J.

    2017-10-01

    The microstructural analyses of YBCO bulk single-grain superconductors grown by interior seeding with taller and shorter upper pellets have shown that a suitable upper pellet height can lower the porosity in the upper part of the sample, produce a more appropriate distribution of pinning centres in the form of Y-211 particles and suppress subgrain formation with a higher crystal misalignment in the c-growth sector (c-GS), which can lead to a higher measured trapped magnetic field and a more uniform cone of the trapped-field profile. The observed bulging of the sample surface at the c-GS can be explained by the edge melt distribution model, which shows that macroscopic mass transport to the growth sector occurs with higher growth rates.

  1. Sputter Deposition of Yttrium-Barium Superconductor and Strontium Titanium Oxide Barrier Layer Thin Films

    NASA Astrophysics Data System (ADS)

    Truman, James Kelly

    1992-01-01

    The commercial application of superconducting rm YBa_2Cu_3O_{7 -x} thin films requires the development of deposition methods which can be used to reproducibly deposit films with good superconducting properties on insulating and semiconducting substrates. Sputter deposition is the most popular method to fabricate Y-Ba-Cu-O superconductor thin films, but when used in the standard configuration suffers from a deviation between the compositions of the Y-Ba-Cu-O sputter target and deposited films, which is thought to be primarily due to resputtering of the film by negative ions sputtered from the target. In this study, the negative ions were explicitly identified and were found to consist predominantly O^-. The sputter yield of O^- was found to depend on the Ba compound used in the fabrication of Y -Ba-Cu-O targets and was related to the electronegativity difference between the components. An unreacted mixture of rm Y_2O_3, CuO, and BaF_2 was found to have the lowest O^- yield among targets with Y:Ba:Cu = 1:2:3. The high yield of O^- from rm YBa_2Cu_3O _{7-x} was found to depend on the target temperature and be due to the excess oxygen present. The SIMS negative ion data supported the composition data for sputter-deposited Y-Ba-Cu-O films. Targets using BaF _2 were found to improve the Ba deficiency, the run-to-run irreproducibility and the nonuniformity of the film composition typically found in sputtered Y -Ba-Cu-O films. Superconducting Y-Ba-Cu-O films were formed on SrTiO_3 substrates by post-deposition heat treatment of Y-Ba-Cu-O-F films in humid oxygen. The growth of superconducting rm YBa_2Cu_3O_{7-x}, thin films on common substrates such as sapphire or silicon requires the use of a barrier layer to prevent the deleterious interaction which occurs between Y-Ba-Cu-O films and these substrates. Barrier layers of SrTiO_3 were studied and found to exhibit textured growth with a preferred (111) orientation on (100) Si substrates. However, SrTiO_3 was found to be

  2. A robust seeding technique for the growth of single grain (RE)BCO and (RE)BCO-Ag bulk superconductors

    NASA Astrophysics Data System (ADS)

    Namburi, Devendra K.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2018-04-01

    Bulk, single grains of RE-Ba-Cu-O [(RE)BCO] high temperature superconductors have significant potential for a wide range of applications, including trapped field magnets, energy storage flywheels, superconducting mixers and magnetic separators. One of the main challenges in the production of these materials by the so-called top seeded melt growth technique is the reliable seeding of large, single grains, which are required for high field applications. A chemically aggressive liquid phase comprising of BaCuO2 and CuO is generated during the single grain growth process, which comes into direct contact with the seed crystal either instantaneously or via infiltration through a buffer pellet, if employed in the process. This can cause either partial or complete melting of the seed, leading subsequently to growth failure. Here, the underlying mechanisms of seed crystal melting and the role of seed porosity in the single grain growth process are investigated. We identify seed porosity as a key limitation in the reliable and successful fabrication of large grain (RE)BCO bulk superconductors for the first time, and propose the use of Mg-doped NdBCO generic seeds fabricated via the infiltration growth technique to reduce the effects of seed porosity on the melt growth process. Finally, we demonstrate that the use of such seeds leads to better resistance to melting during the single grain growth process, and therefore to a more reliable fabrication technique.

  3. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  4. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  5. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  6. Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR

    NASA Technical Reports Server (NTRS)

    Brinkmann, D.

    1995-01-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

  7. A novel, two-step top seeded infiltration and growth process for the fabrication of single grain, bulk (RE)BCO superconductors

    NASA Astrophysics Data System (ADS)

    Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2016-09-01

    A fundamental requirement of the fabrication of high performing, (RE)-Ba-Cu-O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ˜0.84 T and a zero field current density of 60 kA cm-2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a sample

  8. A new RE + 011 TSIG method for the fabrication of high quality and large size single domain YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Chen, L. P.; Wang, X. J.

    2016-02-01

    High quality single domain YBCO bulk superconductors, 20 mm in diameter, have been fabricated using a new top seeded infiltration and growth method (called the RE + 011 TSIG method), with a new solid phase (Y2O3 + xBaCuO2) instead of the conventional Y2BaCuO5 solid phase, x = 0, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0. The effects of different BaCuO2 contents x on the growth morphology, microstructure, and levitation force have been investigated. The results show that the levitation force of the YBCO bulks first increases and then decreases with increasing x, and reaches maximum levitation forces of about 49.2 N (77 K, 0.5 T, with the traditional liquid phase of YBa2Cu3O y + 3 BaCuO2 + 2 CuO) and 47 N (77.3 K, 0.5 T, with the new liquid phase of Y2O3 + 10 BaCuO2 + 6 CuO) when x = 1.2, which is much higher than that of the samples fabricated with the conventional solid phases (23 N). The average Y2BaCuO5 particle size is about 1 μm, which is much smaller than the 3.4 μm in the samples prepared with the conventional Y2BaCuO5 solid phase; this means that the flux pinning force of the sample can be improved by using the new solid phase. Based on this method, single domain YBCO bulks 40 mm, 59 mm, and 93 mm in diameter have also been fabricated using the TSIG process with the new solid phases (Y2O3 + 1.2BaCuO2). These results indicate that the new TSIG process developed by our lab is a very important and practical method for the fabrication of low cost, large size, and high quality single domain REBCO bulk superconductors.

  9. The XRD Study of the Effect of Slight Change in Structure on the Superconductivity of Y-Ba-Cu-O System Material

    NASA Astrophysics Data System (ADS)

    Huaqin, Wang; Shiyuan, Zhang; Tongzheng, Jin; Shiying, Han; Dirong, Qiu; Hao, Wang; Ningsheng, Zhou

    In this paper the differences in diffraction intensities from some crystal planes in the X-ray diffraction patterns of high Tc Y-Ba-Cu-O system superconductors prepared by different processing conditions and the difference among various structure cells in references are interpreted using computer fitting. The results suggest that there exists two structure cells in the single phase YBa2Cu3O7-x samples. Both structure cells have the same crystal symmetry and almost the same lattice parameters, a=3.821Å, b=3.892Å and c=11.676Å, but the different distortion degree of Cu2-O plane. According to EPR spectra measured on the same samples, it is considered that the improvement of superconductivity for the samples prepared by two-step annealing in flowing oxygen may be related to concentration of the structure cell with more serious distortion on the Cu2-O plane.

  10. Three-dimensional Majorana fermions in chiral superconductors

    DOE PAGES

    Kozii, Vladyslav; Venderbos, Jorn W. F.; Fu, Liang

    2016-12-07

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary naturemore » of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.« less

  11. Three-dimensional Majorana fermions in chiral superconductors.

    PubMed

    Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang

    2016-12-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4 Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.

  12. Three-dimensional Majorana fermions in chiral superconductors

    PubMed Central

    Kozii, Vladyslav; Venderbos, Jörn W. F.; Fu, Liang

    2016-01-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions. PMID:27957543

  13. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  14. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  15. Study of the glass formation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.

  16. Superconducting RF materials other than bulk niobium: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valente-Feliciano, Anne-Marie

    For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transitionmore » temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less

  17. Superconducting RF materials other than bulk niobium: a review

    DOE PAGES

    Valente-Feliciano, Anne-Marie

    2016-09-26

    For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transitionmore » temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less

  18. Multiple seeding for the growth of bulk GdBCO-Ag superconductors with single grain behaviour

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Durrell, J. H.; Dennis, A. R.; Huang, K.; Namburi, D. K.; Zhou, D.; Cardwell, D. A.

    2017-01-01

    Rare earth-barium-copper oxide bulk superconductors fabricated in large or complicated geometries are required for a variety of engineering applications. Initiating crystal growth from multiple seeds reduces the time taken to melt-process individual samples and can reduce the problem of poor crystal texture away from the seed. Grain boundaries between regions of independent crystal growth can reduce significantly the flow of current due to crystallographic misalignment and the agglomeration of impurity phases. Enhanced supercurrent flow at such boundaries has been achieved by minimising the depth of the boundary between A growth sectors generated during the melt growth process by reducing second phase agglomerations and by a new technique for initiating crystal growth that minimises the misalignment between different growth regions. The trapped magnetic fields measured for the resulting samples exhibit a single trapped field peak indicating they are equivalent to conventional single grains.

  19. Mesure de la conductivité complexe et de la résistance de surface de films supraconducteurs YBaCuO

    NASA Astrophysics Data System (ADS)

    Mehri, F.; Lepercq, P.; Carru, J. C.; Playez, E.; Thivet, C.; Perrin, A.; Chambonnet, D.

    1994-11-01

    We describe in this paper 2 non destructive measurement methods in microwaves (18-26 GHz) well-suited to the characterization of conducting and superconducting thin films. From the experimental values we show that it is possible to infer, without any hypothesis, the following parameters : σ^*, R_s, X_s and λ between 20 K and 300 K. Some examples are given with metallic and superconducting samples from various origins. At 22 GHz and below 75 K, YBaCuO films deposited on MgO have a surface resistance inferior to bulk copper one. Dans cet article nous décrivons 2 méthodes de mesure non destructives adaptées à la caractérisation en microondes (18-26 GHz) de films minces conducteurs et supraconducteurs. A partir des valeurs expérimentales nous montrons qu'il est possible d'en déduire les grandeurs caractéristiques à savoir σ^*, R_s, X_s et λ entre 20 K et 300 K. Nous donnons des exemples de caractérisation de films métalliques et supraconducteurs provenant de différentes origines. A 22 GHz, en dessous de 75 K, les films YBaCuO déposés sur MgO ont une résistance de surface inférieure à celle du cuivre massif.

  20. Second-order topological insulators and superconductors with an order-two crystalline symmetry

    NASA Astrophysics Data System (ADS)

    Geier, Max; Trifunovic, Luka; Hoskam, Max; Brouwer, Piet W.

    2018-05-01

    Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at hinges of a three-dimensional crystal. A second-order topological phase can be induced by the presence of a bulk crystalline symmetry. Building on Shiozaki and Sato's complete classification of bulk crystalline phases with an order-two crystalline symmetry [Phys. Rev. B 90, 165114 (2014), 10.1103/PhysRevB.90.165114], such as mirror reflection, twofold rotation, or inversion symmetry, we classify all corresponding second-order topological insulators and superconductors. The classification also includes antiunitary symmetries and antisymmetries.

  1. The Fabrication of (bismuth, LEAD)(2) STRONTIUM(2) CALCIUM(2) COPPER(3) Oxygen(x) Superconductor in Bulk and Tape Forms

    NASA Astrophysics Data System (ADS)

    Lim, Hanjin

    High-T_{rm c}<=ad doped rm Bi_2Sr_2Ca_2Cu _2Cu_3O_{x} (BSCCO 2223) superconductor bulk materials were prepared using conventional powder metallurgy techniques, which were made from precursors having different histories. The ease of formation of superconducting phases was highly dependent on the processing of primitive powder. With the three -powder process that combines three kinds of calcined precursor powders, the formation of the BSCCO superconductor was accelerated and the amount of the secondary phase (e.g., Ca_2CuO_3) was reduced. The critical transition temperature (T _{rm c}) of the superconductor from the three-powder process is higher than that from the one-powder process. In lead-doped BSCCO 2223, positron trapping and annihilation evidently occur in the open BiO double layers rather than in the superconducting CuO_2 layers of the structure. Both positron annihilation parameters (tau_1, tau _2, overlinetau) and Doppler parameters (P, W, P/W) were insensitive to the superconducting transition in this material. This is quite opposite to the case of YBCO and Dy doped YBCO where positron annihilation is sensitive to the superconducting transition. High-T_{rm c} BSCCO superconducting tapes were fabricated using the powder -in-tube (PIT) method that includes heat treatments as well as mechanical processing such as drawing, rolling, and pressing. The highest critical current densities (J _{rm c}) at 5 and 77 K were 5.12 times 10^5 A/cm^2 and 1.77 times 10^4 A/cm^2 , respectively, for the tape sample which was solid state processed at 840^circC with three short sintering steps. J_{ rm c} values at 5 and 77 K of tape samples were 1 and 2 orders of magnitude higher than those of bulk samples, respectively. The preferred orientations of the BSCCO 2212 phase in the tape samples were basal and (1 1 13) textures; for the BSCCO 2223 phase preferred orientations were also basal and (1 1 19) textures. By taking the ratios of the texture coefficients (TCs) for (0 0 1) and

  2. All high Tc edge-geometry weak links utilizing Y-Ba-Cu-O barrier layers

    NASA Technical Reports Server (NTRS)

    Hunt, B. D.; Foote, M. C.; Bajuk, L. J.

    1991-01-01

    High quality YBa2Cu3O(7-x) normal-metal/YBa2Cu3O(7-x) edge-geometry weak links have been fabricated using nonsuperconducting Y-Ba-Cu-O barrier layers deposited by laser ablation at reduced growth temperatures. Devices incorporating 25-100 A thick barrier layers exhibit current-voltage characteristics consistent with the resistively shunted junction model, with strong microwave and magnetic field response at temperatures up to 85 K. The critical currents vary exponentially with barrier thickness, and the resistances scale linearly with Y-Ba-Cu-O interlayer thickness and device area, indicating good barrier uniformity, with an effective mormal metal coherence length of 20 A.

  3. Topological Superconductivity on the Surface of Fe-Based Superconductors.

    PubMed

    Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2016-07-22

    As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.

  4. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Reade, R. P.; Mao, X. L.; Russo, R. E.

    1991-08-01

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.

  5. Unusual two-dimensional behavior of iron-based superconductors with low anisotropy

    NASA Astrophysics Data System (ADS)

    Kalenyuk, A. A.; Pagliero, A.; Borodianskyi, E. A.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Chareev, D. A.; Kordyuk, A. A.; Krasnov, V. M.

    2017-10-01

    We study angular-dependent magnetoresistance in iron-based superconductors Ba1 -xNaxFe2As2 and FeTe1 -xSex . Both superconductors have relatively small anisotropies γ ˜2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc 2(T ) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field.

  6. The use of high temperature superconductors to levitate lunar telescope

    NASA Technical Reports Server (NTRS)

    Brown, Beth A.

    1992-01-01

    The objective of this paper was to assist in the construction of a lunar telescope mirror model by conducting research on composite materials and other lightweight, rigid materials, and by determining how much weight can be levitated by available superconductors. It is believed that with the construction of four magnets suspended over four bulk superconductors (or vice versa), there should be no problems lifting a model mirror and stabilizing it at different positions. It may be necessary to increase the size and quality of the superconductors and/or magnets in order to achieve this.

  7. Relationship of the Levitation Force Between Single and Multiple YBCO Bulks Above a Permanent Magnet Guideway Operating Dive-Lift Movement with Different Angles

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Wang, S. Y.; Liao, X. L.; Deng, Z. G.; Wang, J. S.

    2013-04-01

    In practical applications, the acceleration and deceleration motions inevitably happen in the operation of high temperature superconducting (HTS) maglev trains. For further research of the maglev properties of YBaCuO bulk above a permanent magnet guideway (PMG), by moving a fixed vertical distance, this paper studies the relationship of the levitation force between single and multiple YBCO bulks above a PMG operating dive-lift movement with different angles. Experimental results show that the maximal levitation force increment of two bulks than one bulk is smaller than the maximal levitation force increment of three bulks than two bulks. With the degree decreasing, the maximal levitation force increment of three bulks is bigger than the maximal levitation force increment of two bulks and one bulk, and the hysteresis loop of the levitation force of the three-bulk arrangement is getting smaller.

  8. The superconducting state parameters of glassy superconductors

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2011-11-01

    We present theoretical investigations of the superconducting state parameters (SSPs), i.e. the electron-phonon coupling strength, λ, Coulomb pseudopotential, μ*, transition temperature, Tc, isotope effect exponent, α, and effective interaction strength, N0V, of glassy superconductors by employing Ashcroft's well know empty core model potential for the first time using five screening functions proposed by Hartree (H), Taylor, Ichimaru-Utsumi (IU), Farid et al and Sarkar et al. The Tc obtained from the H and IU screening functions is found to be in excellent agreement with available experimental data. Also, the present results confirm the superconducting phase in bulk metallic glass superconductors. A strong dependency of the SSPs of the glassy superconductors on the 'Z' valence is found.

  9. Flux pinning properties of GdBCO bulk through the infiltration and growth process

    NASA Astrophysics Data System (ADS)

    Zhang, Y. F.; Wang, J. J.; Zhang, X. J.; Pan, C. Y.; Zhou, W. L.; Xu, Y.; Liu, Y. S.; Izumi, M.

    2017-06-01

    REBa2Cu3O7-δ(RE123 or REBCO, RE=rare earth elements, Gd, Y, Nd, etc.) bulk high temperature superconductors (HTS) have been used in lots of aspects, such as in magnetic levitation, et al., owing to the performance of high magnetic flux trapping. GdBCO superconductor bulk with 25 mm diameter has been successfully fabricated by top-seeded infiltration and growth (TSIG) method. We chose YBa2Cu3O7-δ (Y123) particles as the liquid source, which provide enough liquid sources during the growth and encourage the growth along a-b plane of GdBCO bulk. Then the existence of Y123 liquid source partly decreases the effect of the sub-grain boundaries in a-growth sectors and improves the properties of GdBCO bulk. The shape of the trapped field is close to circle. The critical current density of C2 and B2 (JC ) enhances. The superconducting transition temperature (TC ) is around 94.5K in the different position and keeps the superconducting properties. It is the important experimental data for the engineering applications of the superconductor bulk.

  10. Anomalous Normal State and Quasi Particle Transport in High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Ong, N. P.

    1997-03-01

    The quasi-particles (qp) below Tc are much less studied compared to excitations of the normal state. The thermal conductivity tensor κ_ij provides a window on their transport properties. In YBaCuO, the large thermal Hall response allows the qp mean-free-path l to be estimated. l rises rapidly from 90 Åat Tc to over 6,000 Åat 20 K in untwinned crystals. The intense scattering rate above Tc is rapidly suppressed, leaving qp's that travel great distances at low T. In LaSrCuO, where there is substantial disorder, κ_xx varies logarithmically with field B. While the field dependence is entirely electronic, it is incompatible with scattering from vortices. κ_xx fits well to the digamma function form ψ(1/2+ fracB_0B) + ln(fracBB_0), with a T-linear field-scale B_0. Possible field destruction of a quantum interference effect or depairing effects in a d-wave superconductor will be discussed.

  11. Yttrium enrichment and improved magnetic properties in partially melted Y-Ba-Cu-O materials

    NASA Technical Reports Server (NTRS)

    Alterescu, Sidney; Hojaji, Hamid; Barkatt, Aaron; Michael, Karen A.; Hu, Shouxiang

    1990-01-01

    The yttrium-rich compositions in the Y-Ba-Cu-O system were mapped out in a systematic manner to quantify their magnetic properties and to correlate them with the microstructure and phase composition as determined by scanning electron microscopy and X-ray diffraction analysis. It is found that the microstructure of Y-Ba-Cu-O compositions is a sensitive function of both their composition and processing conditions. Measurements of magnetic susceptibility and maximum (low-field) and remanent magnetization for the system Y:Ba:Cu = x:2:3 show highest values for x = 2. The corresponding structures involve numerous small crystals of Y2BaCuO5 (211) embedded in highly ordered assemblages of continous YBa2Cu3O(7-y) (123) layers.

  12. Superconductor bearings, flywheels and transportation

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  13. Making High-Temperature Superconductors By Melt Sintering

    NASA Technical Reports Server (NTRS)

    Golben, John P.

    1992-01-01

    Melt-sintering technique applied to YBa2Cu3O7-x system and to Bi/Ca/Sr/Cu-oxide system to produce highly oriented bulk high-temperature-superconductor materials extending to macroscopically usable dimensions. Processing requires relatively inexpensive and simple equipment. Because critical current two orders of magnitude greater in crystal ab plane than in crystal c direction, high degree of orientation greatly enhances critical current in these bulk materials, making them more suitable for many proposed applications.

  14. Low field scaling properties of high Tc superconductor glasses

    NASA Astrophysics Data System (ADS)

    Giovannella, C.; Fruchter, L.; Chappert, C.

    We show that the zero field cooling (ZFC) M/H curves of both the YBaCuO and the LaSrCuO granular superconductor glasses (SuG) are subjected to scaling when plotted against the reduced variable t/H1/ψ . The breaking of the scaling for too weak or too strong magnetic fields is discussed and justified by the introduction of a phenomenological fractal picture, describing the behaviour of the disordered intergranular junction network. Nous montrons que les courbes M/H caractéristiques des verres de supraconducteurs granulaires sont sujettes à une loi d'échelle lorsqu'elles sont tracées en fonction de la variable réduite t/H1/ψ. La brisure de la loi d'échelle pour des champs trop forts ou trop faibles est justifiée par l'introduction d'un modèle phénoménologique fractal capable de décrire le comportement d'un réseau désordonné des jonctions.

  15. Progress of research of high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Tanaka, Shoji

    1991-01-01

    Research in the area of of high T(sub c) superconductors has made great progress in the last few years. New materials were found and the systematic investigation of these materials has contributed to understanding the mechanism of high T(sub c) superconductivity. The critical currents in thin films, bulks, and tapes increased drastically, and the origin of flux pinning will be clarified in the near future. The future of high T(sub c) superconductivity, in both the basic and applied research areas, is very optimistic. Recent activities in research of high T(sub c) superconductivity and superconductors in Japan are overviewed.

  16. The flux jumps in high Tc Bi(1.7)Pb(0.3)Sr2 Ca2Cu3O(y) bulk superconductor

    NASA Astrophysics Data System (ADS)

    Cao, Xiaowen; Huang, Sunli

    1989-11-01

    There were giant flux jumps in high T sub c Bi(1.7)Pb(0.3)Sr2Ca2Cu3O(v) bulk superconductor. The relaxation time, tau, decreased with both the increase of magnetic field and the rise of temperature. The maximum tau was about 40 min. The average -dM/dt increased with both the increase of magnetic field and the rise of temperature. The minimum average -dM/dt was about 4.1 x 10(exp -2) G/min. The flux jump weakened with time. It was dependent on the decrease of gradient of magnetic flux density dn/dx in the sample.

  17. Glass formability of high T(sub c) Bi-Sr-Ca-Cu-O superconductors

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were evaluated for their glass formation ability by means of rapid thermal analysis during quenching, optical and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass, then with subsequent devitrification it was formed into bulk crystalline superconductor by a series of processing methods.

  18. Surface, Interface, and Bulk Properties of High Tc Superconductors

    DTIC Science & Technology

    1989-06-30

    Superconductors Phys. Rev. B 39, 823, (1989) Z.-X. Shen, P.A.P. Lindberg, B.O. Wells, D.B. Mitzi , I. Lindau, W.E. Spicer and A. Kapitulnik Valence Band...Lindau, W.E. Spicer, P. Soukiassian, D.B. Mitzi , C.B. Eom, A. Kapitulnik and T.H. Geballe Surface and Electronic Structure of Bi-Ca-Sr-Cu-O...P.A.P. Lindberg, D.S. Dessau, I. Lindau, W.E. Spicer, D.B. Mitzi , I. Bozvic and A. Kapitulnik Photoelectron energy loss study of the Bi 2CaSr 2Cu20 8

  19. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  20. Densification of oxide superconductors by hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Tien, J. K.; Borofka, J. C.; Hendrix, B. C.; Caulfield, T.; Reichman, S. H.

    1988-07-01

    Currently, consolidation of high Tc superconductor powders is done by sintering, which is not effective in the reduction of porosity. This work assesses the feasibility of hot isostatic pressing (HIP) to obtain fully dense bulk superconductor using HIP modeling and experimental verification. It is concluded that fully dense YBa2Cu3O7 can be obtained in reasonable times at temperatures down to around 650 °C. The trade-offs between temperature, time, and pressure are examined as well as the effects of powder particle size, powder grain size, and trapped gas pressure. The model has. been verified by experiment under three conditions: 100 MPa HIP at 900 °C for 2 hours, 100 MPa HIP at 750 °C for 2 hours, and sintering at 950 °C for 16 hours. The additional advantages of HIPing oxide superconductors are also discussed.

  1. Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.

    2008-05-01

    High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.

  2. Surface Andreev Bound States and Odd-Frequency Pairing in Topological Superconductor Junctions

    NASA Astrophysics Data System (ADS)

    Tanaka, Yukio; Tamura, Shun

    2018-04-01

    In this review, we summarize the achievement of the physics of surface Andreev bound states (SABS) up to now. The route of this activity has started from the physics of SABS of unconventional superconductors where the pair potential has a sign change on the Fermi surface. It has been established that SABS can be regarded as a topological edge state with topological invariant defined in the bulk Hamiltonian. On the other hand, SABS accompanies odd-frequency pairing like spin-triplet s-wave or spin-singlet p-wave. In a spin-triplet superconductor junction, induced odd-frequency pairing can penetrate into a diffusive normal metal (DN) attached to the superconductor. It causes so called anomalous proximity effect where the local density of states of quasiparticle in DN has a zero energy peak. When bulk pairing symmetry is spin-triplet px-wave, the anomalous proximity effect becomes prominent and the zero bias voltage conductance is always quantized independent of the resistance in DN and interface. Finally, we show that the present anomalous proximity effect is realized in an artificial topological superconducting system, where a nanowire with spin-orbit coupling and Zeeman field is put on the conventional spin-singlet s-wave superconductor.

  3. Glass precursor approach to high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1992-01-01

    The available studies on the synthesis of high T sub c superconductors (HTS) via the glass precursor approach were reviewed. Melts of the Bi-Sr-Ca-Cu-O system as well as those doped with oxides of some other elements (Pb, Al, V, Te, Nb, etc.) could be quenched into glasses which, on further heat treatments under appropriate conditions, crystallized into the superconducting phase(s). The nature of the HTS phase(s) formed depends on the annealing temperature, time, atmosphere, and the cooling rate and also on the glass composition. Long term annealing was needed to obtain a large fraction of the 110 K phase. The high T sub c phase did not crystallize out directly from the glass matrix, but was preceded by the precipitation of other phases. The 110 K HTS was produced at high temperatures by reaction between the phases formed at lower temperatures resulting in multiphase material. The presence of a glass former such as B2O3 was necessary for the Y-Ba-Cu-O melt to form a glass on fast cooling. A discontinuous YBa2Cu3O(7-delta) HTS phase crystallized out on heat treatment of this glass. Attempts to prepare Tl-Ba-Ca-Cu-O system in the glassy state were not successful.

  4. Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing

    NASA Astrophysics Data System (ADS)

    Dias, D. H. N.; Sotelo, G. G.; Moysés, L. A.; Telles, L. G. T.; Bernstein, P.; Kenfaui, D.; Aburas, M.; Chaud, X.; Noudem, J. G.

    2015-07-01

    The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa2Cu3Ox (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors.

  5. Electronic structure and superconductivity of FeSe-related superconductors.

    PubMed

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  6. Entanglement entropy and complexity for one-dimensional holographic superconductors

    NASA Astrophysics Data System (ADS)

    Kord Zangeneh, Mahdi; Ong, Yen Chin; Wang, Bin

    2017-08-01

    Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.

  7. Spectroscopic views of high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Wendin, Göran

    1989-01-01

    Recent progress in the fields of photoelectron spectroscopy, electron energy loss spectroscopy, inverse photoemission, and infrared- and optical reflectivity applied to high-Tc superconductors is analyzed in terms of correlation effects, transport properties and Fermi liquid behaviour. For the CuO2 based materials, a picture emerges of localized holes in copper 3d levels and itinerant holes in oxygen 2p-like bands. A Fermi liquid picture and a superconducting gap is indicated by angle-resolved photo-emission, infrared absorption, and NMR. A Fermi surface is indicated by positron annihilation. Infrared absorption reveals strongly frequency and temperature dependent scattering and polaronic behaviour for frequencies below 0.1 eV. Infrared absorption indicates a maximum superconducting gap of 2Δ/kBTc = 8 and suggests that ordinary samples may show a range of gaps 2 < 2Δ/kBTc < 8 resulting in commonly measured average values of 2Δ/kBTc = 5. An interesting possibility in YBaCuO, suggested by infrared reflectivity and photoconductivity measurements, is that polarons in the CuO2 planes with 0.13 eV excitation energy mediate an attractive interaction between quasi-holes in O 2p-derived conduction bands. The polarons will involve important lattice distortions even if, as is frequently assumed, magnetic polaron effects may be the essential thing.

  8. Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors

    NASA Technical Reports Server (NTRS)

    Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1997-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.

  9. Influence of lateral displacement on the levitation performance of a magnetized bulk high-Tc superconductor magnet

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J. S.; Ma, G. T.; Zheng, J.; Tuo, X. G.; Li, L. L.; Ye, C. Q.; Liao, X. L.; Wang, S. Y.

    2012-03-01

    Compared with the permanent magnet, the magnetized bulk high-Tc superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-Tc superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  10. Laser surface interaction of high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Chen, C. H.; Mccann, M. P.; Phillips, R. C.

    1991-01-01

    During the past two years, one of the most exciting research fields in science has been the study of the newly discovered high-T(sub c) metal oxide superconductors. Although many theoretical models were proposed, there is no general agreement on any theory to explain these materials. One of the peculiar features of these high-T(sub c) materials is the noninteger number of oxygen atoms. The oxygen content is extremely critical to the superconductive properties. Take YBa2Cu3O(7-x) as an example. Its superconductive properties disappear whenever x is larger than 0.5. The existence of Cu(+ 3) was considered to account for x less than 0.5. However, results from mass spectroscopy of laser desorbed species indicate that significant quantities of oxygen molecules are trapped in the bulk of these high-T(sub c) superconductors. It appears that these trapped oxygen molecules may play key roles in superconductive properties. Preparation of superconductive thin films are considered very important for the applications of these new superconductors for the electronics industry. Fluorescence spectra and ion spectra following laser ablation of high-temperature superconductors were obtained. A real time monitor for preparation of superconductive thin films can possibly be developed.

  11. Relaxation and anomalous T- and H-dependence of the μ coefficient in (K,Ba)BiO3 superconductors

    NASA Astrophysics Data System (ADS)

    Klein, T.; Harneit, W.; Joumard, I.; Marcus, J.; Escribe-Filippini, C.; Feinberg, D.

    1998-04-01

    Ac shielding and classical dc relaxation experiments have been used to study the flux creep phenomena in the cubic (K,Ba)BiO3 superconductor (Tc ~ 30 K). The relaxation rate is found to be constant (S ~ 1.5%) at low temperature and magnetic field and increases sharply as the vortex-glass transition line is approached. This behavior can be attributed to an anomalous decrease of the μ exponent (U(J) = U0(J0/J)μ) close to Tg(H). In this regime, the temperature dependence of the apparent critical current J is then directly related to μ(T) as J(T) = J0/[kT/U0·ln (1/ωτ)]μ(T). A similar analysis can be made on the J(B) data recently published by Abulafia et al. (Phys. Rev. Lett., 77 (1996) 1597) on YBaCuO single crystals.

  12. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    PubMed Central

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  13. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    PubMed

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  14. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field

    NASA Astrophysics Data System (ADS)

    Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang

    2017-06-01

    The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.

  15. Revealing Surface States in In-Doped SnTe Nanoplates with Low Bulk Mobility.

    PubMed

    Shen, Jie; Xie, Yujun; Cha, Judy J

    2015-06-10

    Indium (In) doping in topological crystalline insulator SnTe induces superconductivity, making In-doped SnTe a candidate for a topological superconductor. SnTe nanostructures offer well-defined nanoscale morphology and high surface-to-volume ratios to enhance surface effects. Here, we study In-doped SnTe nanoplates, In(x)Sn(1-x)Te, with x ranging from 0 to 0.1 and show they superconduct. More importantly, we show that In doping reduces the bulk mobility of In(x)Sn(1-x)Te such that the surface states are revealed in magnetotransport despite the high bulk carrier density. This is manifested by two-dimensional linear magnetoresistance in high magnetic fields, which is independent of temperature up to 10 K. Aging experiments show that the linear magnetoresistance is sensitive to ambient conditions, further confirming its surface origin. We also show that the weak antilocalization observed in In(x)Sn(1-x)Te nanoplates is a bulk effect. Thus, we show that nanostructures and reducing the bulk mobility are effective strategies to reveal the surface states and test for topological superconductors.

  16. Fostered Thermomagnetic Stabilities and Boosted Mechanical Reliability Related to High Trapped Field in Composite Bulk YBa2Cu3O(7-δ) Cryomagnets.

    PubMed

    Kenfaui, Driss; Sibeud, Pierre-Frédéric; Gomina, Moussa; Louradour, Eric; Chaud, Xavier; Noudem, Jacques G

    2015-08-06

    In the quest of YBa2Cu3O(7-δ) (Y123) bulk superconductors providing strong magnetic fields without failure, it is of paramount importance to achieve high thermal stabilities to safeguard the magnetic energy inside them during the trapping-field process, and sufficient mechanical reliability to withstand the stresses derived from the Lorenz force. Herein, we experimentally demonstrate a temperature rise induced by dissipative flux motion inside an Y123 thin-wall superconductor, and a significant thermal exchange in a composite bulk Y123 cryomagnet realized by embedding this superconductor with high thermal-conductivity metal network. It resulted in stimulating the maximum trapped field Bm, which reached 6.46 T on 15.9 mm-diameter single disk superconductor after magnetization by field cooling to 17 K under 7 T, leading to an improvement of 18% compared to the thin-wall superconductor. The composite cryomagnet particularly revealed the potential to trap stronger fields if larger magnetic activation is available. By virtue of the pore-free and crack-free microstructure of this cryomagnet, its strength σR was estimated to be 363 MPa, the largest one obtained so far for Y123 bulk superconductors, thus suggesting a striking mechanical reliability that seems to be sufficient to sustain stresses derived from trapped fields stronger than any values hitherto reported.

  17. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    PubMed

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

  18. A review of finite size effects in quasi-zero dimensional superconductors.

    PubMed

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size

  19. Low-temperature rapid synthesis and superconductivity of Fe-based oxypnictide superconductors.

    PubMed

    Fang, Ai-Hua; Huang, Fu-Qiang; Xie, Xiao-Ming; Jiang, Mian-Heng

    2010-03-17

    Fe-based oxypnictide superconductors were successfully synthesized at lower reaction temperatures and with shorter reaction times made possible by starting with less stable compounds, which provide a larger driving force for reactions. Using ball-milled powders of intermediate compounds, phase-pure superconductors with T(c) above 50 K were synthesized at 1173 K in 20 min. This method is particularly advantageous for retaining F, a volatile dopant that enhances superconductivity. Bulk superconductivity and high upper critical fields up to 392 T in Sm(0.85)Nd(0.15)FeAsO(0.85)F(0.15) were demonstrated.

  20. First principle study of heterostructure of BaBi3-stanene for topological superconductor applications

    NASA Astrophysics Data System (ADS)

    Kore, Ashish; Singh, Poorva

    2018-05-01

    We have studied the heterostructure of BaBi3 (superconductor) and stanene (topological insulator) with the aim of inducing topological superconductivity in stanene, due to proximity with superconductor BaBi3. The density functional theory calculations have been done for 2D structure of BaBi3 as well as for monolayer of stanene, separately. We find that compared to bulk BaBi3, the 2D bandstructure has contributions coming from both Ba and Bi atoms, unlike bulk where only Bi-p states are contributing to the bandstructure. Surface reconstruction of surface and sub-surface layer of 2D BaBi3 is also evident. The bandstructure of heterostructure of BaBi3-stanene is expected to bring out explicit features of topological superconductivity and indicating the presence of Majorana fermions.

  1. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  2. The effect of processing parameters during heat treatment of bulk high-T(sub c) superconductors

    NASA Astrophysics Data System (ADS)

    Cha, Y. S.; Dorris, S. E.; Hull, J. R.; Poeppel, R. B.

    1991-04-01

    Plastic extrusion is a promising method for producing the long lengths of high-Tc superconductor that will be necessary to meet many potential applications. A crucial phase of the extrusion method is removal of organic constituents. Incomplete removal can leave residual carbon at grain boundaries, which can adversely affect the superconducting properties, whereas excessively rapid removal of the organics can cause the extruded superconductor to disintegrate completely. In this paper, we analyze the effects of the following aspects of organics removal, as they apply to the firing of extruded YBa2Cu3O(x) coils: (1) total pressure in the furnace, (2) oxygen flow, (3) heat conduction, and (4) diffusion of volatile components during removal of organics.

  3. Interaction of Superconducting YBa2Cu(sub 3-x)Zn(sub x)O(sub 7-y) with MeV Radiation

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Robertson, G. A.

    2005-01-01

    When the high Tc superconductor Y-Ba-Cu-O is cooled with liquid nitrogen, the conduction holes form a macroscopic collective or entangled state. While collective effects have been observed with radiation energies up to 5 eV, no high-sensitivity experiments have previously been carried out to search for comparable effects with MeV radiation. Here an experiment using a pair of scintillation counters arranged to search for changes in the natural background of high energy radiation adjacent to a warm and cold Y-Ba-Cu-O superconductor is described. The experiment showed a shift toward higher pulse heights when the SC was cooled, with a 4 standard deviation excess of 9.12+/-2.28 events/ksec over the range of 0 to 18 MeV. The net difference spectrum shows a 5.5 standard deviation excess signal for the range of 3 to 6 MeV.

  4. Macroscopic shape change of melt-processed YBa{sub 2}Cu{sub 3}O{sub x-}Y{sub 2}BaCuO{sub 5} bulk superconductors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diko, P.; Goretta, K. C.; Energy Technology

    A macroscopic change in the shape of five-domain melt-processed YBa{sub 2}Cu{sub 3}O{sub x}/Y{sub 2}BaCuO{sub 5} bulk superconductors is reported and explained. The change, a distortion from circular cross-section, is attributed to liquid transport from a slower growth front in an a-axis direction to a faster growth front in a c-axis direction at the edge between the a- and c-growth fronts, a phenomenon that we call the edge melt distribution (EMD) effect. Formation of bands of higher Y{sub 2}BaCuO{sub 5} particle density along the a/c growth boundaries, which nearly coincide with {l_brace}110{r_brace}-type planes, is explained by the EMD effect.

  5. Influence of Off-Centre Operation on the Performance of HTS Maglev

    NASA Astrophysics Data System (ADS)

    Gou, Y.; He, D.; Zheng, J.; Ye, C.; Xu, Y.; Sun, R.; Che, T.; Deng, Z.

    2014-03-01

    Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y-Ba-Cu-O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.

  6. High Tc superconducting IR detectors from Y-Ba-Cu-O thin films

    NASA Technical Reports Server (NTRS)

    Lindgren, M.; Ahlberg, H.; Danerud, M.; Larsson, A.; Eng, M.

    1990-01-01

    A thin-film high-Tc superconducting multielement optical detector made of Y-Ba-Cu-O has been designed and evaluated using optical pulses from a diode laser (830 nm) and a Q-switched CO2-laser (10.6 microns). Different thin films have been tested. A laser deposited film showed the strongest response amplitude for short pulses and responded to an ultrafast, 50 ps wide pulse. Comparisons between dR/dT and response as a function of temperature indicated, however, a bolometric response.

  7. Three-Dimensional Majorana Fermions in Chiral Superconductors

    NASA Astrophysics Data System (ADS)

    Kozii, Vladyslav; Venderbos, Jorn; Fu, Liang

    Through a systematic symmetry and topology analysis we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-non-degenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the non-unitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions, and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface that form arcs in momentum space. This work is supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award de-sc0010526 (LF and VK), and the Netherlands Organization for Scientific Research (NWO) through a Rubicon Grant (JV).

  8. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  9. Phase formation and microstructure of gamma irradiated Bi-2223 Superconductor

    NASA Astrophysics Data System (ADS)

    ‘Atiqah Mohiju, Zaahidah; Alieya Adnan, Natasha; Hamid, Nasri A.; Abdullah, Yusof

    2018-01-01

    The Bi-2223 superconductor has been synthesized using the conventional solid state reaction method. The effect of gamma irradiation on phase formation and microstructure of high-temperature Bi-2223 superconductor ceramic was investigated. The bulk samples sample were palletized with 7 tons pressure of hydraulic press machine and sintered at 840°C for 48 hours. The gamma irradiation was performed at the Nuclear Malaysian Agency with dose of 50 kGray at room temperature. Structure characterization using X-ray diffraction (XRD) showed that the patterns for all the samples demonstrate well-defined peaks all of which could be indexed on the basis of a Bi-2223 phase structure. However, for irradiated sample, it showed reduction in the peak intensity indicating a decrease in the content of the Bi-2223 superconducting phase. The effect of gamma (γ) irradiation on surface morphology and its composites has also been investigated by scanning electron microscope (SEM) and the micrograph shows that the grains are distributed randomly with poorly connected inter and intra-grain microstructure. This shows that the morphology of the Bi-2223 superconductor is very sensitive to gamma irradiation. The effect on the phase formation and microstructure of non-irradiated and gamma irradiated of Bi-2223 superconductor is compared and evaluated.

  10. Comparative study of flux pinning, creep and critical currents between YBaCuO crystals with and without Y2BaCuO5 inclusions

    NASA Technical Reports Server (NTRS)

    Murakami, Masato; Gotoh, Satoshi; Fujimoto, Hiroyuki; Koshizuka, Naoki; Tanaka, Shoji

    1991-01-01

    In the Y-Ba-Cu-O system, YBa2Cu3O(x) phase is produced by the following peritectic reaction: Y2BaCuO5 + liquid yields 2YBa2Cu3O(x). Through the control of processing conditions and starting compositions, it becomes possible to fabricate large crystals containing fine Y2BaCuO5(211) inclusions. Such crystals exhibit Jc values exceeding 10000 A/sq cm at 77 K and 1T. Recently, researchers developed a novel process which can control the volume fraction of 211 inclusions. Elimination of 211 inclusions is also possible. In this study, researchers prepared YBaCuO crystals with and without 211 inclusions using the novel process, and compared flux pinning, flux creep and critical currents. Magnetic field dependence of Jc for YBaCuO crystals with and with 211 inclusions is shown. It is clear that fine 211 inclusions can contribute to flux pinning. It was also found that flux creep rate could be reduced by increasing flux pinning force. Critical current density estimates based on the conventional flux pinning theory were in good agreement with experimental results.

  11. Evolutions structurales et effets de pression dans des céramiques supraconductrices à haute T_c

    NASA Astrophysics Data System (ADS)

    Gavarri, J. R.; Carel, C.; Monnereau, O.; Vacquier, G.; Vettier, C.; Hewat, A. W.

    1991-11-01

    Using structural evolution data and a method permitting the calculation of elastic constants and Grüneisen parameters, the thermal expansion of two high T_c superconductors is interpreted. It is shown that the superconductors YBaCuO (123) and BiSrCaCuO (2212) present strongly different elastic and anharmonic properties. En appliquant une méthode déjà mise au point sur d'autres composés (Gavarri, 1981), l'évolution structurale de deux supraconducteurs à haute T_c est interprétée par le biais de leurs compressibilités anisotropes et de leurs coefficients de Grüneisen, obtenus par diffraction de neutrons et de rayons X. On montre ici que les supraconducteurs YBaCuO (123) et BiSrCaCuO (2212) diffèrent considérablement par leurs compressibilités anisotropes et par leurs coefficients de Grüneisen.

  12. Experiments with d-wave Superconductors

    NASA Astrophysics Data System (ADS)

    Mannhart, J.; Hilgenkamp, H.; Hammerl, G.; Schneider, C. W.

    2003-10-01

    The predominant dx2-y2-wave pairing-symmetry of most high-Tc, superconductors provides the opportunity to fabricate Josephson junction circuits in which part of the junctions are biased by a phase difference of the superconducting order parameter of π. To explore the road to such π-electronics, we have fabricated and studied all-high-Tc dc superconducting quantum interference devices (dc SQUIDs) realized with thin film technology, of which the Josephson junctions consist of one standard junction and one junction with a π-phase shift. These π-SQUIDs provide clear evidence of the dx2-y2-wave symmetry of the order parameter, the amount of complex admixtures of other symmetry components being undetectably small. This seems to contradict other experiments, the results of which have been presented as evidence for an s-wave order parameter or for complex admixtures. Possible solutions to resolve this apparent contradiction are presented. In particular it is pointed out that even in the bulk of a superconductor the order parameter symmetry (the admixture of various symmetry components) may be spatially dependent.

  13. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    PubMed Central

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  14. Orbital selective pairing and gap structures of iron-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreisel, Andreas; Andersen, Brian M.; Sprau, P. O.

    We discuss the in uence on spin-fluctuation pairing theory of orbital selective strong correlation effects in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key ingredient for an improved itinerant pairing theory is orbital selectivity, i.e., incorporating the reduced coherence of quasiparticles occupying specific orbital states. This modifies the usual spin-fluctuation via suppression of pair scattering processes involving those less coherent states and results in orbital selective Cooper pairing of electrons in the remaining states. We show that this paradigm yields remarkably good agreement with the experimentally observed anisotropic gap structures in both bulk and monolayer FeSe, asmore » well as LiFeAs, indicating that orbital selective Cooper pairing plays a key role in the more strongly correlated iron-based superconductors.« less

  15. Orbital selective pairing and gap structures of iron-based superconductors

    DOE PAGES

    Kreisel, Andreas; Andersen, Brian M.; Sprau, P. O.; ...

    2017-05-08

    We discuss the in uence on spin-fluctuation pairing theory of orbital selective strong correlation effects in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key ingredient for an improved itinerant pairing theory is orbital selectivity, i.e., incorporating the reduced coherence of quasiparticles occupying specific orbital states. This modifies the usual spin-fluctuation via suppression of pair scattering processes involving those less coherent states and results in orbital selective Cooper pairing of electrons in the remaining states. We show that this paradigm yields remarkably good agreement with the experimentally observed anisotropic gap structures in both bulk and monolayer FeSe, asmore » well as LiFeAs, indicating that orbital selective Cooper pairing plays a key role in the more strongly correlated iron-based superconductors.« less

  16. Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces

    DOE PAGES

    Hanke, Torben; Singh, Udai Raj; Cornils, Lasse; ...

    2017-01-06

    Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less

  17. Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanke, Torben; Singh, Udai Raj; Cornils, Lasse

    Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less

  18. Plastic superconductor bearings any size, any shape, 77 k and up

    NASA Technical Reports Server (NTRS)

    Reick, Franklin G.

    1990-01-01

    Friction free bearings at 77 k or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape and postforming machining. The material is hard and abrasive. It's possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feel for LN2 can be used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material can be molded with the internal surfaces shielded by the Meissner effect. It might be thought of as the dc magnetic analogue of the Faraday cage and the inside can be called the Meissner space. It's selective. The ac fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  19. Plastic superconductor bearings any size-any shape: 77 K and up

    NASA Technical Reports Server (NTRS)

    Reick, Franklin G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  20. Optical monitoring of ion beam Y-Ba-Cu-O sputtering

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1990-11-01

    The emission spectra resulting from ion beam sputtering a Y-Ba-Cu-O target were observed as a function of beam voltage and beam current. The spectra were relatively clean with several peaks readily attributed to each of Y, Ba, and Ar. Monitoring of copper and oxygen was more difficult with a single CuO peak and one O peak evident. The intensities of the cation peaks were linear with respect to beam voltage above 400 V. Since target current was found not to be directly proportional to beam current, target power was defined as the product of beam voltage and target current. The response of cation peak height to changes in target power was linear and similar for variations of either beam voltage or target current.

  1. Electron energy spectrum and magnetic interactions in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Turshevski, S. A.; Liechtenstein, A. I.; Antropov, V. P.; Gubanov, V. A.

    1991-01-01

    The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T(sub N1) and T(sub N2). The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T(sub N2) reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T(sub N1) and T(sub N2) which depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg Hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J(sub ij) parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors.

  2. Influence of Sm2O3 microalloying and Yb contamination on Y211 particles coarsening and superconducting properties of IG YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Vojtkova, L.; Diko, P.; Kovac, J.; Vojtko, M.

    2018-06-01

    Single grain YBa2Cu3O7‑x (YBCO or Y123) bulk superconductors were produced by an infiltration growth process. The solid phase precursor was prepared by solid state synthesis from Y2O3 + BaCuO2 powders. The influence of the addition of Sm2O3 and YB contamination from the substrate on the microstructure and superconducting properties was analyzed. The dependences of Yb concentration on the distance from the bottom of the samples measured by energy dispersive spectroscopy microanalysis used in conjunction with scanning electron microscopy confirmed the contamination of the samples during the melting stage of the sample preparation. It is shown that the addition of Sm in low concentration and its combination with Yb from the substrate modify the coarsening of the Y211 particles as well as lead to the appearance of a secondary peak effect in the field dependences of the critical current density.

  3. Aluminum and gold deposition on cleaved single crystals of Bi2CaSr2Cu2O8 superconductor

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-02-01

    We have used photoelectron spectroscopy to study the changes in the electronic structure of cleaved, single crystal Bi2CaSr2Cu2O8 caused by deposition of aluminum and gold. Al reacts strongly with the superconductor surface. Even the lowest coverages of Al reduces the valency of Cu in the superconductor, draws oxygen out of the bulk, and strongly modifies the electronic states in the valence band. The Au shows little reaction with the superconductor surface. Underneath Au, the Cu valency is unchanged and the core peaks show no chemically shifted components. Au appears to passivate the surface of the superconductor and thus may aid in the processing of the Bi-Ca-Sr-Cu-O material. These results are consistent with earlier studies of Al and Au interfaces with other, polycrystalline oxide superconductors. Comparing with our own previous results, we conclude that Au is superior to Ag in passivating the Bi-Ca-Sr-Cu-O surface.

  4. The first man-loading high temperature superconducting Maglev test vehicle in the world

    NASA Astrophysics Data System (ADS)

    Wang, Jiasu; Wang, Suyu; Zeng, Youwen; Huang, Haiyu; Luo, Fang; Xu, Zhipei; Tang, Qixue; Lin, Guobin; Zhang, Cuifang; Ren, Zhongyou; Zhao, Guomin; Zhu, Degui; Wang, Shaohua; Jiang, He; Zhu, Min; Deng, Changyan; Hu, Pengfei; Li, Chaoyong; Liu, Fang; Lian, Jisan; Wang, Xiaorong; Wang, Lianghui; Shen, Xuming; Dong, Xiaogang

    2002-10-01

    The first man-loading high temperature superconducting Maglev test vehicle in the world is reported. This vehicle was first tested successfully on December 31, 2000 in the Applied Superconductivity Laboratory, Southwest Jiaotong University, China. Heretofore over 17,000 passengers took the vehicle, and it operates very well from beginning to now. The function of suspension is separated from one of propulsion. The high temperature superconducting Maglev provides inherent stable forces both in the levitation and in the guidance direction. The vehicle is 3.5 m long, 1.2 m wide, and 0.8 m high. When five people stand on vehicle and the total weight is 530 kg, the net levitation gap is more than 20 mm. The whole vehicle system includes three parts, vehicle body, guideway and controlling system. The high temperature superconducting Maglev equipment on board is the most important for the system. The onboard superconductors are melt-textured YBaCuO bulks. The superconductors are fixed on the bottom of liquid nitrogen vessels and cooled by liquid nitrogen. The guideway consists of two parallel permanent magnetic tracks, whose surface concentrating magnetic field is up to 1.2 T. The guideway is 15.5 m long.

  5. A model for the compositions of non-stoichiometric intermediate phases formed by diffusion reactions, and its application to Nb 3Sn superconductors

    DOE PAGES

    Xu, X.; Sumption, M. D.

    2016-01-12

    In this work we explore the compositions of non-stoichiometric intermediate phases formed by diffusion reactions: a mathematical framework is developed and tested against the specific case of Nb 3Sn superconductors. In the first part, the governing equations for the bulk diffusion and interphase interface reactions during the growth of a compound are derived, numerical solutions to which give both the composition profile and growth rate of the compound layer. The analytic solutions are obtained with certain approximations made. In the second part, we explain an effect that the composition characteristics of compounds can be quite different depending on whether itmore » is the bulk diffusion or grain boundary diffusion that dominates in the compounds, and that “frozen” bulk diffusion leads to unique composition characteristics that the bulk composition of a compound layer remains unchanged after its initial formation instead of varying with the diffusion reaction system; here the model is modified for the case of grain boundary diffusion. Lastly, we apply this model to the Nb 3Sn superconductors and propose approaches to control their compositions.« less

  6. Magnetic confinement of weakly ionized plasma with superconducting bulk magnets

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Hidenori; Ohishi, Kazuya; Ishikawa, Kazuhito; Morita, Tomonori; Yoshikawa, Masaaki; Ikuta, Hiroshi; Mizutani, Uichiro

    2003-04-01

    This letter describes the application of single-domain superconducting bulk magnets as a plasma confinement. A through-hole was drilled at the center of a Sm123 bulk superconductor of 39 mm diameter and 17 mm thickness. When the sample was field cooled to 77 K, the resulting bulk magnet trapped a magnetic field of ˜0.65 T called a magnetic mirror, in the bore of the hole. The magnet was applied to a weakly ionized neon plasma column. Both the magnet and discharge glass tube were immersed in liquid nitrogen. The spatial distribution in the tube of red fluorescence of the plasma showed that the magnet certainly confined the plasma. These results would provide a clue to applications of the compact magnet of strong magnetic field.

  7. Critical current densities in superconducting Y-Ba-Cu-O prepared by chelating method

    NASA Astrophysics Data System (ADS)

    Fujisawa, Tadashi; Okuyama, Katsuro; Ohshima, Shigetoshi; Takagi, Akira

    1990-10-01

    The IDA, NTA, HEDTA, EDTA, TTHA, and DTPA chelating agents have been used to prepare the Y-Ba-Cu-O compounds whose critical current is presently investigated. It is noted that the precursor YBCO prepared from large stability-constant metal complexes (HEDTA, EDTA, DTPA, and TTHA) exhibited very fine and homogeneous particles. The critical current density of a 1 x 4 x 15 mm block of YBCO sintered at 880-910 C for 24 h and subsequently annealed at 500 C in an O2 flow was approximately 500 A/sq cm at 77 K, in zero magnetic field.

  8. Physics and Materials Science of High Temperature Superconductors

    DTIC Science & Technology

    1989-08-26

    30 L. Tessler: Critical Currents in YBaCuO of Thin Films Obtained by Seguential Evaporation 11:30 - 12:00 D. Mitzi : Ogen and Ion Doping~in... Mitzi , L. W. Lombardo and A. Kapitulnik, Department of Applied Physics, Stanford University, U Stanford, CA; and S. S. Laderman, Circuit Technology

  9. Fracture analysis of a central crack in a long cylindrical superconductor with exponential model

    NASA Astrophysics Data System (ADS)

    Zhao, Yu Feng; Xu, Chi

    2018-05-01

    The fracture behavior of a long cylindrical superconductor is investigated by modeling a central crack that is induced by electromagnetic force. Based on the exponential model, the stress intensity factors (SIFs) with the dimensionless parameter p and the length of the crack a/R for the zero-field cooling (ZFC) and field-cooling (FC) processes are numerically simulated using the finite element method (FEM) and assuming a persistent current flow. As the applied field Ba decreases, the dependence of p and a/R on the SIFs in the ZFC process is exactly opposite to that observed in the FC process. Numerical results indicate that the exponential model exhibits different characteristics for the trend of the SIFs from the results obtained using the Bean and Kim models. This implies that the crack length and the trapped field have significant effects on the fracture behavior of bulk superconductors. The obtained results are useful for understanding the critical-state model of high-temperature superconductors in crack problem.

  10. Fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  11. XES studies of density of states of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Jasiolek, Gabriel

    1990-01-01

    X-ray emission spectroscopic studies concerning the superconducting crystals, thin films and ceramics of the Y-Ba-Cu-O, Tm-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Bi-Pb-Sr-Ca-Cu-O and T1-Ba-Ca-Cu-O types are presented. The contributions of the 13d(9)L, 13d(10)L, 13d(10)LL and 13d(10)L(2) configurations, where L denotes a ligand hole at the oxygen orbitals in the spectroscopic pattern of these superconductors are discussed. An attempt to connect the x-ray 'as registered' Cu L emission spectra with the density of states close to the Fermi level, considering an influence of the CuL3 absorption edge, is presented. The corrected intensity distributions below the Fermi level are found to correspond to the theoretical density of states. Furthermore, an approach to the average valence of copper based on the account of the self-absorption and fluorescence effects and on the configurations listed above is shown. The average valence of copper in the materials investigated is estimated to lie in the range of +2.10 to 2.32 when the formal trivalent copper is considered as that characterized by the 13d(9)L configuration. The density of states at the Fermi level was estimated to be 2.4 states/eV-cell for a Bi-Sr-Ca-Cu-O crystal and 3.6 states/eV-cell for a Tl-Ba-Ca-Cu-O ceramic.

  12. XES studies of density of states of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Jasiolek, Gabriel

    1991-01-01

    X-ray emission spectroscopic studies concerning the superconducting crystals, thin films, and ceramics of the Y-Ba-Cu-O, Tm-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Bi-Pb-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O types are presented. The contributions of the 13d(9)L, 13d(10)L, 13d(10)LL, and 13d(10)L(2) configurations, where L denotes a ligand hole at the oxygen orbitals in the spectroscopic pattern of these superconductors are discussed. An attempt to connect the x-ray 'as registered' Cu L(alpha) emission spectra with the density of states close to the Fermi level, considering an influence of the CuL3 absorption edge, is presented. The corrected intensity distributions below the Fermi level are found to correspond to the theoretical density of states. Furthermore, an approach to the average valence of copper basing on the account of the self-absorption and fluorescence effects and on the configurations listed above is shown. The average valence of copper in the materials investigated is estimated to lie in the range of +2.10 to 2.32 when the formal trivalent copper is considered as that characterized by the 13d(9)L configuration. The density of states at the Fermi level was estimated to be 2.4 states/eV-cell for a Bi-Sr-Ca-Cu-O crystal and 3.6 states/eV-cell for a Tl-Ba-Ca-CU-O ceramic.

  13. The non-commutative topology of two-dimensional dirty superconductors

    NASA Astrophysics Data System (ADS)

    De Nittis, Giuseppe; Schulz-Baldes, Hermann

    2018-01-01

    Non-commutative analysis tools have successfully been applied to the integer quantum Hall effect, in particular for a proof of the stability of the Hall conductance in an Anderson localization regime and of the bulk-boundary correspondence. In this work, these techniques are implemented to study two-dimensional dirty superconductors described by Bogoliubov-de Gennes Hamiltonians. After a thorough presentation of the basic framework and the topological invariants, Kubo formulas for the thermal, thermoelectric and spin Hall conductance are analyzed together with the corresponding edge currents.

  14. Effects of densification of precursor pellets on microstructures and critical current properties of YBCO melt-textured bulks

    NASA Astrophysics Data System (ADS)

    Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo

    2016-12-01

    Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.

  15. Experimental investigation of the critical magnetic fields of transition metal superconductors

    NASA Technical Reports Server (NTRS)

    Mcevoy, J. P.

    1973-01-01

    The isothermal magnetic transitions of a type 2 superconductor have been studied by AC susceptibility techniques as a function of the amplitude and frequency of the exciting field. The field variation of the complex susceptibility was used to determine the critical fields. The research was planned to clarify the determination (both experimentally and theoretically) of the maximum field at which the superconductive phase spontaneously nucleates in the bulk and on the surface of the metal.

  16. Continuous lengths of oxide superconductors

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  17. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    NASA Technical Reports Server (NTRS)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  18. Electron energy spectrum and magnetic interactions in high-T(sub c) superconductors

    NASA Technical Reports Server (NTRS)

    Turshevski, S. A.; Liechtenstein, A. I.; Antropov, V. P.; Gubanov, V. A.

    1990-01-01

    The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T sub N1 and T sub N2. The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T sub N2 reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T sub N1 and T sub N2 depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J sub ij parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors.

  19. Thermally actuated magnetization flux pump in single-grain YBCO bulk

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Li, Quan; Coombs, T. A.

    2009-10-01

    Recent progress in material processing has proved that high temperature superconductors (HTS) have a great potential to trap large magnetic fields at cryogenic temperatures. For example, HTS are widely used in MRI scanners and in magnetic bearings. However, using traditional ways to magnetize, the YBCO will always need the applied field to be as high as the expected field on the superconductor or much higher than it, leading to a much higher cost than that of using permanent magnets. In this paper, we find a method of YBCO magnetization in liquid nitrogen that only requires the applied field to be at the level of a permanent magnet. Moreover, rather than applying a pulsed high current field on the YBCO, we use a thermally actuated material (gadolinium) as an intermedia and create a travelling magnetic field through it by changing the partial temperature so that the partial permeability is changed to build up the magnetization of the YBCO gradually after multiple pumps. The gadolinium bulk is located between the YBCO and the permanent magnet and is heated and cooled repeatedly from the outer surface to generate a travelling thermal wave inwards. In the subsequent experiment, an obvious accumulation of the flux density is detected on the surface of the YBCO bulk.

  20. Is the Diagonal Part of the Self-Energy Negligible within an Isolated Vortex in Weak-Coupling Superconductors?

    NASA Astrophysics Data System (ADS)

    Kurosawa, Noriyuki

    2018-02-01

    In the weak-coupling theory of superconductivity, the diagonal self-energy term is usually disregarded so that this term is already included in the renormalized chemical potential. Using the bulk solution, we can easily see that the term vanishes in the quasiclassical level. However, the validity of this treatment is obscured in nonuniform systems, such as quantized vortices. In this paper, we study an isolated vortex both analytically and numerically using the quasiclassical theory and demonstrate that the finite magnitude of the self-energy can emerge within a vortex in some odd-parity superconductors. We also find that the existence of diagonal self-energy can induce the breaking of the axisymmetry of vortices in chiral p-wave superconductors. This implies that the diagonal self-energy is not negligible within a vortex in odd-parity superconductors in general, even in the weak-coupling limit.

  1. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  2. Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyu

    2018-05-01

    A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.

  3. ?-BiPd: a clean noncentrosymmetric superconductor

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Srinivasan; Joshi, Bhanu; Thamizhavel, A.

    2017-12-01

    We present a comprehensive review of the normal and superconducting state properties of a high-quality single crystal of monoclinic BiPd (?-BiPd, space group ?). The superconductivity of this crystal below 3.8 K is established by measuring its properties using bulk as well as spectroscopic techniques. BiPd is one of the cleanest noncentrosymmetric superconductors that display superconductivity with multiple energy gaps. Evidence of multiple energy gaps was found in heat capacity, point contact (PC) spectroscopy, penetration depth, muon spin rotation, small angle neutron scattering and NMR/NQR measurements. Moreover, Muon spin rotation measurements also suggest strong field dependence of the penetration depth of this superconductor. Unusual superconducting properties due to possible s and p wave mixing are shown by the observation of Andreev bound state in PC measurements as well as the suppressed coherence peak in the temperature dependence of the spin-lattice relaxation in the NQR measurements. This surmise is at variance with the recent STM measurements (different crystal). The observed unusual properties and multiband superconductivity are extremely sensitive to disorder in BiPd. Finally, there is a possibility of tuning the electron correlations by selective substitution in BiPd, thus making it an important system for further investigations.

  4. Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition.

    PubMed

    Feigel'man, M V; Ioffe, L B

    2018-01-19

    Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for the implementation of large dissipationless inductance. We develop the theory of the collective modes in these superconductors and discuss associated dissipation at microwave frequencies. We obtain the collective mode spectra dependence on the disorder level and conclude that collective modes become a relevant source of dissipation and noise in the outer proximity of the SIT.

  5. Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Feigel'man, M. V.; Ioffe, L. B.

    2018-01-01

    Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for the implementation of large dissipationless inductance. We develop the theory of the collective modes in these superconductors and discuss associated dissipation at microwave frequencies. We obtain the collective mode spectra dependence on the disorder level and conclude that collective modes become a relevant source of dissipation and noise in the outer proximity of the SIT.

  6. Fermiology of the strongly spin-orbit coupled superconductor Sn(1-x)In(x)Te: implications for topological superconductivity.

    PubMed

    Sato, T; Tanaka, Y; Nakayama, K; Souma, S; Takahashi, T; Sasaki, S; Ren, Z; Taskin, A A; Segawa, Kouji; Ando, Yoichi

    2013-05-17

    We have performed angle-resolved photoemission spectroscopy on the strongly spin-orbit coupled low-carrier density superconductor Sn(1-x)In(x)Te (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity, as recently reported for this compound based on point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state, indicating that this material is a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-noninverted superconductor possessing a similar Fermi surface structure, Pb(1-x)Tl(x)Te, suggests that the anomalous behavior in the superconducting state of Sn(1-x)In(x)Te is related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.

  7. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    PubMed

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  8. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor

    NASA Astrophysics Data System (ADS)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J.; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr2VO3FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C4 (2 ×2 ) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C4 (2 ×2 ) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C4 state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  9. Optical plasma monitoring of Y-Ba-Cu-O rf sputter target transients

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1989-12-01

    The plasma emission spectra resulting from rf sputtering Y-Ba-Cu-O targets were observed as a function of sputter time. Although most lines of the observed spectra are not attributable to target species, peaks associated with each of the cation elements were resolved. The Ba and Cu peaks can be used as tracking indicators of process conditions. For example, switching from an O2/Ar sputter atmosphere to pure Ar enhanced the Ba peak much more than that associated with Cu. The emission spectra from a newly fabricated target exhibited a slow first-order transient response in seeking equilibrium with the rf plasma. The transient response of a previously sputtered target is also first order but has a much shorter time constant.

  10. Vortex flux dynamics and harmonic ac magnetic response of Ba(Fe 0.94Ni 0.06) 2As 2 bulk superconductor

    DOE PAGES

    Nikolo, Martin; Zapf, Vivien S.; Singleton, John; ...

    2016-07-22

    Vortex dynamics and nonlinear ac response are studied in a Ba(Fe 0.94Ni 0.06) 2As 2( T c= 18.5 K) bulk superconductor in magnetic fields up to 12 T via ac susceptibility measurements of the first ten harmonics. A comprehensive study of the ac magnetic susceptibility and its first ten harmonics finds shifts to higher temperatures with increasing ac measurement frequencies (10 to 10,000 Hz) for a wide range of ac (1, 5, and 10 Oe) and dc fields (0 to 12 T). The characteristic measurement time constant t1 is extracted from the exponential fit of the data and linked tomore » vortex relaxation. The Anderson-Kim Arrhenius law is applied to determine flux activation energy E a/k as a function dc magnetic field. The de-pinning, or irreversibility lines, were determined by a variety of methods and extensively mapped. The ac response shows surprisingly weak higher harmonic components, suggesting weak nonlinear behavior. Lastly, our data does not support the Fisher model; we do not see an abrupt vortex glass to vortex liquid transition and the resistivity does not drop to zero, although it appears to approach zero exponentially.« less

  11. Fabrication of microwave guides using high-Tc superconductors. Final report, 15 July 1989-14 January 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, S.B.

    1990-01-14

    The objective of this study was to produce bulk high Tc superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} with microwave conductivity at least as good or better than that of copper. The subsequent aim was to fabricate cylindrical wave guide using this material. The ultimate goal of this study is to produce YBa{sub 2}Cu{sub 3}O{sub 7-x} with microwave conductivity exceedingly higher (at least two orders of magnitude better) than that of copper. In principle, this is possible if the microstructure of the superconductor material is carefully controlled. The above-stated goal could be easily achieved if the large single crystals of YBa{sub 2}Cu{submore » 3}O{sub 7-x} are available or if the inside surface of a suitable substrate material in the form of hollow cylinder, could be coated with the superconductor material of high quality. The former approach, currently, seems to be far from practical realization.« less

  12. Test Status for Proposed Coupling of a Gravitational Force to Extreme Type II YBCO Ceramic Superconductors

    NASA Technical Reports Server (NTRS)

    Noever, David; Li, Ning; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair electron density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (about 10-6 g/cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with the percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10(exp 4) was reported above a stationary (non-rotating) superconductor. In the present experiments reported using a sensitive gravimeter (resolution <10(exp -9) unit gravity or variation of 10(exp -6) cm/sq s in accelerations), bulk YBCO superconductors were stably levitated in a DC magnetic field (0.6 Tesla) subject to lateral AC fields (60 Gauss at 60 Hz) and rotation. With magnetic shielding, thermal control and buoyancy compensation, changes in acceleration were measured to be less than 2 parts in 10(exp 8) of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between high-Tc superconductors and gravity. Latest test results will be reported, along with status for future improvements and prospects.

  13. Superconducting properties and μSR study of the noncentrosymmetric superconductor Nb0.5Os0.5.

    PubMed

    Singh, D; Barker, J A T; Thamizhavel, A; Hillier, A D; Paul, D McK; Singh, R P

    2018-01-22

    The properties of the noncentrosymmetric superconductor (α-[Formula: see text] structure) Nb 0.5 Os 0.5 have been investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation (μSR) measurements. These measurements suggest that Nb 0.5 Os 0.5 is a weakly coupled ([Formula: see text]) type-II superconductor ([Formula: see text]), having a bulk superconducting transition temperature T c   =  3.07 K. The specific heat data fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb 0.5 Os 0.5 . The μSR measurements also confirm [Formula: see text]-wave superconductivity with the preserved time-reversal symmetry.

  14. Dynamic Deformation of Vortex Lattice in the Hollow Superconducting YBaCuO Cylinder

    NASA Astrophysics Data System (ADS)

    Babayan, V. H.; Ayvazyan, M. T.; Kteyan, A. A.; Vardanyan, R. A.

    The elastic and viscous properties of vortex lattice in ceramic YBaCuO are studied by the measurements of ac response U in the cavity of the hollow cylinder placed in the magnetic field H aligned along the cylinder's axis. It is observed that the U(H) dependence is reaching saturation with increase of magnetic field. We interpret this effect by nonlocality of the vortex lattice elastic constants. Based on the analysis of the response dependence on excitation frequency, we conclude that vortex lattice deformation vector decreases at higher frequencies. The amplitude-frequency characteristics of the response indicate that vortices perform overdamped oscillations. The estimated damping coefficient value exceeds the evaluation by Bardeen-Stephen theory.

  15. Method Producing an SNS Superconducting Junction with Weak Link Barrier

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor)

    1999-01-01

    A method of producing a high temperature superconductor Josephson element and an improved SNS weak link barrier element is provided. A YBaCuO superconducting electrode film is deposited on a substrate at a temperature of approximately 800 C. A weak link barrier layer of a nonsuperconducting film of N-YBaCuO is deposited over the electrode at a temperature range of 520 C. to 540 C. at a lower deposition rate. Subsequently a superconducting counter-electrode film layer of YBaCuO is deposited over the weak link barrier layer at approximately 800 C. The weak link barrier layer has a thickness of approximately 50 A and the SNS element can be constructed to provide an edge geometry junction.

  16. Manufacture of bulk superconducting YBa2Cu3O(7-delta) by a continuous process

    NASA Technical Reports Server (NTRS)

    Meng, R. L.; Kinalidis, C.; Sun, Y. Y.; Gao, L.; Tao, Y. K.

    1990-01-01

    The development of a continuous process for fabricating large bulk superconductors with a predetermined grain orientation is reported. A bar of the 123 compound with dimensions 5 x 0.5 x about 0.3 cm with excellent grain alignment has been fabricated continuously. The bulk 123 thus obtained has magnetically determined J(c)s of about 30,000 and 12,000 A/sq cm at 0 and 1 T, respectively, and transport J(c)s of 20,000, 11,000, and 7500 A-sq cm at 0, 0.54, and 0.83 T.

  17. Atomic layer epitaxy of YBaCuO for optoelectronic applications

    NASA Technical Reports Server (NTRS)

    Skogman, R. A.; Khan, M. A.; Van Hove, J. M.; Bhattarai, A.; Boord, W. T.

    1992-01-01

    An MOCVD-based atomic-layer epitaxy process is being developed as a potential solution to the problems of film-thickness and interface-abruptness control which are encountered when fabricating superconductor-insulator-superconductor devices using YBa2Cu3O(7-x). In initial studies, the atomic-layer MOCVD process yields superconducting YBa2Cu3O(7-x) films with substrate temperatures of 605 C during film growth, and no postdeposition anneal. The low temperature process yields a smooth film surface and can reduce interface degradation due to diffusion.

  18. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  19. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  20. Ambient-pressure organic superconductor

    DOEpatents

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  1. Levitation force of small clearance superconductor-magnet system under non-coaxial condition

    NASA Astrophysics Data System (ADS)

    Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng

    2017-03-01

    A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.

  2. Inductance Jump at Melting of Vortex Lattice in Untwinned YBaCuO

    NASA Astrophysics Data System (ADS)

    Matl, P.; Wu, H.; Ong, N. P.; Gagnon, R.; Taillefer, L.

    1997-03-01

    We have measured the complex resistivity in an untwinned single crystal YBaCuO between 70K and 120K at a fixed magnetic field. As T increases towards the melting temperature Tm the inductance increases rapidly. At Tm the inductance undergoes a discontinuous jump, which we correlate with the collapse of the shear modulus c_66. We describe how the magnitude of the jump varies with temperature, field, and frequency. We have also extracted the viscosity of the vortex lattice from a Bardeen-Stephen fit to the low field complex resistivity measured at 1 to 15 MHz between 80K and T_c. We find that the viscosity decreases as 1.2x10-13 kg m-1 s-1 K-1 as the temperature approaches T_c.

  3. Bulk superconductivity in bismuth oxysulfide Bi4O4S3.

    PubMed

    Singh, Shiva Kumar; Kumar, Anuj; Gahtori, Bhasker; Shruti; Sharma, Gyaneshwar; Patnaik, Satyabrata; Awana, Veer P S

    2012-10-10

    A very recent report on the observation of superconductivity in Bi(4)O(4)S(3) [Mizuguchi, Y.; http://arxiv.org/abs/1207.3145] could potentially reignite the search for superconductivity in a broad range of layered sulfides. We report here the synthesis of Bi(4)O(4)S(3) at 500 °C by a vacuum encapsulation technique and its basic characterizations. The as-synthesized Bi(4)O(4)S(3) was contaminated with small amounts of Bi(2)S(3) and Bi impurities. The majority phase was found to be tetragonal (space group I4/mmm) with lattice parameters a = 3.9697(2) Å and c = 41.3520(1) Å. Both AC and DC magnetization measurements confirmed that Bi(4)O(4)S(3) is a bulk superconductor with a superconducting transition temperature (T(c)) of 4.4 K. Isothermal magnetization (M-H) measurements indicated closed loops with clear signatures of flux pinning and irreversible behavior. The lower critical field (H(c1)) at 2 K for the new superconductor was found to be ~15 Oe. Magnetotransport measurements showed a broadening of the resistivity (ρ) and a decrease in T(c) (ρ = 0) with increasing magnetic field. The extrapolated upper critical field H(c2)(0) was ~31 kOe with a corresponding Ginzburg-Landau coherence length of ~100 Å . In the normal state, the ρ ~ T(2) dependence was not indicated. Hall resistivity data showed a nonlinear magnetic field dependence. Our magnetization and electrical transport measurements substantiate the appearance of bulk superconductivity in as-synthesized Bi(4)O(4)S(3). On the other hand, Bi heat-treated at the same temperature is not superconducting, thus excluding the possibility of impurity-driven superconductivity in the newly discovered superconductor Bi(4)O(4)S(3).

  4. High Tc superconductors: The scaling of Tc with the number of bound holes associated with charge transfer neutralizing the multivalence cations

    NASA Technical Reports Server (NTRS)

    Vezzoli, G. C.; Chen, M. F.; Craver, F.

    1991-01-01

    It is observed that for the known high-T(sub c) Cu-, Tl-, and Bi-based superconductors, T(sub c) scales consistently with the number of bound holes per unit cell which arise from charge transfer excitations of frequency approximately = 3 x 10(exp 13) that neutralized the multivalence cations into diamagnetic states. The resulting holes are established on the oxygens. Extrapolation of this empirical fit in the up-temperature direction suggests a T(sub c) of about 220-230 K at a value of 25 holes/unit cell (approximately the maximum that can be materials-engineered into a high-T(sub c) K2MnF4 or triple Perovskite structure). In the down-temperature direction, the extrapolation gives a T(sub c) in the vicinity of 235 K for the Y-Ba-Cu-O system as well as the known maximum temperature of 23 K for low-T(sub c) materials shown by Nb3Ge. The approach is also consistent with the experimental findings that only multivalence ions which are diamagnetic in their atomic state (Cu, Tl, Bi, Pb, and Sb) associate with high-T(sub c) compounds.

  5. Experimental and Computational Studies of the Superconducting Phase Transition of Quasi 1D Superconductors

    NASA Astrophysics Data System (ADS)

    Wong, Chi Ho

    In this PhD project, the feasibility of establishing a state with vanishing resistance in quasi-1D superconductors are studied. In the first stage, extrinsic quasi-1D superconductors based on composite materials made by metallic nanowire arrays embedded in mesoporous silica substrates, such as Pb-SBA-15 and NbN-SBA-15 (fabricated by a Chemical Vapor Deposition technique) are investigated. Two impressive outcomes in Pb-SBA-15 are found, including an enormous enhancement of the upper critical field from 0.08T to 14T and an increase of the superconducting transition temperature onset s from 7.2 to 11K. The second stage is to apply Monte Carlo simulations to model the quasi-1D superconductor, considering its penetration depth, coherence length, defects, electron mean free path, tunneling barrier and insulating width between the nanowires. The Monte Carlo results provide a clear picture to approach to stage 3, which represents a study of the intrinsic quasi-1D superconductor Sc3CoC4, which contains parallel arrays of 1D superconducting CoC4 ribbons with weak transverse Josephson or Proximity interaction, embedded in a Sc matrix. According to our previous work, a BKT transition in the lateral plane is believed to be the physics behind the vanishing resistance of quasi-1D superconductors, because it activates a dimensional crossover from a 1D fluctuating superconductivity at high temperature to a 3D bulk phase coherent state in the entire material at low temperatures. Moreover, we decided to study thin 1D Sn nanowires without substrate, which display very similar superconducting properties to Pb-SBA-15 with a strong critical field and Tc enhancement. Finally, a preliminary research on a novel quasi-2D superconductor formed by parallel 2D mercury sheets that are separated by organic molecules is presented. The latter material may represent a model system to study the effect of a layered structure, which is believed to be an effective ingredient to design high temperature

  6. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    NASA Astrophysics Data System (ADS)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  7. Method for preparing high transition temperature Nb.sub.3 Ge superconductors

    DOEpatents

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-01-01

    Bulk coatings of Nb.sub.3 Ge superconductors having transition temperatures in excess of 20 K are readily formed by a chemical vapor deposition technique involving the coreduction of NbCl.sub.5 and GeCl.sub.4 in the presence of hydrogen. The NbCl.sub.5 vapor may advantageously be formed quantitatively in the temperature range of about 250.degree. to 260.degree. C by the chlorination of Nb metal provided the partial pressure of the product NbCl.sub.5 vapor is maintained at or below about 0.1 atm.

  8. TaRh2B2 and NbRh2B2: Superconductors with a chiral noncentrosymmetric crystal structure.

    PubMed

    Carnicom, Elizabeth M; Xie, Weiwei; Klimczuk, Tomasz; Lin, Jingjing; Górnicka, Karolina; Sobczak, Zuzanna; Ong, Nai Phuan; Cava, Robert J

    2018-05-01

    It is a fundamental truth in solid compounds that the physical properties follow the symmetry of the crystal structure. Nowhere is the effect of symmetry more pronounced than in the electronic and magnetic properties of materials-even the projection of the bulk crystal symmetry onto different crystal faces is known to have a substantial impact on the surface electronic states. The effect of bulk crystal symmetry on the properties of superconductors is widely appreciated, although its study presents substantial challenges. The effect of a lack of a center of symmetry in a crystal structure, for example, has long been understood to necessitate that the wave function of the collective electron state that gives rise to superconductivity has to be more complex than usual. However, few nonhypothetical materials, if any, have actually been proven to display exotic superconducting properties as a result. We introduce two new superconductors that in addition to having noncentrosymmetric crystal structures also have chiral crystal structures. Because the wave function of electrons in solids is particularly sensitive to the host material's symmetry, crystal structure chirality is expected to have a substantial effect on their superconducting wave functions. Our two experimentally obtained chiral noncentrosymmetric superconducting materials have transition temperatures to superconductivity that are easily experimentally accessible, and our basic property characterization suggests that their superconducting properties may be unusual. We propose that their study may allow for a more in-depth understanding of how chirality influences the properties of superconductors and devices that incorporate them.

  9. Metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2018-05-01

    Searching for natural materials exhibiting larger electron-electron interactions constitutes a traditional approach to high-temperature superconductivity research. Very recently, we pointed out that the newly developed field of electromagnetic metamaterials deals with the somewhat related task of dielectric response engineering on a sub-100-nm scale. Considerable enhancement of the electron-electron interaction may be expected in such metamaterial scenarios as in epsilon near-zero (ENZ) and hyperbolic metamaterials. In both cases, dielectric function may become small and negative in substantial portions of the relevant four-momentum space, leading to enhancement of the electron pairing interaction. This approach has been verified in experiments with aluminum-based metamaterials. Metamaterial superconductor with Tc=3.9 K have been fabricated, which is three times that of pure aluminum (Tc=1.2 K), which opens up new possibilities to improve the Tc of other simple superconductors considerably. Taking advantage of the demonstrated success of this approach, the critical temperature of hypothetical niobium, MgB2- and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial, the projected Tc appears to reach 250 K.

  10. Shielding superconductors with thin films as applied to rf cavities for particle accelerators

    DOE PAGES

    Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; ...

    2015-10-29

    Determining the optimal arrangement of superconducting layers to withstand large-amplitude ac magnetic fields is important for certain applications such as superconducting radio-frequency cavities. In this paper, we evaluate the shielding potential of the superconducting-film–insulating-film–superconductor (SIS') structure, a configuration that could provide benefits in screening large ac magnetic fields. After establishing that, for high-frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters, we also solve numerically the Ginzburg-Landau equations. As a result, it is shownmore » that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.« less

  11. Fine uniform filament superconductors

    DOEpatents

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  12. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer E.

    2011-12-01

    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s± within a single family, FeTe1-xSex. Second, STM has imaged C4 → C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.

  13. JPRS report: Science and technology. Central Eurasia: Physics and mathematics

    NASA Astrophysics Data System (ADS)

    1993-11-01

    Translated articles cover the following topics: laser-acoustic cleaning of surfaces from mechanical microparticles; supersonic CO laser with HF excitation in combustion products; possibility of use of interaction between acoustic and light waves in fiber light conductors for generation of short light pulses; steady three-dimensional flow of viscous gas through channels and nozzles; current fluctuations in superconductor with superlattice in strong electric and magnetic fields; influence of strong electric field on conductivity of high-temperature superconductor ceramic of YBaCuO system; effect of electron bombardment on peak-effect in YBa2 Cu3Ox single crystals; and evolution of homogeneous isotropic universe, dark mass, and absence of monopoles.

  14. Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoyan, E-mail: xshi@sandia.gov; Pan, W.; Hawkins, S. D.

    2015-10-07

    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic fieldmore » (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.« less

  15. Thermodynamic properties of Dynes superconductors

    NASA Astrophysics Data System (ADS)

    Herman, František; Hlubina, Richard

    2018-01-01

    The tunneling density of states in dirty s -wave superconductors is often well described by the phenomenological Dynes formula. Recently we have shown that this formula can be derived, within the coherent potential approximation, for superconductors with simultaneously present pair-conserving and pair-breaking impurity scattering. Here we demonstrate that the theory of such so-called Dynes superconductors is thermodynamically consistent. We calculate the specific heat and critical field of the Dynes superconductors, and we show that their gap parameter, specific heat, critical field, and penetration depth exhibit power-law scaling with temperature in the low-temperature limit. We also show that in the vicinity of a coupling-constant-controlled superconductor to normal metal transition, the Homes law is replaced by a different, pair-breaking-dominated scaling law.

  16. Nature of the superconductor-insulator transition in disordered superconductors.

    PubMed

    Dubi, Yonatan; Meir, Yigal; Avishai, Yshai

    2007-10-18

    The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.

  17. Bulk evidence for single-Gap s-wave superconductivity in the intercalated graphite superconductor C6Yb.

    PubMed

    Sutherland, Mike; Doiron-Leyraud, Nicolas; Taillefer, Louis; Weller, Thomas; Ellerby, Mark; Saxena, S S

    2007-02-09

    We report measurements of the in-plane electrical resistivity rho and thermal conductivity kappa of the intercalated graphite superconductor C6Yb down to temperatures as low as Tc/100. When a field is applied along the c axis, the residual electronic linear term kappa0/T evolves in an exponential manner for Hc1

  18. Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes

    NASA Astrophysics Data System (ADS)

    Takeda, Yasuaki; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko

    2017-03-01

    Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain Jc properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain Jc. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain Jc of 2.0 kA cm-2 at 77 K and 8.2 kA cm-2 at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.

  19. Surface Josephson plasma waves in layered superconductors above the plasma frequency: evidence for a negative index of refraction.

    PubMed

    Golick, V A; Kadygrob, D V; Yampol'skii, V A; Rakhmanov, A L; Ivanov, B A; Nori, Franco

    2010-05-07

    We predict a new branch of surface Josephson plasma waves (SJPWs) in layered superconductors for frequencies higher than the Josephson plasma frequency. In this frequency range, the permittivity tensor components along and transverse to the layers have different signs, which is usually associated with negative refraction. However, for these frequencies, the bulk Josephson plasma waves cannot be matched with the incident and reflected waves in the vacuum, and, instead of the negative-refractive properties, abnormal surface modes appear within the frequency band expected for bulk modes. We also discuss the excitation of high-frequency SJPWs by means of the attenuated-total-reflection method.

  20. Test Of A Microwave Amplifier With Superconductive Filter

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1995-01-01

    Report describes design and low-temperature tests of low-noise GaAs microwave amplifier combined with microstrip band-pass filter. Two versions of microstrip filter used in alternate tests; in one version, microstrips formed as films of high-transition-temperature superconductor Y/Ba/Cu/O on lanthanum aluminate substrate with gold film as ground plane. Other version identical except microstrips as well as ground plane made of gold, normally conductive.

  1. A moving target: responding to magnetic and structural disorder in lanthanide- and actinide-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Eric D; Mitchell, Jeremy N; Booth, C H

    2009-01-01

    The effects of various chemical substitutions and induced lattice disorder in the Ce- and Pu-based 115 superconductors are reviewed, with particular emphasis on results from x-ray absorption fine structure (XAFS) measurements. The competition between spin, charge, and lattice interactions is at the heart of many of the strongly-correlated ground states in materials of current interest, such as in colossal magnetoresistors and high-temperature superconductors. This relationship is particularly strong in the CeTIn{sub 5} and PuTGa{sub 5} series (T = Co, Rh, Ir) of heavy-fermion superconductors. In these systems (figure 1), competition between bulk magnetic and non-magnetic ground states, as well asmore » between superconducting and normal states, are directly related to local properties around the lanthanide or actinide ion, such as the nearest-neighbor bond lengths and the local density of states at the Fermi level. Tiny changes in the latter values can easily tip the balance from one ground state to another. This paper reviews recent work by the authors exploring the relationship between local crystal and electronic structure and ground state magnetic and conducting properties in the Ce- and Pu-based 115 materials.« less

  2. High temperature superconducting Maglev equipment on vehicle

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Wang, J. S.; Ren, Z. Y.; Zhu, M.; Jiang, H.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    Onboard high temperature superconducting (HTS) Maglev equipment is a heart part of a HTS Maglev vehicle, which is composed of YBaCuO bulks and rectangle-shape liquid nitrogen vessel and used successfully in the first manned HTS Maglev test vehicle. Arrangement of YBaCuO bulks in liquid nitrogen vessel, structure of the vessel, levitation forces of a single vessel and two vessels, and total levitation force are reported. The first manned HTS Maglev test vehicle in the world has operated well more than one year after it was born on Dec. 31, 2000, and more than 23,000 passengers have taken the vehicle till now. Well operation of more than one year proves the reliability of the onboard HTS Maglev equipment.

  3. Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors

    DOE PAGES

    Nikolo, Martin; Singleton, John; Zapf, Vivien S.; ...

    2016-07-20

    The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe 0.92Co 0.08) 2As 2 ( T c = 23.2 K), Ba(Fe 0.95Ni 0.05) 2As 2 ( T c = 20.4 K), and Ba(Fe 0.94Ni 0.06) 2As 2 ( T c = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dcmore » fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe 0.92Co 0.08) 2As 2 polycrystalline sample, showing a promise for liquid helium temperature applications.« less

  4. Apparatus for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2002-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  5. Apparatus for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2001-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  6. High trapped fields in bulk YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Fuchs, Günter; Gruss, Stefan; Krabbes, Gernot; Schätzle, Peter; Verges, Peter; Müller, Karl-Hartmut; Fink, Jörg; Schultz, Ludwig

    The trapped field properties of bulk melt-textured YBCO material were investigated at different temperatures. In the temperature range of liquid nitrogen, maximum trapped fields of 1.1 T were found at 77 K by doping of YBCO with small amounts of zinc. The improved pinning of zinc-doped YBa2Cu3O7-x (YBCO) results in a pronounced peak effect in the field dependence of the critical current density. the trapped field at lower temperatures increases due to the increasing critical current density, however, at temperatures around 50 K cracking of the material is observed which is exposed to considerably tensile stresses due to Lorentz forces. Very high trapped fields up to 14.4 T were achieved at 22.5 K for a YBCO disk pair by the addition of silver improving the tensile strength of YBCO and by using a bandage made of a steel tube. The steel tube produces a compressive stress on YBCO after cooling down from 300 K to the measuring temperature, which is due to the higher coeeficient of thermal expansion of steel compared with that of YBCO in the a,b plane. The application of superconducting permanent magnets with trapped fields of 10 T and more in superconducting bearings would allow to obtain very high levitation pressures up to 2500 N/cm2 which is two orders of magnitude higher than the levitation pressure achievable in superconducting bearings with conventional permanent magnets. The most important problem for the application of superconducting permanent magnets is the magnetizing procedure of the YBCO material. Results of magnetizing YBCO disks by using of pulsed magnetic fields will be presented.

  7. Processing of Mixed Oxide Superconductors

    DTIC Science & Technology

    1990-07-01

    rapid changes world wide a major research centre on high Tc superconductors was awarded to Cambridge which involved moving the work and people to a...reports and paper is in the appendices. Separation Ceramic superconductors tend to be mixtures of phases, especially when first discovered. It would...properties of the superconducting state will in principle allow superconducting material to be levitated from the non superconductor and several designs

  8. Superconducting Properties and μSR Study of the Noncentrosymmetric Superconductor Nb0.5Os0.5.

    PubMed

    Singh, D; Barker, J A T; Arumugam, Thamizhavel; Hillier, A D; Paul, D McK; Singh, R P

    2017-12-21

    The properties of the noncentrosymmetric superconductor ($\\alpha$-$\\textit{Mn}$ structure) Nb$_{0.5}$Os$_{0.5}$ is investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation ($\\mu$SR) measurements. These measurements suggest that Nb$_{0.5}$Os$_{0.5}$ is a weakly coupled ($\\lambda_{e-ph}$ $\\sim$ 0.53) type-II superconductor ($\\kappa_{GL}$ $\\approx$ 61) having a bulk superconducting transition temperature $T_c$ = 3.07 K. The specific heat data in the superconductive regime fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb$_{0.5}$Os$_{0.5}$. The $\\mu$SR measurements also confirm $\\textit{s}$-wave superconductivity with the preserved time-reversal symmetry. © 2017 IOP Publishing Ltd.

  9. Giant ultrafast Kerr effect in superconductors

    NASA Astrophysics Data System (ADS)

    Robson, Charles W.; Fraser, Kieran A.; Biancalana, Fabio

    2017-06-01

    We study the ultrafast Kerr effect and high-harmonic generation in superconductors by formulating a model for a time-varying electromagnetic pulse normally incident on a thin-film superconductor. It is found that superconductors exhibit exceptionally large χ(3 ) due to the progressive destruction of Cooper pairs, and display high-harmonic generation at low incident intensities, and the highest nonlinear susceptibility of all known materials in the THz regime. Our theory opens up avenues for accessible analytical and numerical studies of the ultrafast dynamics of superconductors.

  10. Phonon properties of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Gupta, Yuhit; Goyal, Megha; Sinha, M. M.

    2018-05-01

    Earlier, it was thought there is antagonist relationship between superconductivity and ferromagnetic materials, But, a discovery of iron-based superconductors have removed this misconception. It gives an idea to make a review on the superconductivity properties of different materials. The new iron-based superconductors' present symmetry breaking competing phases in the form of tetragonal to orthorhombic transition. It consists of mainly four families [1111], [111], [122], and [11] type. Superconductivity of iron-based superconductors mainly related with the phonons and there is an excellent relation between phonons and superconductivity. Phonons properties are helpful in predicting the superconducting properties of materials. Phonon properties of iron-based superconductors in various phases are summarized in this study. We are presenting the review of phonon properties of iron-based superconductors.

  11. An Introduction to the properties of Superconductors

    NASA Astrophysics Data System (ADS)

    Letarte, Alec

    2001-03-01

    A brief introductory presentation of the various properties of superconductors. The discussion will be focussed mainly on the newer ceramic superconductors, but the classic metal ones will also be touched upon. Some of the properties to be considered are: Optical properties, transport properties, persistent currents, coherence length, flux magnetisation, and the ``anti-gravity effect" produced be superconductors Another subject to be looked at will be the recent technological uses and developments of superconductors. For example, they have developed thin superconductors which they are making into a superconducting cable.

  12. Passivation Of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  13. Spatial Complexity Due to Bulk Electronic Liquid Crystals in Superconducting Dy-Bi2212

    NASA Astrophysics Data System (ADS)

    Carlson, Erica; Phillabaum, Benjamin; Dahmen, Karin

    2012-02-01

    Surface probes such as scanning tunneling microscopy (STM) have detected complex electronic patterns at the nanoscale in many high temperature superconductors. In cuprates, the pattern formation is associated with the pseudogap phase, a precursor to the high temperature superconducting state. Rotational symmetry breaking of the host crystal (i.e. from C4 to C2) in the form of electronic nematicity has recently been proposed as a unifying theme of the pseudogap phase [Lawler Nature 2010]. However, the fundamental physics governing the nanoscale pattern formation has not yet been identified. Here we use universal cluster properties extracted from STM studies of cuprate superconductors to identify the funda- mental physics controlling the complex pattern formation. We find that due to a delicate balance between disorder, interactions, and material anisotropy, the rotational symmetry breaking is fractal in nature, and that the electronic liquid crystal extends throughout the bulk of the material.

  14. Chiral superconductors.

    PubMed

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  15. Method for preparing high transition temperature Nb/sub 3/Ge superconductors. [Patent application

    DOEpatents

    Newkirk, L.R.; Valencia, F.A.

    1975-06-26

    Bulk coatings of Nb/sub 3/Ge superconductors having transition temperatures in excess of 20/sup 0/K are readily formed by a chemical vapor deposition technique involving the coreduction of NbCl/sub 5/ and GeCl/sub 4/ in the presence of hydrogen. The NbCl/sub 5/ vapor may advantageously be formed quantitatively in the temperature range of about 250 to 260/sup 0/C by the chlorination of Nb metal provided the partial pressure of the product NbCl/sub 5/ vapor is maintained at or below about 0.1 atm.

  16. Surface impedance and optimum surface resistance of a superconductor with an imperfect surface

    NASA Astrophysics Data System (ADS)

    Gurevich, Alex; Kubo, Takayuki

    2017-11-01

    We calculate a low-frequency surface impedance of a dirty, s -wave superconductor with an imperfect surface incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer. Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained spatial distributions of the order parameter and the quasiparticle density of states which then were used to calculate a low-frequency surface resistance Rs(T ) and the magnetic penetration depth λ (T ) as functions of temperature in the limit of local London electrodynamics. It is shown that the imperfect surface in a single-band s -wave superconductor results in a nonexponential temperature dependence of Z (T ) at T ≪Tc which can mimic the behavior of multiband or d -wave superconductors. The imperfect surface and the broadening of the gap peaks in the quasiparticle density of states N (ɛ ) in the bulk give rise to a weakly temperature-dependent residual surface resistance. We show that the surface resistance can be optimized and even reduced below its value for an ideal surface by engineering N (ɛ ) at the surface using pair-breaking mechanisms, particularly by incorporating a small density of magnetic impurities or by tuning the thickness and conductivity of the normal layer and its contact resistance. The results of this work address the limit of Rs in superconductors at T ≪Tc , and the ways of engineering the optimal density of states by surface nanostructuring and impurities to reduce losses in superconducting microresonators, thin-film strip lines, and radio-frequency cavities for particle accelerators.

  17. Radiation detector using a bulk high T.sub.c superconductor

    DOEpatents

    Artuso, Joseph F.; Franks, Larry A.; Hull, Kenneth L.; Symko, Orest G.

    1993-01-01

    A radiation detector (10) is provided, wherein a bulk high T.sub.c superconducting sample (11) is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil (12) which is coupled by an input coil (15) to an rf SQUID (16).

  18. Radiation detector using a bulk high T[sub c] superconductor

    DOEpatents

    Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.

    1993-12-07

    A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.

  19. Emergent geometric description for a topological phase transition in the Kitaev superconductor model

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Park, Miok; Cho, Jaeyoon; Park, Chanyong

    2017-10-01

    Resorting to Wilsonian renormalization group (RG) transformations, we propose an emergent geometric description for a topological phase transition in the Kitaev superconductor model. An effective field theory consists of an emergent bulk action with an extra dimension, an ultraviolet (UV) boundary condition for an initial value of a coupling function, and an infrared (IR) effective action with a fully renormalized coupling function. The bulk action describes the evolution of the coupling function along the direction of the extra dimension, where the extra dimension is identified with an RG scale and the resulting equation of motion is nothing but a β function. In particular, the IR effective field theory turns out to be consistent with a Callan-Symanzik equation which takes into account both the bulk and IR boundary contributions. This derived Callan-Symanzik equation gives rise to a metric structure. Based on this emergent metric tensor, we uncover the equivalence of the entanglement entropy between the emergent geometric description and the quantum field theory in the vicinity of the quantum critical point.

  20. SCDFT Study of High Tc Nitride Superconductors

    NASA Astrophysics Data System (ADS)

    Arita, R.

    Based on the density functional theory for superconductors (SCDFT), we study the pairing mechanism of the layered nitride superconductors, β-LixMNCl (M=Zr, Hf). Recently, it has been shown that SCDFT reproduces experimental superconducting transition temperatures (Tc) of conventional superconductors very accurately. Here we use SCDFT as a "litmus paper" to determine whether the system is a conventional or unconventional superconductor. We show that Tc estimated by SCDFT is less than half of the experimental Tc and its doping dependence is opposite to that observed in the experiments. The present result suggests that β- LixMNCl is not a Migdal-Eliashberg type superconductor.

  1. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yunqi; Gong, Yungui; Wang, Bin

    2016-02-01

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U (1) gauge field. We start with an asymptotic Anti-de-Sitter (AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T c , the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  2. Process for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  3. Gravitoelectromagnetism and Dark Energy in Superconductors

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    A gravitomagnetic analog of the London moment in superconductors could explain the anomalous Cooper pair mass excess reported by Janet Tate. Ultimately the gravitomagnetic London moment is attributed to the breaking of the principle of general covariance in superconductors. This naturally implies nonconservation of classical energy-momentum. A possible relation with the manifestation of dark energy in superconductors is questioned.

  4. Present Status and Future Prospects in Bulk Processing of HIGH-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Jin, S.; Chu, C. W.

    The following sections are included: * INTRODUCTION * HIGH SUPERCONDUCTING TRANSITION TEMPERATURE * HIGH CRITICAL CURRENT DENSITY * Grain Boundary Weak Links * Nature of Weak Links * Possible Processing Approaches for Weak Link Problem * Processing Techniques for Texture Formation * Flux Creep in HTSC * Desirable Pinning Defects * Processing for Flux Pinning Enhancement * PROSPECTS FOR BULK APPLICATIONS * Magnetic Field Gener * Energy Storage * Magnetic Shielding * Other Applications * CONCLUDING REMARKS * ACKNOWLEDGMENT * REFERENCES

  5. Influence of ZnO doping on the properties of single domain YBCO bulks fabricated by RE+011 TSIG process

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Yuan, X. C.; Guo, Y. X.

    2017-10-01

    Single domain YBCO bulk superconductors with different additions of ZnO have been successfully fabricated by RE+011 TSIG process with a new solid phase of [(100-x)(Y2O3 + 1.2BaCuO2)+xZnO] and a new liquid phase of (Y2O3+6CuO+10BaCuO2). The effects of ZnO additions on the growth morphology, microstructure, critical temperature (Tc), the levitation force and trapped field of the YBCO bulks have been investigated. It is found that within the range of ZnO additions x=0-1.0 wt.%, all the samples are of the typical characteristic of single-domain YBCO bulk; the Tc of the samples decreases from 92 K to 80 K when the ZnO addition x increases from x=0 wt.% to x=1.0 wt.%; the levitation force and trapped field of the samples firstly increase and then decrease with increase of ZnO additions after going through a maximum, which is closely related with the ZnO addition and the resulting flux pinning force caused by lattice distortion due to the substitution of Zn2+ for Cu2+ site in the YBCO crystal; the largest levitation force 36.8 N (77 K, 0.5 T) and trapped field 0.416 T (77 K, 0.5 T) of the samples are obtained when x=0.1 wt.%, respectively. This result is significantly important and helpful for us to improve the properties of YBCO bulk superconductors.

  6. Topological superconductor to Anderson localization transition in one-dimensional incommensurate lattices.

    PubMed

    Cai, Xiaoming; Lang, Li-Jun; Chen, Shu; Wang, Yupeng

    2013-04-26

    We study the competition of disorder and superconductivity for a one-dimensional p-wave superconductor in incommensurate potentials. With the increase in the strength of the incommensurate potential, the system undergoes a transition from a topological superconducting phase to a topologically trivial localized phase. The phase boundary is determined both numerically and analytically from various aspects and the topological superconducting phase is characterized by the presence of Majorana edge fermions in the system with open boundary conditions. We also calculate the topological Z2 invariant of the bulk system and find it can be used to distinguish the different topological phases even for a disordered system.

  7. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    NASA Astrophysics Data System (ADS)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  8. A bulk superconducting MgB 2 cylinder for holding transversely polarized targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statera, M.; Balossino, I.; Barion, L.

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less

  9. A bulk superconducting MgB2 cylinder for holding transversely polarized targets

    NASA Astrophysics Data System (ADS)

    Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.

    2018-02-01

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.

  10. A bulk superconducting MgB 2 cylinder for holding transversely polarized targets

    DOE PAGES

    Statera, M.; Balossino, I.; Barion, L.; ...

    2017-11-06

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less

  11. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    PubMed

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  12. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOEpatents

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  13. Development of high Tc (greater than 110K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.; Lee, Burtrand; Grabert, Gregory; Gilmour, Phillip

    1991-01-01

    This report is presented in two parts. Part 1 deals primarily with Bi-based materials and a small amount of work on a Y-based composition while Part 2 covers work on Tl-based materials. In Part 1, a reliable and reproducible process for producing bulk bismuth-based superconductors has been developed. It is noted however, that a percentage of the tapecast material experiences curling and fracturing after a 30 hour sintering period and is thus in need of further examination. The Bi-Sr-Ca-Cu-O (BSCCO) material has been characterized by critical temperature data, X-ray diffraction data, and surface morphology. In the case of T sub c, it is not critical to anneal the material. It appears that the BSCCO material has the possibility of producing a better grounding strap than that of the 123 material. Attempts to reproduce near room temperature superconductors in the Y-Ba-Cu-O system were unsuccessful. In Part 2, several methods of processing the high temperature superconductor Tl2Ba2Ca2Cu3O10 were investigated; i.e., different precursor compositions were sintered at various sintering times and temperatures. The highest superconductig temperature was found to be 117.8K when fired at 900 C for three hours. Higher sintering temperatures produced a melted sample which was nonsuperconducting at liquid nitrogen temperature. Also, a preliminary study found Li2O substitutions for copper appeared to increase the transition temperature and create fluxing action upon sintering. It was suggested that lower sintering temperatures might be obtained with lithium additions to produce reliable Tl2Ba2Ca2Cu3O10 processing methods.

  14. Magnetization behavior of RE123 bulk magnets bearing twin seed-crystals in pulsed field magnetization processes

    NASA Astrophysics Data System (ADS)

    Oka, T.; Miyazaki, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.

    2016-02-01

    Melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were fabricated by the cold seeding method with using single or twin-seed crystals composed of Nd-Ba-Cu-O thin films on MgO substrates. The behavior of the magnetic flux penetration into anisotropic-grown bulk magnets thus fabricated was precisely evaluated during and after the pulsed field magnetization operated at 35 K. These seed crystals were put on the top surfaces of the precursors to grow large grains during the melt-processes. Although we know the magnetic flux motion is restricted by the enhanced pinning effect in temperature ranges lower than 77 K, we observed that flux invasion occurred at applied fields of 3.3 T when the twin seeds were used. This is definitely lower than those of 3.7 T when the single-seeds were employed. This means that the magnetic fluxes are capable of invading into twin-seeded bulk magnets more easily than single-seeded ones. The twin seeds form the different grain growth regions, the narrow-GSR (growth sector region) and wide-GSR, according to the different grain growth directions which are parallel and normal to the rows of seed crystals, respectively. The invading flux measurements revealed that the magnetic flux invades the sample from the wide-GSR prior to the narrow-GSR. It suggests that such anisotropic grain growth leads to different distributions of pinning centers, variations of J c values, and the formation of preferential paths for the invading magnetic fluxes. Using lower applied fields definitely contributed to lowering the heat generation during the PFM process, which, in turn, led to enhanced trapped magnetic fluxes.

  15. 1D to 3D dimensional crossover in the superconducting transition of the quasi-one-dimensional carbide superconductor Sc3CoC4.

    PubMed

    He, Mingquan; Wong, Chi Ho; Shi, Dian; Tse, Pok Lam; Scheidt, Ernst-Wilhelm; Eickerling, Georg; Scherer, Wolfgang; Sheng, Ping; Lortz, Rolf

    2015-02-25

    The transition metal carbide superconductor Sc(3)CoC(4) may represent a new benchmark system of quasi-one-dimensional (quasi-1D) superconducting behavior. We investigate the superconducting transition of a high-quality single crystalline sample by electrical transport experiments. Our data show that the superconductor goes through a complex dimensional crossover below the onset T(c) of 4.5 K. First, a quasi-1D fluctuating superconducting state with finite resistance forms in the [CoC(4)](∞) ribbons which are embedded in a Sc matrix in this material. At lower temperature, the transversal Josephson or proximity coupling of neighboring ribbons establishes a 3D bulk superconducting state. This dimensional crossover is very similar to Tl(2)Mo(6)Se(6), which for a long time has been regarded as the most appropriate model system of a quasi-1D superconductor. Sc(3)CoC(4) appears to be even more in the 1D limit than Tl(2)Mo(6)Se(6).

  16. Crystallographic orientation mapping with an electron backscattered diffraction technique in (Bi, Pb)2Sr2Ca2Cu3O10 superconductor tapes

    NASA Astrophysics Data System (ADS)

    Tan, T. T.; Li, S.; Oh, J. T.; Gao, W.; Liu, H. K.; Dou, S. X.

    2001-02-01

    It is believed that grain boundaries act as weak links in limiting the critical current density (Jc) of bulk high-Tc superconductors. The weak-link problem can be greatly reduced by elimination or minimization of large-angle grain boundaries. It has been reported that the distribution of the Jc in (Bi, Pb)2Sr2Ca2Cu3O10+x (Bi2223) superconductor tapes presents a parabolic relationship in the transverse cross section of the tapes, with the lowest currents occurring at the centre of the tapes. It was proposed that the Jc distribution is strongly dependent on the local crystallographic orientation distribution of the Bi2223 oxides. However, the local three-dimensional crystallographic orientation distribution of Bi2223 crystals in (Bi, Pb)2Sr2Ca2Cu3O10+x superconductor tapes has not yet been experimentally determined. In this work, the electron backscattered diffraction technique was employed to map the crystallographic orientation distribution, determine the misorientation of grain boundaries and also map the misorientation distribution in Bi2223 superconductor tapes. Through crystallographic orientation mapping, the relationship between the crystallographic orientation distribution, the boundary misorientation distribution and the fabrication parameters may be understood. This can be used to optimize the fabrication processes thus increasing the critical current density in Bi2223 superconductor tapes.

  17. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  18. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.

    1999-01-01

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.

  19. Stability of topological defects in chiral superconductors: London theory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakaryuk, V.

    2011-12-22

    This paper examines the thermodynamic stability of chiral domain walls and vortices-topological defects which can exist in chiral superconductors. Using London theory it is demonstrated that at sufficiently small applied and chiral fields the existence of domain walls and vortices in the sample is not favored and the sample's configuration is a single domain. The particular chirality of the single-domain configuration is neither favored nor disfavored by the applied field. Increasing the field leads to an entry of a domain-wall loop or a vortex into the sample. The formation of a straight domain wall is never preferred in equilibrium. Valuesmore » of the entry (critical) fields for both types of defects, as well as the equilibrium size of the domain-wall loop, are calculated. We also consider a mesoscopic chiral sample and calculate its zero-field magnetization, susceptibility, and a change in the magnetic moment due to a vortex or a domain-wall entry. We show that in the case of a soft domain wall whose energetics is dominated by the chiral current (and not by the surface tension) its behavior in mesoscopic samples is substantially different from that in the bulk case and can be used for a controllable transfer of edge excitations. The applicability of these results to Sr{sub 2}RuO{sub 4} - a tentative chiral superconductor - is discussed.« less

  20. A novel heat engine for magnetizing superconductors

    NASA Astrophysics Data System (ADS)

    Coombs, T. A.; Hong, Z.; Zhu, X.; Krabbes, G.

    2008-03-01

    The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20 Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71 Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the

  1. "Fluctuoscopy" of Superconductors

    NASA Astrophysics Data System (ADS)

    Varlamov, A. A.

    Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic

  2. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  3. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  4. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  5. μSR Study of Organic Superconductor λ-(BETS)2GaCl4

    NASA Astrophysics Data System (ADS)

    Sari, D. P.; Asih, R.; Mohm-Tajudin, S. S.; Adam, N.; Hiraki, K.; Ishii, Y.; Takahashi, T.; Nakano, T.; Nozue, Y.; Sulaiman, S.; Mohamed-Ibrahim, M. I.; Watanabe, I.

    2017-05-01

    Muon-spin-relaxation (μSR) measurements in the transverse-field (TF) of 30 G were carried out from 7 K down to 1.8 K on the non-magnetic anion-based organic superconductor λ-(BETS)2GaCl4. The TF-μSR time spectrum showed a significant increase with the Gaussian-type damping behavior below the superconducting transition temperature TC = 5 K confirming the bulk SC state with the full volume fraction. The zero-field (ZF) μSR time spectrum did not show any change against the temperature down to 1.7 K, suggesting that the time reversal symmetry of the Cooper pair might not be broken.

  6. Low frequency electrical noise across contacts between a normal conductor and superconducting bulk YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hall, J.; Chen, T. M.

    1991-01-01

    Virtually every device that makes use of the new ceramic superconductors will need normal conductor to superconductor contacts. The current-voltage and electrical noise characteristics of these contacts could become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quantity often used to characterize electrical noise, very closely followed an empirical relationship given by S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.

  7. Thermodynamics of Meissner effect and flux pinning behavior in the bulk of single-crystal La 2 - x Sr x CuO 4 ( x = 0.09 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhiman, I.; Ziesche, R.; Anand, V. K.

    We have studied the magnetic flux pinning behavior and Meissner effect for the high-more » $$T_{\\rm c}$$ single crystal La$$_{2-x}$$Sr$$_{x}$$CuO$$_{4}$$ ($x$ = 0.09) superconductor using the polarized neutron imaging method with varying magnetic field and temperature. In the Meissner state expulsion of magnetic field (switched on during the measurements) is visualized, and the signatures of mixed state with increasing temperature are observed. While, for flux pinning behavior between 5 K $$\\leq$$ $T$ $$\\leq$$ 15 K and $$H_{\\rm ext}$$ = 63.5 mT (switched off during the measurements), the evolution of fringe pattern for both 0$$^{o}$$ and 90$$^{o}$$ sample orientation indicates magnetic flux pinning inside the bulk of the sample. At 25 K $$\\leq$$ $T$ $$\\leq$$ 32 K, a continuous decrease of inhomogeneously distribution pinned magnetic flux is observed, with the sample reaching a normal conducting state at $$T_{\\rm c}$$ ($$\\approx$$ 32 K). The flux pinning behavior is also explored as a function of $$H_{\\rm ext}$$, at $T$ = 5 K. As expected, with increasing $$H_{\\rm ext}$$ an increase in fringe density is observed, indicating an increase in magnetic flux pinning in the bulk of the sample. Therefore, in the present work for the first time we report bulk visualization of Meissner effect and flux pinning behavior in high-$$T_{\\rm c}$$ La$$_{2-x}$$Sr$$_{x}$$CuO$$_{4}$$ ($x$ = 0.09) superconductor. This study clearly demonstrates the potential of real space polarized neutron imaging technique for the visualization of the superconducting mixed state, particularly in the field of high-$$T_{\\rm c}$$ superconductors.« less

  8. Axial force in a superconductor magnet journal bearing

    NASA Astrophysics Data System (ADS)

    Postrekhin, E.; Chong, Wang; Ki Bui, Ma; Chen, Quark; Chu, Wei-Kan

    Using superconductors and magnets, a journal bearing could be made from a permanent magnet cylinder in a superconductor ring. We have assembled a prototype superconductor magnet journal bearing of this configuration, and investigated the behavior of the axial force that it can provide. We have put together a numerical model of the interaction between the permanent magnet and the superconductor that is capable of describing these experimental results semi-quantitatively. Combining direct experimental measurements and using the numerical models proposed, we have achieved a qualitative understanding of the behavior of the axial force and its relationship of to the dimensions of the magnet and material quality such as the homogeneity of the superconductor that constitute the bearing.

  9. Magnetic exchange coupling through superconductors : a trilayer study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sa de Melo, C. A. R.; Materials Science Division

    1997-09-08

    The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introducesmore » a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.« less

  10. Magnetic exchange coupling through superconductors: A trilayer study

    NASA Astrophysics Data System (ADS)

    Sá de Melo, C. A.

    2000-11-01

    The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.

  11. Sealed glass coating of high temperature ceramic superconductors

    DOEpatents

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  12. Neutron depolarization effects in a high-Tc superconductor (abstract)

    NASA Astrophysics Data System (ADS)

    Nunes, A. C.; Pickart, S. J.; Crow, L.; Goyette, R.; McGuire, T. R.; Shinde, S.; Shaw, T. M.

    1988-11-01

    Using the polarized beam small-angle neutron scattering spectrometer at the Rhode Island Nuclear Science Center Reactor, we have observed significant depolarization of a neutron beam by passage through polycrystalline high-Tc superconductors, specifically 123 Y-Ba-Cu-O prepared and characterized at the IBM Watson Research Center. We believe that this technique will prove useful in studying aspects of these materials, such as the penetration depth of shielding currents, the presence and structure of trapped flux vortices, and grain size effects on the supercurrent distribution in polycrystalline samples. The two samples showed sharp transitions at 87 and 89 K, and have been studied at temperatures of 77 K; the second sample has also been studied at 4 K. The transition to the superconducting state was monitored by the shift in resonant frequency of a coil surrounding the sample. No measurable depolarization was observed in either sample at 77 K in both the field-cooled and zero-field-cooled states, using applied fields of 0 (nominal), 54, and 1400 Oe. This negative result may be connected with the fact that the material is still in the reversible region as indicated by susceptibility measurements, but it allows an estimate of the upper bound of possible inhomogeneous internal fields, assuming a distance scale for the superconducting regions. For the 10-μm grain size suggested by photomicrographs, this upper bound for the field turns out to be 1.2 kOe, which seems reasonable. At 4 K a significant depolarization was observed when the sample was cooled in low fields and a field of 1400 Oe was subsequently applied. This result suggests that flux lines are penetrating the sample. Further investigations are being carried out to determine the field and temperature dependence of the depolarization, and attempts will be made to model it quantitatively in terms of possible internal field distributions. We are also searching for possible diffraction effects from ordered vortex

  13. Sealed glass coating of high temperature ceramic superconductors

    DOEpatents

    Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

    1995-05-02

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

  14. Low resistivity contact to iron-pnictide superconductors

    DOEpatents

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  15. Electromechanical properties of superconductors for DOE fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekin, J.W.; Moreland, J.; Brauch, J.C.

    1986-03-01

    This is an interim report presenting data on superconductor performance under mechanical load, which are needed for the selection of superconductors and the mechanical design of superconducting magnets for DOE fusion energy systems. A further aim of the reported research is to measure and understand the electromechanical properties of promising new superconductor materials with strong application potential at high magnetic fields. Results include the following. The first strain vs. critical-current studies were made on a Chevrel-phase superconductor, PbMo/sub 6/S/sub 8/. Chevrel-phase superconductors were found to have a large strain effect, comparable in magnitude to A-15 superconductors like Nb/sub 3/Sn. Electromechanical-propertymore » measurements of an experimental liquid-tin-infiltrated Nb/sub 3/Sn conductor showed it to have an irreversible strain limit twice as large as bronze-process supercondutors and a significantly higher overall critical-current denstiy; the liquid-infiltration process thus has the potential for development of a practical Nb/sub 3/Sn conductors with both superior critical-current density and extremely good mechanical properties. Electromechanical parameters were obtained on several Nb/sub 3/Sn conductors that are candidate materials for superconducting fusion magnets, icluding conductors fabricated by the bronze, internal-tin, and jelly-roll processes. Thermal contraction data are reported on several new structural materials for superconductor sheathing and reinforcement, and a new diagnostic tool for probing the energy gap of practical superconductors has been developed using electron tunneling.« less

  16. Thallium 2223 high T(sub c) superconductor in a silver matrix and its magnetic shielding, hermalcycle and time aging properties

    NASA Technical Reports Server (NTRS)

    Fei, X.; He, W. S.; Havenhill, A.; Ying, Z. Q.; Xin, Y.; Alzayed, N.; Wong, K. K.; Guo, Y.; Reichle, D.; Lucas, M. S. P.

    1995-01-01

    Superconducting Tl2Ba2Ca2Cu3O10 (Tl2223) was ground to powder. Mixture with silver powder (0-80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.

  17. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  18. GaN/NbN epitaxial semiconductor/superconductor heterostructures.

    PubMed

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D Scott; Nepal, Neeraj; Downey, Brian P; Muller, David A; Xing, Huili G; Meyer, David J; Jena, Debdeep

    2018-03-07

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors-silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor-an electronic gain element-to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance-a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  19. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    NASA Astrophysics Data System (ADS)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  20. Thallium 2223 high Tc superconductor in a silver matrix and its magnetic shielding, hermal cycle and time aging properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, X.; He, W.S.; Havenhill, A.

    1994-12-31

    Superconducting Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl2223) was ground to powder. Mixture with silver powder (0--80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.

  1. Scaling behaviour of relaxation dependencies in metaloxide superconductors

    NASA Technical Reports Server (NTRS)

    Sidorenko, A. S.; Panaitov, G. I.; Gabovich, A. M.; Moiseev, D. P.; Postnikov, V. M.

    1990-01-01

    Superconducting glass state has been investigated in different types of metaloxide ceramics, Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Ba-Pb-Bi-O, using the highly sensitive SQUID magnetometer. The analysis of long-time relaxation processes of thermoremanent magnetization m(sup trm) (+) = M(sub o) - Slnt displayed scaling dependence of the decay rate S = -dM/dlnt on quantity of trapped magnetic flux M(sub o): 1gs = 31g M(sub o) - observed universal dependence S is approximately M(sup 3) (sub o) seems to one of the features of superconducting glass state in metaloxide ceramics.

  2. High-temperature superconductor antenna investigations

    NASA Technical Reports Server (NTRS)

    Karasack, Vincent G.

    1990-01-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  3. Materials design for new superconductors

    DOE PAGES

    Norman, M. R.

    2016-05-23

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed in this paper,more » with a focus on surveying the periodic table in an attempt to identify cuprate analogues.« less

  4. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    NASA Astrophysics Data System (ADS)

    Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.

    2016-10-01

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  5. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient.

    PubMed

    Tan, Teng; Wolak, M A; Xi, X X; Tajima, T; Civale, L

    2016-10-24

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (H vp ). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases H vp . In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of H vp was observed. At 2.8 K, H vp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB 2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  6. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    NASA Astrophysics Data System (ADS)

    Civale, Leonardo; Tan, Teng; Wolak, M.; Xi, Xiaoxing; Tajima, Tsuyoshi

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoids to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with 200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  7. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    PubMed Central

    Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.

    2016-01-01

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb. PMID:27775087

  8. Topological superconductors: a review.

    PubMed

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  9. Topological superconductors: a review

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  10. Superconductors in the high school classroom

    NASA Astrophysics Data System (ADS)

    Lincoln, James

    2017-11-01

    In this article, we discuss the behavior of high-temperature superconductors and how to demonstrate them safely and effectively in the high school or introductory physics classroom. Included here is a discussion of the most relevant physics topics that can be demonstrated, some safety tips, and a bit of the history of superconductors. In an effort to include first-year physics students in the world of modern physics, a topic as engaging as superconductivity should not be missed. It is an opportunity to inspire students to study physics through the myriad of possible applications that high temperature superconductors hold for the future.

  11. Quantum interference in an interfacial superconductor.

    PubMed

    Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M R V L; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya M; Vandersypen, Lieven M K; Caviglia, Andrea D

    2016-10-01

    The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (T c ; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-T c superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

  12. Ground state, collective mode, phase soliton and vortex in multiband superconductors.

    PubMed

    Lin, Shi-Zeng

    2014-12-10

    This article reviews theoretical and experimental work on the novel physics in multiband superconductors. Multiband superconductors are characterized by multiple superconducting energy gaps in different bands with interaction between Cooper pairs in these bands. The discovery of prominent multiband superconductors MgB2 and later iron-based superconductors, has triggered enormous interest in multiband superconductors. The most recently discovered superconductors exhibit multiband features. The multiband superconductors possess novel properties that are not shared with their single-band counterpart. Examples include: the time-reversal symmetry broken state in multiband superconductors with frustrated interband couplings; the collective oscillation of number of Cooper pairs between different bands, known as the Leggett mode; and the phase soliton and fractional vortex, which are the main focus of this review. This review presents a survey of a wide range of theoretical exploratory and experimental investigations of novel physics in multiband superconductors. A vast amount of information derived from these studies is shown to highlight unusual and unique properties of multiband superconductors and to reveal the challenges and opportunities in the research on the multiband superconductivity.

  13. A Double-Decker Levitation Experiment Using a Sandwich of Superconductors.

    ERIC Educational Resources Information Center

    Jacob, Anthony T.; And Others

    1988-01-01

    Shows that the mutual repulsion that enables a superconductor to levitate a magnet and a magnet to levitate a superconductor can be combined into a single demonstration. Uses an overhead projector, two pellets of "1-2-3" superconductor, Nd-Fe-B magnets, liquid nitrogen, and paraffin. Offers superconductor preparation, hazards, and disposal…

  14. Superconductor Composite

    DOEpatents

    Dorris, Stephen E.; Burlone, Dominick A.; Morgan; Carol W.

    1999-02-02

    A superconducting conductor fabricated from a plurality of wires, e.g., fine silver wires, coated with a superconducting powder. A process of applying superconducting powders to such wires, to the resulting coated wires and superconductors produced therefrom.

  15. Measurement and calculation of levitation forces between magnets and granular superconductors

    NASA Technical Reports Server (NTRS)

    Johansen, T. H.; Bratsberg, H.; Baziljevich, M.; Hetland, P. O.; Riise, A. B.

    1995-01-01

    Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T(sub c) superconductivity. Because of this, the interaction between a strong permanent magnet(PM) and bulk high-T(sub c) superconductor (HTSC) is currently a subject of much interest. We have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here we report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level wing a minimum of model parameters.

  16. The color of polarization in cuprate superconductors

    NASA Technical Reports Server (NTRS)

    Hoff, H. A.; Osofsky, M. S.; Lechter, W. L.; Pande, C. S.

    1991-01-01

    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed at room temperature with a 'daylight' source, a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. Two members were also examined of the electron cuprate superconductors and it was found that they possess the same color of polarization as the hole carrier cuprate superconductors so far examined. The commonality of the characteristic color regardless of charge carrier indicates that the presence of this color is independent of carrier type. The correlation of this color with the existence of superconductivity in the cuprate superconductors suggests that the origin of the color relates to the origin of superconductivity. Photometric techniques are also discussed.

  17. Out-of-equilibrium spin transport in mesoscopic superconductors.

    PubMed

    Quay, C H L; Aprili, M

    2018-08-06

    The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).

  18. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    PubMed

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  19. Quasiparticle entropy in superconductor/normal metal/superconductor proximity junctions in the diffusive limit

    NASA Astrophysics Data System (ADS)

    Virtanen, P.; Vischi, F.; Strambini, E.; Carrega, M.; Giazotto, F.

    2017-12-01

    We discuss the quasiparticle entropy and heat capacity of a dirty superconductor/normal metal/superconductor junction. In the case of short junctions, the inverse proximity effect extending in the superconducting banks plays a crucial role in determining the thermodynamic quantities. In this case, commonly used approximations can violate thermodynamic relations between supercurrent and quasiparticle entropy. We provide analytical and numerical results as a function of different geometrical parameters. Quantitative estimates for the heat capacity can be relevant for the design of caloritronic devices or radiation sensor applications.

  20. Thermomagnetic phenomena in the mixed state of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Meilikhov, E. Z.

    1995-01-01

    Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

  1. Evidence for filamentary superconductivity up to 220 K in oriented multiphase Y-Ba-Cu-O thin films

    NASA Astrophysics Data System (ADS)

    Schönberger, R.; Otto, H. H.; Brunner, B.; Renk, K. F.

    1991-02-01

    We report on the observation of filamentary superconductivity up to 220 K in multiphase Y-Ba-Cu-O materials that are deposited as highly oriented thin films on (110)-SrTiO 3 substrates by laser ablation from ceramic targets. The high temperature zero resistivity states are reproducible after temperature cycling down to 80 K for samples treated by a special oxygenation and ozonization process at 340 K and measured in a pure oxygen atmosphere. Our results on thin films confirm former experiments of J.T. Chen and co-workers obtained on ceramic samples with preferred crystallite orientation. A close connection between superconductivity and structural instabilities of most likely ferroic nature, which are observed more often for YBa 2Cu 3O 7 in a narrow temperature range near 220 K, is suggested.

  2. High temperature superconductors: A technological revolution

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The objectives are to demonstrate the Meissner effect through magnetic levitation, to demonstrate one application of the Meissner effect, the low friction magnetic rotation bearing, and to demonstrate magnetic flux penetration and the Type II nature of ceramic superconductors via the stacking of the superconductor disks. Experimental equipment and procedures are described.

  3. The effect of resolidification on preform optimized infiltration growth processed (Y, Nd, Sm, Gd)BCO, multi-grain bulk superconductor

    NASA Astrophysics Data System (ADS)

    Pavan Kumar Naik, S.; Seshu Bai, V.

    2017-01-01

    Controlling the microstructure of superconductors by incorporating the flux pinning centers and reducing the macro-defects to improve high field performance is the topic of recent research. In continuation, the preform optimized infiltration growth (POIG) processed YBa2Cu3O7-δ (YBCO) system, Y-site substituted with three mixed RE (Nd, Sm, Gd) elements is investigated. 20 wt.% of (Nd, Sm, Gd)2BaCuO5 were mixed with Y2BaCuO5 and POIG processed in reduced oxygen atmosphere to obtain YNSG superconductor. No seed is employed for crystal growth; hence the processed samples are multi-grained. Microstructural and compositional investigations on YNSG revealed the presence of different phases in the matrix as well as in precipitates which are of the order of submicron to 4 μm. A large fraction of macro-defects (∼6% of porosity) was observed in the YNSG sample. For reducing the unwanted macro-defects and refine the non-superconducting precipitates, processed YNSG sample is pressed and resolidified (by infiltrating the liquid phases once again) in an argon atmosphere and the structural, microstructural, elemental and superconducting properties are compared with YNSG and undoped samples. Due to spatial scatter in superconducting critical temperatures, caused by the distribution of different REBCO unit cells in YBCO, superconducting transition curve is sharp in YNSG, whereas the resolidified sample showed the broad transition due to solidified liquid phases.

  4. System and method for quench protection of a superconductor

    DOEpatents

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  5. Performance of ceramic superconductors in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kirtley, James L., Jr.; Downer, James R.

    1993-01-01

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  6. Electric field effect in superconductor-ferroelectric structures

    NASA Technical Reports Server (NTRS)

    Lemanov, V. V.

    1995-01-01

    Electric field effect (the E-effect) in superconductors has been studied since 1960 when Glover and Sherill published their results on a shift of the critical temperature T(sub c) about 0.1 mK in Sn and In thin films under the action Off the field E=300 kV/cm. Stadler was the first to study the effect or spontaneous polarization of ferroelectric substrate on the electric properties of superconductors. He observed that the reversal of polarization of TGS substrate under action of external electric field in Sn-TGS structures induced the T(sub c) shift in Sn about 1.3 mK. Since in this case the effect is determined not by the electric field but by the spontaneous polarization, we may call this effect the P-effect. High-T(sub c) superconductors opened the new possibilities to study the E- and P-effects due to low charge carrier density, as compared to conventional superconductors, and to anomalously small coherence length. Experiments in this field began in many laboratories but a breakthrough was made where a shift in T(sub c) by 50 mK was observed in YBCO thin films. Much higher effects were observed in subsequent studies. The first experiments on the P-effect in high-T(sub c) superconductors were reported elsewhere. In this report we shall give a short description of study on the P-effect in high-T(sub c) superconductors.

  7. Flux-induced Nernst effect in low-dimensional superconductors

    NASA Astrophysics Data System (ADS)

    Berger, Jorge

    2017-02-01

    A method is available that enables consistent study of the stochastic behavior of a system that obeys purely diffusive evolution equations. This method has been applied to a superconducting loop with nonuniform temperature, with average temperature close to Tc. It is found that a flux-dependent average potential difference arises along the loop, proportional to the temperature gradient and most pronounced in the direction perpendicular to this gradient. The largest voltages were obtained for fluxes close to 0.3Φ0, average temperatures slightly below the critical temperature, thermal coherence length of the order of the perimeter of the ring, BCS coherence length that is not negligible in comparison to the thermal coherence length, and short inelastic scattering time. This effect is entirely due to thermal fluctuations. It differs essentially from the usual Nernst effect in bulk superconductors, that is induced by magnetic field rather than by magnetic flux. We also study the effect of confinement in a 2D mesoscopic film.

  8. Holographic P -wave superconductors in 1 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Alkac, Gokhan; Chakrabortty, Shankhadeep; Chaturvedi, Pankaj

    2017-10-01

    We study (1 +1 )-dimensional P -wave holographic superconductors described by three- dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of AdS3/CFT2 correspondence. In the probe limit, where the backreaction of matter fields is neglected, we show that there is a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly coupled (1 +1 )-dimensional boundary theory, this holographically corresponds to the formation of a charged vector condensate which breaks spontaneously both the U (1 ) and S O (1 ,1 ) symmetries. We numerically compute both the free energy and the ac conductivity for the superconducting phase of the boundary field theory. Our numerical computations clearly establish that the superconducting phase of the boundary theory is favorable to the normal phase, and the presence of a magnetic moment term in the dual bulk theory effects the conductivity in the boundary field theory.

  9. Superfluid response in heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  10. Analysis of current distribution in a large superconductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Alamgir, A. K. M.; Harada, Naoyuki; Tsuda, Makoto; Ono, Michitaka; Takano, Hirohisa

    An imbalanced current distribution which is often observed in cable-in-conduit (CIC) superconductors composed of multistaged, triplet type sub-cables, can deteriorate the performance of the coils. It is, hence very important to analyze the current distribution in a superconductor and find out methods to realize a homogeneous current distribution in the conductor. We apply magnetic flux conservation in a loop contoured by electric center lines of filaments in two arbitrary strands located on adjacent layers in a coaxial multilayer superconductor, and thereby analyze the current distribution in the conductor. A generalized formula governing the current distribution can be described as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction and radius of individual layer. We numerically analyze a homogeneous current distribution as a function of the twist pitches of layers, using the fundamental formula. Moreover, it is demonstrated that we can control current distribution in the coaxial superconductor.

  11. Synthesis of highly phase pure BSCCO superconductors

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  12. Synthesis of highly phase pure BSCCO superconductors

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1995-01-01

    An article and method of manufacture of (Bi, Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor.

  13. Superconductor in a weak static gravitational field

    NASA Astrophysics Data System (ADS)

    Ummarino, Giovanni Alberto; Gallerati, Antonio

    2017-08-01

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T_ {c} superconductor with a classical low-T_ {c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field.

  14. Fracture toughness for copper oxide superconductors

    DOEpatents

    Goretta, K.C.; Kullberg, M.L.

    1993-04-13

    An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].

  15. Fracture toughness for copper oxide superconductors

    DOEpatents

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  16. Co-current Doping Effect of Nanoscale Carbon and Aluminum Nitride on Critical Current Density and Flux Pinning Properties of Bulk MgB2 Superconductors

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Dey, T. K.

    2018-05-01

    The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.

  17. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  18. Superconductors in the High School Classroom

    ERIC Educational Resources Information Center

    Lincoln, James

    2017-01-01

    In this article, we discuss the behavior of high-temperature superconductors and how to demonstrate them safely and effectively in the high school or introductory physics classroom. Included here is a discussion of the most relevant physics topics that can be demonstrated, some safety tips, and a bit of the history of superconductors. In an effort…

  19. System and method for quench and over-current protection of superconductor

    DOEpatents

    Huang, Xianrui; Laskaris, Evangelos Trifon; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas; Fogarty, James Michael; Steinbach, Albert Eugene

    2005-05-31

    A system and method for protecting a superconductor. The system may comprise a current sensor operable to detect a current flowing through the superconductor. The system may comprise a coolant temperature sensor operable to detect the temperature of a cryogenic coolant used to cool the superconductor to a superconductive state. The control circuit is operable to estimate the superconductor temperature based on the current flow and the coolant temperature. The system may also be operable to compare the estimated superconductor temperature to at least one threshold temperature and to initiate a corrective action when the superconductor temperature exceeds the at least one threshold temperature.

  20. Method of manufacturing a high temperature superconductor with improved transport properties

    DOEpatents

    Balachandran, Uthamalingam; Siegel, Richard W.; Askew, Thomas R.

    2001-01-01

    A method of preparing a high temperature superconductor. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase paramagnetic material. These components are combined to form a solid compacted mass with the paramagnetic material disposed on the grain boundaries of the polycrystaline high temperature superconductor.

  1. Random gauge models of the superconductor-insulator transition in two-dimensional disordered superconductors

    NASA Astrophysics Data System (ADS)

    Granato, Enzo

    2017-11-01

    We study numerically the superconductor-insulator transition in two-dimensional inhomogeneous superconductors with gauge disorder, described by four different quantum rotor models: a gauge glass, a flux glass, a binary phase glass, and a Gaussian phase glass. The first two models describe the combined effect of geometrical disorder in the array of local superconducting islands and a uniform external magnetic field, while the last two describe the effects of random negative Josephson-junction couplings or π junctions. Monte Carlo simulations in the path-integral representation of the models are used to determine the critical exponents and the universal conductivity at the quantum phase transition. The gauge- and flux-glass models display the same critical behavior, within the estimated numerical uncertainties. Similar agreement is found for the binary and Gaussian phase-glass models. Despite the different symmetries and disorder correlations, we find that the universal conductivity of these models is approximately the same. In particular, the ratio of this value to that of the pure model agrees with recent experiments on nanohole thin-film superconductors in a magnetic field, in the large disorder limit.

  2. Frequency-dependent shot noise in long disordered superconductor-normal-metal-superconductor contacts.

    PubMed

    Nagaev, K E

    2001-04-02

    The shot noise in long diffusive superconductor-normal-metal-superconductor contacts is calculated using the semiclassical approach. At low frequencies and for purely elastic scattering, the voltage dependence of the noise is of the form S(I) = (4Delta+2eV)/3R. The electron-electron scattering suppresses the noise at small voltages resulting in vanishing noise yet infinite dS(I)/dV at V = 0. The distribution function of electrons consists of a series of steps, and the frequency dependence of noise exhibits peculiarities at omega = neV, omega = neV-2Delta, and omega = 2Delta-neV for integer n.

  3. Vibration measurements and analyses for a magnet superconductor levitated system

    NASA Astrophysics Data System (ADS)

    Wen, Zheng; Liu, Yu; Yang, Wenjiang; Qiu, Ming

    2007-12-01

    Magnetic levitation technology, having the characteristics of low cost and high quality, has been considered a preferable option for the next generation of launcher systems. A world-wide research design on the conceptual level has been carried out on the highly reusable space transportation systems by applying magnetic levitation to the launch assistance. Recently, a research plan has been implemented in our laboratory by constructing a scale-model suspension system with high temperature superconductor (HTS henceforth) bulks over a 7 m Nd-Fe-B permanent-magnet (PM henceforth) track for the launch assistance. An experimental platform was built to investigate the dynamic responses of the PM-HTS interaction at different field-cooled positions. The critical frequencies and amplitudes which lead to the instability of levitation drift were investigated. The stiffness and the vibration damping were also discussed at the zero-field-cooled position.

  4. Engineered flux-pinning centers in BSCCO TBCCO and YBCO superconductors

    DOEpatents

    Goretta, Kenneth C.; Lanagan, Michael T.; Miller, Dean J.; Sengupta, Suvankar; Parker, John C.; Hu, Jieguang; Balachandran, Uthamalingam; Siegel, Richard W.; Shi, Donglu

    1999-01-01

    A method of preparing a high temperature superconductor. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase material. These components are combined to form a solid compacted mass with the material disposed in the polycrystalline high temperature superconductor. This combined mixture is rapidly heated, forming a dispersion of nanophase size particles without a eutectic reaction. These nanophase particles can have a flat plate or columnar type morphology.

  5. Epoxy-encapsulated ceramic superconductor microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gollmor, R.O.; McDevitt, J.T.; Murray, R.W.

    1989-12-01

    A procedure is outlined for fabricating well-behaved microelectrodes from ceramic pellets of YBa{sub 2}CU{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} which involves systematic polishing of an epoxy-encapsulated superconductror chip, under Et{sub 4}NCIO{sub 4}/acetonitrile solution, to a potentiometric end point. Voltammetry of the resulting microelectrodes in acetronitrile is illustrated and compared to that arising from alternative superconductor electrode geometries. The microelectrodes have active electrode surface areas ranging from 2 {times} 10 {sup {minus} sup 6} to 3 {times} 10 {sup {minus} sup 4}cm{sup 2}, as characterized electrochemically and microscopically. The results discussed herein are steps toward developing the methodologymore » necessary to study the electrochemical response of high temperature superconductor phases at temperatures below theirtheir superconductor critical temperature.« less

  6. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  7. Determination of spin polarization using an unconventional iron superconductor

    DOE PAGES

    Gifford, J. A.; Chen, B. B.; Zhang, J.; ...

    2016-11-21

    Here, an unconventional iron superconductor, SmO 0.7F 0.3FeAs, has been utilized to determine the spin polarization and temperature dependence of a highly spin-polarized material, La 0.67Sr 0.33MnO 3, with Andreev reflection spectroscopy. The polarization value obtained is the same as that determined using a conventional superconductor Pb but the temperature dependence of the spin polarization can be measured up to 52 K, a temperature range, which is several times wider than that using a typical conventional superconductor. The result excludes spin-parallel triplet pairing in the iron superconductor.

  8. Fabrication of high-quality superconductor-insulator-superconductor junctions on thin SiN membranes

    NASA Technical Reports Server (NTRS)

    Garcia, Edouard; Jacobson, Brian R.; Hu, Qing

    1993-01-01

    We have successfully fabricated high-quality and high-current density superconductor-insulator-superconductor (SIS) junctions on freestanding thin silicon nitride (SIN) membranes. These devices can be used in a novel millimeter-wave and THz receiver system which is made using micromachining. The SIS junctions with planar antennas were fabricated first on a silicon wafer covered with a SiN membrane, the Si wafer underneath was then etched away using an anisotropic KOH etchant. The current-voltage characteristics of the SIS junctions remained unchanged after the whole process, and the junctions and the membrane survived thermal cycling.

  9. Engineered flux-pinning centers in BSCCO TBCCO and YBCO superconductors

    DOEpatents

    Goretta, K.C.; Lanagan, M.T.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Hu, J.; Balachandran, U.; Siegel, R.W.; Shi, D.

    1999-07-27

    A method of preparing a high temperature superconductor is disclosed. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase material. These components are combined to form a solid compacted mass with the material disposed in the polycrystalline high temperature superconductor. This combined mixture is rapidly heated, forming a dispersion of nanophase size particles without a eutectic reaction. These nanophase particles can have a flat plate or columnar type morphology. 4 figs.

  10. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  11. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Teng; Wolak, M. A.; Xi, X. X.

    2016-10-24

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (H vp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases H vp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significantmore » enhancement of H vp was observed. At 2.8 K, H vp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB 2 thin film. In conclusion, this finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.« less

  12. Thermal response of large area high temperature superconducting YBaCuO infrared bolometers

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1991-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.

  13. Noncentrosymmetric superconductor BeAu

    NASA Astrophysics Data System (ADS)

    Amon, A.; Svanidze, E.; Cardoso-Gil, R.; Wilson, M. N.; Rosner, H.; Bobnar, M.; Schnelle, W.; Lynn, J. W.; Gumeniuk, R.; Hennig, C.; Luke, G. M.; Borrmann, H.; Leithe-Jasper, A.; Grin, Yu.

    2018-01-01

    Mixed spin-singlet and spin-triplet pairing can occur in noncentrosymmetric superconductors. In this respect, a comprehensive characterization of the noncentrosymmetric superconductor BeAu was carried out. It was established that BeAu undergoes a structural phase transition from a low-temperature noncentrosymmetric FeSi structure type to a high-temperature centrosymmetric structure in the CsCl type at Ts=860 K. The low-temperature modification exhibits a superconducting transition below Tc=3.3 K. The values of lower (Hc1=32 Oe) and upper (Hc2=335 Oe) critical fields are rather small, confirming that this type-II (κG-L=2.3 ) weakly coupled (λe-p=0.5 ,Δ Ce/γnTc≈1.26 ) superconductor can be well understood within the Bardeen-Cooper-Schrieffer theory. The muon spin relaxation analysis indicates that the time-reversal symmetry is preserved when the superconducting state is entered, supporting conventional superconductivity in BeAu. From the density functional band structure calculations, a considerable contribution of the Be electrons to the superconducting state was established. On average, a rather small mass renormalization was found, consistent with the experimental data.

  14. Status of high temperature superconductor development for accelerator magnets

    NASA Technical Reports Server (NTRS)

    Hirabayashi, H.

    1995-01-01

    High temperature superconductors are still under development for various applications. As far as conductors for magnets are concerned, the development has just been started. Small coils wound by silver sheathed Bi-2212 and Bi-2223 oxide conductors have been reported by a few authors. Essential properties of high T(sub c) superconductors like pinning force, coherent length, intergrain coupling, weak link, thermal property, AC loss and mechanical strength are still not sufficiently understandable. In this talk, a review is given with comparison between the present achievement and the final requirement for high T(sub c) superconductors, which could be particularly used in accelerator magnets. Discussions on how to develop high T(sub c) superconductors for accelerator magnets are included with key parameters of essential properties. A proposal of how to make a prototype accelerator magnet with high T(sub c) superconductors with prospect for future development is also given.

  15. Emergence of nanoscale inhomogeneity in the superconducting state of a homogeneously disordered conventional superconductor

    PubMed Central

    Kamlapure, Anand; Das, Tanmay; Ganguli, Somesh Chandra; Parmar, Jayesh B.; Bhattacharyya, Somnath; Raychaudhuri, Pratap

    2013-01-01

    The notion of spontaneous formation of an inhomogeneous superconducting state is at the heart of most theories attempting to understand the superconducting state in the presence of strong disorder. Using scanning tunneling spectroscopy and high resolution scanning transmission electron microscopy, we experimentally demonstrate that under the competing effects of strong homogeneous disorder and superconducting correlations, the superconducting state of a conventional superconductor, NbN, spontaneously segregates into domains. Tracking these domains as a function of temperature we observe that the superconducting domains persist across the bulk superconducting transition, Tc, and disappear close to the pseudogap temperature, T*, where signatures of superconducting correlations disappear from the tunneling spectrum and the superfluid response of the system. PMID:24132046

  16. Emergence of nanoscale inhomogeneity in the superconducting state of a homogeneously disordered conventional superconductor.

    PubMed

    Kamlapure, Anand; Das, Tanmay; Ganguli, Somesh Chandra; Parmar, Jayesh B; Bhattacharyya, Somnath; Raychaudhuri, Pratap

    2013-10-17

    The notion of spontaneous formation of an inhomogeneous superconducting state is at the heart of most theories attempting to understand the superconducting state in the presence of strong disorder. Using scanning tunneling spectroscopy and high resolution scanning transmission electron microscopy, we experimentally demonstrate that under the competing effects of strong homogeneous disorder and superconducting correlations, the superconducting state of a conventional superconductor, NbN, spontaneously segregates into domains. Tracking these domains as a function of temperature we observe that the superconducting domains persist across the bulk superconducting transition, Tc, and disappear close to the pseudogap temperature, T*, where signatures of superconducting correlations disappear from the tunneling spectrum and the superfluid response of the system.

  17. Resolving thermoelectric “paradox” in superconductors

    PubMed Central

    Shelly, Connor D.; Matrozova, Ekaterina A.; Petrashov, Victor T.

    2016-01-01

    For almost a century, thermoelectricity in superconductors has been one of the most intriguing topics in physics. During its early stages in the 1920s, the mere existence of thermoelectric effects in superconductors was questioned. In 1944, it was demonstrated that the effects may occur in inhomogeneous superconductors. Theoretical breakthrough followed in the 1970s, when the generation of a measurable thermoelectric magnetic flux in superconducting loops was predicted; however, a major crisis developed when experiments showed puzzling discrepancies with the theory. Moreover, different experiments were inconsistent with each other. This led to a stalemate in bringing theory and experiment into agreement. With this work, we resolve this stalemate, thus solving this long-standing “paradox,” and open prospects for exploration of novel thermoelectric phenomena predicted recently. PMID:26933688

  18. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    Superconductivity is the most dramatic and clear cut phenomenon in condensed matter physics. Realization of room temperature superconductors, which would lead to the revolution of our society, is an ultimate goal for researchers. The discovery of high Tc cuprate superconductors in 1986 by Bednorz and Müller triggered intensive research worldwide and the maximum critical temperature has been raised above 100 K. Scientific research on this break-through material clarified a new route to high Tc materials, carrier doping to a Mott insulator with anti-ferromagnetic ordering. High superconductivity occurs in the neighborhood of Mott-insulators and Fermi-metals. Such a view, which was completely new, now stands as a guiding principle for exploring new high Tc materials. Many theoretical approaches to the mechanism for cuprate superconductors have been carried out to understand this unexpected material and to predict new high Tc materials. In 2006 a new superconductor based on iron, LaFeOP, was discovered by a group at Tokyo Institute of Technology, Japan. Iron, as a ferromagnet, was believed to be the last element for the realization of superconductivity because of the way ferromagnetism competes against Cooper pair formation. Unexpectedly, however, the critical temperature remained at 4-6 K irrespective of hole/electron-doping. A large increase in the Tc to 26 K was then found in LaFe[O1-xFx]As by the same group (and was published on 23 February 2008, in the Journal of the American Chemical Society). The Tc of this material was further raised to 43 K under a pressure of 2 GPa and scientists in China then achieved a Tc of 56 K at ambient pressure by replacing La with other rare earth ions with smaller radius—a critical temperature that is second only to the high Tc cuprates. This fast progress has revitalized research within superconductivity and in 2008 there were more than seven international symposia specifically on Fe(Ni)-based superconductors. Through the rapid

  19. Optimization of a Non-arsenic Iron-based Superconductor for Wire Fabrication

    DOE PAGES

    Mitchell, Jonathan E; Hillesheim, D A; Bridges, Craig A; ...

    2015-03-13

    Here we report on the optimization of synthesis of iron selenide-based superconducting powders and the fabrication of selenide-based wire. The powders were synthesized by an ammonothermal method, whereby Ba is intercalated between FeSe layers to produce Ba x(NH 3) yFe 2Se 2, with tetragonal structure similar to AFe 2X 2 (X: As, Se), '122', superconductors. The optimal T c (up to 38 K) and Meissner and shielding superconducting fractions are obtained from the shortest reaction time (t) of reactants in liquid ammonia (30 min). With the increase of t, a second crystalline 122 phase, with a smaller unit cell, emerges.more » A small amount of NH 3 is released from the structure above ~200 °C, which results in loss of superconductivity. However, in the confined space of niobium/Monel tubing, results indicate there is enough pressure for some of NH 3 to remain in the crystal lattice, and thermal annealing can be performed at temperatures of up to 780 °C, increasing wire density and yielded a reasonable T c ≈ 16 K. Here, we report of the first successful wire fabrication of non-arsenic high-T c iron-based superconductor. We find that although bulk materials are estimated to carry critical current densities >100 kA cm ₋2 (4 K, self-field), the current transport within wires need to be optimized (J c ~ 1 kA cm ₋2).« less

  20. Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors

    NASA Astrophysics Data System (ADS)

    Garaud, Julien; Corticelli, Alberto; Silaev, Mihail; Babaev, Egor

    2018-02-01

    In multiband systems, such as iron-based superconductors, the superconducting states with locking and antilocking of the interband phase differences are usually considered as mutually exclusive. For example, a dirty two-band system with interband impurity scattering undergoes a sharp crossover between the s± state (which favors phase antilocking) and the s++ state (which favors phase locking). We discuss here that the situation can be much more complex in the presence of an external field or superconducting currents. In an external applied magnetic field, dirty two-band superconductors do not feature a sharp s±→s++ crossover but rather a washed-out crossover to a finite region in the parameter space where both s± and s++ states can coexist for example as a lattice or a microemulsion of inclusions of different states. The current-carrying regions such as the regions near vortex cores can exhibit an s± state while it is the s++ state that is favored in the bulk. This coexistence of both states can even be realized in the Meissner state at the domain's boundaries featuring Meissner currents. We demonstrate that there is a magnetic-field-driven crossover between the pure s± and the s++ states.

  1. Superconducting properties of copper oxide high-temperature superconductors

    PubMed Central

    Chen, Guanhua; Langlois, Jean-Marc; Guo, Yuejin; Goddard, William A.

    1989-01-01

    The equations for the magnon pairing theory of high-temperature copper-oxide-based superconductors are solved and used to calculate several properties, leading to results for specific heat and critical magnetic fields consistent with experimental results. In addition, the theory suggests an explanation of why there are two sets of transition temperatures (Tc ≈ 90 K and Tc ≈ 55 K) for the Y1Ba2Cu3O6+x class of superconductors. It also provides an explanation of why La2-xSrxCuO4 is a superconductor for only a small range of x (and suggests an experiment to independently test the theory). These results provide support for the magnon pairing theory of high-temperature superconductors. On the basis of the theory, some suggestions are made for improving these materials. PMID:16594038

  2. STS study on single crystal of noncentrosymmetric superconductor PbTaSe2

    NASA Astrophysics Data System (ADS)

    Ye, Zhiyang; Wu, Rui; Wang, Jihui; Liang, Xuejin; Mao, Hanqing; Zhao, Lingxiao; Chen, Genfu; Pan, Shuheng

    2015-03-01

    We report our low temperature scanning tunneling spectroscopic study on single crystals of noncentrosymmetric superconductor PbTaSe2. On the background of the normal state tunneling spectrum, a superconducting energy gap opens at a temperature below the bulk Tc = 3.7K. At t = 1.4K, the gap magnitude is estimated to be about 1meV. This energy gap is particle-hole symmetry and is homogeneous in space. Extrapolating the low energy part of the spectrum, we find that the low energy part of the gap spectrum is linear like ``V'' shape. We will present the results of the numerical fit with various gap functions of proposed possible pairing symmetry. We will also present our preliminary results of the magnetic field dependence measurement and discuss the implications of these observations.

  3. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  4. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  5. Competing Quantum Orderings in Cuprate Superconductors:

    NASA Astrophysics Data System (ADS)

    Martin, I.; Ortiz, G.; Balatsky, A. V.; Bishop, A. R.

    We present a minimal model for cuprate superconductors. At the unrestricted mean-field level, the model produces homogeneous superconductivity at large doping, striped superconductivity in the underdoped regime and various antiferromagnetic phases at low doping and for high temperatures. On the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. The model is applied to calculate experimentally measurable ARPES spectra.

  6. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  7. Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel

    Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (Tbulk Meissner expulsion in single crystals and bulk flux trapping with nearly-Bean-model profiles due to flux pinning in polycrystalline samples.« less

  8. Disorder-induced topological phase transitions in two-dimensional spin-orbit coupled superconductors

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Xiao, Di; Chang, Kai; Shen, Shun-Qing; Zhang, Zhenyu

    2016-12-01

    Normal superconductors with Rashba spin-orbit coupling have been explored as candidate systems of topological superconductors. Here we present a comparative theoretical study of the effects of different types of disorder on the topological phases of two-dimensional Rashba spin-orbit coupled superconductors. First, we show that a topologically trivial superconductor can be driven into a chiral topological superconductor upon diluted doping of isolated magnetic disorder, which close and reopen the quasiparticle gap of the paired electrons in a nontrivial manner. Secondly, the superconducting nature of a topological superconductor is found to be robust against Anderson disorder, but the topological nature is not, converting the system into a topologically trivial state even in the weak scattering limit. These topological phase transitions are distinctly characterized by variations in the topological invariant. We discuss the central findings in connection with existing experiments, and provide new schemes towards eventual realization of topological superconductors.

  9. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, E.R.

    1999-06-22

    An oxide superconductor composite having improved texture and durability is disclosed. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor. 1 fig.

  10. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, Eric R.

    1999-01-01

    An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.

  11. Electron refrigeration in hybrid structures with spin-split superconductors

    NASA Astrophysics Data System (ADS)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  12. New Fe-based superconductors: properties relevant for applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putti, M; Pallecchi, I; Bellingeri, E

    2009-01-01

    Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O, F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length and unconventional pairing. On the other hand, the Fe-based superconductors have metallic parent compounds and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, and the supposed order parameter symmetry is s-wave, thus in principle not so detrimental to current transmission across grain boundaries.more » From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviors and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest T{sub c}, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates. On the other hand, the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the T{sub c} of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, and intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families.« less

  13. Ab-initio study of C15-type Laves phase superconductor LaRu2

    NASA Astrophysics Data System (ADS)

    Kholil, Md. Ibrahim; Islam, Md. Shahinur; Rahman, Md. Atikur

    2017-01-01

    Structural, elastic, electronic, optical, thermodynamic, and superconducting properties of the Laves phase superconductor LaRu2 with Tc 1.63 K were investigated using the first-principles calculations for the first time. The corresponding evaluated structural parameters are in good agreement with the available theoretical values. The different elastic properties like as, elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν were calculated using the Voigt-Reuss-Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh's ratio. The band structure and Cauchy pressure shows that the material behaves metallic nature. The calculated total density of state is 6.80 (electrons/eV) of LaRu2. The optical properties such as reflectivity, absorption spectrum, refractive index, dielectric function, conductivity, and energy loss spectrum are also calculated. The photoconductivity reveals the metallic nature of LaRu2 and absorption coefficient is good in the infrared region. The evaluated density and Debye temperature are 9.55 gm/cm3 and 110.51 K, respectively. In addition, the study of thermodynamic properties like as minimum thermal conductivity, melting temperature, and Dulong-Petit limit are 0.26 (Wm-1 K-1), 1,471.65 K, and 74.80 (J/mole K), respectively. Finally, the investigated electron-phonon coupling constant is 0.66 of LaRu2 superconductor.

  14. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental

  15. Rotordynamic Characterization of a Hybrid Superconductor Magnet Bearing

    NASA Technical Reports Server (NTRS)

    Ma, Ki B.; Xia, Zule H.; Cooley, Rodger; Fowler, Clay; Chu, Wei-Kan

    1996-01-01

    A hybrid superconductor magnet bearing uses magnetic forces between permanent magnets to provide lift and the flux pinning force between permanent magnets and superconductors to stabilize against instabilities intrinsic to the magnetic force between magnets. We have constructed a prototype kinetic energy storage system, using a hybrid superconductor magnet bearing to support a 42 lb. flywheel at the center. With five sensors on the periphery of the flywheel, we have monitored the position and attitude of the flywheel during its spin down. The results indicate low values of stiffnesses for the bearing. The implications of this and other consequences will be discussed.

  16. Interaction between light and superconductors

    NASA Astrophysics Data System (ADS)

    Gilabert, Alain

    In the first part of this review article we resume briefly the fundamental aspect of the photon-superconductor interaction. The emphase is focused on the characteristic times and on the phenomenological models (the T*, the μ* models and the model of the kinetics equations) describing the out of equilibrium superconductivity. The experiments made on classical illuminated superconductors especially on tunnel junctions are then reported. In the second part we present the applied aspect of the photon-superconductor interaction. The interaction of the light with the high Tc superconductors is reviewed in the last part. Dans la première partie de cet article de revue, on résume brièvement 1'aspect fondamental de l'action des photons sur les supraconducteurs en s'attachant surtout à rappeler les différents temps caractéristiques de cette interaction et les modèles phénoménologiques (le modèle T*, le modèle μ*, le modèle des équations cinétiques) décrivant la supraconductivité hors équilibre. La seconde partie rappelle les expériences réalisées sur les supraconducteurs classiques illuminés et spécialement les jonctions tunnel ainsi que certaines applications de la supraconductivité hors équilibre comme les liens faibles controllables par des moyens optiques. La dernière partie est consacrée aux nouvelles expériences qui démarrent concernant l'action de la lumière sur les supraconducteurs à hautes températures critiques.

  17. Ambient-temperature superconductor symetrical metal-dihalide bis-(ethylenedithio)-tetrathiafulvalene compounds

    DOEpatents

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1987-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K. which is high for organic superconductors.

  18. Disorder-induced topological phase transitions in two-dimensional spin-orbit coupled superconductors

    PubMed Central

    Qin, Wei; Xiao, Di; Chang, Kai; Shen, Shun-Qing; Zhang, Zhenyu

    2016-01-01

    Normal superconductors with Rashba spin-orbit coupling have been explored as candidate systems of topological superconductors. Here we present a comparative theoretical study of the effects of different types of disorder on the topological phases of two-dimensional Rashba spin-orbit coupled superconductors. First, we show that a topologically trivial superconductor can be driven into a chiral topological superconductor upon diluted doping of isolated magnetic disorder, which close and reopen the quasiparticle gap of the paired electrons in a nontrivial manner. Secondly, the superconducting nature of a topological superconductor is found to be robust against Anderson disorder, but the topological nature is not, converting the system into a topologically trivial state even in the weak scattering limit. These topological phase transitions are distinctly characterized by variations in the topological invariant. We discuss the central findings in connection with existing experiments, and provide new schemes towards eventual realization of topological superconductors. PMID:27991541

  19. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors

    PubMed Central

    He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.

    2014-01-01

    Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649

  20. Viscous flux flow velocity and stress distribution in the Kim model of a long rectangular slab superconductor

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Chai, Xueguang

    2018-05-01

    When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* < 0 can be kept for any value of B a when the rate db a /dt is greater than a certain value. There is an extreme value for any curve of maximum stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.

  1. Ultrasonic and elastic properties of Tl- and Hg-Based cuprate superconductors: a review

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.

    2018-01-01

    This review is regarding the ultrasonic and elastic properties of Tl- and Hg-based cuprate superconductors. The objectives of this paper were to review the ultrasonic attenuation above the transition temperature ?, and sound velocity and elastic anomalies at ? in the Tl- and Hg-based cuprate superconductors. A discontinuity in the sound velocity and elastic moduli is observed near ? for the Hg-based and other cuprate high temperature superconductor but not the Tl-based superconductor. Ultrasonic attenuation peaks are observed between 200 and 250 K in almost all Tl- and Hg-based cuprate superconductors reported. These peaks were attributed to lattice stepping and oxygen ordering in the Tl-O and Hg-O layers. Some Tl- and Hg-based superconductors show attenuation peak near ?. However, this is not a common feature for the cuprate superconductors. The ultrasonic attenuation decrease rate below ? is slower than that expected from a Bardeen-Cooper-Schrieffer (BCS) and pseudo-gapped superconductor.

  2. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  3. Superconductor Permanent Magnets for Advanced Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Putman, Phil; Zhou, Yuxiang; Salama, Kamel; Robertson, Tony; Bond, Deborah D.

    2005-02-01

    Improved trapped fields of 17 T at 29 K and 11.2 T at 47 K have been reported for the melt-textured YBCO superconductor material. Such high field strengths give the possibility for producing superconductor permanent magnets (SCPM) for plasma-related space propulsion applications, such as the anti-matter trap, magnetohydrodynamic (MHD) propulsion and electrical power generation, and others that are under development or being studied. The SCPM could be beneficial in reducing the weight-to-power ratio for the associated delivery and containment systems needed for plasma interactions that are inherently imbedded in many of these propulsion systems. In this paper, a review of the superconductor literature is presented, followed by uses of the SCPM in high-performance space propulsion applications.

  4. High Tc superconductors as thermal radiation shields

    NASA Astrophysics Data System (ADS)

    Zeller, A. F.

    1990-06-01

    The feasibility of using high-Tc superconductor films as IR-radiation shields for liquid-helium-temperature dewars is investigated. Calculations show that a Ba-Ca-Sr-Cu-O superconductor with Tc of 110 K, combined with a liquid-nitrogen temperature shield with an emissivity of 0.03 should produce an upper limit to the radiative heat transfer of 15 mW/sq m. The reduction of reflectivity depends on the field level and the extent of field penetration into the superconductor film, whose surface also would provide magnetic shielding for low magnetic fields. Such shields, providing both magnetic and thermal radiation shielding would be useful for spaceborne applications where exposure to the degrading effects of moist air would not be a problem.

  5. Optical Studies of Thin Film and Bulk Superconductor Yttrium BARIUM(2) COPPER(3) OXYGEN(7-DELTA)

    NASA Astrophysics Data System (ADS)

    Sengupta, Louise Clare

    transport properties of the material was also studied. Finally, in another series of investigations, we have also studied the effects of laser irradiation on YBaCuO in various gaseous ambients. This Raman microprobe study can be used for high resolution lithography.

  6. Identifying the genes of unconventional high temperature superconductors.

    PubMed

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d -orbitals of cations that participate in strong in-plane couplings to the p -orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  7. Method and apparatus to trigger superconductors in current limiting devices

    DOEpatents

    Yuan, Xing; Hazelton, Drew Willard; Walker, Michael Stephen

    2004-10-26

    A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.

  8. Electromagnetic properties of impure superconductors with pair-breaking processes

    NASA Astrophysics Data System (ADS)

    Herman, František; Hlubina, Richard

    2017-07-01

    Recently, a generic model was proposed for the single-particle properties of gapless superconductors with simultaneously present pair-conserving and pair-breaking impurity scatterings (the so-called Dynes superconductors). Here we calculate the optical conductivity of the Dynes superconductors. Our approach is applicable for all disorder strengths from the clean limit up to the dirty limit and for all relative ratios of the two types of scattering; nevertheless, the complexity of our description is equivalent to that of the widely used Mattis-Bardeen theory. We identify two optical fingerprints of the Dynes superconductors: (i) the presence of two absorption edges and (ii) finite absorption at vanishing frequencies even at the lowest temperatures. We demonstrate that the recent anomalous optical data on thin MoN films can be reasonably fitted by our theory.

  9. Tunneling conductance in semiconductor-superconductor hybrid structures

    NASA Astrophysics Data System (ADS)

    Stenger, John; Stanescu, Tudor D.

    2017-12-01

    We study the differential conductance for charge tunneling into a semiconductor wire-superconductor hybrid structure, which is actively investigated as a possible scheme for realizing topological superconductivity and Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using both a Blonder-Tinkham-Klapwijk approach and a Keldysh nonequilibrium Green's function method. The dependence of various tunneling conductance features on the coupling strength between the semiconductor and the superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs, has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular, the presence of subgap states in the parent superconductor, due to disorder and finite magnetic fields, leads to characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties are discussed.

  10. Rigid levitation, flux pinning, thermal depinning and fluctuation in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Brandt, E. H.

    1991-01-01

    Here, the author shows that the strong velocity-independent frictional force on a levitating superconductor and on any type-II superconductor moving in a homogeneous magnetic field is caused by pinning and depinning of the magnetic flux lines in its interior. Levitation may thus be used to investigate the pinning properties of a superconductor, and friction in a superconductor bearing may be minimized by choosing appropriate materials and geometries.

  11. Microwave absorption studies on high-T sub c superconductors and related materials 7--ESR of DPPH coated on a thin BiSrCaCuO film fabricated on MgO(100) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugawara, K.; Sugimoto, T.; Shiohara, Y.

    1992-05-10

    In this paper, ESR of DPPH coated on a Bi-Sr-Ca-Cu-O (BSCCO) film (350 {Angstrom} thick) fabricated on MgO(100) substrate by MOCVD is studied. Temperature dependence of the ESR peak-to-peak linewidth, {Delta}H{sub pp}, and the effect of applied magnetic field on {Delta}H{sub pp} are below about 100 K. The results are compared with those of ESR of DPPH coated on ceramic Y-Ba-Cu-O samples (powder and bulk) made by the MPMG method. The DPPH ESR for the BSCCO film reveals that {Delta}H{sub pp} was independent of applied magnetic field up to about 9 kG. In addition, no similarity between the temperature dependencemore » of the excess ESR linewidth of the DPPH and that of critical current density was found for the BSCCO film. These results for the BSCCO film are different from those for the MPMG YBCO samples.« less

  12. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  13. Evaluation methods and evaporation conditions for low-resistivity contacts on high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Liu, Y. P.; Warner, K.; Chan, C.; Chen, K.; Markiewicz, R.

    1989-12-01

    Low-resistivity contacts to bulk high-Tc superconductors have been prepared by resistive evaporation with values of rho-s (ohm sq cm) as low as 10 to the -10th (77 K) for Ag/YBaCuO, 10 to the -9th (77 K) for Ag/TlPbBaCaCuO, and 10 to the 7th (60 K) for Ag/BiCaSrCuO. It was found that rho-s is improved by increasing the length of a preevaporation step. This effect has been further investigated by secondary ion-mass spectrometry analysis on several Ag/Si samples. Both three-terminal and four-terminal methods have been used to determine rho-s; the three-terminal method shows less dependency on the sample/contact geometry for measurements taken above Tc.

  14. Muon spin rotation study of the topological superconductor SrxBi2Se3

    NASA Astrophysics Data System (ADS)

    Leng, H.; Cherian, D.; Huang, Y. K.; Orain, J.-C.; Amato, A.; de Visser, A.

    2018-02-01

    We report transverse-field (TF) muon spin rotation experiments on single crystals of the topological superconductor SrxBi2Se3 with nominal concentrations x =0.15 and 0.18 (Tc˜3 K). The TF spectra (B =10 mT), measured after cooling to below Tc in field, did not show any additional damping of the muon precession signal due to the flux line lattice within the experimental uncertainty. This puts a lower bound on the magnetic penetration depth λ ≥2.3 μ m . However, when we induce disorder in the vortex lattice by changing the magnetic field below Tc, a sizable damping rate is obtained for T →0 . The data provide microscopic evidence for a superconducting volume fraction of ˜70 % in the x =0.18 crystal and thus bulk superconductivity.

  15. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  16. Chemical stability of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  17. Fractional Josephson vortices in two-gap superconductor long Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kim, Ju

    2014-03-01

    We investigated the phase dynamics of long Josephson junctions (LJJ) with two-gap superconductors in the broken time reversal symmetry state. In this LJJ, spatial phase textures (i-solitons) can be excited due to the presence of two condensates and the interband Joesphson effect between them. The presence of a spatial phase texture in each superconductor layer leads to a spatial variation of the critical current density between the superconductor layers. We find that this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in Josephson vortices with fractional flux quanta. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, the fractionalization of a Josephson vortex arises as a response to either periodic or random excitation of i-solitions. This suggests that magnetic flux measurements may be used to probe i-soliton excitations in multi-gap superconductor LJJs.

  18. Synthesizing new, high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Weaver, Claire; Aronson, Meigan

    2015-03-01

    Currently, there is no accepted theory behind type-II, high-temperature superconductors, but there is a distinct relationship between anti-ferromagnetism and superconductivity. Our research focuses on synthesizing new superconducting materials by observing the link between atomic structure and magnetic moments of anti-ferromagnetic compounds and attempting to reproduce the molecular physics of these known materials in new compounds. Consider the square-planar arrangement of the transition metal Fe in the Fe-pnictide superconductors of the ZrCuSiAs ``11 11'' and the ThCr2Si2 ``122'' structure types. We believe that the physics behind this superconductor, where Fe has d6 valence electrons, contributes to the superconducting state, not the presence of Fe itself. For this reason, we are synthesizing materials containing neighboring transition metals, like Mn and Co, combined with other elements in similar crystal lattice arrangements, having ionization properties that hopefully impose d6 valence electrons on the transition metals. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  19. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  20. Composition variations in pulsed-laser-deposited Y-Ba-Cu-O thin films as a function of deposition parameters

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Jones, B. B.; Hunt, B. D.; Barner, J. B.; Vasquez, R. P.; Bajuk, L. J.

    1992-01-01

    The composition of pulsed-ultraviolet-laser-deposited Y-Ba-Cu-O films was examined as a function of position across the substrate, laser fluence, laser spot size, substrate temperature, target conditioning, oxygen pressure and target-substrate distance. Laser fluence, laser spot size, and substrate temperature were found to have little effect on composition within the range investigated. Ablation from a fresh target surface results in films enriched in copper and barium, both of which decrease in concentration until a steady state condition is achieved. Oxygen pressure and target-substrate distance have a significant effect on film composition. In vacuum, copper and barium are slightly concentrated at the center of deposition. With the introduction of an oxygen background pressure, scattering results in copper and barium depletion in the deposition center, an effect which increases with increasing target-substrate distance. A balancing of these two effects results in stoichiometric deposition.

  1. Holographic superconductors in Einstein-æther gravity

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Wu, Yumei

    2017-11-01

    In this paper, we apply Anti-de Sitter (AdS) black hole solution of the Einstein-æther theory to the study of the holographic superconductor and show that the AdS black hole solution can be rewritten in some very simple forms, from which it is easy to identify the locations of various killing horizons. Then, we investigate the different effects of these horizons on the holographic superconductor.

  2. Bulk Superconductivity Induced by In-Plane Chemical Pressure Effect in Eu0.5La0.5FBiS2-xSex

    NASA Astrophysics Data System (ADS)

    Jinno, Gen; Jha, Rajveer; Yamada, Akira; Higashinaka, Ryuji; Matsuda, Tatsuma D.; Aoki, Yuji; Nagao, Masanori; Miura, Osuke; Mizuguchi, Yoshikazu

    2016-12-01

    We have investigated the Se substitution effect on the superconductivity of optimally doped BiS2-based superconductor Eu0.5La0.5FBiS2. Eu0.5La0.5FBiS2-xSex samples with x = 0-1 were synthesized. With increasing x, in-plane chemical pressure is enhanced. For x ≥ 0.6, superconducting transitions with a large shielding volume fraction are observed in magnetic susceptibility measurements, and the highest Tc is 3.8 K for x = 0.8. From low-temperature electrical resistivity measurements, a zero-resistivity state is observed for all the samples, and the highest Tc is observed for x = 0.8. With increasing Se concentration, the characteristic electrical resistivity changes from semiconducting-like to metallic, suggesting that the emergence of bulk superconductivity is linked with the enhanced metallicity. A superconductivity phase diagram of the Eu0.5La0.5FBiS2-xSex superconductor is established.

  3. Hybrid crystals of cuprates and iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Xia, Dai; Cong-Cong, Le; Xian-Xin, Wu; Jiang-Ping, Hu

    2016-07-01

    We propose two possible new compounds, Ba2CuO2Fe2As2 and K2CuO2Fe2Se2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO2 layers and antifluorite-type Fe2 X 2 (X = As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high T c superconductivity. Project supported by the National Basic Research Program of China (Grant No. 2015CB921300), the National Natural Science Foundation of China (Grant Nos. 1190020 and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07000000).

  4. Temperature dependence of differential conductance in Co-based Heusler alloy Co2TiSn and superconductor Pb junctions

    NASA Astrophysics Data System (ADS)

    Ooka, Ryutaro; Shigeta, Iduru; Umetsu, Rie Y.; Nomura, Akiko; Yubuta, Kunio; Yamauchi, Touru; Kanomata, Takeshi; Hiroi, Masahiko

    2018-05-01

    We investigated temperature dependence of differential conductance G (V) in planar junctions consisting of Co-based Heusler alloy Co2TiSn and superconductor Pb. Ferromagnetic Co2TiSn was predicted to be half-metal by first-principles band calculations. The spin polarization P of Co2TiSn was deduced to be 60.0% at 1.4 K by the Andreev reflection spectroscopy. The G (V) spectral shape was smeared gradually with increasing temperature and its structure was disappeared above the superconducting transition temperature Tc. Theoretical model analysis revealed that the superconducting energy gap Δ was 1.06 meV at 1.4 K and the Tc was 6.8 K , indicating that both values were suppressed from bulk values. However, the temperature dependent Δ (T) behavior was in good agreement with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The experimental results exhibit that the superconductivity of Pb attached to half-metallic Co2TiSn was kept the conventional BCS mechanism characterized strong-coupling superconductors while its superconductivity was slightly suppressed by the superconducting proximity effect at the Co2TiSn/Pb interface.

  5. Equilibrium properties of superconducting niobium at high magnetic fields: A possible existence of a filamentary state in type-II superconductors [Possible existence of a filamentary state in type-II superconductors

    DOE PAGES

    Kozhevnikov, V.; Valente-Feliciano, A. -M.; Curran, P. J.; ...

    2017-05-17

    The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field H c2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dcmore » magnetometry, electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above H c2 and the field H c3 is the same in both parallel and perpendicular fields. Our findings suggest that above H c2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near H c2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at H c3. Finally, our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.« less

  6. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2016-05-01

    Recent experiments have demonstrated that the metamaterial approach is capable of a drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al -A l2O3 ENZ core-shell metamaterials. Here, we perform theoretical modeling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modeling and experimental results in both aluminum- and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium-, Mg B2- , and H2S -based metamaterial superconductors is evaluated. The Mg B2 -based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of a H2S -based metamaterial Tc appears to reach ˜250 K.

  7. Nonlinear electrodynamics of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Zutic, Igor

    We investigate the effects of nonlinear electrodynamics in unconventional superconductors. These effects can serve as fingerprints to identify the symmetry of the superconducting pairing state and to provide information about the unknown pairing mechanism in High Temperature Superconductors (HTSC). In the Meissner regime, at low temperatures, a nonlinear magnetic response arises from the presence of lines on the Fermi surface where the superconducting energy gap is very small or zero. This can be used to perform "node spectroscopy", that is, as a sensitive bulk probe to locate the angular position of those lines. We first compute the nonlinear magnetic moment as a function of applied field and geometry, assuming d-wave pairing and anisotropic penetration depth, for realistic finite sample. Our novel, numerically implemented, perturbative procedure exploits the small ratio of the penetration depths to the sample size and substantially reduces the computational work required. We next generalize these considerations to other candidates for the energy gap and to perform node spectroscopy. In calculating the nonlinear supercurrent response, we include the effects of orthorhombic distortion and a-b plane anisotropy. Analytic results presented demonstrate a systematic way to experimentally distinguish order parameters of different symmetries, including cases with mixed symmetry (for example, d+s and s+id). We finally extend our findings to the case of low frequency harmonic magnetic field. The nonlinear magnetic response for various physical quantities generates higher harmonics of the frequency of the applied field. We discuss how examination of the field and angular dependences of these harmonics allows determination of the structure of the energy gap. We show how to distinguish nodes from small minima ("quasinodes"). Gaps with nodal lines give rise to universal power law field dependences for the nonlinear magnetic moment and torque. They both have separable temporal

  8. Magnetic excitations in iron chalcogenide superconductors.

    PubMed

    Kotegawa, Hisashi; Fujita, Masaki

    2012-10-01

    Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe 1- x Te x and alkali-metal-doped A x Fe 2- y Se 2 ( A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the Co-substitution and applied pressure. The isovalent compound FeTe has a magnetic ordering with different wave vector from that of other Fe-based magnetic materials. The transition temperature T c of FeSe increases with Te substitution in FeSe 1- x Te x with small x , and decreases in the vicinity of the end member FeTe. The spin fluctuations are drastically modified by the Te substitution. In the vicinity of the end member FeTe, the low-energy part of the spin fluctuation is dominated by the wave vector of the ordered phase of FeTe; however, the reduction of T c shows that it does not support superconductivity. The presence of same wave vector as that of other Fe-based superconductors in FeSe 1- x Te x and the observation of the resonance mode demonstrate that FeSe 1- x Te x belongs to the same group as most of other Fe-based superconductors in the entire range of x , where superconductivity is mediated by the spin fluctuations whose wave vector is the same as the nesting vector between the hole pockets and the electron pockets. On the other hand, the spin fluctuations differ for alkali-metal-doped A x Fe 2- y Se 2 and FeSe or other Fe-based superconductors in their wave vector and strength in the low-energy part, most likely because of the different Fermi surfaces. The resonance mode with different wave vector suggests that A x Fe 2- y Se 2 has an exceptional superconducting symmetry among Fe-based superconductors.

  9. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Schnyder, Andreas P.

    2014-11-01

    While the topological classification of insulators, semimetals, and superconductors in terms of nonspatial symmetries is well understood, less is known about topological states protected by crystalline symmetries, such as mirror reflections and rotations. In this work, we systematically classify topological semimetals and nodal superconductors that are protected, not only by nonspatial (i.e., global) symmetries, but also by a crystal reflection symmetry. We find that the classification crucially depends on (i) the codimension of the Fermi surface (nodal line or point) of the semimetal (superconductor), (ii) whether the mirror symmetry commutes or anticommutes with the nonspatial symmetries, and (iii) how the Fermi surfaces (nodal lines or points) transform under the mirror reflection and nonspatial symmetries. The classification is derived by examining all possible symmetry-allowed mass terms that can be added to the Bloch or Bogoliubov-de Gennes Hamiltonian in a given symmetry class and by explicitly deriving topological invariants. We discuss several examples of reflection-symmetry-protected topological semimetals and nodal superconductors, including topological crystalline semimetals with mirror Z2 numbers and topological crystalline nodal superconductors with mirror winding numbers.

  10. EDITORIAL: The electromagnetic properties of iron-based superconductors The electromagnetic properties of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Prozorov, Ruslan; Gurevich, Alex; Luke, Graeme

    2010-05-01

    Iron-based superconductors, discovered just a few years ago, are members of a diverse family of pnictides and chalcogenides which may potentially contain hundreds of superconducting compounds. The unconventional, multiband superconductivity in these materials most likely emerges from the quintessential magnetic Fe ions. Along with many similarities to the high-Tc cuprates, the proximity of antiferromagnetism to superconductivity in these semi-metallic materials has attracted much attention. The massive effort aimed at understanding superconductivity in the high-Tc cuprates has stimulated the development of numerous state-of-the-art experimental techniques, improved crystal growth methods and a variety of new theoretical insights. These tools and models were already available and readily applied to the new iron-based superconductors for which lots of high quality new results are being reported literally every day. The current special section represents only a snapshot of these extensive studies performed in the second half of 2009, less than two years after the discovery of 26 K superconductivity in the LaFeAsO compound. The range of various experiments is impressive and this issue is mostly focused on the electromagnetic properties of these iron-based materials. The electromagnetic response is sensitive to the microscopic electronic behavior and therefore can be used to probe the mechanism of superconductivity. On the other hand, it is the electromagnetic response that determines many possible applications of these superconductors, particularly given their extremely high upper critical fields. At this point it is already quite clear that the iron-based superconductors cannot unambiguously fit into any known type of superconductor class and have been placed in one of their own. The metallic ground state of the parent compounds is different from the insulating state of the cuprates and generally exhibits a lower electromagnetic anisotropy. However, similar to the

  11. Spontaneous Hall effect in a chiral p-wave superconductor

    NASA Astrophysics Data System (ADS)

    Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred

    2001-08-01

    In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.

  12. Interaction between fractional Josephson vortices in multi-gap superconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kim, Ju H.

    In a long Josephson junction (LJJ) with two-band superconductors, fractionalization of Josephson vortices (fluxons) can occur in the broken time reversal symmetry state when spatial phase textures (i-solitons) are excited. Excitation of i-solitons in each superconductor layer of the junction, arising due to the presence of two condensates and the interband Josephson effect, leads to spatial variation of the critical current density between the superconductor layers. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in fractional fluxons with large and small fraction of flux quantum. Similar to fluxons in one-band superconductor LJJ, these fractional fluxons are found to interact with each other. The interaction between large and small fractional fluxons determines the size of a fluxon which includes two (one large and one small) fractional fluxons. We discuss the nature of interaction between fractional fluxons and suggest that i-soliton excitations in multi-gap superconductor LJJs may be probed by using magnetic flux measurements.

  13. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Zhang, Mingliang; Gao, Dong

    2014-02-01

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.

  14. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yong; Zhang, Mingliang, E-mail: niudun12@126.com; Gao, Dong

    2014-02-14

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improvedmore » image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.« less

  15. Rotational response of superconductors: Magnetorotational isomorphism and rotation-induced vortex lattice

    NASA Astrophysics Data System (ADS)

    Babaev, Egor; Svistunov, Boris

    2014-03-01

    The analysis of nonclassical rotational response of superfluids and superconductors was performed by Onsager [Onsager, Nuovo Cimento, Suppl. 6, 279 (1949), 10.1007/BF02780991] and London [Superfluids (Wiley, New York, 1950)] and crucially advanced by Feynman [Prog. Low Temp. Phys. 1, 17 (1955), 10.1016/S0079-6417(08)60077-3]. It was established that, in the thermodynamic limit, neutral superfluids rotate by forming—without any threshold—a vortex lattice. In contrast, the rotation of superconductors at angular frequency Ω—supported by uniform magnetic field BL∝Ω due to surface currents—is of the rigid-body type (London law). Here we show that, neglecting the centrifugal effects, the behavior of a rotating superconductor is identical to that of a superconductor placed in a uniform fictitious external magnetic field H ˜=-BL. In particular, the isomorphism immediately implies the existence of two critical rotational frequencies in type-2 superconductors.

  16. Neutron Depolarization in Superconductors

    NASA Astrophysics Data System (ADS)

    Zhuchenko, N. K.

    1995-04-01

    The dependences of neutron depolarization on applied magnetic field are deduced along the magnetization hysteresis loop in terms of the Bean model of the critical state. The depolarization in uniaxial superconductors with the reversible magnetization, including uniaxial magnetic superconductors, is also considered. A strong depolarization is expected if the neutrons travel along the vortex lines. On calcule la dépendance en champ magnétique de la dépolarisation des neutrons le long du cycle d'hystérésis en termes du modèle critique de Bean. On considère aussi la dépolarisation dans les supraconducteurs uniaxiaux en fonction de l'aimantation réversible, y compris pour les supraconducteurs magnétiques. On attend une forte dépolarisation si les neutrons se propagent le long des vortex.

  17. Improved ambient-pressure organic superconductor. [Bis(ethylenedithio)TTF-MX/sub 2/

    DOEpatents

    Williams, J.M.; Wang, Hsien-Hau; Beno, M.A.

    1985-05-29

    Disclosed is a new class of organic superconductors having the formula (ET)/sub 2/MX/sub 2/ wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET)/sub 2/AuI/sub 2/ exhibits a transition temperature of 5/sup 0/K which is high for organic superconductors.

  18. Low-energy surface states in the normal state of α - PdBi 2 superconductor

    DOE PAGES

    Choi, Hongchul; Neupane, Madhab; Sasagawa, T.; ...

    2017-08-25

    Topological superconductors as characterized by Majorana surface states have been actively searched for their significance in fundamental science and technological implication. The large spin-orbit coupling in Bi-Pd binaries has stimulated extensive investigations on the topological surface states in these superconducting compounds. Here we report a study of normal-state electronic structure in a centrosymmetric α-PdBi 2 within density functional theory calculations. By investigating the electronic structure from the bulk to slab geometries in this system, we predict for the first time that α-PdBi 2 can host orbital-dependent and asymmetric Rashba surface states near the Fermi energy. This study suggests that α-PdBimore » 2 will be a good candidate to explore the relationship between superconductivity and topology in condensed matter physics.« less

  19. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor; Smolyaninova, Vera

    Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  20. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.

    2013-10-01

    A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  1. Superconductor Digital-RF Receiver Systems

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  2. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  3. Weak links in high critical temperature superconductors

    NASA Astrophysics Data System (ADS)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  4. Isotope and multiband effects in layered superconductors.

    PubMed

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  5. Method for preparing preferentially oriented, high temperature superconductors using solution reagents

    DOEpatents

    Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2002-01-01

    A multi-domained bulk REBa.sub.2 CU.sub.3 O.sub.x with low-angle domain boundaries which resemble a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa.sub.2 CU.sub.3 O.sub.x pieces, textured substrates comprises of grains with low misorientation angles, or thick film REBa.sub.2 CU.sub.3 O.sub.x deposited on such textured substrate, such seeds being tailored for various REBa.sub.2 CU.sub.3 O.sub.x compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa.sub.2 CU.sub.3 O.sub.x elements of virtually unlimited size and complex geometry can be fabricated.

  6. Symmetry-Enforced Line Nodes in Unconventional Superconductors [Nodal-Line Superconductors and Band-Sticking

    DOE PAGES

    Micklitz, T.; Norman, M. R.

    2017-05-18

    We classify line nodes in superconductors with strong spin-orbit interactions and time-reversal symmetry, where the latter may include nonprimitive translations in the magnetic Brillouin zone to account for coexistence with antiferromagnetic order. We find four possible combinations of irreducible representations of the order parameter on high-symmetry planes, two of which allow for line nodes in pseudospin-triplet pairs and two that exclude conventional fully gapped pseudospin-singlet pairs. We show that the former can only be realized in the presence of band-sticking degeneracies, and we verify their topological stability using arguments based on Clifford algebra extensions. Lastly, our classification exhausts all possiblemore » symmetry protected line nodes in the presence of spin-orbit coupling and a (generalized) time-reversal symmetry. Implications for existing nonsymmorphic and antiferromagnetic superconductors are discussed.« less

  7. Conventional magnetic superconductors

    DOE PAGES

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  8. A minimal model of striped superconductors

    NASA Astrophysics Data System (ADS)

    Martin, I.; Ortiz, G.; Balatsky, A. V.; Bishop, A. R.

    2001-12-01

    We present a minimal model of high-temperature superconductors that simultaneously supports antiferromagnetic stripes and d-wave superconductivity. At the unrestricted mean-field level, the various phases of the cuprates, including weak and strong pseudogap phases, and two different types of superconductivity in the underdoped and the overdoped regimes, find a natural interpretation. We argue that on the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. On the overdoped side, the state is overall homogeneous and the superconductivity is of a classical BCS type.

  9. Aluminum-stabilized NB3SN superconductor

    DOEpatents

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  10. Monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Barfknecht, Andrew T. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Clayton, Stanley R. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  11. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  12. Iron chalcogenide superconductors at high magnetic fields

    PubMed Central

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  13. Method for preparing superconductors

    DOEpatents

    Dahlgren, Shelley D.

    1976-01-01

    A superconductor having an equiaxed fine grain beta-tungsten crystalline structure found to have improved high field critical current densities is prepared by sputter-depositing superconductive material onto a substrate cooled to below 200.degree. C. and heat-treating the deposited material.

  14. High-Tc superconducting microbolometer for terahertz applications

    NASA Astrophysics Data System (ADS)

    Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.

    2002-05-01

    Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.

  15. Possible field-tuned superconductor-insulator transition in high-Tc superconductors: implications for pairing at high magnetic fields.

    PubMed

    Steiner, M A; Boebinger, G; Kapitulnik, A

    2005-03-18

    The behavior of some high temperature superconductors (HTSC), such as La(2-x)Sr(x)CuO(4) and Bi(2)Sr(2-x)La(x)CuO(6 + delta), at very high magnetic fields, is similar to that of thin films of amorphous InOx near the magnetic-field-tuned superconductor-insulator transition. Analyzing the InOx data at high fields in terms of persisting local pairing amplitude, we argue by analogy that the local pairing amplitude also persists well into the dissipative state of the HTSCs, the regime commonly denoted as the "normal state" in very high magnetic field experiments.

  16. Vortex cutting in superconductors

    DOE PAGES

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; ...

    2016-08-09

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less

  17. Vortex cutting in superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less

  18. Microstructure and critical current density in MgB2 bulk made of 4.5 wt% carbon-coated boron

    NASA Astrophysics Data System (ADS)

    Higuchi, M.; Muralidhar, M.; Jirsa, M.; Murakami, M.

    2017-07-01

    Superconducting performance and its uniformity was studied in the single-step sintered MgB2 bulk prepared with 4.5 wt% of carbon in the carbon-encapsulated boron. The 20 mm in diameter MgB2 pellet was cut into several pieces from bottom to top and the microstructure, superconducting transition temperature (Tc onset), and critical current density at 20 K were studied. DC magnetization measurements showed a sharp superconducting transition with onset Tc at around 35.5 K in all positions. SEM analysis indicated a dispersion of grains between 200 and 300 nm in size, as the main pinning medium in this MgB2 superconductors. The critical current density at 20 K was quite uniform, around 330 kA/cm2 and 200 kA/cm2 at self-field and 1 T, respectively, for all measured positions. The results indicate that the carbon-encapsulated boron is very promising for production of high quality bulk MgB2 material for various industrial applications.

  19. Vortices in high-performance high-temperature superconductors

    DOE PAGES

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; ...

    2016-09-21

    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. In this paper, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Finally, we discuss an emerging new paradigm of criticalmore » current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg–Landau approach to simulating vortex dynamics.« less

  20. Single magnetic adsorbates on s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Heinrich, Benjamin W.; Pascual, Jose I.; Franke, Katharina J.

    2018-02-01

    In superconductors, magnetic impurities induce a pair-breaking potential for Cooper pairs, which locally affects the Bogoliubov quasiparticles and gives rise to Yu-Shiba-Rusinov (YSR or Shiba, in short) bound states in the density of states (DoS). These states carry information on the magnetic coupling strength of the impurity with the superconductor, which determines the many-body ground state properties of the system. Recently, the interest in Shiba physics was boosted by the prediction of topological superconductivity and Majorana modes in magnetically coupled chains and arrays of Shiba impurities. Here, we review the physical insights obtained by scanning tunneling microscopy into single magnetic adsorbates on the s-wave superconductor lead (Pb). We explore the tunneling processes into Shiba states, show how magnetic anisotropy affects many-body excitations, and determine the crossing of the many-body ground state through a quantum phase transition. Finally, we discuss the coupling of impurities into dimers and chains and their relation to Majorana physics.

  1. Electronic properties of high-temperature superconductors and novel carbon-based conductors and superconductors

    NASA Astrophysics Data System (ADS)

    Fuhrer, Michael Sears

    This thesis is divided into three sections. The first section discusses the electrical transport properties of a highly anisotropic high temperature superconductor, Bi2Sr2CaCu2O8, in magnetic fields. High temperature superconductivity has greatly expanded the study of vortex matter: the state of the quantized magnetic field excitations, or vortices, in a superconductor. The effects of tilted fields and fields parallel to the planes are studied: striking deviations from the expectations of a simple anisotropic superconductivity model are found, indicating that the layered structure of high temperature superconductors plays a significant role in determining the dynamics and phases of vortex matter. For the case of parallel magnetic fields, the Josephson vortex state, a new phase transition is identified, the melting of the Josephson vortex lattice. A mechanism for Josephson vortex lattice melting is proposed to explain the differences in the phase diagrams from the usual case of Abrikosov vortex lattice melting. The second section discusses experiments on C60-containing solids. A method for growing high quality single crystals of C60 is described. Isotopically pure single crystal samples of the fulleride superconductor Rb3C60 were synthesized in order to measure the carbon isotope effect on superconductivity. By measuring the superconducting transitions in the resistance of single crystals of Rb3C60, the carbon isotope effect was determined with unprecedented accuracy. Measurement of the isotope effect gives essential information for determination of the superconducting parameters, necessary for a complete theoretical picture of superconductivity in this material. New intercalated graphite compounds containing C60, and their electronic properties, are also discussed. The third section discusses the electrical transport and magnetotransport properties of mats of single-walled carbon nanotubes. Single-walled nanotubes are an intriguing new physical system: nanowires of

  2. Superconductor cable

    DOEpatents

    Smith, Jr., Darrell F.; Lake, Bill L.; Ballinger, Ronald G.

    1988-01-01

    A superconducting cable comprising an in-situ-formed type II superconductor, e.g. Nb.sub.3 Sn, in association with a stabilizing conductor both in heat transfer relationship with at least one passage adapted to carry liquified gaseous refrigerant. The conductor and said at least one passage are enclosed by a sheath comprising an alloy consisting essentially of about 49% nickel, about 4% chromium, about 3% niobium, about 1.4% titanium, about 1% aluminum, balance essentially iron.

  3. Exotic magnetic states in Pauli-limited superconductors.

    PubMed

    Kenzelmann, M

    2017-03-01

    Magnetism and superconductivity compete or interact in complex and intricate ways. Here we review the special case where novel magnetic phenomena appear due to superconductivity, but do not exist without it. Such states have recently been identified in unconventional superconductors. They are different from the mere coexistence of magnetic order and superconductivity in conventional superconductors, or from competing magnetic and superconducting phases in many materials. We describe the recent progress in the study of such exotic magnetic phases, and articulate the many open questions in this field.

  4. Critical de Broglie wavelength in superconductors

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.

    2018-03-01

    There are growing numbers of experimental evidences that the self-field critical currents, Jc(sf,T), are a new instructive tool to investigate fundamental properties of superconductors ranging from atomically thin films [M. Liao et al., Nat. Phys. 6 (2018), https://doi.org/10.1038/s41567-017-0031-6; E. F. Talantsev et al., 2D Mater. 4 (2017) 025072; A. Fete et al., Appl. Phys. Lett. 109 (2016) 192601] to millimeter-scale samples [E. F. Talantsev et al., Sci. Rep. 7 (2017) 10010]. The basic empirical equation which quantitatively accurately described experimental Jc(sf,T) was proposed by Talantsev and Tallon [Nat. Commun. 6 (2015) 7820] and it was the relevant critical field (i.e. thermodynamic field, Bc, for type-I and lower critical field, Bc1, for type-II superconductors) divided by the London penetration depth, λL. In this paper, we report new findings relating to this empirical equation. It is that the critical wavelength of the de Broglie wave, λdB,c, of the superconducting charge carrier which within a numerical pre-factor is equal to the largest of two characteristic lengths of Ginzburg-Landau theory, i.e. the coherence length, ξ, for type-I superconductors or the London penetration depth, λL, for type-II superconductors. We also formulate a microscopic criterion for the onset of dissipative transport current flow: ps ṡ 2ṡλL ln(1+2ṡ(λL ξ )) ≥ 1 2 ṡ ( h 2π), where ps is the charge carrier momentum, h is Planck’s constant and the inequality sign “ <” is reserved for the dissipation-free flow.

  5. Mean-field description of topological charge 4e superconductors

    NASA Astrophysics Data System (ADS)

    Gabriele, Victoria; Luo, Jing; Teo, Jeffrey C. Y.

    BCS superconductors can be understood by a mean-field approximation of two-body interacting Hamiltonians, whose ground states break charge conservation spontaneously by allowing non-vanishing expectation values of charge 2e Cooper pairs. Topological superconductors, such as one-dimensional p-wave wires, have non-trivial ground states that support robust gapless boundary excitations. We construct a four-body Hamiltonian in one dimension and perform a mean-field analysis. The mean-field Hamiltonian is now quartic in fermions but is still exactly solvable. The ground state exhibits 4-fermion expectation values instead of Cooper pair ones. There also exists a topological phase, where the charge 4e superconductor carries exotic zero energy boundary excitations.

  6. Engineering one-dimensional topological phases on p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Sahlberg, Isac; Westström, Alex; Pöyhönen, Kim; Ojanen, Teemu

    2017-05-01

    In this paper, we study how, with the aid of impurity engineering, two-dimensional p -wave superconductors can be employed as a platform for one-dimensional topological phases. We discover that, while chiral and helical parent states themselves are topologically nontrivial, a chain of scalar impurities on both systems supports multiple topological phases and Majorana end states. We develop an approach which allows us to extract the topological invariants and subgap spectrum, even away from the center of the gap, for the representative cases of spinless, chiral, and helical superconductors. We find that the magnitude of the topological gaps protecting the nontrivial phases may be a significant fraction of the gap of the underlying superconductor.

  7. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.

    PubMed

    Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H

    2018-02-09

    Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

  8. Neutron Spin Resonance in the 112-Type Iron-Based Superconductor

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Gong, Dongliang; Ghosh, Haranath; Ghosh, Abyay; Soda, Minoru; Masuda, Takatsugu; Itoh, Shinichi; Bourdarot, Frédéric; Regnault, Louis-Pierre; Danilkin, Sergey; Li, Shiliang; Luo, Huiqian

    2018-03-01

    We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca0.82La0.18Fe0.96Ni0.04As2 with bulk superconductivity below Tc=22 K . A two-dimensional spin resonance mode is found around E =11 meV , where the resonance energy is almost temperature independent and linearly scales with Tc along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4 p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the kz dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.

  9. Neutron Spin Resonance in the 112-Type Iron-Based Superconductor.

    PubMed

    Xie, Tao; Gong, Dongliang; Ghosh, Haranath; Ghosh, Abyay; Soda, Minoru; Masuda, Takatsugu; Itoh, Shinichi; Bourdarot, Frédéric; Regnault, Louis-Pierre; Danilkin, Sergey; Li, Shiliang; Luo, Huiqian

    2018-03-30

    We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca_{0.82}La_{0.18}Fe_{0.96}Ni_{0.04}As_{2} with bulk superconductivity below T_{c}=22  K. A two-dimensional spin resonance mode is found around E=11  meV, where the resonance energy is almost temperature independent and linearly scales with T_{c} along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the k_{z} dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.

  10. Universal lower limit on vortex creep in superconductors

    NASA Astrophysics Data System (ADS)

    Eley, S.; Miura, M.; Maiorov, B.; Civale, L.

    2017-04-01

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose-Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu3O7-δ (refs ,,,,,). This was puzzling because S is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu3O7-δ. Here, we report very slow creep in BaFe 2(As0.67P0.33)2 films, and propose the existence of a universal minimum realizable S ~ Gi1/2(T/Tc) (Tc is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. This limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.

  11. Studies of superconducting materials with muon spin rotation

    NASA Technical Reports Server (NTRS)

    Davis, Michael R.; Stronach, Carey E.; Kossler, W. J.; Schone, H. E.; Yu, X. H.; Uemura, Y. J.; Sternlieb, B. J.; Kempton, J. R.; Oostens, J.; Lankford, W. F.

    1989-01-01

    The muon spin rotation/relaxation technique was found to be an exceptionally effective means of measuring the magnetic properties of superconductors, including the new high temperature superconductor materials, at the microscopic level. The technique directly measures the magnetic penetration depth (type II superconductors (SC's)) and detects the presence of magnetic ordering (antiferromagnetism or spin-glass ordering were observed in some high temperature superconductor (HTSC's) and in many closely related compounds). Extensive studies of HTSC materials were conducted by the Virginia State University - College of William and Mary - Columbia University collaboration at Brookhaven National Laboratory and TRIUMF (Vancouver). A survey of LaSrCuO and YBaCaCuO systems shows an essentially linear relationship between the transition temperature T(sub c) and the relaxation rate. This appears to be a manifestation of the proportionality between T(sub c) and the Fermi energy, which suggests a high energy scale for the SC coupling, and which is not consistent with the weak coupling of phonon-mediated SC. Studies of LaCuO and YBaCuO parent compounds show clear evidence of antiferromagnetism. YBa2Cu(3-x)CO(x)O7 shows the simultaneous presence of spin-glass magnetic ordering and superconductivity. Three-dimensional SC, (Ba, K) BiO3, unlike the layered CuO-based compounds, shows no suggestion of magnetic ordering. Experimental techniques and theoretical implications are discussed.

  12. Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor

    DTIC Science & Technology

    2015-03-10

    for Public Release; Distribution Unlimited Final Report: Design and Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Superconductor technology, RSFQ, RQL, processor design, arithmetic units, high-performance...Demonstration of a 30 GHz 16-bit Superconductor RSFQ Microprocessor Report Title The major objective of the project was to design and demonstrate operation

  13. Candidate muon-probe sites in oxide superconductors

    NASA Astrophysics Data System (ADS)

    Dawson, W. K.; Tibbs, K.; Weathersby, S. P.; Boekema, C.; Chan, K.-C. B.

    1988-11-01

    Two independent search methods (potential-energy and magnetic-dipole-field calculations) are used to determine muon stop sites in the RBa2Cu3O(x) (x equal to about 7) superconductors. Possible sites, located about 1 A away from oxygen ions, have been found and are prime candidates as muon-probe locations. The results are discussed in light of existing muon-spin-relaxation data of these exciting oxides, and are compared to H-oxide and positron-oxide superconductor studies. Further work is in progress to establish in detail the muon-probe sites.

  14. Thermal mechanisms responsible for the irreversible degradation of superconductivity in commercial superconductors

    NASA Astrophysics Data System (ADS)

    Romanovskii, V. R.

    2017-08-01

    Conditions for the irreversible propagation of thermal instabilities in commercial superconductors subjected to intense and soft cooling have been formulated. An analysis has been conducted using two types of the superconductor's I-V characteristics, i.e., an ideal I-V characteristic, which assumes a step superconducting-to-normal transition, and a continuous I-V characteristic, which is described by a power law. The propagation rate of thermal instabilities along the superconducting composite has been determined. Calculations have been made for both subcritical and supercritical values of the current. It has been shown that they propagate along a commercial superconductor in the form of a switching wave. In rapidly cooled commercial superconductors, the steady-state rate of thermal instability propagation in the longitudinal direction can only be positive because there is no region of steady stabilization. It has been proved that, in the case of thermal instability irreversible propagation, the rise in the commercial superconductor temperature is similar to diffusion processes that occur in explosive chain reactions.

  15. Holographic superconductor vortices.

    PubMed

    Montull, Marc; Pomarol, Alex; Silva, Pedro J

    2009-08-28

    A gravity dual of a superconductor at finite temperature has been recently proposed. We present the vortex configuration of this model and study its properties. In particular, we calculate the free energy as a function of an external magnetic field, the magnetization, and the superconducting density. We also find the two critical magnetic fields that define the region in which the vortex configurations are energetically favorable.

  16. The arrival of high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Chu, Paul C. W.

    2011-03-01

    The attainment of high temperature superconductivity has been considered a major advancement of modern science. It was the seminal discovery of the first cuprate high temperature superconductor, the Ba-doped La 2 Cu O4 , with a Tc of 35 K in 1986 by Alex Müller and George Bednorz of IBM Zurich Lab, who were awarded the Nobel Prize in 1987, that ushered in the era of cuprate high temperature superconductivity. It was the first liquid nitrogen high temperature superconductor, YBa 2 Cu 3 O7 with a Tc of 93 K discovered in 1987 by Paul C. W. Chu, Maw-Kuen Wu and colleagues in the respective groups at the University of Houston and the University of Alabama at Huntsville that heralded the new era of high temperature superconductivity, drastically changing the psyche of superconductivity research and bringing superconductivity applications a giant step closer to reality. In the ensuing years, many high temperature superconductors have been found, leading to the current record Tc of 134 K which was observed by A. Schilling et al. of ETH in 1993 in HgBa 2 Ca 2 Cu 3 O9 - δ at ambient and later raised to 164 K under 30 GPa by L. Gao et al. In the present talk, I shall briefly recall a few events leading to and during the arrival of high temperature superconductivity. The prospects for future superconductors with higher Tc will also be discussed. Supported in part by U.S. AFOSR, U.S. DoE through ORNL, U.S. AFRL CONTACT through Rice University, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through TCSUH.

  17. High temperature superconductors applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  18. High temperature superconductors applications in telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data formore » such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c

  19. Fine-Filament MgB2 Superconductor Wire

    NASA Technical Reports Server (NTRS)

    Cantu, Sherrie

    2015-01-01

    Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (<10 micrometers) could reduce alternating current (AC) losses that occur due to hysteresis, eddy currents, and coupling losses. The company refined a manufacturing method that incorporates a magnesium-infiltration process and provides a tenfold enhancement in critical current density over wire made by a conventional method involving magnesium-boron powder mixtures. Hyper Tech also improved its wire-drawing capability to fabricate fine multifilament strands. In Phase II, the company developed, manufactured, and tested the wire for superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.

  20. Scanning tunneling microscopy and spectroscopy studies of the heavy-electron superconductor TlNi2Se2

    NASA Astrophysics Data System (ADS)

    Wilfert, Stefan; Schmitt, Martin; Schmidt, Henrik; Mauerer, Tobias; Sessi, Paolo; Wang, Hangdong; Mao, Qianhui; Fang, Minghu; Bode, Matthias

    2018-01-01

    We report on the structural and superconducting electronic properties of the heavy-electron superconductor TlNi2Se2 . By using a variable-temperature scanning tunneling microscopy (VT-STM) the coexistence of (√{2 }×√{2 }) R 45∘ and (2 ×1 ) surface reconstructions is observed. Similar to earlier observations on the "122" family of Fe-based superconductors, we find that their respective surface fraction strongly depends on the temperature during cleavage, the measurement temperature, and the sample's history. Cleaving at low temperature predominantly results in the (√{2 }×√{2 }) R 45∘ -reconstructed surface. A detailed analysis of the (√{2 }×√{2 }) R 45∘ -reconstructed domains identifies (2 ×1 ) -ordered dimers, tertramers, and higher order even multimers as domain walls. Higher cleaving temperatures and the warming of low-temperature-cleaved samples increases the relative weight of the (2 ×1 ) surface reconstruction. By slowly increasing the sample temperature Ts inside the VT-STM we find that the (√{2 }×√{2 }) R 45∘ surface reconstructions transforms into the (2 ×1 ) structure at Ts=123 K. We identify the polar nature of the TlNi2Se2 (001) surface as the most probable driving mechanism of the two reconstructions, as both lead to a charge density ρ =0.5 e- , thereby avoiding divergent electrostatic potentials and the resulting "polar catastrophe." Low-temperature scanning tunneling spectroscopy (STS) performed with normal metal and superconducting probe tips shows a superconducting gap which is best fit with an isotropic s wave. We could not detect any correlation between the local surface reconstruction, suggesting that the superconductivity is predominantly governed by TlNi2Se2 bulk properties. Correspondingly, temperature- and field-dependent data reveal that both the critical temperature and critical magnetic field are in good agreement with bulk values obtained earlier from transport measurements. In the superconducting state

  1. Manufacturing a Superconductor in School.

    ERIC Educational Resources Information Center

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  2. Preparation and substrate reactions of superconducting Y-Ba-Cu-O films

    NASA Astrophysics Data System (ADS)

    Gurvitch, M.; Fiory, A. T.

    1987-09-01

    Multiple metal-target dc magnetron sputter deposition of a metallic YBa2Cu3 alloy in pure Ar followed by ex situ oxygen annealing was used to prepare superconducting films on various substrates. This work particularly examines film-substrate reactions which are degrading to superconductivity. Better superconductors were obtained using predeposited buffer layers, notably on cubic zirconia and MgO substrates covered with Ag and Nb. Best films have Tc = 80 K, metallic resistivities with a resistance ratio of about 2, and a critical current density of greater than about 10 kA/sq cm at 4.2 K.

  3. Persistent superconductor currents in holographic lattices.

    PubMed

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-07-04

    We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.

  4. High-frequency response to millimeter wave irradiation of YBaCuO thin film and ceramic

    NASA Astrophysics Data System (ADS)

    Velichko, A. V.; Cherpak, N. T.; Izhyk, E. V.; Kirichenko, A. Ya.; Chukanova, I. N.

    1997-02-01

    Microwave (35 GHz) and radiowave (9 MHz) responses of an YBaCuO thin film and a ceramic to millimeter (mm) wave irradiation (31.5 GHz) have been studied by means of a quasioptical dielectric resonator with whispering gallery modes and an inductive technique at micro- and radiowaves, respectively. The responses are shown to have a mixed nature including a sufficiently strong non-bolometric component. Relaxation of the surface resistance in time after the irradiation removal obeys the logarithmic law implying the nucleation and flux creep of vortices induced by the irradiation is a mechanism of the response at temperatures 3-10 K below the critical temperature Tc. Dependence of the microwave surface resistance Rsmw on the mm wave pump amplitude Hω is well described by Halbritter's theory of vortex motion inside weak links. A correlation between dependences of the radiowave (rw) response on Hω with that of Rsmw has been found. Thus the mechanism of rw-response is believed to arise from intergranular Josephson couplings. The latter conclusion is further confirmed by a comparison of the pump power dependence of the rw-response with that of conventional DC-response found for granular HTSC in other recent experiments on the response to the subgap radiation.

  5. Theory of quantum metal to superconductor transitions in highly conducting systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure whichmore » is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.« less

  6. Fe-vacancy and superconductivity in FeSe-based superconductors

    NASA Astrophysics Data System (ADS)

    Wang, C. H.; Chen, T. K.; Chang, C. C.; Lee, Y. C.; Wang, M. J.; Huang, K. C.; Wu, P. M.; Wu, M. K.

    2018-06-01

    This review summarizes recent advancements in FeSe and related systems. The FeSe and related superconductors are currently receiving considerable attention for the high Tcs observed and for many similar features to the high Tc cuprate superconductors. These similarities suggest that understanding the FeSe based compounds could potentially help our understanding of the cuprates. We shall first review the common features observed in the FeSe-based system. It was found that with a careful control of material synthesizing processes, numerous rich phases have been observed in the FeSe-based system. Detailed studies show that the Fe-vacancy ordered phases found in the FeSe based compounds, which are non-superconducting Mott insulators, are the parent compounds of the superconductors. Superconductivity emerges from the parent phases by disordering the Fe vacancy order, often by a simple annealing treatment. Recent high temperature X-ray diffraction experiments show that the degree of structural distortion associated with the disorder of Fe-vacancy is closely related to volume fraction of the superconductivity observed. These results suggest the strong lattice to spin coupling are important for the occurrence of superconductivity in FeSe based superconductors.

  7. Spectroscopy of Magnetic Excitations in Magnetic Superconductors Using Vortex Motion

    NASA Astrophysics Data System (ADS)

    Bulaevskii, L. N.; Hruška, M.; Maley, M. P.

    2005-11-01

    In magnetic superconductors a moving vortex lattice is accompanied by an ac magnetic field which leads to the generation of spin waves. At resonance conditions the dynamics of vortices in magnetic superconductors changes drastically, resulting in strong peaks in the dc I-V characteristics at voltages at which the washboard frequency of the vortex lattice matches the spin wave frequency ωs(g), where g are the reciprocal vortex lattice vectors. We show that if the washboard frequency lies above the magnetic gap, measurement of the I-V characteristics provides a new method to obtain information on the spectrum of magnetic excitations in borocarbides and cuprate layered magnetic superconductors.

  8. Vortex motion and flux-flow resistivity in dirty multiband superconductors

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Vargunin, Artjom

    2016-12-01

    The conductivity of vortex lattices in multiband superconductors with high concentration of impurities is calculated based on microscopic kinetic theory at temperatures significantly smaller than the critical one. Both the limits of high and low fields are considered, when the magnetic induction is close to or much smaller than the critical field strength Hc 2, respectively. It is shown that in contrast to single-band superconductors, the resistive properties are not universal but depend on the pairing constants and ratios of diffusivities in different bands. The low-field magnetoresistance can strongly exceed the Bardeen-Stephen estimation in a quantitative agreement with experimental data for the two-band superconductor MgB2.

  9. Engineering topological superconductors using surface atomic-layer/molecule hybrid materials

    NASA Astrophysics Data System (ADS)

    Uchihashi, Takashi

    2015-08-01

    Surface atomic-layer (SAL) superconductors consisting of epitaxially grown metal adatoms on a clean semiconductor surface have been recently established. Compared to conventional metal thin films, they have two important features: (i) space-inversion symmetry-breaking throughout the system and (ii) high sensitivity to surface adsorption of foreign species. These potentially lead to manifestation of the Rashba effect and a Zeeman field exerted by adsorbed magnetic organic molecules. After introduction of the archetypical SAL superconductor Si(111)-(√7 × √3)-In, we describe how these features are utilized to engineer a topological superconductor with Majorana fermions and discuss its promises and expected challenges.

  10. Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid

    NASA Astrophysics Data System (ADS)

    Malozemoff, A. P.

    2012-08-01

    Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.

  11. Recent Topics of Organic Superconductors

    NASA Astrophysics Data System (ADS)

    Ardavan, Arzhang; Brown, Stuart; Kagoshima, Seiichi; Kanoda, Kazushi; Kuroki, Kazuhiko; Mori, Hatsumi; Ogata, Masao; Uji, Shinya; Wosnitza, Jochen

    2012-01-01

    Recent developments in research into superconductivity in organic materials are reviewed. In the epoch-defining quasi-one-dimensional TMTSF superconductors with Tc ˜ 1 K, Tc decreases monotonically with increasing pressure, as do signatures of spin fluctuations in the normal state, providing good evidence for magnetically-mediated pairing. Upper critical fields exceed the Zeeman-limiting field by several times, suggesting triplet pairing or a transition to an inhomogeneous superconducting state at high magnetic fields, while triplet pairing is ruled out at low fields by NMR Knight-shift measurements. Evidence for a spatially inhomogeneous superconducting state, Fulde--Ferrel--Larkin--Ovchinnikov state, which has long been sought in various superconducting systems, is now captured by thermodynamic and transport measurements for clean and highly two-dimensional BEDT-TTF and BETS superconductors. Some of the layered superconductors also serve as model systems for Mott physics on anisotropic triangular lattice. For example, the Nernst effect and the pseudo-gap behavior in NMR relaxation are enhanced near to the Mott transition. In the case of increasing spin frustration, the superconducting transition temperature is depressed, and antiferromagnetic ordering is eliminated altogether in the adjacent Mott insulating phase. There is an increasing number of materials exhibiting superconductivity in competition or cooperation with charge order. Theoretical studies shed light on the role of spin and/or charge fluctuations for superconductivity appearing under conditions close to those of correlation-induced insulating phases in the diversity of organic materials.

  12. Size constraints on a Majorana beam-splitter interferometer: Majorana coupling and surface-bulk scattering

    NASA Astrophysics Data System (ADS)

    Røising, Henrik Schou; Simon, Steven H.

    2018-03-01

    Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system is Majorana interferometry. Here we consider two possibly conflicting constraints on the size of such an interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in the center of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical samples may have no size window in which the Majorana interferometer can operate, implying that a new generation of more highly insulating samples must be explored.

  13. On the Mechanism for a Gravity Effect Using Type 2 Superconductors

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1999-01-01

    In this paper, we formulate a percent mass change equation based on Woodward's transient mass shift and the Cavendish balance equations applied to superconductor Josephson junctions, A correction to the transient mass shift equation is presented due to the emission of the mass energy from the superconductor. The percentage of mass change predicted by the equation was estimated against the maximum percent mass change reported by Podkletnov in his gravity shielding experiments. An experiment is then discussed, which could shed light on the transient mass shift near superconductor and verify the corrected gravitational potential.

  14. ESR, SIMS and TEMF of an Y-Ba-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Kirschner, I.; Giber, J.; Halasz, I.

    1995-01-01

    Superconducting transition comes into being between 92 K and 82 K in the samples having a Meissner's state value of 68 vol. percent. The main material content has an orthorhombic unit cell of Y1Ba2Cu408 accompanied by low quantity CuO and a sporadic phase. A proof of anisotropic superconductivity, an unusually high Cu ion concentration and a temperature dependent transition of charge carriers have been observed.

  15. Universal lower limit on vortex creep in superconductors

    DOE PAGES

    Eley, Serena Merteen; Miura, Masashi; Maiorov, Boris Alfredo; ...

    2017-02-13

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose–Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors4. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu 3O 7–δ. This was puzzling because Smore » is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu 3O 7–δ. Here, we report very slow creep in BaFe 2(As 0.67P 0.33) 2 films, and propose the existence of a universal minimum realizable S ~ Gi 1/2(T/T c) (T c is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. Furthermore, this limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.« less

  16. Low frequency electrical noise across contacts between a normal conductor and superconducting bulk YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hall, J.; Chen, T. M.

    1990-01-01

    Virtually every device that makes use of the new ceramic superconductors will need normal conductor to supercondutor contacts. The current-voltage and electrical noise characteristics of these contacts could be become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quanity often used to characterize electrical noise, very closely followed an empirical relationship given by, S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.

  17. What can Andreev bound states tell us about superconductors?

    PubMed

    Millo, Oded; Koren, Gad

    2018-08-06

    Zero-energy Andreev bound states, which manifest themselves in the tunnelling spectra as zero-bias conductance peaks (ZBCPs), are abundant at interfaces between superconductors and other materials and on the nodal surface of high-temperature superconductors. In this review, we focus on the information such excitations can provide on the properties of superconductor systems. First, a general introduction to the physics of Andreev bound states in superconductor/normal metal interfaces is given with a particular emphasis on why they appear at zero energy in d -wave superconductors. Then, specific spectroscopic tunnelling studies of thin films, bilayers and junctions are described, focusing on the corresponding ZBCP features. Scanning tunnelling spectroscopy (STS) studies show that the ZBCPs on the c -axis YBa 2 Cu 3 O 7- δ (YBCO) films are correlated with the surface morphology and appear only in proximity to (110) facets. STS on c -axis La 1.88 Sr 0.12 CuO 4 (LSCO) films exhibiting the 1/8 anomaly shows spatially modulated peaks near zero bias associated with the anti-phase ordering of the d -wave order parameter predicted at this doping level. ZBCPs were also found in micrometre-size edge junctions of YBCO/SrRuO 3 /YBCO, where SrRuO 3 is ferromagnetic. Here, the results are consistent with a crossed Andreev reflection effect (CARE) at the narrow domain walls of the SrRuO 3 ZBCPs measured in STS studies of manganite/cuprate bilayers could not be attributed to CARE because the manganite's domain wall is much larger than the coherence length in YBCO, and instead are attributed to proximity-induced triplet-pairing superconductivity with non-conventional symmetry. And finally, ZBCPs found in junctions of non-intentionally doped topological insulator films of Bi 2 Se 3 and the s -wave superconductor NbN are attributed to proximity-induced p x  + ip y triplet order parameter in the topological material.This article is part of the theme issue 'Andreev bound states'.

  18. Aluminum-stabilized Nb/sub 3/Sn superconductor

    DOEpatents

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  19. Aluminum-stabilized Nb[sub 3]Sn superconductor

    DOEpatents

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  20. Superconductor Armature Winding for High Performance Electrical Machines

    DTIC Science & Technology

    2016-12-05

    Vol. 3, pp.489-507 [Kalsi1] S. S. Kalsi, ‘Superconducting Wind Turbine Generator Employing MgB2 Windings Both on Rotor and Stator’, IEEE Trans. on...Contract  Number:  N00014-­‐14-­‐1-­‐0272   Contract  Title:  Superconductor  armature   winding  for  high  performance  electrical...an all-superconducting machine. Superconductor armature windings in electrical machines bring many design challenges that need to be addressed en

  1. A new approach in the design of organic superconductors

    NASA Astrophysics Data System (ADS)

    Yamada, J.

    2004-04-01

    The preparation of charge-transfer (CT) salts of DODHT [(1,4-dioxane-2,3-diyldithio) dihydrotetrathia-fulvalene], BDH-TTP [2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene] and BDA-TTP [2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] has been investigated to develop new organic superconductors. The DODHT and BDA-TTP donors give organic superconductors (DODHT){2}BF{4}\\cdot H{2}O and (BDA-TTP){2}X (X = GaCl{4} and FeCl{4}) under applied pressures, whereas (BDH-TTP)Br{0.88} and (BDA-TTF){2}X (X = BF{4}, BF{4}\\cdot H{2}O and ClO{4}) fail to exhibit superconductivity at ambient pressure. Key words. Organic superconductor π -electron donor σ -bond framework loose donor packing motif.

  2. Ivar Giaever, Tunneling, and Superconductors

    Science.gov Websites

    ... Interview with Ivar Giaever (video) Ivar Giaever - Science Video Interview: Tunneling in Semiconductors and Superconductors (video) How Quantum Tunneling Works (video) Top Some links on this page may take you to non

  3. Study of Electromagnetic Repulsion Switch to High Speed Reclosing and Recover Time Characteristics of Superconductor

    NASA Astrophysics Data System (ADS)

    Koyama, Tomonori; Kaiho, Katsuyuki; Yamaguchi, Iwao; Yanabu, Satoru

    Using a high-temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor and vacuum interrupter as the commutation switch were connected in parallel using a bypass coil. When the fault current flows in this equipment, the superconductor is quenched and the current is then transferred to the parallel coil due to the voltage drop in the superconductor. This large current in the parallel coil actuates the magnetic repulsion mechanism of the vacuum interrupter and the current in the superconductor is broken. Using this equipment, the current flow time in the superconductor can be easily minimized. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. This system has many merits. So, we introduced to electromagnetic repulsion switch. There is duty of high speed re-closing after interrupting fault current in the electrical power system. So the SFCL should be recovered to superconducting state before high speed re-closing. But, superconductor generated heat at the time of quench. It takes time to recover superconducting state. Therefore it is a matter of recovery time. In this paper, we studied recovery time of superconductor. Also, we proposed electromagnetic repulsion switch with reclosing system.

  4. High-temperature superconducting superconductor/normal metal/superconducting devices

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Hunt, B. D.; Bajuk, L. J.

    1991-01-01

    We describe the fabrication and characterization of superconductor/normal metal/superconductor (SNS) devices made with the high-temperature superconductor (HTS) YBa2Cu3O(7-x). Structures of YBa2Cu3O(7-x)/Au/Nb on c-axis-oriented YBa2Cu3O(7-x) were made in both sandwich and edge geometries in order to sample the HTS material both along and perpendicular to the conducting a-b planes. These devices display fairly ideal Josephson properties at 4.2 K. In addition, devices consisting of YBa2Cu3O(7-x)/YBa2Cu3O(y)/YBa2Cu3O(7-x), with a 'normal metal' layer of reduced transition temperature YBa2Cu3O(7-x) were fabricated and show a great deal of promise for applications near 77 K. Current-voltage characteristics like those of the Resistively-Shunted Junction model are observed, with strong response to 10 GHz radiation above 60 K.

  5. Superconductor-insulator transition in long MoGe nanowires.

    PubMed

    Kim, Hyunjeong; Jamali, Shirin; Rogachev, A

    2012-07-13

    The properties of one-dimensional superconducting wires depend on physical processes with different characteristic lengths. To identify the process dominant in the critical regime we have studied the transport properties of very narrow (9-20 nm) MoGe wires fabricated by advanced electron-beam lithography in a wide range of lengths, 1-25  μm. We observed that the wires undergo a superconductor-insulator transition (SIT) that is controlled by cross sectional area of a wire and possibly also by the width-to-thickness ratio. The mean-field critical temperature decreases exponentially with the inverse of the wire cross section. We observed that a qualitatively similar superconductor-insulator transition can be induced by an external magnetic field. Our results are not consistent with any currently known theory of the SIT. Some long superconducting MoGe nanowires can be identified as localized superconductors; namely, in these wires the one-electron localization length is much smaller than the length of a wire.

  6. Nodal lines and nodal loops in nonsymmorphic odd-parity superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micklitz, T.; Norman, M. R.

    2017-01-01

    We discuss the nodal structure of odd-parity superconductors in the presence of nonsymmorphic crystal symmetries, both with and without spin-orbit coupling, and with and without time-reversal symmetry. We comment on the relation of our work to previous work in the literature, and also the implications for unconventional superconductors such as UPt3.

  7. Nodeless superconductivity and time-reversal symmetry breaking in the noncentrosymmetric superconductor Re24Ti5

    NASA Astrophysics Data System (ADS)

    Shang, T.; Pang, G. M.; Baines, C.; Jiang, W. B.; Xie, W.; Wang, A.; Medarde, M.; Pomjakushina, E.; Shi, M.; Mesot, J.; Yuan, H. Q.; Shiroka, T.

    2018-01-01

    The noncentrosymmetric superconductor Re24Ti5 , a time-reversal symmetry- (TRS-) breaking candidate with Tc=6 K , was studied by means of muon-spin rotation/relaxation (μ SR ) and tunnel-diode oscillator techniques. At the macroscopic level, its bulk superconductivity was investigated via electrical resistivity, magnetic susceptibility, and heat-capacity measurements. The low-temperature penetration depth, superfluid density, and electronic heat capacity all evidence an s -wave coupling with an enhanced superconducting gap. The spontaneous magnetic fields revealed by zero-field μ SR below Tc indicate a time-reversal symmetry breaking and thus the unconventional nature of superconductivity in Re24Ti5 . The concomitant occurrence of TRS breaking also in the isostructural Re6(Zr ,Hf ) compounds hints at its common origin in this superconducting family and that an enhanced spin-orbital coupling does not affect pairing symmetry.

  8. Higher-order topological insulators and superconductors protected by inversion symmetry

    NASA Astrophysics Data System (ADS)

    Khalaf, Eslam

    2018-05-01

    We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of "higher-order" topological insulators and superconductors which possess surface states that propagate along one-dimensional curves (hinges) or are localized at some points (corners) on the surface. We provide a complete classification of inversion-protected higher-order topological insulators and superconductors in any spatial dimension for the 10 symmetry classes by means of a layer construction. We discuss possible physical realizations of such states starting with a time-reversal-invariant topological insulator (class AII) in three dimensions or a time-reversal-invariant topological superconductor (class DIII) in two or three dimensions. The former exhibits one-dimensional chiral or helical modes propagating along opposite edges, whereas the latter hosts Majorana zero modes localized to two opposite corners. Being protected by inversion, such states are not pinned to a specific pair of edges or corners, thus offering the possibility of controlling their location by applying inversion-symmetric perturbations such as magnetic field.

  9. Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

    PubMed Central

    Kolenda, Stefan; Machon, Peter

    2016-01-01

    Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime. Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators. PMID:28144509

  10. Size, Shape and Impurity Effects on Superconducting critical temperature.

    NASA Astrophysics Data System (ADS)

    Umeda, Masaki; Kato, Masaru; Sato, Osamu

    Bulk superconductors have their own critical temperatures Tc. However, for a nano-structured superconductor, Tc depends on size and shape of the superconductor. Nishizaki showed that the high pressure torsion on bulks of Nb makes Tc higher, because the torsion makes many nano-sized fine grains in the bulks. However the high pressure torsion on bulks of V makes Tc lower, and Nishizaki discussed that the decrease of Tc is caused by impurities in the bulks of V. We studied size, shape, and impurity effects on Tc, by solving the Gor'kov equations, using the finite element method. We found that smaller and narrower superconductors show higher Tc. We found how size and shape affects Tc by studying spacial order parameter distributions and quasi-particle eigen-energies. Also we studied the impurity effects on Tc, and found that Tc decreases with increase of scattering rate by impurities. This work was supported in part of KAKENHI Grant Number JP26400367 and JP16K05460, and program for leading graduate schools of ministry of education, culture, sports, science and technology-Japan.

  11. Simple method for resistance measurements on thin films and bulk of high T_c superconducting materials

    NASA Astrophysics Data System (ADS)

    Alzetta, G.; Arimondo, E.; Celli, R. M.; Fuso, F.

    1994-08-01

    Two experimental techniques for measuring resistivity behaviour of high T_c ceramic superconductors in bulk or thin films are described. Particular attention has been given to the development of a four point contact system, easy to use for reliable resistance measurements under repeated, wide thermal cycles. On expose deux méthodes de mesure de la résistivité des supraconducteurs HTc en forme de couches minces déposées sur un substrat ou des céramiques frittées. Le dispositif de mesure, qui a été réalisé avec quatre contacts élastiques, permet d'obtenir des résultats reproductibles dans de très larges intervalles de température.

  12. A Fifth Force: Generalized through Superconductors

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1999-01-01

    The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.

  13. Fabrication of Optimized Superconducting Phase Inverters Based on Superconductor-Ferromagnet-Superconductor pi π -Junctions

    NASA Astrophysics Data System (ADS)

    Bolginov, V. V.; Rossolenko, A. N.; Shkarin, A. B.; Oboznov, V. A.; Ryazanov, V. V.

    2018-03-01

    We have implemented a trilayer technological approach to fabricate Nb-Cu_{0.47} Ni_{0.53}-Nb superconducting phase inverters (π -junctions) with enhanced critical current. Within this technique, all three layers of the superconductor-ferromagnet-superconductor junction deposited in a single vacuum cycle that have allowed us to obtain π -junctions with critical current density up to 20 kA/cm^2. The value achieved is a factor of 10 higher than for the step-by-step method used in earlier works. Our additional experiments have shown that this difference is related to a bilayered CuNi/Cu barrier used in the case of the step-by-step technique and interlayer diffusion at the CuNi/Cu interface. We show that the interlayer diffusion can be utilized for fine tuning of the 0{-}π transition temperature of already fabricated junctions. The results obtained open new opportunities for the CuNi-based phase inverters in digital and quantum Josephson electronics.

  14. Depositing High-T(sub c) Superconductors On Normal-Conductor Wires

    NASA Technical Reports Server (NTRS)

    Kirlin, Peter S.

    1994-01-01

    Experiments have demonstrated feasibility of depositing thin layers of high-T(sub c) superconductor on normally electrically conductive wires. Superconductivity evident at and below critical temperature (T{sub c}) of 71 K. OMCVD, organometallic vapor deposition, apparatus coats Ag wire with layer high-T(sub c) superconductor. Superconductive phase of this material formed subsequently by annealing under controlled conditions.

  15. Hyper- and hypobaric processing of Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Goretta, K. C.; Routbort, J. L.; Shi, Donglu; Chen, J. G.; Hash, M. C.

    1989-11-01

    Tl-based superconductors of initial composition Tl:Ca:Ba:Cu equal to 2:2:2:3 and 1:3:1:3 were heated in oxygen at pressures of 10(sup 4) to 6 (times) 10(sup 5) Pa. The 2:2:2:3 composition formed primarily the 2-layer superconductor with zero resistance from 77 to 104 K. The 1:3:1:3 composition formed nearly phase pure 3-layer superconductor with a maximum zero resistance temperature of 120 K. Application of hyperbaric pressure influenced phase purities and transition temperatures slightly; phase purities decreased significantly with application of hypobaric pressures.

  16. Preferentially oriented, High temperature superconductors by seeding and a method for their preparation

    DOEpatents

    Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A multi-domained bulk REBa.sub.2 Cu.sub.3 O.sub.x with low-angle domain boundaries which resembles a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa.sub.2 Cu.sub.3 O.sub.x pieces, textured substrates comprised of grains with low misorientation angles, or thick film REBa.sub.2 Cu.sub.3 O.sub.x deposited on such textured substrate, such seeds being tailored for various REBa.sub.2 Cu.sub.3 O.sub.x compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa.sub.2 Cu.sub.3 O.sub.x elements of virtually unlimited size and complex geometry can be fabricated.

  17. New application of superconductors: High sensitivity cryogenic light detectors

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-02-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  18. Domain-wall superconductivity in superconductor-ferromagnet hybrids.

    PubMed

    Yang, Zhaorong; Lange, Martin; Volodin, Alexander; Szymczak, Ritta; Moshchalkov, Victor V

    2004-11-01

    Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor-ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor-ferromagnet hybrids using a niobium film on a BaFe(12)O(19) single crystal. We found that the critical temperature T(c) of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe(12)O(19). In accordance with the field-shift of the maximum value of T(c), pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor-ferromagnet hybrids.

  19. Proceedings, phenomenology and applications of high temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, K.S.

    1991-01-01

    Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely relatedmore » to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions.« less

  20. Proceedings, phenomenology and applications of high temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, K.S.

    1991-12-31

    Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely relatedmore » to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions.« less

  1. Surface Majorana fermions and bulk collective modes in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Park, YeJe; Chung, Suk Bum; Maciejko, Joseph

    2015-02-01

    The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.

  2. Electronic evidence of an insulator-superconductor crossover in single-layer FeSe/SrTiO3 films.

    PubMed

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2014-12-30

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator-superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator-superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator-superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator-superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature.

  3. Electronic evidence of an insulator–superconductor crossover in single-layer FeSe/SrTiO3 films

    PubMed Central

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X. J.

    2014-01-01

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator–superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator–superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator–superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator–superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature. PMID:25502774

  4. Building blocks for correlated superconductors and magnets

    DOE PAGES

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; ...

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. In addition, successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials designmore » and synthesis.« less

  5. Andreev reflection enhancement in semiconductor-superconductor structures

    NASA Astrophysics Data System (ADS)

    Bouscher, Shlomi; Winik, Roni; Hayat, Alex

    2018-02-01

    We develop a theoretical approach for modeling a wide range of semiconductor-superconductor structures with arbitrary potential barriers and a spatially dependent superconducting order parameter. We demonstrate asymmetry in the conductance spectrum as a result of a Schottky barrier shape. We further show that the Andreev reflection process can be significantly enhanced through resonant tunneling with appropriate barrier configuration, which can incorporate the Schottky barrier as a contributing component of the device. Moreover, we show that resonant tunneling can be achieved in superlattice structures as well. These theoretically demonstrated effects along with our modeling approach enable much more efficient Cooper pair injection into semiconductor-superconductor structures, including superconducting optoelectronic devices.

  6. Electrical connection structure for a superconductor element

    DOEpatents

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  7. Competing quantum orderings in cuprate superconductors: A minimal model

    NASA Astrophysics Data System (ADS)

    Martin, I.; Ortiz, G.; Balatsky, A. V.; Bishop, A. R.

    2001-02-01

    We present a minimal model for cuprate superconductors. At the unrestricted mean-field level, the model produces homogeneous superconductivity at large doping, striped superconductivity in the underdoped regime and various antiferromagnetic phases at low doping and for high temperatures. On the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. The model is applied to calculate experimentally measurable ARPES spectra.

  8. Towards the design of novel cuprate-based superconductors

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    The rapid maturation of materials databases combined with recent development of theories seeking to quantitatively link chemical properties to superconductivity in the cuprates provide the context to design novel superconductors. In this talk, we describe a framework designed to search for new superconductors, which combines chemical rules-of-thumb, insights of transition temperatures from dynamical mean-field theory, first-principles electronic structure tools, materials databases and structure prediction via evolutionary algorithms. We apply the framework to design a family of copper oxysulfides and evaluate the prospects of superconductivity.

  9. Flux pinning characteristics and irreversibility line in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Matsushita, T.; Ihara, N.; Kiuchi, M.

    1995-01-01

    The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.

  10. Electron teleportation via Majorana bound states in a mesoscopic superconductor.

    PubMed

    Fu, Liang

    2010-02-05

    Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.

  11. Simulation of Field Dependence of Critical Current Densities of Bulk High Tc Superconducting Materials regarding Thermally Activated Flux Motion

    NASA Astrophysics Data System (ADS)

    Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.

    2017-07-01

    In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.

  12. Hall viscosity of a chiral two-orbital superconductor at finite temperatures

    NASA Astrophysics Data System (ADS)

    Yazdani-Hamid, Meghdad; Shahzamanian, Mohammad Ali

    2018-06-01

    The Hall viscosity known as the anti-symmetric part of the viscosity fourth-rank tensor. Such dissipationless response which appears for systems with broken time reversal symmetry. We calculate this non-dissipative quantity for a chiral two-orbital superconductor placed in a viscoelastic magnetic field using the linear response theory and apply our calculations to the putative multiband chiral superconductor Sr2RuO4. The chirality origin of a multiband superconductor arises from the interorbital coupling of the superconducting state. This feature leads to the robustness of the Hall viscosity against temperature and impurity effects. We study the temperature effect on the Hall viscosity at the one-loop approximation.

  13. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  14. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  15. Proximity effects in ferromagnet-superconductor structures

    NASA Astrophysics Data System (ADS)

    Halterman, Klaus Byron

    I present an extensive theoretical investigation of the proximity effects that occur in ferromagnet/superconductor systems. I use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. I obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing both the leakage of superconductivity into the magnet and to study spin splitting induced in the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wave vector mismatch, all of which turn out to have an important influence on the results. These comprehensive results should help characterize and analyze future data, and are shown to be in agreement with existing experiments.

  16. Electrical bushing for a superconductor element

    DOEpatents

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  17. High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2

    NASA Astrophysics Data System (ADS)

    Abdel-Hafiez, M.; Zhao, Y.; Huang, Z.; Cho, C.-w.; Wong, C. H.; Hassen, A.; Ohkuma, M.; Fang, Y.-W.; Pan, B.-J.; Ren, Z.-A.; Sadakov, A.; Usoltsev, A.; Pudalov, V.; Mito, M.; Lortz, R.; Krellner, C.; Yang, W.

    2018-04-01

    While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the absence of iron in the structure that the superconducting characteristics of the end member BaPd2As2 are surprisingly conventional. Here we report on complementary measurements of specific heat, magnetic susceptibility, resistivity measurements, Andreev spectroscopy, and synchrotron high pressure x-ray diffraction measurements supplemented with theoretical calculations for BaPd2As2 . Its superconducting properties are completely isotropic as demonstrated by the critical fields, which do not depend on the direction of the applied field. Under the application of high pressure, Tc is linearly suppressed, which is the typical behavior of classical phonon-mediated superconductors with some additional effect of a pressure-induced decrease in the electronic density of states and the electron-phonon coupling parameters. Structural changes in the layered BaPd2As2 have been studied by means of angle-dispersive diffraction in a diamond-anvil cell. At 12 GPa and 24.2 GPa we observed pressure induced lattice distortions manifesting as the discontinuity and, hence discontinuity in the Birch-Murnaghan equation of state. The bulk modulus is B0=40 (6 ) GPa below 12 GPa and B0=142 (3 ) GPa below 27.2 GPa.

  18. Investigation of current transfer in built-up superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.R.; Dresner, L.; Lue, J.W.

    1977-01-01

    Superconductors carrying 10 kA or more have been widely suggested for use in fusion research and reactor magnets. Built-up or cable conductors have been proposed in which superconductor is concentrated in part of the conductor or part of the strands while the stabilizer occupies the rest. This scheme leads to substantial saving in manufacturing cost and to reduction of ac losses. Simplified analysis indicates that the current transfer from superconducting wire to normal wire takes place over a characteristic length depending on the resistivity of the contact barrier, the resistivity of the stabilizer, and the geometry of the conductor. Furthermore,more » the cold-end recovery suffers a reduction. Two types of conductors were constructed for the experimental test. Triplex conductors consisting of either three superconducting wires or two superconducting plus one copper wire were used to simulate cables. Laminated superconductor and copper strips with different soldering bonds were used for build-ups. Normal zone propagation and recovery experiments have been performed and results are compared with the theory.« less

  19. Pseudogap and conduction dimensionalities in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Das Arulsamy, Andrew; Ong, P. C.; Ong, M. T.

    2003-01-01

    The nature of normal state charge-carriers' dynamics and the transition in conduction and gap dimensionalities between 2D and 3D for YBa2Cu3O7-δ and Bi2Sr2Ca1- xYxCu2O8 high-Tc superconductors were described by computing and fitting the resistivity curves, /ρ(T,δ,x). These were carried out by utilizing the 2D and 3D Fermi liquid and ionization energy (EI) based resistivity models coupled with charge-spin separation based /t-/J model (Phys. Rev. B 64 (2001) 104516). /ρ(T,δ,x) curves of Y123 and Bi2212 samples indicate the beginning of the transition of conduction and gap from 2D to 3D with reduction in oxygen content /(7-δ) and Ca2+(1-x) as such, /c-axis pseudogap could be a different phenomenon from superconductor and spin gaps. These models also indicate that the recent MgB2 superconductor is at least not Y123 or Bi2212 type.

  20. Influence of γ-Irradiation on the Optical Properties of the Polyimide-YBa2Cu3O6.7 System

    NASA Astrophysics Data System (ADS)

    Muradov, A. D.; Korobova, N. E.; Kyrykbaeva, A. A.; Yar-Mukhamedova, G. Sh.; Mukashev, K. M.

    2018-05-01

    Influence of γ-irradiation on the optical properties of a polyimide film and its polymer compositions with fillers of a dispersed powder of a high-temperature superconductor ҮBa2Cu3O6.7 (YBaCuO) with concentrations of 0.05, 0.10, and 0.50 wt.% was studied. It was established that γ-irradiation with a dose up to 600 kGy does not affect the transparency of polyimide films in the visible region of the spectrum. However, at irradiation doses of 250 and 600 kGy, a weakly expressed fine structure appears in the spectra of polyimide films in the range of 220-300 nm due to the contribution of the resulting diene structures to the optical transmission and the increased content of oxygen atoms. The YBaCuO filler and γ-irradiation cause the polyimide transition from the amorphous state to the crystalline state, which is manifested in a sharp change in the spectrum in the range of 2.3-3.9 eV. A significant increase in the extinction coefficient was found in the composite containing 0.50 wt.% of the filler that is associated with an increase in the radius of action of structurally active fillers on the macromolecules of the matrix.