Effect of grain-alignment on the levitation force of melt-processed YBCO bulk superconductors
NASA Astrophysics Data System (ADS)
Yang, Wan-min; Zhou, Lian; Feng, Yong; Zhang, Ping-xiang; Wu, Min-zhi; Wu, Xiao-zu; Gawalek, W.
1999-07-01
Single-domain YBCO bulk superconductors have been fabricated by Top Seeded Melt Slow Cooling Growth(TSSCG) process. Two typical YBCO cylinder samples with differential grain-alignment were selected for the investigation of the relationship between the grain-alignment and the levitation force under the same testing condition at liquid nitrogen temperature. It is found that the levitation force values is much different for the two samples, the levitation force of the sample with H par c-axis is more than two times higher than that of the samples with H ⊥ c-axis. So it is necessary to take account of this anisotropy in practical applications. The relationship between a magnet and a superconductor can be well described with a double exponential function. All the results are discussed in details.
Levitation force of melt-textured YBCO superconductors under non-quasi-static situation
NASA Astrophysics Data System (ADS)
Zhao, Z. M.; Xu, J. M.; Yuan, X. Y.; Zhang, C. P.
2018-06-01
The superconducting levitation force of a simple superconductor-magnet system under non-quasi-static situation is investigated experimentally. Two yttrium barium copper oxide (YBCO) samples with different performances are chosen from two small batches of samples prepared by the top-seeded melt-textured growth process. The residual carbon content of the precursor powders of the two batches is different due to different heat treatment processes. During the experimental process for measuring the levitation force, the value of the relative speed between the YBCO sample and the permanent magnet is higher than that in conventional studies. The variation characteristics of the superconducting levitation force are analyzed and a crossing phenomenon in the force-displacement hysteresis curves is observed. The results indicate that the superconducting levitation force is different due to the different residual carbon contents. As residual carbon contents reduce, the crossing phenomenon is more obvious accordingly.
The effect of growth temperature on the irreversibility line of MPMG YBCO bulk with Y2O3 layer
NASA Astrophysics Data System (ADS)
Kurnaz, Sedat; Çakır, Bakiye; Aydıner, Alev
2017-07-01
In this study, three kinds of YBCO samples which are named Y1040, Y1050 and Y1060 were fabricated by Melt-Powder-Melt-Growth (MPMG) method without a seed crystal. Samples seem to be single crystal. The compacted powders were located on a crucible with a buffer layer of Y2O3 to avoid liquid to spread on the furnace plate and also to support crystal growth. YBCO samples were investigated by magnetoresistivity (ρ-T) and magnetization (M-T) measurements in dc magnetic fields (parallel to c-axis) up to 5 T. Irreversibility fields (Hirr) and upper critical fields (Hc2) were obtained using 10% and 90% criteria of the normal state resistivity value from ρ-T curves. M-T measurements were carried out using the zero field cooling (ZFC) and field cooling (FC) processes to get irreversible temperature (Tirr). Fitting of the irreversibility line results to giant flux creep and vortex glass models were discussed. The results were found to be consistent with the results of the samples fabricated using a seed crystal. At the fabrication of MPMG YBCO, optimized temperature for crystal growth was determined to be around 1050-1060 °C.
NASA Astrophysics Data System (ADS)
Li, Jiawei; Shi, Yun-Hua; Dennis, Anthony R.; Namburi, Devendra Kumar; Durrell, John H.; Yang, Wanmin; Cardwell, David A.
2017-09-01
Most established top seeded melt growth (TSMG) processes of bulk, single grain Y-Ba-Cu-O (YBCO) superconductors are performed using a mixture of pre-reacted precursor powders. Here we report the successful growth of large, single grain YBCO samples by TSMG with good superconducting properties from a simple precursor composition consisting of a sintered mixture of the raw oxides. The elimination of the requirement to synthesize precursor powders in a separate process prior to melt processing has the potential to reduce significantly the cost of bulk superconductors, which is essential for their commercial exploitation. The growth morphology, microstructure, trapped magnetic field and critical current density, J c, at different positions within the sample and maximum levitation force of the YBCO single grains fabricated by this process are reported. Measurements of the superconducting properties show that the trapped filed can reach 0.45 T and that a zero field J c of 2.5 × 104 A cm-2 can be achieved in these samples. These values are comparable to those observed in samples fabricated using pre-reacted, high purity commercial oxide precursor powders. The experimental results are discussed and the possibility of further improving the melt process using raw oxides is outlined.
The successful incorporation of Ag into single grain, Y-Ba-Cu-O bulk superconductors
NASA Astrophysics Data System (ADS)
Congreve, Jasmin V. J.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2018-07-01
The use of RE-Ba-Cu-O [(RE)BCO] bulk superconductors, where RE = Y, Gd, Sm, in practical applications is, at least in part, limited by their mechanical properties and brittle nature, in particular. Alloying these materials with silver, however, produces a significant improvement in strength without any detrimental impact on their superconducting properties. Unfortunately, the top seeded melt growth technique, used routinely to process bulk (RE)BCO superconductors in the form of large, single grains required for practical applications, is complex and has a large number of inter-related variables, so the addition of silver increases the complexity of the growth process even further. This can make successful growth of this system extremely challenging. Here we report measurements of the growth rate of YBCO-Ag fabricated using a new growth technique consisting of continuous cooling and isothermal hold process. The resulting data form the basis of a model that has been used to derive suitable heating profiles for the successful single grain growth of YBCO-Ag bulk superconductors of up to 26 mm in diameter. The microstructure and distribution of silver within these samples have been studied in detail. The maximum trapped field at the top surface of the bulk YBCO-Ag samples has been found to be comparable to that of standard YBCO processed without Ag. The YBCO-Ag samples also exhibit a much more uniform trapped field profile compared to that of YBCO.
NASA Astrophysics Data System (ADS)
Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo
2016-12-01
Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.
NASA Astrophysics Data System (ADS)
Radusovska, M.; Diko, P.; Piovarci, S.; Park, S.-D.; Jun, B.-H.; Kim, C.-J.
2017-10-01
The microstructural analyses of YBCO bulk single-grain superconductors grown by interior seeding with taller and shorter upper pellets have shown that a suitable upper pellet height can lower the porosity in the upper part of the sample, produce a more appropriate distribution of pinning centres in the form of Y-211 particles and suppress subgrain formation with a higher crystal misalignment in the c-growth sector (c-GS), which can lead to a higher measured trapped magnetic field and a more uniform cone of the trapped-field profile. The observed bulging of the sample surface at the c-GS can be explained by the edge melt distribution model, which shows that macroscopic mass transport to the growth sector occurs with higher growth rates.
Experimental studies of diffusion welding of YBCO to copper using solder layers
NASA Astrophysics Data System (ADS)
Xie, Y.; Ouyang, Z.; Shi, L.; Kuang, Z.; Meng, M.
2017-02-01
The welding technology is of great importance in YBCO application. To make better joints, the diffusion welding of YBCO tape to copper has been carried out in a vacuum environment. In consideration of high welding temperature (above 200°C) could do damage to the material performance, a new kind of diffusion welding method with temperature below 200 °C has been developed recently. A new welding appliance which can offer pressure over 35Kg/mm2 and controlled temperature has been designed and built; several YBCO coated conductors joints soldered with different melting points of tins has been tested. The results showed that the diffusion can perfectly connect YBCO to copper as well as stainless steel and resistance of the joint was low, and the YBCO tape could bear 217°C for at least 15mins.
Measurement of the thermal expansion of melt-textured YBCO using optical fibre grating sensors
NASA Astrophysics Data System (ADS)
Zeisberger, M.; Latka, I.; Ecke, W.; Habisreuther, T.; Litzkendorf, D.; Gawalek, W.
2005-02-01
In this paper we present measurements of the thermal expansion of melt-textured YBaCuO in the temperature range 30-300 K by means of optical fibre sensors. The sample, which had a size of 38 × 38 × 18 mm3, was prepared by our standard melt-texturing process using SmBaCuO seeds. One fibre containing three Bragg gratings which act as strain sensors was glued to the sample surface with two sensors parallel to the ab-plane and one sensor parallel to the c-axis. The sample was cooled down to a minimum temperature of 30 K in a vacuum chamber using a closed cycle refrigerator. In the temperature range we used, the thermal expansion coefficients are in the range of (3-9) × 10-6 K-1 (ab-direction) and (5-13) × 10-6 K-1 (c-direction).
NASA Astrophysics Data System (ADS)
Vojtkova, L.; Diko, P.; Kovac, J.; Vojtko, M.
2018-06-01
Single grain YBa2Cu3O7‑x (YBCO or Y123) bulk superconductors were produced by an infiltration growth process. The solid phase precursor was prepared by solid state synthesis from Y2O3 + BaCuO2 powders. The influence of the addition of Sm2O3 and YB contamination from the substrate on the microstructure and superconducting properties was analyzed. The dependences of Yb concentration on the distance from the bottom of the samples measured by energy dispersive spectroscopy microanalysis used in conjunction with scanning electron microscopy confirmed the contamination of the samples during the melting stage of the sample preparation. It is shown that the addition of Sm in low concentration and its combination with Yb from the substrate modify the coarsening of the Y211 particles as well as lead to the appearance of a secondary peak effect in the field dependences of the critical current density.
High trapped fields in bulk YBCO superconductors
NASA Astrophysics Data System (ADS)
Fuchs, Günter; Gruss, Stefan; Krabbes, Gernot; Schätzle, Peter; Verges, Peter; Müller, Karl-Hartmut; Fink, Jörg; Schultz, Ludwig
The trapped field properties of bulk melt-textured YBCO material were investigated at different temperatures. In the temperature range of liquid nitrogen, maximum trapped fields of 1.1 T were found at 77 K by doping of YBCO with small amounts of zinc. The improved pinning of zinc-doped YBa2Cu3O7-x (YBCO) results in a pronounced peak effect in the field dependence of the critical current density. the trapped field at lower temperatures increases due to the increasing critical current density, however, at temperatures around 50 K cracking of the material is observed which is exposed to considerably tensile stresses due to Lorentz forces. Very high trapped fields up to 14.4 T were achieved at 22.5 K for a YBCO disk pair by the addition of silver improving the tensile strength of YBCO and by using a bandage made of a steel tube. The steel tube produces a compressive stress on YBCO after cooling down from 300 K to the measuring temperature, which is due to the higher coeeficient of thermal expansion of steel compared with that of YBCO in the a,b plane. The application of superconducting permanent magnets with trapped fields of 10 T and more in superconducting bearings would allow to obtain very high levitation pressures up to 2500 N/cm2 which is two orders of magnitude higher than the levitation pressure achievable in superconducting bearings with conventional permanent magnets. The most important problem for the application of superconducting permanent magnets is the magnetizing procedure of the YBCO material. Results of magnetizing YBCO disks by using of pulsed magnetic fields will be presented.
NASA Astrophysics Data System (ADS)
Torii, S.; Yuasa, K.
2004-10-01
Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.
NASA Astrophysics Data System (ADS)
Dadras, Sedigheh; Davoudiniya, Masoumeh
2018-05-01
This paper sets out to investigate and compare the effects of Ag nanoparticles and carbon nanotubes (CNTs) doping on the mechanical properties of Y1Ba2Cu3O7-δ (YBCO) high temperature superconductor. For this purpose, the pure and doped YBCO samples were synthesized by sol-gel method. The microstructural analysis of the samples is performed using X-ray diffraction (XRD). The crystalline size, lattice strain and stress of the pure and doped YBCO samples were estimated by modified forms of Williamson-Hall analysis (W-H), namely, uniform deformation model (UDM), uniform deformation stress model (UDSM) and the size-strain plot method (SSP). These results show that the crystalline size, lattice strain and stress of the YBCO samples declined by Ag nanoparticles and CNTs doping.
Superconductivity devices: Commercial use of space
NASA Technical Reports Server (NTRS)
Haertling, Gene; Furman, Eugene; Hsi, Chi-Shiung; Li, Guang
1993-01-01
A YBCO thick film containing 20 percent Ag2O with a T(sub c) of 86.8 K and J(sub c) of 108 A/sq cm was obtained. The film was fabricated by a two-step firing process, i.e., firing the film at 1000 C for 10 minutes and annealing at 970 C for 30 minutes. The two-step firing process, however, was not suitable for the multiple-lead YBCO sample due to the formation of the 211 green phase at 1000 C in the multiple-lead YBCO sample. A BSCCO thick film printed on a MgO coated MSZ substrate and fired at 845 C for 2 hours exhibited a superconducting behavior at 89 K. Because of its porous microstructure, the critical current density of the BSCCO thick film was limited. This report also includes the results of the YBCO and BSCCO materials used as oxide electrodes for ferroelectric materials. The YBCO electroded PLZT showed higher remanent polarization and coercive field than the sample electroded with silver paste. A higher Curie temperature for the PLZT was obtained from the YBCO electroded sample. The BSCCO electroded sample, however, exhibited the same Curie temperature as that of a silver electroded sample. Dissipation factors of the ferroelectric samples increased when the oxide electrode was applied.
Operation and design selection of high temperature superconducting magnetic bearings
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Floegel-Delor, U.; Riedel, T.; Rothfeld, R.; Wippich, D.; Goebel, B.
2004-10-01
Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN2 for cooling down, and about 0.2 l LN2 h-1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings.
The homogeneity of levitation force in single domain YBCO bulk
NASA Astrophysics Data System (ADS)
Zhou, Keran; Xu, Ke-Xi; Wu, Xing-da; Pan, Peng-jun
2007-11-01
The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2Cu 3O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2Cu 3O 7-δ bulk.
Growth rate of YBCO-Ag superconducting single grains
NASA Astrophysics Data System (ADS)
Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.
2017-12-01
The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.
Critical current survival in the YBCO superconducting layer of a delaminated coated conductor
NASA Astrophysics Data System (ADS)
Feng, Feng; Fu, Qishu; Qu, Timing; Mu, Hui; Gu, Chen; Yue, Yubin; Wang, Linli; Yang, Zhirong; Han, Zhenghe; Feng, Pingfa
2018-04-01
A high-temperature superconducting coated conductor can be practically applied in electric equipment due to its favorable mechanical properties and critical current (I c) performance. However, the coated conductor can easily delaminate because of its poor stress tolerance along the thickness direction. It would be interesting to investigate whether the I c of the delaminated YBa2Cu3O7-δ (YBCO) layer can be preserved. In this study, coated conductor samples manufactured through the metal organic deposition route were delaminated by liquid nitrogen immersion. Delaminated samples, including the YBCO layer and silver stabilizer, were obtained. Delamination occurred inside the YBCO layer and near the YBCO-CeO2 interface, as suggested by the results of scanning electron microscopy (SEM) and x-ray diffraction. A scanning Hall probe system was employed to measure the I c distribution of the original sample and the delaminated sample. It was found that approximately 50% of the I c can be preserved after delamination, which was verified by I c measurements using the four-probe method. Dense and crack-free morphologies of the delaminated surfaces were observed by SEM, which accounts for the I c survival of the delaminated YBCO layer. The potential application of the delaminated sample in superconducting joints was discussed based on the oxygen diffusion estimation.
Excess current experiment on YBCO tape conductor with metal stabilized layer
NASA Astrophysics Data System (ADS)
Tasaki, Kenji; Yazawa, Takashi; Ono, Michitaka; Kuriyama, Toru
2006-06-01
Excess current experiments were performed using YBCO tape conductors with a metal stabilized layer on the superconducting layer. The purpose of this research is to obtain the stable criteria of energy dissipation when YBCO tape is forced to flow excess current higher than its critical current. This situation should be considered in power applications. In the experiments short-length samples were immersed in liquid nitrogen and several cycles of 50Hz sinusoidal current were supplied to the samples by an induction voltage regulator. The critical current of the samples was about 110 A. With pulse length as long as 60 ms, YBCO tapes were able to be energized up to twelve times as the critical current without electrical or mechanical deformation. Prior to the excess current experiments, temperature dependency of resistance of the sample was measured so that the temperature rise was estimated by the generated resistance. It is found that YBCO tapes with a copper stabilized layer can be transiently heated to over 400K without degradation.
Fabrication of Large Domain YBa2Cu3O(x) for Magnetic Suspension Applications
NASA Technical Reports Server (NTRS)
Sengupta, S.; Corpus, J.; Gaines, J. R., Jr.; Todt, V. R.; Zhang, X.; Miller, D. J.
1996-01-01
Large domain YBa2Cu3O(x) levitators have been fabricated using a seeded melt processing technique. Depending upon the seed, either a single or five domained sample can be obtained. The grain boundaries separating each domains in the five domain levitator are found to be 90 degrees. Similar levitation forces can be observed for single and five domained samples. After thermal cycling, however, a small decrease in the levitation force of the five domain levitator was observed as a function of thermal cycles while nearly no change in force was observed in the single domain levitator. Finally, it is shown that both, single and five domain YBCO, behave similarly as a function of sample thickness.
NASA Astrophysics Data System (ADS)
Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2016-03-01
Bulk (RE)-Ba-Cu-O ((RE)BCO, where RE stands for rare-earth), single grain superconductors can trap magnetic fields of several tesla at low temperatures and therefore can function potentially as high field magnets. Although top seeded melt growth (TSMG) is an established process for fabricating relatively high quality single grains of (RE)BCO for high field applications, this technique suffers from inherent problems such as sample shrinkage, a large intrinsic porosity and the presence of (RE)2BaCuO5 (RE-211)-free regions in the single grain microstructure. Seeded infiltration and growth (SIG), therefore, has emerged as a practical alternative to TSMG that overcomes many of these problems. Until now, however, the superconducting properties of bulk materials processed by SIG have been inferior to those fabricated using the TSMG technique. In this study, we identify that the inferior properties of SIG processed bulk superconductors are related to the presence of a relatively large Y-211 content (˜41.8%) in the single grain microstructure. Controlling the RE-211 content in SIG bulk samples is particularly challenging because it is difficult to regulate the entry of the liquid phase into the solid RE-211 preform during the infiltration process. In an attempt to solve this issue, we have investigated the effect of careful control of both the infiltration temperature and the quantity of liquid phase powder present in the sample preforms prior to processing. We conclude that careful control of the infiltration temperature is the most promising of these two process variables. Using this knowledge, we have fabricated successfully a YBCO bulk single grain using the SIG process of diameter 25 mm that exhibits a trapped field of 0.69 T at 77 K, which is the largest value reported to date for a sample fabricated by the SIG technique.
Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7-δ
NASA Astrophysics Data System (ADS)
Dadras, S.; Falahati, S.; Dehghani, S.
2018-05-01
In this research we reported the effects of graphene oxide (GO) doping on the structural and superconducting properties of YBa2Cu3O7-δ (YBCO) high temperature superconductors. We synthesized YBCO powder by sol-gel method. After calcination, the powder mixed with different weight percent (0, 0.1, 0.3, 0.7, 1 wt.%) of GO. Refinement of X-ray diffraction (XRD) was carried out by material analysis using diffraction (MAUD) program to obtain the structural parameters such as lattice parameters, site occupancy of different atoms and orthorhombicity value for the all samples. Results show that GO doping does not change the structure of YBCO compound, Cu (1), Cu (2) and oxygen sites occupancy. It seems that GO remains between the grains and can play the role of weak links. We found that GO addition to YBCO compound increases transition temperature (TC). The oxygen contents of the all GO-doped samples are increased with respect to the pure one. The strain (ɛ) of the samples obtained from Williamson-Hall method, varies with increasing of GO doping. The scanning electron microscopy (SEM) images of the samples show better YBCO grain connections by GO doping.
Contact resistance and normal zone formation in coated yttrium barium copper oxide superconductors
NASA Astrophysics Data System (ADS)
Duckworth, Robert Calvin
2001-11-01
This project presents a systematic study of contact resistance and normal zone formation in silver coated YBa2CU3Ox (YBCO) superconductors. A unique opportunity exists in YBCO superconductors because of the ability to use oxygen annealing to influence the interfacial properties and the planar geometry of this type of superconductor to characterize the contact resistance between the silver and YBCO. The interface represents a region that current must cross when normal zones form in the superconductor and a high contact resistance could impede the current transfer or produce excess Joule heating that would result in premature quench or damage of the sample. While it has been shown in single-crystalline YBCO processing methods that the contact resistance of the silver/YBCO interface can be influenced by post-process oxygen annealing, this has not previously been confirmed for high-density films, nor for samples with complete layers of silver deposited on top of the YBCO. Both the influence of contact resistance and the knowledge of normal zone formation on conductor sized samples is essential for their successful implementation into superconducting applications such as transmission lines and magnets. While normal zone formation and propagation have been studied in other high temperature superconductors, the amount of information with respect to YBCO has been very limited. This study establishes that the processing method for the YBCO does not affect the contact resistance and mirrors the dependence of contact resistance on oxygen annealing temperature observed in earlier work. It has also been experimentally confirmed that the current transfer length provides an effective representation of the contact resistance when compared to more direct measurements using the traditional four-wire method. Finally for samples with low contact resistance, a combination of experiments and modeling demonstrate an accurate understanding of the key role of silver thickness and substrate thickness on the stability of silver-coated YBCO Rolling Assisted Bi-Axially Textured Substrates conductors. Both the experimental measurements and the one-dimensional model show that increasing the silver thickness results in an increased thermal runaway current; that is, the current above which normal zones continue to grow due to insufficient local cooling.
Application of ceramic superconductors in high speed turbines
NASA Technical Reports Server (NTRS)
Mcmichael, C. K.; Lamb, M. A.; Lin, M. W.; Ma, K. B.; Chu, W. K.
1992-01-01
A turbine system was modified to adapt melt textured YBa2Cu3O(7-delta) (YBCO) with high energy permanent magnets to form a hybrid superconducting magnetic bearing (HSMB). The HSMB/turbine prototype has achieved a static axial thrust capacity exceeding 41 N/sq cm (60 psi) and a radial magnetic stiffness of 7 N/mm in a field cooled state at 77 K. A comparison was made between different configurations of magnets and superconductor for radial stability, axial instability, and force hystereses. This systematic study lead to a greater understanding of the interactions between YBCO and high energy permanent magnets to define design parameters for high rotational devices using the HSMB design.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Yuan, X. C.; Guo, Y. X.
2017-10-01
Single domain YBCO bulk superconductors with different additions of ZnO have been successfully fabricated by RE+011 TSIG process with a new solid phase of [(100-x)(Y2O3 + 1.2BaCuO2)+xZnO] and a new liquid phase of (Y2O3+6CuO+10BaCuO2). The effects of ZnO additions on the growth morphology, microstructure, critical temperature (Tc), the levitation force and trapped field of the YBCO bulks have been investigated. It is found that within the range of ZnO additions x=0-1.0 wt.%, all the samples are of the typical characteristic of single-domain YBCO bulk; the Tc of the samples decreases from 92 K to 80 K when the ZnO addition x increases from x=0 wt.% to x=1.0 wt.%; the levitation force and trapped field of the samples firstly increase and then decrease with increase of ZnO additions after going through a maximum, which is closely related with the ZnO addition and the resulting flux pinning force caused by lattice distortion due to the substitution of Zn2+ for Cu2+ site in the YBCO crystal; the largest levitation force 36.8 N (77 K, 0.5 T) and trapped field 0.416 T (77 K, 0.5 T) of the samples are obtained when x=0.1 wt.%, respectively. This result is significantly important and helpful for us to improve the properties of YBCO bulk superconductors.
Fatigue tests of YBCO coated conductors
NASA Astrophysics Data System (ADS)
Bamba, S.; Tanaka, Y.; Ando, T.; Ueda, H.; Ishiyama, A.; Yamada, Y.; Shiohara, Y.
2008-02-01
In this paper, we report the fatigue characteristics of IBAD/PLD YBCO coated conductors. A YBCO coated conductor used in the superconducting coil of a SMES system is repeatedly subjected to mechanical tensile or compressive strain due to the Lorentz force during electrical charging or discharging. The superconducting characteristic of this conductor may deteriorate because of this cyclic strain. Therefore, it is necessary to investigate the effect of cyclic strain on the superconducting characteristics of YBCO coated conductors that have a laminated structure. We developed an experimental apparatus with a U-shaped sample holder in order to apply cyclic strain to the sample tape. This apparatus was used to perform the fatigue tests on YBCO coated conductors in liquid nitrogen in the absence of an external magnetic field. The strain cycles with the maximum strain epsilonmax (zero external strain → epsilonmax → zero external strain) were applied and repeated up to 5000 times, and the Ic measurements were performed at epsilonmax. Therefore, the application of cyclic strain with epsilonmax ranging from 0.3% to 0.5% did not result in any significant deterioration of the superconducting characteristics of the conductor.
NASA Astrophysics Data System (ADS)
Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2016-09-01
A fundamental requirement of the fabrication of high performing, (RE)-Ba-Cu-O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ˜0.84 T and a zero field current density of 60 kA cm-2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a sample fabricated by an infiltration and growth process. In this study we report the successful fabrication of 14 YBCO samples, with diameters of up to 32 mm, by this novel technique with a success rate of greater than 92%.
Theory of the vortex matter transformations in high-Tc superconductor YBCO.
Li, Dingping; Rosenstein, Baruch
2003-04-25
Flux line lattice in type II superconductors undergoes a transition into a "disordered" phase such as vortex liquid or vortex glass, due to thermal fluctuations and random quenched disorder. We quantitatively describe the competition between the thermal fluctuations and the disorder using the Ginzburg-Landau approach. The following T-H phase diagram of YBCO emerges. There are just two distinct thermodynamical phases, the homogeneous and the crystalline one, separated by a single first order transition line. The line, however, makes a wiggle near the experimentally claimed critical point at 12 T. The "critical point" is reinterpreted as a (noncritical) Kauzmann point in which the latent heat vanishes and the line is parallel to the T axis. The magnetization, the entropy, and the specific heat discontinuities at melting compare well with experiments.
Flywheel energy storage with superconductor magnetic bearings
Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.
1993-01-01
A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.
Crystal growth of YBCO coated conductors by TFA MOD method
NASA Astrophysics Data System (ADS)
Yoshizumi, M.; Nakanishi, T.; Matsuda, J.; Nakaoka, K.; Sutoh, Y.; Izumi, T.; Shiohara, Y.
2008-09-01
The crystal growth mechanism of TFA (trifluoroacetates)-MOD (metal organic deposition) derived YBa 2Cu 3O y has been investigated to understand the process for higher production rates of the conversion process. YBCO films were prepared by TFA-MOD on CeO 2/Gd 2Zr 2O 7/Hastelloy C276 substrates. The growth rates of YBCO derived from Y:Ba:Cu = 1:2:3 and 1:1.5:3 starting solutions were investigated by XRD and TEM analyses. YBCO growth proceeds in two steps of the epitaxial one from the substrate and solid state reaction. The overall growth rate estimated from the residual amounts of BaF 2 with time measured by XRD is proportional to a square root of P(H 2O). The trend was independent of the composition of starting solutions, however, the growth rate obtained from the 1:1.5:3 starting solutions was high as twice as that of 1:2:3, which could not be explained by the composition of BaF 2 included in the precursor films. On the other hand, the growth rate measured from the thickness of the YBCO quenched film at the same process time showed no difference between the samples of 1:2:3 and 1:1.5:3. The epitaxial growth rate of 1:1.5:3 was also the same as the overall growth rate of that, which means there was no solid state reaction to form YBCO after the epitaxial growth. The YBCO growth mechanism was found to be as follows; YBCO crystals nucleate at the surface of the substrate and epitaxially grow into the precursor by layer-by-layer by a manner with trapping unreacted particles. The amounts of YBCO and the unreacted particles trapped in the YBCO film are independent of the composition of the starting solution in this step. Unreacted particles react with each other to form YBCO and pores by solid state reaction as long as there is BaF 2 left in the film. The Ba-poor starting solution gives little BaF 2 left in the film and so the solid state reaction is completed within a short time, resulting in the fast overall growth rate.
Positron Annihilation Measurements of High Temperature Superconductors
NASA Astrophysics Data System (ADS)
Jung, Kang
1995-01-01
The temperature dependence of positron annihilation parameters has been measured for basic YBCO, Dy-doped, and Pr-doped superconducting compounds. The physical properties, such as crystal structure, electrical resistance, and critical temperature, have been studied for all samples. In the basic YBCO and Dy-doped samples, the defect -related lifetime component tau_{2 } was approximately constant from room temperature to above the critical temperature and then showed a step -like decrease in the temperature range 90K { ~} 40K. No significant temperature dependence was found in the short- and long-lifetime components, tau_{1} and tau_{3}. The x-ray diffraction data showed that the crystal structure of these two samples was almost the same. These results indicated that the electronic structure changed below the critical temperature. No transition was observed in the Pr-doped YBCO sample. The advanced computer program "PFPOSFIT" for positron lifetime analysis was modified to run on the UNIX system of the University of Utah. The destruction of superconductivity with Pr doping may be due to mechanisms such as hole filling or hole localization of the charge carriers and may be related to the valence state of the Pr ion. One-parameter analyses like the positron mean lifetime parameter and the Doppler line shape parameter S also have been studied. It was found that a transition in Doppler line shape parameter S was associated with the superconducting transition temperature in basic YBCO, Dy -doped, and 0.5 Pr-doped samples, whereas no transition was observed in the nonsuperconducting Pr-doped sample. The Doppler results indicate that the average electron momentum at the annihilation sites increases as temperature is lowered across the superconducting transition range and that electronic structure change plays an important role in high temperature superconductivity.
Ultrasonic studies of high-temperature superconductors
NASA Astrophysics Data System (ADS)
Feller, Jeffrey Robert
1997-09-01
This dissertation consists roughly of two parts. The first part deals with YBa2Cu3O7-δ (YBCO) films deposited on piezoelectric (LiNbO3) substrates. Interdigital surface acoustic wave (SAW) devices (delay lines operating at center frequencies of 50 and 100 MHz) fabricated from YBCO films are examined; insertion loss measurements are presented, and electrode resistance effects are analyzed using equivalent circuit models. Sheet resistance and 168 MHz SAW attenuation measurements of a granular YBCO film on LiNbO3 are also presented. The experimental data are discussed in terms of a percolation theory that models the film as an array of identical YBCO grains connected by resistive junctions which, in the superconducting state behave as Josephson junctions. The normal state resistances of the junctions are assumed to be randomly distributed. In the second part of the dissertation, a number of novel techniques (SAW 'bridges,' the high frequency interdigital proximity probe, and weak acoustic coupling sampled continuous wave spectrometry), used in the study of the vortex state and structural transitions in the normal state of YBCO films and single crystals, are described. Evidence of the existence of a first order structural transition in the vicinity of 220 K is provided.
Low Loss Substrates for Microwave Applications and Sol-Gel Processing of Superconductors
1994-03-31
crystallographic axis normal to solid state technology, in the growth of ferrimagnetic garnets the substrate plane) or. better, in "epitaxial" films (i.e...hay- by liquid phase epitaxy ( LPE ). is from a melt using a para- ing their three crystallographic axes related to those of a magnetic garnet structure...yttrium barium cuprate (YBCO) films and their microwave applications have been carried out. Several promising new hosts such as Sr(All/2Tal/2)03, Sr(Al1
Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling
NASA Astrophysics Data System (ADS)
Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.
2012-01-01
We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.
Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer
NASA Technical Reports Server (NTRS)
Johannes, Daniel; Webber, Robert
2013-01-01
Adiabatic demagnetization refrigerators (ADR) are operated in space to cool detectors of cosmic radiation to a few 10s of mK. A key element of the ADR is a superconducting magnet operating at about 0.3 K that is continually energized and de-energized in synchronism with a thermal switch, such that a piece of paramagnetic salt is alternately warm in a high magnetic field and cold in zero magnetic field. This causes the salt pill or refrigerant to cool, and it is able to suck heat from an object, e.g., the sensor, to be cooled. Current has to be fed into and out of the magnets from a dissipative power supply at the ambient temperature of the spacecraft. The current leads that link the magnets to the power supply inevitably conduct a significant amount of heat into the colder regions of the supporting cryostat, resulting in the need for larger, heavier, and more powerful supporting refrigerators. The aim of this project was to design and construct high-temperature superconductor (HTS) leads from YBCO (yttrium barium copper oxide) composite conductors to reduce the heat load significantly in the temperature regime below the critical temperature of YBCO. The magnet lead does not have to support current in the event that the YBCO ceases to be superconducting. Cus - tomarily, a normal metal conductor in parallel with the YBCO is a necessary part of the lead structure to allow for this upset condition; however, for this application, the normal metal can be dispensed with. Amorphous silicon dioxide is deposited directly onto the surface of YBCO, which resides on a flexible substrate. The silicon dioxide protects the YBCO from chemically reacting with atmospheric water and carbon dioxide, thus preserving the superconducting properties of the YBCO. The customary protective coating for flexible YBCO conductors is silver or a silver/gold alloy, which conducts heat many orders of magnitude better than SiO2 and so limits the use of such a composite conductor for passing current across a thermal gradient with as little flow of heat as possible to make an efficient current lead. By protecting YBCO on a flexible substrate of low thermal conductivity with SiO2, a thermally efficient and flexible current lead can be fabricated. The technology is also applicable to current leads for 4 K superconducting electronics current biasing. A commercially available thin-film YBCO composite tape conductor is first stripped of its protective silver coating. It is then mounted on a jig that holds the sample flat and acts as a heat sink. Silicon dioxide is then deposited onto the YBCO to a thickness of about 1 micron using PECVD (plasma-enhanced chemical vapor deposition), without heating the YBCO to the point where degradation occurs. Since SiO2 can have good high-frequency electrical properties, it can be used to coat YBCO cable structures used to feed RF signals across temperature gradients. The prime embodiment concerns the conduction of DC current across the cryogenic temperature gradient. The coating is hard and electrically insulating, but flexible.
High performance YBCO films. Report for 1 August-31 October 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denlinger, E.J.; Fathy, A.; Kalokitis, D.
1992-10-31
The objective of this program is to identify suitable low loss, low dielectric constant substrates and develop and optimize deposition processes for high quality YBCO films including the necessary buffer layers. Ultimate goals are large area substrates having double-sided HTS coating with a surface resistance ten times lower than copper at 40 GHz. High quality HTS films on low dielectric constant substrates are expected to find widespread use in advanced millimeter wave components, in extending the power handling capability of microwave and millimeter wave circuitry, and in facilitating high speed computer interconnects. Sample demonstration circuits will be built toward themore » end of the program. We have successfully deposited a high quality YBCO film on a good low loss and low dielectric constant substrate, magnesium fluoride (e=5). With the use of two buffer layers (magnesium oxide and strontium titanate) between the YBCO and the substrate, transition temperatures of 89 deg K and transition widths of about 0.5 deg K were achieved. The critical current density Jc of 4 x 10 6 A/cm2 at 77K in zero field is among the highest reported for YBCO films. The magnesium fluoride (MgF2) substrate has a tetragonal structure with a dielectric constant of 5.2 in the plane of the substrate and 4.6 perpendicular to the substrate surface. It has a good harness (-575 Knoop) and a linear thermal expansion coefficient that closely matches YBCO and the buffer layers.« less
NASA Technical Reports Server (NTRS)
Roth, Don J.
1991-01-01
The purpose of this dissertation was the following: (1) to characterize the effect of pore fraction on a comprehensive set of electrical and magnetic properties for the yttrium-barium-copper-oxide (YBCO) high temperature ceramic superconductor; and (2) to determine the viability of using a room-temperature, nondestructive characterization method to aid in the prediction of superconducting (cryogenic) properties. The latter involved correlating ultrasonic velocity measurements at room temperature with property-affecting pore fraction and oxygen content variations. The use of ultrasonic velocity for estimating pore fraction in YBCO is presented, and other polycrystalline materials are reviewed, modeled, and statistically analyzed. This provides the basis for using ultrasonic velocity to interrogate microstructure. The effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples was characterized. Spatial (within-sample) variations in microstructure and superconductor properties were investigated, and the effect of oxygen content on elastic behavior was examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristics. An ultrasonic velocity image constructed from measurements at 1mm increments across a YBCO sample revealed microstructural variations that correlated with variations in magnetic shielding and a.c. loss behavior. Destructive examination using quantitative image analysis revealed pore fraction to be the varying microstructural feature.
Microwave surface resistance of MgB2
NASA Astrophysics Data System (ADS)
Zhukov, A. A.; Purnell, A.; Miyoshi, Y.; Bugoslavsky, Y.; Lockman, Z.; Berenov, A.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Jo, M. H.; Blamire, M. G.; Hao, Ling; Gallop, J.; MacManus-Driscoll, J. L.; Cohen, L. F.
2002-04-01
The microwave power and frequency dependence of the surface resistance of MgB2 films and powder samples were studied. Sample quality is relatively easy to identify by the breakdown in the ω2 law for poor-quality samples at all temperatures. The performance of MgB2 at 10 GHz and 21 K was compared directly with that of high-quality YBCO films. The surface resistance of MgB2 was found to be approximately three times higher at low microwave power and showed an onset of nonlinearity at microwave surface fields ten times lower than the YBCO film. It is clear that MgB2 films are not yet optimized for microwave applications.
Observation of Sinusoidal Voltage Behaviour in Silver Doped YBCO
NASA Astrophysics Data System (ADS)
Altinkok, Atilgan; Olutas, Murat; Kilic, Kivilcim; Kilic, Atilla
The influence of bi-directional square wave (BSW) current was investigated on the evolution of the V - t curves at different periods (P) , temperatures and external magnetic fields. It was observed that slow transport relaxation measurements result in regular sinusoidal voltage oscillations which were discussed mainly in terms of the dynamic competition between pinning and depinning.The symmetry in the voltage oscillations was attributed to the elastic coupling between the flux lines and the pinning centers along grain boundaries and partly inside the grains. This case was also correlated to the equality between flux entry and exit along the YBCO/Ag sample during regular oscillations. It was shown that the voltage oscillations can be described well by an empirical expression V (t) sin(wt + φ) . We found that the phase angle φgenerally takes different values for the repetitive oscillations. Fast Fourier Transform analysis of the V - t oscillations showed that the oscillation period is comparable to that (PI) of the BSW current. This finding suggests a physical mechanism associated with charge density waves (CDWs), and, indeed, the weakly pinned flux line system in YBCO/Ag resembles the general behavior of CDWs. At certain values of PI, amplitude of BSW current, H and T, the YBCO/Ag sample behaves like a double-integrator, since it converts the BSW current to sinusoidal voltage oscillations in time.
Asymmetry of the velocity-matching steps in YBCO long Josephson junctions
NASA Astrophysics Data System (ADS)
Revin, L. S.; Pankratov, A. L.; Chiginev, A. V.; Masterov, D. V.; Parafin, A. E.; Pavlov, S. A.
2018-04-01
We carry out experimental and theoretical investigations into the effect of the vortex chain propagation on the current-voltage characteristics of YBa2Cu3O7-δ (YBCO) long Josephson junctions. Samples of YBCO Josephson junctions, fabricated on 24° [001]-tilt bicrystal substrates, have been measured. The improved technology has allowed us to observe and study the asymmetry of the current-voltage characteristics with opposite magnetic fields (Revin et al 2012 J. Appl. Phys. 114 243903), which we believe occurs due to anisotropy of bicrystal substrates (Kupriyanov et al (2013 JETP Lett. 95 289)). Specifically, we examine the flux-flow resonant steps versus the external magnetic field, and study the differential resistance and its relation to oscillation power for opposite directions of vortex propagation.
NASA Astrophysics Data System (ADS)
Chen, Shihong; Sebastian, Mary Ann; Gautam, Bibek; Wilt, Jamie; Chen, Yanbin; Sun, Lei; Xing, Zhongwen; Haugan, Timothy; Wu, Judy
2017-12-01
High concentration artificial pinning centers (APCs), such as BaZrO3 nanorods (BZO 1D APCs) aligned along the c-axis of the high temperature superconductor YBa2Cu3O7 (YBCO) can provide strong pinning of magnetic vortices and are desirable for applications in high magnetic fields. Unfortunately, in YBCO films with single-doping (SD) of BZO 1D APCs, a monotonic decreasing superconducting T c and critical current density J c(H) with BZO doping has been observed due to strain field overlap at high-concentration perfectly c-axis aligned BZO 1D APCs. In order to resolve this issue, double-doping (DD) of 2-6 vol% BZO 1D APCs and 3.0 vol% Y2O3 nanoparticles (Y2O3-NPs) in YBCO films has been explored to promote BZO-NR orientation misalignment from the c-axis. Remarkably, a monotonic increasing J c(H) with BZO 1D APCs concentration has been obtained in the BZO DD samples. Such a microstructure change is evidenced in the much smaller c-lattice parameter expansion of 0.103% in the DD samples as opposed to 0.511% in the SD counterparts and reduced c-axis alignment of the BZO 1D APCs as revealed in TEM. This yields a mixed 1D + 2D + 3D APC morphology and enhanced isotropic pinning with respect to the orientation of the H-field in the BZO DD samples.
High Temperature Superconductor Josephson Weak Links
NASA Technical Reports Server (NTRS)
Hunt, B. D.; Barner, J. B.; Foote, M. C.; Vasquez, R. C.
1993-01-01
High T_c edge-geometry SNS microbridges have been fabricated using ion-damaged YBa_2Cu_3O_(7-x) (YBCO) and a nonsuperconducting phase of YBCO (N-YBCO) as normal metals. Optimization of the ion milling process used for YBCO edge formation and cleaning has resulted in ion-damage barrier devices which exhibit I-V characteristics consistent with the Resistively-Shunted-Junction (RSJ) model, with typical current densities (J_c) of approximately 5 x 10^6 A/cm^2 at 4.2 K. Characterization of N-YBCO films suggests that N-YBCO is the orthorhombic YBCO phase with oxygen disorder suppressing T_c...
Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papari, G. P.; Glatz, A.; Carillo, F.
Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less
Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.
Papari, G. P.; Glatz, A.; Carillo, F.; ...
2016-12-23
Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less
NASA Astrophysics Data System (ADS)
Pahlke, Patrick; Sieger, Max; Ottolinger, Rick; Lao, Mayraluna; Eisterer, Michael; Meledin, Alexander; Van Tendeloo, Gustaaf; Hänisch, Jens; Holzapfel, Bernhard; Schultz, Ludwig; Nielsch, Kornelius; Hühne, Ruben
2018-04-01
Recent efforts in the development of YBa2Cu3O7-x (YBCO) coated conductors are devoted to the increase of the critical current I c in magnetic fields. This is typically realized by growing thicker YBCO layers as well as by the incorporation of artificial pinning centers. We studied the growth of doped YBCO layers with a thickness of up to 7 μm using pulsed laser deposition with a growth rate of about 1.2 nm s-1. Industrially fabricated ion-beam textured YSZ templates based on metal tapes were used as substrates for this study. The incorporation of BaHfO3 (BHO) or Ba2Y(Nb0.5Ta0.5)O6 (BYNTO) secondary phase additions leads to a denser microstructure compared to undoped films. A purely c-axis-oriented YBCO growth is preserved up to a thickness of about 4 μm, whereas misoriented texture components were observed in thicker films. The critical temperature is slightly reduced compared to undoped films and independent of film thickness. The critical current density J c of the BHO- and BYNTO-doped YBCO layers is lower at 77 K and self-field compared to pure YBCO layers; however, I c increases up to a thickness of 5 μm. A comparison between films with a thickness of 1.3 μm revealed that the anisotropy of the critical current density J c(θ) strongly depends on the incorporated pinning centers. Whereas BHO nanorods lead to a strong B∣∣c-axis peak, the overall anisotropy is significantly reduced by the incorporation of BYNTO forming a mixture of short c-axis-oriented nanorods and small (a-b)-oriented platelets. As a result, the J c values of the doped films outperform the undoped samples at higher fields and lower temperatures for most magnetic field directions.
Large-scale HTS bulks for magnetic application
NASA Astrophysics Data System (ADS)
Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter
2013-01-01
ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.
NASA Astrophysics Data System (ADS)
Ghigo, G.; Chiodoni, A.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Mezzetti, E.; Minetti, B.; Camerlingo, C.
This paper deals with the mechanisms controlling the critical current density vs. field behavior in YBCO films. We base our analysis on a suitable model concerning the existence of a network of intergrain Josephson junctions whose length is modulated by defects. Irradiation with 0.25 GeV Au ions provide a useful tool to check the texture of the sample, in particular to give a gauge length reference to separate “weak” links and high- J c links.
NASA Astrophysics Data System (ADS)
Murphy, J. P.; Gheorghiu, N. N.; Bullard, T.; Haugan, T.; Sumption, M. D.; Majoros, M.; Collings, E. W.
2017-09-01
A new facility for the measurement of AC loss in superconductors at high dB/dt has been developed. The test device has a spinning rotor consisting of permanent magnets arranged in a Halbach array; the sample, positioned outside of this, is exposed to a time varying AC field with a peak radial field of 0.566 T. At a rotor speed of 3600 RPM the frequency of the AC field is 240 Hz, the radial dB/dt is 543 T/s and the tangential dB/dt is 249 T/s. Loss is measured using nitrogen boiloff from a double wall calorimeter feeding a gas flow meter. The system is calibrated using power from a known resistor. YBCO tape losses were measured in the new device and compared to the results from a solenoidal magnet AC loss system measurement of the same samples (in this latter case measurements were limited to a field of amplitude 0.1 T and a dB/dt of 100 T/s). Solenoidal magnet system AC loss measurements taken on a YBCO sample agreed with the Brandt loss expression associated with a 0-0.1 T Ic of 128 A. Subsequently, losses for two more YBCO tapes nominally identical to the first were individually measured in this spinning magnet calorimeter (SMC) machine with a Bmax of 0.566 T and dB/dt of up to 272 T/s. The losses, compared to a simplified version of the Brandt expression, were consistent with the average Ic expected for the tape in the 0-0.5 T range at 77 K. The eddy current contribution was consistent with a 77 K residual resistance ratio, RR, of 4.0. The SMC results for these samples agreed to within 5%. Good agreement was also obtained between the results of the SMC AC loss measurement and the solenoidal magnet AC loss measurement on the same samples.
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Hunt, B. D.; Foote, M. C.; Bajuk, L. J.
1992-01-01
A film of a novel nonsuperconducting Y-Ba-Cu-O (YBCO) barrier material was grown using conditions similar to those reported by Agostinelli et al. (1991) for forming a cubic semiconducting (c-YBCO) phase, and the material was characterized using X-ray photoelectron spectroscopy (XPS). A comparison of the XPS spectra of this material to those obtained from the orthorhombic and tetragonal phases of YBCO (o-YBCO and t-YBCO, respectively) showed that the barrier material had spectral characteristics different from those of o-YBCO and t-YBCO, particularly in the O 1s region. Features associated with the Cu-O chain and surface-reconstructed Cu-O planes were absent, consistent with expectations for the simple perovskite crystal structure of c-YBCO proposed by Agostinelli et al.
Strong Flux Pinning of Nano-Sized Ysz Particles in Ybco Films Prepared by Mod Method
NASA Astrophysics Data System (ADS)
Ye, S.; Suo, H. L.; Liu, M.; Tang, X.; Wu, Z. P.; Zhao, Y.; Zhou, M. L.
The YBCO films with doped YSZ nanoparticles have been prepared successfully by metal organic doepositon method using trifluoroacetates (TFA-MOD) through dissolving Zr organic salt into the YBCO precursor solution. The doped films have well in-plane and out-plane textures detected by both XRD Φ-scan and ω-scan. The YSZ nanoparticles with the size of about 5 ~ 15 nm were observed on the surface of the YBCO films using both FE-SEM and TEM. By comparing the superconducting properties, it was found that the doped YBCO films had lower Tc than that of undoped YBCO films. However, as increasing the applied magnetic field, Jc of the doped YBCO films were much better than that of undoped one. The Jc was as higher as 2.5 times than that of undoped YBCO film at 77 K and 1 T applied field.
Fabrication and characterization of hybrid Nb-YBCO dc SQUIDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frack, E.K.; Drake, R.E.; Patt, R.
This paper reports on the fabrication of hybrid low T{sub c}/high T{sub c} dc SQUIDs of two flavors. The first kind utilizes niobium tunnel junctions and a YBCO film strip as the most inductive portion of the SQUID loop. This configuration allows a direct measurement of the inductance of the YBCO microstrip from which the effective penetration depth can be calculated. The successful fabrication of these SQUIDs has required 1. superconducting Nb-to-YBCO contacts, 2. deposition and patterning of an SiO{sub 2} insulation layer over YBCO, and 3. selective patterning of niobium and SiO{sub 2} relative to YBCO. All these processmore » steps are pertinent to the eventual use of YBCO thin films in electronic devices.« less
The Effects of Grain Boundaries on the Current Transport Properties in YBCO-Coated Conductors
NASA Astrophysics Data System (ADS)
Yang, Chao; Xia, Yudong; Xue, Yan; Zhang, Fei; Tao, Bowan; Xiong, Jie
2015-10-01
We report a detailed study of the grain orientations and grain boundary (GB) networks in Y2O3 films grown on Ni-5 at.%W substrates. Electron back scatter diffraction (EBSD) exhibited different GB misorientation angle distributions, strongly decided by Y2O3 films with different textures. The subsequent yttria-stabilized zirconia (YSZ) barrier and CeO2 cap layer were deposited on Y2O3 layers by radio frequency sputtering, and YBa2Cu3O7-δ (YBCO) films were deposited by pulsed laser deposition. For explicating the effects of the grain boundaries on the current carry capacity of YBCO films, a percolation model was proposed to calculate the critical current density ( J c) which depended on different GB misorientation angle distributions. The significantly higher J c for the sample with sharper texture is believed to be attributed to improved GB misorientation angle distributions.
Oxide perovskite crystals for HTSC film substrates microwave applications
NASA Technical Reports Server (NTRS)
Bhalla, A. S.; Guo, Ruyan
1995-01-01
The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.
Flux Pinning Enhancement in YBa2Cu3O7-x Films for Coated Conductor Applications (Postprint)
2012-02-01
the nanocolumns with a certain constant diameter. Since BSO and YBCO are both perovskites, they tend to grow along the c - axis perpendicular to LAO ...20 0 20 40 60 80 100 YBCO+BaSnO 3 / LAO YBCO/MS-6 YBCO+BaSnO 3 /MS-6 J c /J c( h // a b ) Angle (Degs) H//C H//ab Figure 5.18 Transport current...density data of YBCO+BSO fi lm on a LaAlO 3 and a buffered metallic substrate as compared to YBCO fi lm on a metallic substrate. ( LAO = LaAlO 3 , MS
Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics
Yang, F.; Han, M. Y.; Chang, F. G.
2015-01-01
We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10–8 mV at 50 K with a laser intensity of 502 mW/cm2. Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface. PMID:26099727
Development of an YBCO coil with SSTC conductors for high field application
NASA Astrophysics Data System (ADS)
Shi, Y.; Liu, H. J.; Liu, F.; Tan, Y. F.; Jin, H.; Yu, M.; Lei, L.; Guo, L.; Hong, Z. Y.
2018-07-01
With the continuous reduction of the production costs and improvement of the transport performance, YBCO coated conductor is the most promising candidate for the high field magnet application due to its high irreversibility field and strong mechanical properties. Presently a stable production capacity of the YBCO conductors has been achieved by Shanghai Superconducting Technology Co., Ltd (SSTC) in China. Therefore, the demand in high field application with YBCO conductors is growing in China. This paper describes the design, fabrication and preliminary experiment of a solenoid coil with YBCO conductors supplied by SSTC to validate the possibility of high field application. Four same double pancakes were manufactured and assembled for the YBCO coil where the outer diameter and height was 54.3 and 48 mm respectively to match the dimensional limitation of the 14 T background magnets. The critical current (Ic) of YBCO conductors was obtained by measuring as a function of the applied field perpendicular to the YBCO conductor surface which provides the necessary input parameters for preliminary performance evaluation of the coil. Finally the preliminary test and discussion at 77 and 4.2 K were carried out. The consistency of four double pancakes Ic was achieved. The measured results indicate that the fabrication technology of HTS coil is reliable which gives the conference for the in-field test in high field application. This YBCO coil is the first demonstration of the SSTC YBCO coated conductors.
High quality uniform YBCO film growth by the metalorganic deposition using trifluoroacetates
NASA Astrophysics Data System (ADS)
Wang, S. S.; Zhang, Z. L.; Wang, L.; Gao, L. K.; Liu, J.
2017-03-01
A need exists for the large-area superconducting YBa2Cu3O7-x (YBCO) films with high critical current density for microwave communication and/or electric power applications. Trifluoroacetic metalorganic (TFA-MOD) method is a promising low cost technique for large-scale production of YBCO films, because it does not need high vacuum device and is easily applicable to substrates of various shape and size. In this paper, double-sided YBCO films with maximum 2 in diameter were prepared on LaAlO3 substrates by TFA-MOD method. Inductive critical current densitiy Jc, microwave surface resistance Rs, as well as the microstructure were characterized. A newly homemade furnace system was used to epitaxially grown YBCO films, which can improve the uniformity of YBCO film significantly by gas supply and temperature distribution proper design. Results showed that the large area YBCO films were very uniform in microstructure and thickness distribution, an average inductive Jc in excess of 6 MA/cm2 with uniform distribution, and low Rs (10 GHz) below 0.3 mΩ at 77 K were obtained. Andthe film filter may be prepared to work at temperatures lower than 74 K. These results are very close to the highest value of YBCO films made by conventional vacuum method, so we show a very promising route for large-scale production of high quality large-area YBCO superconducting films at a lower cost.
Maximum permissible voltage of YBCO coated conductors
NASA Astrophysics Data System (ADS)
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.
2014-06-01
Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
Effects of K and Ca doping on twin boundary energy of cupperate superconductors
NASA Astrophysics Data System (ADS)
Khoshnevisan, Bahram; Mohammadi, Mahnaz
2016-04-01
Ab-initio calculations under GGA approximation have been employed to find out the effect Ba substitution by K and Ca on the structural and electronic properties twined and untwined YBCO system. In this regard, the twin boundary energy, γ, and impact of the substitution on the boundary's charge distribution have been of special consideration. Our results show that despite the structural changes the presence of K (Ca) modifies substantially density of levels at the Fermi level, which could be responsible for empirical reports of decreasing the critical temperature (Tc) by increasing the K(Ca) content. Although, the K doping reduces the γ value in YBa2-xKxCu3O7 system, after calcium doping it remains more or less unchanged. In addition, reduction of the carrier density occurs at twin boundary in CuO2 layer for the substituted system with respect to the untwined YBCO system. Our results would be noticeable in conjunction with the experimentally reported twinned and alkali substituted superconductive properties of the YBCO samples.
Stability mechanical considerations, and AC loss in HTSC monoliths, coils, and wires
NASA Technical Reports Server (NTRS)
Sumption, M. D.; Collings, E. W.
1995-01-01
For monolithic high-T(sub c) superconductors (HTSC's) calculations are presented of: (1) the initial flux jump field, H(sub fj), in melt-processed YBCO based on a field and temperature dependent J(sub c), and (2) the radial and circumferential stresses in solid and hollow cylinders containing trapped magnetic flux. For model multi filamentary (MF) HTSC/Ag strands calculations are presented of: (1) the limiting filament diameters for adiabatic and dynamic stability, and (2) the hysteretic and eddy current components of AC loss. Again for MF HTSC/Ag composite strands the need for filamentary subdivision and twisting is discussed.
Microstructure and property correlations in high-temperature superconductors
NASA Astrophysics Data System (ADS)
Kalyanaraman, Ramakrishnan
1998-11-01
The work in this dissertation is intended at developing high quality device gradefilms of the high temperature (high-Tsbc) superconductor, Yttrium Barium Copper Oxide (YBCO), on MgO(001) substrates. Three approaches have been used to achieve the above goal, (i) The use of a SrTiOsb3 buffer layer, (ii) The use of Ag to enhance the growth of YBCO films and (iii) Investigation of the atomic structure-property correlations of low-angle grain boundaries in these films. Thin film heterostructures of YBCO/MgO and YBCO/SrTiOsb3/MgO were fabricated by pulsed laser deposition (PLD), using a 248 nm KrF excimer laser. Analysis of the structure and measurement of superconducting properties of the films were carried out to optimize the suitable conditions under each approach. The key findings were, (i) Single crystal-like SrTiOsb3 buffer layers can be grown and they give the highest JsbcYBCO films, (ii) An in-depth study of the role of Ag showed that it enhanced film growth of YBCO thereby improving its quality, and (iii) Low-angle boundaries in YBCO/MgO occur with two probable habit planes and the Jsbcs across them differ slightly. A systematic investigation of the crystalline quality of the SrTiOsb3 films deposited by PLD was performed as a function of oxygen partial pressure (pOsb2) and substrate temperature (Tsbc). The highest quality films were grown in the pOsb2 range of 0.1-1 mTorr at 750sp°C. The films had as-deposited x-ray diffraction rocking curve (omega) values of {˜}0.70sp° and Rutherford backscattering channeling yields (chisbmin) of 5% as compared to omega˜1.40sp° and chisbmin˜14% for the film deposited in 100 mTorr of pOsb2. The x-ray phi-scans showed epitaxial cube-on-cube alignment of the SrTiOsb3 films on MgO(001) substrates. Thermal annealing of the SrTiOsb3 films further improved the quality, and the 1 mTorr films gave omega{˜}0.13sp° and chisbmin˜2.0%. Transmission electron microscopy investigations (TEM) of these films showed that the defects in films grown in the pOsb2 range of 0.5-1 mTorr consisted mainly of dislocations and sub-grain boundaries, while those grown in the higher pOsb2 contained numerous low-angle grain boundaries. YBCO films grown on the best SrTiOsb3 buffer layers showed reproducible Jsbcs of {˜}5.5× 10sp6 amps/cmsp2 at 77K and Tsbcs of 88-91K. The YBCO films was observed to grow epitaxially on SrTiOsb3 with (110) sbPYBCO//(110) sbSriTiO3 and (001) sbYBCO//(001) sbSrTiO3{*}chisbmin for the best YBCO film was ˜2.8%. The crystalline quality of the SrTiOsb3 and YBCO films developed are amongst the highest reported so far. Composite targets of Ag+YBCO were used to grow YBCO films using PLD. Using XRD and Tsbc measurements clear evidence for enhanced oxygenation of the YBCO films was shown. Detailed TEM investigation of grain boundaries in YBCO/MgO(001) showed that the low-angle grain boundaries in YBCO are equally likely to have (100) or (110) habit planes. (Abstract shortened by UMI.)
Exfoliated YBCO filaments for second-generation superconducting cable
NASA Astrophysics Data System (ADS)
Solovyov, Vyacheslav; Farrell, Paul
2017-01-01
The second-generation high temperature superconductor (2G HTS) wire is the most promising conductor for high-field magnets such as accelerator dipoles and compact fusion devices. The key element of the wire is a thin Y1Ba2Cu3O7 (YBCO) layer deposited on a flexible metal substrate. The substrate, which becomes incorporated in the 2G conductor, reduces the electrical and mechanical performance of the wire. This is a process that exfoliates the YBCO layer from the substrate while retaining the critical current density of the superconductor. Ten-centimeter long coupons of exfoliated YBCO layers were manufactured, and detailed structural, electrical, and mechanical characterization were reported. After exfoliation, the YBCO layer was supported by a 75 μm thick stainless steel foil, which makes for a compact, mechanically stronger, and inexpensive conductor. The critical current density of the filaments was measured at both 77 K and 4.2 K. The exfoliated YBCO retained 90% of the original critical current. Similarly, tests in an external magnetic field at 4.2 K confirmed that the pinning strength of the YBCO layer was also retained following exfoliation.
Critical Current Properties in Longitudinal Magnetic Field of YBCO Superconductor with APC
NASA Astrophysics Data System (ADS)
Kido, R.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Jha, A. K.; Matsumoto, K.
The critical current density (Jc) properties of the Artificial Pinning Center (APC) introduced YBa2Cu3O7 (YBCO) films in the longitudinal magnetic field were measured. Y2O3 or Y2BaCuO5 (Y211) was introduced as APCs to YBCO, and YBCO films with APC were fabricated on SrTiO3 single crystal substrate. The sizes of Y2O3 and Y211 were 5-10 nm and 10-20 nm, respectively. As a result, Jc enhancement in the longitudinal magnetic field was observed in Y2O3 introduced YBCO films. However, it was not observed in Y211 introduced YBCO films. Therefore, it was considered that Jc properties in the longitudinal magnetic field were affected by introducing of small size APC, and it was necessary that APC does not disturb the current pathway in the superconductor.
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, D.; Nair, Saritha K.; He, Mi
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
Springer, D.; Nair, Saritha K.; He, Mi; ...
2016-02-12
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
Coaxial line configuration for microwave power transmission study of YBa2Cu3O(7-delta) thin films
NASA Technical Reports Server (NTRS)
Chorey, C. M.; Miranda, F. A.; Bhasin, K. B.
1991-01-01
Microwave transmission measurements through YBa2Cu3O(7-delta) (YBCO) high-transition-temperature superconducting thin films on lanthanum aluminate (LaAlO3) have been performed in a coaxial line at 10 GHz. LaAlO3 substrates were ultrasonically machined into washer-shaped discs, polished, and coated with laser-ablated YBCO. These samples were mounted in a 50-ohm coaxial air line to form a short circuit. The power transmitted through the films as a function of temperature was used to calculate the normal state conductivity and the magnetic penetration depth for the films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denlinger, E.J.; Fathy, A.; Kalokitis, D.
1993-04-30
YBCO on MgF2 withstood post annealing to 750 deg C without deterioration. This allows the deposition of high quality multiple layer YBCO films onto both sides of a MgF2 substrate. GdBaCuO films were deposited onto LaAlO3 and appear to be superior to YBCO in terms of lower particulate density, slightly higher T[sub c]'s, and higher critical current density. The ramifications could be very beneficial to the MCM program. Furthermore, the tolerance of these films to a wider range of deposition conditions indicates a possibility of using these films on MgF2.
NASA Astrophysics Data System (ADS)
Arendt, P.; Foltyn, S.; Wu, Xin Di; Townsend, J.; Adams, C.; Hawley, M.; Tiwari, P.; Maley, M.; Willis, J.; Moseley, D.
Ion-assisted, ion-beam sputter deposition is used to obtain (001) biaxially oriented films of cubic yttria stabilized zirconia (YSZ) on polycrystalline metal substrates. Yttrium barium copper oxide (YBCO) is then heteroepitaxially pulse laser deposited onto the YSZ. Phi scans of the films show the full-width-half maxima of the YSZ (202) and the YBCO (103) reflections to be 14 deg and 10 deg, respectively. Our best dc transport critical current density measurement for the YBCO is 800,000 A/sq cm at 75 K and 0 T. At 75 K, the total dc transport current in a 1 cm wide YBCO film is 23 A.
Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation
NASA Astrophysics Data System (ADS)
Nicolsky, R.; de Andrade, R., Jr.; Ripper, A.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Gawalek, W.; Habisreuther, T.; Strasser, T.
2000-06-01
A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90° from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance.
A double-superconducting axial bearing system for an energy storage flywheel model
NASA Astrophysics Data System (ADS)
Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.
2008-02-01
The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.
Study of the inhomogeneity of critical current under in-situ tensile stress for YBCO tape
NASA Astrophysics Data System (ADS)
Zhu, Y. P.; Chen, W.; Zhang, H. Y.; Liu, L. Y.; Pan, X. F.; Yang, X. S.; Zhao, Y.
2018-07-01
A Hall sensor system was used to measure the local critical current of YBCO tape with high spatial resolution under in-situ tensile stress. The hot spot generation and minimum quench energy of YBCO tape, which depended on the local critical current, was calculated through the thermoelectric coupling model. With the increase in tensile stress, the cracks which have different dimensions and critical current degradation arose more frequently and lowered the thermal stability of the YBCO tape.
Measurements and tests of HTS bulk material in resistive fault current limiters
NASA Astrophysics Data System (ADS)
Noe, M.; Juengst, K.-P.; Werfel, F. N.; Elschner, S.; Bock, J.; Wolf, A.; Breuer, F.
2002-08-01
The application of superconducting fault current limiters (SCFCL) depends highly on their technical and economical benefits. Therefore it is obvious that the main requirements on the SCFCL are a reliable, fail-safe and rapid current limitation, low losses, and an inexpensive production. As a potential candidate material we have investigated HTS bulk material in resistive fault current limiters. Our report focuses on the E- j-curves, the AC-losses and the quench behaviour of melt cast processed-BSCCO 2212 and melt textured polycrystalline-YBCO 123. Within a temperature range from 64 to 80 K E- j-curves and AC losses of HTS elements were measured. The measurement results show that HTS bulk material meets the SCFCL specifications. In order to avoid hot spots during limitation and to improve mechanical stability a metallic bypass is needed. First test results of the quench behaviour of HTS bulk material with metallic bypass demonstrate safe limitation up to the specified electrical field of 100 V/m.
Preparation and Physical Properties of Segmented Thermoelectric YBa2Cu3O7-x -Ca3Co4O9 Ceramics
NASA Astrophysics Data System (ADS)
Wannasut, P.; Keawprak, N.; Jaiban, P.; Watcharapasorn, A.
2018-01-01
Segmented thermoelectric ceramics are now well known for their high conversion efficiency and are currently being investigated in both basic and applied energy researches. In this work, the successful preparation of the segmented thermoelectric YBa2Cu3O7-x -Ca3Co4O9 (YBCO-CCO) ceramic by hot pressing method and the study on its physical properties were presented. Under the optimum hot pressing condition of 800 °C temperature, 1-hour holding time and 1-ton weight, the segmented YBCO-CCO sample showed two strongly connected layers with the relative density of about 96%. The X-ray diffraction (XRD) patterns indicated that each segment showed pure phase corresponding to each respective composition. Scanning electron microscopy (SEM) results confirmed the sharp interface and good adhesion between YBCO and CCO layers. Although the chemical analysis indicated the limited inter-layer diffusion near the interface, some elemental diffusion at the boundary was expected to be the source of this strong bonding.
Temperature dependence of lower critical field of YBCO superconductor
NASA Astrophysics Data System (ADS)
Rani, Poonam; Hafiz, A. K.; Awana, V. P. S.
2018-05-01
We report the detailed study of the temperature dependence of the lower critical field (Hc1) of the YBa2Cu3O7 superconductor by magnetization measurements. The curve shows the multiband gap behavior of the sample. It is found that the sample is not a single BCS type superconductor. Hc1 is measured as the point at which the curve deviates from a Meissner-like linear M(H) curve to a nonlinear path. The Hc1 for YBCO at different temperatures from 10K to 85K has been determined by magnetization measurements M(H) with applied field parallel to the c-axis. The sample phase purity has been confirmed by Rietveld fitted X-ray diffraction data. The amplitude (1-17Oe) dependent AC susceptibility confirms the granular nature of superconducting compound. Using Bean model we calculated the temperature dependency of inter-grain critical current density and Jc(0) is found as 699.14kAcm-2.
High temperature superconducting YBCO microwave filters
NASA Astrophysics Data System (ADS)
Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.
2018-06-01
Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.
Thermally actuated magnetization flux pump in single-grain YBCO bulk
NASA Astrophysics Data System (ADS)
Yan, Yu; Li, Quan; Coombs, T. A.
2009-10-01
Recent progress in material processing has proved that high temperature superconductors (HTS) have a great potential to trap large magnetic fields at cryogenic temperatures. For example, HTS are widely used in MRI scanners and in magnetic bearings. However, using traditional ways to magnetize, the YBCO will always need the applied field to be as high as the expected field on the superconductor or much higher than it, leading to a much higher cost than that of using permanent magnets. In this paper, we find a method of YBCO magnetization in liquid nitrogen that only requires the applied field to be at the level of a permanent magnet. Moreover, rather than applying a pulsed high current field on the YBCO, we use a thermally actuated material (gadolinium) as an intermedia and create a travelling magnetic field through it by changing the partial temperature so that the partial permeability is changed to build up the magnetization of the YBCO gradually after multiple pumps. The gadolinium bulk is located between the YBCO and the permanent magnet and is heated and cooled repeatedly from the outer surface to generate a travelling thermal wave inwards. In the subsequent experiment, an obvious accumulation of the flux density is detected on the surface of the YBCO bulk.
NASA Astrophysics Data System (ADS)
Pavan Kumar Naik, S.; Bai, V. Seshu
2017-02-01
In the present work, with the aim of improving the local flux pinning at the unit cell level in the YBa2Cu3O7-δ (YBCO) bulk superconductors, 20 wt% of nanoscale Sm2O3 and micron sized (Nd, Sm, Gd)2BaCuO5 secondary phase particles were added to YBCO and processed in oxygen controlled preform optimized infiltration growth process. Nano Dispersive Sol Casting method is employed to homogeneously distribute the nano Sm2O3 particles of 30-50 nm without any agglomeration in the precursor powder. Microstructural investigations on doped samples show the chemical fluctuations as annuli cores in the 211 phase particles. The introduction of mixed rare earth elements at Y-site resulted in compositional fluctuations in the superconducting matrix. The associated lattice mismatch defects have provided flux pinning up to large magnetic fields. Magnetic field dependence of current density (Jc(H)) at different temperatures revealed that the dominant pinning mechanism is caused by spatial variations of critical temperatures, due to the spatial fluctuations in the matrix composition. As the number of rare earth elements increased in the YBCO, the peak field position in the scaling of the normalized pinning force density (Fp/Fp max) significantly gets shifted towards the higher fields. The curves of Jc(H) and Fp/Fp max at different temperatures clearly indicate the LRE substitution for LRE' or Ba-sites for δTc pinning.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Chen, L. P.; Wang, X. J.
2016-02-01
High quality single domain YBCO bulk superconductors, 20 mm in diameter, have been fabricated using a new top seeded infiltration and growth method (called the RE + 011 TSIG method), with a new solid phase (Y2O3 + xBaCuO2) instead of the conventional Y2BaCuO5 solid phase, x = 0, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0. The effects of different BaCuO2 contents x on the growth morphology, microstructure, and levitation force have been investigated. The results show that the levitation force of the YBCO bulks first increases and then decreases with increasing x, and reaches maximum levitation forces of about 49.2 N (77 K, 0.5 T, with the traditional liquid phase of YBa2Cu3O y + 3 BaCuO2 + 2 CuO) and 47 N (77.3 K, 0.5 T, with the new liquid phase of Y2O3 + 10 BaCuO2 + 6 CuO) when x = 1.2, which is much higher than that of the samples fabricated with the conventional solid phases (23 N). The average Y2BaCuO5 particle size is about 1 μm, which is much smaller than the 3.4 μm in the samples prepared with the conventional Y2BaCuO5 solid phase; this means that the flux pinning force of the sample can be improved by using the new solid phase. Based on this method, single domain YBCO bulks 40 mm, 59 mm, and 93 mm in diameter have also been fabricated using the TSIG process with the new solid phases (Y2O3 + 1.2BaCuO2). These results indicate that the new TSIG process developed by our lab is a very important and practical method for the fabrication of low cost, large size, and high quality single domain REBCO bulk superconductors.
Prajapat, C L; Singh, Surendra; Bhattacharya, D; Ravikumar, G; Basu, S; Mattauch, S; Zheng, Jian-Guo; Aoki, T; Paul, Amitesh
2018-02-27
A case study of electron tunneling or charge-transfer-driven orbital ordering in superconductor (SC)-ferromagnet (FM) interfaces has been conducted in heteroepitaxial YBa 2 Cu 3 O 7 (YBCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) multilayers interleaved with and without an insulating SrTiO 3 (STO) layer between YBCO and LSMO. X-ray magnetic circular dichroism experiments revealed anti-parallel alignment of Mn magnetic moments and induced Cu magnetic moments in a YBCO/LSMO multilayer. As compared to an isolated LSMO layer, the YBCO/LSMO multilayer displayed a (50%) weaker Mn magnetic signal, which is related to the usual proximity effect. It was a surprise that a similar proximity effect was also observed in a YBCO/STO/LSMO multilayer, however, the Mn signal was reduced by 20%. This reduced magnetic moment of Mn was further verified by depth sensitive polarized neutron reflectivity. Electron energy loss spectroscopy experiment showed the evidence of Ti magnetic polarization at the interfaces of the YBCO/STO/LSMO multilayer. This crossover magnetization is due to a transfer of interface electrons that migrate from Ti (4+)-δ to Mn at the STO/LSMO interface and to Cu 2+ at the STO/YBCO interface, with hybridization via O 2p orbitals. So charge-transfer driven orbital ordering is the mechanism responsible for the observed proximity effect and Mn-Cu anti-parallel coupling in YBCO/STO/LSMO. This work provides an effective pathway in understanding the aspect of long range proximity effect and consequent orbital degeneracy parameter in magnetic coupling.
Structural and electrical properties of epitaxial YBCO films on Si (Abstract Only).
NASA Astrophysics Data System (ADS)
Fork, David K.; Barrera, A.; Phillips, Julia M.; Newman, N.; Fenner, David B.; Geballe, Theodore H.; Connell, G. A. N.; Boyce, James B.
1991-03-01
Efforts to grow high quality films of YBCO on Si have been complicated by factors discussed in Ref. 1, chief among them being the reaction between YBCO and Si, which is damaging even at 550 C. This is well below the customary temperatures for YBCO film growth. To avoid the reaction problem, epitaxial YBCO films were grown on Si (100) using an intermediate buffer layer of yttria-stabilized zirconia (YSZ).2 Both layers are grown via an entirely in situ process by pulsed laser deposition (PLD). Although the buffer layer prevents reaction, another problem arises; the large difference in thermal expansion coefficients between silicon and YBCO causes strain at room temperature. Thin (<500 A) YBCO films are unrelaxed and under tensile strain with a distorted unit cell. Thicker films are cracked and have poorer electrical properties. The thermal strain may be reduced by growing on silicon-on-sapphire (SOS) rather than silicon.3 This allows the growth of films of arbitrary thickness. Ion channeling reveals a high degree of crystalline perfection with a channeling minimum yield for Ba as low as 12% on either silicon or SOS. The normal state resistivity is 250-300 i-cm at 300 K; the critical temperature, Tc (R=0), is 86-88 K with a transition width (ATc) of I K. Critical current densities (J)°f 2x107 A/cm2 at 4.2 K and >2x106 A/cm2 at 77 K have been achieved. In addition, the surface resistance of a YBCO film on SOS was measured against Nb at 4.2 K. At 10 GHz, a value of 45 was obtained. This compares favorably to values reported for LaAlO3. Application of this technology to produce reaction patterned microstrip lines has been tested.4 This was done by ion milling away portions of the YSZ buffer layer prior to the YBCO deposition. YBCO landing on regions of exposed Si reacts to form an insulator. This technique was used to make 3 micron lines 1.5 mm long. The resulting structure had a Jc of l.6xl06 A/cm2 at 77 K. Isolation of separate structures exceeded 20 M. Several advantages of this technique are that no solvents, etchants or photoresist come into contact with the YBCO, hence this technique has a potential for operational-asgrown devices. In summary, it is now possible to produce YBCO films with structural and DC electrical properties which rival the most optimized c-axis epitaxial YBCO films on MgO, SrTiO3 and LaAlO3. Preliminary measurements of microwave properties appear promising. We thank Bruce Lairson for help obtaining magnetization data and Richard Johnson, Steve Ready and Lars-Erik Swartz for technical assistance. This work benefits from AFOSR (F49620-89-C-0017). DBF received support from NSF (DMR- 8822353). DKF acknowledges the AT&T scholarship.
Vortex Flux Pinning in Type-Ii Superconductors
NASA Astrophysics Data System (ADS)
Hasan, Mohammad-Khair A. M.
1995-01-01
Rotational magnetization vector measurements on polycrystalline samples of rm YBa_2Cu _3O_7 (YBCO) and (Ba, K)BiO _3 at various fixed fields (H) and temperatures (T) reveal that the vortex flux density (B) in a rotational state consists of a component B_{rm R}, which rotates rigidly with sample rotation, and a B_{rm F} component, which stays at a fixed frictional angle (theta _{rm F}) relative to H. Also, B_{rm R} decreases and ultimately vanishes with increasing H, while B _{rm F} grows monotonically, implying that the vortex pinning strength have a broad distribution. This has been confirmed by the measurements on YBCO of the remanent flux density B^ {rm rm} which can be decomposed analogously into B_{R} ^{} and B_ {F}^{} at angle theta_{F}^{} relative to H. The quantity Hsin theta_{rm F},, which at equilibrium equals tau_{rm p}/mu (the average pinning torque per vortex of moment mu) decreases with increasing high H. This result and the distribution in the strength of the pinning are shown to be consistent with the collective pinning process of vortex bundling. At fixed H, tau_{rm p} decreases rapidly with increasing T, varying approximately as T^{-0.8} for both samples. For polycrystalline YBCO at 4.2 K, B_ {rm R} and B_{ rm F} are found to relax differently with time. The negative creep sign of B_ {rm R} indicates that the number of rotational vortices decreases with time, whereas B _{rm F} shows a positive creep with a negative change in theta_ {rm F}, which indicates that more frictional vortices enter the sample with a tendency of alignment in the direction of H. For grain-oriented YBCO at 4.2 K, the vortex creep measurements of B along the c-axis at different fields showed that: whenever the hysteretic changes of H are reversed in sign, the vortex flux creep (dB/dlogt) decreases very rapidly to zero, where it lingers before changing sign. At the same turning values of H, (dB/dH) also goes to zero. These properties are attributable to the reversals of the vortex motion which occur at the turning values of H and cause a reversal of frictional pinning forces.
NASA Astrophysics Data System (ADS)
Motoki, Takanori; Ikeda, Shuhei; Nakamura, Shin-ichi; Honda, Genki; Nagaishi, Tatsuoki; Doi, Toshiya; Shimoyama, Jun-ichi
2018-04-01
Additive-free YBCO films, as well as those with halogen (X) added, metal (M) added and (X, M) co-added, have been prepared by the fluorine-free metal-organic decomposition method on SrTiO3(100) single crystalline substrates, where X = Cl, Br and M = Zr, Sn, Hf. It was revealed that the addition of both Cl and Br to the starting solution resulted in the generation of oxyhalide, Ba2Cu3O4 X 2, in the YBCO films, and that the oxyhalide was found to promote the bi-axial orientation of the YBCO crystals. By adding a decent amount of Cl or Br, highly textured YBCO films with high J c were reproducibly obtained, even when an impurity metal, M, was co-added, while the addition of M without X did not greatly improve J c owing to the poor bi-axial orientation of the YBCO crystals. Our results suggest that the addition of Br more effectively enhances J c than the addition of Cl. The pinning force density at 40 K in 4.8 T reached ˜55 GN m-3 with the co-addition of (Br, M). This value is much larger than that of the pure YBCO film, reaching ˜17 GN m-3.
Over-current carrying characteristics of rectangular-shaped YBCO thin films prepared by MOD method
NASA Astrophysics Data System (ADS)
Hotta, N.; Yokomizu, Y.; Iioka, D.; Matsumura, T.; Kumagai, T.; Yamasaki, H.; Shibuya, M.; Nitta, T.
2008-02-01
A fault current limiter (FCL) may be manufactured at competitive qualities and prices by using rectangular-shaped YBCO films which are prepared by metal-organic deposition (MOD) method, because the MOD method can produce large size elements with a low-cost and non-vacuum technique. Prior to constructing a superconducting FCL (SFCL), AC over-current carrying experiments were conducted for 120 mm long elements where YBCO thin film of about 200 nm in thickness was coated on sapphire substrate with cerium oxide (CeO2) interlayer. In the experiments, only single cycle of the ac damping current of 50 Hz was applied to the pure YBCO element without protective metal coating or parallel resistor and the magnitude of the current was increased step by step until the breakdown phenomena occurred in the element. In each experiment, current waveforms flowing through the YBCO element and voltage waveform across the element were measured to get the voltage-current characteristics. The allowable over-current and generated voltage were successfully estimated for the pure YBCO films. It can be pointed out that the lower n-value trends to bring about the higher allowable over-current and the higher withstand voltage more than tens of volts. The YBCO film having higher n-value is sensitive to the over-current. Thus, some protective methods such as a metal coating should be employed for applying to the fault current limiter.
Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density
NASA Astrophysics Data System (ADS)
Yang, Feng
1995-01-01
The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different textures to determine the expected rm J_{c}s. The good agreement between the experimental data and numerical results confirmed that the rm J_{c} improvement directly resulted from the reduction of the number of high-angle grain boundaries in the in-plane aligned polycrystalline YBCO thin films, and provided a guideline on the further improvement of the rm J_ {c}s of polycrystalline YBCO thin films.
NASA Astrophysics Data System (ADS)
Congreve, Jasmin V. J.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2017-01-01
A major limitation to the widespread application of Y-Ba-Cu-O (YBCO) bulk superconductors is the relative complexity and low yield of the top seeded melt growth (TSMG) process, by which these materials are commonly fabricated. It has been demonstrated in previous work on the recycling of samples in which the primary growth had failed, that the provision of an additional liquid-rich phase to replenish liquid lost during the failed growth process leads to the reliable growth of relatively high quality recycled samples. In this paper we describe the adaptation of the liquid phase enrichment technique to the primary TSMG fabrication process. We further describe the observed differences between the microstructure and superconducting properties of samples grown with additional liquid-rich phase and control samples grown using a conventional TSMG process. We observe that the introduction of the additional liquid-rich phase leads to the formation of a higher concentration of Y species at the growth front, which leads, in turn, to a more uniform composition at the growth front. Importantly, the increased uniformity at the growth front leads directly to an increased homogeneity in the distribution of the Y-211 inclusions in the superconducting Y-123 phase matrix and to a more uniform Y-123 phase itself. Overall, the provision of an additional liquid-rich phase improves significantly both the reliability of grain growth through the sample thickness and the magnitude and homogeneity of the superconducting properties of these samples compared to those fabricated by a conventional TSMG process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardo, v.; Barzi, E.; Turrioni, D.
Superconducting magnets with magnetic fields above 20 T will be needed for a Muon Collider and possible LHC energy upgrade. This field level exceeds the possibilities of traditional Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn and Nb{sub 3}Al. Presently the use of high field high temperature superconductors (HTS) is the only option available for achieving such field levels. Commercially available YBCO comes in tapes and shows noticeable anisotropy with respect to field orientation, which needs to be accounted for during magnet design. In the present work, critical current test results are presented for YBCO tape manufactured by Bruker. Shortmore » sample measurements results are presented up to 14 T, assessing the level of anisotropy as a function of field, field orientation and operating temperature.« less
NASA Astrophysics Data System (ADS)
Ausloos, M.; Dorbolo, S.
A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2Tc where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.
Microwave-assisted synthesis and critical analysis for YBa2Cu3O6+δ nanoparticles
NASA Astrophysics Data System (ADS)
Chhaganlal Gandhi, Ashish; Lin, Jauyn Grace
2018-05-01
A new cost effective scheme of a microwave-assisted sol–gel route followed by a short annealing time is proposed to synthesize YBCO nanoparticles (NPs) of various sizes. The advanced techniques of synchrotron radiation x-ray diffraction (SRXRD) and electron spin resonance (ESR) are used to analyze the size effects on their magnetic/superconducting properties. The major interesting finding is that the size of YBCO NPs could confine the amount of oxygen content and consequently change the superconducting transition temperature (T C ) of YBCO NPs. The ESR result demonstrates a sensitive probe to characterize surface defects in the oxygen-deficient YBCO NPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Gary
The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1 st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2 nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. Amore » number of these modules are arranged in an m x n array to form the current-limiting matrix.« less
Superconductor Permanent Magnets for Advanced Propulsion Applications
NASA Astrophysics Data System (ADS)
Putman, Phil; Zhou, Yuxiang; Salama, Kamel; Robertson, Tony; Bond, Deborah D.
2005-02-01
Improved trapped fields of 17 T at 29 K and 11.2 T at 47 K have been reported for the melt-textured YBCO superconductor material. Such high field strengths give the possibility for producing superconductor permanent magnets (SCPM) for plasma-related space propulsion applications, such as the anti-matter trap, magnetohydrodynamic (MHD) propulsion and electrical power generation, and others that are under development or being studied. The SCPM could be beneficial in reducing the weight-to-power ratio for the associated delivery and containment systems needed for plasma interactions that are inherently imbedded in many of these propulsion systems. In this paper, a review of the superconductor literature is presented, followed by uses of the SCPM in high-performance space propulsion applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flanagan, Gene
Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb 3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber opticmore » sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh backscattered laser signals that are shifted by the changes in the fiber that are induced by a local change in the YBCO temperature or strain. One goal of this project was to show that modern technology can be used to interrogate the signals from a (very expensive) YBCO magnet to detect an impending quench in time to protect it from self-destruction. The results show that Rayleigh-backscattering interrogated optical fibers (RIOF) have significant advantages over traditional techniques, including very high spatial resolution and the ability to detect a hot-spot well before the peak local temperature becomes so high that the conductor can be damaged. RIOF quench detection is intrinsically faster than voltage taps, and this intrinsic advantage is greater as the coil size and/or current margin increases. We describe the development and testing program performed under the grant.« less
Optimization of Thick, Large Area YBCO Film Growth Through Response Surface Methods
NASA Astrophysics Data System (ADS)
Porzio, J.; Mahoney, C. H.; Sullivan, M. C.
2014-03-01
We present our work on the optimization of thick, large area YB2C3O7-δ (YBCO) film growth through response surface methods. Thick, large area films have commercial uses and have recently been used in dramatic demonstrations of levitation and suspension. Our films are grown via pulsed laser deposition and we have optimized growth parameters via response surface methods. Response surface methods is a statistical tool to optimize selected quantities with respect to a set of variables. We optimized our YBCO films' critical temperatures, thicknesses, and structures with respect to three PLD growth parameters: deposition temperature, laser energy, and deposition pressure. We will present an overview of YBCO growth via pulsed laser deposition, the statistical theory behind response surface methods, and the application of response surface methods to pulsed laser deposition growth of YBCO. Results from the experiment will be presented in a discussion of the optimized film quality. Supported by NFS grant DMR-1305637
Burnout Test of First- and Second-Generation HTS Tapes in Liquid-Nitrogen Bath Cooling
NASA Astrophysics Data System (ADS)
Young, M. A.; Demko, J. A.; Duckworth, R. C.; Lue, J. W.; Gouge, M. J.; Pace, M. O.
2004-06-01
A series of BSCCO-2223 and YBCO tapes were subjected to burnout tests in a liquid-nitrogen bath to observe operational stability limits when different layers of dielectric tape are added to the sample surface. In this study, the BSCCO tapes were composed of a silver/alloy sheath with nickel/copper plating, while the YBCO tapes had a 50-μm layer of copper attached to the silver surface. After attaching the tapes to a thermally insulated G-10 holder, the stability of the tapes was found by applying current greater than the critical current and holding it constant for up to 1 min. If the sample voltage increased rapidly during this period, the tape was considered unstable at this current. This was repeated at different layers of Cryoflex™, and the results were compared to a numerical simulation of the energy balance equation. This simulation was also utilized to investigate the effect of the layers on the stability limit and estimate the thermal conductivity of the Cryoflex™.
Nanoscale Stoichiometric Analysis of a High-Temperature Superconductor by Atom Probe Tomography.
Pedrazzini, Stella; London, Andrew J; Gault, Baptiste; Saxey, David; Speller, Susannah; Grovenor, Chris R M; Danaie, Mohsen; Moody, Michael P; Edmondson, Philip D; Bagot, Paul A J
2017-04-01
The functional properties of the high-temperature superconductor Y1Ba2Cu3O7-δ (Y-123) are closely correlated to the exact stoichiometry and oxygen content. Exceeding the critical value of 1 oxygen vacancy for every five unit cells (δ>0.2, which translates to a 1.5 at% deviation from the nominal oxygen stoichiometry of Y7.7Ba15.3Cu23O54-δ ) is sufficient to alter the superconducting properties. Stoichiometry at the nanometer scale, particularly of oxygen and other lighter elements, is extremely difficult to quantify in complex functional ceramics by most currently available analytical techniques. The present study is an analysis and optimization of the experimental conditions required to quantify the local nanoscale stoichiometry of single crystal yttrium barium copper oxide (YBCO) samples in three dimensions by atom probe tomography (APT). APT analysis required systematic exploration of a wide range of data acquisition and processing conditions to calibrate the measurements. Laser pulse energy, ion identification, and the choice of range widths were all found to influence composition measurements. The final composition obtained from melt-grown crystals with optimized superconducting properties was Y7.9Ba10.4Cu24.4O57.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedrazzini, Stella; London, Andrew J.; Gault, Baptiste
The functional properties of the high-temperature superconductor Y 1Ba 2Cu 3O 7-δ (Y-123) are closely correlated to the exact stoichiometry and oxygen content. Exceeding the critical value of 1 oxygen vacancy for every five unit cells (δ>0.2, which translates to a 1.5 at% deviation from the nominal oxygen stoichiometry of Y 7.7Ba 15.3Cu 23O 54-δ ) is sufficient to alter the superconducting properties. Stoichiometry at the nanometer scale, particularly of oxygen and other lighter elements, is extremely difficult to quantify in complex functional ceramics by most currently available analytical techniques. The present study is an analysis and optimization of themore » experimental conditions required to quantify the local nanoscale stoichiometry of single crystal yttrium barium copper oxide (YBCO) samples in three dimensions by atom probe tomography (APT). APT analysis required systematic exploration of a wide range of data acquisition and processing conditions to calibrate the measurements. Laser pulse energy, ion identification, and the choice of range widths were all found to influence composition measurements. The final composition obtained from melt-grown crystals with optimized superconducting properties was Y 7.9Ba 10.4Cu 24.4O 57.2.« less
A Thermally Actuated Flux Pump for Energizing YBCO Pucks
2016-05-01
transmitted through the thermal magnetic material sweeping magnetic field lines into the superconducting puck. We used YBCO as the superconductor with...of the YBCO sweeping vortices into the superconductor . These vortices would gradually accumulate in the superconductor . Successes have been reported...superconducting flux pump,” PHYSICA C, vol. 468, pp. 153-159, 2008. [2] T. A. Coombs, Z. Hong, Y. Yan and C. D. Rawlings, “ Superconductors : The
Design study of an YBCO-coated beam screen for the super proton-proton collider bending magnets
NASA Astrophysics Data System (ADS)
Gan, Pingping; Zhu, Kun; Fu, Qi; Li, Haipeng; Lu, Yuanrong; Easton, Matt; Liu, Yudong; Tang, Jingyu; Xu, Qingjin
2018-04-01
In order to reduce the beam impedance and refrigeration power dramatically, we have designed a high temperature superconductor (HTS) coated beam screen to screen the cold chamber walls of the super proton-proton collider bending magnets from beam-induced heat loads. It employs an absorber, inspired by the future circular collider studies, to absorb the immense synchrotron radiation power of 12.8 W/m emitted from the 37.5 TeV proton beams. Such a structure has the advantage of decreasing the electron cloud effect and improving the beam vacuum. We have compared the critical magnetic field and current density and accessibility of two potential HTS materials for the beam screen, TlBa2Ca2Cu3O9-δ (Tl-1223) and Yttrium Barium Copper Oxide (YBCO) and finally chose YBCO for coating. The beam screen is tentatively designed to work at 55-70 K because of the limited development of the YBCO material. The thermal analysis with oxygen cooling fluid indicates that the YBCO conductor can maintain its superconductivity even if the synchrotron radiation hits the YBCO-coated surface and the mechanical analysis shows that the structure has the ability to resist the Lorenz force during magnet quenches.
NASA Astrophysics Data System (ADS)
Truchly, M.; Plecenik, T.; Zhitlukhina, E.; Belogolovskii, M.; Dvoranova, M.; Kus, P.; Plecenik, A.
2016-11-01
We have studied a bipolar resistive switching phenomenon in c-axis oriented normal-state YBa2Cu3O7-c (YBCO) thin films at room temperature by scanning spreading resistance microscopy (SSRM) and scanning tunneling microscopy (STM) techniques. The most striking experimental finding has been the opposite (in contrast to the previous room and low-temperature data for planar metal counter-electrode-YBCO bilayers) voltage-bias polarity of the switching effect in all SSRM and a number of STM measurements. We have assumed that the hysteretic phenomena in current-voltage characteristics of YBCO-based contacts can be explained by migration of oxygen-vacancy defects and, as a result, by the formation or dissolution of more or less conductive regions near the metal-YBCO interface. To support our interpretation of the macroscopic resistive switching phenomenon, a minimalist model that describes radical modifications of the oxygen-vacancy effective charge in terms of a charge-wind effect was proposed. It was shown theoretically that due to the momentum exchange between current carriers (holes in the YBCO compound) and activated oxygen ions, the direction in which oxygen vacancies are moving is defined by the balance between the direct electrostatic force on them and that caused by the current-carrier flow.
Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu
2010-01-01
This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463
Transport performance of a HTS current lead prepared by the TFA-MOD processed YBCO tapes
NASA Astrophysics Data System (ADS)
Shiohara, K.; Sakai, S.; Ohki, S.; Yamada, Y.; Tachikawa, K.; Koizumi, T.; Aoki, Y.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.
2009-10-01
A superconducting current lead has been prepared using 12 tapes of the trifluoroacetates - metal organic deposition (TFA-MOD) processed Y 1Ba 2Cu 3O 7-δ (YBCO) coated conductors with critical current ( I c) of about 100 A at 77 K in self-field. The tapes are 4.5 mm in width, 220 mm in length and about 120 μm in overall thickness. The 1 μm thick superconducting YBCO layer was formed through the TFA-MOD process on Hastelloy TM substrate tapes with two buffer oxide layers of Gd 2Zr 2O 7 (GZO) and CeO 2. The 12 YBCO tapes were arrayed on the both sides (six tapes on each side) of a stainless steel board with 3 mm in thickness for a board type shape. They were similarly soldered to copper caps at the both ends. The transport current of 1000 A was stably applied for 10 min in the liquid nitrogen temperature without any voltage generation in all tapes. Although some voltage in some YBCO tapes generated at the applied currents of about 1100 A, the transport current of 1200 A was successfully applied without quenching. The voltage between both copper caps linearly increased with increasing the transport current, and it was about 300 μV at an applied current of 1000 A. A low joint resistance between the YBCO tapes and the copper caps resulted in small amounts of the Joule heating at the joints when 1000 A was applied. The overall (effective) thermal conductivity of the current leads composed of YBCO tapes and the stainless steel board was much lower than that of Non-superconducting current leads. Therefore, the present current leads with small heat leakage seemed to be practically promising for superconducting magnets.
Magnuson, M; Schmitt, T; Strocov, V N; Schlappa, J; Kalabukhov, A S; Duda, L-C
2014-11-12
The interplay between the quasi 1-dimensional CuO-chains and the 2-dimensional CuO2 planes of YBa(2)Cu(3)O(6+x) (YBCO) has been in focus for a long time. Although the CuO-chains are known to be important as charge reservoirs that enable superconductivity for a range of oxygen doping levels in YBCO, the understanding of the dynamics of its temperature-driven metal-superconductor transition (MST) remains a challenge. We present a combined study using x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) revealing how a reconstruction of the apical O(4)-derived interplanar orbitals during the MST of optimally doped YBCO leads to substantial hole-transfer from the chains into the planes, i.e. self-doping. Our ionic model calculations show that localized divalent charge-transfer configurations are expected to be abundant in the chains of YBCO. While these indeed appear in the RIXS spectra from YBCO in the normal, metallic, state, they are largely suppressed in the superconducting state and, instead, signatures of Cu trivalent charge-transfer configurations in the planes become enhanced. In the quest for understanding the fundamental mechanism for high-Tc-superconductivity (HTSC) in perovskite cuprate materials, the observation of such an interplanar self-doping process in YBCO opens a unique novel channel for studying the dynamics of HTSC.
NASA Astrophysics Data System (ADS)
Zhao, Ruipeng; Zhang, Fei; Liu, Qing; Xia, Yudong; Lu, Yuming; Cai, Chuanbing; Tao, Bowan; Li, Yanrong
2018-07-01
The MOCVD process was adopted to grow the REBa2Cu3O7-δ ((REBCO), RE = rare earth elements) films on the LaMnO3 (LMO) templates. Meanwhile, the LMO-template tapes are heated by the joule effect after applying a heating current through the Hastelloy metal substrates. The surface of GdYBCO films prepared by MOCVD method is prone to form outgrowths. So the surface morphology of GdYBCO film is optimized by depositing the SmBCO layer, which is an important process method for the preparation of high-quality multilayer REBCO films. At last, the GdYBCO/SmBCO/GdYBCO multilayer films were successfully prepared on the LMO templates based on the simple self-heating method. It is demonstrated that the GdYBCO surface was well improved by the characterization analysis of scanning electron microscope. And the Δω of REBCO (005) and Δφ of REBCO (103), which were performed by an X-ray diffraction system, are respectively 1.3° and 3.3° What's more, the critical current density (Jc) has been more than 3 MA/cm2 (77 K, 0 T) and the critical current (Ic) basically shows a trend of good linear increase with the increase of the number of REBCO layers.
Research on resistance characteristics of YBCO tape under short-time DC large current impact
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen
2017-06-01
Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Wang, Miao
2013-10-01
Single domain YBCO superconductors with different additions of Bi2O3 have been fabricated by top seeded infiltration and growth process (TSIG). The effect of Bi2O3 additions on the growth morphology, microstructure and levitation force of the YBCO bulk superconductor has been investigated. The results indicate that single domain YBCO superconductors can be fabricated with the additions of Bi2O3 less than 2 wt%; Bi2O3 can be reacted with Y2BaCuO5 and liquid phase and finally form Y2Ba4CuBiOx(YBi2411) nanoscale particles; the size of the YBi2411 particles is about 100 nm, which can act as effective flux pinning centers. It is also found that the levitation force of single domain YBCO bulks is increasing from 13 N to 34 N and decreasing to 11 N with the increasing of Bi2O3 addition from 0.1 wt% to 0.7 wt% and 2 wt%. This result is helpful for us to improve the physical properties of REBCO bulk superconductors.
On the use of copper-based substrates for YBCO coated conductors
NASA Astrophysics Data System (ADS)
Vannozzi, A.; Fabbri, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Rizzo, F.; Rufoloni, A.; Padilla, J. A.; Xuriguera, E.; De Felicis, D.; Bemporad, E.; Celentano, G.
2014-05-01
It is well known that the recrystallization texture of heavily cold-rolled pure copper is almost completely cubic. However, one of the main drawbacks concerning the use of pure copper cube-textured substrates for YBCO coated conductor is the reduced secondary recrystallization temperature. The onset of secondary recrystallization (i.e., the occurrence of abnormal grains with unpredictable orientation) in pure copper substrate was observed within the typical temperature range required for buffer layer and YBCO processing (600-850 °C). To avoid the formation of abnormal grains the effect of both grain size adjustment (GSA) and recrystallization annealing was analyzed. The combined use of a small initial grain size and a recrystallization two-step annealing (TSA) drastically reduced the presence of abnormal grains in pure copper tapes. Another way to overcome the limitation imposed by the formation of abnormal grains is to deposit a buffer layer at temperatures where secondary recrystallization does not occur. For example, La2Zr2O7 (LZO) film with a high degree of epitaxy was grown by metal-organic decomposition (MOD) at 1000 °C on pure copper substrate. In several samples the substrate underwent secondary recrystallization. Our experiments indicate that the motion of grain boundaries occurring during secondary recrystallization process does not affect the quality of LZO film.
YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer
NASA Technical Reports Server (NTRS)
Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.
1993-01-01
Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.
Buffer layers for high-Tc thin films on sapphire
NASA Technical Reports Server (NTRS)
Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.
1992-01-01
Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.
Design and performance of a high-Tc superconductor coplanar waveguide filter
NASA Technical Reports Server (NTRS)
Chew, Wilbert; Riley, A. L.; Rascoe, Daniel L.; Hunt, Brian D.; Foote, Marc C.; Cooley, Thomas W.; Bajuk, Louis J.
1991-01-01
The design of a coplanar waveguide low-pass filter made of YBa2Cu3O(7-delta) (YBCO) on an LaAlO3 substrate is described. Measurements were incorporated into simple models for microwave CAD analysis to develop a final design. The patterned and packaged coplanar waveguide low-pass filter of YBCO, with dimensions suited for integrated circuits, exhibited measured insertion losses when cooled in liquid nitrogen superior to those of a similarly cooled thin-film copper filter throughout the 0 to 9.5 GHz passband. Coplanar waveguide models for use with thin-film normal metal (with thickness either greater or less than the skin depth) and YBCO are discussed and used to compare the losses of the measured YBCO and copper circuits.
A fully superconducting bearing system for flywheel applications
NASA Astrophysics Data System (ADS)
Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.
2016-06-01
A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.
NASA Astrophysics Data System (ADS)
Lim, Hanjin
High-T_{rm c}<=ad doped rm Bi_2Sr_2Ca_2Cu _2Cu_3O_{x} (BSCCO 2223) superconductor bulk materials were prepared using conventional powder metallurgy techniques, which were made from precursors having different histories. The ease of formation of superconducting phases was highly dependent on the processing of primitive powder. With the three -powder process that combines three kinds of calcined precursor powders, the formation of the BSCCO superconductor was accelerated and the amount of the secondary phase (e.g., Ca_2CuO_3) was reduced. The critical transition temperature (T _{rm c}) of the superconductor from the three-powder process is higher than that from the one-powder process. In lead-doped BSCCO 2223, positron trapping and annihilation evidently occur in the open BiO double layers rather than in the superconducting CuO_2 layers of the structure. Both positron annihilation parameters (tau_1, tau _2, overlinetau) and Doppler parameters (P, W, P/W) were insensitive to the superconducting transition in this material. This is quite opposite to the case of YBCO and Dy doped YBCO where positron annihilation is sensitive to the superconducting transition. High-T_{rm c} BSCCO superconducting tapes were fabricated using the powder -in-tube (PIT) method that includes heat treatments as well as mechanical processing such as drawing, rolling, and pressing. The highest critical current densities (J _{rm c}) at 5 and 77 K were 5.12 times 10^5 A/cm^2 and 1.77 times 10^4 A/cm^2 , respectively, for the tape sample which was solid state processed at 840^circC with three short sintering steps. J_{ rm c} values at 5 and 77 K of tape samples were 1 and 2 orders of magnitude higher than those of bulk samples, respectively. The preferred orientations of the BSCCO 2212 phase in the tape samples were basal and (1 1 13) textures; for the BSCCO 2223 phase preferred orientations were also basal and (1 1 19) textures. By taking the ratios of the texture coefficients (TCs) for (0 0 1) and (1 1 0) reflections, one can describe the strength of the basal texture for each superconducting phase in both bulk and tape. From these ratios one can say that the best basal texture for the tape BSCCO 2212 was produced by the procedure which included partial melting at 850^circ C for 0.3 h. The best treatment for BSCCO 2223 was the tape sample with solid state processing at 840 ^circC in 10% oxygen.
Zn-site Substitution Effect in YbCo2Zn20
NASA Astrophysics Data System (ADS)
Kobayashi, Riki; Takamura, Haruki; Higa, Yasuyuki; Ikeda, Yoichi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yoshizawa, Hideki; Aso, Naofumi
2017-04-01
We have investigated the substitution effect of YbCo2(Zn1-xTx)20 (T = Cu, Ga, and Cd) systems by using the experiments of X-ray powder diffraction (XRPD), specific heat, magnetic susceptibility, magnetization, and electrical resistivity in order to find out a material that approaches a quantum critical point by chemical pressure. The XRPD and electrical resistivity measurements clarify that the Cu-substitution makes the lattice constants shrink and keeps the magnetic electrical resistivity high, while the Ga- and the Cd-substitution show opposite relation of the Cu-substitution. However, we could not detect clear substitution effect in the specific heat, magnetic susceptibility, and magnetization measurements of Cu-substitution system within our experiments. It is necessary that to study the Cu-substitution samples that have higher x value at lower temperature.
NASA Astrophysics Data System (ADS)
Yao, Hongjun
High temperature superconducting (HTS) materials such as YBCO (Yttrium-Barium-Copper-Oxide) are very attractive in microwave applications because of their extremely low surface resistance. In the proposed all-HTS tunable filter, a layer of HTS thin film on a very thin substrate (100 mum) is needed to act as the toractor that can be rotated to tune the frequency. In order to provide more substrate candidates that meet both electrical and mechanical requirements for this special application, surface resistance of YBCO thin films on various substrates was measured using microstrip ring resonator method. For alumina polycrystalline substrate, a layer of YSZ (Yttrium stabilized Zirconia) was deposited using IBAD (ion beam assisted deposition) method prior to YBCO deposition. The surface resistance of the YBCO thin film on alumina was found to be 22 mO due to high-angle grain boundary problem caused by the mixed in-plane orientations and large FWHM (full width at half maximum) of the thin film. For YBCO thin films on a YSZ single crystal substrate, the surface resistance showed even higher value of 30 mO because of the mixed in-plane orientation problem. However, by annealing the substrate in 200 Torr oxygen at 730°C prior to deposition, the in-plane orientation of YBCO thin films can be greatly improved. Therefore, the surface resistance decreased to 1.4 mO, which is still more than an order higher than the reported best value. The YBCO thin films grown on LaAlO3 single crystal substrate showed perfect in-plane orientation with FWHM less 1°. The surface resistance was as low as 0.032 mO. A tunable spiral resonator made of YBCO thin film on LaAlO3 single crystal substrate demonstrated that the resonant frequency can be tuned in a rang as large as 500 MHz by changing the gap between toractor and substrate. The Q-factor was more than 12,000, which ensured the extraordinarily high sensitivity for the proposed all-HTS tunable filter.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.
1991-01-01
Thin films of YBa2Cu3O(7-x) (YBCO) were temperature cycled to simulate conditions of a low earth orbit satellite. In one series of tests, epitaxial and polycrystalline YBCO films were cycled between temperatures of +/- 80 C in vacuum and in nitrogen for hundreds of cycles. The room temperature resistance of an epitaxial YBCO film increased by about 10 percent, but the superconducting transition temperature was unchanged. The largest changes were for a polycrystalline YBCO film on oxidized silicon with a zirconia buffer layer, for which the transition temperature decreased by 3 K. An extended test was carried out for epitaxial films. After 3200 cycles (corresponding to about 230 days in space), transition temperatures and critical current densities remained unchanged.
Direct observation of twin deformation in YBa2Cu3O7-x thin films by in situ nanoindentation in TEM
NASA Astrophysics Data System (ADS)
Lee, Joon Hwan; Zhang, Xinghang; Wang, Haiyan
2011-04-01
The deformation behaviors of YBa2Cu3O7-x (YBCO) thin films with twinning structures were studied via in situ nanoindentation experiments in a transmission electron microscope. The YBCO films were grown on SrTiO3 (001) substrates by pulsed laser deposition. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of the YBCO films from the directions perpendicular and parallel to the twin interfaces. The hardness measured perpendicular to the twin interfaces is ˜50% and 40% higher than that measured parallel to the twin interfaces ex situ and in situ, respectively. Detailed in situ movie analysis reveals that the twin structures play an important role in deformation and strengthening mechanisms in YBCO thin films.
Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7-δ thin films
NASA Astrophysics Data System (ADS)
Molina-Luna, Leopoldo; Duerrschnabel, Michael; Turner, Stuart; Erbe, Manuela; Martinez, Gerardo T.; Van Aert, Sandra; Holzapfel, Bernhard; Van Tendeloo, Gustaaf
2015-11-01
Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7-δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm-2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (˜1.5 nm) and the determination of 0.25 nm dislocation cores.
High T(sub c) superconductor/ferroelectric heterostructures
NASA Astrophysics Data System (ADS)
Ryder, Daniel F., Jr.
1994-12-01
Thin films of the ferroelectric perovskite, Ba(x) Sr(1-x) TiO3 (BST), were deposited on superconducting (100)YBa2Cu3O(x)(YBCO)/ (100)Yttria-stabilized zirconia(YSZ) substrates and (100)Si by ion-beam sputtering. Microstructural and compositional features of the ceramic bilayer were assessed by a combination of x-ray diffraction (XRD) and scanning electron microscopy. The films were smooth and featureless, and energy dispersive x-ray spectroscopy (EDX) data indicated that film composition closely matched target composition. XRD analysis showed that films deposited on YBCO substrates were highly c-axis textured, while the films deposited on (100)Si did not exhibit any preferred growth morphology. The superconducting properties of the YBCO substrate layer were maintained throughout the processing stages and, as such, it was demonstrated that ion beam sputtering is a viable method for the deposition of Ferroelectric/YBCO heterostructures.
Buffer layers on metal alloy substrates for superconducting tapes
Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.
2004-06-29
An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.
High Temperature Superconducting Thick Films
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi
2005-08-23
An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
Buffer layers on metal alloy substrates for superconducting tapes
Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.
2004-10-05
An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.
Electrical and magnetic properties of conductive Cu-based coated conductors
NASA Astrophysics Data System (ADS)
Aytug, T.; Paranthaman, M.; Thompson, J. R.; Goyal, A.; Rutter, N.; Zhai, H. Y.; Gapud, A. A.; Ijaduola, A. O.; Christen, D. K.
2003-11-01
The development of YBa2Cu3O7-δ (YBCO)-based coated conductors for electric power applications will require electrical and thermal stabilization of the high-temperature superconducting (HTS) coating. In addition, nonmagnetic tape substrates are an important factor in order to reduce the ferromagnetic hysteresis energy loss in ac applications. We report progress toward a conductive buffer layer architecture on biaxially textured nonmagnetic Cu tapes to electrically couple the HTS layer to the underlying metal substrate. A protective Ni overlayer, followed by a single buffer layer of La0.7Sr0.3MnO3, was employed to avoid Cu diffusion and to improve oxidation resistance of the substrate. Property characterizations of YBCO films on short prototype samples revealed self-field critical current density (Jc) values exceeding 2×106 A/cm2 at 77 K and good electrical connectivity. Magnetic hysteretic loss due to Ni overlayer was also investigated.
Flux pinning in yttrium barium copper oxide coated conductors
NASA Astrophysics Data System (ADS)
Chen, Zhijun
High quality high-temperature-superconducting YBa2Cu 3O7-x (YBCO) films for industrial applications demand very high critical current densities Jc, which can only be achieved by strong three-dimensional (3D) pinning with deliberately introduced nano-precipitates. The purpose of this thesis is to provide an in-depth understanding of the 3D pinning in such YBCO films. In pulsed laser deposition (PLD) prepared YBCO films, a high density of anti-phase boundaries and stacking faults were found to be effective pinning defects for improving Jc in small fields. However, their failure to improve Jc at high fields shows that such naturally generated defects are not strong 3D pinning centers. A demonstration of strong 3D pinning was found in a metal organic chemical vapor deposition (MOCVD) grown YBCO coated conductor (CC) with a high density of (Y,Sm)2O3 nano-precipitates. We observed a significantly enhanced irreversibility field Hirr which, like other superconducting properties was independent of thickness, due to strong vortex-pin interactions. The advantage of 3D pinning was further illustrated by a bi-layer metalorganic deposition (MOD) grown YBCO CC with different 3D pinning structures in each layer. The Jc anisotropy of the bilayer was found to be the thickness-weighted sum of the anisotropy of the two individual layers, demonstrating an applicable way to tune the Jcanisotropy. Moreover, extensive low temperature and high magnetic field evaluations performed on an MOCVD CC with dense 3D (Y,Sm) 2O3 nano-precipitate pinning centers showed that its strong vortex pinning at 77 K correlated well to strong performance at 4.2 K too. YBCO films with quantitatively controlled artificial Y2O 3 nano-precipitates were also grown by PLD, and characterized over wide temperature and field ranges. Their Jc was found to be determined by the vortex pinning mediated by thermal fluctuation effects. In weak thermal-fluctuation situations Jc increased with decreasing effective precipitate spacing Lc. In other situations, Jc depends on both Lc and the size and elementary pinning strength of the nano-precipitates. In summary, this thesis presents detailed pinning studies on several differently grown YBCO films. Our results identify the optimum pinning structures in YBCO films and provide a systematic guidance for optimizing vortex pinning.
Nucleation of stable superconductivity in YBCO-films
NASA Astrophysics Data System (ADS)
Kötzler, J.
By means of the linear dynamic conductivity, inductively measured on epitaxial films between 30mHz and 30 MHz, the transition line T g (B) to generic superconductivity is studied in fields between B=0 and 19T. It follows closely the melting line T m (B) described recently in terms of a blowout of thermal vortex loops in clean materials. The critical exponents of the correlation length and time near T g (B), however, enem to be dominated by some intrinsic disorder. Columnar defects produced by heavy-ion irradiation up to field-equivalent-doses of B ϕ =10T lead to adisappointing reduction of T g (B→0) while for B>B ϕ the generic line of the pristine film is recovered. These novel results are also discussed in terms of a loop-driven destruction of generic superconductivity.
Nano-scale stoichiometry analysis of a high temperature superconductor by atom probe tomography
Pedrazzini, Stella; London, Andrew J.; Gault, Baptiste; ...
2017-01-31
The functional properties of the high-temperature superconductor Y 1Ba 2Cu 3O 7-δ (Y-123) are closely correlated to the exact stoichiometry and oxygen content. Exceeding the critical value of 1 oxygen vacancy for every five unit cells (δ>0.2, which translates to a 1.5 at% deviation from the nominal oxygen stoichiometry of Y 7.7Ba 15.3Cu 23O 54-δ ) is sufficient to alter the superconducting properties. Stoichiometry at the nanometer scale, particularly of oxygen and other lighter elements, is extremely difficult to quantify in complex functional ceramics by most currently available analytical techniques. The present study is an analysis and optimization of themore » experimental conditions required to quantify the local nanoscale stoichiometry of single crystal yttrium barium copper oxide (YBCO) samples in three dimensions by atom probe tomography (APT). APT analysis required systematic exploration of a wide range of data acquisition and processing conditions to calibrate the measurements. Laser pulse energy, ion identification, and the choice of range widths were all found to influence composition measurements. The final composition obtained from melt-grown crystals with optimized superconducting properties was Y 7.9Ba 10.4Cu 24.4O 57.2.« less
NASA Astrophysics Data System (ADS)
Ezzatpour, S.; Sharifzadegan, L.; Sarvari, F.; Sedghi, H.
2018-06-01
In this study the high temperature superconductor YBa2-xPbxCu3O7-δ with doping x = ,0.05,0.1,0.15 were prepared by the standard solid-state reaction method. The effect of Pb substitution on Ba site of YBCO superconducting system, structural, electrical and superconducting properties of Y-based superconductor has been investigated. The measurements of dc resisitivity were performed on all samples with four-probe method using low frequency/lowAC current (4 mA) . The superconducting temperature, Tc, were determined from the resistivity versus temperature (R-T) curves. Results show that Pb doping reduced the cirtical temperature(Tc) and superconductivity properties of our samples. The maximum and the minimum Tc were observed for the samples with x = 0.15 and x = 0.1 respectively. The structure and phase purity of samples were examined by the X-ray powder diffraction technique (XRD) performed by means of D8 Advance Bruker diffractometer with Cu kα radiation. The grain morphology of surface of the samples was analyzed by sacanning electron microscopy (SEM). XRD patterns of polycrystalline materials of composition YBa2-xPbxCu3O7-δ revealed that all prepared samples are orthorhombic. All of the peaks of YBCO and YBa2-xPbxCu3O7-δ have been used for the estimation of volume fractions of the phases and ignored the void peaks.
Vortex pinning landscape in MOD-TFA YBCO nanostroctured films
NASA Astrophysics Data System (ADS)
Gutierrez, J.; Puig, T.; Pomar, A.; Obradors, X.
2008-03-01
A methodology of general validity to study vortex pinning in YBCO based on Jc transport measurements is described. It permits to identify, separate and quantify three basic vortex pinning contributions associated to anisotropic-strong, isotropic-strong and isotropic-weak pinning centers. Thereof, the corresponding vortex pinning phase diagrams are built up. This methodology is applied to the new solution-derived YBCO nanostructured films, including controlled interfacial pinning by the growth of nanostructured templates by means of self-assembled processes [1] and YBCO-BaZrO3 nanocomposites prepared by modified solution precursors. The application of the methodology and comparison with a standard solution-derived YBCO film [2], enables us to identify the nature and the effect of the additional pinning centers induced. The nanostructured templates films show c-axis pinning strongly increased, controlling most of the pinning phase diagram. On the other hand, the nanocomposites have achieved so far, the highest pinning properties in HTc-superconductors [3], being the isotropic-strong defects contribution the origin of their unique properties. [1] M. Gibert et al, Adv. Mat. vol 19, p. 3937 (2007) [2] Puig.T et al, SuST EUCAS 2007 (to be published) [3] J. Gutierrez et al, Nat. Mat. vol. 6, p. 367 (2007) * Work supported by HIPERCHEM, NANOARTIS and MAT2005-02047
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.
1990-01-01
The refrigeration of superconductors in space poses a challenging problem. The problem could be less severe if superconducting materials would not have to be cooled when not in use. Thin films of the YBa2Cu3O(7-x) (YBCO) superconductor were subjected to thermal cycling, which was carried out to simulate a large number of eclipses of a low earth orbit satellite. Electrical measurements were performed to find the effect of the temperature cycling. Thin films of YBCO were formed by coevaporation of Y, BaF2, and Cu and postannealing in wet oxygen at 850 C for 3.5 h. The substrates used were (100) SrTiO3, polycrystalline alumina, and oxidized silicon; the last two have an evaporated zirconia layer. Processing and microstructure studies of these types of films have been published. THe zero resistance transition temperatures of the samples used in this study were 91, 82, and 86 K, respectively. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were: the zero resistance transition temperature, the 10 to 90 percent transition width, and the room temperature resistance, normalized to that measured before temperature cycling. The results for two samples are presented. Each sample had a cumulative exposure. Cycling in atmospheric pressure nitrogen was performed at a rate of about 60 cycles per day, whereas in vacuum the rate was only about 10 cycles per day. The results indicate only little or no changes in the parameters measured. Degradation of superconducting thin films of YBCO has been reported due to storage in nitrogen. It is believed that the relatively good performance of films after temperature cycling is related to the fact that BaF2 was used as an evaporation source. The latest result on extended temperature cycling indicates significant degradation. Further tests of extended cycling will be carried out to provide additional data and to clarify this preliminary finding.
Pulsed laser deposition of YBCO films on ISD MgO buffered metal tapes
NASA Astrophysics Data System (ADS)
Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Markowitz, A. R.; Erck, R. A.; Baurceanu, R.; Dorris, S. E.; Miller, D. J.; Balachandran, U.
2003-04-01
Biaxially textured magnesium oxide (MgO) films deposited by inclined-substrate deposition (ISD) are desirable for rapid production of high-quality template layers for YBCO-coated conductors. High-quality YBCO films were grown on ISD MgO buffered metallic substrates by pulsed laser deposition (PLD). Columnar grains with a roof-tile surface structure were observed in the ISD MgO films. X-ray pole figure analysis revealed that the (002) planes of the ISD MgO films are tilted at an angle from the substrate normal. A small full-width at half maximum (FWHM) of approx9° was observed in the phi-scan for ISD MgO films deposited at an inclination angle of 55°. In-plane texture in the ISD MgO films developed in the first approx0.5 mum from the substrate surface, and then stabilized with further increases in film thickness. Yttria-stabilized zirconia and ceria buffer layers were deposited on the ISD MgO grown on metallic substrates prior to the deposition of YBCO by PLD. YBCO films with the c-axis parallel to the substrate normal have a unique orientation relationship with the ISD MgO films. An orientation relationship of YBCOlangle100rangleparallelMgOlangle111rangle and YBCOlangle010rangleparallelMgOlangle110rangle was measured by x-ray pole figure analyses and confirmed by transmission electron microscopy. A Tc of 91 K with a sharp transition and transport Jc of 5.5 × 105 A cm-2 at 77 K in self-field were measured on a YBCO film that was 0.46 mum thick, 4 mm wide and 10 mm long.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, M.; Lombardo, V.; Turrioni, D.
Helical solenoids that provide solenoid, helical dipole and helical gradient field components are designed for a helical cooling channel (HCC) proposed for cooling of muon beams in a muon collider. The high temperature superconductor (HTS), 12 mm wide and 0.1 mm thick YBCO tape, is used as the conductor for the highest-field section of HCC due to certain advantages, such as its electrical and mechanical properties. To study and address the design, and technological and performance issues related to magnets based on YBCO tapes, a short helical solenoid model based on double-pancake coils was designed, fabricated and tested at Fermilab.more » Splicing joints were made with Sn-Pb solder as the power leads and the connection between coils, which is the most critical element in the magnet that can limit the performance significantly. This paper summarizes the test results of YBCO tape and double-pancake coils in liquid nitrogen and liquid helium, and then focuses on the study of YBCO splices, including the soldering temperatures and pressures, and splice bending test.« less
NASA Astrophysics Data System (ADS)
Krupski, M.; Stankowski, J.; Przybył, S.; Andrzejewski, B.; Kaczmarek, A.; Hilczer, B.; Marfaing, J.; Caranoni, C.
1999-07-01
The effect of hydrostatic pressure ( p<0.6 GPa) on the superconducting critical temperature Tc in YBa 2Cu 3O 7- δ-Pb(Sc 0.5Ta 0.5)O 3 (YBCO-PST) composite is measured by the method of magnetically modulated microwave absorption (MMMA). The Tc dependence on the PST fraction in weight x (0, 0.25, 0.5 and 0.75) is approximated by an inverted parabola function whereas the influence of pressure on Tc is represented by the equation: d Tc/d p=0.61(2)-1.72(6) x. The result may be explained assuming that PST phase in YBCO-PST composite influences the superconducting carrier concentration similar to the chemical substitution in YBa 2Cu 3O 7 [J.J. Neumeier, H.A. Zimmermann, Phys. Rev. B 47 (1993) 8385]. It is suggested that ions from PST diffuse to YBCO cell during the sintering of the composite.
Transport properties of ultrathin YBa2Cu3O7 -δ nanowires: A route to single-photon detection
NASA Astrophysics Data System (ADS)
Arpaia, Riccardo; Golubev, Dmitri; Baghdadi, Reza; Ciancio, Regina; Dražić, Goran; Orgiani, Pasquale; Montemurro, Domenico; Bauch, Thilo; Lombardi, Floriana
2017-08-01
We report on the growth and characterization of ultrathin YBa2Cu3O7 -δ (YBCO) films on MgO (110) substrates, which exhibit superconducting properties at thicknesses down to 3 nm. YBCO nanowires, with thicknesses down to 10 nm and widths down to 65 nm, have also been successfully fabricated. The nanowires protected by a Au capping layer show superconducting properties close to the as-grown films and critical current densities, which are limited by only vortex dynamics. The 10-nm-thick YBCO nanowires without the Au capping present hysteretic current-voltage characteristics, characterized by a voltage switch which drives the nanowires directly from the superconducting to the normal state. We associate such bistability to the presence of localized normal domains within the superconductor. The presence of the voltage switch in ultrathin YBCO nanostructures, characterized by high sheet resistance values and high critical current values, makes our nanowires very attractive devices to engineer single-photon detectors.
NASA Astrophysics Data System (ADS)
Zhao, Ruipeng; Liu, Qing; Xia, Yudong; Tao, Bowan; Li, Yanrong
2017-12-01
We have successfully applied metal organic chemical vapor deposition (MOCVD) to synthesize biaxially textured YBa2Cu3O7-δ (YBCO) superconducting films on the templates of LaMnO3/epitaxial MgO/IBAD-MgO/solution deposition planarization (SDP) Y2O3/Hastelloy tape. The YBCO films have obtained dense and smooth surface with good structure and performance. A new self-heating method, which replaced the conventional heating-wire radiation heating method, has been used to heat the Hastelloy metal tapes by us. Compared with the heating-wire radiation heating method, the self-heating method shows higher energy efficiency and lower power consumption, which has good advantage to simplify the structure of the MOCVD system. Meanwhile, the utilization ratio of metal organic sources can be increased from 6% to 20% through adopting the new self-heating method. Then the preparation cost of the YBCO films can be also greatly reduced.
NASA Astrophysics Data System (ADS)
Pavan Kumar Naik, S.; Seshu Bai, V.
2017-01-01
Controlling the microstructure of superconductors by incorporating the flux pinning centers and reducing the macro-defects to improve high field performance is the topic of recent research. In continuation, the preform optimized infiltration growth (POIG) processed YBa2Cu3O7-δ (YBCO) system, Y-site substituted with three mixed RE (Nd, Sm, Gd) elements is investigated. 20 wt.% of (Nd, Sm, Gd)2BaCuO5 were mixed with Y2BaCuO5 and POIG processed in reduced oxygen atmosphere to obtain YNSG superconductor. No seed is employed for crystal growth; hence the processed samples are multi-grained. Microstructural and compositional investigations on YNSG revealed the presence of different phases in the matrix as well as in precipitates which are of the order of submicron to 4 μm. A large fraction of macro-defects (∼6% of porosity) was observed in the YNSG sample. For reducing the unwanted macro-defects and refine the non-superconducting precipitates, processed YNSG sample is pressed and resolidified (by infiltrating the liquid phases once again) in an argon atmosphere and the structural, microstructural, elemental and superconducting properties are compared with YNSG and undoped samples. Due to spatial scatter in superconducting critical temperatures, caused by the distribution of different REBCO unit cells in YBCO, superconducting transition curve is sharp in YNSG, whereas the resolidified sample showed the broad transition due to solidified liquid phases.
Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields
NASA Astrophysics Data System (ADS)
Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.
2015-09-01
The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, R.
2013-03-01
The proposed project will be collaborative in exploration of high temperature superconductor oxide films between SuperPower, Inc. and the National Renewable Energy Laboratory. This CRADA will attempt to develop YBCO based high temperature oxide technology.
A YBCO RF-squid variable temperature susceptometer and its applications
NASA Technical Reports Server (NTRS)
Zhou, Luwei; Qiu, Jinwu; Zhang, Xianfeng; Tang, Zhimin; Cai, Yimin; Qian, Yongjia
1991-01-01
The Superconducting QUantum Interference Device (SQUID) susceptibility using a high-temperature radio-frequency (rf) SQUID and a normal metal pick-up coil is employed in testing weak magnetization of the sample. The magnetic moment resolution of the device is 1 x 10(exp -6) emu, and that of the susceptibility is 5 x 10(exp -6) emu/cu cm.
NASA Astrophysics Data System (ADS)
Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.
2018-07-01
Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.
NASA Astrophysics Data System (ADS)
Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.
2018-03-01
Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.
Enhanced pinning in YBCO films with BaZrO.sub.3 nanoparticles
Driscoll, Judith L.; Foltyn, Stephen R.
2010-06-15
A process and composition of matter are provided and involve flux pinning in thin films of high temperature superconductive oxides such as YBCO by inclusion of particles including barium and a group 4 or group 5 metal, such as zirconium, in the thin film.
Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions
NASA Technical Reports Server (NTRS)
Kleinsasser, A. W.; Barner, J. B.
1997-01-01
The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Yamagiwa, Katsuya; Hirabayashi, Izumi; Suzuki, Katsumi; Tanaka, Shoji
2001-07-01
Ultrahigh-Jc YBa2Cu3O7-x (YBCO) films have been successfully fabricated by the metalorganic deposition method using a trifluoroacetate coating solution which is prepared by a newly developed purification technique, the solvent-into-gel (SIG) method. The prepared pure coating solution has less than 0.25% impurities and has a wide flexibility in process conditions to obtain high-Jc YBCO film. Using this feature, we have successfully formed 50 mm diameter YBCO films, which have a critical current density over 10 MA cm-2 (77 K, 0 T) on LaAlO3 single crystalline substrates.
Superconducting YBa2Cu3O7- δ Thin Film Detectors for Picosecond THz Pulses
NASA Astrophysics Data System (ADS)
Probst, P.; Scheuring, A.; Hofherr, M.; Wünsch, S.; Il'in, K.; Semenov, A.; Hübers, H.-W.; Judin, V.; Müller, A.-S.; Hänisch, J.; Holzapfel, B.; Siegel, M.
2012-06-01
Ultra-fast THz detectors from superconducting YBa2Cu3O7- δ (YBCO) thin films were developed to monitor picosecond THz pulses. YBCO thin films were optimized by the introduction of CeO2 and PrBaCuO buffer layers. The transition temperature of 10 nm thick films reaches 79 K. A 15 nm thick YBCO microbridge (transition temperature—83 K, critical current density at 77 K—2.4 MA/cm2) embedded in a planar log-spiral antenna was used to detect pulsed THz radiation of the ANKA storage ring. First time resolved measurements of the multi-bunch filling pattern are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polat, Ozgur; Ertugrul, Memhet; Thompson, James R
To obtain an engineered surface for deposition of high-Tc superconductors, nanoscale modulations of the surface of the underlying LaMnO3 (LMO) cap layer is a potential source for generating microstructural defects in YBa2Cu3O7- (YBCO) films. These defects may improve the flux-pinning and consequently increase the critical current density, Jc. To provide such nanoscale modulation via a practical and scalable process, tantalum (Ta) and palladium (Pd) nano-islands were deposited using dc-magnetron sputtering on the surface of the cap layer of commercial metal tape templates for second-generation wires. The size and density of these nano-islands can be controlled by changing sputtering conditions suchmore » as the power and deposition time. Compared to the reference sample grown on an untreated LMO cap layer, the YBCO films grown on the LMO cap layers with Ta or Pd nano-islands exhibited improved in-field Jc performance. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were used to assess the evolving size and density of the nano-islands.« less
Doubling of the Critical Current Density of 2G-YBCO Coated Conductors through proton irradiation
NASA Astrophysics Data System (ADS)
Welp, Ulrich; Jia, Ying; Kwok, Wai-Kwong; Rupich, Marty; Fleshler, Steven; Kayani, Asfghar
2013-03-01
We report on magnetization and transport measurements of the critical current density of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons to a fluence of 1.5x1016 p/cm2. We find that at temperatures below 50 K, proton irradiation increases Jc by a factor of 2 in low fields and increases up to 2.5 in fields of 7 T. At 77 K, proton irradiation is less effective in enhancing the critical current. Doubling of Jc in fields of several Tesla and at temperatures below 50 K will be highly beneficial for applications of coated conductors in rotating machinery, generators and magnet coils. - Work supported by the US DoE-BES funded Energy Frontier Research Center (YJ), and by Department of Energy, Office of Science, Office of Basic Energy Sciences (UW, WKK), under Contract No. DE-AC02-06CH11357.
NASA Astrophysics Data System (ADS)
Iwai, Sadanori; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Urata, Masami; Ioka, Shigeru; Ishii, Yusuke
2013-11-01
We have been developing a conduction-cooled coil wound with YBCO-coated conductors for HTS applications. Previously, we have fabricated a coil composed of a stack of 12 single pancakes wound with 4 mm-wide YBCO tapes. This coil had a central magnetic field as high as 5.1 T at 10 K under conduction-cooled conditions. In the present study, we fabricated and tested a coil composed of a stack of four single pancakes wound with 12 mm-wide YBCO tapes. The total size of the coil and the Jc value of the tapes were almost the same as those of the former coil. At 77 K, the voltage-current characteristics showed a high n-value of 24, confirming that the coil had no degradation. Furthermore, in a conduction-cooled configuration at 20 K to 60 K, the coil showed a high n-value of over 20. At 20 K, the central magnetic field reached 5.9 T at 903 A, which is 1.3-times higher than that of the former coil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Minaxi, E-mail: meenanith@gmail.com; Sharma, K. K., E-mail: kknitham@gmail.com; Pandey, Pankaj K.
2014-01-07
We have studied the magneto-transport and magnetic properties of LSMO/YBCO/LSMO trilayers on LaAlO{sub 3} (001) substrate, deposited using pulsed laser deposition technique. From x-ray diffraction measurements, it is confirmed that the grown trilayer films are single phase natured. The temperature dependent resistivity shows a metallic behavior below 350 K. At low temperature from resistivity fitted data, we observe that electron-electron, electron-phonon, and electron-magnon interactions are the main factors for scattering of carriers. The ferromagnetic LSMO layers suppress the critical temperature of YBCO spacer layer. We observe maximum magnetoresistance value ∼49% at 250 K for LSMO(200 nm)/YBCO(50 nm)/LSMO(200 nm) trilayer. Magnetization measurements reveal that at roommore » temperature the YBCO spacer layer is allowing the LSMO layers to interact antiferromagnetically.« less
Probing localized strain in solution-derived YB a2C u3O7 -δ nanocomposite thin films
NASA Astrophysics Data System (ADS)
Guzman, Roger; Gazquez, Jaume; Mundet, Bernat; Coll, Mariona; Obradors, Xavier; Puig, Teresa
2017-07-01
Enhanced pinning due to nanoscale strain is unique to the high-Tc cuprates, where pairing may be modified with lattice distortion. Therefore a comprehensive understanding of the defect landscape is required for a broad range of applications. However, determining the type and distribution of defects and their associated strain constitutes a critical task, and for this aim, real-space techniques for atomic resolution characterization are necessary. Here, we use scanning transmission electron microscopy (STEM) to study the atomic structure of individual defects of solution-derived YB a2C u3O7 (YBCO) nanocomposites, where the inclusion of incoherent secondary phase nanoparticles within the YBCO matrix dramatically increases the density of Y1B a2C u4O8 (Y124) intergrowths, the commonest defect in YBCO thin films. The formation of the Y124 is found to trigger a concatenation of strain-derived interactions with other defects and the concomitant nucleation of intrinsic defects, which weave a web of randomly distributed nanostrained regions that profoundly transform the vortex-pinning landscape of the YBCO nanocomposite thin films.
Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S
2016-05-21
Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.
Suresh, Vandrangi; Lin, Jheng-Cyuan; Liu, Heng-Jui; Zhang, Zaoli; Chiang, Ping-Chih; Hsun, Yu-Ching; Chen, Yi-Chun; Lin, Jiunn-Yuan; Chu, Ying-Hao
2016-11-03
The competition between superconductivity and ferromagnetism poses great challenges and has attracted renewed interest for applications in novel spintronic devices. In order to emphasize their interactions, we fabricated a heterostructure composed of superconducting YBa 2 Cu 3 O 7-δ (YBCO) film embedded with itinerant ferromagnetic SrRuO 3 (SRO) mesocrystals. Starting from a doping concentration of 10 vol% of SRO mesocrystal in a YBCO matrix, corresponding to the density of SRO nanocrystals ∼5 × 10 9 cm -2 , which exhibits the typical characteristic of a metal-superconductor transition, and then increasing the magnetic interactions as a function of SRO embedment, the electronic correlation and the interplay between superconductivity and magnetism throughout the temperature regime were investigated. A metal-insulator transition in the normal state of YBCO and a crossover between superconductivity and magnetism at low temperatures were found upon increasing the density of nano-size SRO crystallites in the YBCO matrix as a consequence of competing interactions between these two ordered phases.
NASA Astrophysics Data System (ADS)
Lai, L. S.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Gou, Y. S.
2005-11-01
By using a microstrip ring resonator to measure the temperature dependence of the in-plane magnetic penetration depth λ(T) in YBa2Cu3O7-δ (YBCO) and Y0.7Ca0.3Ba2Cu3O7-δ (Ca-YBCO) epitaxially grown thin films, the linear temperature dependence of the superfluid density ρs/m∗ ≡ 1/λ2(T) was observed from the under- to the overdoped regime at the temperatures below T/Tc ≈ 0.3 . For the underdoped regime of YBCO and Ca-YBCO thin films, the magnitude of the slope d(1/λ2(T))/dT is insensitive to doping, and it can be treated in the framework of projected d-density-wave model. Combining these slope values with the thermal conductivity measurements, the Fermi-liquid correction factor α2 from the Fermi-liquid model, suggested by Wen and Lee, was revealed here with various doping levels.
High Tc YBCO superconductor deposited on biaxially textured Ni substrate
Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.
1999-01-01
A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.
Disorder-controlled superconductivity at YBa2Cu3O7/SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Garcia-Barriocanal, J.; Perez-Muñoz, A. M.; Sefrioui, Z.; Arias, D.; Varela, M.; Leon, C.; Pennycook, S. J.; Santamaria, J.
2013-06-01
We examine the effect of interface disorder in suppressing superconductivity in coherently grown ultrathin YBa2Cu3O7 (YBCO) layers on SrTiO3 (STO) in YBCO/STO superlattices. The termination plane of the STO is TiO2 and the CuO chains are missing at the interface. Disorder (steps) at the STO interface cause alterations of the stacking sequence of the intracell YBCO atomic layers. Stacking faults give rise to antiphase boundaries which break the continuity of the CuO2 planes and depress superconductivity. We show that superconductivity is directly controlled by interface disorder outlining the importance of pair breaking and localization by disorder in ultrathin layers.
Improved Epitaxy and Surface Morphology in YBa2Cu3Oy Thin Films Grown on Double Buffered Si Wafers
NASA Astrophysics Data System (ADS)
Gao, J.; Kang, L.; Wong, H. Y.; Cheung, Y. L.; Yang, J.
Highly epitaxial thin films of YBCO have been obtained on silicon wafers using a Eu2CuO4/YSZ (yttrium-stabilized ZrO2) double buffer. Our results showed that application of such a double buffer can significantly enhance the epitaxy of grown YBCO. It also leads to an excellent surface morphology. The average surface roughness was found less than 5 nm in a large range. The results of X-ray small angle reflection and positron spectroscpy demonstrate a very clear and flat interface between YBCO and buffer layers. The Eu2CuO4/YSZ double buffer could be promising for coating high-TC superconducting films on various reactive substrates.
NASA Astrophysics Data System (ADS)
Müller, K.-H.; Krabbes, G.; Fink, J.; Gruß, S.; Kirchner, A.; Fuchs, G.; Schultz, L.
2001-05-01
Permanent magnets play an important role and are widely spread in daily-life applications. Due to their very low costs, large availability of the row materials and their high chemical stability, hard ferrites are still dominant in the permanent magnet market although their relatively poor magnetic properties are a distinct disadvantage. Today's high-performance magnets are mostly made from Nd 2Fe 14B. The aim of research is to combine the large spontaneous magnetization of 3d metals with strong anisotropy fields known from rare-earth transition-metal compounds and, at the same time, to maintain a high value of the Curie temperature. However, the number of iron-rich rare-earth intermetallics is very limited and, consequently, not much success can be noted in this field for the last 10 years. One alternative concept is to use magnetic fields trapped in type II superconductors where much higher fields can be achieved compared to conventional rare-earth magnets. Very recently, we obtained a trapped field as high as 14.4 T in a melt-textured YBCO bulk sample of a few centimeters in diameter. This is the highest value ever achieved in a bulk superconductor. The trapped field of a superconductor is not governed by the Laplace equation and, therefore, levitation works without any additional (active) stabilization. The disadvantage of these magnets is their low working temperature (of liquid nitrogen and below).
NASA Astrophysics Data System (ADS)
Abo-Arais, Ahmed; Dawoud, Mohamad Ahmad Taher
2005-01-01
X-ray powder diffraction patterns and infra-red absorption spectra have been evaluated and analysed for the Y1 Ba2 Cu3 O7-d - Gex compound samples prepared by the solid state reaction with x values ranging from 0.0 to 1.13. All samples show bulk superconductivity above liquid nitrogen temperature using the levitation test (Meissner effect). Samples with Ge content up to x = 0.2 have offset Tc between 83K and 92K while the sample with x = 1.13 shows semiconducting behavior above 100K. As a result of the solid state interaction between YBCO and Ge, new phases are observed and determined, mainly three phases are concluded from X-ray powder diffraction analysis: (i) Ba2GeO4 (ii) Y2BaCuO5 (iii) BaCO3. The unit cell parameters a, b and c of the orthorhombic superconducting phase are calculated for all the prepared samples. The anisotropy factor is evaluated and related to the new structural phases in YBCO-Ge composite system. The I-R absorption spectra for the samples with orthorhombic symmetry have been determined. The phonon modes between ~ 400 cm-1 and 630 cm-1 are attributed to the Cu - O octahedron and pyramid vibrations for the CuO2 -planes and CuO-chains, while the peaks in the range from ~ 700 cm-1 to ~ 860 cm-1 may be due to defects such as the new phase Ba2GeO4 and the green phase Y2BaCuO5. The obtained results are discussed according to the superconductor - semi-conductor composite model and with the phonon-mediated charge transfer between CuO2 -planes and CuO- chains through apex oxygen (BaO).
Fabrication of high T(sub c) superconductor thin film devices: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Sisk, R. C.
1992-01-01
This report describes a technique for fabricating superconducting weak link devices with micron-sized geometries etched in laser ablated Y1Ba2Cu3O(x) (YBCO) thin films. Careful placement of the weak link over naturally occurring grain boundaries exhibited in some YBCO thin films produces Superconducting Quantum Interference Devices (SQUID's) operating at 77 K.
Zhao, Ruipeng; Liu, Qing; Xia, Yudong; Zhang, Fei; Lu, Yuming; Cai, Chuanbing; Tao, Bowan; Li, Yanrong
2017-01-01
A multi-aperture shower design is reported to improve the transverse uniformity of GdYBCO superconducting films on the template of sputtered-LaMnO3/epitaxial-MgO/IBAD-MgO/solution deposition planarization (SDP)-Y2O3-buffered Hastelloy tapes. The GdYBCO films were prepared by the metal organic chemical vapor deposition (MOCVD) process. The transverse uniformities of structure, morphology, thickness, and performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), step profiler, and the standard four-probe method using the criteria of 1 μV/cm, respectively. Through adopting the multi-aperture shower instead of the slit shower, measurement by step profiler revealed that the thickness difference between the middle and the edges based on the slit shower design was well eliminated. Characterization by SEM showed that a GdYBCO film with a smooth surface was successfully prepared. Moreover, the transport critical current density (Jc) of its middle and edge positions at 77 K and self-field were found to be over 5 MA/cm2 through adopting the micro-bridge four-probe method. PMID:28914793
Field Performance of an Optimized Stack of YBCO Square “Annuli” for a Compact NMR Magnet
Hahn, Seungyong; Voccio, John; Bermond, Stéphane; Park, Dong-Keun; Bascuñán, Juan; Kim, Seok-Beom; Masaru, Tomita; Iwasa, Yukikazu
2011-01-01
The spatial field homogeneity and time stability of a trapped field generated by a stack of YBCO square plates with a center hole (square “annuli”) was investigated. By optimizing stacking of magnetized square annuli, we aim to construct a compact NMR magnet. The stacked magnet consists of 750 thin YBCO plates, each 40-mm square and 80- μm thick with a 25-mm bore, and has a Ø10 mm room-temperature access for NMR measurement. To improve spatial field homogeneity of the 750-plate stack (YP750) a three-step optimization was performed: 1) statistical selection of best plates from supply plates; 2) field homogeneity measurement of multi-plate modules; and 3) optimal assembly of the modules to maximize field homogeneity. In this paper, we present analytical and experimental results of field homogeneity and temporal stability at 77 K, performed on YP750 and those of a hybrid stack, YPB750, in which two YBCO bulk annuli, each Ø46 mm and 16-mm thick with a 25-mm bore, are added to YP750, one at the top and the other at the bottom. PMID:22081753
NASA Astrophysics Data System (ADS)
Lam, Simon K. H.; Bendavid, Avi; Du, Jia
2017-09-01
High temperature superconducting (HTS) nanostructure has a great potential in photon sensing at high frequency due to its fast recovery time. For maximising the coupling efficiency, the normal resistance of the nanostructure needs to be better matched to that of the thin-film antenna, which is typically few tens of ohm. We report on the fabrication of nanoscale high temperature superconducting YBa2Cu3O7-x (YBCO) constrictions using Gallium ion focus ion beam (FIB) technique. The FIB has been used to both remove the YBCO in lateral dimension and also tune its critical current and normal resistance by a combination of surface etching and implantation on the YBCO top layer. High critical current density of 2.5 MA/cm2 at 77 K can be obtained on YBCO nanobridges down to 100 nm in width. Subsequent trimming of the naobridges can lead to a normal resistance value over 50 Ω. Simulation of the Ga ion trajectory has also been performed to compare the measurement results. This method provides a simple step of fabricating nanoscale superconducting detectors such as hot electron bolometer.
NASA Astrophysics Data System (ADS)
Šouc, J.; Vojenčiak, M.; Gömöry, F.
2010-04-01
Several short cable models were constructed from YBCO coated conductor (YBCO CC) to study their basic dc and ac electrical properties. They were prepared using superconducting tapes helically wound on fiberglass former of different diameter (5, 8 and 10 mm) with different twist pitch (from 1.7 up to 2.4 cm). The number of parallel-connected tapes ranged from 1 up to 6. The standard length of the models was 11 cm. In one case a 35 cm long model has been manufactured in order to perform a bending test. We observed that the critical currents of the models were proportional to the number of tapes used for their construction. Transport and magnetization ac loss were measured at 36 and 72 Hz.
NASA Astrophysics Data System (ADS)
Reeves, Jodi Lynn
Microstructural barriers to supercurrent occur on many length scales in all high temperature oxide superconductors. Eliminating microstructural barriers is key to making these potentially valuable materials more favorable for commercial applications. In silver-sheathed Bi2Sr2CaCu 2Ox (Bi-2212) tapes and multifilaments, the principal barriers on the scale of 10--100's of micrometers are bubbling, porosity, second phase particles, and poorly aligned grains. In state-of-the-art YBa2 Cu3Ox (YBCO) coated conductors, supercurrent barriers on the 0.1--100mum scale are grain boundaries. This thesis work clarifies the role of grain boundaries in the nickel substrate of RABiTS (Rolling Assisted Biaxially Textured Substrate) coated conductors. Plan-view SEM imaging, focused ion beam cutting, magneto-optical imaging and grain orientation mapping were used to determine barriers to supercurrent. Experiments showed enhanced magnetic flux penetration, and hence reduced Jc, in the YBCO above nearly all nickel grain boundaries with misorientation angles (theta) greater than 5°, independent of the rotation axis. Monochromatic backscattered electron Kikuchi pattern percolation maps imply there is a fully connected current path through the YBCO microstructure within the chosen tolerance angle criterion of the map. However, it is the grain boundary map that displays the constrictions of the current path. Therefore, grain boundary maps are better tools for illustrating supercurrent barriers than percolation maps. Grain boundary maps and grain orientation maps were used to investigate how the texture of the substrate was transferred to the buffer layers and to the superconductor. Most grasp boundaries in the nickel were replicated in the buffer and superconductor layers with the same misorientation angle. Anisotropic growth and/or surface energy minimization may be responsible for the improvement in c-axis alignment in the YBCO over the buffer layer. However, the YBCO mosaic spread did not eliminate high angle grain boundaries, since >5° boundaries were still seen in YBCO grain boundary maps. The results of this study on microstructural current barriers show that Jc improvements in RABiTS-type coated conductors require eliminating theta > 5° boundaries in the nickel substrate.
Superconductivity in Cuba: Reaching the Frontline
NASA Astrophysics Data System (ADS)
Arés Muzio, Oscar; Altshuler, Ernesto
The start of experimental research in the field of superconductivity was a very special moment for Cuban physics: Cuban scientists at the Physics Faculty, University of Havana, synthesized the first Cuban superconductor (a 123-YBCO ceramic sample) just 2 months after the publication of the famous paper by Wu and co-workers that triggered the frantic race of High Tc superconductors all over the world. We timely joined the world's frontline in superconductor research.
NASA Astrophysics Data System (ADS)
Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia
2015-11-01
The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Hirabayashi, Izumi
2003-11-01
Large-area, uniform, high critical current density (Jc) YBa2Cu3O7-x (YBCO) superconductor films are now routinely obtained by metalorganic deposition using trifluoroacetates (TFA-MOD). This method does not require any expensive vacuum apparatus at any time during the whole process. Thus, TFA-MOD is regarded as one of the most suitable candidates for fabricating a YBCO tape for many high-power applications. This method originated from an electron beam process using BaF2 developed by Mankiewich et al. Afterwards, Gupta et al reported using TFA-MOD to prepare a similar precursor film. These two ex situ processes used fluorides instead of BaCO3 to avoid the fatal deterioration in Jc, which is caused in the resulting films through metal carboxylic groups. Fluorides not only avoid such deterioration but also lead to perfectly c-axis-oriented epitaxial crystal growth. In conventional metalorganic deposition, nucleation in the precursor film causes random orientation in the resulting film. However, in TFA-MOD, nanocrystallites in the precursor film never cause such disorder. Furthermore, during the firing process of TFA-MOD, water and HF gas diffuse quickly between the film surface and growth front of the YBCO layer. This diffusion never limits the growth rate of YBCO. What distinguishes TFA-MOD from conventional metalorganic deposition? What happens during heat treatment? In this paper, we discuss all the TFA-MOD processes and the peculiar growth scheme of the YBCO layer in TFA-MOD using the model of a quasi-liquid network. In addition, we review the history of TFA-MOD and recent results and discuss the prospects of future applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiner, M.; Gigl, T.; Hugenschmidt, C.
2015-03-16
Single crystalline YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films were grown by pulsed laser deposition in order to probe the oxygen deficiency δ using a mono-energetic positron beam. The sample set covered a large range of δ (0.191 < δ < 0.791) yielding a variation of the critical temperature T{sub c} between 25 and 90 K. We found a linear correlation between the Doppler broadening of the positron electron annihilation line and δ determined by X-ray diffraction. Ab-initio calculations have been performed in order to exclude the presence of Y vacancies and to ensure the negligible influence of potentially present Ba or Cu vacancies tomore » the found correlation. Moreover, scanning with the positron beam allowed us to analyze the spatial variation of δ, which was found to fluctuate with a standard deviation of up to 0.079(5) within a single YBCO film.« less
Composite ceramic superconducting wires for electric motor applications
NASA Astrophysics Data System (ADS)
Halloran, John W.
1990-07-01
Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.
I-V Characteristics vs. Spatial Dissipation Maps in YBCO Grain Boundary on Bicrystal Substrates
NASA Astrophysics Data System (ADS)
Kwon, Chuhee; Yamamoto, Megumi; Pottish, Samuel; Haugan, Timothy; Barnes, Paul
2008-03-01
Grain boundary (GB) properties of YBCO films on SrTiO3 bicrystal substrates with 24 degree misorientations are examined by transport and scanning laser microscopy (SLM) techniques. Thermoelectric SLM clearly shows the location of grain boundaries, and variable temperature SLM confirms that GB has lower Tc. A series of I-V measured in superconducting states exhibit clear step-like features identified in earlier papers as sub-gap structures. The low temperature SLM shows a close relation between the step-like features and the local dissipation pattern in GB. We believe that the activation of Fiske steps is responsible for the step-like I-V, and SLM images show the spatial pattern of the self-excited resonance in GB. We will also discuss how Ca-doping and nanoparticle additions on YBCO affect the junction properties.
Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.
1992-01-01
Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.
NASA Astrophysics Data System (ADS)
Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.
2018-04-01
The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.
Architecture for high critical current superconducting tapes
Jia, Quanxi; Foltyn, Stephen R.
2002-01-01
Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.
High speed production of YBCO precursor films by advanced TFA-MOD process
NASA Astrophysics Data System (ADS)
Ichikawa, H.; Nakaoka, K.; Miura, M.; Sutoh, Y.; Nakanishi, T.; Nakai, A.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.
2009-10-01
YBa 2Cu 3O 7-y (YBCO) long tapes derived from the metal-organic deposition (MOD) method using the starting solution containing trifluoroacetate (TFA) have been developed with high critical currents ( I c) over 200 A/cm-width. However, high speed production of YBCO films is simultaneously necessary to satisfy the requirements of electric power device applications in terms of cost and the amounts of the tapes. In this work, we developed a new TFA-MOD starting solution using F-free salt of Y, TFA salt of Ba and Cu-Octylate for application to the coating/calcination process and discussed several issues by using the Multi-turn (MT) Reel-to-Reel (RTR) system calcination furnace for the purpose of high throughput without degradation of the properties. The coating system was improved for uniform deposition qualities in both longitudinal and transversal directions. YBCO films using the new starting solution at the traveling rate of 10 m/h in coating/calcination by the MT-RTR calcination furnace showed the values of the critical current density of 1.6 MA/cm 2 as thick as 1.5 μm at 77 K under the self fields after firing at the high heating rate in the crystallization.
NASA Astrophysics Data System (ADS)
Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.
2017-12-01
We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.
Development of coated conductors by inclined substrate deposition
NASA Astrophysics Data System (ADS)
Balachandran, U.; Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Miller, D. J.; Dorris, S. E.
2003-10-01
Inclined substrate deposition (ISD) offers the potential for rapid production of high-quality biaxially textured buffer layers suitable for YBa 2Cu 3O 7- δ (YBCO)-coated conductors. We have grown biaxially textured magnesium oxide (MgO) films on Hastelloy C276 (HC) substrates by ISD at deposition rates of 20-100 Å/s. Scanning electron microscopy of the ISD MgO films showed columnar grain structures with a roof-tile-shaped surface. X-ray pole figure analysis revealed that the c-axis of the ISD MgO films is titled at an angle ≈32° from the substrate normal. A small full-width at half maximum of ≈9° was observed for the φ-scan of MgO films. YBCO films were grown on ISD MgO buffered HC substrates by pulsed laser deposition and were determined to be biaxially aligned with the c-axis parallel to the substrate normal. The orientation relationship between the ISD template and the top YBCO film was investigated by X-ray pole figure analysis and transmission electron microscopy. A transport critical current density of Jc=5.5×10 5 A/cm 2 at 77 K in self-field was measured on a YBCO film that was 0.46-μm thick, 4-mm wide, 10-mm long.
NASA Astrophysics Data System (ADS)
Prikhna, T. A.; Chaud, X.; Gawalek, W.; Joulain, A.; Rabier, J.; Moshchil, V. E.; Savchuk, Ya. M.; Sergienko, N. V.; Dub, S. N.; Melnikov, V. S.; Habisreuther, T.; Litzkendorf, D.; Bierlich, J.
2008-03-01
The oxygenation of MT-YBCO under isostatic oxygen pressure (up to 16 MPa) at 900-800 °C allowed reduced process time, lower macrocracking, and reduced microcracks. Additionally higher critical currents, trapped fields and mechanical characteristics can be attained. At 77 K thin-walled MT-YBCO had a jc in the ab plane of 85 kA/cm2 at 0 T and higher than 10 kA/cm2 in fields up to 5 T and the irreversibility field was 9.8 T. In the c-direction jc was 34 kA/cm2 in 0 T and higher than 2.5 kA/cm2 in a 10 T field. At 4.9 N-load the micohardness, Hv, was 8.7±0.3 GPa in the ab-plane and 7.6±0.3 GPa in the c-direction. The fracture toughness, K1C, was 2.5±0.1 MPaṡm0.5 (ab-plane) and 2.8±0.24 MPaṡm0.5 (c-direction). The samples with a higher twin density demonstrated a higher jc, especially in applied magnetic field. The twin density correlates with the sizes and distribution of Y211 grains in Y123. The thin-walled ceramics that demonstrated the highest jc contained about 22 twins in 1 μm and were practically free from dislocations and stacking faults. The maximal trapped field of the block of thin-walled ceramic oxygenated at 900-800 °C and 16 MPa was doubled as compared to that oxygenated at low temperature under ambient pressure.
New Transition in the Vortex Liquid State: intrinsic limit of the irreversibility line
NASA Astrophysics Data System (ADS)
Kwok, Wai-Kwong; Paulius, Lisa; Figueras, Jordi
2005-03-01
We have carried out angular dependent magneto-transport measurements on optimally doped, untwinned YBCO crystals irradiated with high energy heavy ions to determine the onset of vortex line tension in the vortex liquid state. The matching field was controlled and kept at a low level to partially preserve the first order vortex lattice melting transition. A Bose glass transition is observed below the lower critical point which then transforms into a first order phase transition near 5 Tesla. The locus of points which indicate the onset of vortex line tension overlaps with the Bose glass transition line at low fields and then deviates at higher fields, indicating a new transition line in the vortex liquid state. This new line in the vortex liquid phase extends beyond the upper critical point.This work was supported by the U.S. Department of Energy, BES, Materials Science under Contract No. W-31-109-ENG-38 at Argonne National Laboratory.
Preparation and Characterization of High Temperature Superconductor Film Surfaces
1993-10-27
Lanthanum Strontium Copper Oxide (LSCO) was also tested as a normal metal overlayer because of its compatibility with the high deposition temperature for...fabricate YBCO/ISCO SEB junctions using a variety of step heights (110 nm - 330 nm) on Neodymium Gallate (NGO) substrates. NGO was chosen as a...substrate because of its excellent lattice match to YBCO and its lack of crystal twinning Twinning had been a drawback of Lanthanum Aluminate (LAO)- L
Electronic State Distributions of YBa2Cu3O7-x Laser Ablated Plumes
2008-09-01
deposited on buffered metal substrates using gas phase techniques such as pulsed laser deposition (PLD) or metal -oxide chem- ical vapor deposition...along the desired current direction. This grain orientation has been successfully achieved by depositing YBCO on a metal tape substrate coated with a...Reeves, K. Lenseth, and V. Selvamanickam. “Texture Development and Superconducting Properties of YBCO Thick Films Deposited on Buffered Metal Substrates
Magnetic suspension using high temperature superconducting cores
NASA Technical Reports Server (NTRS)
Scurlock, R. G.
1992-01-01
The development of YBCO high temperature superconductors, in wire and tape forms, is rapidly approaching the point where the bulk transport current density j vs magnetic field H characteristics with liquid nitrogen cooling will enable its use in model cores. On the other hand, BSCCO high temperature superconductor in wire form has poor j-H characteristics at 77 K today, although with liquid helium or hydrogen cooling, it appears to be superior to NbTi superconductor. Since liquid nitrogen cooling is approx. 100 times cheaper than liquid helium cooling, the use of YBCO is very attractive for use in magnetic suspension. The design is discussed of a model core to accommodate lift and drag loads up to 6000 and 3000 N respectively. A comparison is made between the design performance of a liquid helium cooled NbTi (or BSCCO) superconducting core and a liquid nitrogen cooled YBCO superconducting core.
Advanced development of TFA-MOD coated conductors
NASA Astrophysics Data System (ADS)
Rupich, M. W.; Li, X.; Sathyamurthy, S.; Thieme, C.; Fleshler, S.
2011-11-01
American Superconductor is manufacturing 2G wire for initial commercial applications. The 2G wire properties satisfy the requirements for these initial projects; however, improvements in the critical current, field performance and cost are required to address the broad range of potential commercial and military applications. In order to meet the anticipated the performance and cost requirements, AMSC's R&D effort is focused on two major areas: (1) higher critical current and (2) enhanced flux pinning. AMSC's current 2G production wire, designed around a 0.8 μm thick YBCO layer deposited by a Metal Organic Deposition (MOD) process, carries a critical current in the range of 200-300 A/cm-w (77 K, sf). Achieving higher critical current requires increasing the thickness of the YBCO layer. This paper describes recent progress at AMSC on increasing the critical current of MOD-YBCO films using processes compatible with low-cost, high-rate manufacturing.
NASA Astrophysics Data System (ADS)
Aytug, T.; Paranthaman, M.; Kang, B. W.; Sathyamurthy, S.; Goyal, A.; Christen, D. K.
2001-10-01
Coated conductor applications in power technologies require stabilization of the high-temperature superconducting (HTS) layers against thermal runaway. Conductive La0.7Sr0.3MnO3 (LSMO) has been epitaxially grown on biaxially textured Ni substrates as a single buffer layer. The subsequent epitaxial growth of YBa2Cu3O7-δ (YBCO) coatings by pulsed laser deposition yielded self-field critical current densities (Jc) of 0.5×106A/cm2 at 77 K, and provided good electrical connectivity over the entire structure (HTS+conductive-buffer+metal substrate). Property characterizations of YBCO/LSMO/Ni architecture revealed excellent crystallographic and morphological properties. These results have demonstrated that LSMO, used as a single, conductive buffer layer, may offer potential for use in fully stabilized YBCO coated conductors.
NASA Astrophysics Data System (ADS)
Endo, M.; Hori, T.; Koyama, K.; Yamaguchi, I.; Arai, K.; Kaiho, K.; Yanabu, S.
2008-02-01
Using a high temperature superconductor, we constructed and tested a model Superconducting Fault Current Limiter (SFCL). SFCL which has a vacuum interrupter with electromagnetic repulsion mechanism. We set out to construct high voltage class SFCL. We produced the electromagnetic repulsion switch equipped with a 24kV vacuum interrupter(VI). There are problems that opening speed becomes late. Because the larger vacuum interrupter the heavier weight of its contact. For this reason, the current which flows in a superconductor may be unable to be interrupted within a half cycles of current. In order to solve this problem, it is necessary to change the design of the coil connected in parallel and to strengthen the electromagnetic repulsion force at the time of opening the vacuum interrupter. Then, the design of the coil was changed, and in order to examine whether the problem is solvable, the current limiting test was conducted. We examined current limiting test using 4 series and 2 parallel-connected YBCO thin films. We used 12-centimeter-long YBCO thin film. The parallel resistance (0.1Ω) is connected with each YBCO thin film. As a result, we succeed in interrupting the current of superconductor within a half cycle of it. Furthermore, series and parallel-connected YBCO thin film could limit without failure.
Testing of a 1.25-m HTS Cable Made from YBCO Tapes
NASA Astrophysics Data System (ADS)
Gouge, M. J.; Lue, J. W.; Demko, J. A.; Duckworth, R. C.; Fisher, P. W.; Daumling, M.; Lindsay, D. T.; Roden, M. L.; Tolbert, J. C.
2004-06-01
Ultera and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested a 1.25-m-long, prototype high-temperature superconducting (HTS) power cable made from 1-cm-wide, second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in boiling liquid nitrogen at 77 K. DC testing of the 1.25-m cable included determination of the V-I curve, with a critical current of 4200 A. This was consistent with the properties of the 24 individual YBCO tapes. AC testing of the cable was conducted at currents up to 2500 Arms. The ac losses were measured calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. AC losses of about 2 W/m were measured at a cable ac current of 2000 Arms. Overcurrent testing was conducted at peak current values up to 12 kA for pulse lengths of 0.1-0.2 s. The cable temperature increased to 105 K for a 12 kA, 0.2 s overcurrent pulse, and the cable showed no degradation after the sequence of overcurrent testing. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.
Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors
NASA Astrophysics Data System (ADS)
Zhao, Yue; Tang, Xiao; Wu, Wei; Grivel, Jean-Claude
2014-05-01
In order to understand the all-chemical-solution-deposition (CSD) processes for manufacturing coated conductors, we investigated the phase evolution of YBa2Cu3O7 (YBCO) films deposited by a low-fluorine metal-organic solution deposition (LF-MOD) method on CSD derived Ce0.9La0.1O2/Gd2Zr2O7/NiW. It is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical TFA-MOD cases. Moreover, we found that the formation of impurities (mainly BaCeO3, NiWO4 and NiO) is strongly related to the annealing temperature, i.e., the diffusion controlled reactions become intensive from 760 oC, which might be connected with the poor structural and superconducting properties of the films deposited at high sintering temperatures. Based on these results, the optimized growth conditions of YBCO films were established, and a high critical current density (Jc) of about 2 MA/cm2 (77 K, self field) is achieved in a 200 nm thick YBCO film in the architecture made by our all CSD route.
NASA Astrophysics Data System (ADS)
Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.
2004-12-01
As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction-driven processes.
Fast infrared response of YBCO thin films
NASA Technical Reports Server (NTRS)
Ballentine, P. H.; Kadin, A. M.; Donaldson, W. R.; Scofield, J. H.; Bajuk, L.
1990-01-01
The response to short infrared pulses of some epitaxial YBCO films prepared by sputter deposition and by electron-beam evaporation is reported. The response is found to be essentially bolometric on the ns timescale, with some indirect hints of nonequilibrium electron transport on the ps scale. Fast switching could be obtained either by biasing the switch close to the critical current or by cooling the film below about 20 K. These results are encouraging for potential application to a high-current optically-triggered opening switch.
NASA Astrophysics Data System (ADS)
Cook, G. G.; Khamas, S. K.; Kingsley, S. P.; Woods, R. C.
1992-01-01
The radar cross section and Q factors of electrically small dipole and loop antennas made with a YBCO high Tc superconductor are predicted using a two-fluid-moment method model, in order to determine the effects of finite conductivity on the performances of such antennas. The results compare the useful operating bandwidths of YBCO antennas exhibiting varying degrees of impurity with their copper counterparts at 77 K, showing a linear relationship between bandwidth and impurity level.
Protecting Superconducting HTS-Antennas by Meta-Material Cloaks
2014-04-30
radiation efficiency for this antenna is 22.3\\%. However, if the normal conducting part is replaced with a superconductor , e.g. YBCO with RS=500µΩ, [8] the...loss resistance can be brought down due to the much lower surface resistance of the superconductor relative to the normal conductor. Chalupka et al...range [12]. In 1987, Wu et al. [13] discovered the HTS compound YBCO that has a TC of ≈ 92K, which was the first superconductor to have a TC greater
Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors
NASA Technical Reports Server (NTRS)
Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt
1997-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.
NASA Astrophysics Data System (ADS)
Joung, Wukchul; Park, Jihye; Pearce, Jonathan V.
2018-06-01
In this work, the liquidus temperature of tin was determined by melting the sample using the pressure-controlled loop heat pipe. Square wave-type pressure steps generated periodic 0.7 °C temperature steps in the isothermal region in the vicinity of the tin sample, and the tin was melted with controllable heat pulses from the generated temperature changes. The melting temperatures at specific melted fractions were measured, and they were extrapolated to the melted fraction of unity to determine the liquidus temperature of tin. To investigate the influence of the impurity distribution on the melting behavior, a molten tin sample was solidified by an outward slow freezing or by quenching to segregate the impurities inside the sample with concentrations increasing outwards or to spread the impurities uniformly, respectively. The measured melting temperatures followed the local solidus temperature variations well in the case of the segregated sample and stayed near the solidus temperature in the quenched sample due to the microscopic melting behavior. The extrapolated melting temperatures of the segregated and quenched samples were 0.95 mK and 0.49 mK higher than the outside-nucleated freezing temperature of tin (with uncertainties of 0.15 mK and 0.16 mK, at approximately 95% level of confidence), respectively. The extrapolated melting temperature of the segregated sample was supposed to be a closer approximation to the liquidus temperature of tin, whereas the quenched sample yielded the possibility of a misleading extrapolation to the solidus temperature. Therefore, the determination of the liquidus temperature could result in different extrapolated melting temperatures depending on the way the impurities were distributed within the sample, which has implications for the contemporary methodology for realizing temperature fixed points of the International Temperature Scale of 1990 (ITS-90).
The effects of space radiation on thin films of YBa2Cu3O(sub 7-x)
NASA Technical Reports Server (NTRS)
Herschitz, R.; Bogorad, A.; Bowman, C.; Seehra, S. S.; Mogro-Campero, A.; Turner, L. G.
1990-01-01
This investigation had two objectives: (1) to determine the effects of space radiation on superconductor parameters that are most important in space applications; and (2) to determine whether this effect can be simulated with Co-60 gamma rays, the standard test method for space materials. Thin films of yttrium barium copper oxide (YBCO) were formed by coevaporation of Y, BaF2, and Cu and post-annealing in wet oxygen at 850 C for 3.5 h. The substrate used was (100) silicon with an evaporated zirconia buffer layer. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were the zero resistance transition temperature (T sub c) and the room temperature resistance. The samples were then exposed to Co-60 gamma-rays in air and in pure nitrogen, and to 780 keV electrons, in air. The parameters were then remeasured. The results are summarized. The results indicate little or no degradation in the parameters measured for samples exposed up to 10 Mrads of gamma-rays in nitrogen. However, complete degradation of samples exposed to 10-Mrad in air was observed. This degradation is preliminarily attributed to the high level of ozone generated in the chamber by the gamma-ray interaction with air. It can be concluded that: (1) the electron component of space radiation does not degrade the critical temperature of the YBCO films described, at least for energies around 800 keV and doses similar to those received by surface materials on spacecraft in typical remote sensing missions; and (2) for qualifying this and other superconducting materials against the space-radiation threat the standard test method in the aerospace industry, namely, exposure to Co-60 gamma-rays in air, may require some further investigation. As a minimum, the sample must be either in vacuum or in positive nitrogen pressure.
NASA Astrophysics Data System (ADS)
Yoshino, Takashi; Laumonier, Mickael; McIsaac, Elizabeth; Katsura, Tomoo
2010-07-01
Electrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction-conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity ( σbulk) and log melt fraction ( ϕ) can be expressed well by the Archie's law (Archie, 1942) ( σbulk/ σmelt = Cϕn) with parameters C = 0.68 and 0.97, n = 0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1-3% and ˜ 0.3% for basaltic melt and carbonatite melt, respectively.
Electron-positron momentum distribution measurements of high-T superconductors and related systems
NASA Astrophysics Data System (ADS)
Wachs, A. L.; Turchi, P. E. A.; Howell, R. J.; Jean, Y. C.; Fluss, M. J.; West, R. N.; Kaiser, J. H.; Rayner, S.; Hahgighi, H.; Merkle, K. L.
1989-08-01
Measurements are discussed of the 2-D angular correlation of positron annihilation radiation (ACAR) in La2CuO4, YBa2Cu3O7 (YBCO), and NiO. The measurements for NiO are the first such 2-D ACAR measurements; the YBCO results are of a higher statistical quality than previously reported in the literature. The data are compared with complementary theoretical calculations and with each other. The implication is discussed of the analysis for ACAR studies of similar and related systems.
Electron-position momentum distribution measurements of high-T c superconductors and related systems
NASA Astrophysics Data System (ADS)
Wachs, A. L.; Turchi, P. E. A.; Howell, R. H.; Jean, Y. C.; Fluss, M. J.; West, R. N.; Kaiser, J. H.; Rayner, S.; Haghighi, H.; Merkle, K. L.; Revcolevschi, A.; Wang, Z. Z.
1989-12-01
We discuss our measurements of the 2D-angular correlation of positron annihilation radiation (ACAR) in La 2CuO 4, YBa 2Cu 3O 7 (YBCO), and NiO. The measurements for NiO are the first such 2D-ACAR measurements; the YBCO results are of a higher statistical quality than previously reported in the literature. The data are compared with complementary theoretical calculations and with each other. We discuss the implication of our analysis for ACAR studies of similar and related systems.
Apparatus and method for measuring critical current properties of a coated conductor
Mueller, Fred M [Los Alamos, NM; Haenisch, Jens [Dresden, DE
2012-07-24
The transverse critical-current uniformity in a superconducting tape was determined using a magnetic knife apparatus. A critical current I.sub.c distribution and transverse critical current density J.sub.c distribution in YBCO coated conductors was measured nondestructively with high resolution using a magnetic knife apparatus. The method utilizes the strong depression of J.sub.c in applied magnetic fields. A narrow region of low, including zero, magnetic field in a surrounding higher field is moved transversely across a sample of coated conductor. This reveals the critical current density distribution. A Fourier series inversion process was used to determine the transverse J.sub.c distribution in the sample.
Studies of anisotropic in-plane aligned a-axis oriented YBa(2)Cu(3)O(7-x) thin films
NASA Astrophysics Data System (ADS)
Trajanovic, Zoran
1997-12-01
Due to their layered planar structure, cuprate oxide superconductors possess remarkable anisotropic properties which may be related to their high transition temperatures. In-plane aligned a-axis YBa2Cu3O7 (YBCO) films are good candidates for such anisotropic studies. Furthermore, the full advantage of favorable material characteristics can be then utilized in applications such as vertical SNS junctions with the leads along the b-direction of YBCO and other novel junction configurations. High quality, smooth, in-plane aligned films are obtained on (100) LaSrGaO4. Form x-ray data, the films show complete b- and c-axes separation for the measured a-axis orientation. The anisotropic resistivity ratio (ρ c/ρ b), measured along the two crystallographic axes of single films gives ρ c/ρ b of ≈20 near the transition, with T cs near 90 K. In such films the grain boundary effects can be decoupled from the intrinsic anisotropic properties of YBCO. From oxygen annealing studies it was estimated that the CuO chains supply about 60% of the carriers. From J c measurements it is determined that the orientation of magnetic field with respect to the crystallographic film axes is the primary factor governing the J c values. The angular dependence of J c on the applied magnetic field is compared against various theoretical models showing the best agreement with the modified Ginzburg-Landau's anisotropic mass model (at T ≈ T c) and Tinkham's thin film model (at T < T c). By utilizing the Co-dopant, the coupling between CuO2 planes and the resulting enhancement of the intrinsic anisotropy of YBCO can be studied. Deposition and cooling conditions are shown to be the primary factor that influence the quality of dopant incorporation and the resulting oxygen ordering within the YBCO lattice. Various complex structures and devices utilizing in-plane aligned, a-axis films are presented. Other materials exhibiting in-plane alignment and a-axis growth are described. Optional substrates for achieving such films are also discussed.
YBCO High-Temperature Superconducting Filters on M-Plane Sapphire Substrates
NASA Technical Reports Server (NTRS)
Sabataitis, J. C.; Mueller, C. H.; Miranda, F. A.; Warner, J.; Bhasin, K. B.
1996-01-01
Since the discovery of High Temperature Superconductors (HTS) in 1986, microwave circuits have been demonstrated using HTS films on various substrates. These HTS-based circuits have proven to operate with less power loss than their metallic film counterparts at 77 K. This translates into smaller and lighter microwave circuits for space communication systems such as multiplexer filter banks. High quality HTS films have conventionally been deposited on lanthanum aluminate (LaAlO3) substrates. However, LaAlO3 has a relative dielectric constant (epsilon(sub r)) of 24. With a epsilon(sub r) approx. 9.4-11.6, sapphire (Al2O3) would be a preferable substrate for the fabrication of HTS-based components since the lower dielectric constant would permit wider microstrip lines to be used in filter design, since the lower dielectric constant would permit wider microstrip lines to be used for a given characteristic impedance (Z(sub 0)), thus lowering the insertion losses and increasing the power handling capabilities of the devices. We report on the fabrication and characterization of YBa2Cu3O(7-delta) (YBCO) on M-plane sapphire bandpass filters at 4.0 GHz. For a YBCO 'hairpin' filter, a minimum insertion loss of 0.5 dB was measured at 77 K as compared with 1.4 dB for its gold counterpart. In an 'edge-coupled' configuration, the insertion loss went down from 0.9 dB for the gold film to 0.8 dB for the YBCO film at the same temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumption, Mike D.; Collings, Edward W.
2014-10-29
Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and couplingmore » magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.« less
NASA Astrophysics Data System (ADS)
Khan, M. Z.; Zhao, Y.; Wu, X.; Malmivirta, M.; Huhtinen, H.; Paturi, P.
2018-02-01
The growth mechanism is studied from the flux pinning point of view in small-scale YBa2Cu3O6+x (YBCO) thin films deposited on a polycrystalline hastelloy with advanced IBAD-MgO based buffer layer architecture. When compared the situation with YBCO films grown on single crystal substrates, the most critical issues that affect the suitable defect formation and thus the optimal vortex pinning landscape, have been studied as a function of the growth temperature and the film thickness evolution. We can conclude that the best critical current property in a wide applied magnetic field range is observed in films grown at relatively low temperature and having intermediate thickness. These phenomena are linked to the combination of the improved interface growth, to the film thickness related crystalline relaxation and to the formation of linear array of edge dislocations that forms the low-angle grain boundaries through the entire film thickness and thus improve the vortex pinning properties. Hence, the optimized buffer layer structure proved to be particularly suitable for new coated conductor solutions.
Study of Running Stability in Side-Suspended HTS-PMG Maglev Circular Line System
NASA Astrophysics Data System (ADS)
Zhou, Dajin; Zhao, Lifeng; Li, Linbo; Cui, Chenyu; Hsieh, Chang-Chun; Zhang, Yong; Guo, Jianqiang; Zhao, Yong
2017-07-01
A research on stability of the side-suspended HTS-PMG maglev circular line system is carried out through simulation experiment. The results show that the maglev vehicle will gradually get close to the track surface during acceleration under the action of centrifugal force, leading to decay of guidance force and occurrence of vertical eccentric motion. In case of linear array of YBa2Cu3O7-x (YBCO) bulks, the guidance force will be changed with the decreasing of the levitation gap. It can be suppressed through the complex arrangement of YBCO bulks. Fortunately, triangle array of YBCO bulks can effectively keep the guidance force constant and realize stable running during accelerating process of the prototype vehicle. Based on the research on stability of side-suspended maglev vehicle, a side-suspended PMG circular test track with diameter of 6.5 m and circumference of 20.4 m is successfully designed and established, enabling the prototype vehicle to run stably at up to 82.5 km/h under open atmosphere (9.6 × 104 Pa).
NASA Astrophysics Data System (ADS)
He, Xiangming; Wang, Li; Li, Wen; Jiang, Changyin; Wan, Chunrong
The Yb/Co coated nickel hydroxides were prepared by precipitation of Yb(OH) 3 on the surface of spherical nickel hydroxide, followed by precipitation of Co(OH) 2 on its surface. The optimum coating content of ytterbium was around 2% (atomic concentration) to obtain high discharge capacity at 60 °C. It was shown that the discharge capacity of nickel hydroxide at high temperatures was improved by coating of ytterbium and cobalt hydroxide. The high temperature performances of the sealed AAA-sized Ni-MH batteries using Yb/Co coated nickel hydroxide as positive electrodes were carried out, showing much better than those using the un-coated and only Co(OH) 2 coated nickel hydroxide electrodes. The charge acceptance of the battery using 2% Yb and 2% Co coated nickel hydroxide reached 92% at 60 °C, where the charge acceptances for the un-coated and only cobalt coated ones were only 42 and 46%, respectively. It has shown that the Yb/Co coating is an effective way to improve the high temperature performance of nickel hydroxide for nickel-metal hydride batteries.
NASA Astrophysics Data System (ADS)
Lee, Sung Hoon; Lee, Soon-Gul
2017-09-01
We have fabricated YBa2Cu3O7 (YBCO) dc SQUIDs containing nanobridges across twin boundaries of LaAlO3 (LAO) substrates as Josephson elements by using a focused ion beam (FIB) etching method and measured their transport properties. The beam energy was 30 keV and the current was 1.5 pA for the nanobridge pattern. Each bridge with a nominal width of 200 nm crossed a twin boundary in the (100) direction. The SQUID loop had a 10 μm × 10 μm hole with a 5.7 μm average linewidth. The SQUID voltage showed modulations in response to the external flux with a maximum modulation depth of 350 μV at 77.0 K. HR-XRD spectra showed that the epitaxially grown YBCO film was twinned in commensurate with the twinning of the LAO substrate. Tilting of the c-axis of YBCO across the twin boundary is believed to play a role as a tunnel barrier.
The early growth and interface of YBa 2Cu 3O y thin films deposited on YSZ substrates
NASA Astrophysics Data System (ADS)
Gao, J.; Tang, W. H.; Yau, C. Y.
2001-11-01
Epitaxial thin films of YBa 2Cu 3O y (YBCO) have been prepared on yttrium-stabilized zirconia substrates with and without a buffer layer. The early growth, crystallinity and surface morphology of these thin films have been characterized by X-ray diffraction, rocking curves, scanning electron microscope, in situ conductance measurements, and surface step profiler. The full width at half maximum of the ( 0 0 5 ) peak of rocking curve was found to be less than 0.1°. Over a wide scanning range of 2000 μm the average surface roughness is just 5 nm, indicating very smooth films. Grazing incident X-ray reflection and positron annihilation spectroscopy shows well-defined interfaces between layers and substrate. By applying a new Eu 2CuO 4 (ECO) buffer layer the initial formation of YBCO appears to grow layer-by-layer rather than the typical island growth mode. The obtained results reveal significant improvements at the early formation and crystallinity of YBCO by using the 214-T ‧ ECO as a buffer layer.
The study of ultrasonic irradiation effects on solid state powders of HTc superconductor YBa2Cu3O7-x
NASA Astrophysics Data System (ADS)
Kargar, Mahboubeh; Khoshnevisan, Bahram
2016-03-01
In this paper, an ultrasound assisted solid state synthesis method for high-temperature (HTc) YBa2Cu3O7-x (YBCO) superconductor nanostructures with different morphologies is presented. Here, the routine heat treatment of the powder mixture of as-prepared precursors is followed by the ultrasound irradiation inside various alcoholic solutions. Not only the influence of the ultrasound irradiation intensity and duration but also the influence of different solvents such as ethanol, methanol and 1-butanol with various vapor pressures and so various destruction powers were also studied on the morphology and particle size of the products. The various morphologies were studied by scanning electron microscope (SEM) which not only have been affected by intensity and type of alcoholic solvent but also sonication time and ultrasound power have significant role as well. Formation of the YBCO superconducting phase was examined by using Rietveld refinement of X-ray diffraction (XRD) which indicates the crystalline preferred growth in c-axis orientation in crystal. Magnetic susceptibility measurements showed the ultrasound waves had no important effect on the onset critical temperature of the prepared nanorods (about 91.64 K) which is compared with the bulk samples (Tc ˜ 92K).
A new approach to the current distribution in field cooled superconductors disks
NASA Astrophysics Data System (ADS)
Bernstein, P.; Colson, L.; Dupont, L.; Noudem, J.
2018-01-01
The Bean model considers that in field cooled superconducting cylinders with diameter R, the currents flow over all the thickness of the superconductor along circular paths, the minimum radius of which depends on the magnetizing field and the critical current density. A combination of trapped field and levitation force measurements reported recently has shown, however, that in YBCO and MgB2 disks the current flows in fact in a restricted region with thickness t of the superconductor. In this contribution, from measurements carried out on two YBCO and two MgB2 disks, we report the dependence on temperature of t and J p, the current density in this region, as well as that of the field trapped by the samples. The results confirm that t decreases as the temperature decreases. This behaviour is ascribed to the conservation of the magnetic energy stored in the superconductor, which depends on the magnetizing source and not on the measurement temperature. As a consequence, t behaves as {{J}{{p}}}-2/3, while the field trapped along the axis of the cylinder behaves as {{J}{{p}}}1/3. These claims are substantiated by the experimental results. The possibility that J p is equal to the depairing current is investigated.
NASA Astrophysics Data System (ADS)
Wachs, A. L.; Turchi, P. E. A.; Howell, R. H.; Jean, Y. C.; Fluss, M. J.; West, R. N.; Kaiser, J. H.; Rayner, S.; Hahgighi, H.; Merkle, K. L.
1989-06-01
We discuss our measurements of the 2D-angular correlation of positron annihilation radiation (ACAR) in La(sub 2)CuO(sub 4), YBa(sub 2)Cu(sub 3)O(sub 7) (YBCO), and NiO. The measurements for NiO are the first such 2D-ACAR measurements; the YBCO results are of a higher statistical quality than previously reported in the literature. The data are compared with complementary theoretical calculations and with each other. We discuss the implication of our analysis for ACAR studies of similar and related systems.
High-Tc superconductor coplanar waveguide filter
NASA Technical Reports Server (NTRS)
Chew, Wilbert; Bajuk, Louis J.; Cooley, Thomas W.; Foote, Marc C.; Hunt, Brian D.; Rascoe, Daniel L.; Riley, A. L.
1991-01-01
Coplanar waveguide (CPW) low-pass filters made of YBa2Cu3O(7-delta) (YBCO) on LaAlO3 substrates, with dimensions suited for integrated circuits, were fabricated and packaged. A complete filter gives a true idea of the advantages and difficulties in replacing thin-film metal with a high-temperature superconductor in a practical circuit. Measured insertion losses in liquid nitrogen were superior to the loss of a similar thin-film copper filter throughout the 0- to 9.5-GHz passband. These results demonstrate the performance of fully patterned YBCO in a practical CPW structure after sealing in a hermetic package.
Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures
NASA Astrophysics Data System (ADS)
Ramesh, R.; Chan, W. K.; Wilkens, B.; Gilchrist, H.; Sands, T.; Tarascon, J. M.; Keramidas, V. G.; Fork, D. K.; Lee, J.; Safari, A.
1992-09-01
Fatigue and retention characteristics of ferroelectric lead zirconate titanate thin films grown with Y-Ba-Cu-O(YBCO) thin-film top and bottom electrodes are found to be far superior to those obtained with conventional Pt top electrodes. The heterostructures reported here have been grown in situ by pulsed laser deposition on yttria-stabilized ZrO2 buffer [100] Si and on [001] LaAlO3. Both the a- and c-axis orientations of the YBCO lattice have been used as electrodes. They were prepared using suitable changes in growth conditions.
The effects of space radiation on thin films of YBa2Cu3O(7-x)
NASA Technical Reports Server (NTRS)
Herschitz, R.; Bogorad, A.; Bowman, C.; Seehra, S. S.; Mogro-Campero, A.; Turner, L. G.
1991-01-01
This investigation had two objectives: (1) to determine the effects of space radiation on superconductor parameters that are most important in space applications; and (2) to determine whether this effect can be simulated with Co-60 gamma rays, the standard test method for space materials. Thin films of yttrium barium copper oxide (YBCO) were formed by coevaporation of Y, BaF2, and Cu and post-annealing in wet oxygen at 850 C for 3.5 h. The substrate used was (100) silicon with an evaporated zirconia buffer layer. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were the zero resistance transition temperature T(sub c) and the room temperature resistance. The samples were then exposed to Co-60 gamma-rays in air and in pure nitrogen, and to 780 keV electrons, in air. The parameters were then remeasured. The results are summarized. The results indicate little or no degradation in the parameters measured for samples exposed up to 10 Mrads of gamma-rays in nitrogen. However, complete degradation is preliminarily attributed to the high level of ozone generated in the chamber by the gamma-ray interaction with air. It can be concluded that: (1) the electron component of space radiation does not degrade the critical temperature of the YBCO films described, at least for energies around 800 keV and doses similar to those received by surface materials on spacecraft in typical remote sensing missions; and (2) for qualifying this and other superconducting materials against the space-radiation threat the standard test method used in the aerospace industry, namely, exposure to Co-60 gamma-rays in air, may require some further investigation. As a minimum, the sample must be either in vacuum or in positive nitrogen pressure.
Progress in HTS trapped field magnets: J(sub c), area, and applications
NASA Technical Reports Server (NTRS)
Weinstein, Roy; Ren, Yanru; Liu, Jianxiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan
1995-01-01
Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) is approximately 10,000 A/cm(exp 2) for melt textured grains; J(sub c) is approximately 40,000 A/cm2 for light ion irradiation; and J(sub c) is approximately 85,000 A/cm(exp 2) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, an area of approximately 2 cm(exp 2), carried a transport current of 1000 amps, the limit of the testing equipment available.
Progress in HTS Trapped Field Magnets: J(sub c), Area, and Applications
NASA Technical Reports Server (NTRS)
Weinstein, Roy; Ren, Yanru; Liu, Jian-Xiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan
1995-01-01
Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) - 10,000 A/sq cm for melt textured grains; J(sub c) - 40,000 A/sq cm for light ion irradiation; and J(sub c) - 85,000 A/J(sub c) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment, activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, of area approx. 2 sq cm, carried a transport current of 1000 amps, the limit of the testing equipment available.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
NASA Astrophysics Data System (ADS)
Li, Zhi-Xin; Cao, Jin-Jin; Gou, Xiao-Fan; Wang, Tian-Ge; Xue, Feng
2018-01-01
We report a discovery of the quasi-two-dimensional (quasi-2D) CuO2 plane between the superconductor YBa2Cu3O7 (YBCO) and CeO2 buffer layer (mostly used in the fabrication) of coated conductors through the atomistic computer simulations with the molecular dynamics (MD) and first-principle calculations. For an YBCO coated conductor with multilayer structures, the buffer layers deposited onto a substrate are mainly considered to transfer a strong biaxial texture from the substrate to the YBCO layer. To deeply understand the tuning mechanism of the texture transfer, exploring the complete atomic-level picture of the structure between the YBa2Cu3O7/CeO2 interfaces is firstly required. However, the related observation data have not been available due to some big challenges of experimental techniques. With the MD simulations, having tested the accuracy of the potential functions for the YBa2Cu3O7/CeO2 interface, we constructed a total of 54 possible atom stacking models of the interface and identified its most appropriate and stable structure according to the criterion of the interface adhesion energy and the coherent characterization. To further verify the stability of the identified structure, we performed the first-principle calculations to obtain the adhesion energy and developed the general knowledge of the interface structure. Finally, a coherent interface formed with a new built quasi-2D CuO2 plane that is structurally similar to the CuO2 plane inside bulk YBCO was determined.
BaHfO3 artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films
NASA Astrophysics Data System (ADS)
Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B.
2015-11-01
Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7-x (REBCO; RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, J c, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm-2 with J c values of up to 5.0 MA cm-2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field J c measurements demonstrate high pinning force maxima of around 4 GN m-3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent J c measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.
In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD
NASA Technical Reports Server (NTRS)
Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.
1990-01-01
Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.
In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD
NASA Technical Reports Server (NTRS)
Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.
1991-01-01
Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.
Detection of melting by X-ray imaging at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Weidner, Donald J.
2014-06-15
The occurrence of partial melting at elevated pressure and temperature is documented in real time through measurement of volume strain induced by a fixed temperature change. Here we present the methodology for measuring volume strains to one part in 10{sup −4} for mm{sup 3} sized samples in situ as a function of time during a step in temperature. By calibrating the system for sample thermal expansion at temperatures lower than the solidus, the onset of melting can be detected when the melting volume increase is of comparable size to the thermal expansion induced volume change. We illustrate this technique withmore » a peridotite sample at 1.5 GPa during partial melting. The Re capsule is imaged with a CCD camera at 20 frames/s. Temperature steps of 100 K induce volume strains that triple with melting. The analysis relies on image comparison for strain determination and the thermal inertia of the sample is clearly seen in the time history of the volume strain. Coupled with a thermodynamic model of the melting, we infer that we identify melting with 2 vol.% melting.« less
NASA Technical Reports Server (NTRS)
Reimold, W. U.; Nyquist, L. E.; Bansal, B. M.; Shih, C.-Y.; Weismann, H.; Wooden, J. L.; Mackinnon, I. D. R.
1985-01-01
The North Ray Crater Target Rock Consortium was formed to study a large number of rake samples collected at Apollo 16 stations 11 and 13 with comparative chemical, mineralogical, and chronological techniques in order to provide a larger data base for the discussion of lunar highland evolution in the vicinity of the Apollo 16 landing region. The present investigation is concerned with Rb-Sr and Sm-Nd isotopic analyses of a number of whole-rock samples of feldspathic microporhyritic (FM) impact melt, a sample type especially abundant among the North Ray crater (station 11) sample collection. Aspects of sample mineralogy and analytical procedures are discussed, taking into account FM impact melt rocks 6715 and 63538, intergranular impact melt rock 67775, subophitic impact melt rock 67747, subophitic impact melt rock 67559, and studies based on the utilization of electron microscopy and mass spectroscopy.
Pinning-to-barrier crossover in YBa2Cu3O7-δ single crystals
NASA Astrophysics Data System (ADS)
Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Konczykowski, M.; Holtzberg, F.; Benoit, W.
1996-03-01
The behaviour of magnetic flux in high purity untwinned YBa2Cu3O7-δ (YBCO) single crystals is visualised by means of the magneto-optical technique. It is observed that after zero field-cooling at high temperatures near T c , flux penetrates directly to the sample center over a flux free edge area, in contrast to the usual Bean-like flux penetration from the edges. This fact clearly shows that volume pinning becomes negligible compared with the edge barrier. The role of the recently rediscovered geometrical barrier in the crystal magnetisation is discussed.
Critical current densities in superconducting Y-Ba-Cu-O prepared by chelating method
NASA Astrophysics Data System (ADS)
Fujisawa, Tadashi; Okuyama, Katsuro; Ohshima, Shigetoshi; Takagi, Akira
1990-10-01
The IDA, NTA, HEDTA, EDTA, TTHA, and DTPA chelating agents have been used to prepare the Y-Ba-Cu-O compounds whose critical current is presently investigated. It is noted that the precursor YBCO prepared from large stability-constant metal complexes (HEDTA, EDTA, DTPA, and TTHA) exhibited very fine and homogeneous particles. The critical current density of a 1 x 4 x 15 mm block of YBCO sintered at 880-910 C for 24 h and subsequently annealed at 500 C in an O2 flow was approximately 500 A/sq cm at 77 K, in zero magnetic field.
Dual nature of 3 d electrons in YbT 2 Zn 20 (T = Co; Fe) evidenced by electron spin resonance
Ivanshin, V. A.; Litvinova, T. O.; Gimranova, K.; ...
2015-03-18
The electron spin resonance experiments were carried out in the single crystals YbFe 2Zn 20. The observed spin dynamics is compared with that in YbCo 2Zn 20 and Yb 2Co 12P 7 as well as with the data of inelastic neutron scattering and electronic band structure calculations. Our results provide direct evidence that 3d electrons are itinerant in YbFe 2Zn 20 and localized in YbCo 2Zn 20. Possible connection between spin paramagnetism of dense heavy fermion systems, quantum criticality effects, and ESR spectra is discussed.
Static and dynamic stability of the guidance force in a side-suspended HTS maglev system
NASA Astrophysics Data System (ADS)
Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong
2017-02-01
The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.
Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films
NASA Astrophysics Data System (ADS)
Roma, N.; Morlens, S.; Ricart, S.; Zalamova, K.; Moreto, J. M.; Pomar, A.; Puig, T.; Obradors, X.
2006-06-01
The presence of impurities in the precursor metal carboxylate solutions for the preparation of epitaxial thin films by metal organic decomposition (MOD) is substantially avoided by the use of acid anhydrides. In particular, trifluoroacetic anhydride (TFAA) was used for the synthesis of the starting Y, Ba and Cu trifluoroacetates used in YBa2Cu3O7-x (YBCO) preparation by the MOD process. In this way, highly stable organometallic precursors and a short pyrolysis process could be used leading to YBCO films with high critical currents (Jc >=2-4 MA cm-2 at 77 K). Furthermore, the reproducibility of the results has been ascertained.
Electronic structure in high temperature superconducting oxides
NASA Astrophysics Data System (ADS)
Howell, R. H.; Sterne, P.; Solal, F.; Fluss, M. J.; Tobin, J.; Obrien, J.; Radousky, H. B.; Haghighi, H.; Kaiser, J. H.; Rayner, S. L.
1991-08-01
We have performed measurements on entwined single crystals of YBCO using both photoemission and positron angular correlation of annihilation radiation and on single crystals of LSCO using only angular correlation. Fermi surface features in good agreement with band theory were found and identified in all of the measurements. In photoemission, the Fermi momentum was fixed for several points and the band dispersion below the Fermi energy was mapped. In positron angular correlation measurements, the shape of the Fermi surface was mapped for the CuO chains (YBCO) and the CuO planes (LSCO). Demonstration of the existence of Fermi surfaces in the HTSC materials points a direction for future theoretical considerations.
NASA Astrophysics Data System (ADS)
Zhao, Ruipeng; Liu, Qing; Xia, Yudong; Tang, Hao; Lu, Yuming; Cai, Chuanbing; Tao, Bowan; Li, Yanrong
2018-01-01
A narrow channel reaction chamber is designed in our home-made MOCVD system and applied to deposit GdYBCO films on the template of LaMnO3/epitaxial MgO/IBAD-MgO/solution deposition planarization-Y2O3-buffered Hastelloy tapes. In the reaction chamber, metal organic sources are transferred from the inlet to the outlet along the direction of the tape movement. Thus, compared to the vertical injection way of metal organic sources, the residence time of metal organic sources on the surface of substrates would be extended through adopting the novel reaction chamber. Therefore, the utilization of metal organic sources, which is calculated according to the measured results of experiments, can reach 31%. Additionally, the utilization ratio of metal organic sources based on the novel reaction chamber is basically two times as much as that of the commonly used vertical injection slit shower. What is more, through adjusting the process, the critical current density of 300 nm thick GdYBCO film prepared the reel-to-reel way has reached 3.2 MA cm-2 (77 K, 0 T).
Effect of the Cu/Ba ratio for the YBCO deposition onto IBAD template by the MOCVD method
NASA Astrophysics Data System (ADS)
Choi, J. K.; Kim, H. J.; Jun, B. H.; Kim, C. J.
2005-10-01
YBa2Cu3O7-x (YBCO) thin films were fabricated by the metal organic chemical vapor deposition (MOCVD) using a single liquid source. The copper/barium (Cu/Ba) ratio was varied from 1.26 to 1.38 to optimize the deposition condition. The IBAD template (CeO2/YSZ/stainless steel) was used as a substrate. The growth features of the YBCO films were not significantly influenced by the Cu/Ba ratio, while the superconducting transition temperature (Tc) and critical current (Ic) depended on the Cu/Ba ratio. When Cu/Ba ratio was between 1.26 and 1.29, Tc was as low as 80 K, while as Cu/Ba ratio increased to 1.38, it increased to above 85 K. The highest Tc (89.0 K) and Ic (46.3 A/cm-width) were achieved at the Cu/Ba ratio of 1.38 (Y:Ba:Cu = 1:2.1:2.9). It indicates that the optimum Cu/Ba ratio which differs from stoichiometric balance exists for the formation of the superconducting phase with a high Tc and Ic in MOCVD method.
NASA Astrophysics Data System (ADS)
Tsai, Jack W. H.; Ling, Shiun; Rodriguez, Julio C.; Mustapha, Zarina; Chan, Siu-Wai
2001-04-01
We study the effects of (1) the variation of grain boundary energy with misorientation and (2) the large lattice misfit (>3%) between the films and substrates on grain growth in films by method of Monte Carlo simulations. The results from the grain growth simulation in YBa2Cu3O7-x (YBCO) films was found to concur with previous experimental observation of preferred grain orientations for YBCO films deposited on various substrates such as (001) magnesium oxide (MgO) and (001) yttria stabilized zirconia (YSZ). The simulation has helped us to identify three factors influencing the competition of these [001] tilt boundaries. They are: (1) the relative depths of local minima in the boundary energy vs. misorientation curve, (2) the number of combinations of coincidence epitaxy (CE) orientations contributing to the exact misorientation for each of the high-angle-but-low-energy (HABLE) boundaries, and (3) the number of combinations of CE orientations within the angular ranges bracketing each of the exact HABLE boundaries. Hence, these factors can be applied to clarify the origin of special misorientations observed experimentally.
Growth of biaxially textured template layers using ion beam assisted deposition
NASA Astrophysics Data System (ADS)
Park, Seh-Jin
A two-step IBAD (ion beam assisted deposition) method is investigated, and compared to the conventional IBAD methods. The two step method uses surface energy anisotropy to achieve uniaxial texture and ion beam irradiation for biaxial texture. The biaxial texture was achieved by selective surface etching and enhanced by grain overgrowth. In this method, biaxial texture alignment is performed on a (001) uniaxially textured buffer layer. The material selected for achieving uniaxial texture, YBCO (YBa2Cu3O7-x), has strong surface energy anisotropy. YBCO is chemically susceptible to the reaction with the adjacent layer. Yttria stabilized zirconia (YSZ) was used to prevent the reaction between YBCO and the substrates (polycrystalline Ni alloy [Hastelloy] and amorphous SiNx/Si). A SrTiO3 layer was deposited on the uniaxially textured YBCO layer to retard stoichiometry change with subsequent processing. STO is well lattice matched with YBCO. A top layer of Ni was then deposited. The Ni layer was used for studying the effect of grain overgrowth. The obtained uniaxial Ni films were used for subsequent ion beam processing. Ar ion beam irradiation onto the uniaxially textured Ni film was used to study the effect of selective grain etching in achieving in-plane aligned Ni grains. Additional Ni deposition induces the overgrowth of the in-plane aligned Ni grains and, finally, the overall in-plane alignment. The in-plane alignment is examined with XRD phi scan. The effect of surface polarity of insulating oxide substrates on the epitaxial growth behavior was investigated. The lattice strain energy was the most important factor for determining the orientation of Ni films on a non-polar surface. However, for a polar surface, the surface energy plays an important role in determining the final orientation of the Ni films based on the experimental and theoretical results. Y2O3 growth behavior was also studied. The lattice strain energy is the most important factor for Y2O3 growth on single crystalline substrates. The surface energy anisotropy is the most important factor for the growth on amorphous substrates. The XRD phi scan study shows that Ar ion beam irradiation with favorable angle of incidence enhances the in-plane alignment of Y2O3 films grown on randomly oriented substrates due to the ion channeling.
Preparation, testing and analysis of zinc diffusion samples, NASA Skylab experiment M-558
NASA Technical Reports Server (NTRS)
Braski, D. N.; Kobisk, E. H.; Odonnell, F. R.
1974-01-01
Transport mechanisms of zinc atoms in molten zinc were investigated by radiotracer techniques in unit and in near-zero gravity environments. Each melt in the Skylab flight experiments was maintained in a thermal gradient of 420 C to 790 C. Similar tests were performed in a unit gravity environment for comparison. After melting in the gradient furnace followed by a thermal soak period (the latter was used for flight samples only), the samples were cooled and analyzed for Zn-65 distribution. All samples melted in a unit gravity environment were found to have uniform Zn-65 distribution - no concentration gradient was observed even when the sample was brought rapidly to melting and then quenched. Space-melted samples, however, showed textbook distributions, obviously the result of diffusion. It was evident that convection phenomena were the dominant factors influencing zinc transport in unit gravity experiments, while diffusion was the dominant factor in near-zero gravity experiments.
Imaging of current distributions in superconducting thin film structures
NASA Astrophysics Data System (ADS)
Dönitz, Dietmar
2006-10-01
Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tübingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference devices (SQUIDs) could be developed. It is based on vortex imaging by LTSEM that had been established several years ago. The vortex signals can be used as local detectors for the vortex-free circulating sheet-current distribution J. Compared to previous inversion methods that infer J from the measured magnetic field, this method gives a more direct measurement of the current distribution. The experimental results were in very good agreement with numerical calculations of J. The presented investigations show how versatile and useful Low Temperature Scanning Electron Microscopy can be for studying superconducting thin film structures. Thus one may expect that many more important results can be obtained with this method.
NASA Astrophysics Data System (ADS)
Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian
2018-01-01
As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, P., E-mail: pierre.bernstein@ensicaen.fr; Harnois, C.; Mc Loughlin, C.
The influence of surface defects, in particular of a-axis grains, on the transition to the normal state induced by high current densities in YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films and in a commercial 2G-coated conductor is investigated. For that purpose, the surface of the samples is observed by scanning electron microscopy and isothermal current-voltage curves are measured at different temperatures with pulsed currents up to the quenching value I*. The results show that the ratio of I* to the critical current is large if a-axis grains are not visible at the surface of the YBCO films, while it ismore » much lower if the surface includes a-axis grains as this is the case for the coated conductor. The connection between the transition onset and the vortex dynamics, as well as the role of the a-axis grains in this process are discussed. The relation between the I* values obtained from thermal calculations and those resulting from vortex dynamics considerations is also discussed, as well as the possible consequences suggested by this work for the different applications of the coated conductors.« less
Mercer, Cameron M; Young, Kelsey E; Weirich, John R; Hodges, Kip V; Jolliff, Bradley L; Wartho, Jo-Anne; van Soest, Matthijs C
2015-02-01
Quantitative constraints on the ages of melt-forming impact events on the Moon are based primarily on isotope geochronology of returned samples. However, interpreting the results of such studies can often be difficult because the provenance region of any sample returned from the lunar surface may have experienced multiple impact events over the course of billions of years of bombardment. We illustrate this problem with new laser microprobe (40)Ar/(39)Ar data for two Apollo 17 impact melt breccias. Whereas one sample yields a straightforward result, indicating a single melt-forming event at ca. 3.83 Ga, data from the other sample document multiple impact melt-forming events between ca. 3.81 Ga and at least as young as ca. 3.27 Ga. Notably, published zircon U/Pb data indicate the existence of even older melt products in the same sample. The revelation of multiple impact events through (40)Ar/(39)Ar geochronology is likely not to have been possible using standard incremental heating methods alone, demonstrating the complementarity of the laser microprobe technique. Evidence for 3.83 Ga to 3.81 Ga melt components in these samples reinforces emerging interpretations that Apollo 17 impact breccia samples include a significant component of ejecta from the Imbrium basin impact. Collectively, our results underscore the need to quantitatively resolve the ages of different melt generations from multiple samples to improve our current understanding of the lunar impact record, and to establish the absolute ages of important impact structures encountered during future exploration missions in the inner Solar System.
Cat Mountain: A meteoritic sample of an impact-melted chondritic asteroid
NASA Technical Reports Server (NTRS)
Kring, David A.
1993-01-01
Although impact cratering and collisional disruption are the dominant geologic processes affecting asteroids, samples of impact melt breccias comprise less than 1 percent of ordinary chondritic material and none exist among enstatite and carbonaceous chondrite groups. Because the average collisional velocity among asteroids is sufficiently large to produce impact melts, this paucity of impact-melted material is generally believed to be a sampling bias, making it difficult to determine the evolutionary history of chondritic bodies and how impact processes may have affected the physical properties of asteroids (e.g., their structural integrity and reflectance spectra). To help address these and related issues, the first petrographic description of a new chondritic impact melt breccia sample, tentatively named Cat Mountain, is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, R.; CNR-SPIN, Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II,” I-80125 Napoli; Arzeo, M.
2014-02-17
We present results on ultra low noise YBa{sub 2}Cu{sub 3}O{sub 7–δ} (YBCO) nano Superconducting QUantum Interference Devices (nanoSQUIDs). To realize such devices, we implemented high quality YBCO nanowires, working as weak links between two electrodes. We observe critical current modulation as a function of an externally applied magnetic field in the full temperature range below the transition temperature T{sub C}. The white flux noise below 1μΦ{sub 0}/√(Hz) at T=8 K makes our nanoSQUIDs very attractive for the detection of small spin systems.
NASA Astrophysics Data System (ADS)
Robbes, D.; Langlois, P.; Dolabdjian, C.; Bloyet, D.; Hamet, J. F.; Murray, H.
1993-03-01
Using careful measurements of the I-V curve of a YBCO thin-film microbridge under light irradiation at 780 nm and temperature close to 77 K, it is shown that the critical current versus temperature dependence is a good thermometer for estimating bolometric effects in the film. A novel dynamic voltage bias is introduced which directly gives the device current responsitivity and greatly reduces risks of thermal runaway. Detectivity is very low but it is predicted that a noise equivalent temperature of less than 10 exp -7 K/sq rt Hz would be achievable in a wide temperature range (10-80 K), which is an improvement over thermometry at the resistive transition.
AC application of second generation HTS wire
NASA Astrophysics Data System (ADS)
Thieme, C. L. H.; Gagnon, K.; Voccio, J.; Aized, D.; Claassen, J.
2008-02-01
For the production of Second Generation (2G) YBCO High Temperature Superconductor wire American Superconductor uses a wide-strip MOD-YBCO/RABiTSTM process, a low-cost approach for commercial manufacturing. It can be engineered with a high degree of flexibility to manufacture practical 2G conductors with architectures and properties tailored for specific applications and operating conditions. For ac applications conductor and coil design can be geared towards low hysteretic losses. For applications which experience high frequency ac fields, the stabilizer needs to be adjusted for low eddy current losses. For these applications a stainless-steel laminate is used. An example is a Low Pass Filter Inductor which was developed and built in this work.
NASA Astrophysics Data System (ADS)
Baisnab, Dipak Kumar; Sardar, Manas; Amaladass, E. P.; Vaidhyanathan, L. S.; Baskaran, R.
2018-07-01
Thin film multilayer heterostructure of alternate YBa2Cu3O7-δ (YBCO) and Pr0.5Ca0.5MnO3 (PCMO) with thickness of each layer ∼60 nm has been deposited on (100) oriented SrTiO3 substrate by Pulsed Laser Deposition technique. A half portion of the base YBCO layer was masked in situ using mechanical shadow mask and in the remaining half portion, five alternate layers of PCMO and YBCO thin films were deposited. Magnetoresistance measurements were carried out under externally applied magnetic field and injection current. A noticeable damped oscillation of the superconducting transition temperature (TC) of this multilayer with respect to magnetic field is seen. Curiously, the field at which the first minimum in TC occurs, decreases as an injection current is driven perpendicular/parallel to the multilayers. Both these phenomena indicate that ferromagnetic correlation can be induced in antiferromagnetic PCMO thin films by (1) external magnetic field, or (2) injection current. While (1) is well researched, our study indicates that ferromagnetism can be induced by small amount of current in PCMO thin films. This unusual behavior points towards the strongly correlated nature of electrons in PCMO.
Thickness effect of Gd2Zr2O7 buffer layer on performance of YBa2Cu3O7-δ coated conductors
NASA Astrophysics Data System (ADS)
Qiu, Wenbin; Fan, Feng; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing
2014-12-01
Bilayer buffer architecture of Gd2Zr2O7 (GZO)/Y2O3 was prepared on the biaxially textured tape of Ni-5 at% W (NiW) by reactive sputtering deposition technique. The buffer layer of GZO films were deposited with different thicknesses on Y2O3 seeding layer with a given thickness of 20 nm. According to the results of φ-scan, the in-plane FWHMs of GZO films decreased and then reversed with increasing thickness of GZO, which corresponded with the in-plane FWHMs and superconducting properties of YBa2Cu3O7-δ (YBCO) films. Reflection High-Energy Electron Diffraction (RHEED) was carried out to examine the surface texture of GZO films and the deteriorated surface alignment was found for thicker films. The thickness effect of GZO on performance of YBCO is the coupling result of surface texture and blocking effect caused by thickness. With the balance of these two factors, the YBCO/GZO(120 nm)/Y2O3/NiW architecture exhibit relatively high performance with the transition temperature Tc of 92 K, a transition width ΔTc below 1 K, and a critical current density Jc of 0.65 MA/cm2.
Processing of large grain Y-123 superconductors with pre-defined porous structures
NASA Astrophysics Data System (ADS)
Sudhakar Reddy, E.; Babu, N. Hari; Shi, Y.; Cardwell, D. A.; Schmitz, G. J.
2005-02-01
Porous superconductors have inherent cooling advantages over their bulk counterparts and, as a result, are emerging as an important class of materials for practical applications. Single-domain Y-Ba-Cu-O (YBCO) foams processed with a pre-defined, open porous structure, for example, have significant potential for use as elements in resistive superconducting fault current limiters. In this case, the interconnected porosity is ideal for producing reinforced composites with improved mechanical and heat conducting properties. In this paper we describe a few simple methods for fabricating large grain YBCO superconductors with various predefined porous structures via an infiltration process from tailored, porous Y2BaCuO5 (Y-211) pre-forms manufactured by a variety of techniques, including slurry-coating of standard polyurethane foams to replicate their structure. Foams produced by this method typically have a strut thickness of a few hundred µm and pore sizes ranging from 10 to 100 pores per inch (PPI). Foams with increased strut thickness of up to millimetre dimensions can be produced by embedding organic ball spacers within the Y-211 pre-form followed by a burn-out and sintering process. Single-domain YBCO bulk materials with cellular and pre-defined 3D interconnected porosity may be produced by a similar process using tailored wax structures in Y-211 castings.
NASA Astrophysics Data System (ADS)
Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi
2017-09-01
The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.
Third order intermodulation distortion in HTS Josephson Junction downconverter at 12GHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Katsumi; Hayashi, Kunihiko; Fujimoto, Manabu
1994-12-31
Here the authors first report on the microwave characteristics of the third order intermodulation distortion(IMD3) in High-Tc Superconductor (HTS) Josephson Junction (JJ) Downconverter at 12GHz. They have successfully developed high quality nonlinear YBCO microbridge Josephson junctions for such an active MMIC as a mixer with RF, LO, IF and bias filters, which have been fabricated on (100) MgO substrates with 20mm x 20mm x 0.5mm dimensions. The minimum conversion loss of the JJ mixer is 11 dB at very small local microwave input power LO= {minus}20dBm which is two order less than Schottky diode mixer. Consequently, this small optimum LOmore » power gives the small RF input power at which the output IF power of the YBCO mixer saturates. Two-tone third-order intercept point(IP3) performance is a significantly important figure of merit typically used to define linearity of devices and circuits. The RF input power = {minus}15dBm at the IP3 point is obtained for the YBCO mixer at 15K and LO = 10.935GHz with {minus}22dBm. The have successfully measured the dependence of IMD3 on temperature, bias current and LO power.« less
NASA Technical Reports Server (NTRS)
Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.
1998-01-01
We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.
NASA Astrophysics Data System (ADS)
Liu, Lu; Wang, Jiasu
2014-05-01
A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.
Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Krieger, K.; Sieglin, B.; Balden, M.; Coenen, J. W.; Göths, B.; Laggner, F.; de Marne, P.; Matthews, G. F.; Nille, D.; Rohde, V.; Dejarnac, R.; Faitsch, M.; Giannone, L.; Herrmann, A.; Horacek, J.; Komm, M.; Pitts, R. A.; Ratynskaia, S.; Thoren, E.; Tolias, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team
2017-12-01
Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux.
What can Andreev bound states tell us about superconductors?
Millo, Oded; Koren, Gad
2018-08-06
Zero-energy Andreev bound states, which manifest themselves in the tunnelling spectra as zero-bias conductance peaks (ZBCPs), are abundant at interfaces between superconductors and other materials and on the nodal surface of high-temperature superconductors. In this review, we focus on the information such excitations can provide on the properties of superconductor systems. First, a general introduction to the physics of Andreev bound states in superconductor/normal metal interfaces is given with a particular emphasis on why they appear at zero energy in d -wave superconductors. Then, specific spectroscopic tunnelling studies of thin films, bilayers and junctions are described, focusing on the corresponding ZBCP features. Scanning tunnelling spectroscopy (STS) studies show that the ZBCPs on the c -axis YBa 2 Cu 3 O 7- δ (YBCO) films are correlated with the surface morphology and appear only in proximity to (110) facets. STS on c -axis La 1.88 Sr 0.12 CuO 4 (LSCO) films exhibiting the 1/8 anomaly shows spatially modulated peaks near zero bias associated with the anti-phase ordering of the d -wave order parameter predicted at this doping level. ZBCPs were also found in micrometre-size edge junctions of YBCO/SrRuO 3 /YBCO, where SrRuO 3 is ferromagnetic. Here, the results are consistent with a crossed Andreev reflection effect (CARE) at the narrow domain walls of the SrRuO 3 ZBCPs measured in STS studies of manganite/cuprate bilayers could not be attributed to CARE because the manganite's domain wall is much larger than the coherence length in YBCO, and instead are attributed to proximity-induced triplet-pairing superconductivity with non-conventional symmetry. And finally, ZBCPs found in junctions of non-intentionally doped topological insulator films of Bi 2 Se 3 and the s -wave superconductor NbN are attributed to proximity-induced p x + ip y triplet order parameter in the topological material.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhong, Z.; Ruiz, H. S.; Geng, J.; Coombs, T. A.
2017-02-01
The physical understanding and numerical modelling of superconducting devices which exploit the high performance of second generation high temperature superconducting tapes (2G-HTS), is commonly hindered by the lack of accurate functions which allow the consideration of the in-field dependence of the critical current. This is true regardless of the manufacturer of the superconducting tape. In this paper, we present a general approach for determining a unified function I c(B, θ), ultimately capable of describing the magneto-angular dependence of the in-field critical current of commercial 2G-HTS tapes in the Lorentz configuration. Five widely different superconducting tapes, provided by three different manufacturers, have been tested in a liquid nitrogen bath and external magnetic fields of up to 400 mT. The critical current was recorded at 90 different orientations of the magnetic field ranging from θ = 0°, i.e., with B aligned with the crystallographic ab-planes of the YBCO layer, towards ±90°, i.e., with B perpendicular to the wider surfaces of the 2G-HTS tape. The whole set of experimental data has been analysed using a novel multi-objective model capable of predicting a sole function I c(B, θ). This allows an accurate validation of the experimental data regardless of the fabrication differences and widths of the superconducting tapes. It is shown that, in spite of the wide set of differences between the fabrication and composition of the considered tapes, at liquid nitrogen temperature the magneto-angular dependence of the in-field critical current of YBCO-based 2G-HTS tapes, can be described by a universal function I c(f(B), θ), with a power law field dependence dominated by the Kim’s factor B/B 0, and an angular dependence moderated by the electron mass anisotropy ratio of the YBCO layer.
Experimental transport studies of yttrium barium copper oxide and lambda-DNA
NASA Astrophysics Data System (ADS)
Zhang, Yuexing
This dissertation consists of two parts. In Part I, we focus on the quasi-particle transport properties in the high temperature superconductor YBa2Cu3O7-delta (YBCO), probed by the thermal Hall conductivity (kappa xy). The thermal Hall conductivity selectively reflects the transport behaviors of the charge carriers. By measuring kappaxy in the normal state YBCO, we established a new method to determine the Wiedemann-Franz (WF) ratio in cuprates. We determined the Hall-channel WF ratio kappa xy/sigmaxyT in Cu and YBCO. In the latter, we uncovered a T-linear dependence and suppression of the Hallchannel WF ratio. The suppression of the Hall-channel WF ratio in systems with predominant electron-electron scattering will be discussed. Thermal transport behaviors of the quasi-particles in the mixed state were studied by measuring kappaxx and kappa xy in a high-purity YBCO crystal. From the field-dependence of the thermal conductivity kappaxx, we separated the quasi particle contribution (kappae) from the phonon background. In the Hall channel, we observed that the (weak-field) kappa xy increased 103-fold between T c (90 K) and 30 K, implying a 100-fold enhancement of the quasi-particle lifetime. We found that kappaxy exhibited a specific scaling behavior below ˜30 K. The implication of the scaling behavior will be discussed. In Part II, we describe an experiment on determining the electrical conductivity of the bacteriophage lambda-DNA, an issue currently under intense debate. We covalently bonded the DNA to Au electrodes by incorporating thiol modified dTTP into the 'sticky' ends of the lambda-DNA. Two-probe measurements on such molecules provided a lower bound for the resistivity rho > 10 6 mum at bias potentials up to 20 V, in conflict with recent claims of moderate to high conductivity. We stress the importance of eliminating salt residues in these measurements.
2D Models for the evolving distribution of impact melt at the lunar near-surface
NASA Astrophysics Data System (ADS)
Liu, T.; Michael, G. G.; Oberst, J.
2017-09-01
This study aims to investigate the cumulative effect of the impact gardening process. The lateral distribution of the melt with diverse ages is traced in this model. Using the observed distribution of melt age in lunar samples and meteorites, the possible scenarios of the lunar impact history can be discriminated. The record is also helpful for the future lunar sampling, guiding the choice of site to obtain samples from different impact basins, and to understand the mixture of melt ages observed at any one site.
NASA Technical Reports Server (NTRS)
Kring, David A.; Zurcher, Lukas; Horz, Freidrich; Mertzmann, Stanley A.
2004-01-01
Impact melts within complex impact craters are generally homogeneous, unless they differentiated, contain immiscible melt components, or were hydrothermally altered while cooling. The details of these processes, however, and their chemical consequences, are poorly understood. The best opportunity to unravel them may lie with the Chicxulub impact structure, because it is the world s most pristine (albeit buried) large impact crater. The Chicxulub Scientific Drilling Project recovered approx. 100 meters of impactites in a continuous core from the Yaxcopoil-1 (YAX-1) borehole. This dramatically increased the amount of melt available for analyses, which was previously limited to two small samples N17 and N19) recovered from the Yucatan-6 (Y-6) borehole and one sample (N10) recovered from the Chicxulub-1 (C-1) borehole. In this study, we describe the chemical compositions of six melt samples over an approx. 40 m section of the core and compare them to previous melt samples from the Y-6 and C-1 boreholes.
Refining lunar impact chronology through high spatial resolution 40Ar/39Ar dating of impact melts
Mercer, Cameron M.; Young, Kelsey E.; Weirich, John R.; Hodges, Kip V.; Jolliff, Bradley L.; Wartho, Jo-Anne; van Soest, Matthijs C.
2015-01-01
Quantitative constraints on the ages of melt-forming impact events on the Moon are based primarily on isotope geochronology of returned samples. However, interpreting the results of such studies can often be difficult because the provenance region of any sample returned from the lunar surface may have experienced multiple impact events over the course of billions of years of bombardment. We illustrate this problem with new laser microprobe 40Ar/39Ar data for two Apollo 17 impact melt breccias. Whereas one sample yields a straightforward result, indicating a single melt-forming event at ca. 3.83 Ga, data from the other sample document multiple impact melt–forming events between ca. 3.81 Ga and at least as young as ca. 3.27 Ga. Notably, published zircon U/Pb data indicate the existence of even older melt products in the same sample. The revelation of multiple impact events through 40Ar/39Ar geochronology is likely not to have been possible using standard incremental heating methods alone, demonstrating the complementarity of the laser microprobe technique. Evidence for 3.83 Ga to 3.81 Ga melt components in these samples reinforces emerging interpretations that Apollo 17 impact breccia samples include a significant component of ejecta from the Imbrium basin impact. Collectively, our results underscore the need to quantitatively resolve the ages of different melt generations from multiple samples to improve our current understanding of the lunar impact record, and to establish the absolute ages of important impact structures encountered during future exploration missions in the inner Solar System. PMID:26601128
NASA Technical Reports Server (NTRS)
Caton, R.; Selim, R.; Buoncristiani, A. M.
1992-01-01
The electronic link connecting cryogenically cooled radiation detectors to data acquisition and signal processing electronics at higher temperatures contributes significantly to the total heat load on spacecraft cooling systems that use combined mechanical and cryogenic liquid cooling. Using high transition temperature superconductors for this link has been proposed to increase the lifetime of space missions. Herein, several YBCO (YBa2Cu3O7) superconductor-substrate combinations were examined and total heat loads were compared to manganin wire technology in current use. Using numerical solutions to the heat-flow equations, it is shown that replacing manganin technology with YBCO thick film technology can extend a 7-year mission by up to 1 year.
NASA Astrophysics Data System (ADS)
Endo, Tamio; Horie, Munehiro; Hirate, Naoki; Itoh, Katsutoshi; Yamada, Satoshi; Tada, Masaki; Itoh, Ken-ichi; Sugiyama, Morihiro; Sano, Shinji; Watabe, Kinji
1998-07-01
Thin films of a-oriented YBa2Cu3Ox (YBCO), Ca-doped c-oriented Bi2(Sr,Ca)2CuOx and nondoped c-oriented Bi2Sr2CuOx (Bi2201) were prepared at low temperatures by ion beam sputtering with supply of oxygen molecules or plasma. The plasma enhances crystal growth of the a-YBCO and Ca-doped Bi2201 phases. This can be interpreted in terms of their higher surface energies. The growth and quality of nondoped Bi2201 are improved with the supply of oxygen molecules. This particular result could be interpreted by the collision process between the oxygen molecules and the sputtered particles.
Flux cutting in high- T c superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasko-Vlasov, V.; Koshelev, A.; Glatz, A.
We performed magneto-optical study of flux distributions in a YBCO crystal under various applied crossed- field orientations to elucidate the complex nature of magnetic flux cutting in superconductors. Our study reveals unusual vortex patterns induced by the interplay between flux-cutting and vortex pinning. We observe strong flux penetration anisotropy of the normal flux B⊥ in the presence of an in-plane field H|| and associate the modified flux dynamics with staircase structure of tilted vortices in YBCO and the flux-cutting process. We demonstrate that flux-cutting can effectively delay vortex entry in the direction transverse to H||. Finally, we elucidate details ofmore » the vortex-cutting and reconnection process using time-dependent Ginzburg-Landau simulations.« less
NASA Astrophysics Data System (ADS)
Sieger, M.; Hänisch, J.; Iida, K.; Gaitzsch, U.; Rodig, C.; Schultz, L.; Holzapfel, B.; Hühne, R.
2014-05-01
YBa2Cu3O7-δ (YBCO) films with a thickness of up to 3 μm containing nano-sized BaHfO3 (BHO) have been grown on Y2O3/Y-stabilized ZrO2/CeO2 buffered Ni-9at% W tapes by pulsed laser deposition (PLD). Structural characterization by means of X-ray diffraction confirmed that the YBCO layer grew epitaxial. A superconducting transition temperature Tc of about 89 K with a transition width of 1 K was determined, decreasing with increasing BHO content. Critical current density in self-field and at 0.3 T increased with increasing dopant level.
NASA Astrophysics Data System (ADS)
Zhu, W.; Gaetani, G. A.; Fusseis, F.
2009-12-01
Quantitative knowledge of the distribution of small amounts of silicate melt in peridotite and of its influence on permeability are critical to our understanding of melt migration and segregation processes in the upper mantle. Estimates for the permeability of partially molten rock require 3D melt distribution at the grain-scale. Existing studies of melt distribution, carried out on 2D slices through experimental charges, have produced divergent models for melt distribution at small melt fractions. While some studies conclude that small amounts of melt are distributed primarily along triple junctions [e.g., Wark et al., 2003], others predict an important role for melt distribution along grain boundaries at low melt fractions [e.g., Faul 1997]. Using X-ray synchrotron microtomography, we have obtained the first high quality non-destructive imaging of 3D melt distribution in olivine-basalt aggregates. Textually equilibrated partially molten samples consisting of magnesian olivine plus 2, 5, 10, or 20% primitive basalt were synthesized at 1.5 GPa and 1350°C in experiments lasting 264-336 hours. Microtomographic images of melt distribution were obtained on cylindrical cores, 1 mm in diameter, at a spatial resolution of 1 micron. Textual information such as melt channel size, dihedral angle and channel connectivity was then quantified using AVIZO and MATLAB. Our results indicate that as melt fraction decreases, melt becomes increasingly distributed along 3 grain junctions, in agreement with theoretical predictions. We do not find significant amounts of melt along grain boundaries at low melt fractions. We found that the true dihedral angle ranges from 50 to 70°, in agreements with results using 2D microcopy. Comparison between the samples provides a quantitative characterization of how melt fraction affects melt distribution including connectivity. The geometrical data have been incorporated into our network model to obtain macroscale transport properties for partially molten dunite. Results from this tomographic study thus provide constraints on rates of melt migration and melt extraction within the partially molten regions beneath ocean ridges. Fig 1. Melt channels in an olivine-basalt sample with 10 vol% melt.
Pristine Igneous Rocks and the Early Differentiation of Planetary Materials
NASA Technical Reports Server (NTRS)
Warren, Paul H.
1998-01-01
Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an extraodinarily large glass spherule, nearly if not entirely free of meteoritic contamination, and provides insight into the diversity of mare basalts in the Hadley-Apennine region. Apollo 14 sample 14434 is in many respects a new rock type, intermediate between nonmare gabbronorites and mare basalts. We helped to both plan and implement a consortium to study the Yamato-793605 SNC/martian meteorite.
A Re-Os Study of Depleted Trench Peridotites from Northern Mariana
NASA Astrophysics Data System (ADS)
Ghosh, T.; Snow, J. E.; Heri, A. R.; Brandon, A. D.; Ishizuka, O.
2017-12-01
Trench peridotites provide information about the influence of subduction initiation on the extent of mantle wedge melting. They preserve melting records throughout subduction history, and as a result, likely experience multiple melt extraction events leading to successive depletion of melt/fluid mobile major and trace elements. To track melting histories of trench peridotites, Re-Os and PGEs can be used as reliable tracers to constrain early melt extraction or re-fertilization events. The Izu-Bonin-Mariana arc, being the largest intra-oceanic subduction system, provides an excellent area to study the formation of supra-subduction zone mantle and crust. Residual peridotite (harzburgite and dunite) samples were collected by dredging from the landward slope of the northern Mariana Trench. The samples are serpentinized to various extents (typical of abyssal peridotites), leaving behind relict grains of spinel, enstatite and olivine embedded within a serpentine matrix along with occasional interstitial diopside. Major element analyses of primary minerals reveal a wide range of variations in Cr# of spinels from 0.31-0.85 indicating 16-20% of melt fraction with dunites apparently experiencing the highest amount of partial melting. For Re-Os and PGE geochemistry, samples with high amounts of spinel (>4 vol %) and variable Cr# were chosen. Initial results show that bulk rock 187Os/188Os ratios range from 0.1113 to 0.1272. All of the samples are sub-chondritic, but in some cases, they are more radiogenic than average abyssal peridotites. Os abundances vary from 1-9 ppb. Sub-chondritic values can be attributed to the samples having evolved from a Re-depleted mantle source indicating a previous melt-extraction event. The cpx-harzburgites, having lower Cr# ( 0.4) are more radiogenic than ultra depleted dunites (Cr# 0.8), which might indicate preferential removal of Os during an apparent higher degree of partial melting experienced by dunites. The higher 187Os/188Os ratios of cpx-harzburgites possibly imply a late stage melt-rock interaction event, which had refertilized the depleted samples in radiogenic Os. Since there are only trace amounts of sediments in the accretionary prism of N. Mariana, Os ratios of these trench peridotites are not influenced by Os from sediments.
Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts
NASA Astrophysics Data System (ADS)
Gao, Jianrong; Kao, Andrew; Bojarevics, Valdis; Pericleous, Koulis; Galenko, Peter K.; Alexandrov, Dmitri V.
2017-08-01
Melt flow is often quoted as the reason for a discrepancy between experiment and theory on dendritic growth kinetics at low undercoolings. But this flow effect is not justified for glass-fluxed melts where the flow field is weaker. In the present work, we modeled the thermal history, flow pattern and dendritic structure of a glass-fluxed nickel sample by magnetohydrodynamics calculations. First, the temperature distribution and flow structure in the molten and undercooled melt were simulated by reproducing the observed thermal history of the sample prior to solidification. Then the dendritic structure and surface temperature of the recalescing sample were simulated. These simulations revealed a large thermal gradient crossing the sample, which led to an underestimation of the real undercooling for dendritic growth in the bulk volume of the sample. By accounting for this underestimation, we recalculated the dendritic tip velocities in the glass-fluxed nickel melt using a theory of three-dimensional dendritic growth with convection and concluded an improved agreement between experiment and theory.
Melting of superheated molecular crystals
NASA Astrophysics Data System (ADS)
Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad
2017-07-01
Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.
Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell
NASA Astrophysics Data System (ADS)
Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.
2017-04-01
The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.
NASA Astrophysics Data System (ADS)
Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.
2010-12-01
Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density profiles to guide the melting process. The combination of these data allow us to analyze melt head performance, minimize outer-to-inner fraction contamination and avoid melt head flooding. The WAIS Melt Monitor system allows the collection of real-time, sub-annual microparticle and electrical conductivity data while producing and storing enough sample for traditional Coulter-Counter particle measurements as well long term acid leaching of bioactive metals (e.g., Fe, Co, Cd, Cu, Zn) prior to chemical analysis.
NASA Technical Reports Server (NTRS)
Li, C. H.; Busch, G.; Creter, C.
1976-01-01
The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.
Incipient Melt Formation and Devitrification at the Wanapitei Impact Structure, Ontario, Canada
NASA Technical Reports Server (NTRS)
Dressler, B. O.; Schuraytz, B. C.; Crabtree, D.
1997-01-01
The Wanapitei impact structure is approximately 8 km in diameter and lies within Wanapitei Lake, approximately 34 km northeast of the city of Sudbury. Rocks related to the 37 Ma impact event are found only in Pleistocene glacial deposits south of the lake. Most of the target rocks are metasedimentary rocks of the Proterozoic Huronian Supergroup. An almost completely vitrified, inclusion-bearing sample investigated here represents either an impact melt or a strongly shock metamorphosed, pebbly wacke. In the second, preferred interpretation, a number of partially melted and devitrified clasts are enclosed in an equally highly shock metamorphosed arkosic wacke matrix (i.e., the sample is a shocked pebbly wacke), which records the onset of shock melting. This interpretation is based on the glass composition, mineral relicts in the glass, relict rock textures, and the similar degree of shock metamorphism and incipient melting of all sample components. Boulder matrix and clasts are largely vitrified and preserve various degrees of fluidization, vesiculation, and devitrification. Peak shock pressure of approximately 50-60 GPa and stress experienced by the sample were somewhat below those required for complete melting and development of a homogeneous melt. The rapid cooling and devitrification history of the analyzed sample is comparable to that reported recently from glasses in the suevite of the Ries impact structure in Germany and may indicate that the analyzed sample experienced an annealing temperature after deposition of somewhere between 650 C and 800 C.
NASA Astrophysics Data System (ADS)
Kowalski, Julia; Francke, Gero; Feldmann, Marco; Espe, Clemens; Heinen, Dirk; Digel, Ilya; Clemens, Joachim; Schüller, Kai; Mikucki, Jill; Tulaczyk, Slawek M.; Pettit, Erin; Berry Lyons, W.; Dachwald, Bernd
2017-04-01
There is significant interest in sampling subglacial environments for geochemical and microbiological studies, yet those environments are typically difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. With the "IceMole", a minimally invasive, maneuverable subsurface ice probe, we have developed a clean glacial exploration technology for in-situ analysis and sampling of glacial ice and sub- and englacial materials. Its design is based on combining melting and mechanical stabilization, using an ice screw at the tip of the melting head to maintain firm contact between the melting head and the ice. The IceMole can change its melting direction by differential heating of the melting head and optional side wall heaters. Downward, horizontal and upward melting, as well as curve driving and penetration of particulate-ladden layers has already been demonstrated in several field tests. This maneuverability of the IceMole also necessitates a sophisticated on-board navigation system, capable of autonomous operations. Therefore, between 2012 and 2014, a more advanced probe was developed as part of the "Enceladus Explorer" (EnEx) project. The EnEx-IceMole offers systems for accurate positioning, based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection, which is all integrated through a high-level sensor fusion algorithm. In December 2014, the EnEx-IceMole was used for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, where an englacial brine sample was successfully obtained after about 17 meters of oblique melting. Particular attention was paid to clean protocols for sampling for geochemical and microbiological analysis. In this contribution, we will describe the general technological approach of the IceMole and report on the results of its deployment at Blood Falls. In contrast to conventional melting-probe applications, which can only melt vertically, the IceMole realized an oblique melting path to penetrate the englacial conduit. Experimental and numerical results on melting at oblique angles are rare. Besides reporting on the IceMole technology and the field deployment itself, we will compare and discuss the observed melting behavior with re-analysis results in the context of a recently developed numerical model. Finally, we will present our first steps in utilizing the model to infer on the ambient cryo-environment.
Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team
2018-02-01
Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98-9 1496-9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78-84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60-74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.
NASA Technical Reports Server (NTRS)
Dalrymple, G. Brent; Ryder, Graham
1996-01-01
We have obtained high-resolution (21-63 steps) Ar-40/Ar-39 age spectra using a continuous laser system on 19 submilligram samples of melt rocks and clasts from Apollo 17 samples collected from the pre-Imbrian highlands in the easternmost part of the Serenitatis basin. The samples include poikilitic melt rocks inferred to have been formed in the Serenitatis basin-forming impact, aphanitic melt rock whose compositions vary and whose provenance is uncertain, and granulite, gabbro, and melt clasts. Three of the poikilitic melts have similar age spectrum plateau ages (72395,96, 3893 +/- 16 Ma (2sigma); 72535,7, 3887 +/- 16 Ma; 76315,150, 3900 +/- 16 Ma) with a weighted mean age of 3893 +/- 9 Ma, which we interpret as the best age for the Serenitatis basin- forming impact. Published Ar-40/Ar-39 age spectrum ages of Apollo 17 poikilitic melts are consistent with our new age but are much less precise. Two poikilitic melts did not give plateaus and the maxima in their age spectra indicate ages of greater than or equal to 3869 Ma (72558,7) and greater than or equal to 3743 Ma (77135,178). Plateau ages of two poikilitic melts and two gabbro clasts from 73155 range from 3854 +/- 16 Ma to 3937 +/- 16 Ma and have probably been affected by the ubiquitous (older?) clasts and by post- formation heating (impact) events. Plateau ages from two of the aphanitic melt 'blobs' and two granulites in sample 72255 fall in the narrow range of 3850 q 16 Ma to 3869 q 16 Ma with a weighted mean of 3862 +/- 8 Ma. Two of the aphanitic melt blobs from 72255 have ages of 3883 +/- 16 Ma and greater than or equal to 3894 Ma, whereas a poikilitic melt clast (of different composition from the 'Serenitatis' melts) has an age of 3835 +/- 16 Ma, which is the upper limit for the accretion of 72255. These data suggest that either the aphanitic melts vary in age, as is also suggested by their varying chemical compositions, or they formed in the 72255 accretionary event about 3.84-3.85 Ga and older relict material is responsible for the dispersion of ages. In any case the aphanitic melts do not appear to be Serenitatis products. Our age for the Serenitatis impact shows, on the basis of the isotopic age evidence alone, that Serenitatis is greater than 20-25 Ma and probably greatr than 55-60 Ma older than Imbrium (less than or equal to 3870 Ma and probably less than or equal to 3836 Ma (Dalrymple and Ryder, 19931). Noritic granulite sample 78527 has a plateau age of 4146 +/- 17 Ma, representing a minimum age for cooling of this sample in the early lunar crust. So far there is no convincing evidence in the lunar melt rock record for basin-forming impacts significantly older than 3.9 Ga.
NASA Technical Reports Server (NTRS)
Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.
1996-01-01
Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.
NASA Astrophysics Data System (ADS)
Palau, A.; Vallès, F.; Rouco, V.; Coll, M.; Li, Z.; Pop, C.; Mundet, B.; Gàzquez, J.; Guzman, R.; Gutierrez, J.; Obradors, X.; Puig, T.
2018-07-01
In-field angular pinning performances at different temperatures have been analysed on chemical solution deposited (CSD) YBa2Cu3O7-x (YBCO) pristine films and nanocomposites. We show that with this analysis we are able to quantify the vortex pinning strength and energies, associated with different kinds of natural and artificial pinning defects, acting as efficient pinning centres at different regions of the H-T phase diagram. A good quantification of the variety of pinning defects active at different temperatures and magnetic fields provides a unique tool to design the best vortex pinning landscape under different operating conditions. We have found that by artificially introducing a unique defect in the YBCO matrix, the stacking faults, we are able to modify three different contributions to vortex pinning (isotropic-strong, anisotropic-strong, and isotropic-weak). The isotropic-strong contribution, widely studied in CSD YBCO nanocomposites, is associated with nanostrained regions induced at the partial dislocations surrounding the stacking faults. Moreover, the stacking fault itself acts as a planar defect which provides a very effective anisotropic-strong pinning at H//ab. Finally, the large presence of Cu-O cluster vacancies found in the stacking faults have been revealed as a source of isotropic-weak pinning sites, very active at low temperatures and high fields.
Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable
NASA Astrophysics Data System (ADS)
Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John
2014-01-01
The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.
NASA Technical Reports Server (NTRS)
Noever, David; Li, Ning; Robertson, Tony; Koczor, Ron; Brantley, Whitt
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair electron density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (about 10-6 g/cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with the percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10(exp 4) was reported above a stationary (non-rotating) superconductor. In the present experiments reported using a sensitive gravimeter (resolution <10(exp -9) unit gravity or variation of 10(exp -6) cm/sq s in accelerations), bulk YBCO superconductors were stably levitated in a DC magnetic field (0.6 Tesla) subject to lateral AC fields (60 Gauss at 60 Hz) and rotation. With magnetic shielding, thermal control and buoyancy compensation, changes in acceleration were measured to be less than 2 parts in 10(exp 8) of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between high-Tc superconductors and gravity. Latest test results will be reported, along with status for future improvements and prospects.
NASA Astrophysics Data System (ADS)
Terasaki, H.; Urakawa, S.; Uesugi, K.; Nakatsuka, A.; Funakoshi, K.; Ohtani, E.
2011-12-01
Interconnectivity of Fe-alloy melt in crystalline silicates is important property for the core formation mechanism in planetary interior. In previous studies, the interconnectivity of Fe-alloy melt has been studied based on textural observation of recovered samples from high pressure and temperature. However, there is no observation under high pressure and temperature. We have developed 80-ton uni-axial press for X-ray computed micro-tomography (X-CT) and performed X-CT measurement under high pressure (Urakawa et al. 2010). Here we report X-CT measurement of Fe-Ni-S melt in crystalline olivine and interconnectivity of the melt up to 3.5 GPa and 1273 K. X-CT measurements were carried out at BL20B2 beamline, SPring-8 synchrotron facility. The sample was powder mixture of Fe-Ni-S and olivine, which was enclosed in graphite capsule. Heating was performed using a cylindrical graphite furnace. Pressure was generated using opposed toroidal-shape WC anvil. The uni-axial press was set on the rotational stage and X-ray radiography image of the sample was collected using CCD camera from 0°to 180°with 0.3° step. 3-D image of the sample was obtained by reconstructing the 2-D radiography image. The 3-D CT image shows that the size of the Fe-Ni-S melt increased significantly compared to that before melting below 2.5 GPa, suggesting that the melt was interconnected in olivine crystals. On the other hand, 3-D texture of the sample at 3.5 GPa did not show difference from that before melting. Therefore, the boundary of inter-connection of Fe-Ni-S melt is likely to locate between 2.5 and 3.5 GPa. This result is important application for the core formation mechanism especially in small bodies, such as differentiated asteroids.
Improved mechanical properties of thermoelectric (Bi 0.2Sb 0.8) 2Te 3 by nanostructuring
Lavrentev, M. G.; Osvenskii, V. B.; Parkhomenko, Yu. N.; ...
2016-06-01
Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.
Improved mechanical properties of thermoelectric (Bi 0.2Sb 0.8) 2Te 3 by nanostructuring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrentev, M. G.; Osvenskii, V. B.; Parkhomenko, Yu. N.
Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.
Melting dynamics of ice in the mesoscopic regime
Citroni, Margherita; Fanetti, Samuele; Falsini, Naomi; Foggi, Paolo; Bini, Roberto
2017-01-01
How does a crystal melt? How long does it take for melt nuclei to grow? The melting mechanisms have been addressed by several theoretical and experimental works, covering a subnanosecond time window with sample sizes of tens of nanometers and thus suitable to determine the onset of the process but unable to unveil the following dynamics. On the other hand, macroscopic observations of phase transitions, with millisecond or longer time resolution, account for processes occurring at surfaces and time limited by thermal contact with the environment. Here, we fill the gap between these two extremes, investigating the melting of ice in the entire mesoscopic regime. A bulk ice Ih or ice VI sample is homogeneously heated by a picosecond infrared pulse, which delivers all of the energy necessary for complete melting. The evolution of melt/ice interfaces thereafter is monitored by Mie scattering with nanosecond resolution, for all of the time needed for the sample to reequilibrate. The growth of the liquid domains, over distances of micrometers, takes hundreds of nanoseconds, a time orders of magnitude larger than expected from simple H-bond dynamics. PMID:28536197
Oxygen desorption from YBa2Cu3O(7-x) and Bi2CaSr2Cu2O(8 + delta) superconductors
NASA Technical Reports Server (NTRS)
Mesarwi, A.; Levenson, L. L.; Ignatiev, A.
1991-01-01
Oxygen desorption experiments from YBa2Cu3O(7-x) (YBCO) and Bi2CaSr2Cu2O(8 + delta) (BSCCO) superconductors were carried out using a quadrupole mass spectrometer for monitoring the desorbing species and X-ray photoemission spectroscopy for surface characterization. Molecular oxygen was found to desorb from both superconductors following photoirradiation with ultraviolet/optical radiation and subsequent heating at over 150 C. Both YBCO and BSCCO were found to have similar oxygen desorption rates and similar activation energies. The desorption data as well as the X-ray photoemission data indicate that the oxygen desorption is not intrinsic to the superconductors but rather due to molecular oxygen entrapped in the material.
Prospects for Dating the South Pole-Aitken Basin through Impact-Melt Rock Samples
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Coker, R. F.; Petro, N. E.
2016-01-01
Much of the present debate about the ages of the nearside basins arises because of the difficulty in understanding the relationship of recovered samples to their parent basin. The Apollo breccias are from basin ejecta formations, which are ballistically-emplaced distal deposits that have mixed provenances. The Nectaris, Imbrium, and Serenitatis basins all have mare-basalt fill obscuring their original melt sheets, so geochemical ties are indirect. Though the geological processes acting to vertically and laterally mix materials into regolith are the same as at the Apollo sites, the SPA interior is a fundamentally different geologic setting than the Apollo sites. The South Pole-Aitken basin was likely filled by a large impact melt sheet, possibly differentiated into cumulate horizons. It is on this distinctive melt sheet that the regolith has formed, somewhat diluting but not erasing the prominent geochemical signature seen from orbital assets. By analogy to the Apollo 16 site, a zeroth-order expectation is that bulk samples taken from regolith within SPA will contain abundant samples gardened from the SPA melt sheet. However, questions persist as to whether the SPA melt sheet has been so extensively contaminated with foreign ejecta that a simple robotic scoop sample of such regolith would be unlikely to yield the age of the basin.
NASA Astrophysics Data System (ADS)
Peate, D. W.; Ukstins Peate, I.; Rowe, M. C.; Thompson, J. M.; Kerr, A. C.
2010-12-01
Whole rock data on the Mull Plateau Group lavas (Scotland) show that the most primitive lavas (MgO >8 wt%) are the most crustally contaminated. One model is that hot, high-MgO magmas flow turbulently during ascent allowing more assimilation to occur than in the laminar flow regime expected for cooler, more viscous, lower-MgO magmas. We present data on rehomogenized olivine-hosted melt inclusions from four representative high-MgO flows to investigate the nature of the assimilation process in more detail. One complication on Mull is the potential effect of pervasive hydrothermal metamorphism on whole rock compositions. Melt inclusions are more protected against alteration effects within their host olivine crystal, and potentially allow more robust estimates of magmatic liquid compositions. Low sulphur contents were used to screen for degassed / breached inclusions, and the compositions of unbreached inclusions were corrected for post-entrapment crystallisation and Fe-loss. The four whole rock samples show a limited variation in Na2O (2.4-2.8 wt%) and K2O (0.23-0.29 wt%) despite a wide range in immobile element contents (e.g. Zr 62-126 ppm, Nb 2.4-4.6 ppm). In contrast, the melt inclusions show a far greater variability in Na2O (1.8-4.0 wt%) and K2O (0.02-0.35 wt%) and coherent positive correlations between K and Na. Melt inclusions from different samples show systematic correlations between alkalis (K+Na) and incompatible element ratios such as Zr/Y and La/Sm, indicating that the melt inclusions are recording magmatic values for fluid mobile elements such as K and Na. For the two most incompatible element enriched samples, the whole rock analysis is similar to the melt inclusions except for lower Na and higher Ba that are related to alteration. Therefore, any crustal assimilation in these magmas must have take place prior to the growth of the olivines in the samples. For the two more depleted samples, the melt inclusions have less contaminated compositions than the whole rocks, and also show broad trends of increasing K/Ti (extent of assimilation) with decreasing Fo% of the host olivine (extent of differentiation). For these samples, significant crustal assimilation must have taken place both during and after growth of the olivines in the samples. Melt inclusions from individual samples show limited variability in Zr/Y compared with K/Ti, indicating that aggregation of melts from different parts of the melting column must have occurred at deeper levels prior to growth of the olivines in the samples. Reconnaissance H2O and CO2 analyses by SIMS allow estimates to be made of minimum inclusion entrapment depths of at least 3 to 7 km. Although it is apparent that whole rock compositional variations still capture the broad details of crustal assimilation and melting histories for Mull lavas despite the variable effects of hydrothermal alteration, we demonstrate that melt inclusion data can more clearly resolve details of these magmatic processes.
Trace Elements in Basalts From the Siqueiros Fracture Zone: Implications for Melt Migration Models
NASA Astrophysics Data System (ADS)
Pickle, R. C.; Forsyth, D. W.; Saal, A. E.; Nagle, A. N.; Perfit, M. R.
2008-12-01
Incompatible trace element (ITE) ratios in MORB from a variety of locations may provide insights into the melt migration process by constraining aggregated melt compositions predicted by mantle melting and flow models. By using actual plate geometries to create a 3-D thermodynamic mantle model, melt volumes and compositions at all depths and locations may be calculated and binned into cubes using the pHMELTS algorithm [Asimow et al., 2004]. These melts can be traced from each cube to the surface assuming several migration models, including a simplified pressure gradient model and one in which melt is guided upwards by a low permeability compacted layer. The ITE ratios of all melts arriving at the surface are summed, averaged, and compared to those of the actual sample compositions from the various MOR locales. The Siqueiros fracture zone at 8° 20' N on the East Pacific Rise (EPR) comprises 4 intra-transform spreading centers (ITSCs) across 140 km of offset between two longer spreading ridges, and is an excellent study region for several reasons. First, an abundance of MORB data is readily available, and the samples retrieved from ITSCs are unlikely to be aggregated in a long-lived magma chamber or affected by along-axis transport, so they represent melts extracted locally from the mantle. Additionally, samples at Siqueiros span a compositional range from depleted to normal MORB within the fracture zone yet have similar isotopic compositions to samples collected from the 9-10° EPR. This minimizes the effect of assuming a uniform source composition in our melting model despite a heterogeneous mantle, allowing us to consistently compare the actual lava composition with that predicted by our model. Finally, it has been demonstrated with preliminary migration models that incipient melts generated directly below an ITSC may not necessarily erupt at that ITSC but migrate laterally towards a nearby ridge due to enhanced pressure gradients. The close proximity of the ITSCs at Siqueiros to the large ridges bounding the fracture zone provide a good opportunity to model this phenomenon and may help explain the variable ITE ratios found between samples collected within the transform and those near the ridges.
Rapid detection of G6PD mutations by multicolor melting curve analysis.
Xia, Zhongmin; Chen, Ping; Tang, Ning; Yan, Tizhen; Zhou, Yuqiu; Xiao, Qizhi; Huang, Qiuying; Li, Qingge
2016-09-01
The MeltPro G6PD assay is the first commercial genetic test for glucose-6-phosphate dehydrogenase (G6PD) deficiency. This multicolor melting curve analysis-based real-time PCR assay is designed to genotype 16 G6PD mutations prevalent in the Chinese population. We comprehensively evaluated both the analytical and clinical performances of this assay. All 16 mutations were accurately genotyped, and the standard deviation of the measured Tm was <0.3°C. The limit of detection was 1.0ng/μL human genomic DNA. The assay could be run on four mainstream models of real-time PCR machines. The shortest running time (150min) was obtained with LightCycler 480 II. A clinical study using 763 samples collected from three hospitals indicated that, of 433 samples with reduced G6PD activity, the MeltPro assay identified 423 samples as mutant, yielding a clinical sensitivity of 97.7% (423/433). Of the 117 male samples with normal G6PD activity, the MeltPro assay confirmed that 116 samples were wild type, yielding a clinical specificity of 99.1% (116/117). Moreover, the MeltPro assay demonstrated 100% concordance with DNA sequencing for all targeted mutations. We concluded that the MeltPro G6PD assay is useful as a diagnostic or screening tool for G6PD deficiency in clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; Vance, Eric R.; Amoroso, Jake W.
2018-04-01
Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba1.0Cs0.3Cr1.0Al0.3Fe1.0Ti5.7O16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayed prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed "islands" rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.
Evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite
NASA Astrophysics Data System (ADS)
Miller, K.; Zhu, W.; Montesi, L. G.; Le Roux, V.; Gaetani, G. A.
2013-12-01
During melting at mid-ocean ridges, melt is driven into an equilibrium, minimum-energy configuration by surface energy gradients between solid-solid and solid-liquid phase boundaries. Such a configuration, where melt is mostly restricted to three and four-grain junctions, acts as a porous medium through which melt can percolate to the surface. For a monomineralic system, melt is distributed evenly among all grains. However, in mineralogical heterogeneous systems, melt partitions unevenly between the various solid phases to minimize the total energy of the system. In a ocean ridge melting environment, where olivine is often juxtaposed against orthopyroxene (opx), lithologic partitioning is expected to turn olivine-rich regions into high-permeability conduits, through which melt can be quickly extracted, drastically increasing the permeability of the mantle [Zhu and Hirth, 2003]. Lithologic partitioning has been demonstrated in experiments using analogue systems [Watson, 1999]; however, to date, no experiment has confirmed its existence in partially molten mantle systems. We present experimental results that determine the degree of melt partitioning between olivine and opx in partially molten harzburgites. Samples were prepared from a powdered mixture of oxides and carbonates and then hot-pressed in a solid-media piston-cylinder apparatus at 1350°C and 1.5GPa [Zhu et al., 2011] to achieve an 82/18 vol. % ratio of olivine to opx. Prior to hot-pressing, basalt was added to the powdered mixtures in various proportions to test for lithologic partitioning across a range of melt fractions. Three-dimensional, 700nm-resolution images of our samples were obtained using synchrotron X-ray microtomography on the 2BM station of the Advanced Photon Source at Argonne National Labs. Image data were filtered using an anisotropic diffusion filter to enhance phase contrast and then segmented to produce binary representations of each phase. In order to quantitatively demonstrate lithologic melt partitioning in our samples, we digitally segment each grain and then fit a sample window, slightly larger than the grain, to calculate the local melt volume fraction. Our results show strong evidence for lithologic partitioning in partially molten harzburgite systems, in a ~2 to 1 ratio of local melt fraction, between olivine and opx across the range of melt fractions tested. We also present permeability, grain size, and connectivity analyses of our samples in order to evaluate the effects of melt partitioning on melt migration rates at mid-ocean ridges, as well as at other locations in the Earth where partial melting occurs. References Watson, E. B. (1999), Lithologic partitioning of fluids and melts, American Minerologist, 84, 1693-1710. Zhu, W., and G. Hirth (2003), A network model for permeability in partially molten rocks, Earth Planet. Sci. Lett., 212(3-4), 407-416, doi:10.1016/S0012-821X(03)00264-4. Zhu, W., G. A. Gaetani, F. Fusseis, L. G. J. Montési, and F. De Carlo (2011), Microtomography of partially molten rocks: three-dimensional melt distribution in mantle peridotite, Science, 332(6025), 88-91, doi:10.1126/science.1202221.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2003-01-01
Flow Visualization experiments on the controlled melting and solidification of succinonitrile were conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. Porosity in the samples arose from natural shrinkage, and in some cases by direct insertion of nitrogen bubbles, during solidification of the liquid SCN. The samples were processed in the Pore Formation and Mobility Investigation (PFMI) apparatus that is placed in the glovebox facility (GBX) aboard the ISS. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall Space Flight Center. During the experiments, the sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. The temperatures in the sample are monitored by six in situ thermocouples. Real time visualization of the controlled directional melt back shows bubbles of different sizes initiating at the melt interface and, upon dislodging from the melting solid, migrating at different speeds into the temperature field ahead of them, before coming to rest. The thermocapillary flow field set up in the melt, ahead of the interface, is dramatic in the context of the large bubbles, and plays a major role in dislodging the bubble. A preliminary analysis of the observed bubble formation and mobility during melt back and its implication to future microgravity experiments is presented and discussed.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2003-01-01
Flow Visualization experiments on the controlled melting and solidification of succinonitrile were conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. Porosity in the samples arose from natural shrinkage, and in some cases by direct insertion of nitrogen bubbles, during solidification of the liquid SCN. The samples were processed in the Pore Formation and Mobility Investigation (PFMI) apparatus that is placed in the glovebox facility (GBX) aboard the ISS. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall Space Flight Center. During the experiments, the sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. The temperatures in the sample are monitored by six in situ thermocouples. Real time visualization of the controlled directional melt back shows bubbles of different sizes initiating at the melt interface and, upon dislodging from the melting solid, migrating at different speeds into the temperature field ahead of them, before coming to rest. The thermocapillary flow field set up in the melt, ahead of the interface, is dramatic in the context of the large bubbles, and plays a major role in dislodging the bubble. A preliminary analysis of the observed bubble formation and mobility during melt back and its implication to future microgravity experiments is presented and discussed.
Cohen, B. A.; James, O.B.; Taylor, L.A.; Nazarov, M.A.; Barsukova, L.D.
2004-01-01
Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post-shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post-shock heating raised the rock's temperature to about 1200 ??C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene-rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine-grained, subophitic-poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name "impact melt" has, in past studies, been applied only to rocks in which the melt fraction formed by shock-induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name "impact melt" be restricted to rocks in which the bulk of the melt formed by shock-induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes. ?? Meteoritical Society, 2004.
NASA Astrophysics Data System (ADS)
Jennings, E. S.; Gibson, S. A.; Maclennan, J.; Heinonen, J. S.
2017-12-01
Primitive melt inclusions trapped in various minerals found in global ridge settings have been shown to record highly variable magmatic compositions. Mantle melting is expected to be near-fractional, producing a wide range of melt compositions that must accumulate and mix in crustal magma chambers. In primitive rocks, the melt inclusion variability observed in major, trace and isotope geochemistry is consistent to the first order with partial melting of variably depleted mantle, and indicate that the host phases began to crystallise prior to the completion of melt aggregation and mixing. We present new major and trace element data from a large number of rehomogenised olivine-hosted melt inclusions from the Cretaceous Paraná-Etendeka and Jurassic Karoo continental flood basalt (CFB) provinces [1]. We show that the major element chemistry of the melt inclusions can be severely disrupted by the rehomogenisation process and, as a consequence, their initial compositions cannot easily be back-calculated. However, despite the age of the samples, the trace element geochemistry of the melt inclusions is well-preserved. Despite coming from near-liquidus olivines from primitive picrites and ferropicrites, the inclusions are remarkably homogeneous; none of the anticipated variability in incompatible trace element compositions is observed. When considered alongside literature data, it appears that variability in primitive melts - as recorded by melt inclusions - is low in CFBs and OIBs relative to ridge settings, e.g. Iceland. We suggest that the tectonic setting imposes a control on the mixing of mantle melts: hot, plume-derived melts generated beneath relatively thick lithosphere may be prone to efficient mixing, perhaps due to their low viscosity, long transport pathways, and/or a superliquidus emplacement temperature [1]. This interpretation is supported by the almost non-existent variability of olivine-hosted inclusions from ferropicrite samples: these magmas represents the deepest, hottest and lowest viscosity magma of all the samples considered. [1] Jennings E. S., Gibson S. A., Maclennan J. and Heinonen J. S. (2017) Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas. Geochimica et Cosmochimica Acta 196, 36-57.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2003-01-01
Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially 'cast' on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2002-01-01
Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially "cast" on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.
NASA Astrophysics Data System (ADS)
Harigane, Yumiko; Abe, Natsue; Michibayashi, Katsuyoshi; Kimura, Jun-Ichi; Chang, Qing
2016-06-01
North Pond is an isolated sedimentary pond on the western flank of the Kane area along the Mid-Atlantic Ridge. Drill-hole U1382A of IODP Expedition 336 recovered peridotite and gabbro samples from a sedimentary breccia layer in the pond, from which we collected six fresh peridotite samples. The peridotite samples came from the southern slope of the North Pond where an oceanic core complex is currently exposed. The samples were classified as spinel harzburgite, plagioclase-bearing harzburgite, and a vein-bearing peridotite that contains tiny gabbroic veins. No obvious macroscopic shear deformation related to the formation of a detachment fault was observed. The spinel harzburgite with a protogranular texture was classified as refractory peridotite. The degree of partial melting of the spinel harzburgite is estimated to be ˜17%, and melt depletion would have occurred at high temperatures in the uppermost mantle beneath the spreading axis. The progressive melt-rock interactions between the depleted spinel harzburgite and the percolating melts of Normal-Mid Ocean Ridge Basalt (N-MORB) produced the plagioclase-bearing harzburgite and the vein-bearing peridotite at relatively low temperatures. This implies that the subsequent refertilization occurred in an extinct spreading segment of the North Pond after spreading at the axis. Olivine fabrics in the spinel and plagioclase-bearing harzburgites are of types AG, A, and D, suggesting the remnants of a mantle flow regime beneath the spreading axis. The initial olivine fabrics appear to have been preserved despite the later melt-rock interactions. The peridotite samples noted above preserve evidence of mantle flow and melt-rock interactions beneath a spreading ridge that formed at ˜8 Ma.
Pseudotachylyte increases the post-slip strength of faults
Proctor, Brooks; Lockner, David A.
2016-01-01
Solidified frictional melts, or pseudotachylytes, are observed in exhumed faults from across the seismogenic zone. These unique fault rocks, and many experimental studies, suggest that frictional melting can be an important process during earthquakes. However, it remains unknown how melting affects the post-slip strength of the fault and why many exhumed faults do not contain pseudotachylyte. Analyses of triaxial stick-slip events on Westerly Granite (Rhode Island, USA) sawcuts at confining pressures from 50 to 400 MPa show evidence for frictional heating, including some events energetic enough to generate surface melt. Total and partial stress drops were observed with slip as high as 6.5 mm. We find that in dry samples following melt-producing stick slip, the shear failure strength increased as much as 50 MPa, while wet samples had <10 MPa strengthening. Microstructural analysis indicates that the strengthening is caused by welding of the slip surface during melt quenching, suggesting that natural pseudotachylytes may also strengthen faults after earthquakes. These results predict that natural pseudotachylyte will inhibit slip reactivation and possibly generate stress heterogeneities along faults. Wet samples do not exhibit melt welding, possibly because of thermal pressurization of water reducing frictional heating during slip.
NASA Astrophysics Data System (ADS)
Li, J.; Dong, J.; Zhu, F.
2017-12-01
Melting plays an unparalleled role in planetary differentiation processes including the formation of metallic cores, basaltic crusts, and atmospheres. Knowledge of the melting behavior of Earth materials provides critical constraints for establishing the Earth's thermal structure, interpreting regional seismic anomalies, and understanding the nature of chemical heterogeneity. Measuring the melting points of compressed materials, however, have remained challenging mainly because melts are often mobile and reactive, and temperature and pressure gradients across millimeter or micron-sized samples introduce large uncertainties in melting detection. Here the melting curve of KCl was determined through in situ ionic conductivity measurements, using the multi-anvil apparatus at the University of Michigan. The method improves upon the symmetric configuration that was used recently for studying the melting behaviors of NaCl, Na2CO3, and CaCO3 (Li and Li 2015 American Mineralogist, Li et al. 2017 Earth and Planetary Science Letters). In the new configuration, the thermocouple and electrodes are placed together with the sample at the center of a cylindrical heater where the temperature is the highest along the axis, in order to minimize uncertainties in temperature measurements and increase the stability of the sample and electrodes. With 1% reproducibility in melting point determination at pressures up to 20 GPa, this method allows us to determine the sample pressure to oil load relationship at high temperatures during multiple heating and cooling cycles, on the basis of the well-known melting curves of ionic compounds. This approach enables more reliable pressure measurements than relying on a small number of fixed-point phase transitions. The new data on KCl bridge the gap between the piston-cylinder results up to 4 GPa (Pistorius 1965 J. of Physics and Chemistry of Solids) and several diamond-anvil cell data points above 20 GPa (Boehler et al. 1996 Physical Review). We will examine the effect of solid-state phase transition on the melting curves of halides and test the validity of various melting theories.
Magnetic levitation and its application for education devices based on YBCO bulk superconductors
NASA Astrophysics Data System (ADS)
Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.
2013-10-01
A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.
NASA Astrophysics Data System (ADS)
Usov, I. O.; Arendt, P. N.; Foltyn, S. R.; Stan, L.; DePaula, R. F.; Holesinger, T. G.
2010-06-01
One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer-layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and intermediate layer providing a suitable lattice match to the superconducting Y 1Ba 2Cu 3O 7 (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA and ERD) was employed for analysis of each buffer layer and the YBCO film. These results assisted in understanding of a variety of physical processes occurring during the buffer layer fabrication and helped to optimize the buffer-layer architecture as a whole.
NASA Astrophysics Data System (ADS)
Langhorn, J.; Bi, Y. J.; Abell, J. S.
1996-02-01
Platinum group metal additions made to thick films of YBCO have induced significant improvements in the superconducting properties, in particular critical current densities ( Jc). Values in excess of 7 × 10 3 A cm -2 at 77 K and zero applied field have been measured. Optical and transmission electron microscopy have shown a homogeneous distribution of sub-micron sized, and larger highly anisotropic 211, believed to result from a reaction between Pt and YBCO to create nucleation sites for 211 precipitates. Indirect supporting thermal analysis evidence for this reaction is presented. An increased density of dislocations associated with the {123}/{211} interface suggests that refined 211 precipitates may act as heterogeneous nucleation sites for flux pinning defects. Similar effects have been observed for additions of other platinum group metals (Rh, Pd).
Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting.
Seipp, Michael T; Durtschi, Jacob D; Liew, Michael A; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V; Wittwer, Carl T
2007-07-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39 degrees C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments.
The Dirac Experiments - Results and Challenges
NASA Astrophysics Data System (ADS)
Clark, R. G.; O'Brien, J. L.; Dzurak, A. S.; Kane, B. E.; Lumpkin, N. E.; Reilley, D. J.; Starrett, R. P.; Rickel, D. G.; Goettee, J. D.; Campbell, L. J.; Fowler, C. M.; Mielke, C.; Harrison, N.; Zerwekh, W. D.; Clark, D.; Bartram, B. D.; King, J. C.; Parkin, D.; Nakagawa, H.; Miura, N.
2004-11-01
The 1997 international Dirac II Series held at Los Alamos National Laboratory involved low temperature electrical transport and optical experiments in magnetic fields exceeding 800 T, produced by explosive flux compression using Russian MC-1 generators. An overview of the scientific and technical advances achieved in this Series is given, together with a strategy for future work in this challenging experimental environment. A significant outcome was achieved in transport studies of microfabricated thin-film YBCO structures with the magnetic field in the CuO plane. Using a GHz transmission line technique at an ambient temperature of 1.6 K, an onset of dissipation was observed at 150 T (a new upper bound for superconductivity in any material), with a saturation of resistivity at 240 T. Comparison with the Pauli limit expected at B - 155 T in this material suggests that the critical field in this geometry is limited by spin paramagnetism. In preparation for a Dirac III series, a systematic temperature-dependent transport study of YBCO using in-plane magnetic fields of 150 T generated by single-turn coils, at temperatures over the range 10-100 K, has been undertaken in collaboration with the Japanese Megagauss Laboratory. The objective is to map out the phase diagram for this geometry, which is expected to be significantly different than the Werthamer-Helfand-Hohenberg model due to the presence of paramagnetic limiting. Nanofabricated magnetometers have also been developed in a UNSW-LANL collaboration for use in Dirac III for Fermi surface measurements of YBCO in megagauss fields, which are described.
NASA Astrophysics Data System (ADS)
Wu, Huaping; Wu, Linzhi; Du, Shanyi
2008-04-01
The effective biaxial modulus (Meff) of fiber-textured hexagonal, tetragonal, and orthorhombic films is estimated by using the Voigt-Reuss-Hill and Vook-Witt grain-interaction models. The orientation distribution function with Gaussian distributions of the two Euler angles θ and ϕ is adopted to analyze the effect of texture dispersion degree on Meff. Numerical results that are based on ZnO, BaTiO3, and yttrium barium copper oxide (YBCO) materials show that the Vook-Witt average of Meff is identical to the Voigt-Reuss-Hill average of Meff for the (001) plane of ideally fiber-textured hexagonal and tetragonal films. The ϕ distribution has no influence on Meff of the (hkl)-fiber-textured hexagonal film at any θ distribution in terms of the isotropy in the plane perpendicular to the [001] direction. Comparably, tetragonal and orthorhombic films represent considerable actions of ϕ dispersion on Meff, and the effect of ϕ dispersion on Meff of a (001)-fiber-textured YBCO film is smaller than that for a (001)-fiber-textured BaTiO3 film since the shear anisotropic factor in the (001) shear plane of a YBCO film more closely approaches 1. Enhanced θ and ϕ distributions destroy the perfect fiber textures, and as a result, the films exhibit an evolution from ideal (hkl) fiber textures to random textures with varying full widths at half maximums of θ and ϕ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.
Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less
Dandeneau, Christopher S.; Hong, Tao; Brinkman, Kyle S.; ...
2018-02-08
Melt processing of multi-phase ceramic waste forms offers potential advantages over traditional solid-state synthesis methods given both the prevalence of melters currently in use and the ability to reduce the possibility of airborne radionuclide contamination. In this work, multi-phase ceramics with a targeted hollandite composition of Ba 1.0Cs 0.3Cr 1.0Al 0.3Fe 1.0Ti 5.7O 16 were fabricated by melt processing at 1675 °C and hot isostatic pressing (HIP) at 1250 and 1300 °C. X-ray diffraction analysis (XRD) confirmed hollandite as the major phase in all specimens. Zirconolite/pyrochlore peaks and weaker perovskite reflections were observed after melt processing, while HIP samples displayedmore » prominent perovskite peaks and low-intensity zirconolite reflections. Melt processing produced specimens with large (>50 μm) well-defined hollandite grains, while HIP yielded samples with a more fine-grained morphology. Elemental analysis showed “islands” rich in Cs and Ti across the surface of the 1300 °C HIP sample, suggesting partial melting and partitioning of Cs into multiple phases. Photoemission data revealed multiple Cs 3d spin-orbit pairs for the HIP samples, with the lower binding energy doublets likely corresponding to Cs located in more leachable phases. Among all specimens examined, the melt-processed sample exhibited the lowest fractional release rates for Rb and Cs. However, the retention of Sr and Mo was greater in the HIP specimens.« less
The Paradox of the Axial Melt Lens: Petrology and Geochemistry of the Upper Plutonics at Hess Deep
NASA Astrophysics Data System (ADS)
Lissenberg, C. J.; Loocke, M. P.; MacLeod, C. J.
2014-12-01
The axial melt lens (AML) is a steady-state magma-rich body located at the dyke-gabbro transition at intermediate- and fast-spreading ridges. It is widely believed to be the reservoir from which mid-ocean ridge basalt (MORB) is erupted. The paradox of the axial melt lens is that the plutonic rocks that occur at this level are far too evolved to be in equilibrium with MORB, which is basaltic by definition; hence, the plutonic and volcanic records do not match. We explore this paradox by study of the first comprehensive sample suite of the uppermost plutonics of a fast-spreading ridge, taken by remotely-operated vehicle from the Hess Deep rift during cruise JC21. 23 samples (8 dolerites, 14 gabbronorites, and 1 gabbro) were collected from a section containing the transition from the uppermost gabbroic section into sheeted dykes. We present the results of a detailed petrographic and microanalytical investigation of these samples. They are dominated by evolved, varitextured (both in hand sample and thin section) oxide gabbronorites; olivine occurs in only one sample. A preponderance of the samples have positive Eu/Eu* and Sr/Sr*, indicating a cumulate origin. However, the minerals have evolved compositions, and are in equilibrium with melts significantly more evolved than East Pacific Rise MORB. Furthermore, the trace element contents of clinopyroxene differ significantly from clinopyroxene in equilibrium with MORB, being more enriched in incompatible elements. To account for both the evidence of derivation of MORB from the AML and the evolved nature of its rock record, we posit that the AML must be fed by melts on two different timescales: continual low-volume feeding by evolved interstitial melt from the cumulus pile below is augmented episodically by delivery of high volumes of more primitive melt. The latter episodes may trigger eruptions; hence the primitive melts are held in the magma chamber for only short periods, and erupt on the seafloor before significant crystallisation in the AML has taken place. This model for the feeding of the AML provides ample opportunity for mixing between the relatively primitive melts and the evolved, trace-element-rich melt, and accounts for the observed over-enrichment in incompatible elements of MORB.
Viscosity Meaurement Technique for Metal Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, Heng; Kennedy, Rory
2015-02-09
Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, themore » most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.« less
NASA Astrophysics Data System (ADS)
Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Chromik, Š.; Gál, N.; Knoška, J.; Sojková, M.; Pisarčík, M.
2016-03-01
A metallic ferromagnet (F) in proximity with a superconductor (S) can transport supercurrent on a long distance through conversion of opposite-spin singlet Cooper pairs (CP) into equal-spin triplet CP (long range triplet component, LRTC), which are not broken by the exchange energy of F. The optimal conditions for the conversion are yet to be clarified; however, it is accepted that the key point to this process include high interface transparency and magnetic inhomogeneity at the SF interface. The aim of our paper is to study SF nanostrips (length of about 1500 nm and width down to 300 nm) and lateral SFS nanojunctions based on high critical temperature YBa2Cu3Ox (YBCO) and half-metallic La0.67Sr0.33MnO3 (LSMO) thin films. We applied a focused Ga+ ion beam (FIB) for patterning the SF nanostrips, as well as lateral SFS nanojunctions, by creating a slot in the nanostrip after removing the YBCO film in the slot along a length of about 200 nm. The temperature dependences of the samples resistance R(T) show critical temperature TCn ≈ 89 K of the SF nanostrips; however, the SFS nanojunctions at T < TCn show a residual resistance R < 100 Ω corresponding to a dirty LSMO (ρ≈ 10 mΩ cm) in the slot. The LRTC was not observed in our lateral SFS nanojunctions until now.
STR melting curve analysis as a genetic screening tool for crime scene samples.
Nguyen, Quang; McKinney, Jason; Johnson, Donald J; Roberts, Katherine A; Hardy, Winters R
2012-07-01
In this proof-of-concept study, high-resolution melt curve (HRMC) analysis was investigated as a postquantification screening tool to discriminate human CSF1PO and THO1 genotypes amplified with mini-STR primers in the presence of SYBR Green or LCGreen Plus dyes. A total of 12 CSF1PO and 11 HUMTHO1 genotypes were analyzed on the LightScanner HR96 and LS-32 systems and were correctly differentiated based upon their respective melt profiles. Short STR amplicon melt curves were affected by repeat number, and single-source and mixed DNA samples were additionally differentiated by the formation of heteroduplexes. Melting curves were shown to be unique and reproducible from DNA quantities ranging from 20 to 0.4 ng and distinguished identical from nonidentical genotypes from DNA derived from different biological fluids and compromised samples. Thus, a method is described which can assess both the quantity and the possible probative value of samples without full genotyping. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.
Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan
2017-11-15
A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.
Global variations in abyssal peridotite compositions
NASA Astrophysics Data System (ADS)
Warren, Jessica M.
2016-04-01
Abyssal peridotites are ultramafic rocks collected from mid-ocean ridges that are the residues of adiabatic decompression melting. Their compositions provide information on the degree of melting and melt-rock interaction involved in the formation of oceanic lithosphere, as well as providing constraints on pre-existing mantle heterogeneities. This review presents a compilation of abyssal peridotite geochemical data (modes, mineral major elements, and clinopyroxene trace elements) for > 1200 samples from 53 localities on 6 major ridge systems. On the basis of composition and petrography, peridotites are classified into one of five lithological groups: (1) residual peridotite, (2) dunite, (3) gabbro-veined and/or plagioclase-bearing peridotite, (4) pyroxenite-veined peridotite, and (5) other types of melt-added peridotite. Almost a third of abyssal peridotites are veined, indicating that the oceanic lithospheric mantle is more fertile, on average, than estimates based on residual peridotites alone imply. All veins appear to have formed recently during melt transport beneath the ridge, though some pyroxenites may be derived from melting of recycled oceanic crust. A limited number of samples are available at intermediate and fast spreading rates, with samples from the East Pacific Rise indicating high degrees of melting. At slow and ultra-slow spreading rates, residual abyssal peridotites define a large (0-15% modal clinopyroxene and spinel Cr# = 0.1-0.6) compositional range. These variations do not match the prediction for how degree of melting should vary as a function of spreading rate. Instead, the compositional ranges of residual peridotites are derived from a combination of melting, melt-rock interaction and pre-existing compositional variability, where melt-rock interaction is used here as a general term to refer to the wide range of processes that can occur during melt transport in the mantle. Globally, 10% of abyssal peridotites are refractory (0% clinopyroxene, spinel Cr# > 0.5, bulk Al2O3 < 1 wt.%) and some ridge sections are dominated by harzburgites while lacking a significant basaltic crust. Abyssal ultramafic samples thus indicate that the mantle is multi-component, probably consisting of at least three components (lherzolite, harzburgite, and pyroxenite). Overall, the large compositional range among residual and melt-added peridotites implies that the oceanic lithospheric mantle is heterogeneous, which will lead to the generation of further heterogeneities upon subduction back into the mantle.
High Resolution Melting (HRM) applied to wine authenticity.
Pereira, Leonor; Gomes, Sónia; Castro, Cláudia; Eiras-Dias, José Eduardo; Brazão, João; Graça, António; Fernandes, José R; Martins-Lopes, Paula
2017-02-01
Wine authenticity methods are in increasing demand mainly in Denomination of Origin designations. The DNA-based methodologies are a reliable means of tracking food/wine varietal composition. The main aim of this work was the study of High Resolution Melting (HRM) application as a screening method for must and wine authenticity. Three sample types (leaf, must and wine) were used to validate the three developed HRM assays (Vv1-705bp; Vv2-375bp; and Vv3-119bp). The Vv1 HRM assay was only successful when applied to leaf and must samples. The Vv2 HRM assay successfully amplified all sample types, allowing genotype discrimination based on melting temperature values. The smallest amplicon, Vv3, produced a coincident melting curve shape in all sample types (leaf and wine) with corresponding genotypes. This study presents sensitive, rapid and efficient HRM assays applied for the first time to wine samples suitable for wine authenticity purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scaling Impact-Melt and Crater Dimensions: Implications for the Lunar Cratering Record
NASA Technical Reports Server (NTRS)
Cintala , Mark J.; Grieve, Richard A. F.
1997-01-01
The consequences of impact on the solid bodies of the solar system are manifest and legion. Although the visible effects on planetary surfaces, such as the Moon's, are the most obvious testimony to the spatial and temporal importance of impacts, less dramatic chemical and petrographic characteristics of materials affected by shock abound. Both the morphologic and petrologic aspects of impact cratering are important in deciphering lunar history, and, ideally, each should complement the other. In practice, however, a gap has persisted in relating large-scale cratering processes to petrologic and geochemical data obtained from lunar samples. While this is due in no small part to the fact that no Apollo mission unambiguously sampled deposits of a large crater, it can also be attributed to the general state of our knowledge of cratering phenomena, particularly those accompanying large events. The most common shock-metamorphosed lunar samples are breccias, but a substantial number are impact-melt rocks. Indeed, numerous workers have called attention to the importance of impact-melt rocks spanning a wide range of ages in the lunar sample collection. Photogeologic studies also have demonstrated the widespread occurrence of impact-melt lithologies in and around lunar craters. Thus, it is clear that impact melting has been a fundamental process operating throughout lunar history, at scales ranging from pits formed on individual regolith grains to the largest impact basins. This contribution examines the potential relationship between impact melting on the Moon and the interior morphologies of large craters and peaking basins. It then examines some of the implications of impact melting at such large scales for lunar-sample provenance and evolution of the lunar crust.
Unlabeled Oligonucleotides as Internal Temperature Controls for Genotyping by Amplicon Melting
Seipp, Michael T.; Durtschi, Jacob D.; Liew, Michael A.; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V.; Wittwer, Carl T.
2007-01-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39°C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments. PMID:17591926
Thermal Diffusivity for III-VI Semiconductor Melts at Different Temperatures
NASA Technical Reports Server (NTRS)
Ban, H.; Li, C.; Lin, B.; Emoto, K.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.
2004-01-01
The change of the thermal properties of semiconductor melts reflects the structural changes inside the melts, and a fundamental understanding of this structural transformation is essential for high quality semiconductor crystal growth process. This paper focused on the technical development and the measurement of thermal properties of III-VI semiconductor melts at high temperatures. Our previous work has improved the laser flash method for the specialized quartz sample cell. In this paper, we reported the results of our recent progress in further improvements of the measurement system by minimizing the free convection of the melt, adding a front IR detector, and placing the sample cell in a vacuum environment. The results for tellurium and selenium based compounds, some of which have never been reported in the literature, were obtained at different temperatures as a function of time. The data were compared with other measured thermophysical properties to shed light on the structural transformations of the melt.
Evidence for stable grain boundary melt films in experimentally deformed olivine-orthopyroxene rocks
NASA Astrophysics Data System (ADS)
de Kloe, R.; Drury, M. R.; van Roermund, H. L. M.
The microstructure of olivine-olivine grain boundaries has been studied in experimentally deformed (1200-1227°C, 300MPa) partially molten olivine and olivine-orthopyroxene rocks. In-situ melting produced 1vol% melt in all samples studied. Grain boundary analyses were carried out using a number of transmission electron microscopy techniques. The grain boundary chemistry in undeformed olivine-orthopyroxene starting material showed evidence for the presence of an intergranular phase along some, but not all, of the olivine-olivine boundaries. In the deformed samples, ultrathin Si-rich, Al- and Ca-bearing amorphous films have been observed along all investigated olivine-olivine grain boundaries. The chemistry of the grain boundaries, which is considered to be indicative for the presence of a thin film, was measured with energy-dispersive X-ray spectroscopy (EDX) and energy-filtering imaging. The amorphous nature of the films was confirmed with diffuse dark field imaging, Fresnel fringe imaging, and high-resolution electron microscopy. The films range in thickness from 0.6 to 3.0nm, and EDX analyses show that the presence of Al and Ca is restricted to this ultrathin film along the grain boundaries. Because thin melt films have been observed in all the samples, they are thought to be stable features of the melt microstructure in deformed partially molten rocks. The transition from the occasional presence of films in the undeformed starting material to the general occurrence of the films in deformed materials suggests that deformation promotes the formation and distribution of the films. Alternatively, hot-pressing may be too short for films to develop along all grain boundaries. A difference in creep strength between the studied samples could not be attributed to grain boundary melt films, as these have been found in all deformed samples. However, a weakening effect of grain boundary melt films on olivine rheology could not be ruled out due to the lack of confirmed melt-film free experiments.
Dependence of critical current density on microstructure and processing of high-T(c) superconductors
NASA Astrophysics Data System (ADS)
Goyal, A.; Specht, E. D.; Wang, Z. L.; Kroeger, D. M.; Sutliff, J. A.; Tkaczyk, J. E.; Deluca, J. A.; Masur, L.; Riley, G. N., Jr.
Microstructural origins for reduced weak-link behavior in high-J(sup c) melt-processed YBCO, spray pyrolyzed thick films of Tl-1223, metallic precursor Y-124 polycrystalline powder-in-tube (PIT) wires and PIT Bi-2212/2223 are discussed. Since the materials studied are the highest J(sub c), polycrystalline, high-T(sub c) superconductors fabricated worldwide, the results provide important guidelines for further improvements in superconducting properties, thereby enabling practical applications of these materials. It is found that strongly linked current flow within domains of melt-processed 123 occurs effectively through a single crystal path. In c-axis oriented, polycrystalline Tl-1223 thick films, local in-plane texture has been found to play a crucial role in the reduced weak-link behavior. Formation of 'colonies' of grains with a common c-axis and modest in-plane misorientation was observed. Furthermore, a colony boundary in general has a varying misorientation along the boundary. Large regions comprised primarily of low angle boundaries were observed. Percolative transport through a network of such small angle boundaries appears to provide the non-weak-linked current path. Although powder-in-tube BSCCO 2212 and 2223 also appear to have a 'colony' microstructure, there are some important differences. Colonies in BSCCO consist of stacks of grains with similar c-axis orientation in contrast to colonies in Tl-1223 films where few grains are stacked on top of one another. In the case of Y-124 wires, weak macroscopic in-plane texture is found. Additional measurements are underway to determine if a sharper, local in-plane texture also exists. It is found that in three of the four types of superconductors studied, reduced weak-link behavior can be ascribed to some degree of biaxial alignment between grains, either on a 'local' or a 'global' scale.
NASA Technical Reports Server (NTRS)
Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.
1995-01-01
Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.
High T(sub c) Superconducting Bolometer on Chemically Etched 7 Micrometer Thick Sapphire
NASA Technical Reports Server (NTRS)
Lakew, B.; Brasunas, J. C.; Pique, A.; Fettig, R.; Mott, B.; Babu, S.; Cushman, G. M.
1997-01-01
A transition-edge IR detector, using a YBa2Cu3O(7-x) (YBCO) thin film deposited on a chemically etched, 7 micrometer thick sapphire substrate has been built. To our knowledge it is the first such high T(sub c) superconducting (HTS) bolometer on chemically thinned sapphire. The peak optical detectivity obtained is l.2 x 10(exp 10) cmHz(sup 1/2)/W near 4Hz. Result shows that it is possible to obtain high detectivity with thin films on etched sapphire with no processing after the deposition of the YBCO film. We discuss the etching process and its potential for micro-machining sapphire and fabricating 2-dimensional detector arrays with suspended sapphire membranes. A 30 micrometer thick layer of gold black provided IR absorption. Comparison is made with the current state of the art on silicon substrates.
NASA Astrophysics Data System (ADS)
Albrecht, Joachim; Brück, Sebastian; Stahl, Claudia; Ruoß, Stephen
2016-11-01
We use quantitative magneto-optical microscopy to investigate the influence of finite temperatures on the critical state of thin YBCO films. In particular, temperature and time dependence of supercurrents in inhomogeneous and anisotropic films are analyzed to extract the role of temperature on the supercurrents themselves and the influence of thermally activated relaxation. We find that inhomogeneities and anisotropies of the current density distribution correspond to a different temperature dependence of local supercurrents. In addition, the thermally activated decay of supercurrents can be used to extract local vortex pinning energies. With these results the modification of vortex pinning introduced by substrate structures is studied. In summary the local investigation of supercurrent densities allows the full description of the vortex pinning landscape with respect to pinning forces and energies in superconducting films with complex properties under the influence of finite temperatures.
NASA Astrophysics Data System (ADS)
Zechner, G.; Jausner, F.; Haag, L. T.; Lang, W.; Dosmailov, M.; Bodea, M. A.; Pedarnig, J. D.
2017-07-01
Square arrays of submicrometer columnar defects in thin YBa2 Cu3 O7 -δ (YBCO) films with spacings down to 300 nm are fabricated by a He ion-beam projection technique. Pronounced peaks in the critical current and corresponding minima in the resistance demonstrate the commensurate arrangement of flux quanta with the artificial pinning landscape, despite the strong intrinsic pinning in epitaxial YBCO films. While these vortex-matching signatures are exactly at the predicted values in field-cooled experiments, they are displaced in zero-field-cooled, magnetic-field-ramped experiments, conserving the equidistance of the matching peaks and minima. These observations reveal an unconventional critical state in a cuprate superconductor with an artificial, periodic pinning array. The long-term stability of such out-of-equilibrium vortex arrangements paves the way for electronic applications employing fluxons.
NASA Astrophysics Data System (ADS)
Zeng, R.; Wang, S. Y.; Liao, X. L.; Deng, Z. G.; Wang, J. S.
2013-04-01
In practical applications, the acceleration and deceleration motions inevitably happen in the operation of high temperature superconducting (HTS) maglev trains. For further research of the maglev properties of YBaCuO bulk above a permanent magnet guideway (PMG), by moving a fixed vertical distance, this paper studies the relationship of the levitation force between single and multiple YBCO bulks above a PMG operating dive-lift movement with different angles. Experimental results show that the maximal levitation force increment of two bulks than one bulk is smaller than the maximal levitation force increment of three bulks than two bulks. With the degree decreasing, the maximal levitation force increment of three bulks is bigger than the maximal levitation force increment of two bulks and one bulk, and the hysteresis loop of the levitation force of the three-bulk arrangement is getting smaller.
Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Lee, J.; Safari, A.; Pfeffer, R. L.
1992-10-01
Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.
YBCO film deposition on very large areas up to 20 × 20 cm2
NASA Astrophysics Data System (ADS)
Kinder, H.; Berberich, P.; Prusseit, W.; Rieder-Zecha, S.; Semerad, R.; Utz, B.
1997-08-01
In the last decade we have developed thermal reactive co-evaporation as a technique to produce high quality YBCO and other oxide films of very large size up to 9 inches in diameter. This was achieved by intermittent deposition and reaction with oxygen using a heater which rotates the substrate in and out of an oxygen pocket. Even larger substrates, e. g. coated conductors, cannot be rotated. Therefore we have recently developed a new setup where the substrate is held fixed, and the oxygen pocket is set in linear reciprocation. This technique allows simultaneous deposition on a square of 20×20 cm 2. Moreover, we have developed an instant refill mechanism for the thermal boats, and stable rate control by atomic absorption spectroscopy (AAS), in order to obtain a continuous process suitable for small scale mass production.
Impact melt breccias at the Apollo 17 landing site
NASA Technical Reports Server (NTRS)
Ryder, Graham
1992-01-01
Impact melt breccias are by far the most common highland rock type collected on the Apollo 17 mission. They tend to be fine grained, with virtually no clast-free impact melt rocks having been identified. All the highland boulders sampled are impact melt breccia, with the possible exception of one South Massif boulder that might have a friable matrix (but nonetheless consists dominantly of impact melt) and a shocked igneous norite boulder from the North Massif. The impact melt breccias were originally described as metaclastic, but their melt origin became apparent as work progressed. Chemical compositions appear to allow natural groupings of the impact melt breccias. Various groupings of the impact melt breccias are discussed.
NASA Astrophysics Data System (ADS)
Schmieder, Martin; Kring, David A.; Swindle, Timothy D.; Bond, Jade C.; Moore, Carleton B.
2016-06-01
The Gao-Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact-melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth-crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao-Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous-textured impact melt domain. Olivine is predominantly Fo80-82. The clast domain contains low-Ca pyroxene. Impact melt-grown pyroxene is commonly zoned from low-Ca pyroxene in cores to pigeonite and augite in rims. Metal-troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni-rich troilite. The metallography of metal-troilite droplets suggest a stage I cooling rate of order 10 °C s-1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao-Guenie impact melt breccia and the impact-melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000-40,000 °C yr-1. A simple model of conductive heat transfer shows that the Gao-Guenie impact melt breccia may have formed in a melt injection dike ~0.5-5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.
NASA Astrophysics Data System (ADS)
Haglund, Peter; Frostevarg, Jan; Powell, John; Eriksson, Ingemar; Kaplan, Alexander F. H.
2018-03-01
Laser - material interactions such as welding, heat treatment and thermal bending generate thermal gradients which give rise to thermal stresses and strains which often result in a permanent distortion of the heated object. This paper investigates the thermal distortion response which results from pulsed laser surface melting of a stainless steel sheet. Pulsed holography has been used to accurately monitor, in real time, the out-of-plane distortion of stainless steel samples melted on one face by with both single and multiple laser pulses. It has been shown that surface melting by additional laser pulses increases the out of plane distortion of the sample without significantly increasing the melt depth. The distortion differences between the primary pulse and subsequent pulses has also been analysed for fully and partially overlapping laser pulses.
Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung
2014-01-01
From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting. PMID:24497990
Han, Dukki; Kang, Ilnam; Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung
2014-01-01
From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.
NASA Astrophysics Data System (ADS)
Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.
2017-11-01
Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.
Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; ...
2015-07-07
Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate andmore » optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB 2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.« less
Fabrication of interface-modified ramp-edge junction on YBCO ground plane with multilayer structure
NASA Astrophysics Data System (ADS)
Wakana, H.; Adachi, S.; Kamitani, A.; Sugiyama, H.; Sugano, T.; Horibe, M.; Ishimaru, Y.; Tarutani, Y.; Tanabe, K.
2003-10-01
We examined the fabrication conditions to obtain high-quality ramp-edge Josephson junctions on a liquid-phase-epitaxy YBa 2Cu 3O y (LPE-YBCO) ground plane, in particular, focusing on the fabrication of a suitable insulating layer on the ground plane and the post-annealing conditions to load oxygen to the ground plane. A (LaAlO 3) 0.3-(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) insulating film on the ground planes exhibited a conductance ranging from 10 -4 to 10 -8 S after deposition of an upper superconducting film, suggesting existence of some leak paths through the LSAT insulating layer. By introducing approximately 30 nm thick SrTiO 3 (STO) buffer layers on both side of the LSAT insulating layer. We reproducibly obtained a conductance lower than 10 -8 S. The dielectric constant of the STO/LSAT/STO layer was 32, which was slightly larger than that of the single LSAT layer. It was found that a very slow cooling rate of 1.0 °C/h in oxygen was needed to fully oxidize the ground plane through the STO/LSAT/STO insulating layers, while the oxidation time could be effectively reduced by introducing via holes in the insulating layer at an interval of 200 μm. Ramp-edge junctions on LPE-YBCO ground planes with STO/LSAT/STO insulating layers exhibited a 1 σ-spread in Ic of 8% for 100-junction series-arrays and a sheet inductance of 0.7 pH/□ at 4.2 K.
The harzburgites-lherzolite cycle: depletion and refertilization processes
NASA Astrophysics Data System (ADS)
Dijkstra, A. H.
2011-12-01
Lherzolites or clinopyroxene-rich harzburgites sampled at the ocean floor are now generally interpreted as refractory harzburgites refertilized by melt-rock reaction or melt impregnation at the spreading center, rather than as relatively undepleted bulk upper mantle. The key evidence for a melt refertilization origin is often textural. Critically, the refertilization can mask the underlying very refractory character: oceanic peridotites prior to melt refertilization at the ridge are often too refractory to be simple mantle residues of bulk upper mantle that was melted at the ridge. This suggests that the upper mantle contains large domains that record prior melting histories. This is supported by ancient rhenium-depletion ages that are common in oceanic peridotites. In this presentation, I will discuss some key examples (e.g., Macquarie Island [1], Pindos, Totalp, Lanzarote) of refertilized oceanic peridotites, which all have recorded previous, ancient depletions. I will show the textural and geochemical evidence for melt refertilization. It has often been assumed that melt refertilization occurs by interaction with mantle melts. However, there is now evidence for melt refertilization through a reaction with eclogite-derived melts, probably at the base of the melting column underneath the ridge system. These eclogitic mantle heterogeneities themselves do not normally survive the melting underneath the spreading center, but their isotopic signature can be recognized in the reacted peridotites. In summary, we have moved away from the idea that oceanic mantle rocks are simple melting residues of homogeneous bulk upper mantle. The picture that emerges is a rich and complex one, suggesting that oceanic mantle rocks record dynamic histories of melting and refertilization. In particular, the melting event in refertilized peridotites can be much older than the age of the ridge system at which they are sampled. Many oceanic peridotites contain evidence for a Mesoproterozoic melting event of perhaps global significance. Regardless of the nature of these melting events, it is now clear that in their complex overprinting history, oceanic peridotites more and more resemble polygenetic metamorphic rocks.
Fused Bead Analysis of Diogenite Meteorites
NASA Technical Reports Server (NTRS)
Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.
2009-01-01
Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.
NASA Astrophysics Data System (ADS)
Yamaki, K.; Kitagawa, N.; Funahashi, S.; Bamba, Y.; Irie, A.
2018-07-01
In this study, fine single crystals of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) were successfully prepared using the partial melting technique. The obtained single crystals had a cubic shape, which coincides with the results of previous studies of RuGd-1212 single crystals. The single crystals had a typical length of 20-30 μm and the diffraction pattern observed from a sample prepared by partial melting was consistent with patterns of previously reported polycrystalline RuEu-1212 samples. A sample subjected to prolonged sintering, which consisted of a large number of combined micro single crystals prepared by partial melting, exhibited a superconducting transition with Tc-onset of 30.9 K and Tc-zero of 10.5 K.
Materials Data on YbCo3B2 (SG:191) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacold, J. I.; Lukens, W. W.; Booth, C. H.
Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variationsmore » among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less
Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacold, J. I.; Lukens, W. W.; Booth, C. H.
We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less
Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing
Pacold, J. I.; Lukens, W. W.; Booth, C. H.; ...
2016-05-18
We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less
Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing
NASA Astrophysics Data System (ADS)
Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.
2016-05-01
Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.
Iron isotope composition of depleted MORB
NASA Astrophysics Data System (ADS)
Labidi, J.; Sio, C. K. I.; Shahar, A.
2015-12-01
In terrestrial basalts, iron isotope ratios are observed to weakly fractionate as a function of olivine and pyroxene crystallization. However, a ~0.1‰ difference between chondrites and MORB had been reported (Dauphas et al. 2009, Teng et al. 2013 and ref. therein). This observation could illustrate an isotope fractionation occurring during partial melting, as a function of the Fe valence in melt versus crystals. Here, we present high-precision Fe isotopic data measured by MC-ICP-MS on well-characterized samples from the Pacific-Antarctic Ridge (PAR, n=9) and from the Garrett Transform Fault (n=8). These samples allow exploring the Fe isotope fractionation between melt and magnetite, and the role of partial melting on Fe isotope fractionation. Our average δ56Fe value is +0.095±0.013‰ (95% confidence, n=17), indistinguishable from a previous estimate of +0.105±0.006‰ (95% confidence, n=43, see ref. 2). Our δ56Fe values correlate weakly with MgO contents, and correlate positively with K/Ti ratios. PAC1 DR10 shows the largest Ti and Fe depletion after titanomagnetite fractionation, with a δ56Fe value of +0.076±0.036‰. This is ~0.05‰ below other samples at a given MgO. This may illustrate a significant Fe isotope fractionation between the melt and titanomagnetite, in agreement with experimental determination (Shahar et al. 2008). GN09-02, the most incompatible-element depleted sample, has a δ56Fe value of 0.037±0.020‰. This is the lowest high-precision δ56Fe value recorded for a MORB worldwide. This basalt displays an incompatible-element depletion consistent with re-melting beneath the transform fault of mantle source that was depleted during a first melting event, beneath the ridge axis (Wendt et al. 1999). The Fe isotope observation could indicate that its mantle source underwent 56Fe depletion after a first melting event. It could alternatively indicate a lower Fe isotope fractionation during re-melting, if the source was depleted of its Fe3+, likely producing a relatively reduced melt. These hypotheses are testable, and will be discussed in detail at the conference.
Magnetic forces in high-Tc superconducting bearings
NASA Technical Reports Server (NTRS)
Moon, F. C.
1991-01-01
In September 1987, researchers at Cornell levitated a small rotor on superconducting bearings at 10,000 rpm. In April 1989, a speed of 120,000 rpm was achieved in a passive bearing with no active control. The bearing material used was YBa2Cu307. There is no evidence that the rotation speed has any significant effect on the lift force. Magnetic force measurements between a permanent rare-earth magnet and high T(sub c) superconducting material versus vertical and lateral displacements were made. A large hysteresis loop results for large displacements, while minor loops result for small displacements. These minor loops seem to give a slope proportional to the magnetic stiffness, and are probably indicative of flux pinning forces. Experiments of rotary speed versus time show a linear decay in a vacuum. Measurements of magnetic dipole over a high-T(sub c) superconducting disc of YBCO show that the lateral vibrations of levitated rotors were measured which indicates that transverse flux motion in the superconductor will create dissipation. As a result of these force measurements, an optimum shape for the superconductor bearing pads which gives good lateral and axial stability was designed. Recent force measurements on melt-quench processed superconductors indicate a substantial increase in levitation force and magnetic stiffness over free sintered materials. As a result, application of high-T(sub c) superconducting bearings are beginning to show great promise at this time.
Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel Ridge
NASA Astrophysics Data System (ADS)
D'Errico, Megan E.; Warren, Jessica M.; Godard, Marguerite
2016-02-01
Ultraslow spreading at mid-ocean ridges limits melting due to on-axis conductive cooling, leading to the prediction that peridotites from these ridges are relatively fertile. To test this, we examined abyssal peridotites from the Gakkel Ridge, the slowest spreading ridge in the global ocean ridge system. Major and trace element concentrations in pyroxene and olivine minerals are reported for 14 dredged abyssal peridotite samples from the Sparsely Magmatic (SMZ) and Eastern Volcanic (EVZ) Zones. We observe large compositional variations among peridotites from the same dredge and among dredges in close proximity to each other. Modeling of lherzolite trace element compositions indicates varying degrees of non-modal fractional mantle melting, whereas most harzburgite samples require open-system melting involving interaction with a percolating melt. All peridotite chemistry suggests significant melting that would generate a thick crust, which is inconsistent with geophysical observations at Gakkel Ridge. The refractory harzburgites and thin overlying oceanic crust are best explained by low present-day melting of a previously melted heterogeneous mantle. Observed peridotite compositional variations and evidence for melt infiltration demonstrates that fertile mantle components are present and co-existing with infertile mantle components. Melt generated in the Gakkel mantle becomes trapped on short length-scales, which produces selective enrichments in very incompatible rare earth elements. Melt migration and extraction may be significantly controlled by the thick lithosphere induced by cooling at such slow spreading rates. We propose the heterogeneous mantle that exists beneath Gakkel Ridge is the consequence of ancient melting, combined with subsequent melt percolation and entrapment.
A Study of Melt Inclusions in Tin-Mineralized Granites From Zinnwald, Germany
NASA Astrophysics Data System (ADS)
Sookdeo, C. A.; Webster, J. D.; Eschen, M. L.; Tappen, C. M.
2001-12-01
We have analyzed silicate melt inclusions from drill core samples from the eastern Erzgebirge region, Germany, to investigate magmatic-hydrothermal and mineralizing processes in compositionally evolved, tin-bearing granitic magmas. Silicate melt inclusions are small blebs of glass that are trapped or locked within phenocrysts and may contain high concentrations of volatiles that usually leave magma via degassing. Quartz phenocrysts were carefully hand picked from crushed samples of albite-, zinnwaldite- +/- lepidolite-bearing granitic dikes from Zinnwald and soaked in cold dilute HF to remove any attached groundmass. The cleaned phenocrysts were loaded into precious metal capsules with several drops of immersion oil to create a reducing environment at high temperature. The quartz-bearing capsules were inserted into quartz glass tubes, loaded into a furnace for heating at temperatures of 1025\\deg and 1050\\deg C (1atm) for periods of 20 to 30 hours, and subsequently the inclusions were quenched to glass. The inclusions were analyzed for major and minor elements (including F, Cl, and P) by electron microprobe and for H2O, trace elements, and ore elements by ion microprobe. The melt inclusion compositions are similar to that of the whole-rock sample from which the quartz separates were extracted. The average melt inclusion and whole-rock compositions are peraluminous, high in silica and rare alkalis, and low in MgO, CaO, FeO, MnO, and P2O5. Unlike the whole-rock sample, the melt inclusions contain from 0.5 to more than 4 wt.% F. The Cl contents of the inclusions are variable and range from hundreds of ppm to several thousand ppm. The variable and strong enrichments in F of the melt inclusions may correlate with (Na2O/Na2O+K2O) in the inclusions which is consistent with crystal fractionation of feldspars which drives the residual melt to increasing Na contents. Overall, the compositions of these melt inclusions are different from melt inclusions extracted from the highly peraluminous, tin-mineralized granites of the western Erzgebirge region. The latter represent extreme compositional evolution of P- and F-rich magmas. The inclusions from the albite-, zinnwaldite-, +/- lepidolite-bearing granitic dikes of Zinnwald are more similar, compositionally, to those in tin-mineralized rhyolites of Mexico and New Mexico; the Erzgebirge dike melt inclusions container comparatively greater abundances of Li, Sn, and F, however.
NASA Astrophysics Data System (ADS)
Yamasaki, Hirofumi; Yamada, Hiroshi
2017-11-01
Temperature dependence of critical current density Jc(H, T) was measured in moderate magnetic fields (H ⊥ film) in two thermally co-evaporated YBa2Cu3O7-δ (YBCO) thin films (A, B) and two YBCO films (C, D) deposited using a pulsed-laser deposition method. All sample films were grown epitaxially with the c-axis perpendicular to the surface of a single-crystalline substrate. Transmission electron microscopy observation revealed that these four films contained a high density of nanoprecipitates with typical sizes of 3.6 - 5.0 nm (A), 5.0 - 7.1 nm (B), 7.0 - 10.1 nm (C) and 8.7 - 14.3 nm (D). Films A and B contained very fine nanoprecipitates, whose typical diameters Dtyp are smaller than double the estimated Ginzburg-Landau coherence length 2ξab at T = 77 K, and exhibited a steep increase of Jc with decreasing temperature. Whereas, film D, which contained relatively large nanoprecipitates (Dtyp > 2ξab at T ≤ 70 K), exhibited a gradual increase in Jc. This led to a remarkable crossing of the Jc(T) curves. The temperature dependence of Jc(H//c) under a fixed magnetic field is approximated by Jc ∼ (1 - T/Tc)m(1 + T/Tc)2 where the index m is larger for films containing finer precipitates; that is, m(A) > m(B) > m(C) > m(D). This means that finer nanoprecipitates generally cause steeper Jc increase at low temperatures, which is the origin of the observed crossing phenomenon. The experimental results are reasonably explained by several theoretical models based on the direct summation of elementary pinning forces fp calculated by core pinning interactions.
Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas
NASA Astrophysics Data System (ADS)
Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.
2017-02-01
Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid compositions extracted from these hybrid sources are higher in normative quartz and hypersthene (i.e., they have a more silica-saturated character) in comparison with basalts derived from prior melt-depleted asthenospheric mantle beneath ridges. These primary arc melts range from silica-rich picrite to boninite and high-Mg basaltic andesite along a residual spinel harzburgite cotectic. Silica enrichment in the mantle sources of arc-related, subalkaline picrite-boninite-andesite suites coupled with the amount of water and depth of melting, are important for the formation of medium-Fe ('calc-alkaline') andesite-dacite-rhyolite suites, key lithologies forming the continental crust.
Hyvönen, L; Linna, M; Tuorila, H; Dijksterhuis, G
2003-04-01
Temporal effects of dairy and vegetable fats (0 to 18%) on perception of strawberry flavor release and melting of ice cream were studied using the time intensity sensory method. Also, aroma and flavor attributes of the ice cream samples were evaluated. Only slight effects of fat on the rate of flavor release and flavor intensity were perceived. A slightly faster flavor release from the vegetable fat compared with dairy fat was noticed. Polydextrose and maltodextrin as bodying agents in the fat-free ice cream significantly increased flavor release and melting rate of the ice cream. Increasing fat content slightly retarded melting of ice cream in the mouth. No significant effect of the fat quality on perceived melting was noticed. Significant differences in aroma and flavor attributes of the fat-free and other samples were perceived. Intensity and sharpness of the strawberry aroma and flavor were greater in fat-free samples and they were perceived as nontypical. Fattiness and creaminess were highly correlated. Maltodextrin and polydextrose increased perceived fattiness and creaminess of fat-free ice cream.
Petrographic and petrological study of lunar rock materials
NASA Technical Reports Server (NTRS)
Winzer, S. R.
1977-01-01
Impact melts and breccias from the Apollo 15 and 16 landing sites were examined optically and by electron microscope/microprobe. Major and trace element abundances were determined for selected samples. Apollo 16 breccias contained impact melts, metamorphic and primary igneous rocks. Metamorphic rocks may be the equivalents of the impact melts. Apollo 15 breccias studied were fragment-laden melts derived from gabbro and more basalt target rocks.
Loss of iron to gold capsules in rock-melting experiments
Ratajeski, K.; Sisson, T.W.
1999-01-01
Gold is used widely for capsules in high-temperature rock-melting studies because it is generally thought to absorb negligible Fe from silicate samples. However, we observed significant losses of Fe from fluid-absent melting experiments on hornblende gabbros at 800-975 ??C and 8 kbar, using standard piston-cylinder techniques. The extent of Fe loss from the sample is dependent on the relative masses of the sample and the capsule. Low sample to capsule mass ratios (~0.04) lead to the highest Fe losses (32-49% relative). Concentrations of Fe in silicate melt and used gold capsules define an apparent equilibrium constant (K') that follows a linear 1n K' vs. 1/T relation (at an estimated log f(O)(2) of QFM-1). The apparent equilibrium constant is used to make limiting upper estimates on the amount of Fe that could be lost during rock-melting experiments for a range of f(O)(2) and sample to capsule mass ratios. At high f(O)(2) (NNO + 2), loss of Fe to gold is negligible (<2% relative) for a wide range of sample to capsule mass ratios. At an f(O)(2) of NNO, Fe loss can be kept to <10% relative by using a sample to capsule mass ratio of 0.2 or greater. At low f(O)(2) (QFM-1), presaturating the Au with Fe would be necessary to ensure that Fe losses remained <10% relative. Fe loss can compromise experimental results for small samples run at low f(O)(2) conditions, be they buffered, imposed by the pressure media, or produced by intrinsically reduced (graphitic) starting materials.
NASA Astrophysics Data System (ADS)
Morard, G.; Boccato, S.; Rosa, A. D.; Anzellini, S.; Miozzi Ferrini, F.; Laura, H.; Garbarino, G.; Harmand, M.; Guyot, F. J.; Boulard, E.; Kantor, I.; Irifune, T.; Torchio, R.
2017-12-01
Iron is the main constituent of planetary cores. Studying its phase diagram under high pressure is necessary to constrain properties of planetary interiors, and to model key parameters such as the generation of magnetic field. Though, strong controversy on the melting curve of pure Fe still remains. Recently, Aquilanti et al, (PNAS, 2015) reported a Fe melting curved based on XANES measurements which is in open disagreement with previous X-ray diffraction results (Anzellini et al, Science, 2013). Discrepancies in the melting temperature exceed several hundred degrees close to Mbar pressures, which may be related to differences in temperature measurement techniques, melting diagnostics, or to chemical reactions of the sample with the surrounding medium. We therefore performed new in situ high P/T XANES experiments on pure Fe (up to 115 GPa and 4000 K) at the ESRF beamline ID24, combining the energy dispersive absorption set up with laser heated diamond anvil cells. X-ray diffraction maps were collected from all recovered samples in order to identify and characterize laser-heated spots. The XANES melting criterion was further cross checked by analyzing the recovered sample textures using FIB cutting techniques and SEM imaging. We found systematically that low melting temperatures are related to the presence of Fe3C, implying that in those cases chemical reactions occurred during heating resulting in carbon contamination from the diamonds. These low melting points fall onto the melting line reported by Aquilanti et al, (2015). Uncontaminated points are in agreement with the melting curve of Anzellini et al, (2013) within their uncertainties. Moreover, this data set allowed us to refine the location of the triple point in the Fe phase diagram at 105 (±10) GPa and 3600 (±200) K, which may imply a small kink in the melting curve around this point. This refined Fe phase diagram could be then used to compute thermodynamic models for planetary cores.
Moore, Diane E.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.
2016-09-23
IntroductionMelting occurred during stick-slip faulting of granite blocks sheared at room-dry, room-temperature conditions in a triaxial apparatus at 200–400 megapascals (MPa) confining pressure. Petrographic examinations of melt textures focused largely on the 400-MPa run products. This report presents an overview of the petrographic data collected on those samples, followed by brief descriptions of annotated versions of all the images.Scanning electron microscope (SEM) images of the starting materials and the three examined 400-MPa samples are presented in this report. Secondary-electron (SE) and backscattered-electron (BSE) imaging techniques were used on different samples. The SE images look down on the sawcut surfaces, yielding topographic and three-dimensional textural information. The BSE imaging was done on samples cut to provide cross-sectional views of the glass-filled shear band (or zone) that developed along the sawcut. Brightness in the BSE images increases with increasing mean atomic number of the material. Additional chemical information about the quenched melt and adjoining minerals was obtained using the energy dispersive system of the SEM during BSE examinations. However, the very narrow shear-band thicknesses and common occurrence of very fine lamellar compositional layering limited the usefulness of this technique for estimating melt chemistry.
Coogan, L.A.; Thompson, G.M.; MacLeod, C.J.; Dick, H.J.B.; Edwards, S.J.; Hosford, Scheirer A.; Barry, T.L.
2004-01-01
Little is known about temporal variations in melt generation and extraction at midocean ridges largely due to the paucity of sampling along flow lines. Here we present new whole-rock major and trace element data, and mineral and glass major element data, for 71 basaltic samples (lavas and dykes) and 23 peridotites from the same ridge segment (the Atlantis Bank segment of the Southwest Indian Ridge). These samples span an age range of almost 14 My and, in combination with the large amount of published data from this area, allow temporal variations in melting processes to be investigated. Basalts show systematic changes in incompatible trace element ratios with the older samples (from ???8-14 Ma) having more depleted incompatible trace element ratios than the younger ones. There is, however, no corresponding change in peridotite compositions. Peridotites come from the top of the melting column, where the extent of melting is highest, suggesting that the maximum degree of melting did not change over this interval of time. New and published Nd isotopic ratios of basalts, dykes and gabbros from this segment suggest that the average source composition has been approximately constant over this time interval. These data are most readily explained by a model in which the average source composition and temperature have not changed over the last 14 My, but the dynamics of mantle flow (active-to-passive) or melt extraction (less-to-more efficient extraction from the 'wings' of the melting column) has changed significantly. This hypothesised change in mantle dynamics occurs at roughly the same time as a change from a period of detachment faulting to 'normal' crustal accretion. We speculate that active mantle flow may impart sufficient shear stress on the base of the lithosphere to rotate the regional stress field and promote the formation of low angle normal faults. ?? 2004 Elsevier B.V. All rights reserved.
YBCO Coated Conductor with an Integrated Optical Fiber Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathyamurthy, Srivatsan; Rupich, Marty; Schwartz, Justin
2016-03-31
The primary objectives of the Phase I Project was to develop a proof-of-principle for a concept of integrating an optical fiber sensor into the laminated 2G wire, there by producing a functionalized 2G wire with self-monitoring capabilities
High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing
NASA Astrophysics Data System (ADS)
Moon, B. M.; Lalevic, B.; Kear, B. H.; McCandlish, L. E.; Safari, A.; Meskoob, M.
1989-10-01
A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 °C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K [Tc(zero)=105 K]. A detailed study of various processing techniques has been carried out.
NASA Astrophysics Data System (ADS)
de Andrade, R., Jr.; Lanfredi, A. J. C.; Ortiz, W. A.; Leite, E. R.
1997-08-01
The irreversibility line (IL) of a magnetically grain-aligned HgBa2CaCu2O6+δ (Hg-1212) sample was determined from magnetization measurements, with the magnetic fieldH parallel to the samplec-axis. The grain-aligned sample was made by mixing powdered polycrystalline samples with epoxy resin, cured under 94 KOe at room temperature. For fields below 10 kOe the Il is well fitted by a model of flux line lattice melting due to thermal fluctuations. For higher fields the IL behavior changes to an exponential growth of Hirr with 1/T. This change is related to a corresponding alteration in the character of the vortex fluctuations leading to the melting of the flux line lattice.
Viscosity of the liquid Al-6Mg-1Mn-0.2Sc-0.1Zr alloy
NASA Astrophysics Data System (ADS)
Reznik, P. L.; Chikova, O. A.; Tsepelev, V. S.
2017-07-01
The microstructure and the phase composition of as-cast Al-Mg-Mn-Sc-Zr alloy samples are studied by electron microscopy and electron-probe microanalysis. The processes of solidification and melting of this alloy are described. The temperature dependence of the kinematic viscosity of the Al-Mg-Mn-Sc-Zr melts is studied during heating and subsequent cooling of the samples. The measurement results are used to determine the temperature at which inherited microheterogeneities in the melts are destroyed irreversibly.
Review of Claims of Interaction Between Gravitation and High-Temperature Superconductors
NASA Astrophysics Data System (ADS)
Woods, R. Clive
2004-02-01
Recent reports have claimed that high-temperature superconductors can interact with gravitation under certain non-relativistic conditions. Only two such reports have been peer-reviewed: the first, describing changes in the weight of test masses, was by Podkletnov and Nieminen (1992) the other, reporting large-amplitude gravitational wave generation in a laboratory, was by Podkletnov and Modanese (2003). Common to these reports is the claim that the observed gravitational field may be modified using YBa2Cu3O7-δ (YBCO) below its superconducting critical temperature, Tc ~ 93K, and in a magnetic field B ~ 1T. Temperatures below 70K gave the largest effects. The first experiment used magnetically levitated YBCO rotated at ~5000 rpm; the second experiment did not spin or levitate the YBCO, but used a 2MV electrical discharge in a vacuum chamber. Several attempts have been made world-wide to replicate the first of these experiments, although no peer-reviewed reports have yet confirmed the observations. No known replications of the second experiment have been completed so far. A number of papers have presented theoretical models for the effects. This paper reviews the current experimental and theoretical scientific evidence regarding these experiments, together with further tests implied by the published explanations. The discussion includes a classical suggestion (due to Landau and Lifshitz) that gravitational waves can modify gravitational fields, Aquino's theory based upon electromagnetic fields, and Desbrandes's calculation to explain the Podkletnov and Nieminen results on the basis of gravity waves emitted from the Cooper pairs inside a superconductor. The conclusions are that these experiments are extremely difficult to replicate and that no complete replication confirming the effects has yet taken place. By contrast, no-one has conclusively disproved the existence of the effects.
Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S
2017-10-01
In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.
NASA Astrophysics Data System (ADS)
Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.
2017-10-01
In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.
NASA Astrophysics Data System (ADS)
Miura, M.; Maiorov, B.; Baily, S. A.; Haberkorn, N.; Willis, J. O.; Marken, K.; Izumi, T.; Shiohara, Y.; Civale, L.
2011-05-01
We study the field (H) and temperature (T) dependence of the critical current density (Jc) and irreversibility field (Hirr) at different field orientations in Y0.77Gd0.23Ba2Cu3Oy with randomly distributed BaZrO3 nanoparticles (YGdBCO+BZO) and YBa2Cu3Oy (YBCO) films. Both MOD films have large RE2Cu2O5 (225) nanoparticles (˜80 nm in diameter) and a high density of twin boundaries (TB). In addition, YGdBCO+BZO films have a high density of BZO nanoparticles (˜25 nm in diameter). At high temperatures (T > 40 K), the superconducting properties, such as Jc, Hirr, and flux creep rates, are greatly affected by the BZO nanoparticles, while at low temperatures the superconducting properties of both the YBCO and YGdBCO+BZO films show similar field and temperature dependencies. In particular, while the Jc of YBCO films follow a power-law dependence (∝H-α) at all measured T, this dependence is only followed at low T for YGdBCO+BZO films. As a function of T, the YGdBCO+BZO film shows Jc(T,0.01T)~[1-(T/Tc)2]n with n ˜ 1.24 ± 0.05, which points to “δTc pinning.” We analyze the role of different types of defects in the different temperature regimes and find that the strong pinning of the BZO nanoparticles yields a higher Hirr and improved Jc along the c axis and at intermediate orientations at high T. The mixed pinning landscapes due to the presence of disorder of various dimensionalities have an important role in the improvement of in-field properties.
Fabrication of sensitive high Tc bolometers
NASA Technical Reports Server (NTRS)
Nahum, Michael; Verghese, S.; Hu, Qing; Richards, Paul L.; Char, K.; Newman, N.; Sachtjen, Scott A.
1990-01-01
The rapid change of resistance with temperature of high quality films of high T sub c superconductors can be used to make resistance thermometers with very low temperature noise. Measurements on c-axis yttrium barium copper oxide (YBCO) films have given a spectral intensity of temperature noise less than 4 times 10(exp -8) K/Hz(exp 1/2) at 10 Hz. Consequently, the opportunity exists to make useful bolometric infrared detectors that operate near 90 K which can be cooled with liquid nitrogen. The fabrication and measurement of two bolometer architectures are discussed. The first is a conventional bolometer which consists of a 3000 A thick YBCO film deposited in situ by laser ablation on top of a 500 A thick SrTiO3 thickness and diced into 1x1 mm(exp 2) bolometer chips. Gold black smoke was used as the radiation absorber. The voltage noise was less than the amplifier noise when the film was current biased. Optical measurements gave an NEP of 5 times 10(exp -11) W/Hz(exp 1/2) at 10 Hz. The second architecture is that of an antenna-coupled microbolometer which consists of a small (5x10 cubic microns) YBCO film deposited directly on a bulk substrate with a low thermal conductance (YSZ) and an impedance matched planar lithographed spiral or log-periodic antenna. This structure is produced by standard photolithographic techniques. Measurements gave an electrical NEP of 4.7 times 10(exp -12) W/Hz(exp 1/2) at 10 kHz. Measurements of the optical efficiency are in progress. The measured performance of both bolometers will be compared to other detectors operating at or above liquid nitrogen temperatures so as to identify potential applications.
NASA Astrophysics Data System (ADS)
Takahashi, K.; Kobayashi, H.; Yamada, Y.; Ibi, A.; Fukushima, H.; Konishi, M.; Miyata, S.; Shiohara, Y.; Kato, T.; Hirayama, T.
2006-09-01
In order to increase the critical current, Ic, we have fabricated thick GdBa2Cu3O7-δ (GdBCO) coated conductors (CCs) by the pulsed laser deposition (PLD) method on PLD-CeO2/ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO)/hastelloy metal substrate tapes. The highest critical current value was 522 A cm-1 for a thickness of 3.6 µm in self-field at 77 K. It was found that a low volume fraction of a-axis orientated grains was obtained in the thick GdBCO CCs, compared to YBa2Cu3O7-δ (YBCO) CCs. Consequently, the GdBCO CCs showed higher critical current density (Jc) than YBCO CCs in all thicknesses from 0.2 to 3.6 µm. Furthermore, we have succeeded in improving Ic in a magnetic field by the introduction of artificial pinning centres using a 5 mol% ZrO2 doped GdBCO target. In the measurement of the Ic dependence on the magnetic field angle, θ, Ic was much improved, especially at 0°, i.e., with the magnetic field parallel to the c-axis. The Ic value at 3 T was 59.5 A cm-1 at 0° and it showed a minimum of 42.3 A cm-1 at 82° for 2.28 µm thick CC. The minimum value in the angular dependence of Ic at 3 T was about five times higher than that of YBCO CC and two times higher than that of pure GdBCO CC.
NASA Astrophysics Data System (ADS)
Kinoshita, A.; Takahashi, K.; Kobayashi, H.; Yamada, Y.; Ibi, A.; Fukushima, H.; Konishi, M.; Miyata, S.; Shiohara, Y.; Kato, T.; Hirayama, T.
2007-10-01
In order to obtain a high critical current, Ic, we have fabricated a thick GdBa2Cu3O7-x (GdBCO) film by the pulsed laser deposition (PLD) method on a PLD-CeO2/ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO)/hastelloy metal substrate. The film of a 3.6 μm thickness exhibited the highest critical current of 522 A/cm at self-field and at 77 K. It was found that a low volume fraction of a-axis oriented grains was obtained in the thick GdBCO films, compared to YBa2Cu3O7-x (YBCO) films. The GdBCO films showed a higher critical current density (Jc), than YBCO films in all thicknesses from 0.2 to 3.6 μm. Furthermore, we have improved Ic in a magnetic field by the introduction of artificial pinning centers using a 5 mol% ZrO2-doped GdBCO target. In the measurement of angular dependence of Ic, which was much improved at 0°, the magnetic field was parallel to the c-axis. The Ic value at 3 T was 59.5 A/cm at 0° and showed a minimum of 42.3 A/cm at 82° for the film of a 2.3 μm thickness. The minimum value at 3 T in angular dependence of Ic was about five times higher than that of the YBCO film and two times higher than that of pure the GdBCO film.
NASA Astrophysics Data System (ADS)
Francke, G.; Dachwald, B.; Kowalski, J.; Digel, I.; Tulaczyk, S. M.; Mikucki, J.; Feldmann, M.; Espe, C.; Schöngarth, S.; Hiecker, S.; Blandfort, D.; Schüller, K.; Plescher, E.
2016-12-01
There is significant interest in sampling subglacial environments for geochemical and microbiological studies, but those environments are difficult to access. Such environments exist not only on Earth but are also expected beneath the icy crusts of some outer solar system bodies, like the Jovian moon Europa and the Saturnian moon Enceladus. Existing ice drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The "IceMole" is a maneuverable subsurface ice probe for clean in-situ analysis and sampling of glacial ice and subglacial materials. The design is based on combining melting and mechanical propulsion, using an ice screw at the tip of the melting head to maintain firm contact between the melting head and the ice. It can change melting direction by differential heating of the melting head and optional side wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland, where they demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. Hence, the IceMole allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. Therefore, between 2012 and 2014, a more advanced probe was developed as part of the "Enceladus Explorer" (EnEx) project. The EnEx-IceMole offers systems for relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection, which is all integrated through a high-level sensor fusion. In December 2014, it was used for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, where a subglacial brine sample was successfully obtained after about 17 meters of oblique melting. Particular attention was paid to clean protocols for the sampling of subglacial materials for geochemical and microbiological analysis. Much more development has to be done in many areas, however, until the probe can be used for extraterrestrial applications.
NASA Astrophysics Data System (ADS)
Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.
2017-12-01
Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as higher temperature leading to partial melting of the silicate portion of the mantle could have contributed to fast enough core formation. 1. Todd, K.A., Watson, H.C., Yu, T., Wang, Y., American Mineralogist, 101.9, 1996-2004, 2016
NASA Astrophysics Data System (ADS)
Ganzhorn, Anne-Céline; Trap, Pierre; Arbaret, Laurent; Champallier, Rémi; Fauconnier, Julien; Labrousse, Loic; Prouteau, Gaëlle
2015-04-01
Partial melting of continental crust is a strong weakening process controlling its rheological behavior and ductile flow of orogens. This strength weakening due to partial melting is commonly constrained experimentally on synthetic starting material with derived rheological law. Such analog starting materials are preferentially used because of their well-constrained composition to test the impact of melt fraction, melt viscosity and melt distribution upon rheology. In nature, incipient melting appears in particular locations where mineral and water contents are favorable, leading to stromatic migmatites with foliation-parallel leucosomes. In addition, leucosomes are commonly located in dilatants structural sites like boudin-necks, in pressure shadows, or in fractures within more competent layers of migmatites. The compositional layering is an important parameter controlling melt flow and rheological behavior of migmatite but has not been tackled experimentally for natural starting material. In this contribution we performed in-situ deformation experiments on natural rock samples in order to test the effect of initial gneissic layering on melt distribution, melt flow and rheological response. In-situ deformation experiments using a Paterson apparatus were performed on two partially melted natural gneissic rocks, named NOP1 & PX28. NOP1, sampled in the Western Gneiss Region (Norway), is biotite-muscovite bearing gneiss with a week foliation and no gneissic layering. PX28, sampled from the Sioule Valley series (French Massif Central), is a paragneiss with a very well pronounced layering with quartz-feldspar-rich and biotite-muscovite-rich layers. Experiments were conducted under pure shear condition at axial strain rate varying from 5*10-6 to 10-3 s-1. The main stress component was maintained perpendicular to the main plane of anisotropy. Confining pressure was 3 kbar and temperature ranges were 750°C and 850-900°C for NOP1 and PX28, respectively. For the 750°C experiments NOP1 was previously hydrated at room pressure and temperature. According to melt fraction, deformation of partially molten gneiss induced different strain patterns. For low melt fraction, at 750°C, deformation within the initially isotropic gneiss NOP1 is localized along large scales shear-zones oriented at about 60° from main stress component σ1. In these zones quartz grains are broken and micas are sheared. Melt is present as thin film (≥20 µm) at muscovite-quartz grain boundaries and intrudes quartz aggregates as injections parallel to σ1. For higher melt fraction, at 850°C, deformation is homogeneously distributed. In the layered gneiss PX28, deformation is partitioned between mica-rich and quartz-rich layers. For low melt fraction, at 850°C, numerous conjugate shear-bands crosscut mica-rich layers. Melt is present around muscovite grains and intrudes quartz grains in the favor of fractures. For high melt fractions, at 900°C, melt assisted creep within mica-rich layers is responsible for boudinage of the quartz-feldspar rich layers. Melt-induced veining assists the transport of melt toward inter-boudin zones. Finite strain pattern and melt distribution after deformation of PX28 attest for appearance of strong pressure gradients leading to efficient melt flow. The subsequent melt redistribution strongly enhance strain partitioning and strength weakening, as shown by differential stress vs. strain graphs. Our experiments have successfully reproduced microstructures commonly observed in migmatitic gneisses like boudinage of less fertile layers. Comparison between non-layered and layered gneisses attest for strong influence of compositional anisotropies inherited from the protolith upon melt distribution and migmatite strength.
Experimental petrology and origin of rocks from the Descartes Highlands
NASA Technical Reports Server (NTRS)
Walker, D.; Longhi, J.; Grove, T. L.; Stolper, E.; Hays, J. F.
1973-01-01
Petrographic studies of Apollo 16 samples indicate that rocks 62295 and 68415 are crystallization products of highly aluminous melts. 60025 is a shocked, crushed and partially annealed plagioclase cumulate. 60315 is a recrystallized noritic breccia of disputed origin. 60335 is a feldspathic basalt filled with xenoliths and xenocrysts of anorthosite, breccia, and anorthite. The Fe/(Fe+Mg) of plagioclase appears to be a relative crystallization index. Low pressure melting experiments with controlled Po2 indicate that the igneous samples crystallized at oxygen fugacities well below the Fe/FeO buffer. Crystallization experiments at various pressures suggest that the 62295 and 68415 compositions were produced by partial or complete melting of lunar crustal materials, and not by partial melting of the deep lunar interior.
Fousová, Michaela; Vojtěch, Dalibor; Doubrava, Karel; Daniel, Matěj; Lin, Chiu-Feng
2018-01-01
Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture—selective laser melting (SLM) and electron beam melting (EBM)—in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples. PMID:29614712
Fousová, Michaela; Vojtěch, Dalibor; Doubrava, Karel; Daniel, Matěj; Lin, Chiu-Feng
2018-03-31
Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture-selective laser melting (SLM) and electron beam melting (EBM)-in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.
How to measure heat capacity of metals at 10s to 100s of GPa
NASA Astrophysics Data System (ADS)
Geballe, Z. M.; Townley, A.; Jeanloz, R.
2014-12-01
Adapting methods of calorimetry to the diamond-anvil cell can provide important new information for understanding planetary interiors. Here we show that heat capacity of metals can be measured to the 10-100 GPa range by using AC electrical heating inside diamond anvil cells. Frequencies of f ≈ 1-100 MHz must be used to contain the heat within the sample of interest, as evidenced by numerical and physical models of heat flow: f > DinsCins2/(Csamdsam)2, where Dins is the thermal diffusivity of the insulation, Cins and Csam are specific heat capacities of insulation and metal sample, and dsam is sample thickness. Heat must be deposited uniformly (e.g. skin depth > sample thickness) for the most accurate and unambiguous measurements, thereby allowing measurement of the energetics of pre-melting, melting and partial melting of metals, including iron and its alloys. In principle, high-pressure calorimetry can be used to independently determine melting at high pressures, and also to quantify latent heats of fusion, thereby revealing the density of liquid metals at Earth core conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, Clémence; Maire, Eric, E-mail: eric.maire@insa-lyon.fr; Meille, Sylvain
The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive bucklingmore » of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.« less
NASA Astrophysics Data System (ADS)
Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina
2016-04-01
A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (< 2 vol. %). To fill this gap, we performed in situ electrical conductivity (EC) measurement on a partially-molten olivine aggregate (Fo92-olivine from a natural peridotite of Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.
Commercial Scale Production of High Temperature
1991-11-14
Rochester, Professor Alan Kadin and his graduate students Derek Mallory and Patrick Borelli , have concentrated on microwave measurements and intermediate...layers. Patrick Borelli was responsible for the PLZT/YBCO work. The same personnel will be available for the second year of the contract. We spent our
Temperature and flow fields in samples heated in monoellipsoidal mirror furnaces
NASA Astrophysics Data System (ADS)
Rivas, D.; Haya, R.
The temperature field in samples heated in monoellipsoidal mirror furnaces will be analyzed. The radiation heat exchange between the sample and the mirror is formulated analytically, taking into account multiple reflections at the mirror. It will be shown that the effect of these multiple reflections in the heating process is quite important, and, as a consequence, the effect of the mirror reflectance in the temperature field is quite strong. The conduction-radiation model will be used to simulate the heating process in the floating-zone technique in microgravity conditions; important parameters like the Marangoni number (that drives the thermocapillary flow in the melt), and the temperature gradient at the melt-crystal interface will be estimated. The model will be validated comparing with experimental data. The case of samples mounted in a wall-free configuration (as in the MAXUS-4 programme) will be also considered. Application to the case of compound samples (graphite-silicon-graphite) will be made; the melting of the silicon part and the surface temperature distribution in the melt will be analyzed. Of special interest is the temperature difference between the two graphite rods that hold the silicon part, since it drives the thermocapillary flow in the melt. This thermocapillary flow will be studied, after coupling the previous model with the convective effects. The possibility of counterbalancing this flow by the controlled vibration of the graphite rods will be studied as well. Numerical results show that suppressing the thermocapillary flow can be accomplished quite effectively.
NASA Technical Reports Server (NTRS)
Davis, M. F.; Wosik, J.; Forster, K.; Deshmukh, S. C.; Rampersad, H. R.
1991-01-01
The paper describes thin films deposited in a system where substrates are scanned over areas up to 3.5 x 3.5 cm through the stationary plume of an ablated material defined by an aperture. These YBCO films are deposited on LaAlO3 and SrTiO3 substrates with the thickness of 90 and 160 nm. Attention is focused on the main features of the deposition system: line focusing of the laser beam on the target; an aperture defining the area of the plume; computerized stepper motor-driven X-Y stage translating the heated sampler holder behind the plume-defining aperture in programmed patterns; and substrate mounting block with uniform heating at high temperatures over large areas. It is noted that the high degree of uniformity of the properties in each film batch illustrates that the technique of pulsed laser deposition can be applied to produce large YBCO films of high quality.
NASA Astrophysics Data System (ADS)
Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.
2015-12-01
The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.
Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors
NASA Astrophysics Data System (ADS)
Lee, J.; Johnson, L.; Safari, A.; Ramesh, R.; Sands, T.; Gilchrist, H.; Keramidas, V. G.
1993-07-01
Pb(Zr(0.52)Ti(0.48))O3 (PZT)/Y1Ba2Cu3O(x) (YBCO) heterostructures were grown by pulsed laser deposition, in which PZT films were epitaxial, highly oriented, or polycrystalline. These PZT films were obtained by varying the deposition temperature from 550 to 760 C or by using various substrates such as SrTiO3 (100), MgO (100), and r-plane sapphire. PZT films with Pt top electrodes exhibited large fatigue with 35-50 percent loss of the remanent polarization after 10 exp 9 cycles, depending on the crystalline quality. Polycrystalline films showed better fatigue resistance than epitaxial or highly oriented films. However, PZT films with both top and bottom YBCO electrodes had significantly improved fatigue resistance for both epitaxial and polycrystalline films. Electrode material seems to be a more important parameter in fatigue than the crystalline quality of the PZT films.
NASA Astrophysics Data System (ADS)
Yoon, Soon-Gil; Lee, Jai-Chan; Safari, A.
1994-09-01
The chemical composition and electrical properties were investigated for epitaxially crystallized (Ba(0.5),Sr(0.5))TiO3 (BST) films deposited on Pt/MgO and YBa2Cu3O(7-x) (YBCO)/MgO substrates by the laser ablation technique. Rutherford backscattering spectroscopy analysis shows that thin films on Pt/MgO have almost the same stoichiometric composition as the target material. Films deposited at 600 C exhibited an excellent epitaxial growth, a dielectric constant of 430, and a dissipation factor of 0.02 at 10 kHz frequency. They have a charge storage density of 40 fC/sq micron at an applied electric field of 0.15 MV/cm. Leakage current density of BST thin films on Pt/MgO was smaller than on YBCO/MgO. Their leakage current density is about 0.8 microA/sq cm at an applied electric field of 0.15 MV/cm.
Orbital symmetry of charge-density-wave order in La 1.875Ba 0.125CuO 4 and YBa 2Cu 3O 6.67
A. J. Achkar; He, F.; Sutarto, R.; ...
2016-02-15
Recent theories of charge density wave (CDW) order in high temperature superconductors have predicted a primarily d CDW orbital symmetry. Here, we report on the orbital symmetry of CDW order in the canonical cuprate superconductors La 1.875Ba 0.125CuO 4 (LBCO) and YBa 2Cu 3O 6.67 (YBCO), using resonant soft x-ray scattering and a model mapped to the CDW orbital symmetry. From measurements sensitive to the O sublattice, we conclude that LBCO has predominantly s0 CDW orbital symmetry, in contrast to the d orbital symmetry recently reported in other cuprates. Additionally, we show for YBCO that the CDW orbital symmetry differsmore » along the a and b crystal axes and that these both differ from LBCO. This work highlights CDW orbital symmetry as an additional key property that distinguishes the di erent cuprate families.« less
NASA Astrophysics Data System (ADS)
Ye, Jiping; Sun, Lei; Dai, Xianxi; Dai, Jixin
The flux relaxation is one of important topics in the studies of high Tc superconductivity, because it is related to the energy loss in practical applications. There are many mechanisms, theories and relaxation laws suggested in the literatures. It is very interesting to test them according to the characters and compare them with the experiments. Some people think that the characters of the famous theories are their negative curvature. According our inversion solution, the relaxation ArcG law and experimental data analysis, the relaxation law has both positive and negative signs. This prediction is hopeful to be checked by experiments in future. The current densities of many high Tc superconductors decrease very rapidly in the early time in the relaxation. People do not know what their maximums are. In this work, a theory to determine these maximums of the current densities is presented. The theory is concretely realized by inversion for some real data of the YBCO and their maximum current densities are obtained.
NASA Astrophysics Data System (ADS)
Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens
2016-02-01
The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7-δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.
Forensic characterization of HDPE pipes by DSC.
Sajwan, Madhuri; Aggarwal, Saroj; Singh, R B
2008-03-05
The melting behavior of 28 high density polyethylene (HDPE) pipe samples manufactured and supplied by 13 different manufacturers in India was examined by 'differential scanning calorimetry (DSC)' to find out if this parameter could be used in differentiating between these HDPE pipe samples which are chemically the same and being manufactured by different manufacturer. The results indicate that the melting temperature may serve as the useful criteria for differentiating HDPE (i) pipe samples from different sources and (ii) samples of different diameter from the same source.
Kelleher, J F; Gilvary, G C; Madi, A M; Jones, D S; Li, S; Tian, Y; Almajaan, A; Senta-Loys, Z; Andrews, G P; Healy, A M
2018-07-10
The purpose of this work was to investigate the application of different advanced continuous processing techniques (hot melt extrusion and spray drying) to the production of fixed-dose combination (FDC) monolithic systems comprising of hydrochlorothiazide and ramipril for the treatment of hypertension. Identical FDC formulations were manufactured by the two different methods and were characterised using powder X-ray diffraction (PXRD) and modulated differential scanning calorimetry (mDSC). Drug dissolution rates were investigated using a Wood's apparatus, while physical stability was assessed on storage under controlled temperature and humidity conditions. Interestingly both drugs were transformed into their amorphous forms when spray dried, however, hydrochlorothiazide was determined, by PXRD, to be partially crystalline when hot melt extruded with either polymer carrier (Kollidon® VA 64 or Soluplus®). Hot melt extrusion was found to result in significant degradation of ramipril, however, this could be mitigated by the inclusion of the plasticizer, polyethylene glycol 3350, in the formulation and appropriate adjustment of processing temperature. The results of intrinsic dissolution rate studies showed that hot-melt extruded samples were found to release both drugs faster than identical formulations produced via spray drying. However, the differences were attributable to the surface roughness of the compressed discs in the Wood's apparatus, rather than solid state differences between samples. After a 60-day stability study spray dried samples exhibited a greater physical stability than the equivalent hot melt extruded samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Degassing of H2O in a phonolitic melt: A closer look at decompression experiments
NASA Astrophysics Data System (ADS)
Marxer, Holger; Bellucci, Philipp; Nowak, Marcus
2015-05-01
Melt degassing during magma ascent is controlled by the decompression rate and can be simulated in decompression experiments. H2O-bearing phonolitic melts were decompressed at a super-liquidus T of 1323 K in an internally heated argon pressure vessel, applying continuous decompression (CD) as well as to date commonly used step-wise decompression (SD) techniques to investigate the effect of decompression method on melt degassing. The hydrous melts were decompressed from 200 MPa at nominal decompression rates of 0.0028-1.7 MPa·s- 1. At final pressure (Pfinal), the samples were quenched rapidly at isobaric conditions with ~ 150 K·s- 1. The bubbles in the quenched samples are often deformed and dented. Flow textures in the glass indicate melt transport at high viscosity. We suggest that this observation is due to bubble shrinkage during quench. This general problem was mostly overlooked in the interpretation of experimentally degassed samples to date. Bubble shrinkage due to decreasing molar volume (Vm) of the exsolved H2O in the bubbles occurs during isobaric rapid quench until the melt is too viscous too relax. The decrease of Vm(H2O) during cooling at Pfinal of the experiments results in a decrease of the bubble volume by a shrinking factor Bs: At nominal decompression rates > 0.17 MPa·s- 1 and a Pfinal of 75 MPa, the decompression method has only minor influence on melt degassing. SD and CD result in high bubble number densities of 104-105 mm- 3. Fast P drop leads to immediate supersaturation with H2O in the melt. At such high nominal decompression rates, the diffusional transport of H2O is limited and therefore bubble nucleation is the predominant degassing process. The residual H2O contents in the melts decompressed to 75 MPa increase with nominal decompression rate. After homogeneous nucleation is triggered, CD rates ≤ 0.024 MPa·s- 1 facilitate continuous reduction of the supersaturation by H2O diffusion into previously nucleated bubbles. Bubble number densities of CD samples with low nominal decompression rates are several orders of magnitude lower than for SD experiments and the bubble diameters are larger. The reproducibility of MSD experiments with low nominal decompression rates is worse than for CD runs. Commonly used SD techniques are therefore not suitable to simulate melt degassing during continuous magma ascent with low ascent rates.
Dating Melt Rock 63545 By Rb-Sr and Sm-Nd: Age of Imbrium; Spa Dress Rehearsal
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C. Y.; Reese, Y. D.
2011-01-01
Apollo 16 sample 63545 was initially described as one of a group of 19 generally rounded, fine-grained, crystalline rocks that were collected as rake samples [1]. This 16 g "rocklet" was collected at Station 13 on the ejecta blanket of North Ray Crater at the foot of Smoky Mountain [2]. Originally classified as a Very High Alumina (VHA) basalt on geochemical grounds [3], it was later argued to be an impact melt rock [4]. Here we report a Rb-Sr and Sm-Nd isotopic study that shows that some portions of the rock failed to reach isotopic equilibrium on last melting in agreement with the impact melt rock interpretation. Nevertheless, by omitting mineral fractions that are discordant with the majority of the data, we arrive at the time of last melting as 3.88 plus or minus 0.05 Ga ago. This age is in agreement with the Ar-39/Ar-40 plateau age of 3839 plus or minus 23 Ma [5], if the latter is adjusted for the 1.4-1.8% revision in the age of the hornblende monitor [6]. This investigation was undertaken in part as proof-of-concept for SPA-basin sample return.
Yang, Jing-Feng; Gao, Rong-Chun; Wu, Hai-Tao; Li, Peng-Fei; Hu, Xian-Shu; Zhou, Da-Yong; Zhu, Bei-Wei; Su, Yi-Cheng
2015-11-04
The sea cucumber body wall melting phenomenon occurs under certain circumstances, and the mechanism of this phenomenon remains unclear. This study investigated the apoptosis in the ultraviolet (UV)-induced sea cucumber melting phenomenon. Fresh sea cucumbers (Stichopus japonicus) were exposed to UV radiation for half an hour at an intensity of 0.056 mW/cm(2) and then held at room temperature for melting development. The samples were histologically processed into formalin-fixed paraffin-embedded tissues. The apoptosis of samples was analyzed with the terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) assay and cleaved caspase-3 immunohistochemistry. The emergence of TUNEL-positive cells speeds up between 0.5 and 2 h after UV irradiation. Cleaved caspase-3 positive cells were obviously detected in sample tissues immediately after the UV irradiation. These results demonstrated that sea cucumber melting induced by UV irradiation was triggered by the activation of caspase-3 followed by DNA fragmentation in sea cucumber tissue, which was attributed to apoptosis but was not a consequence of autolysis activity.
Abildgaard, Anders; Tovbjerg, Sara K; Giltay, Axel; Detemmerman, Liselot; Nissen, Peter H
2018-03-26
The lactase persistence phenotype is controlled by a regulatory enhancer region upstream of the Lactase (LCT) gene. In northern Europe, specifically the -13910C > T variant has been associated with lactase persistence whereas other persistence variants, e.g. -13907C > G and -13915 T > G, have been identified in Africa and the Middle East. The aim of the present study was to compare a previously developed high resolution melting assay (HRM) with a novel method based on loop-mediated isothermal amplification and melting curve analysis (LAMP-MC) with both whole blood and DNA as input material. To evaluate the LAMP-MC method, we used 100 whole blood samples and 93 DNA samples in a two tiered study. First, we studied the ability of the LAMP-MC method to produce specific melting curves for several variants of the LCT enhancer region. Next, we performed a blinded comparison between the LAMP-MC method and our existing HRM method with clinical samples of unknown genotype. The LAMP-MC method produced specific melting curves for the variants at position -13909, -13910, -13913 whereas the -13907C > G and -13915 T > G variants produced indistinguishable melting profiles. The LAMP-MC assay is a simple method for lactase persistence genotyping and compares well with our existing HRM method. Copyright © 2018. Published by Elsevier B.V.
Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta
NASA Technical Reports Server (NTRS)
Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.
2011-01-01
Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and <125 m powders of melt. Results: General petrography: The sample specimen is a coherent, medium dark-grey (N4), melt rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.
NASA Astrophysics Data System (ADS)
Tirone, M.; Rokitta, K.; Schreiber, U.
2016-09-01
A lava sample from the Tertiary Westerwald volcanic field was selected for a detailed study using various analytical techniques in combination with petrological, thermodynamic and diffusion modeling to extract information related to the thermochronological evolution of a magmatic event before eruption. The lava sample contains large olivine phenocrysts which are compositionally zoned and two coexisting but chemically distinct melts, a host melt with basaltic composition and small spherical pockets of a less abundant trachytic melt (globules). The sample was analyzed by electron microprobe, x-ray fluorescence (XRF) X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The primary melt of the host lava was determined using the program PRIMELT2.XLS. Partial fractional crystallization of olivine was modeled using the program alphaMELTS. Timescale and cooling rate were retrieved by fitting the measured Fe-Mg zoning along two directions in four olivine grains from the host lava using a 3-D numerical diffusion model. The measured variation of Ca is also consistent with a chemical diffusion process, while a numerical growth model applied to the same olivines does not appear to explain the Fe-Mg zoning. Chemical zoning of major elements in the melt globules were reproduced with a multicomponent diffusion model. The results of this study show that the host magma fractionated about 9% of olivine in a first stage, then the crystallization proceeded without further separation of mineral phases. Modeling of diffusion in the olivine crystals suggests that this second stage lasted at least 5 yrs and the temperature of the melt decreased from 1120-1150 °C to 1090 °C during this time. According to the results of the multicomponent diffusion model applied to the melt globules, the coexistence of the two melts was extremely short (less than few hours), possibly recording the assimilation of the globules during eruption or cooling of the whole system on the surface.
NASA Astrophysics Data System (ADS)
Rani Choudhary, Babita
2017-04-01
Melt inclusions represent sampling of magma during their growth in magma chambers and during ascent to the surface. Several studies of melt inclusions in Large Igneous Provinces (LIPs) in different parts of the world have been documented in the literature (Sobolev et al. 2011; Kamenetsky et al. 2012). Melt inclusions study from Deccan LIP can provide new insights into the physio-chemical conditions and evolution of this important LIP. The Deccan LIP was fissure eruption mainly emplaced over a very short duration at 66 Ma (Schoene et al. 2015). To better characterize and explain the diversity in geochemical composition, petrogenesis and volatile degassing, melt inclusions studies have been carried out in clinopyroxene and plagioclase feldspar from a suite of samples in the Western Ghats section. Samples were obtained from the upper three formations (the Wai subgroup). The inclusions are primary and range in shape and size varies from a few microns, up to 100 microns. The inclusions are crystalline, and contain daughter phases. Some are glassy, with or without a shrinkage bubble. The melt inclusions show substantial variations in major element composition. Inclusions are significantly enriched in TiO2 (3.68 to 0.08 wt%) and FeO (18.3 to 2.63 wt%). SiO2 ranges from 43.4-66.8 wt% and classification diagrams of total alkali (Na2O+K2O) Vs. silica melt inclusions show that most inclusions are of sub-alkaline to mildly alkaline composition. Al2O3 ranges from 9.7- 22.4wt % and MgO 18.3-1.6. EPMA measurements demonstrated the presence of daughter crystals, such as magnetite and titanomagnetite, and high FeO, TiO2 and CaO within melt inclusions among the silicate daughter crystal clusters. Volatiles are determined have wide range in composition in both plagioclase- and pyroxene-hosted melt inclusions by using FTIR technique, values up to 2wt% H2Ototal and 1808 ppm CO2. Moreover the variability in composition and volatiles the melt from the samples in a single flow suggests that trapped melts were significantly affected by degassing and the post-entrapment changes. After each hiatus of the magmatic pulse the differentiated residual magma was enriched in Fe-Mg-Ti. Post-entrapment crystal aggregates contribute to the alteration of the melt phase within the inclusions (Choudhary and Jadhav 2010) i.e. fractionating tholeiitic lavas follow a trend that reflected by iron saturation until Fe-Ti oxides start to precipitate. Compositional concentrations are affected by diffusion from the plagioclase host into the inclusion, e.g. precipitation of host, resulting the high Al2O3 .Therefore melt inclusions showed evolved fractionated melt with the presence of aggregated crystals indicating that formation of these Fe-Ti oxides have occurred in an aqueous condition. As well, the formation of daughter mineral assemblages (titanomagnetite, and magnetite crystallization inside the inclusions) promotes the diffusion of hydrogen out of the inclusions.
NASA Technical Reports Server (NTRS)
Mckay, G.; Wagstaff, J.; Yang, S.-R.
1986-01-01
Partition coefficients were determined for Gd, Lu, Hf and Zr among ilmenite, armalcolite, and synthetic high-Ti mare basaltic melts at temperatures from 1122 deg to 1150 deg, and at oxygen fugacities of IW x 10 exp 0.5, by in situ analysis with an electron microprobe, using samples doped to present concentration levels. Coefficients for Zr were also measured for samples containing 600-1600 ppm Zr using this microprobe. In addition, coefficients were determined for Hf and Zr between chromian ulvospinel and melt, for Hf between pigeonite and melt, and for Lu between olivine and melt by microprobe analysis of samples doped to present levels. Values measured using the microprobe were in agreement with the values measured by analyzing mineral separates from the same run products by isotope dilution. Coefficient values for ilmenite are less than 0.01 for the LREE, are around 0.1 for the HREE, and are several times greater than this for Zr and Hf.
Research On Bi-Based High-Temperature Superconductors
NASA Technical Reports Server (NTRS)
Banks, Curtis; Doane, George B., III; Golben, John
1993-01-01
Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.
NASA Astrophysics Data System (ADS)
Jing, Z.; Xu, M.; Jiang, P.; Yu, T.; Wang, Y.
2017-12-01
Knowledge of the density of silicate melts under high pressure conditions is important to our understanding of the stability and migration of melt layers in the Earth's deep mantle. A wide range of silicate melts have been studied at high pressures using the sink/float technique (e.g., Agee and Walker, 1988) and the X-ray absorption technique (e.g., Sakamaki et al, 2009). However, the effect of the Na2O component on high-pressure melt density has not been fully quantified, despite its likely presence in mantle melts. This is partly due to the experimental challenges that the Na-bearing melts often have relatively low density but high viscosity, both of which make it difficult to study using the above-mentioned techniques. In this study, we have developed a new technique based on X-ray micro-tomography to determine the density of melts at high pressures. In this technique, the volume of a melt is directly measured from the reconstructed 3-D images of the sample using computed X-ray micro-tomography. If the mass of the sample is measured using a balance or estimated from a reference density, then the density of the melt at high pressures can be calculated. Using this technique, we determined the density of jadeite melt (NaAlSi2O6) at high pressures up to 4 GPa in a Paris-Edinburg cell that can be rotated for 180 degrees under pressure. Results show that the Na2O component significantly decreases both the density and bulk modulus of silicate melts at high pressures. These data can be incorporated into a hard-sphere equation of state (Jing and Karato, 2011) to model the effect of the Na2O component on the potential density crossovers between melts produced in the mantle and the residual solid.
NASA Astrophysics Data System (ADS)
Le Boeuf, David
Des mesures de resistance longitudinale et de resistance de Hall en champ magnetique intense transverse (perpendiculaire aux plans CuO2) ont ete effectuees au sein de monocristaux de YBa2Cu3Oy (YBCO) demacles, ordonnes et de grande purete, afin d'etudier l'etat fondamental des supraconducteurs a haute Tc dans le regime sous-dope. Cette etude a ete realisee en fonction du dopage et de l'orientation du courant d'excitation J par rapport a l'axe orthorhombique b de la structure cristalline. Les mesures en champ magnetique intense revelent par suppression de la supraconductivite des oscillations magnetiques des resistances longitudinale et de Hall dans YBa2Cu 3O6.51 et YBa2Cu4O8. La conformite du comportement de ces oscillations quantiques au formalisme de Lifshitz-Kosevich, apporte la preuve de l'existence d'une surface de Fermi fermee a caractere quasi-2D, abritant des quasiparticules coherentes respectant la statistique de Fermi-Dirac, dans la phase pseudogap d'YBCO. La faible frequence des oscillations quantiques, combinee avec l'etude de la partie monotone de la resistance de Hall en fonction de la temperature indique que la surface de Fermi d'YBCO sous-dope comprend une petite poche de Fermi occupee par des porteurs de charge negative. Cette particularite de la surface de Fermi dans le regime sous-dope incompatible avec les calculs de structure de bande est en fort contraste avec la structure electronique presente dans le regime surdope. Cette observation implique ainsi l'existence d'un point critique quantique dans le diagramme de phase d'YBCO, au voisinage duquel la surface de Fermi doit subir une reconstruction induite par l'etablissement d'une brisure de la symetrie de translation du reseau cristallin sous-jacent. Enfin, l'etude en fonction du dopage de la resistance de Hall et de la resistance longitudinale en champ magnetique intense suggere qu'un ordre du type onde de densite (DW) est responsable de la reconstruction de la surface de Fermi. L'analogie de la phenomenologie entourant le comportement des resistances longitudinale et de Hall dans YBa2Cu3Oy, avec des systemes dans lesquels l'existence d'un ordre du type DW est etablie, notamment des cuprates a structure tetragonale a basse temperature ("Low Temperature Tetragonal", LTT), indique que l'ordre causant la reconstruction de la surface de Fermi est stabilise au voisinage du dopage p = 1/8, et est en competition directe avec la supraconductivite.
Melt segregation during Poiseuille flow of partially molten rocks
NASA Astrophysics Data System (ADS)
Quintanilla-Terminel, A.; Dillman, A. M.; Kohlstedt, D. L.
2015-12-01
Studies of the dynamics of partially molten regions of the Earth's mantle provide the basis necessary for understanding the chemical and physical evolution of our planet. Since we cannot directly observe processes occurring at depth, we rely on models and experiments to constrain the rheological behavior of partially molten rocks. Here, we present the results of an experimental investigation of the role of viscous anisotropy on melt segregation in partially molten rocks through Poiseuille flow experiments. Partially molten rock samples with a composition of either forsterite or anorthite plus a few percent melt were prepared from vacuum sintered powders and taken to 1200ºC at 0.1 MPa. The partially molten samples were then extruded through a channel of circular cross section under a fixed pressure gradient at 1200o to 1500oC. The melt distribution in the channel was subsequently mapped through image analyses of optical and backscattered electron microscopy images. In these experiments, melt segregates from the center toward the outer radius of the channel with the melt fraction at the outer radius increasing to twice that at the center. These results are consistent with base-state melt segregation as predicted by Takei and Holtzman (JGR, 2009), Takei and Katz (JFM, 2013) and Allwright and Katz (GJI, 2014) for sheared partially molten rocks for which viscosity is anisotropic due to the stress-induced, grain-scale alignment of melt.
Dynamic melting of metals in the diamond cell: Clues for melt viscosity?
NASA Astrophysics Data System (ADS)
Boehler, R.; Karandikar, A.; Yang, L.
2011-12-01
From the observed decreasing mobility of liquid iron at high pressure in the laser-heated diamond cell and the gradual decrease in the shear modulus in shock experiments, one may derive high viscosity in the liquid outer core of the Earth. A possible explanation could be the presence of local structures in the liquid as has been observed for several transition metals. In order to bridge the large gap in the timescales between static and dynamic melting experiments, we have developed new experimental techniques to solve the large discrepancies in the melting curves of transition metals (Fe, W, Ta, Mo) measured statically in the laser-heated diamond cell and in shock experiments. The new methods employ "single-shot" laser heating in order to reduce problems associated with mechanical instabilities and chemical reactions of the samples subjected to several thousand degrees at megabar pressures. For melt detection, both synchrotron X-ray diffraction and Scanning Electron Microscopy (SEM) on recovered samples are used. A third approach is the measurement of latent heat effects associated with melting or freezing. This method employs simultaneous CW and pulse laser heating and monitoring the temperature-time history with fast photomultipliers. Using the SEM recovery method, we measured first melting temperatures of rhenium, which at high pressure may be one of the most refractory materials. From the melt textures of Re, we did not observe a significant pressure dependence of viscosity.
Optical characterization of phase transitions in pure polymers and blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo, E-mail: vincenzo.lacarrubba@unipa.it
2015-12-17
To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers andmore » blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.« less
Identification of mothball powder composition by float tests and melting point tests.
Tang, Ka Yuen
2018-07-01
The aim of the study was to identify the composition, as either camphor, naphthalene, or paradichlorobenzene, of mothballs in the form of powder or tiny fragments by float tests and melting point tests. Naphthalene, paradichlorobenzene and camphor mothballs were blended into powder and tiny fragments (with sizes <1/10 of the size of an intact mothball). In the float tests, the mothball powder and tiny fragments were placed in water, saturated salt solution and 50% dextrose solution (D50), and the extent to which they floated or sank in the liquids was observed. In the melting point tests, the mothball powder and tiny fragments were placed in hot water with a temperature between 53 and 80 °C, and the extent to which they melted was observed. Both the float and melting point tests were then repeated using intact mothballs. Three emergency physicians blinded to the identities of samples and solutions visually evaluated each sample. In the float tests, paradichlorobenzene powder partially floated and partially sank in all three liquids, while naphthalene powder partially floated and partially sank in water. Naphthalene powder did not sink in D50 or saturated salt solution. Camphor powder floated in all three liquids. Float tests identified the compositions of intact mothball accurately. In the melting point tests, paradichlorobenzene powder melted completely in hot water within 1 min while naphthalene powder and camphor powder did not melt. The melted portions of paradichlorobenzene mothballs were sometimes too small to be observed in 1 min but the mothballs either partially or completely melted in 5 min. Both camphor and naphthalene intact mothballs did not melt in hot water. For mothball powder, the melting point tests were more accurate than the float tests in differentiating between paradichlorobenzene and non-paradichlorobenzene (naphthalene or camphor). For intact mothballs, float tests performed better than melting point tests. Float tests can identify camphor mothballs but melting point tests cannot. We suggest melting point tests for identifying mothball powder and tiny fragments while float tests are recommended for intact mothball and large fragments.
NASA Technical Reports Server (NTRS)
Daines, Martha J.; Richter, Frank M.
1988-01-01
An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.
Partial melting of the Allende (CV3) meteorite - Implications for origins of basaltic meteorites
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Mittlefehldt, D. W.; Jones, J. H.
1991-01-01
Eucrites and angrites are distinct types of basaltic meteorites whose origins are poorly known. Experiments in which samples of the Allende (CV3) carbonaceous chondrite were partially melted indicate that partial melts can resemble either eucrites or angrites, depending only on the oxygen fugacity. Melts are eucritic if this variable is below that of the iron-wuestite buffer or angritic if above it. With changing pressure, the graphite-oxygen redox reaction can produce oxygen fugacities that are above or below those of the iron-wuestite buffer. Therefore, a single, homogeneous, carbonaceous planetoid greater than 110 kilometers in radius could produce melts of drastically different composition, depending on the depth of melting.
NASA Astrophysics Data System (ADS)
Romero-Salazar, C.
2016-04-01
A critical-state model is postulated that incorporates, for the first time, the structural anisotropy and flux-line cutting effect in a type-II superconductor. The model is constructed starting from the theoretical scheme of Romero-Salazar and Pérez-Rodríguez to study the anisotropy induced by flux cutting. Here, numerical calculations of the magnetic induction and static magnetization are presented for samples under an alternating magnetic field, orthogonal to a static dc-bias one. The interplay of the two anisotropies is analysed by comparing the numerical results with available experimental data for an yttrium barium copper oxide (YBCO) plate, and a vanadium-titanium (VTi) strip, subjected to a slowly oscillating field {H}y({H}z) in the presence of a static field {H}z({H}y).
NASA Astrophysics Data System (ADS)
Mesa, J.; Lange, R. A.; Pu, X.
2017-12-01
Nepheline-normative, high-Mg basalts erupted from the western Mexican arc, along the Tepic-Zacoalco rift (TZR), have a trace-element signature consistent with an asthenosphere source, whereas calc-alkaline basalts erupted from the central Mexican arc in the Michoacan-Guanajuato volcanic field (MGVF) have a trace-element signature consistent with a mantle source strongly affected by subduction fluids. In this study, olivine-melt thermometry and plagioclase-liquid hygrometry are used to constrain the temperature and melt water content of the alkaline TZR basalts. The presence of diffusion-limited growth textures in olivine and plagioclase phenocrysts provide preliminary evidence of rapid growth during ascent. For each basalt sample, a histogram of all analyzed olivines in each sample allows the most Fo-rich composition to be identified, which matches the calculated composition at the liquidus via MELTS (Ghiorso & Sack, 1995; Asimow & Ghiorso, 1998) at fO2 values of QFM +2. Therefore a newly developed olivine-melt thermometer, based on DNiol/liq (Pu et al., 2017) was used to calculate temperature at the onset of olivine crystallization during ascent. Temperatures range from 1076-1247°C, whereas those calculated using an olivine-melt thermometer based on DMgol/liq range from 1141-1236 °C. Olivine-melt thermometers based on DMgol/liq are sensitive to melt H2O content, therefore ΔT = TMg - TNi (≤ 82 degrees) may be used as a qualitative indicator of melt H2O (≤ 2.6 wt% H2O; Pu et al., 2017). When temperatures from the Ni-thermometer are applied to the most calcic plagioclase in each sample (Waters & Lange, 2015), calculated melt H2O contents range from 1.3-1.9 (± 0.4) wt%. These values are significantly lower than those obtained from high-Mg calc-alkaline basalts from the MGVF using similar methods (1.9-5.0 wt%; Pu et al., 2017), consistent with a reduced involvement of slab-derived fluids in the origin of the alkaline TZR basalts from western Mexico.
Seismic energy partitioning during the 2008 Mw 7.9 Wenchuan earthquake from WFSD-1 core sample
NASA Astrophysics Data System (ADS)
Wang, H.; Li, H.; Janssen, C.; He, X.
2016-12-01
The seismic energy, defined as the total energy released from an earthquake, including frictional heating energy, radiated energy and fracture energy, is one of the fundamental parameters for understanding the overall features of the dynamic rupture on the fault. Here we present a natural sample from the Wenchuan earthquake fault scientific drilling project at WFSD-1, at 732.4-732.8 m-depth for frictional heating and fracture energy caculation. Slickenlines are clear on the fresh mirrore-like surface at 732.6 m. Detailed microstructural analyses via optical microscope, SEM and TEM, reveal that a 2 mm-thick amorphous material with quartz grains sitting in are present in fault gouge. Circles with different densities in the amorphous material indicate a melt-origin. Numerous open microcracks in the melt suggest that they are newly formed. Combined with anomaly mercury concentration and logging data at this location, we believe that the melt was generated during the Wenchuan earthquake. In addition, a melt with similar feature is also found at 1084 m-depth in WFSD-4S as the principal slip zone of the Wenchuan earthquake, hence we speculate that the melt may be present all along the Yingxiu-Beichuan rupture zone. TEM-EDX analyses show that the melt is mainly made of feldspar, i.e. feldspar is melted but quartz is not, indicating that the frictional melting temperature was 1230°C < T < 1720°C assuming a dry condition. Therefore, we can calculate the frictional heating using the melt caused by the earthquake. Besides, 120 µm-thick nano-scale quartz-rich layer is visible at the very edge of the melt layer, which compose the mirror-like structure surface with slicklines, produced by the Wenchuan earthquake. Therefore, it can be used to calculate the fracture energy based on the particule size distribution. As previous research show, during an earthquake, most of the energy was released by frictional heating (Scholz, 2002), only a small amount was consumed by seismic wave radiation (< 6%, Mc Garr, 1999) and mechanical wear (< 0.1%, Scholz, 1990). This sample yields a unique material to accurately calculate the seismic energy associated with the Wenchuan earthquake.
Long-term purity assessment in succinonitrile
NASA Astrophysics Data System (ADS)
Rubinstein, E. R.; Tirmizi, S. H.; Glicksman, M. E.
1990-11-01
Container materials for crystal growth chambers must be carefully selected in order to prevent sample contamination. To address the issue of contamination, high purity SCN was exposed to a variety of potential chamber construction materials, e.g., metal alloys, soldering materials, and sealants, at a temperature approximately 25 K above the melting point of SCN (58°C), over periods of up to one year. Acceptability, or lack thereof, of candidate chamber materials was determined by performing periodic melting point checks of the exposed samples. Those materials which did not measurably affect the melting point of SCN over a one-year period were considered to be chemically compatible and therefore eligible for use in constructing the flight chamber. A growth chamber constructed from compatible materials (304 SS and borosilicate glass) was filled with pure SCN. A thermistor probe placed within the chamber permitted in situ measurement of the melting point and, indirectly, of the purity of the SCN. Melting point plateaus were then determined, to assess the actual chamber performance.
Heat Capacity, Crystallization, and Nucleation in Poly(vinyl alcohol) Thin Films
NASA Astrophysics Data System (ADS)
Thomas, David; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph; Cebe, Peggy
Polyvinyl alcohol (PVA) is hydrophilic, biodegradable, semi-crystalline polymer with a wide array of applications ranging from textiles and packaging to medicine. Despite possessing favorable properties, PVA thermally degrades at temperatures just in excess of 200 °C which occurs slightly below the observed peak endothermic melting peak at 203 °C. Utilizing fast scanning calorimetry it is possible to minimize sample degradation allowing measurements of the liquid phase heat capacity as well as study nucleation and crystallization from the amorphous melt state. Samples cut from parent films 2-3 μm thick were placed on UFSC1 sensors and brought between -80 and 270 °C at rates of 2000 °C/s under a nitrogen atmosphere. After five complete cycles samples did not show any signs of degradation. By fitting the symmetry corrected glassy phase heat capacity with literature values for the specific heat capacity from the ATHAS databank sample masses were determined to vary between 15-50 ng. Homogeneous nucleation was observed for all samples cooled from the melt with peak temperature 123 °C. Fitting linear heat capacity baselines in the melt and glassy states it was possible to obtain an experimental measurement of the heat capacity increment 44.5 J/mol K at the glass transition 85 °C. NSF DMR-1206010.
Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A
2010-05-01
This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of < 1 log CFU was obtained for the fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.
2005-01-01
Development of a 100 MVA high temperature super- conducting generator. In: IEEE power engineering society meeting 2004, Denver, CL. [38] Schiferl R...Development of ultra efficient electrical motor systems. In: DOE Annual Superconductivity Peer Review Meeting 2004, Wash- ington, DC; Schiferl R, Rockwell
Analysis of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applications
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.
1996-01-01
The prospects of a YBa2Cu3O7(delta)(YBCO) hot-electron bolometer (HEB) mixer for a THz heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate.
Containerless Processing: Fabrication of Advanced Functional Materials from Undercooled Oxide Melt
NASA Astrophysics Data System (ADS)
Kumar, M. S. Vijaya; Ishikawa, Takehiko; Yoda, Shinichi; Kuribayashi, Kazuhiko
2012-07-01
Materials science in Microgravity condition is one of newly established cutting edge science field. After the effort of space development and space utilization, microgravity of space environment has been considered as one of novel tools for materials science because it assures containerless levitation. Containerless processing is a promising technique to explore the technologically important materials using rapid solidification of an undercooled melt. Recently, rare-earth ferrites and manganites have attracted great interest towards their wide applications in the field of electronic industry. Among these new hexagonal phases with a space group of P6 _{3}cm are technologically important materials because of multiferroic characteristics, i.e., the coexistence of ferroelectricity and magnetism in one compound. In the present study, containerless solidification of the R-Fe-O, and R-Mn-O melts were carried out to fabricate multiferroics under the controlled Po _{2}. Containerless processing is a promising technique to explore the new materials using rapid solidification of an undercooled melt because it provides large undercooling prior to nucleation. In order to undercool the melt deeply below the melting temperature under a precisely controlled oxygen partial pressure, an aerodynamic levitator (ADL) combined with ZrO _{2} oxygen sensor was designed. A spherical RFeO _{3} and RMnO _{3} sample was levitated by an ADL and completely melted by a CO _{2} laser in an atmosphere with predetermined Po _{2}.The surface temperature of the levitated droplet was monitored by a two-color pyrometer. Then, the droplet was cooled by turning off the CO _{2} laser. The XRD results of the rapidly solidified LuFeO _{3} and LuMnO _{3} samples at Po _{2} of 1x10 ^{5} Pa confirms the existence of the hexagonal metastable LuFeO _{3} phase. On the other hand, orthorhombic RFeO _{3} (R=Yb, Er, Y and Dy)and hexagonal RMnO _{3} (R=Ho-Lu)phases were identified. The cross-sectioned scanning electron microscopy (SEM) images and TG/DTA results revealed the existence of the stable and metastable phases with decreasing Po _{2}. The magnetic properties of the as-solidified samples were studied using vibrating sample magnetometer (VSM). These results indicate that a metastable and stable phase solidifies directly from the undercooled melt even when the melt is undercooled much below the peritectic temperature.
NASA Astrophysics Data System (ADS)
McCann, V. E.; Barton, M.; Thornber, C. R.
2005-12-01
We have shown previously that oxygen fugacities calculated from olivine-melt equilibrium using rim compositions agree well with those calculated from analyzed Fe3+/σFe for MORB and for Icelandic OIB (MORB - average ΔFMQ -0.72 versus -0.70, Iceland average ΔFMQ -0.49 versus -0.58). The agreement between oxygen fugacities calculated from Ol-melt equilibrium and those calculated from analyzed Fe3+/σFe is excellent for individual samples of MORB from the FAMOUS region and Blanco Trough ( difference in calculated ΔFMQ < 0.30). Published analyses of Fe3+/σFe yield oxygen fugacilties of ΔFMQ= -0.72±0.43 for lavas from Kilauea and Mauna Loa, and ΔFMQ=0.91±0.72 for Loihi, very close to those for MORB. Oxygen fugacities determined using carefully selected Ol-melt analyses (ΔFMQ= -0.43±0.32) are in reasonable agreement with those determined from Fe3+/σFe for Kilauea and Mauna Loa, and agreement between fO2 calculated from Ol-melt equilibrium (ΔFMQ= -0.26) and that calculated from Fe3+/σFe (ΔFMQ= -0.64) is excellent for one sample from Kilauea. However, olivine-melt pairs from some samples, including those from the Pu'u'O'o lavas, yield anomalously high or low estimates of fO2 (average ΔFMQ =-0.6907, range -4.07 to +0.34). We suggest that these anomalous values reflect the complex history of olivines in these lavas, in particular the effects of magma mixing. Some olivines in the Pu'u'O'o lavas clearly have rims that are anomalously rich in Fa, whereas others have rims that are anomalously rich in Fo and do not appear to have equilibrium compositions. Given the dependence of olivine composition on melt Fe3+/σFe, there is no simple method to determine the equilibrium composition of olivine for a particular melt. However, detailed zoning profiles and analyses of microphenocrysts allow probable equilibrium compositions to be identified. We suggest that the average fO2 of Hawaiian lavas lies close to (ΔFMQ= -1) based on published results using spinel-melt equilibrium and Fe-Ni exchange between olivine and sulfide liquid. Olivine-glass inclusion data for Koolau samples also suggest (ΔFMQ= ~-1).
Flash melting of tantalum in a diamond cell to 85 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karandikar, Amol; Boehler, Reinhard
2016-02-09
Here, we demonstrate a new level of precision in measuring melting temperatures at high pressure using laser flash-heating followed by Scanning Electron Microscopy and Focused Ion Beam Milling. Furthermore, the new measurements on tantalum put unprecedented constraints on its highly debated melting slope, calling for a reevaluation of theoretical, shock compression and diamond cell approaches to determine melting at high pressure. X-ray analysis of the recovered samples confirmed the absence of chemical reactions, which likely played a significant role in previous experiments.
Effects of Melt Processing on Evolution of Structure in PEEK
NASA Technical Reports Server (NTRS)
Georgiev, Georgi; Dai, Patrick Shuanghua; Oyebode, Elizabeth; Cebe, Peggy; Capel, Malcolm
1999-01-01
We report on the effects of melt processing temperature on structure formation in Poly(ether-ether-ketone), PEEK. Real time Small Angle X-ray Scattering, SAXS, and thermal analysis are used to follow the melting behavior after various stages of processing. Assignment of peaks to structural entities within the material, the relative perfection of the crystals, and the possibility of their reorganization, are all influenced by the melt processing history. With the advent of high intensity synchrotron sources of X-radiation, polymer scientists gain a research tool which, when used along with thermal analysis, provides additional structural information about the crystals during growth and subsequent melting. PEEK is an engineering thermoplastic polymer with a very high glass transition temperature (145 C) and crystal melting point (337 C). PEEK has been the subject of recent studies by X-ray scattering in which melt and cold crystallization were followed in real-time. X-ray scattering and thermal studies have been used to address the formation of dual endothermic response which has been variously ascribed to lamellar insertion, dual crystal populations, or melting followed by re-crystallization. Another important issue is whether all of the amorphous phase is located in interlamellar regions, or alternatively whether some is located in "pockets" away from the crystalline lamellar stacks. The interpretation of scattering from lamellar stacks varies depending upon whether such amorphous pockets are formed. Some groups believe all of the amorphous phase is interlamellar. This leads to selection of a smaller thickness for the crystals. Other groups suggest that most amorphous phase is not interlamellar, and this leads to the suggestion that the crystal thickness is larger than the amorphous layer within the stacks. To investigate these ideas, we used SAXS and Differential Scanning Calorimetry to compare results of single and dual stage melt crystallization of PEEK using a treatment scheme involving annealing/crystallization at T(sub a1) followed by annealing at T(sub a2) where either T(sub a1) < T(sub a2) or T(sub a1) > T(sub a2). We proposed a model to explain multiple melting endotherms in PPS, treated according to one or two-stage melt or cold crystallization. Key features of this model are that multiple endotherms: (1) are due to reorganization/recrystallization after cold crystallization; and, (2) are dominated by crystal morphology after melt crystallization at high T. In other words, multiple distinct crystal populations are formed by the latter treatment, leading to observation of multiple melting. PEEK 45OG pellets (ICI Americas) were the starting material for this study. Films were compression molded at 400 C, then quenched to ice water. Samples were heated to 375 C in a Mettler FP80 hot stage and held for three min. to erase crystal seeds before cooling them to T(sub a1) = 280 C . Samples were held at T(sub a2) for a period of time, then immediately heated to 360 C. In the second treatment samples were held at T(sub a1) = 31 C for different crystallization times t(sub c) then cooled to 295 C and held 15 min. In situ (SAXS) experiments were performed at the Brookhaven National Synchrotron Light Source with the sample located inside the Mettler hot stage. The system was equipped with a two-dimensional position sensitive detector. The sample to detector distance was 172.7 cm and the X-ray wavelength was 1.54 Angstroms. SAXS data were taken continuously during the isothermal periods and during the heating to 360 C at 5 C/min. Each SAXS scan was collected for 30 sec. Since the samples were isotropic, circular integration was used to increase the signal to noise ratio. After dual stage melt crystallization with T(sub a1) < T(sub a2) the lower melting endotherm arises from holding at T(sub a1). During cooling a broad distribution of crystals forms, and the low-melting tail is perfected during T(sub al). Heating to T(sub a2) melts these imperfect crystals and allows others with greater average long spacing to form in their place. After dual stage crystallization with T(sub a1) > T(sub a2), the amount of space remaining for additional growth at T(sub a2) depends upon the holding time at T(sub a1). The long period of crystals formed at T(sub a2) is smaller than that formed at T(sub a1) due to growth in a now-restricted geometry. Perfection of crystals is seen as an increase of the intensity of the population scattering at higher s, while the intensity of the population scattering at lower s stays constant. During heating from below to above the minor endotherm, we see rapid decrease of the intensity of the X-ray scattering corresponding to the population of crystals scattering in the shoulder. Another important observation is that after the sample is annealed at 295 C, the shoulder intensity is restored once again. The population scattering at higher s remains longer before it disappears in the sample treated to the second stage of melt crystallization, compared to the sample crystallized with a single stage. This could be interpreted as an effect of continued perfection of the less perfect population, which is also reflected in the increased melting temperature of the smaller endotherm as the holding time at 295 C increases. In the corresponding DSC scans we see a shift in the area and the peak temperature of the lower melting endotherm with an increase of the annealing time.
NASA Technical Reports Server (NTRS)
Ross, D. K.; Rao, M. N.; Nyquist, L.; Agee, C.; Sutton, S.
2013-01-01
Immiscible sulfide melt spherules are locally very abundant in shergottite impact melts. These melts can also contain samples of Martian atmospheric gases [1], and cosmogenic nuclides [2] that are present in impact melt, but not in the host shergottite, indicating some components in the melt resided at the Martian surface. These observations show that some regolith components are, at least locally, present in the impact melts. This view also suggests that one source of the over-abundant sulfur in these impact melts could be sulfates that are major constituents of Martian regolith, and that the sulfates were reduced during shock heating to sulfide. An alternative view is that sulfide spherules in impact melts are produced solely by melting the crystalline sulfide minerals (dominantly pyrrhotite, Fe(1-x)S) that are present in shergottites [3]. In this abstract we report new analyses of the compositions of sulfide immiscible melt spherules and pyrrhotite in the shergottites Tissint, and EETA79001,507, and we use these data to investigate the possible origins of the immiscible sulfide melt spherules. In particular, we use the metal/S ratios determined in these blebs as potential diagnostic criteria for tracking the source material from which the numerous sulfide blebs were generated by shock in these melts.
Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test.
Blagojević, Jelena; Stamenković, Gorana; Vujosević, Mladen
2009-09-01
The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase-telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples.
NASA Astrophysics Data System (ADS)
Caprarelli, G.; Reidel, S. P.
2004-12-01
The Miocene Columbia River Basalt Group (CRBG) of north-western USA was emplaced in a geologically dynamic setting characterized by a close association between magmatism and lithospheric thinning and rifting. We present and discuss electron probe microanalysis and XRFA data obtained from samples spanning the entire sequence of the CRBG. The examined basalts have near-aphyric textures. No glass is present, and plagioclase and augitic clinopyroxene are dominant matrix and groundmass phases. Plagioclase microcrysts are labradoritic to bytownitic. Whole rock compositions were taken as proxies of the liquid compositions. Application of plagioclase / melt and clinopyroxene / melt geothermobarometers indicated that during crustal ascent the magmas were dry, and that pre-eruptive pressures and temperatures ranged from 0 to 0.66 GPa and 1393 to 1495 K, respectively. In a P-T diagram most of the samples are distributed along a general CRBG trend, while some samples plot along a parallel higher temperature trend. The calculated P-T values, the positive correlation between calculated P and T, and no horizontal alignment of the data, exclude the presence of upper crustal solidification fronts, and indicate that magma aggregation zones were located deeper than 25 km, plausibly immediately below the Moho, that in this region is at a depth of approximately 35 km. Episodic stretching of the lithosphere best explains the observed parallel P-T trends. Whole rock major element abundances resulted from fractional crystallization of the magmas during ascent. To retrieve the compositions of the primitive melts we added to the bulk rock compositions variable amounts of magnesian olivine [Mg/(Mg+Fe) = 0.88], and derived the evolution of olivine fractionating magmas in equilibrium with mantle harzburgite. Two groups of samples were found, corresponding to the parallel P-T trends obtained from mineral / melt calculations. The highest temperature trend corresponds to samples whose calculated primitive compositions are in agreement with those obtained from peridotite melting experiments (as published in the relevant literature). Interpretation of results for rocks belonging to the general CRBG trend suggests, either: (a) that higher forsteritic content olivine should be used in the calculations; or, (b) that melt / ol / opx reactions occurred. Investigation of the CRBG primitive compositions has relevance with regard to the geodynamic evolution models of this region. We are currently undertaking melt inclusion studies of suitable CRBG samples.
High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks
NASA Astrophysics Data System (ADS)
Mercer, Cameron Mark
Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples. To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such polygenetic rocks should be regarded as high-value sampling opportunities during future exploration missions to cratered planetary surfaces. Collectively, my results complement previous incremental heating 40Ar/39Ar studies, and support interpretations that the Moon experienced a prolonged period of heavy bombardment early in its history.
Experimental Investigation of the Viscosity of Iron-rich Silicate Melts under Pressure
NASA Astrophysics Data System (ADS)
Edwards, P. M.; Lesher, C. E.; Pommier, A.; O'Dwyer Brown, L.
2017-12-01
The transport properties of silicate melts govern diffusive flow of momentum, heat, and mass in the interior of terrestrial planets. In particular, constraining melt viscosity is critical for dynamic modeling of igneous processes and is thus key to our understanding of magma convection and mixing, melt migration in the mantle, and crystal-liquid fractionation. Among the different constituents of silicate melts, iron is of significant importance as it highly influences some of their properties, such as surface tension, compressibility, and density. We present an experimental study of the viscosity of natural and synthetic iron-rich silicate melts under pressure. In situ falling-sphere measurements of viscosity have been conducted on hedenbergite (CaFeSi2O6) and iron-rich peridotite melts from 1 to 7 GPa and at temperatures between 1750 and 2100 K, using the multi-anvil apparatus at the GSECARS beamline at the Advanced Photon Source, Argonne National Lab. We used double reservoir capsules, with the bottom reservoir containing the sample, while a more refractory material is placed in the upper reservoir (e.g., diopside, enstatite, forsterite). This configuration allows the fall of two rhenium spheres across the sample at different temperatures. Melt viscosity is calculated using Stokes' law and the terminal velocity of the spheres. We observe that melt viscosity slightly decreases with increasing temperature and increasing pressure: for instance, the viscosity of the hedenbergite melt decreases from 1.26 Pa•s to 0.43 Pa•s over the 1 - 3.5 GPa pressure range and between 1820 and 1930 K. Our experimental data are used to develop a viscosity model of iron-rich silicate melts under pressure. Results will be compared with previous viscosity works on iron-free and iron-bearing silicate liquids in order to discuss the effect of iron on melt viscosity and structure at pressure and temperature conditions relevant to terrestrial mantles.
Origin Of Extreme 3He/4He Signatures In Icelandic Lavas: Insights From Melt Inclusion Studies
NASA Astrophysics Data System (ADS)
Harlou, R.; Kent, A. J.; Breddam, K.; Davidson, J. P.; Pearson, D. G.
2003-12-01
Helium isotopes are considered a powerful tool for tracking different mantle domains. Yet, the origin of He isotope variations in many basaltic suites remains enigmatic and often difficult to link with more lithophile chemical and isotopic tracers. One problem is that He isotope ratios are measured from crushed olivines and thus reflect prior fluid and melt fluxes trapped in inclusions within the olivine grains, whereas the lithophile elements mainly reflect the host lava. In an attempt to link He and lithophile element variations, we have characterized the major and trace element composition including volatile elements, of olivine-hosted melt inclusions from three ankaramitic lavas from Vestfirdir, NW-Iceland. Previous studies have reported extreme 3He/4He ratios from NW-Iceland and one ankaramite (SEL97) has been suggested to provide the most precise estimate of the radiogenic (Sr-Nd-Pb) isotopic composition of a relatively undegassed (high 3He/4He) mantle component (C or FOZO) common to several ocean islands (Hilton et al. 1999, EPSL 173, 53-60). The samples investigated here exhibit amongst the highest 3He/4He ratios observed in terrestrial rocks (42.9 and 34.8 R/Ra). A detailed account of the trace element signature of melt inclusions in these samples may thus help explain the origin of FOZO. One sample of similar composition to these, has a lower He content and a relatively poorly defined He isotope composition of 8.15 +/- 5.1 R/Ra (Breddam & Kurz, 2001, EOS, 82, F1315). In terms of major elements, the whole rock data reflect olivine accumulation, whereas the melt inclusion data reflect ol + cpx fractionation. The melt inclusions are generally basaltic (Mg#: 52-62), with primitive mantle normalised trace element concentrations that are broadly parallel the host lavas. There is little compositional difference between melt inclusion populations from high and low 3He/4He lavas, although inclusions of the low 3He/4He lava have lower S and moderately lower Cl. The observed range of trace element ratios: [La/Sm]N 1-4, [La/Yb]N 1-5, Sr/Nd 14-24, Ba/Rb 9-23, and Ce/Pb 5-46, covers much of the range observed in Icelandic alkali basalts. The compositional similarities between inclusions and host lavas suggests that bulk rock compositions are petrogenetically related to the melts sampled by melt inclusions. If He predominantly resides in these inclusions, it suggests that the whole rock composition is an aggregate derived from the same melts that contain the measured He.
Melting temperatures of MgO under high pressure determined by micro-texture observation
NASA Astrophysics Data System (ADS)
Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.
2016-12-01
Periclase (MgO) is the second abundant mineral after bridgmanite in the Earth's lower mantle, and its melting temperature (Tm) under pressure is important to constrain the chemical composition of ultra-deep magma formed near the mantle-core boundary. However, the melting behavior is highly controversial among previous studies: a laser-heated diamond anvil cell (LHDAC) study reported a melting curve with a dTm/dP of 30 K/GPa at zero pressure [1], while several theoretical computations gave substantially higher dTm/dP of 90 100 K/GPa [2,3]. We performed a series of LHDAC experiments for measurements of Tm of MgO under high pressure, using single crystal MgO as the starting material. The melting was detected by using micro-texture observations of the quenched samples. We found that the laser-heated area of the sample quenched from the Tm in previous LHDAC experiments [1] showed randomly aggregated granular crystals, which was not caused by melting, but by plastic deformation of the sample. This suggests that the Tms of their study were substantially underestimated. On the other hand, the sample recovered from the temperature higher by 1500-1700 K than the Tms in previous LHDAC experiments showed a characteristic internal texture comparable to the solidification texture typically shown in metal casting. We determined the Tms based on the observation of this texture up to 32 GPa. Fitting our Tms to the Simon equation yields dTm/dP of 82 K/GPa at zero pressure, which is consistent with those of the theoretical predictions (90 100 K/GPa) [2,3]. Extrapolation of the present melting curve of MgO to the pressure of the CMB (135 GPa) gives a melting temperature of 8900 K. The present steep melting slope offers the eutectic composition close to peridotite (in terms of Mg/Si ratio) throughout the lower mantle conditions. According to the model for sink/float relationship between the solid mantle and the magma [4], a considerable amount of iron (Fe/(Mg+Fe) > 0.24) is expected for the peridotitic partial melt so that it is gravitationally stable to form the ULVZs at the bottom of the lower mantle. Reference 1 A. Zerr and R. Boehler, Nature 371, 506 (1994). 2 D. Alfe, Phys. Rev. Lett. 94, 235701 (2005). 3 N. de Koker and L. Stixrude, Geophys. J. Int. 178, 162 (2009). 4 Funamori, and N. Sato, Earth Planet. Sci. Lett. 295, 435 (2010).
Tomographic location of potential melt-bearing phenocrysts in lunar glass spherules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebel, D.S.; Fogel, R.A.; Rivers, M.L.
2005-02-04
Apollo 17 orange glass spherules contain olivine phenocrysts with melt inclusions from depth. Tomography (<2micron/pxl) of >200 spherules located 1 phenocryst. We will try to find melt inclusions and obtain original magma volatiles and compositions. In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains. The fire-fountains were apparently drivenmore » by a combination of C-O gas exsolution from orange glass melt and the oxidation of graphite. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO{sub 2}) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules. Moreover, it showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains. More direct evidence for the volatile mechanism has yet to be uncovered. Issues remaining include: the exact composition of magmatic volatiles; the hypothesized existence of graphite in the magma; the oxygen fugacity of the magma and of the lunar interior. In 1996 reported a single {approx}450 micron, equant olivine phenocryst, containing four glassy melt inclusions (or inclusion cores), the largest {approx}30micron in size, in a thin section of the 74001/2 drill core. The melt is assumed to sample the parent magma of the lunar basalts at depth, evidenced by the S content of the inclusion (600 ppm) which is 400 ppm greater than that of the orange glass host. Such melts potentially contain a full complement of the volatile components of the parent magma, which can be analyzed by infrared spectroscopy. Although the A17 orange glass magma is thought to derive from {approx} 400 km depth, the calculations imply a 4 km depth of graphite oxidation (and melt saturation in C-O volatiles) during ascent. We have imaged several hundred similar orange glass spherules, from sample 74220,764, using synchrotron x-ray computer-aided microtomography (XRCMT). Our goals: (1) locate similar phenocrysts containing melt inclusions; (2) analyze phenocrysts to understand the evolution of the magma; (3) analyze melt and fluid inclusions using EPMA and FTIR to obtain direct evidence of magmatic volatiles and pristine bulk compositions.« less
NASA Astrophysics Data System (ADS)
Jolliff, Bradley L.; Rockow, Kaylynn M.; Korotev, Randy L.; Haskin, Larry A.
1996-01-01
Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments from the 2 mm-4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large rock samples. The compositions and proportions of 2 mm-4 mm fragments provide a bridge between compositions of <1 mm fines, and types and proportions of rocks observed in large collected breccias and their clasts. The 2 mm-4 mm fraction of soil from South Massif, represented by an unbiased set of lithic fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7% incompatible-trace-element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro breccia, and metal). In contrast, the 2 mm-4 mm fraction of a soil from the North Massif, represented by an unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31% agglutinates and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass-weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17 highland stations, differences between the station-2 and station-6 samples are representative of differences between available samples from the two massifs. From the distribution of different rock types and their compositions, we conclude the following: (1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely layered massifs and known local geology. The greater percentage of impact-melt breccia in the South-Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the 2 mm-4 mm grain-size fraction is enriched in impact-melt breccias compared to the <1 mm fraction, suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin) highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite, which is a component that is rare in station-2 South-Massif soils. (4) Compositional differences between poikilitic impact-melt breccias from the two massifs suggest broad-scale heterogeneity in impact-melt breccia interpreted by most investigators to be ejecta from the Serenitatis basin. We have found rock types not previously recognized or uncommon at the Apollo 17 site. These include (1) ITE-rich impact-melt breccias that are compositionally distinct from previously recognized "aphanitic" and "poikilitic" groups at Apollo 17; (2) regolith breccias that are free of mare components and poor in impact melt of the types associated with the main melt-breccia groups, and that, if those groups derive from the Serenitatis impact, may represent the pre-Serenitatis surface; (3) several VLT basalts, including an unusual very-high-K basaltic breccia; (4) orange-glass regolith breccias; (5) aphanitic-matrix melt breccias at station 6; (6) fragments of alkali-rich composition, including alkali anorthosite, and monzogabbro; (7) one fragment of 72275-type KREEP basalt from station 3; (8) seven lithic fragments of ferroan-anorthositic-suite rocks; and (9) a fragment of metal, possibly from an L chondrite. Some of these lithologies have been found only as lithic fragments in the soils and not among the large rock samples. In contrast, we have not found among the 2 mm-4 mm lithic fragments individual samples of certain lithologies that have been recognized as clasts in breccias (e.g., dunite and spinel troctolite). The diversity of lithologic information contained in the lithic fragments of these soils nearly equals that found among large rock samples, and most information bearing on petrographic relationships is maintained, even in such small samples. Given a small number of large samples for "petrologic ground truth," small lithic fragments contained in soil "scoop" samples can provide the basis for interpreting the diversity of rock types and their proportions in remotely sensed geologic units. They should be considered essential targets for future automated sample-analysis and sample-return missions.
NASA Astrophysics Data System (ADS)
Vaum, R. C.; Gualda, G. A.; Ghiorso, M. S.; Miller, C. F.; Colombini, L. L.
2009-12-01
The Highland Range near Searchlight, Nevada is comprised of mid-Miocene, intermediate to silicic volcanic rocks. This study focuses on the most silicic portion of the eruptive sequence (16.0-16.5 Ma). The first eruptions during this interval were effusive and produced trachydacite (66-70 wt% SiO2), but later the eruptive style shifted to explosive and compositions were more evolved (70-78 wt% SiO2). Glass compositions in rocks saturated in both quartz and sanidine align along the 150 MPa quartz+sanidine saturation surface, suggesting that the Highland Range magmas equilibrated in a single reservoir at that pressure. We are interested in better understanding this transition in eruptive style from effusive to eruptive, and our approach is based on modeling melt evolution using MELTS thermodynamic modeling software. We selected representative samples from key stratigraphic units, and focused on samples for which whole-rock and glass compositions, as well as mineral abundances, are available. This allows for direct comparison of simulation results with existing data. Initial simulations showed that MELTS predicts unrealistic paths of evolution when compared to the glass compositions and to the phase relations in the Qz-Ab-Or ternary. In particular, the stability field of quartz predicted by MELTS is much too small, causing melts to become exceedingly silicic (>80 wt% SiO2). Sanidine, on the other hand, has fairly sodic compositions and crystallizes too early in the sequence; therefore, simulated melt compositions are never as potassic as the analyzed glasses. Similar results are obtained when modeling the evolution of the Bishop and Campanian magmas, showing that these are systematic problems in MELTS calibration. Accordingly, we have adjusted the enthalpy of quartz and potassium end-member of the feldspar solid solution in MELTS so that the quartz-sanidine saturation surface is correctly predicted. We find that this modified version of MELTS much better models the evolution of silicic magmas. Sanidine begins to crystallize at lower temperatures, causing evolved melts to become significantly more potassic. Also, MELTS prediction of quartz saturation is in agreement with the position of the experimentally determined 150 MPa quartz+sanidine saturation surface. Importantly, the melt evolution that this modified version of MELTS predicts is very consistent with whole-rock data, glass chemistry, and mineral abundances in samples from the Highland Range. Simulations using the modified version of MELTS show that it works remarkably well, at least for relatively low degrees of crystallization. But a more reliable model to simulate the evolution of silicic magmas is necessary to more properly simulate the evolution of silicic systems, in particular at high degrees of crystallinity. We are currently working to create gMELTS, an associated solution model of the haplogranitic system, which, once completed, will be optimized to simulate the evolution of silicic systems.
Molecular characterization of dissolved organic matter during the Arctic spring melt period
NASA Astrophysics Data System (ADS)
Gueguen, C.; Mangal, V.; Shi, Y. X.
2016-02-01
The application of high resolution electrospray ionization mass spectrometry has advanced our understanding of dissolved organic matter (DOM) at molecular level. The arctic spring melt period has been largely undersampled owing to logistical and safety issues, yet this period is extremely important to the overall flux of DOM and related contaminants including metals from high latitude rivers. In this study, we present high resolution molecular composition of 35 DOM samples collected in the Churchill River (Manitoba) during the 2015 spring melt period. As spring melt progresses, a significant change in the two most dominant carbon pools, protein and lignin, was observed. For example, the relative abundance of proteins detected in the river DOM samples increased from 19 to 44% during the spring flush, likely reflecting a change in DOM source. Similar patterns were found using fluorescence spectroscopy.
Evidence for Impact Shock Melting in CM and CI Chondrite Regolith Samples
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Le, Loan
2014-01-01
C class asteroids frequently exhibit reflectance spectra consistent with thermally metamorphosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be near-Earth asteroid 1999 JU3, the target of the Hayabusa II sample return mission [1], although not all spectra indicate this. In fact most spectra of 1999 JU3 are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C class asteroids - impact shock melting. Impact shock melting has been proposed to explain some mineralogical characteristics of CB chondrites, but has not been considered a major process for hydrous carbonaceous chondrites. What evidence is there for significant shock melting in the very abundant CMs, or less abundant but still important CI chondrites?
NASA Astrophysics Data System (ADS)
Obeidi, Muhannad A.; McCarthy, Eanna; Brabazon, Dermot
2018-05-01
This study is investigating the effect of the laser surface melting of 316L stainless steel cylindrical samples on the surface residual stresses and the corrosion resistance. A high speed CO2 laser beam with power range of 300-500 W was used in pulse mode to initiate the surface melting in an argon and argon-nitrogen atmosphere. The produced samples were cross sectioned and the elastic modulus and nano-hardness test were carried out showing no alteration between the modified and the bulk material. A noticeable degradation in the corrosion resistance was found due to the formation of the chromium carbide and chromium nitride which act as electrolytic cells in addition to the disruption of the free chromium content at the melted zone.
Do Hf isotopes in magmatic zircons represent those of their host rocks?
NASA Astrophysics Data System (ADS)
Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao
2018-04-01
Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.
In Situ Density Measurement of Basaltic Melts at High Pressure by X-ray Absorption Method
NASA Astrophysics Data System (ADS)
Ando, R.; Ohtani, E.; Suzuki, A.; Urakawa, S.; Katayama, Y.
2004-12-01
Density of silicate melt at high pressure is one of the most important properties to understand magma migration in the planetary interior. However, because of experimental difficulties, the density of magma at high pressure is poorly known. Katayama et al. (1996) recently developed a new in situ density measurement method for metallic melts, based on the density dependency of X-ray absorption in the sample. In this study, we tried to measure the density of basaltic melt by this absorption method. When X-ray is transmitted to the sample, the intensity of the transmitted X-ray beam (I) is expressed as follows; I=I0exp(-μ ρ t), where I0 is the intensity of incident X-ray beam, μ is the mass absorption coefficient, ρ is the density of the sample, and t is the thickness of the sample. If t and μ are known, we can determine the density of the sample by measuring I and I0. This is the principle of the absorption method for density measurement. In this study, in order to determine t, we used a single crystalline diamond cylinder as a sample capsule, diamond is less compressive and less deformable so that even at high pressure t (thickness of the sample at the point x) is expressed as follows; t = 2*(R02-x2)1/2, R0 is the inner radius of cylinder at the ambient condition, and x is distance from a center of the capsule. And diamond also shows less absorption so that this make it possible to measure the density of silicate melt with smaller absorption coefficient than metallic melts. In order to know the μ of the sample, we measured both densities (ρ ) and absorptions (I/I0) for some glasses and crystals with same composition of the sample at the ambient condition, and calculated as fallows; μ =ln(I/I0)/ρ . Experiments were made at the beamline (BL22XU) of SPring-8. For generation of high pressure and high temperature, we used DIA-type cubic anvil apparatus (SMAP180) there. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromatic X-ray beam was 25 keV and the beam size was reduced to 0.1*0.1 mm2 by two slits. Intensities of X-ray beam were measured by ion chambers. The starting material was a glass with the MORB composition (SiO2-Al2O3-FeO-MgO-CaO-Na2O). Experiments were made from 1 atm to 5GPa, from 300 to 1873 K. We measured the density of basaltic glass, crystals (eclogite) and melt. A density error of this method is less than 2 %. We calculated the bulk modulus of the glass at 773K, crystals at 1273K and melt at 1873 K, and obtained Kglass(773K)=46(4) GPa, Kcrystals(1273K)=100(7) GPa, Kmelt(1873K)=16.5(1.5) GPa assuming K'=4. This Kmelt(1873K) value is consistent with the previous study by the sink-float method (Ohtani and Maeda (2001); K=18.7(2.1) GPa). We can conclude this method is applicable for silicate melts.
Fe, Co, Ni: Electrical Resistivity Along their Melting Boundaries
NASA Astrophysics Data System (ADS)
Silber, R. E.; Ezenwa, I.; Secco, R.; Yong, W.
2017-12-01
Electrical resistivity of Fe, Co, and Ni was measured at pressures up to 11 GPa and temperatures into their liquid states in multi-anvil and cubic-anvil presses. Two thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was also used to remove any bias associated with current flow and voltage measurement using thermocouple legs. Post experimental examination of recovered and sectioned samples was done using electron microprobe analyses to check for diffusion in our samples. The observed large jumps in resistivity at the high P melting T of each metal is consistent with its known P,T phase diagram and with post-run compositional analyses. The electrical resistivity behavior in these late transition metals as a function of increasing P and T shows expected trends consistent with 1atm data. Within the error of measurement, the resistivity values at the melting T at high P of Co and Ni appear to mimic their 1 atm value suggesting constant resistivity along the melting boundary. For liquid Fe, resistivity decreases along the melting boundary up to the triple point at 5.2 GPa, and then is nearly constant at higher pressures. The results are compared to prediction by Stacey and Loper (PEPI, 2007).
Description of the containerless melting of glass in low gravity
NASA Technical Reports Server (NTRS)
Ray, C. S.; Day, D. E.
1983-01-01
A brief description is given of a single-axis, acoustic levitator/furnace apparatus used to position, heat, melt, and quench multicomponent oxide, glass-forming compositions in low gravity. This apparatus is capable of processing eight approximately spherical samples (about 6 mm diameter) at temperatures up to 1550 C in a dry air atmosphere. Results are also presented for a containerless melting experiment conducted on SPAR VI where a ternary CaO-Ga2O3-SiO2 composition was levitated and quenched to a glass. Selected properties of the glass prepared on SPAR VI are compared with the properties of glass samples of identical composition prepared on earth.
Material transport in laser-heated diamond anvil cell melting experiments
NASA Technical Reports Server (NTRS)
Campbell, Andrew J.; Heinz, Dion L.; Davis, Andrew M.
1992-01-01
A previously undocumented effect in the laser-heated diamond anvil cell, namely, the transport of molten species through the sample chamber, over distances large compared to the laser beam diameter, is presented. This effect is exploited to determine the melting behavior of high-pressure silicate assemblages of olivine composition. At pressures where beta-spinel is the phase melted, relative strengths of partitioning can be estimated for the incompatible elements studied. Iron was found to partition into the melt from beta-spinel less strongly than calcium, and slightly more strongly than manganese. At higher pressures, where a silicate perovskite/magnesiowuestite assemblage is melted, it is determined that silicate perovskite is the liquidus phase, with iron-rich magnesiowuestite accumulating at the end of the laser-melted stripe.
Melt layer behavior of metal targets irradiatead by powerful plasma streams
NASA Astrophysics Data System (ADS)
Bandura, A. N.; Byrka, O. V.; Chebotarev, V. V.; Garkusha, I. E.; Makhlaj, V. A.; Solyakov, D. G.; Tereshin, V. I.; Wuerz, H.
2002-12-01
In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks.
Manicouagan impact melt, Quebec. I - Stratigraphy, petrology, and chemistry
NASA Technical Reports Server (NTRS)
Floran, R. J.; Grieve, R. A. F.; Dence, M. R.; Phinney, W. C.; Warner, J. L.; Blanchard, D. P.; Simonds, C. H.
1978-01-01
A sheet of clast-laden impact melt 230 m thick and 55 km in diameter forms an annular plateau surrounding an uplift of shocked anorthosite within the moderately eroded Manicouagan structure. Three gradational units of the melt sheet are characterized with respect to grain size, inclusions, texture, and mineralogy. The melt rocks as a group are chemically homogeneous with a bulk composition similar to that of latite and with no statistically significant regional chemical variations. The melt is not completely chemically homogeneous as a local mafic variant represented by two samples with poikilitic texture was found. These poikilitic rocks texturally resemble some Apollo 17 impact melt rocks and are inferred to have had a similar origin and thermal history.
Resonant absorption induced fast melting studied with mid-IR QCLs.
Lu, Jie; Lv, Yankun; Ji, Youxin; Tang, Xiaoliang; Qi, Zeming; Li, Liangbin
2017-02-01
We demonstrate the use of a pump-probe setup based on two mid-infrared quantum cascade lasers (QCLs) to investigate the melting and crystallization of materials through resonant absorption. A combination of pump and probe beams fulfills the two-color synchronous detection. Furthermore, narrow linewidth advances the accuracy of measurements and the character of broad tuning range of QCLs enables wide applications in various sample and multiple structures. 1-Eicosene was selected as a simple model system to verify the feasibility of this method. A pulsed QCL was tuned to the absorption peak of CH 2 bending vibration at 1467 cm -1 to resonantly heat the sample. The other QCL in continuous mode was tuned to 1643 cm -1 corresponding the C=C stretching vibration to follow the fast melting dynamics. By monitoring the transmission intensity variation of pump and probe beams during pump-probe experiments, the resonant absorption induced fast melting and re-crystallization of 1-Eicosene can be studied. Results show that the thermal effect and melting behaviors strongly depend on the pump wavelength (resonant or non-resonant) and energy, as well as the pump time. The realization and detection of melting and recrystallization can be performed in tens of milliseconds, which improves the time resolution of melting process study based on general mid-infrared spectrum by orders of magnitude. The availability of resonant heating and detections based on mid-infrared QCLs is expected to enable new applications in melting study.
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Ross, D. K.; Rao, M. N.; Nyquist, L. E.
2014-01-01
Based on isotopic anomalies in Kr and Sm, Sr-isotopes, S-isotopes, XANES results on S-speciation, Fe/S ratios in sulfide immiscible melts [5], and major element correlations with S determined in impact glasses in EET79001 Lith A & Lith B and Tissint, we have provided very strong evidence for the occurrence of a Martian regolith component in some impact melt glasses in shergottites. Using REE measurements by LA-ICP-MS in shergottite impact glasses, Barrat and co-workers have recently reported conflicting conclusions about the occurrence of Martian regolith components: (a) Positive evidence was reported for a Tissint impact melt, but (b) Negative evidence for impact melt in EET79001 and another impact melt in Tissint. Here, we address some specific issues related to sulfur speciation and their relevance to identifying Martian regolith components in impact glasses in EET79001 and Tissint using sulfur K XANES and Fe/S ratios in sulfide immiscible melts. XANES and FE-SEM measurements in approx. 5 micron size individual sulfur blebs in EET79001 and Tissint glasses are carried out by us using sub-micron size beams, whereas Barrat and coworkers used approx. 90 micron size laser spots for LA- ICP-MS to determine REE abundances in bulk samples of the impact melt glasses. We contend that Martian regolith components in some shergottite impact glasses are present locally, and that studying impact melts in various shergottites can give evidence both for and against regolith components because of sample heterogeneity.
Experimental magma degassing: The revenge of the deformed bubbles
NASA Astrophysics Data System (ADS)
Marxer, H.; Bellucci, P.; Ulmer, S.; Nowak, M.
2013-12-01
We performed decompression experiments with a hydrated phonolitic melt at a T of 1323 K in an internally heated pressure vessel to investigate the effect of decompression method and rate on melt degassing. Samples were decompressed from 200 to 75 MPa with step-wise and continuous decompression (SD/CD) at nominal decompression rates (DRs) of 0.0028-1.7 MPa/s. At target P the samples were quenched rapidly under isobaric conditions with 150 K/s. The vesiculated glass products were compared in terms of bubble number density (BND), bubble size distribution (BSD) and residual H2O content. Almost all capsules were deformed after decompression: the initially crimped headspaces were expanded and the walls were inflexed in the capsule center. We postulate that the deformation is primarily due to the change in molar volume V(m) of exsolved H2O during rapid quench. Bubble growth in the melt contributes to the deformation by capsule expansion, but the main problem is the shrinkage and collapse of bubbles during cooling. In first approximation, the texture of the vesiculated melt is not frozen until the glass transition T (~773 K for this composition, [1]) is reached. From 1323 K to T(g) the melt will display viscous behavior. For a final P of 75 MPa, V(m) of the exsolved H2O at T(g) is only ~25% of V(m) at 1323 K [2]. The fluid P in the bubbles is therefore continuously decreasing during quench. In combination with constant external P, the bubbles can either contract isometrically, get deformed (flattened) or even become dented by sucking melt inwards, which can be observed in some glass products. The shrinkage of bigger bubbles in the capsules is sometimes affecting the whole vesicle texture in a sample. FPA-FTIR measurements did not reveal H2O diffusion profiles towards bubbles [3]. H2O concentration gradients around bubbles are expected to be disturbed or annihilated due to melt transport. All derived BSDs of our samples were corrected to resemble the bubble sizes prior to rapid quench. For a volumetric loss of 75% at a final P of 75 MPa, the initial diameter of a bubble in the melt has to be ~1.5x the diameter of a bubble in the glass. At DRs of >0.17 MPa/s the decompression method has only minor influence on melt degassing. SD and CD result in BNDs of 10^4-10^5 mm^-3. Fast P drop leads to immediate super-saturation with H2O in the melt. At high DRs, the diffusional transport of H2O is very limited and therefore bubble nucleation is the predominant degassing process. CD rates of ≤0.17 MPa/s provide sufficient time for H2O diffusion into existing bubbles. BNDs of CD samples with low DRs are several orders of magnitude lower than for SD experiments. In contrast to SD, bubble growth is the favored degassing mechanism. CD samples quenched at different target P at 0.024 MPa/s trace an equilibrium degassing path in terms of residual H2O content in the glass. SD techniques, as used in many studies before, are therefore not suitable to simulate melt degassing at continuous magma ascent. [1] Giordano, D; Russell, JK; Dingwell, DB; 2008. EPSL, 271: 123-134. [2] Duan, ZH; Zhang, ZG; 2006. GCA, 70: 2311-2324. [3] Marxer, H; Nowak, M; 2013. EJM, in press.
The Sudbury-Serenitatis analogy and 'so-called' pristine nonmare rocks
NASA Technical Reports Server (NTRS)
Warren, Paul H.
1992-01-01
The Serenitatis Basin is the one lunar basin from which we confidently identify a suite of samples as pieces of the impact melt sheet: the distinctive Apollo 17 noritic breccias. Recent studies of the Sudbury Complex indicate that its 'irruptive' is almost entirely of impact-melt origin, making it the closest terrestrial analog to the Serenitatis melt sheet. Any attempt to model the evolution of the Moon's crust should be compatible with the relatively well-understood Sudbury Complex. However, the Sudbury-Moon analogy might be a misleading oversimplification, if applied too rigidly. The cause of evolutionary differences between the Serenitatis impact melt and the Sudbury impact melt is discussed.
Systematics of melt stagnation in peridotites from the Godzilla Megamullion
NASA Astrophysics Data System (ADS)
Loocke, M.; Snow, J. E.; Ohara, Y.
2010-12-01
The Godzilla Megamullion (GM) Massif is the largest known example of an Oceanic Core Complex (OCC) or the exhumed footwall of a low angle-large offset oceanic detachment fault. It lies on the extinct Parece Vela Rift spreading center within the Parece Vela Back-arc Basin of the Philippine Sea. This has thus allowed for sampling of a young back-arc mantle section. Sampling of the massif has returned a dominantly ultramafic lithology, divided petrographically into depleted, fertile, and melt-percolated groups (1). Petrographic analysis of the extant peridotite thin section collection found that 44% of all GM peridotites (71 out of 161) exhibit evidence of plagioclase impregnation compared to the worldwide abyssal peridotite average of ~20% (2). The mullion is divided up into three regions, the proximal region ( closest to termination of spreading), the medial region, and the distal region (furthest from the termination of spreading)(3).Observations by region provide that 53% ( 62 out of 116 samples) in the proximal region (15 dredges), 12% ( 2 out of 17 samples) in the medial mullion (3 dredges), and 25% (7 out of 28) in the distal mullion (5 dredges) show of evidence of plagioclase impregnation (4). Major element analyses of spinels were completed using the Cameca SX-50 Electron Microprobe facility at the University of Houston. The Cr# [100 x Cr/(Cr + Al)] ranges from 10 to 65 with TiO2 concentrations ranging from less than 0.01 up to 1.6 wt%. When the Cr#s of the samples are plotted along the massif, a pattern of melt depletion exists that is consistent with the degree of plagioclase impregnation. In the distal region, Cr#s start at around an average of 35 and range up to 65 for melt percolated samples. In the medial region, a drop off in Cr# of about 1 Cr# per kilometer is observed with the trend bottoming out at around a Cr# of 10. In the proximal region, Cr#s closer to the medial region are observed as having more fertile values of around 20 but are found amongst melt-impregnated samples with values ranging up to 50. This range is seen as having increasing minimum and maximum values with distance away from the medial section until it reaches its peak at a base Cr# of 30 with a maximum of 65. From this trend, a general model for the secular evolution of the GM mantle section can be established (5). The ridge segment experienced normal mid-oceanic ridge growth with robust mantle melting during the time period represented by the distal region. At the boundary to the medial region, a steep drop-off in melt productivity was experienced, leading to minimal mantle melting during the time period represented by the medial region. Soon thereafter, melting began again, but was trapped in a thickened and cooling lithosphere, causing the melt to pool and react with its host peridotite. (1) Ohara, et al., (2003) G3. 4 (7), 8611, 10.1029/2002GC000469. (2) Dick (1989) Geol Soc. Lond. Spec. Pub. 42:71-105. (3) Ohara, et al., (2009), Eos Trans. AGU, 90(52), Fall Meet. Suppl. Abst.Num. T33D-06 (4) Loocke, et al., (2009), Eos Trans. AGU, 90(52), Fall Meet. Suppl. Abst.Num. T21A-1776 (5) Snow, et al., (2009), Eos Trans. AGU, 90(52), Fall Meet. Suppl. Abst.Num. T33D-07
NASA Technical Reports Server (NTRS)
Papike, J. J.; Fowler, G. W.; Shearer, C. K.
1994-01-01
The lunar Mg suite, which includes dunites, troctolites, and norites, could make up 20-30% of the Moon's crust down to a depth of 60 km. The remainder is largely anorthositic. This report focuses on norites because we have found that the chemical characteristics of orthopyroxene are effective recorders of their parental melt compositions. Many of the samples representing the Mg suite are small and unrepresentative. In addition, they are cumulates and thus are difficult to study by whole-rock techniques. Therefore, we decided to study these rocks by SIMS techniques to analyze a suite of trace elements in orthopyroxene. The 12 norite samples were selected from a recent compilation by Warren who attempted to select the best candidate samples from the standpoint of their pristine character. Our present database includes greater than 300 superior Electromagnetic Pulse (EMP) analyses and greater than 50 scanning ion mass spectroscopy (SIMS) analyses for 8 Rare Earth Elements (REE), Zr, Y, and Sr. The Mg#s for the parental melts calculated from Mg#s in orthopyroxene show that most melts have Mg#s in the range of 0.36-0.60. This compares with a range of Mg#s for lunar volcanic picritic glass beads of 0.4-0.68. Therefore, although the cumulate whole-rock compositions of the Mg suite can be extremely magnesian, the calculated parental melts are not anomalously high in Mg. A chemical characteristic of the Mg-suite norites that is more difficult to explain is the high KREEP content of the calculated parental melts. The REE contents for the calculated norite parental melts have REE that match or exceed the high-K KREEP component of Warren. Therefore, mixing of a KREEP component and a picritic melt cannot, by itself, explain the high estimated REE contents of the melts parental to norites. Advanced crystallization following KREEP incorporation, especially of plagiclase, may also be required.
Viscosity of carbonate-rich melts under different oxygen fugacity conditions
NASA Astrophysics Data System (ADS)
Di Genova, Danilo; Hess, Kai-Uwe; Cimarelli, Corrado; Dingwell, Donald B.
2015-04-01
Viscosity is a fundamental property of many materials and its changes affects the fluid dynamics of natural system as well as industrial processes. The mobility of carbonatitic melts, which are carbonate-rich and very fluid melts, has attracted renewed interest in both earth science and industry. In fact, these melts are considered the main transport agent of carbon from the mantle to the crust and may be intimately linked to the generation of kimberlites. At the same time lithium, potassium and sodium carbonate are used as electrolytes in molten carbonate fuel cells which operate at high temperatures (~650° C) for the production of electricity without CO2 emissions. Accurate measurement of the transport property (i.e. viscosity) of carbonatitic melts is a priority in order to understand the carbonatite mobility and reaction rates. Additionally, obtaining accurate viscosity measurements of such low viscosity melts is however an experimental challenge due to volatility, very low torques and chemical melt instability in the viscometer. To overcome these limitations we have customized a Modular Compact Rheometer (MCR 502 from Anton Paar) ad hoc equipped with 2 narrow gap concentric-cylinder geometries of steel and Pt-Au. The rheometer is characterized by an air-bearing-supported synchronous motor with torque ranging between 0.01 μNm and 230 mNm (resolution of 0.1 nNm), achieving very low viscosity measurements in the order of mPa s, temperatures up to 1000° C and shear rates ranging between 1 and 100 sec-1. These experimental conditions well match the temperature-viscosity-shear rate window relevant for carbonate melts. Here we present the calibration of the rheometer and the results of a rheological characterization study on a series of very low viscous synthetic and natural carbonatitic melts at different oxygen fugacity (air and CO2 saturated atmosphere). Viscosity measurements on carbonate melts have been performed in the temperature range between ~650 and 1000° C. Measured values range between ~2 and 20 mPa sec. The results point out that the viscosity of synthetic samples is inversely related to the cations radius, being Li2CO3 melt the more viscous. Viscosity measurements on natural samples (carbonatitic lava from Lengai volcano, Tanzania), reveal a higher viscosity (~1000 mPa s) and a dramatic higher activation energy than the synthetic samples. Our results have been compared with literature data in order to determine the effect of chemical composition and oxygen fugacity conditions on the liquid viscosity of carbonatitic melts.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Golden, D. C.; Bell, James F., III; Lauer, H. V., Jr.
1995-01-01
Visible and near-IR reflectivity, Mossbauer, and X ray diffraction data were obtained on powders of impact melt rock from the Manicouagan Impact Crater located in Quebec, Canada. The iron mineralogy is dominated by pyroxene for the least oxidized samples and by hematite for the most oxidized samples. Phyllosilicate (smectite) contents up to 15 wt % were found in some heavily oxidized samples. Nanophase hematite and/or paramagnetic ferric iron is observed in all samples. No hydrous ferric oxides (e.g., goethite, lepidocrocite, and ferrihydrite) were detected, which implies the alteration occurred above 250 C. Oxidative alteration is thought to have occurred predominantly during late-stage crystallization and subsolidus cooling of the impact melt by invasion of oxidizing vapors and/or solutions while the impact melt rocks were still hot. The near-IR band minimum correlated with the extent of aleration (Fe(3+)/Fe(sub tot)) and ranged from approx. 1000 nm (high-Ca pyroxene) to approx. 850 nm (bulk, well-crystalline hematite) for least and most oxidized samples, respectively. Intermediate band positions (900-920 nm) are attributed to low-Ca pyroxene and/or a composite band from hematite-pyroxene assemblages. Manicouagan data are consistent with previous assignments of hematite and pyroxene to the 850 and 1000 nm bands observed in Martian reflectivity spectra. Manicouagan data also show that possible assignments for intermediate band positions (900-920 nm) in Martian spectra are pyroxene and/or hematite-pyroxene assemblages. By analogy with impact melt sheets and in agreement with observables for Mars, oxidative alteration of Martian impact melt sheets above 250 C and subsequent erosion could produce rocks and soils with variable proportions of hematite (both bulk and nanophase), pyroxene, and phyllosilicates as iron-bearing mineralogies. If this process is dominant, these phases on Mars were formed rapidly at relatively high temperatures on a sporadic basis throughout the history of the planet. The Manicouagan samples also show that this mineralogical diversity can be accomplished at constant chemical composition, which is also indicated for Mars from analyses of soil at the two Viking landing sites.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Golden, D. C.; Bell, James F., III; Lauer, H. V., Jr.
1995-01-01
Visible and near-IR refectivity, Moessbauer, and X ray diffraction data were obtained on powders of impact melt rock from the Manicouagan Impact Crater located in Quebec, Canada. The iron mineralogy is dominated by pyroxene for the least oxidized samples and by hematite for the most oxidized samples. Phyllosilicate (smectite) contents up to approximately 15 wt % were found in some heavily oxidized samples. Nanophase hematite and/or paramagnetic ferric iron is observed in all samples. No hydrous ferric oxides (e.g., goethite, lepidocrocite, and ferrihydrite) were detected, which implies the alteration occurred above 250 C. Oxidative alteration is thought to have occurred predominantly during late-stage crystallization and subsolidus cooling of the impact melt by invasion of oxidizing vapors and/or solutions while the impact melt rocks were still hot. The near-IR band minimum correlated with the extent of aleration Fe(3+)/Fe(sub tot) and ranged from approximately 1000 nm (high-Ca pyroxene) to approximately 850 nm (bulk, well-crystalline hematite) for least and most oxidized samples, respectively. Intermediate band positions (900-920 nm) are attributed to low-Ca pyroxene and/or a composite band from hematite-pyroxene assemblages. Manicouagan data are consistent with previous assignments of hematite and pyroxene to the approximately 850 and approximately 1000nm bands observed in Martian reflectivity spectra. Manicouagan data also show that possible assignments for intermediate band positions (900-920 nm) in Martian spectra are pyroxene and/or hematite-pyroxene assemblages. By analogy with impact melt sheets and in agreement with observables for Mars, oxidative alteration of Martian impact melt sheets above 250 C and subsequent erosion could produce rocks and soils with variable proportions of hematite (both bulk and nanophase), pyroxene, and phyllosilicates as iron-bearing mineralogies. If this process is dominant, these phases on Mars were formed rapidly at relativly high temperatures on a sporadic basis throughout the history of the planet. The Manicouagan samples also show that this mineralogical diversity can be accomplished at constant chemical composition, which is also indicated for Mars from the analyses of soil at the two Viking landing sites.
Grain-scale alignment of melt in sheared partially molten rocks: implications for viscous anisotropy
NASA Astrophysics Data System (ADS)
Pec, Matej; Quintanilla-Terminel, Alejandra; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David
2016-04-01
Presence of melt significantly influences rheological properties of partially molten rocks by providing fast diffusional pathways. Under stress, melt aligns at the grain scale and this alignment induces viscous anisotropy in the deforming aggregate. One of the consequences of viscous anisotropy is melt segregation into melt-rich sheets oriented at low angle to the shear plane on much larger scales than the grain scale. The magnitude and orientation of viscous anisotropy with respect to the applied stress are important parameters for constitutive models (Takei and Holtzman 2009) that must be constrained by experimental studies. In this contribution, we analyze the shape preferred orientation (SPO) of individual grain-scale melt pockets in deformed partially molten mantle rocks. The starting materials were obtained by isostatically hot-pressing olivine + basalt and olivine + chromite + basalt powders. These partially molten rocks were deformed in general shear or torsion at a confining pressure, Pc = 300 MPa, temperature, T = 1200° - 1250° C, and strain rates of 10-3 - 10-5 s-1to finite shear strains, γ, of 0.5 - 5. After the experiment, high resolution backscattered electron images were obtained using a SEM equipped with a field emission gun. Individual melt pockets were segmented and their SPO analyzed using the paror and surfor methods and Fourier transforms (Heilbronner and Barret 2014). Melt segregation into melt-rich sheets inclined at 15° -20° antithetic with respect to the shear plane occurs in three-phase system (olivine + chromite + basalt) and in two-phase systems (olivine + basalt) twisted to high strain. The SPO of individual melt pockets within the melt-rich bands is moderately strong (b/a ≈ 0.8) and is always steeper (20° -40°) than the average melt-rich band orientation. In the two-phase system (olivine + basalt) sheared to lower strains, no distinct melt-rich sheets are observed. Individual grain-scale melt pockets are oriented at 45° -55° antithetic with respect to the shear plane (i.e., sub-perpendicular to σ3) with a strong SPO (b/a ≈ 0.7) that decreases with increasing finite strain. Our observations of melt alignment at low strains are in agreement with observations performed on analogue materials (borneol, Takei 2010) and provide further constraints for the orientation of viscous anisotropy in the Earth's mantle. The systematic difference in grain-scale melt alignment between samples in which melt segregation did and did not occur - irrespective of the deformation geometry and mineralogy - suggests that melt segregation into bands leads to local stress rotation within the samples.
Enhanced power factor of higher manganese silicide via melt spin synthesis method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoya; Li, Qiang, E-mail: liqiang@bnl.gov; Shi, Xun
We report on the thermoelectric properties of the higher manganese silicide MnSi{sub 1.75} synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example, the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5 × 10{sup 20 }cm{sup −3} at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper.« less
Experimental test of the viscous anisotropy hypothesis for partially molten rocks
Qi, Chao; Kohlstedt, David L.; Katz, Richard F.; Takei, Yasuko
2015-01-01
Chemical differentiation of rocky planets occurs by melt segregation away from the region of melting. The mechanics of this process, however, are complex and incompletely understood. In partially molten rocks undergoing shear deformation, melt pockets between grains align coherently in the stress field; it has been hypothesized that this anisotropy in microstructure creates an anisotropy in the viscosity of the aggregate. With the inclusion of anisotropic viscosity, continuum, two-phase-flow models reproduce the emergence and angle of melt-enriched bands that form in laboratory experiments. In the same theoretical context, these models also predict sample-scale melt migration due to a gradient in shear stress. Under torsional deformation, melt is expected to segregate radially inward. Here we present torsional deformation experiments on partially molten rocks that test this prediction. Microstructural analyses of the distribution of melt and solid reveal a radial gradient in melt fraction, with more melt toward the center of the cylinder. The extent of this radial melt segregation grows with progressive strain, consistent with theory. The agreement between theoretical prediction and experimental observation provides a validation of this theory. PMID:26417107
Experimental test of the viscous anisotropy hypothesis for partially molten rocks.
Qi, Chao; Kohlstedt, David L; Katz, Richard F; Takei, Yasuko
2015-10-13
Chemical differentiation of rocky planets occurs by melt segregation away from the region of melting. The mechanics of this process, however, are complex and incompletely understood. In partially molten rocks undergoing shear deformation, melt pockets between grains align coherently in the stress field; it has been hypothesized that this anisotropy in microstructure creates an anisotropy in the viscosity of the aggregate. With the inclusion of anisotropic viscosity, continuum, two-phase-flow models reproduce the emergence and angle of melt-enriched bands that form in laboratory experiments. In the same theoretical context, these models also predict sample-scale melt migration due to a gradient in shear stress. Under torsional deformation, melt is expected to segregate radially inward. Here we present torsional deformation experiments on partially molten rocks that test this prediction. Microstructural analyses of the distribution of melt and solid reveal a radial gradient in melt fraction, with more melt toward the center of the cylinder. The extent of this radial melt segregation grows with progressive strain, consistent with theory. The agreement between theoretical prediction and experimental observation provides a validation of this theory.
A novel heat engine for magnetizing superconductors
NASA Astrophysics Data System (ADS)
Coombs, T. A.; Hong, Z.; Zhu, X.; Krabbes, G.
2008-03-01
The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20 Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71 Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the most efficient design of machine will therefore be one in which an in situ magnetizing fixture is included. The first three methods all require a solenoid which can be switched on and off. In the first method an applied magnetic field is required equal to the required magnetic field, whilst the second and third approaches require fields at least two times greater. The final method, however, offers significant advantages since it achieves the final required field by repeated applications of a small field and can utilize a permanent magnet (Coombs 2007 British Patent GB2431519 granted 2007-09-26). If we wish to pulse a field using, say, a 10 T magnet to magnetize a 30 mm × 10 mm sample then we can work out how big the solenoid needs to be. If it were possible to wind an appropriate coil using YBCO tape then, assuming an Ic of 70 A and a thickness of 100 µm, we would have 100 turns and 7000 A turns. This would produce a B field of approximately 7000/(20 × 10-3) × 4π × 10-7 = 0.4 T. To produce 10 T would require pulsing to 1400 A! An alternative calculation would be to assume a Jc of say 5 × 108A m-1 and a coil 1 cm2 in cross section. The field would then be 5 × 108 × 10-2 × (2 × 4π × 10-7) = 10 T. Clearly if the magnetization fixture is not to occupy more room than the puck itself then a very high activation current would be required and either constraint makes in situ magnetization a very difficult proposition. What is required for in situ magnetization is a magnetization method in which a relatively small field of the order of millitesla repeatedly applied is used to magnetize the superconductor. This paper describes a novel method for achieving this.
Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor
NASA Astrophysics Data System (ADS)
Lousberg, Gregory P.; Fagnard, Jean-François; Noudem, Jacques G.; Ausloos, Marcel; Vanderheyden, Benoit; Vanderbemden, Philippe
2009-04-01
We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30 to 130 mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.
Characteristics of a promising new thermoelectric material - Ruthenium silicide
NASA Technical Reports Server (NTRS)
Ohta, Toshitaka; Vining, Cronin B.; Allevato, Camillo E.
1991-01-01
A preliminary study on arc-melted samples has indicated that ruthenium silicide has the potential to obtain figure-of-merit values four times higher than that of conventional silicon-germanium material. In order to realize the high figure-of-merit values, high-quality crystal from the melt is needed. A Bridgman-like method has been employed and has realized much better crystals than arc-melted ones.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Materials and manufacturing processes for increased life/reliability. [of turbine wheels
NASA Technical Reports Server (NTRS)
Duttweiler, R. E.
1977-01-01
Improvements in both quality and durability of disk raw material for both military and commercial engines necessitated an entirely new concept in raw material process control which imposes careful selection, screening and sampling of the basic alloy ingredients, followed by careful monitoring of the melting parameters in all phases of the vacuum melting sequence. Special care is taken to preclude solidification conditions that produce adverse levels of segregation. Melt furnaces are routinely cleaned and inspected for contamination. Ingots are also cleaned and inspected before entering the final melt step.
2010-03-01
as the cryogenic efficiency of cryocoolers and vacuum components become steadily worse at reducing temperatures 80 K. For many of these applications...it is preferred to increase the operation temperature 50 K where smaller and more ef- ficient cryocoolers can be utilized. To achieve levels required
High Critical Current in Metal Organic Derived YBCO Films
2010-10-31
process, particularly in reel-to- reel manufacturing equipment. During Phase I, a “three-step” conversion process was developed to de- convolute the...Task 3. After reaction, the 40-mm web was coated on both sides with a silver layer then slit into eight 4-mm width tapes which were laminated between
Enhancement of mechanical properties of 123 superconductors
Balachandran, Uthamalingam
1995-01-01
A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.
Creation of high-pinning microstructures in post production YBCO coated conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welp, Ulrich; Miller, Dean J.; Kwok, Wai-Kwong
A method comprising irradiating a polycrystalline rare earth metal-alkaline earth metal-transition metal-oxide superconductor layer with protons having an energy of 1 to 6 MeV. The irradiating process produces an irradiated layer that comprises randomly dispersed defects with an average diameter in the range of 1-10 nm.
Superconducting antennas for telecommunication applications based on dual mode cross slotted patches
NASA Astrophysics Data System (ADS)
Cassinese, A.; Barra, M.; Fragalà, I.; Kusunoki, M.; Malandrino, G.; Nakagawa, T.; Perdicaro, L. M. S.; Sato, K.; Ohshima, S.; Vaglio, R.
2002-08-01
Dual mode devices based on high temperature superconducting films represent an interesting class for telecommunication applications since they combine a miniaturized size with a good power handling. Here we report on a novel compact antenna obtained by crossing a square patch with two or more slots. The proposed design has an antenna size reduction of about 40% as compared to the conventional square patch microstrip antennas. Single patch antenna both with linear (LP) and circular (CP) polarization operating in the X-band have been designed and tested at prototype level. They are realized by using double sided (YBa 2Cu 3O 7- x) YBCO and Tl 2Ba 2Ca 1Cu 2O 8 (Tl-2212) superconducting films grown on MgO substrates and tested with a portable cryocooler. They showed at T=77 K a return loss <25 dB and a power handling of 23 dBm. Exemplary 16 elements arrays LP antennas operating in the X band have been also realized by using YBCO film grown on 2 ″ diameter MgO substrate.
High-temperature change of the creep rate in YBa2Cu3O7-δ films with different pinning landscapes
NASA Astrophysics Data System (ADS)
Haberkorn, N.; Miura, M.; Baca, J.; Maiorov, B.; Usov, I.; Dowden, P.; Foltyn, S. R.; Holesinger, T. G.; Willis, J. O.; Marken, K. R.; Izumi, T.; Shiohara, Y.; Civale, L.
2012-05-01
Magnetic relaxation measurements in YBa2Cu3O7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (Jc). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high Jc values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.
Granular Superconductors and Gravity
NASA Technical Reports Server (NTRS)
Noever, David; Koczor, Ron
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.
Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; Van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens
2016-01-01
The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it. PMID:26887291
An Explanation for Bends of 1-Dimensional Nanorods
NASA Astrophysics Data System (ADS)
Mukaida, Masashi; Ichinose, Ataru; Mele, Paolo; Mtsumoto, Kaname; Horii, Shigeru; Yoshida, Yutaka
Growth of artificial pinning centers (APCs) in YBa2Cu3O7-J (YBCO) films are discussed. The APCs used in this research are BaZrO3 and BaSnO3 nanorods which are reported by Mele et al. TEM images show these nanorods graduallybend accordinglywith approachingtoasurfaceof films. This featureshowedagrowth patternlikeafirework. Weexplainthe featureofthe nanorodsas follows;Atanearlygrowth stage, filmsgrowinalayerbylayergrowth mode. The surface of the films is flat and very smooth. After the early growth stage, the film surface gradually becomes rough, indicating the film grows in a Stranski-Krastanov growth mode. This roughness was caused by a spiral growth of films with manysteps. At the step of YBCO films, nanorod materials such as BaZrO3 are supplied from one direction. Then, the center of nanorods sifts to the same direction of the step flow. Then, the nanorods bend to the edge of the grains in the films. As a grain in spiral growth had a convex surface, nanorods bent to the direction perpendicular to the grain surface. Finally, nanorods in rough grains form firework structures.
Specific Heat and Thermal Diffusivity of YBCO Coated Conductors
NASA Astrophysics Data System (ADS)
Naito, Tomoyuki; Fujishiro, Hiroyuki; YasuhisaYamamura; Saito, Kazuya; Okamoto, Hiroshi; Hayashi, Hidemi; Gosho, Yoshihiro; Ohkuma, Takeshi; Shiohara, Yuh
We have measured the temperature dependence of specific heat,C(T), for Ag deposited YBCO coated conductor (YCC),YCC reinforced by a thin Cutape (YCC-Cu), andthe Hastelloy substrate with buffer layer. C(T) of HastelloyC-276 with buffer layer agrees well with the reported oneof HastelloyC-276, indicating that the contribution of the buffer layer to the measured C(T) is negligibly small. C(T)of both YCC and YCC-Cu tapes was successfully reproduced by the simple sum rule using the C(T) values reported for Hastelloy, Ag and Cu. The results demonstrate that C(T) of various YCC tapes can be estimated using the reported C(T)of constitutional materials. The estimated thermal diffusivity, a = K/C, at 300K of YCC, which was estimated using the thermal conductivity, K, did not agree with the reported a of Ag. This resultwas in consistent with the fact that the applied heat flew through the Aglayer, suggesting that a relation of a = K/Cfor homogeneous material cannot be applicable for the layered material such as YCC.
Melting behavior and phase relations of lunar samples. [Apollo 12 rock samples
NASA Technical Reports Server (NTRS)
Hays, J. F.
1975-01-01
Cooling rate studies of 12002 were conducted and the results interpreted in terms of the crystallization history of this rock and certain other picritic Apollo 12 samples. Calculations of liquid densities and viscosities during crystallization, crystal settling velocities, and heat loss by the parent rock body are discussed, as are petrographic studies of other Apollo 12 samples. The process of magmatic differentiation that must have accompanied the early melting and chemical fractionation of the moon's outer layers was investigated. The source of regions of both high- and low-titanium mare basalts were also studied.
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Bai, Jia-Mo
1990-01-01
The crystallization behavior and the melt flow properties of two batches of 1500 series LaRC-TPI polymers from Mitsui Toatsu Chemicals (MTC) were investigated. The characterization methods include Differential Scanning Calorimetry, the x ray diffractography and the melt rheology. The as-received materials possess initial crystalline melting peak temperatures of 295 and 305 C, respectively. These materials are less readily recrystallizable at elevated temperatures when compared to other semicrystalline thermoplastics. For the samples annealed at temperatures below 330 C, a semicrystalline polymer can be obtained. On the other hand, a purely amorphous structure is realized in the samples annealed at temperatures above 330 C. Isothermal crystallization kinetics were studied by means of the simple Avrami equation. The viscoelastic properties at elevated temperatures below and above glass transition temperature of the polymers were measured. Information with regard to the molecule sizes and distributions in these polymers were also extracted from melt rheology.
NASA Astrophysics Data System (ADS)
Yousif, Dilon
The purpose of this study was to improve the Quality Assurance (QA) System at the Nemak Windsor Aluminum Plant (WAP). The project used Six Sigma method based on Define, Measure, Analyze, Improve, and Control (DMAIC). Analysis of in process melt at WAP was based on chemical, thermal, and mechanical testing. The control limits for the W319 Al Alloy were statistically recalculated using the composition measured under stable conditions. The "Chemistry Viewer" software was developed for statistical analysis of alloy composition. This software features the Silicon Equivalency (SiBQ) developed by the IRC. The Melt Sampling Device (MSD) was designed and evaluated at WAP to overcome traditional sampling limitations. The Thermal Analysis "Filters" software was developed for cooling curve analysis of the 3XX Al Alloy(s) using IRC techniques. The impact of low melting point impurities on the start of melting was evaluated using the Universal Metallurgical Simulator and Analyzer (UMSA).
NASA Technical Reports Server (NTRS)
Gao, Jianrong; Zhang, Zongning; Zhang, Yingjie
2012-01-01
Dendritic growth velocities in undercooled melts of pure Ni have been intensively studied over the past fifty years. However, the literature data are at marked variance with the prediction of the widely accepted model for rapid dendritic growth both at small and at large undercoolings. In the present work, bulk melts of pure Ni samples of high purity were undercooled by glass fluxing treatment under a static magnetic field. The recalescence processes of the samples at different undercoolings were recorded using a high-speed camera, and were modeled using a software to determine the dendritic growth velocities. The present data confirmed the effect of melt flow on dendritic growth velocities at undercoolings below 100 K. A comparison of the present data with previous measurements on a lower purity material suggested an effect of impurities on dendritic growth velocities at undercoolings larger than 200 K as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugawara, K.; Sugimoto, T.; Shiohara, Y.
1992-05-10
In this paper, ESR of DPPH coated on a Bi-Sr-Ca-Cu-O (BSCCO) film (350 {Angstrom} thick) fabricated on MgO(100) substrate by MOCVD is studied. Temperature dependence of the ESR peak-to-peak linewidth, {Delta}H{sub pp}, and the effect of applied magnetic field on {Delta}H{sub pp} are below about 100 K. The results are compared with those of ESR of DPPH coated on ceramic Y-Ba-Cu-O samples (powder and bulk) made by the MPMG method. The DPPH ESR for the BSCCO film reveals that {Delta}H{sub pp} was independent of applied magnetic field up to about 9 kG. In addition, no similarity between the temperature dependencemore » of the excess ESR linewidth of the DPPH and that of critical current density was found for the BSCCO film. These results for the BSCCO film are different from those for the MPMG YBCO samples.« less
NASA Astrophysics Data System (ADS)
Pinzuti, Paul; Humler, Eric; Manighetti, Isabelle; Gaudemer, Yves
2013-08-01
The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 56 new lava flows sampled along 10 km of the rift axis and 9 km off-axis (i.e., erupted within the last 620 kyr). Petrological and primary geochemical results show that most of the samples of the inner floor of the Asal Rift are affected by plagioclase accumulation. Trace element ratios and major element compositions corrected for mineral accumulation and crystallization show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. While FeO, Fe8.0, Zr/Y, and (Dy/Yb)N decrease from the rift shoulders to the rift axis, SiO2, Na/Ti, Lu/Hf increase and Na2O and Na8.0 are constant across the rift. These variations are qualitatively consistent with shallow melting beneath the rift axis and deeper melting for off-axis lava flows. Na8.0 and Fe8.0 contents show that beneath the rift axis, melting paths are shallow, from 81 ± 4 to 43 ± 5 km. These melting paths are consistent with adiabatic melting in normal-temperature fertile asthenosphere, beneath an extensively thinned mantle lithosphere. On the contrary, melting on the rift shoulders (from 107 ± 7 to 67 ± 8 km) occurred beneath thicker lithosphere, requiring a mantle solidus temperature 100 ± 40°C hotter. In this geodynamic environment, the calculated rate of lithospheric thinning appears to be 4.0 ± 2.0 cm yr-1, a value close to the mean spreading rate (2.9 ± 0.2 cm yr-1) over the last 620 kyr.
NASA Astrophysics Data System (ADS)
Grocke, S.; de Silva, S. L.; Schmitt, A. K.; Wallace, P. J.
2010-12-01
Analysis of H2O and CO2 in quartz and sanidine-hosted melt inclusions from one of the youngest supervolcanic eruptions in the Altiplano Puna Volcanic Complex (APVC) in the Central Andes provides information on crystallization depths and eruption and degassing processes. At least 740 km3 of high-K, metaluminous, rhyodacite to rhyolite magma erupted from the Guacha Caldera in southwest Bolivia, producing three phases of the 3.49 Ma Tara Ignimbrite: a Plinian fall-deposit, an extensive ignimbrite, and several post-caldera domes. Infrared spectroscopic analyses of quartz-hosted melt inclusions from Tara Plinian pumice have H2O contents of ~4.5 wt % and variable CO2 contents (110-300 ppm), corresponding to vapor saturation pressures up to 180 MPa. In contrast, sanidine-hosted melt inclusions from the Plinian-fall deposit contain bubbles, lower water contents (1.4-2.2 wt %) and lower CO2 (87-143 ppm). These vesiculated melt inclusions and low volatile contents suggest that the sanidine crystals leaked on their ascent to the surface and therefore do not record accurate pre-eruptive melt volatile contents. In contrast, quartz-hosted melt inclusions from post-caldera dome samples contain lower H2O contents of 2.5-3.5 wt % (average 2.9 wt %) and no detectable CO2, corresponding to vapor saturation pressures of 50-90 MPa. These data indicate that the preeruptive plinian stage Tara magma was vapor saturated at the time of melt inclusion entrapment and stored between 5-6 km, while those from the post-caldera domes were trapped at 2-3 km. Differences in CO2 between Plinian and dome melt inclusions require that the post-caldera dome quartzes represent a different generation of crystals that grew as the magma slowly rose and progressively degassed at 2-3 km. During this shallow crystallization, the magma evolved further and eventually fed the post-caldera domes, one of which is a high-Si rhyolite. Consistent with this interpretation, melt inclusions from post-caldera dome samples contain lower OH/H2Om that indicate slower cooling rates compared to Plinian samples. The volatile record from pre and post-caldera deposits therefore reflects an eruptive history that was strongly influenced by volatile evolution within the Tara magma.
Microstructures define melting of molybdenum at high pressures
NASA Astrophysics Data System (ADS)
Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin
2017-03-01
High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.
Microstructures define melting of molybdenum at high pressures
Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin
2017-01-01
High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature. PMID:28248309
2016-04-14
study dynamic events such as melting, evaporation, crystallization, dissolution, self-assembly, membrane disruption, sample movement tracking. To... polymeric hairy nanopraticle, suprastructures REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S...the AFM will permit us to study dynamic events such as melting, evaporation, crystallization, dissolution, self-assembly, membrane disruption, sample
Petrography of impact glasses and melt breccias from the El'gygytgyn impact structure, Russia
NASA Astrophysics Data System (ADS)
Pittarello, Lidia; Koeberl, Christian
2013-07-01
The El'gygytgyn impact structure, 18 km in diameter and 3.6 Ma old, in Arctic Siberia, Russia, is the only impact structure on Earth mostly excavated in acidic volcanic rocks. The Late Cretaceous volcanic target includes lavas, tuffs, and ignimbrites of rhyolitic, dacitic, and andesitic composition, and local occurrence of basalt. Although the ejecta blanket around the crater is nearly completely eroded, bomb-shaped impact glasses, redeposited after the impact event, occur in lacustrine terraces within the crater. Here we present detailed petrographic descriptions of newly collected impact glass-bearing samples. The observed features contribute to constrain the formation of the melt and its cooling history within the framework of the impact process. The collected samples can be grouped into two types, characterized by specific features: (1) "pure" glasses, containing very few clasts or new crystals and which were likely formed during the early stages of cratering and (2) a second type, which represents composite samples with impact melt breccia lenses embedded in silicate glass. These mixed samples probably resulted from inclusion of unmelted impact debris during ejection and deposition. After deposition the glassy portions continued to deform, whereas the impact melt breccia inclusions that probably had already cooled down behaved as rigid bodies in the flow.
Identification of geometrical isomers and comparison of different isomeric samples of astaxanthin.
Qiu, Dan; Wu, Yue-Chan; Zhu, Wen-Li; Yin, Hong; Yi, Long-Tao
2012-09-01
A high-performance liquid chromatographic (HPLC) analysis system for isomeric astaxanthin was developed. The separation system consisted of a C(30) column and an elution system of methanol/MTBE/water/dichloromethane (77:13:8:2, v/v/v/v). Using the combination of HPLC diode array detector and HPLC atmospheric pressure chemical ionization mass spectrometry, 11 geometrical isomers and 4 epoxides of astaxanthin were successfully identified. Referred to crystal, only isomerization with different degrees was found for solvent dissolving and iodine catalysis, while melting of astaxanthin caused isomerization, slight oxidation, and more noticeable polymerization confirmed by gel permeation chromatography. Chemical changes in isomeric samples all caused a decrease in UV content. The vibrational spectra (infrared and Raman) showed that epoxide was the only new functional group generated for melting. Changes of several key bands and formations of new bands were found in iodine catalysis and melting samples because of isomerization. Practical Application: Eleven geometrical isomers and 4 epoxides, which were normally generated for solvent dissolving, iodine catalysis, and melting of astaxanthin, have been identified by C(30) -HPLC-MS technology. Furthermore, different samples were measured by gel permeation chromatography, UV, infrared, and Raman, based on the analysis of messages, the effect of each processing was well understood. © 2012 Institute of Food Technologists®
sup 40 Ar/ sup 39 Ar ages of six Apollo 15 impact melt rocks by laser step heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalrymple, G.B.; Ryder, G.
1991-06-01
The authors have obtained 15 high resolution (21-51 step) {sup 40}Ar/{sup 39}Ar age spectra on six Apollo 15 impact melt rocks of different compositions using a continuous laser system on submilligram subsamples and on single crystal plagioclase clasts. Four of the six samples gave reproducible age spectra with well-defined intermediate temperature plateaus over 48% or more of the {sup 39}AR released; the plateaus are interpreted as crystallization ages. Samples 15304,7,69, 15294,6,21, and 15314,26,156 gave virtually identical plateau ages whose weighted mean is 3,870 {plus minus} 6 Ma. These three melt rocks differ in composition and likely formed in three separatemore » impact events. Sample 15356,9 gave replicate plateau ages that average 3,836 {plus minus} 12 Ma and date a fourth and younger impact event. The age spectra for samples 15308,9 and 15414,3,36 increase with increasing increment temperature and may have been formed in or affected by impacts at about 2,700 Ma and 3,870 Ma, respectively. So far there continues to be no convincing evidence in the lunar record for impact melts older than about 3.9 Ga.« less
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S. M.; Su, J.; Chintamaneni, V.
2007-10-01
Detailed investigation of superconducting films of YBa2Cu3O7-δ (YBCO) prepared from solution-based precursors have been performed. Two precursors have been compared in this study: the presently used trifluoroacetate (TFA) solution and a recently developed colloidal suspension containing nanoparticles of mixed oxide. Detailed analyses of the evolution of microstructure and chemistry of the films have been performed, and process parameters have been correlated with final superconducting properties. Both films need two heating steps: a low temperature calcination and a higher temperature crystallization step. For TFA films, it was seen that the heating rate during calcination needs to be carefully optimized and is expected to be slow. For the alternate process using a nanoparticle precursor, a significantly faster calcination rate is possible. In the TFA process, the Ba ion remains as fluoride and the Y remains as oxyfluoride after calcination. This implies that, during the final crystallization stage to form YBCO, fluorine-containing gases will evolve, resulting in residual porosity. On the other hand, the film from the nanoparticle process is almost fully oxidized after calcination. Therefore, no gases evolve at the final firing (crystallization) stage, and the film has much lower porosity. The superconducting properties of both types of films are adequate, but the nanoparticle films appear to have persistently higher J c values. Moreover, they show improved flux pinning in higher magnetic fields, probably due to nanoscale precipitates of a Cu-rich phase. In addition, the nanocolloid films seem to show additionally enhanced flux pinning when doped with minute amounts of second phase precipitates. It therefore appears that, whereas the TFA process is already quite successful, the newly developed nanoparticle process has significant scope for additional improvement. It can be scaled-up with ease, and can be easily adapted to incorporate nanoscale flux pinning defects for in-field performance.
Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumption, Mike D.; Collings, Edward W.
2014-09-19
This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb 3Sn. These materials science aspects have been married to results, in the form of flux pinning, B c2, B irr, and transport J c, with an emphasis on obtaining the needed J c for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also reportmore » on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb 3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb 3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.« less
What Do Nectaris Basin Impact Melt Rocks Look like and Where Can We Find Them?
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Petro, N. E.; Lawrence, S. J.
2015-01-01
The formation of the Nectaris basin is a key event defining the stratigraphy of the Moon. Its absolute age, therefore, is a linchpin for lunar bombardment history. Fernandes et al. gave a thorough account of the history of different samples thought to originate in Nectaris, with the upshot being there is little agreement on what samples represent Nectaris, if any. We are revisiting the effort to identify Nectaris basin impact-melt rocks at the Apollo 16 site, to model their emplacement, and to use these parameters to examine other sites where Nectaris impact melt is more abundant and/or more recognizable for potential further study.
NASA Astrophysics Data System (ADS)
Hunt, Alison C.; Benedix, Gretchen K.; Hammond, Samantha J.; Bland, Philip A.; Rehkämper, Mark; Kreissig, Katharina; Strekopytov, Stanislav
2017-02-01
The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni-FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni-FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni-FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections.
NASA Astrophysics Data System (ADS)
Wright, N.; Polashenski, C. M.
2017-12-01
Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces exert tremendous influence over the energy balance of the Arctic Ocean by controlling the absorption of solar radiation. Here we demonstrate the use of a newly released, open source, image classification algorithm designed to identify surface features in high resolution optical satellite imagery of sea ice. Through explicitly resolving individual features on the surface, the algorithm can determine the percentage of ice that is covered by melt ponds with a high degree of certainty. We then compare observations of melt pond fraction extracted from these images with an established method of estimating melt pond fraction from medium resolution satellite images (e.g. MODIS). Because high resolution satellite imagery does not provide the spatial footprint needed to examine the entire Arctic basin, we propose a method of synthesizing both high and medium resolution satellite imagery for an improved determination of melt pond fraction across whole Arctic. We assess the historical trends of melt pond fraction in the Arctic ocean, and address the question: Is pond coverage changing in response to changing ice conditions? Furthermore, we explore the image area that must be observed in order to get a locally representative sample (i.e. the aggregate scale), and show that it is possible to determine accurate estimates of melt pond fraction by observing sample areas significantly smaller than the typical footprint of high-resolution satellite imagery.
NASA Astrophysics Data System (ADS)
Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.
2016-07-01
This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.
NASA Astrophysics Data System (ADS)
Jiang, Chengpeng; Fan, Xi'an; Hu, Jie; Feng, Bo; Xiang, Qiusheng; Li, Guangqiang; Li, Yawei; He, Zhu
2018-04-01
During the past few decades, Bi2Te3-based alloys have been investigated extensively because of their promising application in the area of low temperature waste heat thermoelectric power generation. However, their thermal stability must be evaluated to explore the appropriate service temperature. In this work, the thermal stability of zone melting p-type (Bi, Sb)2Te3-based ingots was investigated under different annealing treatment conditions. The effect of service temperature on the thermoelectric properties and hardness of the samples was also discussed in detail. The results showed that the grain size, density, dimension size and mass remained nearly unchanged when the service temperature was below 523 K, which suggested that the geometry size of zone melting p-type (Bi, Sb)2Te3-based materials was stable below 523 K. The power factor and Vickers hardness of the ingots also changed little and maintained good thermal stability. Unfortunately, the thermal conductivity increased with increasing annealing temperature, which resulted in an obvious decrease of the zT value. In addition, the thermal stabilities of the zone melting p-type (Bi, Sb)2Te3-based materials and the corresponding powder metallurgy samples were also compared. All evidence implied that the thermal stabilities of the zone-melted (ZMed) p-type (Bi, Sb)2Te3 ingots in terms of crystal structure, geometry size, power factor (PF) and hardness were better than those of the corresponding powder metallurgy samples. However, their thermal stabilities in terms of zT values were similar under different annealing temperatures.
A versatile approach to vacuum injection casting for materials research and development.
Xu, Donghua; Xu, Yifan
2017-03-01
Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.
A versatile approach to vacuum injection casting for materials research and development
NASA Astrophysics Data System (ADS)
Xu, Donghua; Xu, Yifan
2017-03-01
Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.
Petrographic and petrological studies of lunar rocks. [Apollo 15 breccias and Russian tektites
NASA Technical Reports Server (NTRS)
Winzer, S. R.
1978-01-01
Clasts, rind glass, matrix glass, and matrix minerals from five Apollo 15 glass-coated breccias (15255, 15286, 15465, 15466, and 15505) were studied optically and with the SEM/microprobe. Rind glass compositions differ from sample to sample, but are identical, or nearly so, to the local soil, suggesting their origin by fusion of that soil. Most breccia samples contain green or colorless glass spheres identical to the Apollo 15 green glasses. These glasses, along with other glass shards and fragments, indicate a large soil component is present in the breccias. Clast populations include basalts and gabbros containing phases highly enriched in iron, indicative of extreme differentiation or fractional crystallization. Impact melts, anorthosites, and minor amounts of ANT suite material are also present among the clasts. Tektite glasses, impact melts, and breccias from the Zhamanshin structure, USSR, were also studied. Basic tektite glasses were found to be identical in composition to impact melts from the structure, but no satisfactory parent material has been identified in the limited suite of samples available.
NASA Astrophysics Data System (ADS)
Sala, A.; Palenzona, A.; Bernini, C.; Caglieris, F.; Cimberle, M. R.; Ferdeghini, C.; Lamura, G.; Martinelli, A.; Pani, M.; Hecher, J.; Eisterer, M.; Putti, M.
2014-05-01
The study of overdoped FeTe1-xSex (0.5 < x < 1) polycrystalline superconductor samples is reported. The samples were prepared using a melting technique previously developed by our group. Increasing the Se content a phase separation related to the formation of FeSe inside the Fe(Se,Te) phase happens, as demonstrated by structural analysis and magnetic characterization. The proposed phase separation picture is likely the fingerprint of a miscibility gap in the Fe(Se,Te) system.
NASA Astrophysics Data System (ADS)
Laubier, M.; Langmuir, C. H.
2008-12-01
On mid-ocean ridges, the influential work by Sobolev and Shimizu (Nature, 1993) and Sobolev (Petrology, 1996) has inferred fractional melting during polybaric upwelling by showing that olivine-hosted inclusions were formed over a range of pressures. However melt inclusion studies have often concerned single MORB samples and may be seen as anecdotal in the sense that they are neither repeated nor globally verified. Recent modeling and experimental results also suggest the importance of post-entrapment processes for major and trace elements. This study presents major and trace element data in 300 olivine-hosted melt inclusions from 11 samples from the FAMOUS segment on the Mid-Atlantic Ridge. Published data from Shimizu (Phys. Earth Planet. Int., 1998) and Kamenetsky (EPSL, 1996; spinel-hosted inclusions) are also reported. In parallel, major and trace element measurements were performed in 150 glasses of the segment in order to have consistent datasets. Melt inclusions, trapped in olivine phenocrysts Mg#85-92, display complex trends in major element plots and can be divided into three groups. Group 1, the largest, is characterized by high MgO (9.4-13.4 wt.%), intermediate SiO2 and Al2O3 contents. Group 2 displays distinctively high Al2O3 (up to 18.4 wt.%), low SiO2 (as low as 46.5 wt.%) and high MgO (10.5-12.8 wt.%) contents, along with low CaO and variable TiO2, K2O and incompatible element concentrations. Group 3 consists of the melt inclusions trapped in less primitive olivines (Mg#<88.5) and displays higher SiO2, CaO and trace element contents. In the lava population, two groups can be distinguished. A small subset, that shares many features with the group 2 melt inclusions, displays high MgO and Al2O3 and low SiO2 and incompatible element contents. This type of lava - high-Al, low-Si and high-Mg - has been previously reported for various mid-ocean ridges (e.g., le Roux et al., Contrib. Min. Petrol., 2002; Eason and Sinton, EPSL, 2008). The second group plots along liquid lines of descent at low pressure starting from the compositions of the group 1 melt inclusions. Modeling of continuous polybaric melting and crystallization shows that the different inclusion groups are derived from melts formed at various pressures in the melting column (~12-6 kbar). After segregation from the mantle, the three batches of melts are fractionated at distinct pressures. The group 2 melt inclusions are consistent with the highest pressure of melt formation and a major role of cpx+olivine fractionation at high pressure (8 kbar), whereas group 3 results indicate the lowest pressure of extraction and entrapment (1kbar). An important observation is that high-Al, low-Si lavas contain melt inclusions from both the low-Si, high-Al group 2 and normal compositions (groups 1 and 3). These lavas can be reproduced by mixing between these two populations of inclusions, followed by some extent of differentiation. Therefore, this study shows that lavas represent averages of melts differentiated from the melt inclusions, and that the major element variability among inclusions can be explained by the combined effects of polybaric melting and crystallization at variable pressure. Trace element compositions of group 1 and 2 melt inclusions show large variations; incompatible element ratios (Ba/La, Rb/Nb, etc) suggest local source heterogeneity. Further modeling will be carried out in order to distinguish between the effects of partial melting and source composition.
Electrical Conductivity Measurements on Hydrous Carbonate Melts at Mantle Pressure
NASA Astrophysics Data System (ADS)
Sifre, D.; Gaillard, F.
2012-04-01
Electromagnetic methods image mantle regions in the asthenosphere with elevated conductivity (0.1 to 1 S.m-1), which constrasts with the conductivity of dry olivine (10-2 to 10-3 S.m-1). A correct interpretation of the petrological nature of the conductive mantle is critical for our understanding of mantle geodynamics because such conductive regions indicate mantle rocks with physical and chemical properties that importantly deviates from the canonical peridotites. For decades, such anomalously high mantle conductivities have been attributed to mineralogical defects associated to few tens of ppm water incorporated in olivine. Most recent experimental surveys, however, refute this hydrous olivine model. Conductive mantle regions could then reflect partial melting. The presence of melts in the Earth's mantle has long been proved by geochemical observations and experimental petrology on peridotite rocks. The requirement for melting in the asthenospheric mantle is the presence of volatile species (water, carbon dioxide, halogens). Small melt fractions are then produced by small volatile contents and they are the first liquids produced by melting magma. This study reports electrical conductivity measurements on such melts at mantle pressure and temperature. We investigated on melt chemical compositions produced by melting of peridotite that would interact with CO2-H2O and Cl. Such melts are carbonatite melts, carbonated silicate melts, hydrous carbonate melts, hydrous basalts. A new system allowing in situ electrical conductivity measurements in piston cylinder has been deployed. This design has been specifically adapted to perfom measurements on liquid samples with elevated electrical conductivities. The chemical compositions investigated are pure liquid CaCO3 and CaMg(CO3)2, to which, cloride (as salts), silicate (as basalts) and water (as brucite) have been added. Experiments have been realized at 1.5 and 2.7 GPa pressure and temperature of 1000-1700° C. Impedance spectrometry measurements are realized using a Solartron gainphase analyser. In the liquid state, which was identified at T varying from 1000-1700° C depending on chemical compositions, all investigated samples are extremely conductive, i.e. >100 S.m-1. It is 10,000 times more conductive than mantle olivine at similar P and T. The conductivities of samples increase with temperature and Arrhenius relationships can be adjusted. Activation energies depend on chemical compositions and vary from 40 to 80 kJ.mol-1. Conductivity of melts increases in the following sequence: CaCO3 < MgCa(CO3)2 < (MgCa(CO3)2)0.9 (NaCl)0.1 < (CaCO3)0.45 (NaCl)0.1 (MgH2O2)0.45. The latter melt composition is a simplified synthetic analogue of fluid inclusions entrapped in diamonds. Its electrical conductivity increases to >200 S.m-1 at 1410° C and 2.7 GPa. An electromagnetic survey (Tarits et al, this session) identifies a conductive mantle underneath mid-ocean ridge from 100 to nearly 500 km of depth. The determined conductivity, 0.1 S.m-1, is obtained considering 0.07 volume % of hydrous carbonated melts in peridotite rocks. This is equivalent to a peridotite with 175 ppm CO2 and 67 ppm water stored as small melt fraction wetting grain boundaries. Geochemical and geodynamic implications are discussed by Gaillard (this session).
NASA Astrophysics Data System (ADS)
Dhaliwal, Jasmeet K.; Day, James M. D.; Corder, Christopher A.; Tait, Kim T.; Marti, Kurt; Assayag, Nelly; Cartigny, Pierre; Rumble, Doug; Taylor, Lawrence A.
2017-11-01
In order to establish the role and expression of silicate-metal fractionation in early planetesimal bodies, we have conducted a highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance and 187Re-187Os study of acapulcoite-lodranite meteorites. These data are reported with new petrography, mineral chemistry, bulk-rock major and trace element geochemistry, and oxygen isotopes for Acapulco, Allan Hills (ALHA) 81187, Meteorite Hills (MET) 01195, Northwest Africa (NWA) 2871, NWA 4833, NWA 4875, NWA 7474 and two examples of transitional acapulcoite-lodranites, Elephant Moraine (EET) 84302 and Graves Nunataks (GRA) 95209. These data support previous studies that indicate that these meteorites are linked to the same parent body and exhibit limited degrees (<2-7%) of silicate melt removal. New HSE and osmium isotope data demonstrate broadly chondritic relative and absolute abundances of these elements in acapulcoites, lower absolute abundances in lodranites and elevated (>2 × CI chondrite) HSE abundances in transitional acapulcoite-lodranite meteorites (EET 84302, GRA 95209). All of the meteorites have chondritic Re/Os with measured 187Os/188Os ratios of 0.1271 ± 0.0040 (2 St. Dev.). These geochemical characteristics imply that the precursor material of the acapulcoites and lodranites was broadly chondritic in composition, and were then heated and subject to melting of metal and sulfide in the Fe-Ni-S system. This resulted in metallic melt removal and accumulation to form lodranites and transitional acapulcoite-lodranites. There is considerable variation in the absolute abundances of the HSE, both among samples and between aliquots of the same sample, consistent with both inhomogeneous distribution of HSE-rich metal, and of heterogeneous melting and incomplete mixing of silicate material within the acapulcoite-lodranite parent body. Oxygen isotope data for acapulcoite-lodranites are also consistent with inhomogeneous melting and mixing of accreted components from different nebular sources, and do not form a well-defined mass-dependent fractionation line. Modeling of HSE inter-element fractionation suggests a continuum of melting in the Fe-Ni-S system and partitioning between solid metal and sulfur-bearing mineral melt, where lower S contents in the melt resulted in lower Pt/Os and Pd/Os ratios, as observed in lodranites. The transitional meteorites, EET 84302 and GRA 95209, exhibit the most elevated HSE abundances and do not follow modelled Pt/Os and Pd/Os solid metal-liquid metal partitioning trends. We interpret this to reflect metal melt pooling into domains that were sampled by these meteorites, suggesting that they may originate from deeper within the acapulcoite-lodranite parent body, perhaps close to a pooled metallic 'core' region. Petrographic examination of transitional samples reveals the most extensive melting, pooling and networking of metal among the acapulcoite-lodranite meteorites. Overall, our results show that solid metal-liquid metal partitioning in the Fe-Ni-S system in primitive achondrites follows a predictable sequence of limited partial melting and metal melt pooling that can lead to significant HSE inter-element fractionation effects in proto-planetary materials.
NASA Technical Reports Server (NTRS)
Taylor, G. J.
1991-01-01
The MAC88105 lunar meteorite, as represented by thin section 78, contains three major types of impact melt breccias. The most abundant type is clast-laden, fine-grained, and rich in Al2O3 (28 wt pct); these clasts constitute most of the meteorite. Their abundance and aluminous nature indicate that the MAC88105 source area was very aluminous. This is consistent with formation of the primordial lunar crust from a global magma ocean. The second type of impact melt is represented by only one clast in 78. It has a basaltic bulk composition similar to many other lunar impact melts, but is significantly richer in P2O5 than most and has a much lower MgO/(MgO + FeO). The third impact-melt type resembles a prominent melt group at Apollo 16, but has lower MgO/(MgO + FeO). These data show that basaltic impact melts are compositionally diverse. Dating samples of the Al-rich impact melts and the new types of basaltic impact melts from this meteorite can test the idea that the Moon suffered a terminal cataclysm 3.9 Ga ago.
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
NASA Astrophysics Data System (ADS)
Ngwa, Caroline N.; Hansteen, Thor H.; Devey, Colin W.; van der Zwan, Froukje M.; Suh, Cheo E.
2017-09-01
Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77-87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9-11.7 wt%), and are generally more primitive than the matrix glasses (MgO 5.0-5.5 wt%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.
Producing Low-Oxygen Samarium/Cobalt Magnet Alloy
NASA Technical Reports Server (NTRS)
Das, Dilip K.; Kumar, Kaplesh; Frost, Robert T.; Chang, C. W.
1987-01-01
Experiments aimed at producing SmCo5 alloy with low oxygen contamination described in report. Two methods of alloying by melting without contact with crucible walls tested. Lowest oxygen contamination, 70 parts per million achieved by dc arc melting on water-cooled, tantalum-clad copper hearth in purified quiescent argon atmosphere. Report includes photographs of equipment, photomicrographs of alloy samples, detailed descriptions of procedures tried, and tables of oxygen contamination and intrinsic coercivities of samples produced.
The role of silver in the processing and properties of Bi-2212
NASA Technical Reports Server (NTRS)
Lang, TH.; Heeb, B.; Buhl, D.; Gauckler, L. J.
1995-01-01
The influence of the silver content and the oxygen partial pressure on the solidus temperature and the weight loss during melting of Bi2Sr2Ca1Cu2O(x) has been examined by means of DTA and TGA. By decreasing the oxygen partial pressure the solidus is lowered (e.g. del T = 59 C by decreasing pO2 from 1 atm to 0.001 atm) and the weight loss is increased. The addition of silver causes two effects: (1) the solidus is further decreased (e.g. 2 wt% Ag lower T (solidus) by up to 25 C, depending on the oxygen partial pressure); and (2) the weight loss during melting is reduced. Thick films (10-20 micron in thickness) with 0 and 5 wt% silver and bulk samples with) and 2.7 wt% silver were melt processed in flowing oxygen on a silver substrate in the DTA, allowing the observation of the melting process and a good temperature control. The critical current densities are vigorously dependent on the maximum processing temperature. The highest j(sub c) in thick films (8000 A/sq cm at 77 K, O T) was reached by melting 7 C above the solidus temperature. The silver addition shows no significant effect on the processing parameters or the superconducting properties. The highest j(sub c) for bulk samples (1 mm in thickness) was obtained by partial melting at 900 C or 880 C, depending on the silver content of the powder (0 or 2.7 wt%). The j(sub c) of the samples is slightly enhanced from 1800 A/sq cm (at 77 K, O T) to 2000 A/sq cm by the silver addition. To be able to reach at least 80% of the maximum critical current density, the temperature has to be controlled in a window of 5 C for thick films and 17 C for bulk samples.
X-ray fluorescence analysis of K, Al and trace elements in chloroaluminate melts
NASA Astrophysics Data System (ADS)
Shibitko, A. O.; Abramov, A. V.; Denisov, E. I.; Lisienko, D. G.; Rebrin, O. I.; Bunkov, G. M.; Rychkov, V. N.
2017-09-01
Energy dispersive x-ray fluorescence spectrometry was applied to quantitative determination of K, Al, Cr, Fe and Ni in chloroaluminate melts. To implement the external standard calibration method, an unconventional way of samples preparation was suggested. A mixture of metal chlorides was melted in a quartz cell at 350-450 °C under a slightly excessive pressure of purified argon (99.999 %). The composition of the calibration samples (CSs) prepared was controlled by means of the inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimal conditions for analytical lines excitation were determined, the analytes calibration curves were obtained. There was some influence of matrix effects in synthesized samples on the analytical signal of some elements. The CSs are to be stored in inert gas atmosphere. The precision, accuracy, and reproducibility factors of the quantitative chemical analysis were computed.
NASA Technical Reports Server (NTRS)
Korotev, Randy L.
1994-01-01
High-precision data for the concentrations of a number of lithophile and siderophile elements were obtained on multiple subsamples from 109 impact-melt rocks and breccias (mostly crystalline) from the Apollo 16 site. Compositions of nearly all Apollo 16 melt rocks fall on one of two trends of increasing Sm concentration with increasing Sc concentration. The Eastern trend (lower Sm/Sc, Mg/Fe, and Sm/Yb ratios) consists of compositional groups 3 and 4 of previous classification schemes. These melt rocks are feldspathic, poor in incompatible and siderophile elements, and appear to have provenance in the Descartes formation to the east of the site. The Western trend (higher Sm/Sc. Mg/Fe, and Sm/ Yb ratios) consists of compositional groups 1 and 2. These relatively mafic, KREEP-bearing breccias are a major component (approx.35%) of the Cayley plains west of the site and are unusual, compared to otherwise similar melt breccias from other sites, in having high concentrations of Fe-Ni metal ( 1-2 %). The metal is the carrier of the low-Ir/Au (approx. 0.3 x chondritic) siderophile-element signature that is characteristic of the Apollo 16 site. Four compositionally distinct groups (1M, 1F, 2DB, and 2NR) of Western-trend melt breccias occur that are each represented by at least six samples. Compositional group 1 or previous classification schemes (the 'poikilitic' or 'LKFM' melt breccias) can be subdivided into two groups. Group 1M (represented by six samples, including 60315) is characterized by lower Al2O3 concentrations, higher MgO and alkali concentrations, and higher Mg/Fe and Cr/Sc ratios than group 1F (represented by fifteen samples, including 65015). Group 1M also has siderophile-element concentrations averaging about twice those of group lF and Ir/Au and Ir/Ni ratios that are even lower than those of other Western-trend melt rocks (Ir/Au = 0.24 +/- 0.03. CI-normalized). At the mafic extreme of group 2 ('VHA' melt breccias), the melt lithology occurring as clasts in feldspathic fragmental breccias from North Ray crater (group 2NR) is compositionally distinct from the melt lithology ofdimict breccias from the Cayley plains (group 2DB) in having higher concentrations of Sc, Cr, and heavy rare earth elements and lower concentrations of siderophile elements. The distinct siderophile-element signature (high absolute abundances, low Ir/Au ratio) suggest that the four groups ofmafic melt breccia are all somehow related. Ratios ofsome lithophile elements also suggest that they are more closely related to each other than then, are to melt breccias from other Apoll sites. However, none of the breccia compositions can be related to any of the others by any simple process of igneous fractionation or mixing involving common lunar materials. Thus, the origin of the four groups of mafic melt breccia is enigmatic. If they were produced in only one or two impacts, then a mechanism exists for generating regimes of impact-melt breccia in a single impact that are substantially different from each other in composition. For various reasons, including the problem of delivering large volumes of four different types of melt to the Apollo 16 site, it is unlikely that any of these breccias were produced in basin-forming impacts. If they were produced in as many as four crater-forming impacts, then the unusual siderophile-element signature is difficult to explain. Possible explanations are (1) the four groups of melt breccia all contain metal from a single, earlier impact, (2) they were each formed by related metal-rich meteoroids, or (3) some common postimpact process has resulted in metal of similar composition in each of four melt pools. Within a compositional group, most intrasample and intersample variation in lithophile element concentrations is caused by differences among samples in the proportion of a component of normative anorthosite or noritic anorthosite. In most cases, this compositional variation probably reflects variation in clast abundance. For group 2DB (and probably 2NR), differences in abundance of a component of ferroan anorthosite (estimated Al2O3 approx. 32%) accounts for the compositional variation. For groups 1M and 1F, the anorthositic component is more mafic (estimated Al203 approx. 26%). Some group-2 samples may be related by a troctolitic component of varying abundance.
NASA Astrophysics Data System (ADS)
Fazio, Agnese; Folco, Luigi; D'Orazio, Massimo; Frezzotti, Maria Luce; Cordier, Carole
2014-12-01
Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz-rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high-pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s-1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.
NASA Astrophysics Data System (ADS)
Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei
2017-04-01
As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness <2km) (Zhou and Dick, 2013) that opens a window to the mantle thus provides a chance to detect the mantle composition directly. We examine the mineral compositions of 17 peridotite samples from the 53°E amagmatic segment. The results show that the peridotites can be divided into two groups. The Group 1 peridotites are characterized by clinopyroxenes having LREE depleted patterns that is typical for the abyssal peridotite, thus are thought to be the residue of the mantle melting. The Group 2 peridotites show the lowest HREE content within the SWIR peridotites but are anomaly enriched in LREE, with flat or U-type REE patterns, thus cannot be the pure residue of mantle melting. Mineral compositions of the Group 2 peridotites are more depleted than that of peridotites sampled near the Bouvet hot spot (Johnson et al., 1990), implying that the depleted mantle beneath the 53°E segment may be the residue of ancient melting event. This hypothesis is supported by the the low Ol/Opx ratios, coarse grain sizes (>1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.
Simulations with current constraints of ELM-induced tungsten melt motion in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Thorén, E.; Bazylev, B.; Ratynskaia, S.; Tolias, P.; Krieger, K.; Pitts, R. A.; Pestchanyi, S.; Komm, M.; Sieglin, B.; the EUROfusion MST1 Team; the ASDEX Upgrade Team
2017-12-01
Melt motion simulations of recent ASDEX Upgrade experiments on transient-induced melting of a tungsten leading edge during ELMing H-mode are performed with the incompressible fluid dynamics code MEMOS 3D. The total current flowing through the sample was measured in these experiments providing an important constraint for the simulations since thermionic emission is considered to be responsible for the replacement current driving melt motion. To allow for a reliable comparison, the description of the space-charge limited regime of thermionic emission has been updated in the code. The effect of non-periodic aspects of the spatio-temporal heat flux in the temperature distribution and melt characteristics as well as the importance of current limitation are investigated. The results are compared with measurements of the total current and melt profile.
,; Lowenstern, J. B.
2014-01-01
Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.
Geochemical Comparison of Four Cores from the Manson Impact Structure
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L.; Haskin, Larry A.; McCarville, Peter; Crossey, Laura J.
1996-01-01
Concentrations of 33 elements were determined in relatively unaltered, matrix-rich samples of impact breccia at approximately 3-m-depth intervals in the M-1 core from the Manson impact structure, Iowa. In addition, 46 matrix-rich samples from visibly altered regions of the M-7, M-8, and M-10 cores were studied, along with 42 small clasts from all four cores. Major element compositions were determined for a subset of impact breccias from the M-1 core, including matrix-rich impact-melt breccia. Major- and trace-element compositions were also determined for a suite of likely target rocks. In the M-1 core, different breccia units identified from lithologic examination of cores are compositionally distinct. There is a sharp compositional discontinuity at the boundary between the Keweenawan-shale-clast breccia and the underlying unit of impact-melt breccia (IMB) for most elements, suggesting minimal physical mixing between the two units during emplacement. Samples from the 40-m-thick IMB (M-1) are all similar to each other in composition, although there are slight increases in concentration with depth for those elements that have high concentrations in the underlying fragmental-matrix suevite breccia (SB) (e.g., Na, Ca, Fe, Sc), presumably as a result of greater clast proportions at the bottom margin of the unit of impact-melt breccia. The high degree of compositional similarity we observe in the impact-melt breccias supports the interpretation that the matrix of this unit represents impact melt. That our analyses show such compositional similarity results in part from our technique for sampling these breccias: for each sample we analyzed a few small fragments (total mass: approximately 200 mg) selected to be relatively free of large clasts and visible signs of alteration instead of subsamples of powders prepared from a large mass of breccia. The mean composition of the matrix-rich part of impact-melt breccia from the M-1 core can be modeled as a mixture of approximately 35% shale and siltstone (Proterozoic "Red Clastics"), 23% granite, 40% hornblende-biotite gneiss, and a small component (less than 2%) of mafic-dike rocks.
Enhancement of mechanical properties of 123 superconductors
Balachandran, U.
1995-04-25
A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.
High Tc superconducting bolometric and nonbolometric infrared (IR) detectors
NASA Technical Reports Server (NTRS)
Lakeou, Samuel; Rajeswari, M.; Goyal, Anuja
1995-01-01
The workplan for the period August 1994 through August 1995 includes the following: (1) expand the Applied Superconductivity Laboratory to include stand-alone optical response and noise measurement setups; (2) pursue studies of the low frequency excess electrical noise in YBCO films; and (3) enhance the academic support component of the project through increased student and faculty participation.
Vaporization of a mixed precursors in chemical vapor deposition for YBCO films
NASA Technical Reports Server (NTRS)
Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises
1995-01-01
Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.
Origin of variolitic lavas: Evidence for variolites in axial part of the Mid-Atlantic Ridge, 6oN
NASA Astrophysics Data System (ADS)
Sharkov, Evgenii; Krssivskaya, Irina; Chistyakov, Alexei
2010-05-01
Fragment of variolitic lavas was dredged in axial part of the MAR at 6oN during 10th cruise of R/V "Akademik Ioffe" (2001-2002). It is rock where rounded globules of andesite (icelandite) with light trachyandesite rims are enclosed in high-Ti picrobasalt matrix. The sample can be subdivided in two different structural parts, or "layers". One of them densely saturated by globules, which closely adjoin to each other, merge in clumpy congregations with small quantity of matrix material in interstices. In the other part of the sample matrix predominates. Isolated, sometimes sticked together globules "swim" in the matrix and their quantity and size quickly decrease to the sample edge, where only small rare globules occur. Boundary between both parts, even if irregular due to rounded shape of closed globules, nevertheless is well-defined and has small bays of the matrix material. So, globules were moved in picrobasalt melt and floated up to the surface of the lava flow. It is shown that formation of the leucocratic rims was evidently linked with thermal diffusion phenomenon (Soret principle) in cooling heterogeneous melt. According to this principle, components in solutions and melts, placed in thermal gradient, are redistributed for leveling of internal energy in that way, when light elements migrate to hot parts and heavy ones to cold. Experimental studies of thermal diffusion in samples of MORB showed enlarge of Si, Al, Na and K concentration to side of hot area of melt and Fe, Mg, Ca, etc. to cold one; resulting melts were Qtz-normative andesites and Ne-normative picrite (Walker, DeLong, 1982). The same picture we saw in our sample: enrichment of external zone of globules by Si, Al, and, especially, by high-mobile Na, which diffusion rate in silicate melts in some order higher than speed of remaining elements (Watson, 1982; Borisov, 2008). Simultaneously, this zone impoverished by Fe, Ca and Mg, which were concentrated in rear of rims, forming internal zoning of globules with careless boundaries. Effect of thermal diffusion in more important for Fe; as a result #mg in trachyandesite rims higher than in andesite cores of globules. It suggests that origin of variolites was linked with intersection by ascended column of picrobasaltic magma of existed at that time in crust above small shallow magmatic chamber with residual melt of andesite (icelandite) in composition, which was involved in general upwards current. Because ascending of magmas in axial part of the MAR was whirl (Sharkov et al., 2008), alien melt was dispersed on small drops, but, however, had not time to dissolved in host picrite melt. Formation of proper variolites was occurred in process of moving and cooling of such heterogeneous lava on oceanic floor.. From this follows that axial parts of low-spreading ridges have very complicate structure, where different melts can coexist. There are no any evidence of liquid immiscibility the variolite origin The same petrological features are typical for classic Paleoproterozoic variolites of the Yal-Guba, Onega Lake, Karelia, which are also pillow-lavas. They were firstly described by F.Yu. Levinson-Lessing in 1920th. We conclude that variolite formation are linked with complex magmatic systems where small shallow magma chambers with evolved melt were intersected by streams of new magma portions from deep-seated source. Indispensable condition for variolites is contrasting composition of the magmas which allow to clearly see this phenomenon.
Enhanced power factor of higher manganese silicide via melt spin synthesis method
Shi, Xiaoya; Shi, Xun; Li, Yulong; ...
2014-12-30
We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.« less