Sample records for ybco power cable

  1. Testing of a 1.25-m HTS Cable Made from YBCO Tapes

    NASA Astrophysics Data System (ADS)

    Gouge, M. J.; Lue, J. W.; Demko, J. A.; Duckworth, R. C.; Fisher, P. W.; Daumling, M.; Lindsay, D. T.; Roden, M. L.; Tolbert, J. C.

    2004-06-01

    Ultera and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested a 1.25-m-long, prototype high-temperature superconducting (HTS) power cable made from 1-cm-wide, second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in boiling liquid nitrogen at 77 K. DC testing of the 1.25-m cable included determination of the V-I curve, with a critical current of 4200 A. This was consistent with the properties of the 24 individual YBCO tapes. AC testing of the cable was conducted at currents up to 2500 Arms. The ac losses were measured calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. AC losses of about 2 W/m were measured at a cable ac current of 2000 Arms. Overcurrent testing was conducted at peak current values up to 12 kA for pulse lengths of 0.1-0.2 s. The cable temperature increased to 105 K for a 12 kA, 0.2 s overcurrent pulse, and the cable showed no degradation after the sequence of overcurrent testing. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.

  2. Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable

    NASA Astrophysics Data System (ADS)

    Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John

    2014-01-01

    The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.

  3. Exfoliated YBCO filaments for second-generation superconducting cable

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav; Farrell, Paul

    2017-01-01

    The second-generation high temperature superconductor (2G HTS) wire is the most promising conductor for high-field magnets such as accelerator dipoles and compact fusion devices. The key element of the wire is a thin Y1Ba2Cu3O7 (YBCO) layer deposited on a flexible metal substrate. The substrate, which becomes incorporated in the 2G conductor, reduces the electrical and mechanical performance of the wire. This is a process that exfoliates the YBCO layer from the substrate while retaining the critical current density of the superconductor. Ten-centimeter long coupons of exfoliated YBCO layers were manufactured, and detailed structural, electrical, and mechanical characterization were reported. After exfoliation, the YBCO layer was supported by a 75 μm thick stainless steel foil, which makes for a compact, mechanically stronger, and inexpensive conductor. The critical current density of the filaments was measured at both 77 K and 4.2 K. The exfoliated YBCO retained 90% of the original critical current. Similarly, tests in an external magnetic field at 4.2 K confirmed that the pinning strength of the YBCO layer was also retained following exfoliation.

  4. Experimentally determined transport and magnetization ac losses of small cable models constructed from YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Šouc, J.; Vojenčiak, M.; Gömöry, F.

    2010-04-01

    Several short cable models were constructed from YBCO coated conductor (YBCO CC) to study their basic dc and ac electrical properties. They were prepared using superconducting tapes helically wound on fiberglass former of different diameter (5, 8 and 10 mm) with different twist pitch (from 1.7 up to 2.4 cm). The number of parallel-connected tapes ranged from 1 up to 6. The standard length of the models was 11 cm. In one case a 35 cm long model has been manufactured in order to perform a bending test. We observed that the critical currents of the models were proportional to the number of tapes used for their construction. Transport and magnetization ac loss were measured at 36 and 72 Hz.

  5. Stability and normal zone propagation in YBCO CORC cables

    DOE PAGES

    Majoros, M.; Sumption, M. D.; Collings, E. W.; ...

    2016-03-11

    In this study, a two layer conductor on round core cable was tested for stability and normal zone propagation at 77 K in a liquid nitrogen bath. The cable was instrumented with voltage taps and wires on each strand over the cable’s central portion (i.e. excluding the end connections of the cable with the outside world). A heater was placed in the central zone on the surface of the cable, which allowed pulses of various powers and durations to be generated. Shrinking (recovering) and expanding (not recovering) normal zones have been detected, as well as stationary zones which were inmore » thermal equilibrium. Such stationary thermal equilibrium zones did not expand or contract, and hit a constant upper temperature while the heater current persisted; they are essentially a form of Stekly stability. Overall, the cable showed a high degree of stability. Notably, it was able to carry a current of 0.45I c cable with maximum temperature of 123 K for one minute without damage.« less

  6. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...

  7. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...

  8. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...

  9. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...

  10. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made...

  11. Frequency dependence of magnetic ac loss in a Roebel cable made of YBCO on a Ni-W substrate

    NASA Astrophysics Data System (ADS)

    Lakshmi, L. S.; Staines, M. P.; Badcock, R. A.; Long, N. J.; Majoros, M.; Collings, E. W.; Sumption, M. D.

    2010-08-01

    We have investigated the frequency dependent contributions to the magnetic ac loss in a 10 strand Roebel cable with 2 mm wide non-insulated strands and a transposition length of 90 mm. This cable is made from 40 mm wide YBCO coated conductor tape manufactured by AMSC and stabilized by electroplating 25 µm thick copper on either side prior to the mechanical punching of the cable strands. The measurements were carried out in both perpendicular and parallel field orientation, at frequencies in the range of 30-200 Hz. While the loss in the perpendicular orientation is predominantly hysteretic in nature, we observe some frequency dependence of the loss when the cable approaches full flux penetration at high field amplitudes. The magnitude is consistent with eddy current losses in the copper stabilization layer. This supports the fact that the inter-strand coupling loss is not significant in this frequency range. In the parallel field orientation, the hysteresis loss in the Ni-W alloy substrate dominates, but we see an unusually strong frequency dependent contribution to the loss which we attribute to intra-strand current loops.

  12. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  13. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  14. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and power cable connections to junction boxes shall not be made or broken under load. ...

  15. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and power cable connections to junction boxes shall not be made or broken under load. ...

  16. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and power cable connections to junction boxes shall not be made or broken under load. ...

  17. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and power cable connections to junction boxes shall not be made or broken under load. ...

  18. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.607 Breaking trailing cable and power cable connections. [Statutory Provisions] Trailing cable and...

  19. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  20. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  1. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  2. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  3. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  4. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  5. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  6. Thermal analysis of underground power cable system

    NASA Astrophysics Data System (ADS)

    Rerak, Monika; Ocłoń, Paweł

    2017-10-01

    The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.

  7. Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer

    NASA Technical Reports Server (NTRS)

    Johannes, Daniel; Webber, Robert

    2013-01-01

    Adiabatic demagnetization refrigerators (ADR) are operated in space to cool detectors of cosmic radiation to a few 10s of mK. A key element of the ADR is a superconducting magnet operating at about 0.3 K that is continually energized and de-energized in synchronism with a thermal switch, such that a piece of paramagnetic salt is alternately warm in a high magnetic field and cold in zero magnetic field. This causes the salt pill or refrigerant to cool, and it is able to suck heat from an object, e.g., the sensor, to be cooled. Current has to be fed into and out of the magnets from a dissipative power supply at the ambient temperature of the spacecraft. The current leads that link the magnets to the power supply inevitably conduct a significant amount of heat into the colder regions of the supporting cryostat, resulting in the need for larger, heavier, and more powerful supporting refrigerators. The aim of this project was to design and construct high-temperature superconductor (HTS) leads from YBCO (yttrium barium copper oxide) composite conductors to reduce the heat load significantly in the temperature regime below the critical temperature of YBCO. The magnet lead does not have to support current in the event that the YBCO ceases to be superconducting. Cus - tomarily, a normal metal conductor in parallel with the YBCO is a necessary part of the lead structure to allow for this upset condition; however, for this application, the normal metal can be dispensed with. Amorphous silicon dioxide is deposited directly onto the surface of YBCO, which resides on a flexible substrate. The silicon dioxide protects the YBCO from chemically reacting with atmospheric water and carbon dioxide, thus preserving the superconducting properties of the YBCO. The customary protective coating for flexible YBCO conductors is silver or a silver/gold alloy, which conducts heat many orders of magnitude better than SiO2 and so limits the use of such a composite conductor for passing current

  8. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumption, Mike D.; Collings, Edward W.

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and couplingmore » magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.« less

  9. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light

  10. Strain relief for power-cable connectors

    NASA Technical Reports Server (NTRS)

    Dean, W. T., III

    1980-01-01

    Easily fabricated grommet composed of polytetrafluoroethylene cylinder, containing U-shaped channels equally spaced around periphery, is used in power cable connectors to relieve strain on cables. Utilization of grommets provides more ease in cable insertion and removal. Potential applications include wiring in large residential and commercial buildings.

  11. Development of a single-phase 30 m HTS power cable

    NASA Astrophysics Data System (ADS)

    Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook

    2006-05-01

    HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.

  12. Ames Lab 101: Reinventing the Power Cable

    ScienceCinema

    Russell, Alan

    2018-01-16

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  13. Reducing Magnetic Fields Around Power Cables

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.; Gitelman, Florida; Pongracz-Bartha, Edward; Spalding, John

    1993-01-01

    Four power conductors arranged symmetrically about fifth grounded conductor. Four current-carrying wires arranged symmetrically around central grounded wire that nominally carries no current. In comparison with other cable configurations, this one results in smaller magnetic fields around cable. Technique for use when size of wires in cable makes twisting impractical.

  14. High power cable with internal water cooling 400 kV

    NASA Astrophysics Data System (ADS)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  15. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  16. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  17. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  18. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  19. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  20. Properties of plastic tapes for cryogenic power cable insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, A C

    1978-01-01

    A superconducting ac power transmission cable is under development at Brookhaven National Laboratory (BNL). This project was undertaken in 1972 in response to growing national power requirements. The goal of this program is to develop an underground power transmission system suitable for transferring bulk quantities of electricity over distances of 16 to 160 km. Both the capital investment and operating costs must be low enough to make the system attractive to the electric utilities. The superconducting cable shares the advantages with conventional underground cables of needing only a few feet of right-of-way width rather than the large tracts of increasinglymore » expensive land required for conventional aerial transmission. Recent cost analysis studies show that superconducting cables, although more expensive than aerial transmission, will probably be competitive with other methods of underground transmission at loads greater than 2000 MVA. Initial design studies showed that a flexible, forced-cooled cable offered the best combination of technical and economic features. A helium cooled cable with Nb/sub 3/Sn superconductor was chosen as the BNL design. The present goal of the BNL program is the construction of a 100 meter outdoor three-phase ac cable rated at 138 kV and 1000 MVA. The refrigerator and the 100 m-long dewar are already installed. Terminations and cables are under design, and it is planned to begin installation of the first single phase cable in 1979. If the results on this model show promise for eventual commercial use, cables of higher voltage and power rating will be developed. One fundamental phase of this project; the development of the required insulating materials, is described.« less

  1. Design of power cable grounding wire anti-theft monitoring system

    NASA Astrophysics Data System (ADS)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  2. Assessing potential impacts of energized submarine power cables on crab harvests

    NASA Astrophysics Data System (ADS)

    Love, Milton S.; Nishimoto, Mary M.; Clark, Scott; McCrea, Merit; Bull, Ann Scarborough

    2017-12-01

    Offshore renewable energy facilities transmit electricity to shore through submarine power cables. Electromagnetic field emissions (EMFs) are generated from the transmission of electricity through these cables, such as the AC inter-array (between unit) and AC export (to shore) cables often used in offshore energy production. The EMF has both an electric component and a magnetic component. While sheathing can block the direct electric field, the magnetic field is not blocked. A concern raised by fishermen on the Pacific Coast of North America is that commercially important Dungeness crab (Metacarcinus magister Dana, 1852)) might not cross over an energized submarine power cable to enter a baited crab trap, thus potentially reducing their catch. The presence of operating energized cables off southern California and in Puget Sound (cables that are comparable to those within the arrays of existing offshore wind energy devices) allowed us to conduct experiments on how energized power cables might affect the harvesting of both M. magister and another commercially important crab species, Cancer productus Randall, 1839. In this study we tested the questions: 1) Is the catchability of crabs reduced if these animals must traverse an energized power cable to enter a trap and 2) if crabs preferentially do not cross an energized cable, is it the cable structure or the EMF emitted from that cable that deters crabs from crossing? In field experiments off southern California and in Puget Sound, crabs were given a choice of walking over an energized power cable to a baited trap or walking directly away from that cable to a second baited trap. Based on our research we found no evidence that the EMF emitted by energized submarine power cables influenced the catchability of these two species of commercially important crabs. In addition, there was no difference in the crabs' responses to lightly buried versus unburied cables. We did observe that, regardless of the position of the cable

  3. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...

  4. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...

  5. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...

  6. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...

  7. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...

  8. Nondestructive Examination for Nuclear Power Plant Cable Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.

    2016-01-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable’s ability to perform safely over the initial 40 year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found inmore » an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program (AMP) to justify cable performance under normal operation as well as accident conditions. This paper addresses various NDE technologies that constitute the essence of an acceptable aging management program.« less

  9. Application of Superconducting Power Cables to DC Electric Railway Systems

    NASA Astrophysics Data System (ADS)

    Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru

    For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.

  10. Potential Impact of Submarine Power Cables on Crab Harvest

    NASA Astrophysics Data System (ADS)

    Bull, A. S.; Nishimoto, M.

    2016-02-01

    Offshore renewable energy installations convert wave or wind energy to electricity and transfer the power to shore through transmission cables laid on or buried beneath the seafloor. West coast commercial fishermen, who harvest the highly prized Dungeness crab (Metacarcinus magister) and the rock crab (Cancer spp.), are concerned that the interface of crabs and electromagnetic fields (EMF) from these cables will present an electrified fence on the seafloor that their target resource will not cross. Combined with the assistance of professional fishermen, submarine transmission cables that electrify island communities and offshore oil platforms in the eastern Pacific provide an opportunity to test the harvest of crab species across power transmission cables. In situ field techniques give commercial crab species a choice to decide if they will cross fully energized, EMF emitting, power transmission cables, in response to baited traps. Each independent trial is either one of two possible responses: the crab crosses the cable to enter a trap (1) or the crab does not cross the cable to enter a trap (0). Conditions vary among sample units by the following categorical, fixed factors (i.e., covariates) of cable structure (buried or unburied); direction of cable from crab position (west or east, north or south); time and season. A generalized linear model is fit to the data to determine whether any of these factors affect the probability of crabs crossing an energized cable to enter baited traps. Additionally, the experimental design, aside from the number of runs (set of sample trials) and the dates of the runs, is the same in the Santa Barbara Channel for rock crab and Puget Sound for Dungeness crab, and allows us to compare the capture rates of the two species in the two areas. We present preliminary results from field testing in 2015.

  11. A Marriage Proposal: Cable Television and Local Public Power.

    ERIC Educational Resources Information Center

    Schwartz, Louis; Woods, Robert A.

    Two articles reprinted from "Public Power" discuss the present state of cable television (TV), its future prospects, and the opportunities offered municipal utilities by cable TV. The proposal is that local publicly-owned electric utilities meet the requirements of the Federal Communications Commission (FCC) for cable TV ownership and have the…

  12. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  13. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  14. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  15. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation and fittings for power wires and... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with...

  16. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation and fittings for power wires and... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with...

  17. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power wires and cables; insulation and protection. 75.517-1 Section 75.517-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on...

  18. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power wires and cables; insulation and protection. 75.517-1 Section 75.517-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on...

  19. 30 CFR 57.12083 - Support of power cables in shafts and boreholes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...

  20. 30 CFR 57.12083 - Support of power cables in shafts and boreholes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...

  1. 30 CFR 57.12083 - Support of power cables in shafts and boreholes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...

  2. 30 CFR 57.12083 - Support of power cables in shafts and boreholes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...

  3. 30 CFR 57.12083 - Support of power cables in shafts and boreholes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent undue...

  4. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power wires and cables; insulation and protection. 75.517-1 Section 75.517-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on...

  5. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power wires and cables; insulation and protection. 75.517-1 Section 75.517-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on...

  6. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Power wires and cables; insulation and protection. 75.517-1 Section 75.517-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on...

  7. Transient analysis of an HTS DC power cable with an HVDC system

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  8. Frequency domain reflectometry NDE for aging cables in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Jones, A. M.; Fifield, L. S.; Hartman, T. S.

    2017-02-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. Although system tests verify cable function under normal loads, demonstration of some cable's ability to perform under exceptional loads associated with design-basis events is essential to assuring plant integrity. The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program that includes condition monitoring to justify cable performance under normal operation as well as accident conditions. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none are suitable for all cable configurations nor does any single test confirm all features of interest. One particularly promising test that is beginning to be used more and more by utilities is frequency domain reflectometry (FDR). FDR is a nondestructive electrical inspection technique used to detect and localize faults in power and communication system conductors along the length of a cable from a single connection point. FDR detects discontinuities in the electrical impedance that arise due to cable splices or similar changes along the path of the conductor pair. In addition, FDR has the potential to provide sensitivity to insulation degradation by detecting small changes in impedance between the cable conductors being examined. The technique is also sensitive to cable bends, the particular lay of the cable in tray, proximity to other cable, and other factors that

  9. Total Magnetic Field Signatures over Submarine HVDC Power Cables

    NASA Astrophysics Data System (ADS)

    Johnson, R. M.; Tchernychev, M.; Johnston, J. M.; Tryggestad, J.

    2013-12-01

    Mikhail Tchernychev, Geometrics, Inc. Ross Johnson, Geometrics, Inc. Jeff Johnston, Geometrics, Inc. High Voltage Direct Current (HVDC) technology is widely used to transmit electrical power over considerable distances using submarine cables. The most commonly known examples are the HVDC cable between Italy and Greece (160 km), Victoria-Tasmania (300 km), New Jersey - Long Island (82 km) and the Transbay cable (Pittsburg, California - San-Francisco). These cables are inspected periodically and their location and burial depth verified. This inspection applies to live and idle cables; in particular a survey company could be required to locate pieces of a dead cable for subsequent removal from the sea floor. Most HVDC cables produce a constant magnetic field; therefore one of the possible survey tools would be Marine Total Field Magnetometer. We present mathematical expressions of the expected magnetic fields and compare them with fields observed during actual surveys. We also compare these anomalies fields with magnetic fields produced by other long objects, such as submarine pipelines The data processing techniques are discussed. There include the use of Analytic Signal and direct modeling of Total Magnetic Field. The Analytic Signal analysis can be adapted using ground truth where available, but the total field allows better discrimination of the cable parameters, in particular to distinguish between live and idle cable. Use of a Transverse Gradiometer (TVG) allows for easy discrimination between cable and pipe line objects. Considerable magnetic gradient is present in the case of a pipeline whereas there is less gradient for the DC power cable. Thus the TVG is used to validate assumptions made during the data interpretation process. Data obtained during the TVG surveys suggest that the magnetic field of a live HVDC cable is described by an expression for two infinite long wires carrying current in opposite directions.

  10. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  11. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  12. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  13. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  14. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumption, Mike D.; Collings, Edward W.

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb 3Sn. These materials science aspects have been married to results, in the form of flux pinning, B c2, B irr, and transport J c, with an emphasis on obtaining the needed J c for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also reportmore » on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb 3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb 3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.« less

  15. Power systems for ocean regional cabled observatories

    NASA Technical Reports Server (NTRS)

    Kojima, Junichi; Asakawa, Kenichi; Howe, Bruce M.; Kirkham, Harold

    2004-01-01

    Development of power systems is the most challenging technical issue in the design of ocean regional cabled observatories. ARENA and NEPTUNE are two ocean regional cabled observatory networks with aims that are at least broadly similar. Yet the two designs are quite different in detail. This paper outlines the both systems and explores the reasons for the divergence of design, and shows that it arose because of differences in the priority of requirements.

  16. Noise propagation issues in Belle II pixel detector power cable

    DOE PAGES

    Iglesias, M.; Arteche, F.; Echeverria, I.; ...

    2018-04-26

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  17. Noise propagation issues in Belle II pixel detector power cable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesias, M.; Arteche, F.; Echeverria, I.

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  18. Noise propagation issues in Belle II pixel detector power cable

    NASA Astrophysics Data System (ADS)

    Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.

    2018-04-01

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  19. Designing Predictive Diagnose Method for Insulation Resistance Degradation of the Electrical Power Cables from Neutral Insulated Power Networks

    NASA Astrophysics Data System (ADS)

    Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.

    2017-06-01

    This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.

  20. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation and fittings for power wires and... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires and cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical...

  1. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation and fittings for power wires and... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires and cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical...

  2. High quality uniform YBCO film growth by the metalorganic deposition using trifluoroacetates

    NASA Astrophysics Data System (ADS)

    Wang, S. S.; Zhang, Z. L.; Wang, L.; Gao, L. K.; Liu, J.

    2017-03-01

    A need exists for the large-area superconducting YBa2Cu3O7-x (YBCO) films with high critical current density for microwave communication and/or electric power applications. Trifluoroacetic metalorganic (TFA-MOD) method is a promising low cost technique for large-scale production of YBCO films, because it does not need high vacuum device and is easily applicable to substrates of various shape and size. In this paper, double-sided YBCO films with maximum 2 in diameter were prepared on LaAlO3 substrates by TFA-MOD method. Inductive critical current densitiy Jc, microwave surface resistance Rs, as well as the microstructure were characterized. A newly homemade furnace system was used to epitaxially grown YBCO films, which can improve the uniformity of YBCO film significantly by gas supply and temperature distribution proper design. Results showed that the large area YBCO films were very uniform in microstructure and thickness distribution, an average inductive Jc in excess of 6 MA/cm2 with uniform distribution, and low Rs (10 GHz) below 0.3 mΩ at 77 K were obtained. Andthe film filter may be prepared to work at temperatures lower than 74 K. These results are very close to the highest value of YBCO films made by conventional vacuum method, so we show a very promising route for large-scale production of high quality large-area YBCO superconducting films at a lower cost.

  3. Transient sheath overvoltages in armored power cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, B.; Sletbak, J.

    1996-07-01

    This paper is concerned with methods of limiting the build-up of transient voltages between sheath and armor in long armored power cables. Calculations by a frequency dependent cable model demonstrate that this voltage can be efficiently limited to an acceptable level by introducing sheath-armor bondings at regular intervals, or by using a semiconductive sheath-armor interlayer. The paper investigates the required minimum length between bondings, as well as the required conductivity of the sheath-armor interlayer if the use of bondings is to be avoided.

  4. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  5. LONG TERM OPERATION ISSUES FOR ELECTRICAL CABLE SYSTEMS IN NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Dr Leonard S; Duckworth, Robert C; Glass III, Dr. Samuel W.

    Nuclear power plants contain hundreds of kilometers of electrical cables including cables used for power, for instrumentation, and for control. It is essential that safety-related cable systems continue to perform following a design-basis event. Wholesale replacement of electrical cables in existing plants facing licensing period renewal is both impractical and cost-prohibitive. It is therefore important to understand the long term aging of cable materials to have confidence that aged cables will perform when needed. It is equally important in support of cable aging management to develop methods to evaluate the health of installed cables and inform selective cable replacement decisions.more » The most common insulation materials for electrical cables in nuclear power plants are cross-linked polyethylene and ethylene-propylene rubber. The mechanical properties of these materials degrade over time in the presence of environmental stresses including heat, gamma irradiation, and moisture. Mechanical degradation of cable insulation beyond a certain threshold is unacceptable because it can lead to insulation cracking, exposure of energized conductors, arcing and burning or loss of the ability of the cable system to function during a design-basis accident. While thermal-, radiation-, and moisture-related degradation of polymer insulation materials has been extensively studied over the last few decades, questions remain regarding the long-term performance of cable materials in nuclear plant-specific environments. Identified knowledge gaps include an understanding of the temperature-dependence of activation energies for thermal damage and an understanding of the synergistic effects of radiation and thermal stress on polymer degradation. Many of the outstanding questions in the aging behavior of cable materials relate to the necessity of predicting long-term field degradation using accelerated aging results from the laboratory. Materials degrade faster under more extreme

  6. Development of Integrated Assessment System for Underground Power Cable Performance: A Case Study

    NASA Astrophysics Data System (ADS)

    Turan, Faiz Mohd; Johan, Kartina; Soliha Sahimi, Nur; Nor, Nik Hisyamudin Muhd

    2017-08-01

    The basic operation of any electrical machines that is catered to serve needs of civilization involves electrical power which is the main source to trigger the internal mechanism in the machines then transfer the power to other form of energy such as mechanical, light, sound and etc. The supplies of electrical does not happen just by providing the source itself, it has load carrying agent which in many cases, user would refer to it as cable. Specifically, it is the power cable which its ampacity depends significantly on the operation temperature and load stress on it. Apart from having to focus on providing improvement on improving efficiency on the source itself, power cable plays and important role because without it, current ranging from low to high could not be transmitted and hence a failure of the power system generally. Studies have conducted to discuss whether which factor contributes relatively more to the causes of power cable failure or breakdown. Such factors can be narrowed down to the three major causes which are over temperature, over voltage and stress caused by over current. Over current is one of the factor which is depends on the usage of the power system itself. The higher the usage of the power system, higher the chances of over current to take place. This will then produce load stress on the cable which eventually destroy the insulator of the cable and slowly reach the core of the cable. It is believed that an assessment method should be implemented in order to predict the performance and failure rate of the power cable and use this prediction as reference rather than just letting power failure to happen anytime unpredictable which cause huge inconvenience to users and industries. Not only do a method should be implemented, it should be as easy to be used and understood by large range of users and integrated by a graphical user interface to be used. Therefore, this research will further narrow down on the approaches to do so and the location

  7. Superconducting power transmission system development. Cable insulation development

    NASA Astrophysics Data System (ADS)

    1983-09-01

    The development of an underground superconducting power transmission system which is economical and technically attractive to the utility industry is discussed. Suitable superconductors and dielectric insulation were developed. Cables several hundred feet long are tested under realistic conditions. Three operating runs of about 2 weeks duration each were accomplished. The 60 Hz steady state performance of the cables under rated conditions was explored. Over voltage endurance tests and emergency level current tests were performed.

  8. Transient analysis for alternating over-current characteristics of HTSC power transmission cable

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Hwang, S. D.

    2006-10-01

    In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.

  9. Operating experience with the southwire 30-meter high-temperature superconducting power cable

    NASA Astrophysics Data System (ADS)

    Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.

    2002-05-01

    Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.

  10. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior to... officials; (2) Map or diagram indicating location of power wires and cables required to be insulated; (3...

  11. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior to... officials; (2) Map or diagram indicating location of power wires and cables required to be insulated; (3...

  12. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior to... officials; (2) Map or diagram indicating location of power wires and cables required to be insulated; (3...

  13. Analytical investigation in bending characteristic of twisted stacked-tape cable conductor

    NASA Astrophysics Data System (ADS)

    Takayasu, Makoto; Chiesa, Luisa

    2015-12-01

    An analytical model to evaluate bending strains of a twisted stack-tape cable (TSTC) conductor has been developed. Through a comparison with experimental results obtained for a soldered 32-tape YBCO TSTC conductor, it has been found that a Perfect-Slip Model (PSM) taking into account the slipping between tapes in a stacked-tape cable during bending gives much better estimation of the bending performance compared to a No-Slip Model (NSM). In the PSM case the tapes can slip so that the internal longitudinal axial strain can be released. The longitudinal strains of compression and tension regions along the tape are balanced in one twist-pitch and cancel out evenly in a long cable. Therefore, in a cable the strains due to bending can be minimized. This is an important advantage of a TSTC conductor. The effect of the cable diameter size on the bending strain is also expected to be minor, and all tapes composing a TSTC conductor have the same strain response under bending, therefore the cable critical current can be characterized from a single tape behaviour.

  14. Measurement of the temperature distribution inside the power cable using distributed temperature system

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  15. Excess current experiment on YBCO tape conductor with metal stabilized layer

    NASA Astrophysics Data System (ADS)

    Tasaki, Kenji; Yazawa, Takashi; Ono, Michitaka; Kuriyama, Toru

    2006-06-01

    Excess current experiments were performed using YBCO tape conductors with a metal stabilized layer on the superconducting layer. The purpose of this research is to obtain the stable criteria of energy dissipation when YBCO tape is forced to flow excess current higher than its critical current. This situation should be considered in power applications. In the experiments short-length samples were immersed in liquid nitrogen and several cycles of 50Hz sinusoidal current were supplied to the samples by an induction voltage regulator. The critical current of the samples was about 110 A. With pulse length as long as 60 ms, YBCO tapes were able to be energized up to twelve times as the critical current without electrical or mechanical deformation. Prior to the excess current experiments, temperature dependency of resistance of the sample was measured so that the temperature rise was estimated by the generated resistance. It is found that YBCO tapes with a copper stabilized layer can be transiently heated to over 400K without degradation.

  16. Study on AC loss measurements of HTS power cable for standardizing

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  17. Probabilistic models to estimate fire-induced cable damage at nuclear power plants

    NASA Astrophysics Data System (ADS)

    Valbuena, Genebelin R.

    Even though numerous PRAs have shown that fire can be a major contributor to nuclear power plant risk, there are some specific areas of knowledge related to this issue, such as the prediction of fire-induced damage to electrical cables and circuits, and their potential effects in the safety of the nuclear power plant, that still constitute a practical enigma, particularly for the lack of approaches/models to perform consistent and objective assessments. This report contains a discussion of three different models to estimate fire-induced cable damage likelihood given a specified fire profile: the kinetic, the heat transfer and the IR "K Factor" model. These models not only are based on statistical analysis of data available in the open literature, but to the greatest extent possible they use physics based principles to describe the underlying mechanism of failures that take place among the electrical cables upon heating due to external fires. The characterization of cable damage, and consequently the loss of functionality of electrical cables in fire is a complex phenomenon that depends on a variety of intrinsic factors such as cable materials and dimensions, and extrinsic factors such as electrical and mechanical loads on the cables, heat flux severity, and exposure time. Some of these factors are difficult to estimate even in a well-characterized fire, not only for the variability related to the unknown material composition and physical arrangements, but also for the lack of objective frameworks and theoretical models to study the behavior of polymeric wire cable insulation under dynamic external thermal insults. The results of this research will (1) help to develop a consistent framework to predict fire-induced cable failure modes likelihood, and (2) develop some guidance to evaluate and/or reduce the risk associated with these failure modes in existing and new power plant facilities. Among the models evaluated, the physics-based heat transfer model takes into

  18. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  19. High trapped fields in bulk YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Fuchs, Günter; Gruss, Stefan; Krabbes, Gernot; Schätzle, Peter; Verges, Peter; Müller, Karl-Hartmut; Fink, Jörg; Schultz, Ludwig

    The trapped field properties of bulk melt-textured YBCO material were investigated at different temperatures. In the temperature range of liquid nitrogen, maximum trapped fields of 1.1 T were found at 77 K by doping of YBCO with small amounts of zinc. The improved pinning of zinc-doped YBa2Cu3O7-x (YBCO) results in a pronounced peak effect in the field dependence of the critical current density. the trapped field at lower temperatures increases due to the increasing critical current density, however, at temperatures around 50 K cracking of the material is observed which is exposed to considerably tensile stresses due to Lorentz forces. Very high trapped fields up to 14.4 T were achieved at 22.5 K for a YBCO disk pair by the addition of silver improving the tensile strength of YBCO and by using a bandage made of a steel tube. The steel tube produces a compressive stress on YBCO after cooling down from 300 K to the measuring temperature, which is due to the higher coeeficient of thermal expansion of steel compared with that of YBCO in the a,b plane. The application of superconducting permanent magnets with trapped fields of 10 T and more in superconducting bearings would allow to obtain very high levitation pressures up to 2500 N/cm2 which is two orders of magnitude higher than the levitation pressure achievable in superconducting bearings with conventional permanent magnets. The most important problem for the application of superconducting permanent magnets is the magnetizing procedure of the YBCO material. Results of magnetizing YBCO disks by using of pulsed magnetic fields will be presented.

  20. Bulk Electrical Cable Non-Destructive Examination Methods for Nuclear Power Plant Cable Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of nondestructive test methods focusing particularly on bulk electrical test methods that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As nuclear power plants consider applying for second, or subsequent, license renewal to extend their operating period from 60 years to 80 years, it is important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs to assuremore » continued safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program, however, is directed toward the more demanding challenge of assuring the cable function under accident or DBE. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB, however, is a destructive test so the test programs must apply an array of other nondestructive examination (NDE) tests to assure or infer the overall set of cable’s system integrity. Assessment of cable integrity is further complicated in many cases by vendor’s use of dissimilar material for jacket and insulation. Frequently the jacket will degrade more rapidly than the underlying insulation. Although this can serve as an early alert to cable damage, direct test of the cable insulation without violating the protective jacket becomes problematic. This report addresses the range of bulk electrical NDE cable tests that are or could be practically implemented in a field-test situation with a particular focus on frequency domain reflectometry (FDR). The FDR test method offers numerous

  1. Predictive aging results for cable materials in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, K.T.; Clough, R.L.

    1990-11-01

    In this report, we provide a detailed discussion of methodology of predicting cable degradation versus dose rate, temperature, and exposure time and its application to data obtained on a number of additional nuclear power plant cable insulation (a hypalon, a silicon rubber and two ethylenetetrafluoroethylenes) and jacket (a hypalon) materials. We then show that the predicted, low-dose-rate results for our materials are in excellent agreement with long-term (7 to 9 years), low dose-rate results recently obtained for the same material types actually aged under nuclear power plant conditions. Based on a combination of the modelling and long-term results, we findmore » indications of reasonably similar degradation responses among several different commercial formulations for each of the following generic'' materials: hypalon, ethylenetetrafluoroethylene, silicone rubber and PVC. If such generic'' behavior can be further substantiated through modelling and long-term results on additional formulations, predictions of cable life for other commercial materials of the same generic types would be greatly facilitated. Finally, to aid utilities in their cable life extension decisions, we utilize our modelling results to generate lifetime prediction curves for the materials modelled to data. These curves plot expected material lifetime versus dose rate and temperature down to the levels of interest to nuclear power plant aging. 18 refs., 30 figs., 3 tabs.« less

  2. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wires and cables. 75.517-2 Section 75.517-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior to...

  3. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wires and cables. 75.517-2 Section 75.517-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior to...

  4. Distributed condition monitoring techniques of optical fiber composite power cable in smart grid

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu

    2011-11-01

    Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.

  5. Design study of an YBCO-coated beam screen for the super proton-proton collider bending magnets

    NASA Astrophysics Data System (ADS)

    Gan, Pingping; Zhu, Kun; Fu, Qi; Li, Haipeng; Lu, Yuanrong; Easton, Matt; Liu, Yudong; Tang, Jingyu; Xu, Qingjin

    2018-04-01

    In order to reduce the beam impedance and refrigeration power dramatically, we have designed a high temperature superconductor (HTS) coated beam screen to screen the cold chamber walls of the super proton-proton collider bending magnets from beam-induced heat loads. It employs an absorber, inspired by the future circular collider studies, to absorb the immense synchrotron radiation power of 12.8 W/m emitted from the 37.5 TeV proton beams. Such a structure has the advantage of decreasing the electron cloud effect and improving the beam vacuum. We have compared the critical magnetic field and current density and accessibility of two potential HTS materials for the beam screen, TlBa2Ca2Cu3O9-δ (Tl-1223) and Yttrium Barium Copper Oxide (YBCO) and finally chose YBCO for coating. The beam screen is tentatively designed to work at 55-70 K because of the limited development of the YBCO material. The thermal analysis with oxygen cooling fluid indicates that the YBCO conductor can maintain its superconductivity even if the synchrotron radiation hits the YBCO-coated surface and the mechanical analysis shows that the structure has the ability to resist the Lorenz force during magnet quenches.

  6. High temperature superconducting YBCO microwave filters

    NASA Astrophysics Data System (ADS)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  7. Environmental testing and laser transmission results for ruggedized high power IR fiber cables

    NASA Astrophysics Data System (ADS)

    Busse, Lynda; Kung, Frederic; Florea, Catalin; Shaw, Brandon; Aggarwal, Ishwar; Sanghera, Jas

    2013-03-01

    We present successful results of high mid-IR laser power transmission as well as MIL-SPEC environmental testing (thermal cycling and vibration testing) of ruggedized, IR-transmitting chalcogenide glass fiber cables. The cables tested included chalcogenide fiber cables with endfaces imprinted with anti-reflective "moth eye" surfaces, whereby the reflection loss is reduced from about 17% per end to less than 3%. The cables with these moth eye surfaces also show excellent laser damage resistance.

  8. HTS Transmission Cable System for installation in the Long Island Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Frank; Durand, Fabien; Maguire, James

    2015-10-05

    Department of Energy (DOE) Award DE-FC26-07NT43240 was issued on October 1, 2007. Referred to as LIPA2, the principal objectives of the project were to develop key components required to deploy and demonstrate second-generation (2G) high temperature superconductor (HTS) cables in a 600 meter (2000 feet) underground segment of a 138kV three-phase transmission circuit of the Long Island Power Authority (LIPA) power grid. A previous effort under DOE Award DE-FC36-03GO13032 (referred to as LIPA1) resulted in installation (and subsequent successful operation) of first-generation (1G) HTS cables at the LIPA site. As with LIPA1, American Superconductor (AMSC) led the effort for LIPA2more » and was responsible for overall management of the project and producing sufficient 2G wire to fabricate the required cable. Nexans' tasks included design/manufacture/installation of the cable, joint (splice), cable terminations and field repairable cryostat; while work by Air Liquide involved engineering and installation support for the refrigeration system modifications.« less

  9. Nuclear power plant cable materials :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by amore » LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original

  10. New method for the detection and monitoring of subsea power cable

    NASA Astrophysics Data System (ADS)

    Held, Philipp; Schneider, Jens; Feldens, Peter; Wilken, Dennis

    2016-04-01

    Marine renewable energy farms, no matter what kind of, have in common that they need a connection with the onshore power grid. Thus, not only their offshore generation facilities could have impacts on the surrounding environment, but also associated submarine power cables. These cables have to be buried in the seabed - at least in coastal heavy shipping environments - for safety reasons. Cable laying disturbs the local seafloor and the sub-bottom. Refillment of dredged sediments are expected softer than the original material and could be washed away by currents. Therefore, buried cables have to be repeatedly monitored to ensure their burial depth. This study presents a new method for efficient cable detection. A parametric echosounder system using 15 kHz as secondary frequency was adapted to investigate the angular response of sub-bottom backscatter strength of layered mud and to introduce a new method for enhanced acoustic detection of buried targets. Adaptations to achieve both vertical (0°) and non-vertical inclination of incident sound on the seabed (1-15°, 30°, 45°, and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. A sample data set was acquired at a study site at 18 m water depth and a flat and muddy seafloor. At this site, a 0.1 m diameter power cable is buried 1-2 m below the sea floor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud was found to strongly decrease at >3±0.5° incidence and the layered mud echo pattern vanished beyond 5°. As a consequence the visual recognition of the cable echo in acoustic images improves for higher incidence angles of 15°, 30°, 45°, and 60°. Data analysis support this visual impression. The size of the cable echo pattern was found to linearly increase with incidence, whereas the signal-to-noise ratio peaks at about

  11. Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muna, Alice Baca; LaFleur, Chris Bensdotter; Brooks, Dusty Marie

    This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of themore » tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.« less

  12. Research for the Cable Layout Way of the Bypass Operation System in Agricultural Power Supply Network

    NASA Astrophysics Data System (ADS)

    Niu, Jie; Li, Jinliang; Zou, Dehua; Yang, Qi; Li, Xu; Yan, Yu; Li, Tang

    2017-05-01

    Non-blackout working of agricultural power supply network is significant to shorten the outage time, decrease the outage loss, and improve the supply reliability and safety. It is impossible to hang the wire rope first and then suspend the cable because of the poor bearing ability of the pole in agricultural power supply network. A kind of new cable arrangement way, its matching tools and the flexible cable that can bear the tension by itself are needed to be put forward and developed. It is necessary to calculate the electric field intensity of the flexible cable to verify that the electric field intensity meets the insulation demand. In this new design, the fiber layer is added into the flexible cable and its maximum tension force is measured to reach to 4000 N. Based on the features of live working in the agricultural power supply network, the new layout way of the cable is proposed; the matching tools and the new flexible cable that can bear the tension by itself are developed as well in this paper. All of the research achievements can give references for the live working of the agricultural power supply network.

  13. Assessment of NDE for key indicators of aging cables in nuclear power plants - Interim status

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.

    2016-02-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored

  14. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    NASA Astrophysics Data System (ADS)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  15. Fabrication and characterization of hybrid Nb-YBCO dc SQUIDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frack, E.K.; Drake, R.E.; Patt, R.

    This paper reports on the fabrication of hybrid low T{sub c}/high T{sub c} dc SQUIDs of two flavors. The first kind utilizes niobium tunnel junctions and a YBCO film strip as the most inductive portion of the SQUID loop. This configuration allows a direct measurement of the inductance of the YBCO microstrip from which the effective penetration depth can be calculated. The successful fabrication of these SQUIDs has required 1. superconducting Nb-to-YBCO contacts, 2. deposition and patterning of an SiO{sub 2} insulation layer over YBCO, and 3. selective patterning of niobium and SiO{sub 2} relative to YBCO. All these processmore » steps are pertinent to the eventual use of YBCO thin films in electronic devices.« less

  16. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables supplying power to low-voltage... Alternating Current Circuits § 77.906 Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...

  17. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables supplying power to low-voltage... Alternating Current Circuits § 77.906 Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...

  18. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables supplying power to low-voltage... Alternating Current Circuits § 77.906 Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...

  19. 30 CFR 56.12014 - Handling energized power cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Handling energized power cables. 56.12014 Section 56.12014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  20. 30 CFR 56.12014 - Handling energized power cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Handling energized power cables. 56.12014 Section 56.12014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  1. 30 CFR 56.12014 - Handling energized power cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Handling energized power cables. 56.12014 Section 56.12014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  2. 30 CFR 56.12014 - Handling energized power cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Handling energized power cables. 56.12014 Section 56.12014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  3. 30 CFR 56.12014 - Handling energized power cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Handling energized power cables. 56.12014 Section 56.12014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  4. Cable Television, Market Power and Regulation.

    ERIC Educational Resources Information Center

    Thorpe, Kenneth E.

    The goals of this dissertation are to provide an empirical examination of the impact of competing technologies on cable television firms and to document existing pricing behavior in the cable and pay programming industry. The introduction provides a brief overview of the cable television industry, including the impact of cable on federal policy…

  5. Study on Safety Monitoring System for Submarine Power Cable on the Basis of AIS and Radar Technology

    NASA Astrophysics Data System (ADS)

    Jie, Wang; Yao-Tian, Fan

    Through analyzing the risks of submarine power cable, the highest risk to damage the cable identified is from ship. Based on concept of Vessel Traffic Management Information Systems, the three core sub-systems of safety monitoring system for submarine power cable were studied and described, also some suggestions were given.

  6. High performance YBCO films. Report for 1 August-31 October 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denlinger, E.J.; Fathy, A.; Kalokitis, D.

    1992-10-31

    The objective of this program is to identify suitable low loss, low dielectric constant substrates and develop and optimize deposition processes for high quality YBCO films including the necessary buffer layers. Ultimate goals are large area substrates having double-sided HTS coating with a surface resistance ten times lower than copper at 40 GHz. High quality HTS films on low dielectric constant substrates are expected to find widespread use in advanced millimeter wave components, in extending the power handling capability of microwave and millimeter wave circuitry, and in facilitating high speed computer interconnects. Sample demonstration circuits will be built toward themore » end of the program. We have successfully deposited a high quality YBCO film on a good low loss and low dielectric constant substrate, magnesium fluoride (e=5). With the use of two buffer layers (magnesium oxide and strontium titanate) between the YBCO and the substrate, transition temperatures of 89 deg K and transition widths of about 0.5 deg K were achieved. The critical current density Jc of 4 x 10 6 A/cm2 at 77K in zero field is among the highest reported for YBCO films. The magnesium fluoride (MgF2) substrate has a tetragonal structure with a dielectric constant of 5.2 in the plane of the substrate and 4.6 perpendicular to the substrate surface. It has a good harness (-575 Knoop) and a linear thermal expansion coefficient that closely matches YBCO and the buffer layers.« less

  7. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGES

    Majoros, M.; Sumption, M. D.; Collings, E. W.; ...

    2015-04-08

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand I c. At a strand current of 1.3I c about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s -1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3I c) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb 3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  8. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE PAGES

    sumption, Mike; Majoros, Milan; Collings, E. W.; ...

    2014-11-07

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand I c. At a strand current of 1.3I c about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s -1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3I c ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb 3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  9. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majoros, M.; Sumption, M. D.; Collings, E. W.

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand I c. At a strand current of 1.3I c about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s -1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3I c) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb 3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  10. Inter-strand current sharing and ac loss measurements in superconducting YBCO Roebel cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    sumption, Mike; Majoros, Milan; Collings, E. W.

    A Roebel cable, one twist pitch long, was modified from its as-received state by soldering copper strips between the strands to provide inter-strand connections enabling current sharing. Various DC transport currents (representing different percentages of its critical current) were applied to a single strand of such a modified cable at 77 K in a liquid nitrogen bath. Simultaneous monitoring of I–V curves in different parts of the strand as well as in its interconnections with other strands was made using a number of sensitive Keithley nanovoltmeters in combination with a multichannel high-speed data acquisition card, all controlled via LabView software.more » Current sharing onset was observed at about 1.02 of strand I c. At a strand current of 1.3I c about 5% of the current was shared through the copper strip interconnections. A finite element method modeling was performed to estimate the inter-strand resistivities required to enable different levels of current sharing. The relative contributions of coupling and hysteretic magnetization (and loss) were compared, and for our cable and tape geometry, and at dB/dt=1 T s -1, and our inter-strand resistance of 0.77 mΩ, (enabling a current sharing of 5% at 1.3I c ) the coupling component was 0.32% of the hysteretic component. However, inter-strand contact resistance values of 100–1000 times smaller (close to those of NbTi and Nb 3Sn based accelerator cables) would make the coupling components comparable in size to the hysteretic components.« less

  11. Technical Challenges and Potential Solutions for Cross-Country Multi-Terminal Superconducting DC Power Cables

    NASA Astrophysics Data System (ADS)

    Al-Taie, A.; Graber, L.; Pamidi, S. V.

    2017-12-01

    Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.

  12. Safety research of insulating materials of cable for nuclear power generating station

    NASA Technical Reports Server (NTRS)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  13. Assessment of the insulation degradation of cables used in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Bartoníc̆ek, B.; Hnát, V.; Plac̆ek, V.

    1999-05-01

    Cable insulating materials are usually, during their operational lifetime, exposed to a high number of various deteriorative enviromental effects resulting in their degradation. In the case of cables used in the nuclear power plant (NPP) hermetic zone these factors consist predominantly of long-term irradiation (at rather low dose rates, in the presence of oxygen) and enhanced temperature. Hence, all cables assigned for use in NPP have to be qualified for use under such severe conditions. However, not only the initial qualification but also monitoring of the actual state of the installed cables in regular intervals is now recommended. Monitoring of the actual state of the cable insulation and the prediction of their residual service life (i.e., the on-going qualification) consist of the measurement of the properties that are directly proportional to the functionality of the cables (usually the elongation at break is used as the critical parameter). For the cables installed in the NPP hermetic zone a method based on the measurement of the thermo-oxidative stability by the differential scanning calorimetry has been developed.

  14. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  15. High temperature superconductors as a technological discontinuity in the power cable industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beales, T.P.; McCormack, J.S.

    1994-12-31

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  16. High temperature superconductors as a technological discontinuity in the power cable industry

    NASA Technical Reports Server (NTRS)

    Beales, T. P.; Mccormack, J. S.

    1995-01-01

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibers. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  17. Does EMF Emitted from In Situ Subsea Power Cables Affect the Composition of Deep Benthic Fish and Invertebrate Communities?

    NASA Astrophysics Data System (ADS)

    Bull, A. S.; Nishimoto, M.; Love, M.; Schroeder, D. M.

    2016-02-01

    A network of power cables is an important component of any offshore renewable energy generation facilities (e.g., wind and wave). The cables laid on the seafloor carry current that produces both electric and magnetic fields; the magnetic field, here called an electromagnetic field (EMF), is what is emitted from shielded cables. The cables, themselves, add hard, low-relief structure to what is typically soft-bottom habitat (mud or sand). Given that laboratory experiments show EMF can affect the behavior of some marine vertebrates and invertebrates, concern is raised over the potential ecological impacts of in situ power cables. Here we report an unusual comparative study of the effect of EMF emitted from in situ power cables on the fish and invertebrate communities of the deep coastal shelf environment. In the Santa Barbara Channel of southern California, subsea power cables, similar to those used in the offshore renewable energy industry, transmit electricity from shore to offshore oil and gas production platforms. A non-energized cable in the vicinity of energized cables afforded us the unusual opportunity to control for the effect of cable as hard, low relief habitat. We conducted three annual submersible surveys in October, 2012- 2014, at depths from 75 m to 210 m. We present results comparing observations along the energized and nonenergized cables and on the adjacent natural substrate.

  18. Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool tomore » locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance

  19. Heat Transfer Study for HTS Power Transfer Cables

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S.; Fesmire, J.

    2002-01-01

    Thermal losses are a key factor in the successful application of high temperature superconducting (HTS) power cables. Existing concepts and prototypes rely on the use of multilayer insulation (MLI) systems that are subject to large variations in actual performance. The small space available for the thermal insulation materials makes the application even more difficult because of bending considerations, mechanical loading, and the arrangement between the inner and outer piping. Each of these mechanical variables affects the heat leak rate. These factors of bending and spacing are examined in this study. Furthermore, a maintenance-free insulation system (high vacuum level for 20 years or longer) is a practical requirement. A thermal insulation system simulating a section of a flexible FITS power cable was constructed for test and evaluation on a research cryostat. This paper gives experimental data for the comparison of ideal MLI, MLI on rigid piping, and MLI between flexible piping. A section of insulated flexible piping was tested under cryogenic vacuum conditions including simulated bending and spacers.

  20. Frequency Domain Reflectometry Modeling and Measurement for Nondestructive Evaluation of Nuclear Power Plant Cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Jones, Anthony M.

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and NDE is conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locatemore » and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. This work examines a physics-based model of a cable system and relates it to FDR measurements for a better understanding of specific damage influences on defect detectability.« less

  1. Number of lightning discharges causing damage to lightning arrester cables for aerial transmission lines in power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikiforov, E. P.

    2009-07-15

    Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces themore » number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.« less

  2. Repairing Damaged Power-Cable Insulation

    NASA Technical Reports Server (NTRS)

    Baker, G. E.

    1984-01-01

    Simple method saves time, money, and material. In new method cable remains in place while new insulation is applied to damaged portion. Method results in new terminations with safety factor equal to that of any portion of cable.

  3. The Development and Demonstration of a 360m/10 kA HTS DC Power Cable

    NASA Astrophysics Data System (ADS)

    Xiao, Liye

    With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.

  4. 52. View of sitdown cable car, cable way, and stream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View of sit-down cable car, cable way, and stream gaging station, looking southeast. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  5. 51. View of sitdown cable car and cable way for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of sit-down cable car and cable way for stream gaging, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  6. High voltage cabling for high power spacecraft

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1981-01-01

    Studies by NASA have shown that many of the space missions proposed for the time period 1980 to 2000 will require large spacecraft structures to be assembled in orbit. Large antennas and power systems up to 2.5 MW size are predicted to supply the electrical/electronic subsystems, solar electric subsystems, solar electric propulsion, and space processing for the near-term programs. Platforms of 100 meters/length for stable foundations, utility stations, and supports for these multi-antenna and electronic powered mechanisms are also being considered. This paper includes the findings of an analytic and conceptual design study for large spacecraft power distribution, and electrical loads and their influence on the cable and connector requirements for these proposed large spacecraft.

  7. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.

    2018-04-01

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  8. 47. BASE OF UMBILICAL MAST, WITH ELECTRICAL POWER CABLES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. BASE OF UMBILICAL MAST, WITH ELECTRICAL POWER CABLES ON LEFT; AIR-CONDITIONER DUCTS ON RIGHT - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Maximum permissible voltage of YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.

    2014-06-01

    Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  10. Feasibility study of a 270V dc flat cable aircraft electrical power distributed system

    NASA Astrophysics Data System (ADS)

    Musga, M. J.; Rinehart, R. J.

    1982-01-01

    This report documents the efforts of a one man-year feasibility study to evaluate the usage of flat conductors in place of conventional round wires for a 270 volt direct current aircraft power distribution system. This study consisted of designing electrically equivalent power distribution harnesses in flat conductor configurations for a currently operational military aircraft. Harness designs were established for installation in aircraft airframes which are: (1) All metal, or (2) All composite, or (3) a mixture of both. Flat cables have greater surface areas for heat transfer allowing higher current densities and therefore lighter weight conductors, than with round wires. Flat cables are less susceptible to electromagnetic effects. However, these positive factors are partially offset by installation and maintenance difficulties. This study concludes that the extent of these difficulties can be adequately limited with appropriate modification to present installation and maintenance practices. A comparative analysis of the flat and the round conductor power distribution harnesses was made for weight, cost, maintenance and reliability. The knowledge gained from the design and comparative analysis phases was used to generate design criteria for flat power cable harnesses and to identify and prioritize flat cable harness components and associated production tooling which require development.

  11. Fatigue tests of YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Bamba, S.; Tanaka, Y.; Ando, T.; Ueda, H.; Ishiyama, A.; Yamada, Y.; Shiohara, Y.

    2008-02-01

    In this paper, we report the fatigue characteristics of IBAD/PLD YBCO coated conductors. A YBCO coated conductor used in the superconducting coil of a SMES system is repeatedly subjected to mechanical tensile or compressive strain due to the Lorentz force during electrical charging or discharging. The superconducting characteristic of this conductor may deteriorate because of this cyclic strain. Therefore, it is necessary to investigate the effect of cyclic strain on the superconducting characteristics of YBCO coated conductors that have a laminated structure. We developed an experimental apparatus with a U-shaped sample holder in order to apply cyclic strain to the sample tape. This apparatus was used to perform the fatigue tests on YBCO coated conductors in liquid nitrogen in the absence of an external magnetic field. The strain cycles with the maximum strain epsilonmax (zero external strain → epsilonmax → zero external strain) were applied and repeated up to 5000 times, and the Ic measurements were performed at epsilonmax. Therefore, the application of cyclic strain with epsilonmax ranging from 0.3% to 0.5% did not result in any significant deterioration of the superconducting characteristics of the conductor.

  12. YBCO High-Temperature Superconducting Filters on M-Plane Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Sabataitis, J. C.; Mueller, C. H.; Miranda, F. A.; Warner, J.; Bhasin, K. B.

    1996-01-01

    Since the discovery of High Temperature Superconductors (HTS) in 1986, microwave circuits have been demonstrated using HTS films on various substrates. These HTS-based circuits have proven to operate with less power loss than their metallic film counterparts at 77 K. This translates into smaller and lighter microwave circuits for space communication systems such as multiplexer filter banks. High quality HTS films have conventionally been deposited on lanthanum aluminate (LaAlO3) substrates. However, LaAlO3 has a relative dielectric constant (epsilon(sub r)) of 24. With a epsilon(sub r) approx. 9.4-11.6, sapphire (Al2O3) would be a preferable substrate for the fabrication of HTS-based components since the lower dielectric constant would permit wider microstrip lines to be used in filter design, since the lower dielectric constant would permit wider microstrip lines to be used for a given characteristic impedance (Z(sub 0)), thus lowering the insertion losses and increasing the power handling capabilities of the devices. We report on the fabrication and characterization of YBa2Cu3O(7-delta) (YBCO) on M-plane sapphire bandpass filters at 4.0 GHz. For a YBCO 'hairpin' filter, a minimum insertion loss of 0.5 dB was measured at 77 K as compared with 1.4 dB for its gold counterpart. In an 'edge-coupled' configuration, the insertion loss went down from 0.9 dB for the gold film to 0.8 dB for the YBCO film at the same temperature.

  13. Asymmetry of the velocity-matching steps in YBCO long Josephson junctions

    NASA Astrophysics Data System (ADS)

    Revin, L. S.; Pankratov, A. L.; Chiginev, A. V.; Masterov, D. V.; Parafin, A. E.; Pavlov, S. A.

    2018-04-01

    We carry out experimental and theoretical investigations into the effect of the vortex chain propagation on the current-voltage characteristics of YBa2Cu3O7-δ (YBCO) long Josephson junctions. Samples of YBCO Josephson junctions, fabricated on 24° [001]-tilt bicrystal substrates, have been measured. The improved technology has allowed us to observe and study the asymmetry of the current-voltage characteristics with opposite magnetic fields (Revin et al 2012 J. Appl. Phys. 114 243903), which we believe occurs due to anisotropy of bicrystal substrates (Kupriyanov et al (2013 JETP Lett. 95 289)). Specifically, we examine the flux-flow resonant steps versus the external magnetic field, and study the differential resistance and its relation to oscillation power for opposite directions of vortex propagation.

  14. High performance YBCO films. Quarterly status report No. 6, 1 February-30 April 1993. [YBCO (yttrium barium copper oxides)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denlinger, E.J.; Fathy, A.; Kalokitis, D.

    1993-04-30

    YBCO on MgF2 withstood post annealing to 750 deg C without deterioration. This allows the deposition of high quality multiple layer YBCO films onto both sides of a MgF2 substrate. GdBaCuO films were deposited onto LaAlO3 and appear to be superior to YBCO in terms of lower particulate density, slightly higher T[sub c]'s, and higher critical current density. The ramifications could be very beneficial to the MCM program. Furthermore, the tolerance of these films to a wider range of deposition conditions indicates a possibility of using these films on MgF2.

  15. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    NASA Astrophysics Data System (ADS)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  16. Evaluation of critical nuclear power plant electrical cable response to severe thermal fire conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Gabriel James

    The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.

  17. Crystal growth of YBCO coated conductors by TFA MOD method

    NASA Astrophysics Data System (ADS)

    Yoshizumi, M.; Nakanishi, T.; Matsuda, J.; Nakaoka, K.; Sutoh, Y.; Izumi, T.; Shiohara, Y.

    2008-09-01

    The crystal growth mechanism of TFA (trifluoroacetates)-MOD (metal organic deposition) derived YBa 2Cu 3O y has been investigated to understand the process for higher production rates of the conversion process. YBCO films were prepared by TFA-MOD on CeO 2/Gd 2Zr 2O 7/Hastelloy C276 substrates. The growth rates of YBCO derived from Y:Ba:Cu = 1:2:3 and 1:1.5:3 starting solutions were investigated by XRD and TEM analyses. YBCO growth proceeds in two steps of the epitaxial one from the substrate and solid state reaction. The overall growth rate estimated from the residual amounts of BaF 2 with time measured by XRD is proportional to a square root of P(H 2O). The trend was independent of the composition of starting solutions, however, the growth rate obtained from the 1:1.5:3 starting solutions was high as twice as that of 1:2:3, which could not be explained by the composition of BaF 2 included in the precursor films. On the other hand, the growth rate measured from the thickness of the YBCO quenched film at the same process time showed no difference between the samples of 1:2:3 and 1:1.5:3. The epitaxial growth rate of 1:1.5:3 was also the same as the overall growth rate of that, which means there was no solid state reaction to form YBCO after the epitaxial growth. The YBCO growth mechanism was found to be as follows; YBCO crystals nucleate at the surface of the substrate and epitaxially grow into the precursor by layer-by-layer by a manner with trapping unreacted particles. The amounts of YBCO and the unreacted particles trapped in the YBCO film are independent of the composition of the starting solution in this step. Unreacted particles react with each other to form YBCO and pores by solid state reaction as long as there is BaF 2 left in the film. The Ba-poor starting solution gives little BaF 2 left in the film and so the solid state reaction is completed within a short time, resulting in the fast overall growth rate.

  18. Superconducting ac cable

    NASA Astrophysics Data System (ADS)

    Schmidt, F.

    1980-11-01

    The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.

  19. 30 CFR 56.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Splices and repairs of power cables. 56.12013 Section 56.12013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  20. 30 CFR 56.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Splices and repairs of power cables. 56.12013 Section 56.12013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  1. 30 CFR 56.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Splices and repairs of power cables. 56.12013 Section 56.12013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  2. 30 CFR 56.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Splices and repairs of power cables. 56.12013 Section 56.12013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  3. 30 CFR 56.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Splices and repairs of power cables. 56.12013 Section 56.12013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  4. A Novel Concept for the Rapid Deployment of Electric Power Cables. Phase 1.

    DTIC Science & Technology

    1987-04-30

    cable toward the tactical position that requires power. The approach effectively neutralisasl both man-made and naturally occurring deployment...guided system with a reputation for extreme accuracy, it is anticipated that the cable can be delivered to a user located within a 1000 foot range...thus readily available, because it is an effective and reliable weapon system. The system has been up-graded several times which indicates that its

  5. Development of an YBCO coil with SSTC conductors for high field application

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Liu, H. J.; Liu, F.; Tan, Y. F.; Jin, H.; Yu, M.; Lei, L.; Guo, L.; Hong, Z. Y.

    2018-07-01

    With the continuous reduction of the production costs and improvement of the transport performance, YBCO coated conductor is the most promising candidate for the high field magnet application due to its high irreversibility field and strong mechanical properties. Presently a stable production capacity of the YBCO conductors has been achieved by Shanghai Superconducting Technology Co., Ltd (SSTC) in China. Therefore, the demand in high field application with YBCO conductors is growing in China. This paper describes the design, fabrication and preliminary experiment of a solenoid coil with YBCO conductors supplied by SSTC to validate the possibility of high field application. Four same double pancakes were manufactured and assembled for the YBCO coil where the outer diameter and height was 54.3 and 48 mm respectively to match the dimensional limitation of the 14 T background magnets. The critical current (Ic) of YBCO conductors was obtained by measuring as a function of the applied field perpendicular to the YBCO conductor surface which provides the necessary input parameters for preliminary performance evaluation of the coil. Finally the preliminary test and discussion at 77 and 4.2 K were carried out. The consistency of four double pancakes Ic was achieved. The measured results indicate that the fabrication technology of HTS coil is reliable which gives the conference for the in-field test in high field application. This YBCO coil is the first demonstration of the SSTC YBCO coated conductors.

  6. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    NASA Astrophysics Data System (ADS)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  7. Thermally actuated magnetization flux pump in single-grain YBCO bulk

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Li, Quan; Coombs, T. A.

    2009-10-01

    Recent progress in material processing has proved that high temperature superconductors (HTS) have a great potential to trap large magnetic fields at cryogenic temperatures. For example, HTS are widely used in MRI scanners and in magnetic bearings. However, using traditional ways to magnetize, the YBCO will always need the applied field to be as high as the expected field on the superconductor or much higher than it, leading to a much higher cost than that of using permanent magnets. In this paper, we find a method of YBCO magnetization in liquid nitrogen that only requires the applied field to be at the level of a permanent magnet. Moreover, rather than applying a pulsed high current field on the YBCO, we use a thermally actuated material (gadolinium) as an intermedia and create a travelling magnetic field through it by changing the partial temperature so that the partial permeability is changed to build up the magnetization of the YBCO gradually after multiple pumps. The gadolinium bulk is located between the YBCO and the permanent magnet and is heated and cooled repeatedly from the outer surface to generate a travelling thermal wave inwards. In the subsequent experiment, an obvious accumulation of the flux density is detected on the surface of the YBCO bulk.

  8. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. 77.906 Section 77.906 Mineral Resources MINE... wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...

  9. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. 77.906 Section 77.906 Mineral Resources MINE... wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power to...

  10. First World Report of Internal Power Cable Repair in Left Ventricular Assist Device Jarvik 2000: Case Report.

    PubMed

    Sassi, C G; Cameli, M; Dokollari, A; Diciolla, F; Scolletta, S; Ricci, C; Lucatelli, P; Mondillo, S; Maccherini, M

    2017-05-01

    There are limited clinical reports concerning internal power cable fixing in left ventricular assist device (L-VAD) patients. Actually there are no reports in the literature about Jarvik 2000 internal cable repair. We show the first description of a technique for surgical reparation of such a fatal complication. The patient was a 62-year-old woman who had L-VAD implantation (Jarvik 2000) with outflow graft apposition in descending thoracic aorta through left thoracotomy access, in 2009. She arrived urgently on January 25, 2014 for Jarvik 2000 dysfunction correlated with head movements. The neck X-rays revealed the rupture of one of the nine power cables located inside the neck and the damaging of two more cables nearby to be ruptured. On the same day she got pump failure due to the final interruption of the remaining two cables, we were obliged to install femoro-femoral extracorporeal membrane oxygenation (ECMO) assistance, to repair the power cables, approaching them through a pacemaker extension cable. The L-VAD outflow was occluded with vascular ball occluder inserted via right axillary artery under fluoroscopy before ECMO installation. At the end the ECMO assistance was interrupted and the Jarvik 2000 was turned back on. The patient was dismissed from the hospital 12 days after the procedure. At the moment the international literature is poor regarding this issue. This case provides evidence that in emergency conditions ECMO assistance is mandatory and a hybrid surgical and radiological approach could help to repair the damage in safe conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Flat conductor cable commercialization project

    NASA Technical Reports Server (NTRS)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  12. Ground potential rise characteristics of urban step-down substations fed by power cables - A practical example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobral, S.T.; Barbosa, J.O.; Numes, J.V.C.

    1988-10-01

    This paper shows some special ground potential rise characteristics of substations fed by power cables. These characteristics were detected during the study of the interconnected ground system of 14 step-down urban substations fed by the 138 kV underground cable network serving the South Zone of Rio de Janeiro city in Brazil. As this type of system is very common in large cities, the subject can be of general interest for the industry. It was verified that when a fault occurs at a ''cable substation'' (a substation fed exclusively by power cables), almost no ground potential effects were detected at themore » faulted substation or at the other ''cable substations'' of the 138 kV network. However, high values of ground potential occurred at the ''transition substations'' (substations in which the power cables are connected to overhead 138 kV transmission lines, with steel groundwires). That ground potential was enough to produce shocks and equipment damage in certain ''transition substations''. It was verified that this problem has no relation with potential transfer. The paper shows also that the utilization of overhead lines with ACSR groundwires on the initial spans closer to the ''transition substation'' would be enough to avoid the problem. Even if the ACSR conductor is used only at the initial section of one of the lines, a reduction of the problem would be obtained. The paper shows also that the utilization of ACSR ground-wires near the ''transition substations'' contributes to reduce the amount of the copper necessary to control step, touch and mess potentials in these substations. Additional mitigation procedures are also examined in the paper.« less

  13. High speed production of YBCO precursor films by advanced TFA-MOD process

    NASA Astrophysics Data System (ADS)

    Ichikawa, H.; Nakaoka, K.; Miura, M.; Sutoh, Y.; Nakanishi, T.; Nakai, A.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.

    2009-10-01

    YBa 2Cu 3O 7-y (YBCO) long tapes derived from the metal-organic deposition (MOD) method using the starting solution containing trifluoroacetate (TFA) have been developed with high critical currents ( I c) over 200 A/cm-width. However, high speed production of YBCO films is simultaneously necessary to satisfy the requirements of electric power device applications in terms of cost and the amounts of the tapes. In this work, we developed a new TFA-MOD starting solution using F-free salt of Y, TFA salt of Ba and Cu-Octylate for application to the coating/calcination process and discussed several issues by using the Multi-turn (MT) Reel-to-Reel (RTR) system calcination furnace for the purpose of high throughput without degradation of the properties. The coating system was improved for uniform deposition qualities in both longitudinal and transversal directions. YBCO films using the new starting solution at the traveling rate of 10 m/h in coating/calcination by the MT-RTR calcination furnace showed the values of the critical current density of 1.6 MA/cm 2 as thick as 1.5 μm at 77 K under the self fields after firing at the high heating rate in the crystallization.

  14. Hybrid modeling for dynamic analysis of cable-pulley systems with time-varying length cable and its application

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Qi, Zhaohui; Wang, Gang

    2017-10-01

    The dynamic analysis of cable-pulley systems is investigated in this paper, where the time-varying length characteristic of the cable as well as the coupling motion between the cable and the pulleys are considered. The dynamic model for cable-pulley systems are presented based on the principle of virtual power. Firstly, the cubic spline interpolation is adopted for modeling the flexible cable elements and the virtual 1powers of tensile strain, inertia and gravity forces on the cable are formulated. Then, the coupled motions between the cable and the movable or fixed pulley are described by the input and output contact points, based on the no-slip assumption and the spatial description. The virtual powers of inertia, gravity and applied forces on the contact segment of the cable, the movable and fixed pulleys are formulated. In particular, the internal node degrees of freedom of spline cable elements are reduced, which results in that only the independent description parameters of the nodes connected to the pulleys are included in the final governing dynamic equations. At last, two cable-pulley lifting mechanisms are considered as demonstrative application examples where the vibration of the lifting process is investigated. The comparison with ADAMS models is given to prove the validity of the proposed method.

  15. DC Cable for Railway

    NASA Astrophysics Data System (ADS)

    Tomita, Masaru

    The development of a superconducting cable for railways has commenced, assuming that a DC transmission cable will be used for electric trains. The cable has been fabricated based on the results of current testing of a superconducting wire, and various evaluation tests have been performed to determine the characteristics of the cable. A superconducting transmission cable having zero electrical resistance and suitable for railway use is expected to enhance regeneration efficiency, reduce power losses, achieve load leveling and integration of sub-stations, and reduce rail potential.

  16. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartlein, Rick; Hampton, Nigel; Perkel, Josh

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach asmore » a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.« less

  17. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Within the frequency band 9 kHz, up to, but not including, 45 kHz, the peak output power from the cable... output power from the cable locating equipment shall not exceed one watt. If provisions are made for connection of the cable locating equipment to the AC power lines, the conducted limits in § 15.207 also apply...

  18. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Within the frequency band 9 kHz, up to, but not including, 45 kHz, the peak output power from the cable... output power from the cable locating equipment shall not exceed one watt. If provisions are made for connection of the cable locating equipment to the AC power lines, the conducted limits in § 15.207 also apply...

  19. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Within the frequency band 9 kHz, up to, but not including, 45 kHz, the peak output power from the cable... output power from the cable locating equipment shall not exceed one watt. If provisions are made for connection of the cable locating equipment to the AC power lines, the conducted limits in § 15.207 also apply...

  20. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: Within the frequency band 9 kHz, up to, but not including, 45 kHz, the peak output power from the cable... output power from the cable locating equipment shall not exceed one watt. If provisions are made for connection of the cable locating equipment to the AC power lines, the conducted limits in § 15.207 also apply...

  1. Experimental studies of diffusion welding of YBCO to copper using solder layers

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Ouyang, Z.; Shi, L.; Kuang, Z.; Meng, M.

    2017-02-01

    The welding technology is of great importance in YBCO application. To make better joints, the diffusion welding of YBCO tape to copper has been carried out in a vacuum environment. In consideration of high welding temperature (above 200°C) could do damage to the material performance, a new kind of diffusion welding method with temperature below 200 °C has been developed recently. A new welding appliance which can offer pressure over 35Kg/mm2 and controlled temperature has been designed and built; several YBCO coated conductors joints soldered with different melting points of tins has been tested. The results showed that the diffusion can perfectly connect YBCO to copper as well as stainless steel and resistance of the joint was low, and the YBCO tape could bear 217°C for at least 15mins.

  2. Effects of submarine power transmission cables on a glass sponge reef and associated megafaunal community.

    PubMed

    Dunham, A; Pegg, J R; Carolsfeld, W; Davies, S; Murfitt, I; Boutillier, J

    2015-06-01

    We examined the effects of submarine power transmission cable installation and operation on glass sponge reef condition and associated megafauna. Video and still imagery were collected using a Remotely Operated Vehicle twice a year for 4 years following cable installation. The effects of cables on glass sponges were assessed by comparing sponge cover along fixed transects and at marked index sites. Megafauna counts along transects were used to explore the effects on associated community. We found no evidence of cable movement across the sponge reef surface. Live sponge cover was found to be consistently lower along cable transects and at cable index sites compared to controls. Live sponge cover was the lowest (55 ± 1.1% decrease) at cable index sites 1.5 years after installation and recovered to 85 ± 30.6% of the original size over the following 2 years. Our data suggest 100% glass sponge mortality along the direct cable footprint and 15% mortality in the surrounding 1.5 m corridor 3.5 years after cable installation. Growth rate of a new glass sponge was 1 and 3 cm/year in first and second year, respectively, and appeared to be seasonal. We observed a diverse megafaunal community with representatives from 7 phyla and 14 classes. Total megafauna, spot prawn, and other Arthropoda abundances were slightly lower along cable transects although the effect of cable presence was not statistically significant. The following measures could be taken to reduce the amount of damage to glass sponge reefs and associated fauna: routing the cable around reefs, whenever possible, minimizing cable movement across the surface of the reef at installation and routine operation, and assessing potential damage to glass sponges prior to decommissioning. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  3. Flux-transfer losses in helically wound superconducting power cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John R; Malozemoff, A P

    2013-06-25

    Minimization of ac losses is essential for economic operation of high-temperature superconductor (HTS) ac power cables. A favorable configuration for the phase conductor of such cables has two counter-wound layers of HTS tape-shaped wires lying next to each other and helically wound around a flexible cylindrical former. However, if magnetic materials such as magnetic substrates of the tapes lie between the two layers, or if the winding pitch angles are not opposite and essentially equal in magnitude to each other, current distributes unequally between the two layers. Then, if at some point in the ac cycle the current of eithermore » of the two layers exceeds its critical current, a large ac loss arises from the transfer of flux between the two layers. A detailed review of the formalism, and its application to the case of paramagnetic substrates including the calculation of this flux-transfer loss, is presented.« less

  4. Strong Flux Pinning of Nano-Sized Ysz Particles in Ybco Films Prepared by Mod Method

    NASA Astrophysics Data System (ADS)

    Ye, S.; Suo, H. L.; Liu, M.; Tang, X.; Wu, Z. P.; Zhao, Y.; Zhou, M. L.

    The YBCO films with doped YSZ nanoparticles have been prepared successfully by metal organic doepositon method using trifluoroacetates (TFA-MOD) through dissolving Zr organic salt into the YBCO precursor solution. The doped films have well in-plane and out-plane textures detected by both XRD Φ-scan and ω-scan. The YSZ nanoparticles with the size of about 5 ~ 15 nm were observed on the surface of the YBCO films using both FE-SEM and TEM. By comparing the superconducting properties, it was found that the doped YBCO films had lower Tc than that of undoped YBCO films. However, as increasing the applied magnetic field, Jc of the doped YBCO films were much better than that of undoped one. The Jc was as higher as 2.5 times than that of undoped YBCO film at 77 K and 1 T applied field.

  5. Critical Current Properties in Longitudinal Magnetic Field of YBCO Superconductor with APC

    NASA Astrophysics Data System (ADS)

    Kido, R.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Jha, A. K.; Matsumoto, K.

    The critical current density (Jc) properties of the Artificial Pinning Center (APC) introduced YBa2Cu3O7 (YBCO) films in the longitudinal magnetic field were measured. Y2O3 or Y2BaCuO5 (Y211) was introduced as APCs to YBCO, and YBCO films with APC were fabricated on SrTiO3 single crystal substrate. The sizes of Y2O3 and Y211 were 5-10 nm and 10-20 nm, respectively. As a result, Jc enhancement in the longitudinal magnetic field was observed in Y2O3 introduced YBCO films. However, it was not observed in Y211 introduced YBCO films. Therefore, it was considered that Jc properties in the longitudinal magnetic field were affected by introducing of small size APC, and it was necessary that APC does not disturb the current pathway in the superconductor.

  6. Instrumentation Cables Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muna, Alice Baca; LaFleur, Chris Bensdotter

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteriamore » 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended

  7. Life-assessment technique for nuclear power plant cables

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Hnát, V.; Plaček, V.

    1998-06-01

    The condition of polymer-based cable material can be best characterized by measuring elongation at break of its insulating materials. However, it is not often possible to take sufficiently large samples for measurement with the tensile testing machine. The problem has been conveniently solved by utilizing differential scanning calorimetry technique. From the tested cable, several microsamples are taken and the oxidation induction time (OIT) is determined. For each cable which is subject to the assessment of the lifetime, the correlation of OIT with elongation at break and the correlation of elongation at break with the cable service time has to be performed. A reliable assessment of the cable lifetime depends on accuracy of these correlations. Consequently, synergistic effects well known at this time - dose rate effects and effects resulting from the different sequence of applying radiation and elevated temperature must be taken into account.

  8. Electrical aging markers for EPR-based low-voltage cable insulation wiring of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Verardi, L.; Fabiani, D.; Montanari, G. C.

    2014-01-01

    This paper presents results of electrical property measurements on EPR-based insulations of low-voltage power cables used in nuclear power plants. The specimens underwent accelerated aging through the simultaneous application of high temperature and gamma-radiation. Mechanical properties and the dielectric response at different frequencies were investigated. Results showed significant variation of the electrical and mechanical properties of aged cables at low frequencies, i.e. lower than 10-2 Hz. In particular, the real and imaginary parts of permittivity increase with aging time, accumulated dose and stress levels applied showing good correlation with elongation at break, which decreases as a function of extent of insulation aging.

  9. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government's financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  10. Structural and electrical properties of epitaxial YBCO films on Si (Abstract Only).

    NASA Astrophysics Data System (ADS)

    Fork, David K.; Barrera, A.; Phillips, Julia M.; Newman, N.; Fenner, David B.; Geballe, Theodore H.; Connell, G. A. N.; Boyce, James B.

    1991-03-01

    Efforts to grow high quality films of YBCO on Si have been complicated by factors discussed in Ref. 1, chief among them being the reaction between YBCO and Si, which is damaging even at 550 C. This is well below the customary temperatures for YBCO film growth. To avoid the reaction problem, epitaxial YBCO films were grown on Si (100) using an intermediate buffer layer of yttria-stabilized zirconia (YSZ).2 Both layers are grown via an entirely in situ process by pulsed laser deposition (PLD). Although the buffer layer prevents reaction, another problem arises; the large difference in thermal expansion coefficients between silicon and YBCO causes strain at room temperature. Thin (<500 A) YBCO films are unrelaxed and under tensile strain with a distorted unit cell. Thicker films are cracked and have poorer electrical properties. The thermal strain may be reduced by growing on silicon-on-sapphire (SOS) rather than silicon.3 This allows the growth of films of arbitrary thickness. Ion channeling reveals a high degree of crystalline perfection with a channeling minimum yield for Ba as low as 12% on either silicon or SOS. The normal state resistivity is 250-300 i-cm at 300 K; the critical temperature, Tc (R=0), is 86-88 K with a transition width (ATc) of I K. Critical current densities (J)°f 2x107 A/cm2 at 4.2 K and >2x106 A/cm2 at 77 K have been achieved. In addition, the surface resistance of a YBCO film on SOS was measured against Nb at 4.2 K. At 10 GHz, a value of 45 was obtained. This compares favorably to values reported for LaAlO3. Application of this technology to produce reaction patterned microstrip lines has been tested.4 This was done by ion milling away portions of the YSZ buffer layer prior to the YBCO deposition. YBCO landing on regions of exposed Si reacts to form an insulator. This technique was used to make 3 micron lines 1.5 mm long. The resulting structure had a Jc of l.6xl06 A/cm2 at 77 K. Isolation of separate structures exceeded 20 M. Several

  11. Development of YBCO Superconductor for Electric Systems: Cooperative Research and Development Final Report, CRADA Number CRD-04-150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, R.

    2013-03-01

    The proposed project will be collaborative in exploration of high temperature superconductor oxide films between SuperPower, Inc. and the National Renewable Energy Laboratory. This CRADA will attempt to develop YBCO based high temperature oxide technology.

  12. Reusable Hot-Wire Cable Cutter

    NASA Technical Reports Server (NTRS)

    Pauken, Michael T.; Steinkraus, Joel M.

    2010-01-01

    During the early development stage of balloon deployment systems for missions, nichrome wire cable cutters were often used in place of pyro-actuated cutters. Typically, a nichrome wire is wrapped around a bundle of polymer cables with a low melting point and connected to a relay-actuated electric circuit. The heat from the nichrome reduces the strength of the cable bundle, which quickly breaks under a mechanical load and can thus be used as a release mechanism for a deployment system. However, the use of hand-made heated nichrome wire for cutters is not very reliable. Often, the wrapped nichrome wire does not cut through the cable because it either pulls away from its power source or does not stay in contact with the cable being cut. Because nichrome is not readily soldered to copper wire, unreliable mechanical crimps are often made to connect the nichrome to an electric circuit. A self-contained device that is reusable and reliable was developed to sever cables for device release or deployment. The nichrome wire in this new device is housed within an enclosure to prevent it from being damaged by handling. The electric power leads are internally connected within the unit to the nichrome wire using a screw terminal connection. A bayonet plug, a quick and secure method of connecting the cutter to the power source, is used to connect the cutter to the power leads similar to those used in pyro-cutter devices. A small ceramic tube [0.25-in. wide 0.5-in. long (.6.4-mm wide 13-mm long)] houses a spiraled nichrome wire that is heated when a cable release action is required. The wire is formed into a spiral coil by wrapping it around a mandrel. It is then laid inside the ceramic tube so that it fits closely to the inner surface of the tube. The ceramic tube provides some thermal and electrical insulation so that most of the heat generated by the wire is directed toward the cable bundle in the center of the spiral. The ceramic tube is cemented into an aluminum block, which

  13. STS-26 MS Nelson adjusts ADSF power cable on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Mission Specialist (MS) George D. Nelson adjusts power cable on automated directional solidification furnace (ADSF) support electronics package. ADSF is located in forward (starboard side) lockers on Discovery's, Orbiter Vehicle (OV) 103's, middeck. ADSF consists of the furnace container (left) and the control electronics container (right). An Air National Guard, Houston, Texas, decal appears on middeck locker above ADSF.

  14. A Thermally Actuated Flux Pump for Energizing YBCO Pucks

    DTIC Science & Technology

    2016-05-01

    transmitted through the thermal magnetic material sweeping magnetic field lines into the superconducting puck. We used YBCO as the superconductor with...of the YBCO sweeping vortices into the superconductor . These vortices would gradually accumulate in the superconductor . Successes have been reported...superconducting flux pump,” PHYSICA C, vol. 468, pp. 153-159, 2008. [2] T. A. Coombs, Z. Hong, Y. Yan and C. D. Rawlings, “ Superconductors : The

  15. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is tomore » use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods

  16. Vortex pinning landscape in MOD-TFA YBCO nanostroctured films

    NASA Astrophysics Data System (ADS)

    Gutierrez, J.; Puig, T.; Pomar, A.; Obradors, X.

    2008-03-01

    A methodology of general validity to study vortex pinning in YBCO based on Jc transport measurements is described. It permits to identify, separate and quantify three basic vortex pinning contributions associated to anisotropic-strong, isotropic-strong and isotropic-weak pinning centers. Thereof, the corresponding vortex pinning phase diagrams are built up. This methodology is applied to the new solution-derived YBCO nanostructured films, including controlled interfacial pinning by the growth of nanostructured templates by means of self-assembled processes [1] and YBCO-BaZrO3 nanocomposites prepared by modified solution precursors. The application of the methodology and comparison with a standard solution-derived YBCO film [2], enables us to identify the nature and the effect of the additional pinning centers induced. The nanostructured templates films show c-axis pinning strongly increased, controlling most of the pinning phase diagram. On the other hand, the nanocomposites have achieved so far, the highest pinning properties in HTc-superconductors [3], being the isotropic-strong defects contribution the origin of their unique properties. [1] M. Gibert et al, Adv. Mat. vol 19, p. 3937 (2007) [2] Puig.T et al, SuST EUCAS 2007 (to be published) [3] J. Gutierrez et al, Nat. Mat. vol. 6, p. 367 (2007) * Work supported by HIPERCHEM, NANOARTIS and MAT2005-02047

  17. Cable Tester Box

    NASA Technical Reports Server (NTRS)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  18. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  19. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  20. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  1. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  2. Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants – Interim Study FY13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-27

    The most important criterion for cable performance is its ability to withstand a design-basis accident. With nearly 1000 km of power, control, instrumentation, and other cables typically found in an NPP, it would be a significant undertaking to inspect all of the cables. Degradation of the cable jacket, electrical insulation, and other cable components is a key issue that is likely to affect the ability of the currently installed cables to operate safely and reliably for another 20 to 40 years beyond the initial operating life. The development of one or more nondestructive evaluation (NDE) techniques and supporting models thatmore » could assist in determining the remaining life expectancy of cables or their current degradation state would be of significant interest. The ability to nondestructively determine material and electrical properties of cable jackets and insulation without disturbing the cables or connections has been deemed essential. Currently, the only technique accepted by industry to measure cable elasticity (the gold standard for determining cable insulation degradation) is the indentation measurement. All other NDE techniques are used to find flaws in the cable and do not provide information to determine the current health or life expectancy. There is no single NDE technique that can satisfy all of the requirements needed for making a life-expectancy determination, but a wide range of methods have been evaluated for use in NPPs as part of a continuous evaluation program. The commonly used methods are indentation and visual inspection, but these are only suitable for easily accessible cables. Several NDE methodologies using electrical techniques are in use today for flaw detection but there are none that can predict the life of a cable. There are, however, several physical and chemical ptoperty changes in cable insulation as a result of thermal and radiation damage. In principle, these properties may be targets for advanced NDE methods to provide

  3. Elastic guided wave propagation in electrical cables.

    PubMed

    Mateo, Carlos; Talavera, Juan A; Muñoz, Antonio

    2007-07-01

    This article analyzes the propagation modes of ultrasound waves inside an electrical cable in order to assess its behavior as an acoustic transmission channel. A theoretical model for propagation of elastic waves in electric power cables is presented. The power cables are represented as viscoelastic-layered cylindrical structures with a copper core and a dielectric cover. The model equations then have been applied and numerically resolved for this and other known structures such as solid and hollow cylinders. The results are compared with available data from other models. Several experimental measures were carried out and were compared with results from the numerical simulations. Experimental and simulated results showed a significant difference between elastic wave attenuation inside standard versus bare, low-voltage power cables.

  4. Towards aging mechanisms of cross-linked polyethylene (XLPE) cable insulation materials in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.

  5. Current evaluation of hydraulics to replace the cable force transmission system for body-powered upper-limb prostheses.

    PubMed

    LeBlanc, M

    1990-01-01

    Present body-powered upper-limb prostheses use a cable control system employing World War II aircraft technology to transmit force from the body to the prosthesis for operation. The cable and associated hardware are located outside the prosthesis. Because individuals with arm amputations want prostheses that are natural looking with a smooth, soft outer surface, a design and development project was undertaken to replace the cable system with hydraulics located inside the prosthesis. Three different hydraulic transmission systems were built for evaluation, and other possibilities were explored. Results indicate that a hydraulic force transmission system remains an unmet challenge as a practical replacement for the cable system. The author was unable to develop a hydraulic system that meets the necessary dynamic requirements and is acceptable in size and appearance.

  6. [Computation of the cross-sectional area of the cable in the power circuit of the X-ray machine].

    PubMed

    Meng, Xin-min; Feng, Da-yu

    2007-01-01

    The source impedance of the power circuit in the x-ray machine is analyzed in the paper and based on the voltage drop generated by the impedance, the cross-sectional area of the cable is calculated. In the end, the cross-sectional areas of the cables, corresponding to their respective distances between the transformers and the switchboards are given.

  7. Studying radiolytic ageing of nuclear power plant electric cables with FTIR spectroscopy.

    PubMed

    Levet, A; Colombani, J; Duponchel, L

    2017-09-01

    Due to the willingness to extend the nuclear power plants length of life, it is of prime importance to understand long term ageing effect on all constitutive materials. For this purpose gamma-irradiation effects on insulation of instrumentation and control cables are studied. Mid-infrared spectroscopy and principal components analysis (PCA) were used to highlight molecular modifications induced by gamma-irradiation under oxidizing conditions. In order to be closer to real world conditions, a low dose rate of 11Gyh -1 was used to irradiate insulations in full cable or alone with a dose up to 58 kGy. Spectral differences according to irradiation dose were extracted using PCA. It was then possible to observe different behaviors of the insulation constitutive compounds i.e. ethylene vinyl acetate (EVA), ethylene propylene diene monomer (EPDM) and aluminium trihydrate (ATH). Irradiation of insulations led to the oxidation of their constitutive polymers and a modification of filler-polymer ratio. Moreover all these modifications were observed for insulations alone or in full cable indicating that oxygen easily diffuses into the material. Spectral contributions were discussed considering different degradation mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lifetime assessment by intermittent inspection under the mixture Weibull power law model with application to XLPE cables.

    PubMed

    Hirose, H

    1997-01-01

    This paper proposes a new treatment for electrical insulation degradation. Some types of insulation which have been used under various circumstances are considered to degrade at various rates in accordance with their stress circumstances. The cross-linked polyethylene (XLPE) insulated cables inspected by major Japanese electric companies clearly indicate such phenomena. By assuming that the inspected specimen is sampled from one of the clustered groups, a mixed degradation model can be constructed. Since the degradation of the insulation under common circumstances is considered to follow a Weibull distribution, a mixture model and a Weibull power law can be combined. This is called The mixture Weibull power law model. By using the maximum likelihood estimation for the newly proposed model to Japanese 22 and 33 kV insulation class cables, they are clustered into a certain number of groups by using the AIC and the generalized likelihood ratio test method. The reliability of the cables at specified years are assessed.

  9. Design considerations for high-power VHF radar transceivers: Phase matching long coaxial cables using a cable radar

    NASA Technical Reports Server (NTRS)

    Johnson, P. E.; Ecklund, W. L.

    1983-01-01

    The Poker Flat 49.92-MHz MST radar uses 64 phase-controlled transmitters in individual shelters distributed throughout the antenna array. Phase control is accomplished by sampling the transmitted pulse at the directional coupler of each transmitter and sending the sample pulse back to a phase-control unit. This method requires phase matching 64 long (256 meter) coaxial cables (RG-213) to within several electrical degrees. Tests with a time domain reflectometer showed that attenuation of high frequency components in the long RG-213 cable rounded the leading edge of the reflected pulse so that the cables could only be measured to within 50 cm (about 45 deg at 49.92 MHz). Another measurement technique using a vector voltmeter to compare forward and reflected phase required a directional coupler with unattainable directivity. Several other techniques were also found lacking, primarily because of loss in the long RG-213 cables. At this point it was realized that what was needed was a simple version of the phase-coherent clear-air radar, i.e., a cable radar. The design and operation of this cable are described.

  10. Optimization of Thick, Large Area YBCO Film Growth Through Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Porzio, J.; Mahoney, C. H.; Sullivan, M. C.

    2014-03-01

    We present our work on the optimization of thick, large area YB2C3O7-δ (YBCO) film growth through response surface methods. Thick, large area films have commercial uses and have recently been used in dramatic demonstrations of levitation and suspension. Our films are grown via pulsed laser deposition and we have optimized growth parameters via response surface methods. Response surface methods is a statistical tool to optimize selected quantities with respect to a set of variables. We optimized our YBCO films' critical temperatures, thicknesses, and structures with respect to three PLD growth parameters: deposition temperature, laser energy, and deposition pressure. We will present an overview of YBCO growth via pulsed laser deposition, the statistical theory behind response surface methods, and the application of response surface methods to pulsed laser deposition growth of YBCO. Results from the experiment will be presented in a discussion of the optimized film quality. Supported by NFS grant DMR-1305637

  11. High-power fiber optic cable with integrated active sensors for live process monitoring

    NASA Astrophysics Data System (ADS)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  12. Noise from implantable Cooper cable.

    PubMed

    Carrington, V; Zhou, L; Donaldson, N

    2005-09-01

    Cooper cable is made for implanted devices, usually for connection to stimulating electrodes. An experiment has been performed to see whether these cables would be satisfactory for recording electroneurogram (ENG) signals from cuffs. Four cables were subjected to continuous flexion at 2 Hz while submerged in saline. The cables were connected to a low-noise amplifier, and the noise was measured using a spectrum analyser. These cables had not fractured after 184 million flexions, and the noise in the neural band (500-5000 Hz) had not increased owing to age. Noise in the ENG band increased by less than 3 dB owing to the motion. A fifth, worn cable did fail during the experiment, the conductors becoming exposed to the saline, but this was only apparent by extra noise when the cable was in motion. After 184 million flexions, the four cables were given a more severe test: instead of being connected to the amplifier reference node, two of the four cores of each cable were connected to 18V batteries. Two of the cables were then noisier, but only when in motion, presumably because of leakage between cores. Cooper cables are excellent for transmitting neural signals alone; transmission in one cable of neural signals and power supplies should be avoided if possible.

  13. High-temperature flat-conductor cable

    NASA Technical Reports Server (NTRS)

    Rigling, W. S.

    1976-01-01

    Temperature limit of 25-conductor signal cable and 3-conductor power cable, fabricated using woven and roll laminated technique, increased from 200 C to 350 C when polyimide/fluorinated ethylene propylene or polytetrafluoroethylene insulation films and fluorinated ethylene propylene as adhesive medium is applied.

  14. Rotating Connection for Electrical Cables

    NASA Technical Reports Server (NTRS)

    Manges, D. R.

    1986-01-01

    Cable reel provides electrical connections between fixed structure and rotating one. Reel carries power and signal lines while allowing rotating structure to turn up to 360 degrees with respect to fixed structure. Reel replaces sliprings. Can be used to electrically connect arm of robot with body. Reel releases cable to rotating part as it turns and takes up cable as rotating part comes back to its starting position, without tangling, twisting, or kinking.

  15. System and method for sub-sea cable termination

    DOEpatents

    Chen, Qin; Yin, Weijun; Zhang, Lili

    2016-04-05

    An electrical connector includes a first cable termination chamber configured to receive a first power cable having at least a first conductor sheathed at least in part by a first insulating layer and a first insulation screen layer. Also, the electrical connector includes a first non-linear resistive layer configured to be coupled to a portion of the first conductor unsheathed by at least the first insulation screen layer and configured to control a direct current electric field generated in the first cable termination chamber. In addition, the electrical connector includes a first deflector configured to be coupled to the first power cable and control an alternating current electric field generated in the first cable termination chamber.

  16. Sensors for measurement of moisture diffusion in power cables with oil-impregnated paper

    NASA Astrophysics Data System (ADS)

    Thomas, Z. M.; Zahn, M.; Yang, W.

    2007-07-01

    Some old power cables use oil-impregnated paper as the insulation material, which is enclosed by a layer of lead sheath. As cracks can form on the sheath of aged cables, the oil-impregnated paper can be exposed to the environmental conditions, and ambient moisture can diffuse into the paper through the cracks, causing a reduced breakdown voltage. To understand this diffusion phenomenon, multi-wavelength dielectrometry sensors have been used to measure permittivity and conductivity, aiming to obtain information on the moisture content. Different electrode-grouping strategies have been suggested to obtain more detailed information. Effectively, an electrode-grouping approach forms a type of electrical capacitance tomography sensor. This paper presents different sensor designs together with a capacitance measuring circuit. Some analytical results are also presented.

  17. OTEC riser cable model and prototype testing

    NASA Astrophysics Data System (ADS)

    Kurt, J. P.; Schultz, J. A.; Roblee, L. H. S.

    1981-12-01

    Two different OTEC riser cables have been developed to span the distance between a floating OTEC power plant and the ocean floor. The major design concerns for a riser cable in the dynamic OTEC environment are fatigue, corrosion, and electrical/mechanical aging of the cable components. The basic properties of the cable materials were studied through tests on model cables and on samples of cable materials. Full-scale prototype cables were manufactured and were tested to measure their electrical and mechanical properties and performance. The full-scale testing was culminated by the electrical/mechanical fatigue test, which exposes full-scale cables to simultaneous tension, bending and electrical loads, all in a natural seawater environment.

  18. Fabrication of biaxially oriented YBCO on (001) biaxially oriented yttria-stabilized-zirconia on polycrystalline substrates

    NASA Astrophysics Data System (ADS)

    Arendt, P.; Foltyn, S.; Wu, Xin Di; Townsend, J.; Adams, C.; Hawley, M.; Tiwari, P.; Maley, M.; Willis, J.; Moseley, D.

    Ion-assisted, ion-beam sputter deposition is used to obtain (001) biaxially oriented films of cubic yttria stabilized zirconia (YSZ) on polycrystalline metal substrates. Yttrium barium copper oxide (YBCO) is then heteroepitaxially pulse laser deposited onto the YSZ. Phi scans of the films show the full-width-half maxima of the YSZ (202) and the YBCO (103) reflections to be 14 deg and 10 deg, respectively. Our best dc transport critical current density measurement for the YBCO is 800,000 A/sq cm at 75 K and 0 T. At 75 K, the total dc transport current in a 1 cm wide YBCO film is 23 A.

  19. NEMA wire and cable standards development programs

    NASA Astrophysics Data System (ADS)

    Baird, Robert W.

    1994-01-01

    The National Electrical Manufacturers Association (NEMA) is the nation's largest trade association for manufacturers of electrical equipment. Its member companies produce components, end-use equipment and systems for the generation, transmission, distribution, control and use of electricity. The wire and cable division is presented in 6 sections: building wire and cable, fabricated conductors, flexible cords, high performance wire and cable, magnet wire, and power and control cable. Participating companies are listed.

  20. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  1. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  2. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  3. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  4. Cable Television and the University.

    ERIC Educational Resources Information Center

    Lyman, Richard

    Universities contain powerful blocs of resistance to new educational technology, perhaps especially to television. University attitudes and structures as well as faculty ignorance, apathy, and resistance affect the development of cable television. No one seems to speak with great confidence and precision about the educational potential of cable.…

  5. Density measurements as a condition monitoring approach for following the aging of nuclear power plant cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, K. T.; Celina, M.; Clough, R. L.

    1999-10-01

    Monitoring changes in material density has been suggested as a potentially useful condition monitoring (CM) method for following the aging of cable jacket and insulation materials in nuclear power plants. In this study, we compare density measurements and ultimate tensile elongation results versus aging time for most of the important generic types of commercial nuclear power plant cable materials. Aging conditions, which include thermal-only, as well as combined radiation plus thermal, were chosen such that potentially anomalous effects caused by diffusion-limited oxidation (DLO) are unimportant. The results show that easily measurable density increases occur in most important cable materials. For some materials and environments, the density change occurs at a fairly constant rate throughout the mechanical property lifetime. For cases involving so-called induction-time behavior, density increases are slow to moderate until after the induction time, at which point they begin to increase dramatically. In other instances, density increases rapidly at first, then slows down. The results offer strong evidence that density measurements, which reflect property changes under both radiation and thermal conditions, could represent a very useful CM approach.

  6. New Technologies for Repairing Aging Cables in Nuclear Power Plants: M3LW-14OR0404015 Cable Rejuvenation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    The goal of this project is to conceptually demonstrate techniques to repair cables that have degraded through subjection to long-term thermal and radiation exposure in nuclear power plants. In fiscal year 2014 (FY14) we focused on commercially available ethylene-propylene rubber (EPR) as the relevant test material, isolated a high surface area form of the EPR material to facilitate chemical treatment screening and charaterization, and measured chemical changes in the material due to aging and treatment using Fourier Transfrom Infrared (FTIR) spectroscopy.

  7. New Opportunities for Cabled Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Duennebier, F. K.; Butler, R.; Karl, D. M.; Roger, L. B.

    2002-12-01

    With the decommissioning of transoceanic telecommunications cables as they become obsolete or uneconomical, there is an opportunity to use these systems for ocean observatories. Two coaxial cables, TPC-1 and HAW-2 are currently in use for observatories, and another, ANZCAN, is scheduled to be used beginning in 2004 to provide a cabled observatory at Station ALOHA, north of Oahu. The ALOHA observatory will provide several Mb/s data rates and about 1 kW of power to experiments installed at Station ALOHA. Sensors can be installed either by wet mateable connection to a junction box on the ocean floor using an ROV, or by acoustic data link to the system. In either case real-time data will be provided to users over the Internet. A Small Experiment Module, to be first installed at the Hawaii-2 Observatory, and later at Station ALOHA, will provide relatively cheap and uncomplicated access to the observatories for relatively simple sensors. Within the next few years, the first electro-optical cables installed in the 1980's will be decommissioned and could be available for scientific use. These cables could provide long "extension cords" (thousands of km) with very high bandwidth and reasonable power to several observatories in remote locations in the ocean. While they could be used in-place, a more exciting scenario is to use cable ships to pick up sections of cable and move them to locations of higher scientific interest. While such moves would not be cheap, the costs would rival the cost of installation and maintenance of a buoyed observatory, with far more bandwidth and power available for science use.

  8. Over-current carrying characteristics of rectangular-shaped YBCO thin films prepared by MOD method

    NASA Astrophysics Data System (ADS)

    Hotta, N.; Yokomizu, Y.; Iioka, D.; Matsumura, T.; Kumagai, T.; Yamasaki, H.; Shibuya, M.; Nitta, T.

    2008-02-01

    A fault current limiter (FCL) may be manufactured at competitive qualities and prices by using rectangular-shaped YBCO films which are prepared by metal-organic deposition (MOD) method, because the MOD method can produce large size elements with a low-cost and non-vacuum technique. Prior to constructing a superconducting FCL (SFCL), AC over-current carrying experiments were conducted for 120 mm long elements where YBCO thin film of about 200 nm in thickness was coated on sapphire substrate with cerium oxide (CeO2) interlayer. In the experiments, only single cycle of the ac damping current of 50 Hz was applied to the pure YBCO element without protective metal coating or parallel resistor and the magnitude of the current was increased step by step until the breakdown phenomena occurred in the element. In each experiment, current waveforms flowing through the YBCO element and voltage waveform across the element were measured to get the voltage-current characteristics. The allowable over-current and generated voltage were successfully estimated for the pure YBCO films. It can be pointed out that the lower n-value trends to bring about the higher allowable over-current and the higher withstand voltage more than tens of volts. The YBCO film having higher n-value is sensitive to the over-current. Thus, some protective methods such as a metal coating should be employed for applying to the fault current limiter.

  9. Light Water Reactor Sustainability Program: Evaluation of Localized Cable Test Methods for Nuclear Power Plant Cable Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Hartman, Trenton S.

    This Pacific Northwest National Laboratory (PNNL) milestone report describes progress to date on the investigation of nondestructive test (NDE) methods focusing particularly on local measurements that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As NPPs consider applying for second, or subsequent, license renewal (SLR) to extend their operating period from 60 years to 80 years, it important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs (AMPs) to assure continuedmore » safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program is directed toward the more demanding challenge of assuring the cable function under accident or DBE. Most utilities already have a program associated with their first life extension from 40 to 60 years. Regrettably, there is neither a clear guideline nor a single NDE that can assure cable function and integrity for all cables. Thankfully, however, practical implementation of a broad range of tests allows utilities to develop a practical program that assures cable function to a high degree. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB is a destructive test so the test programs must apply an array of other NDE tests to assure or infer the overall set of cable’s system integrity. These cable NDE programs vary in rigor and methodology. As the industry gains experience with the efficacy of these programs, it is expected that implementation practice will converge to a more common approach. This report addresses the range of local NDE cable tests

  10. Study of the inhomogeneity of critical current under in-situ tensile stress for YBCO tape

    NASA Astrophysics Data System (ADS)

    Zhu, Y. P.; Chen, W.; Zhang, H. Y.; Liu, L. Y.; Pan, X. F.; Yang, X. S.; Zhao, Y.

    2018-07-01

    A Hall sensor system was used to measure the local critical current of YBCO tape with high spatial resolution under in-situ tensile stress. The hot spot generation and minimum quench energy of YBCO tape, which depended on the local critical current, was calculated through the thermoelectric coupling model. With the increase in tensile stress, the cracks which have different dimensions and critical current degradation arose more frequently and lowered the thermal stability of the YBCO tape.

  11. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Gene

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb 3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber opticmore » sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  12. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Fu, Qishu; Qu, Timing; Mu, Hui; Gu, Chen; Yue, Yubin; Wang, Linli; Yang, Zhirong; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    A high-temperature superconducting coated conductor can be practically applied in electric equipment due to its favorable mechanical properties and critical current (I c) performance. However, the coated conductor can easily delaminate because of its poor stress tolerance along the thickness direction. It would be interesting to investigate whether the I c of the delaminated YBa2Cu3O7-δ (YBCO) layer can be preserved. In this study, coated conductor samples manufactured through the metal organic deposition route were delaminated by liquid nitrogen immersion. Delaminated samples, including the YBCO layer and silver stabilizer, were obtained. Delamination occurred inside the YBCO layer and near the YBCO-CeO2 interface, as suggested by the results of scanning electron microscopy (SEM) and x-ray diffraction. A scanning Hall probe system was employed to measure the I c distribution of the original sample and the delaminated sample. It was found that approximately 50% of the I c can be preserved after delamination, which was verified by I c measurements using the four-probe method. Dense and crack-free morphologies of the delaminated surfaces were observed by SEM, which accounts for the I c survival of the delaminated YBCO layer. The potential application of the delaminated sample in superconducting joints was discussed based on the oxygen diffusion estimation.

  13. Military Curricula for Vocational & Technical Education. Construction Electrician/Power and Communications Cable Splicing, 5-3.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This curriculum outline, instructor's guide, and student's guide for a secondary-postsecondary-level course in construction electrician/power and communications cable splicing are one of a number of military-developed curriculum packages developed for adaptation to vocational instruction and curriculum development in a civilian setting. Purpose…

  14. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance grounded systems shall be equipped with metallic shields around each power conductor with one or more...

  15. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance grounded systems shall be equipped with metallic shields around each power conductor with one or more...

  16. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance grounded systems shall be equipped with metallic shields around each power conductor with one or more...

  17. Manufacturing Superconducting Cables

    NASA Technical Reports Server (NTRS)

    England, Christopher

    1996-01-01

    Process proposed for manufacture of cables containing ceramic high-temperature-superconductor YBa(2)Cu(3)O(7-a). For protection, superconducting ceramic encapsulated before activation. Cables carry electrical current with little or no loss of power when cooled to or below temperatures of about minus 200 degrees C. Process accommodates brittle nature of YBa(2)Cu(3)O(7-a) and economical and readily controllable. Also flexible in sense modified to accommodate variety of precursor materials to be processed into YBa(2)Cu(3)O(7-a).

  18. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-4 Minimum cable conductor size. Each cable conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...

  19. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-4 Minimum cable conductor size. Each cable conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...

  20. The cable catapult - Putting it there and keeping it there

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.; Conley, Buford R.; Stanek, Clay; Ramsey, William

    1992-01-01

    The cable catapult is the previously proposed method of using long space tethers for high speed interplanetary transport. A long conductive multistrand cable would be connected to a power supply and pointed in the desired direction. A linear motor would pull itself along the powered cable strands and launch a payload capsule toward a distant planet, where it would be caught and decelerated by another cable catapult positioned there. In this paper it is shown how cable catapults can be used to transport themselves to a distant planet and keep themselves in position near the planet despite the tendency of the payload capsule momentum transfer to push them apart.

  1. The cable catapult - Putting it there and keeping it there

    NASA Astrophysics Data System (ADS)

    Forward, Robert L.; Conley, Buford R.; Stanek, Clay; Ramsey, William

    1992-07-01

    The cable catapult is the previously proposed method of using long space tethers for high speed interplanetary transport. A long conductive multistrand cable would be connected to a power supply and pointed in the desired direction. A linear motor would pull itself along the powered cable strands and launch a payload capsule toward a distant planet, where it would be caught and decelerated by another cable catapult positioned there. In this paper it is shown how cable catapults can be used to transport themselves to a distant planet and keep themselves in position near the planet despite the tendency of the payload capsule momentum transfer to push them apart.

  2. Radiation Testing of a Low Voltage Silicone Nuclear Power Plant Cable.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Robert

    This report summarizes the results generated in FY13 for cable insulation in support of DOE's Light Water Reactor Sustainability (LWRS) Program, in collaboration with the US- Argentine Binational Energy Working Group (BEWG). A silicone (SiR) cable, which was stored in benign conditions for %7E30 years, was obtained from Comision Nacional de Energia Atomica (CNEA) in Argentina. Physical property testing was performed on the as-received cable. This cable was artificially aged to assess behavior with additional analysis. SNL observed appreciable tensile elongation values for all cable insulations received, indicative of good mechanical performance. Of particular note, the work presented here providesmore » correlations between measured tensile elongation and other physical properties that may be potentially leveraged as a form of condition monitoring (CM) for actual service cables. It is recognized at this point that the polymer aging community is still lacking the number and types of field returned materials that are desired, but SNL -- along with the help of others -- is continuing to work towards that goal. This work is an initial study that should be complimented with location- mapping of environmental conditions of CNEA plant conditions (dose and temperature) as well as retrieval, analysis, and comparison with in-service cables.« less

  3. BENCHMARK ACCELERATED AGING OF HARVESTED HYPALON/EPR AND CSPE/XLPE POWER AND I&C CABLE IN NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C; Fifield, Dr Leonard S

    As part of the Light Water Reactor and Sustainability (LWRS) program in the U.S. Department of Energy (DOE) Office of Nuclear Energy, material aging and degradation research is currently geared to support the long-term operation of existing nuclear power plants (NPPs) as they move beyond their initial 40 year licenses. The goal of this research is to provide information so that NPPs can develop aging management programs (AMPs) to address replacement and monitoring needs as they look to operate for 20 years, and in some cases 40 years, beyond their initial operating lifetimes. For cable insulation and jacket materials thatmore » support instrument, control, and safety systems, accelerated aging data are needed to determine priorities in cable aging management programs. Before accelerated thermal and radiation aging of harvested, representative cable insulation and jacket materials, the benchmark performance of a new test capability at Oak Ridge National Laboratory (ORNL) was evaluated for temperatures between 70 and 135 C, dose rates between 100 and 500 Gy/h, and accumulated doses up to 20 kGy, Samples that were characterized and are representative of current materials in use were harvested from the Callaway NPP near Fulton, Missouri, and the San Onofre NPP north of San Diego, California. From the Callaway NPP, a multiconductor control rod cable manufactured by Boston Insulated Wire (BIW), with a Hypalon/ chorolosulfonated polyethylene (CSPE) jacket and ethylene-propylene rubber (EPR) insulation, was harvested from the auxiliary space during a planned outage in 2013. This cable was placed into service when the plant was started in 1984. From the San Onofre NPP, a Rockbestos Firewall III (FRIII) cable with a Hypalon/ CSPE jacket with cross-linked polyethylene (XLPE) insulation was harvested from an on-site, climate-controlled storage area. This conductor, which was never placed into service, was procured around 2007 in anticipation of future operation that did not

  4. Impacts of an underwater high voltage DC power cable on fish migration movements in the San Francisco Bay.

    NASA Astrophysics Data System (ADS)

    Wyman, M. T.; Kavet, R.; Klimley, A. P.

    2016-02-01

    There is an increasingly strong interest on a global scale in offshore renewable energy production and transportation. However, there is concern that the electromagnetic fields (EMF) produced by these underwater cables may alter the behavior and physiology of marine species. Despite this concern, few studies have investigated these effects in free-living species. In 2009, a 85 km long high-voltage DC (HVDC) power cable was placed within the San Francisco Bay, running parallel, then perpendicular to, the migration route of anadromous species moving from the inland river system to the oceans. In this study, we assess the impacts of this HVDC cable on the migration behaviors of EMF-sensitive fish, including juvenile salmonids (Chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, Oncorhynchus mykiss) and adult green sturgeon, Acipenser medirostris. Acoustic telemetry techniques were used to track fish migration movements through the San Francisco Bay both before and after the cable was activated; individuals implanted with acoustic transmitters were detected on cross-channel hydrophone arrays at key locations in the system. Magnetic fields were surveyed and mapped at these locations using a transverse gradiometer, and models of the cable's magnetic field were developed that closely matched the empirically measured values. Here, we present our analyses on the relationships between migration-related behavioral metrics (e.g., percent of successful migrations, duration of migration, time spent near vs. far from cable location, etc.) and environmental parameters, such as cable activation and load level, local magnetic field levels, depth, and currents.

  5. Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable

    DOEpatents

    Fitch, Joseph P.; Hagans, Karla; Clough, Robert; Matthews, Dennis L.; Lee, Abraham P.; Krulevitch, Peter A.; Benett, William J.; Da Silva, Luiz; Celliers, Peter M.

    1998-01-01

    A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiberoptic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiberoptic cable and connected to mechanically actuate the microgripper.

  6. Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable

    DOEpatents

    Fitch, J.P.; Hagans, K.; Clough, R.; Matthews, D.L.; Lee, A.P.; Krulevitch, P.A.; Benett, W.J.; Silva, L. Da; Celliers, P.M.

    1998-03-03

    A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiber-optic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiber-optic cable and connected to mechanically actuate the microgripper. 22 figs.

  7. Design of high-efficiency Joule-Thomson cycles for high-temperature superconductor power cable cooling

    NASA Astrophysics Data System (ADS)

    Jin, Lingxue; Lee, Cheonkyu; Baek, Seungwhan; Jeong, Sangkwon

    2018-07-01

    Liquid nitrogen (LN2) is commonly used as the coolant of a high temperature superconductor (HTS) power cable. The LN2 is continuously cooled by a subcooler to maintain an appropriate operating temperature of the cable. This paper proposes two Joule-Thomson (JT) refrigeration cycles for subcooling the LN2 coolant by using nitrogen itself as the working fluid. Additionally, an innovative HTS cooling cycle, of which the cable coolant and the refrigerant are unified and supplied from the same source, is suggested and analyzed in detail. Among these cycles, the highest COP is obtained in the JT cycle with a vacuum pump (Cycle A) which is 0.115 at 78 K, and the Carnot efficiency is 32.8%. The integrated HTS cooling cycle (Cycle C) can reach the maximum COP of 0.087, and the Carnot efficiency of 24.8%. Although Cycle C has a relatively low cycle efficiency when compared to that of the separated refrigeration cycle, it can be a good alternative in engineering applications, because the assembled hardware has few machinery components in a more compact configuration than the other cycles.

  8. Radiation Testing of a Low Voltage Silicone Nuclear Power Plant Cable.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White II, Gregory Von; Schroeder, John Lee.; Sawyer, Patricia Sue.

    This report summarizes the results generated in FY13 for cable insulation in support of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program, in collaboration with the US-Argentine Binational Energy Working Group (BEWG). A silicone (SiR) cable, which was stored in benign conditions for %7E30 years, was obtained from Comision Nacional de Energia Atomica (CNEA) in Argentina with the approval of NA-SA (Nucleoelectrica Argentina Sociedad Anonima). Physical property testing was performed on the as-received cable. This cable was artificially aged to assess behavior with additional analysis. SNL observed appreciable tensile elongation values for all cable insulations received, indicative ofmore » good mechanical performance. Of particular note, the work presented here provides correlations between measured tensile elongation and other physical properties that may be potentially leveraged as a form of condition monitoring (CM) for actual service cables. It is recognized at this point that the polymer aging community is still lacking the number and types of field returned materials that are desired, but Sandia National Laboratories (SNL) -- along with the help of others -- is continuing to work towards that goal. This work is an initial study that should be complimented with location-mapping of environmental conditions of Argentinean plant conditions (dose and temperature) as well as retrieval, analysis, and comparison with in- service cables.« less

  9. High-performance, lightweight coaxial cable from carbon nanotube conductors.

    PubMed

    Jarosz, Paul R; Shaukat, Aalyia; Schauerman, Christopher M; Cress, Cory D; Kladitis, Paul E; Ridgley, Richard D; Landi, Brian J

    2012-02-01

    Coaxial cables have been constructed with carbon nanotube (CNT) materials serving as both the inner and outer conductors. Treatment of the CNT outer and inner conductors with KAuBr(4) was found to significantly reduce the attenuation of these cables, which demonstrates that chemical agents can be used to improve power transmission through CNT networks at high frequencies (150 kHz-3 GHz). For cables constructed with a KAuBr(4)-treated CNT outer conductor, power attenuation per length approaches parity with cables constructed from metallic conductors at significantly lower weight per length (i.e., 7.1 g/m for CNT designs compared to 38.8 g/m for an RG-58 design). A relationship between the thickness of the CNT outer conductor and the cable attenuation was observed and used to estimate the effective skin depth at high frequency. These results establish reliable, reproducible methods for the construction of coaxial cables from CNT materials that can facilitate further investigation of their performance in high-frequency transmission structures, and highlight a specific opportunity for significant reduction in coaxial cable mass.

  10. 30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capacity in each ungrounded conductor. Disconnecting devices used to disconnect power from trailing cables... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection...

  11. 30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... capacity in each ungrounded conductor. Disconnecting devices used to disconnect power from trailing cables... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection...

  12. 30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capacity in each ungrounded conductor. Disconnecting devices used to disconnect power from trailing cables... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection...

  13. 30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... capacity in each ungrounded conductor. Disconnecting devices used to disconnect power from trailing cables... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection...

  14. Inverse polarity of the resistive switching effect and strong inhomogeneity in nanoscale YBCO-metal contacts

    NASA Astrophysics Data System (ADS)

    Truchly, M.; Plecenik, T.; Zhitlukhina, E.; Belogolovskii, M.; Dvoranova, M.; Kus, P.; Plecenik, A.

    2016-11-01

    We have studied a bipolar resistive switching phenomenon in c-axis oriented normal-state YBa2Cu3O7-c (YBCO) thin films at room temperature by scanning spreading resistance microscopy (SSRM) and scanning tunneling microscopy (STM) techniques. The most striking experimental finding has been the opposite (in contrast to the previous room and low-temperature data for planar metal counter-electrode-YBCO bilayers) voltage-bias polarity of the switching effect in all SSRM and a number of STM measurements. We have assumed that the hysteretic phenomena in current-voltage characteristics of YBCO-based contacts can be explained by migration of oxygen-vacancy defects and, as a result, by the formation or dissolution of more or less conductive regions near the metal-YBCO interface. To support our interpretation of the macroscopic resistive switching phenomenon, a minimalist model that describes radical modifications of the oxygen-vacancy effective charge in terms of a charge-wind effect was proposed. It was shown theoretically that due to the momentum exchange between current carriers (holes in the YBCO compound) and activated oxygen ions, the direction in which oxygen vacancies are moving is defined by the balance between the direct electrostatic force on them and that caused by the current-carrier flow.

  15. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  16. New method for introducing nanometer flux pinning centers into single domain YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Wang, Miao

    2013-10-01

    Single domain YBCO superconductors with different additions of Bi2O3 have been fabricated by top seeded infiltration and growth process (TSIG). The effect of Bi2O3 additions on the growth morphology, microstructure and levitation force of the YBCO bulk superconductor has been investigated. The results indicate that single domain YBCO superconductors can be fabricated with the additions of Bi2O3 less than 2 wt%; Bi2O3 can be reacted with Y2BaCuO5 and liquid phase and finally form Y2Ba4CuBiOx(YBi2411) nanoscale particles; the size of the YBi2411 particles is about 100 nm, which can act as effective flux pinning centers. It is also found that the levitation force of single domain YBCO bulks is increasing from 13 N to 34 N and decreasing to 11 N with the increasing of Bi2O3 addition from 0.1 wt% to 0.7 wt% and 2 wt%. This result is helpful for us to improve the physical properties of REBCO bulk superconductors.

  17. Benchmark Accelerated Aging of Harvested Hypalon/Epr and Cspe/Xlpe Power and I&C Cable in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C.; Frame, Emily; Fifield, Leonard S.

    As part of the Light Water Reactor and Sustainability (LWRS) program in the U.S. Department of Energy (DOE) Office of Nuclear Energy, material aging and degradation research is currently geared to support the long-term operation of existing nuclear power plants (NPPs) as they move beyond their initial 40 year licenses. The goal of this research is to provide information so that NPPs can develop aging management programs (AMPs) to address replacement and monitoring needs as they look to operate for 20 years, and in some cases 40 years, beyond their initial operating lifetimes. For cable insulation and jacket materials thatmore » support instrument, control, and safety systems, accelerated aging data are needed to determine priorities in cable aging management programs. Before accelerated thermal and radiation aging of harvested, representative cable insulation and jacket materials, the benchmark performance of a new test capability at Oak Ridge National Laboratory (ORNL) was evaluated for temperatures between 70 and 135°C, dose rates between 100 and 500 Gy/h, and accumulated doses up to 20 kGy, Samples that were characterized and are representative of current materials in use were harvested from the Callaway NPP near Fulton, Missouri, and the San Onofre NPP north of San Diego, California. From the Callaway NPP, a multiconductor control rod cable manufactured by Boston Insulated Wire (BIW), with a Hypalon/ chorolosulfonated polyethylene (CSPE) jacket and ethylene-propylene rubber (EPR) insulation, was harvested from the auxiliary space during a planned outage in 2013. This cable was placed into service when the plant was started in 1984. From the San Onofre NPP, a Rockbestos Firewall III (FRIII) cable with a Hypalon/ CSPE jacket with cross-linked polyethylene (XLPE) insulation was harvested from an on-site, climate-controlled storage area. This conductor, which was never placed into service, was procured around 2007 in anticipation of future operation that did not

  18. The Improvement of Utilization Ratio of Metal Organic Sources for the Low Cost Preparation of MOCVD-synthesized YBCO Films based on a Self-heating Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Ruipeng; Liu, Qing; Xia, Yudong; Tao, Bowan; Li, Yanrong

    2017-12-01

    We have successfully applied metal organic chemical vapor deposition (MOCVD) to synthesize biaxially textured YBa2Cu3O7-δ (YBCO) superconducting films on the templates of LaMnO3/epitaxial MgO/IBAD-MgO/solution deposition planarization (SDP) Y2O3/Hastelloy tape. The YBCO films have obtained dense and smooth surface with good structure and performance. A new self-heating method, which replaced the conventional heating-wire radiation heating method, has been used to heat the Hastelloy metal tapes by us. Compared with the heating-wire radiation heating method, the self-heating method shows higher energy efficiency and lower power consumption, which has good advantage to simplify the structure of the MOCVD system. Meanwhile, the utilization ratio of metal organic sources can be increased from 6% to 20% through adopting the new self-heating method. Then the preparation cost of the YBCO films can be also greatly reduced.

  19. 47 CFR 76.611 - Cable television basic signal leakage performance criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... average power level of the strongest cable television carrier on the system. (c) In paragraph (a)(1) and... 47 Telecommunication 4 2014-10-01 2014-10-01 false Cable television basic signal leakage...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.611 Cable...

  20. 47 CFR 76.611 - Cable television basic signal leakage performance criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... average power level of the strongest cable television carrier on the system. (c) In paragraph (a)(1) and... 47 Telecommunication 4 2013-10-01 2013-10-01 false Cable television basic signal leakage...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.611 Cable...

  1. 47 CFR 76.611 - Cable television basic signal leakage performance criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... average power level of the strongest cable television carrier on the system. (c) In paragraph (a)(1) and... 47 Telecommunication 4 2012-10-01 2012-10-01 false Cable television basic signal leakage...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.611 Cable...

  2. State of the Art Assessment of NDE Techniques for Aging Cable Management in Nuclear Power Plants FY2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Dib, Gerges

    2015-09-08

    This milestone report presents an update on the state-of-the-art review and research being conducted to identify key indicators of in-containment cable aging at nuclear power plants (NPPs), and devise in-situ measurement techniques that are sensitive to these key indicators. The motivation for this study stems from the need to address open questions related to nondestructive evaluation (NDE) of aging cables for degradation detection and estimation of condition-based remaining service life. These questions arise within the context of a second round of license extension for NPPs that would extend the operating license to 60 and 80 years. Within the introduction, amore » review of recently published U.S. and international research and guidance for cable aging management programs including NDE technologies is provided. As with any “state-of-the-art” report, the observations are deemed accurate as of the publication date but cannot anticipate evolution of the technology. Moreover, readers are advised that research and development of cable NDE technology is an ongoing issue of global concern.« less

  3. Integrated head package cable carrier for a nuclear power plant

    DOEpatents

    Meuschke, Robert E.; Trombola, Daniel M.

    1995-01-01

    A cabling arrangement is provided for a nuclear reactor located within a containment. Structure inside the containment is characterized by a wall having a near side surrounding the reactor vessel defining a cavity, an operating deck outside the cavity, a sub-space below the deck and on a far side of the wall spaced from the near side, and an operating area above the deck. The arrangement includes a movable frame supporting a plurality of cables extending through the frame, each connectable at a first end to a head package on the reactor vessel and each having a second end located in the sub-space. The frame is movable, with the cables, between a first position during normal operation of the reactor when the cables are connected to the head package, located outside the sub-space proximate the head package, and a second position during refueling when the cables are disconnected from the head package, located in the sub-space. In a preferred embodiment, the frame straddles the top of the wall in a substantially horizontal orientation in the first position, pivots about an end distal from the head package to a substantially vertically oriented intermediate position, and is guided, while remaining about vertically oriented, along a track in the sub-space to the second position.

  4. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable and wiring. 129.340 Section 129.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than...

  5. 30 CFR 57.22311 - Electrical cables (II-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22311 Electrical cables (II-A mines). Only jacketed electrical cables accepted or approved by MSHA as flame resistant shall be used to supply power to... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical cables (II-A mines). 57.22311...

  6. 30 CFR 57.22311 - Electrical cables (II-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22311 Electrical cables (II-A mines). Only jacketed electrical cables accepted or approved by MSHA as flame resistant shall be used to supply power to... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical cables (II-A mines). 57.22311...

  7. 30 CFR 57.22311 - Electrical cables (II-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22311 Electrical cables (II-A mines). Only jacketed electrical cables accepted or approved by MSHA as flame resistant shall be used to supply power to... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical cables (II-A mines). 57.22311...

  8. 30 CFR 57.22311 - Electrical cables (II-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22311 Electrical cables (II-A mines). Only jacketed electrical cables accepted or approved by MSHA as flame resistant shall be used to supply power to... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical cables (II-A mines). 57.22311...

  9. 30 CFR 57.22311 - Electrical cables (II-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22311 Electrical cables (II-A mines). Only jacketed electrical cables accepted or approved by MSHA as flame resistant shall be used to supply power to... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical cables (II-A mines). 57.22311...

  10. Observation of Sinusoidal Voltage Behaviour in Silver Doped YBCO

    NASA Astrophysics Data System (ADS)

    Altinkok, Atilgan; Olutas, Murat; Kilic, Kivilcim; Kilic, Atilla

    The influence of bi-directional square wave (BSW) current was investigated on the evolution of the V - t curves at different periods (P) , temperatures and external magnetic fields. It was observed that slow transport relaxation measurements result in regular sinusoidal voltage oscillations which were discussed mainly in terms of the dynamic competition between pinning and depinning.The symmetry in the voltage oscillations was attributed to the elastic coupling between the flux lines and the pinning centers along grain boundaries and partly inside the grains. This case was also correlated to the equality between flux entry and exit along the YBCO/Ag sample during regular oscillations. It was shown that the voltage oscillations can be described well by an empirical expression V (t) sin(wt + φ) . We found that the phase angle φgenerally takes different values for the repetitive oscillations. Fast Fourier Transform analysis of the V - t oscillations showed that the oscillation period is comparable to that (PI) of the BSW current. This finding suggests a physical mechanism associated with charge density waves (CDWs), and, indeed, the weakly pinned flux line system in YBCO/Ag resembles the general behavior of CDWs. At certain values of PI, amplitude of BSW current, H and T, the YBCO/Ag sample behaves like a double-integrator, since it converts the BSW current to sinusoidal voltage oscillations in time.

  11. Assessment of 69 kV Underground Cable Thermal Ratings using Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Stowers, Travis

    Underground transmission cables in power systems are less likely to experience electrical faults, however, resulting outage times are much greater in the event that a failure does occur. Unlike overhead lines, underground cables are not self-healing from flashover events. The faulted section must be located and repaired before the line can be put back into service. Since this will often require excavation of the underground duct bank, the procedure to repair the faulted section is both costly and time consuming. These added complications are the prime motivators for developing accurate and reliable ratings for underground cable circuits. This work will review the methods by which power ratings, or ampacity, for underground cables are determined and then evaluate those ratings by making comparison with measured data taken from an underground 69 kV cable, which is part of the Salt River Project (SRP) power subtransmission system. The process of acquiring, installing, and commissioning the temperature monitoring system is covered in detail as well. The collected data are also used to evaluate typical assumptions made when determining underground cable ratings such as cable hot-spot location and ambient temperatures. Analysis results show that the commonly made assumption that the deepest portion of an underground power cable installation will be the hot-spot location does not always hold true. It is shown that distributed cable temperature measurements can be used to locate the proper line segment to be used for cable ampacity calculations.

  12. Pulsed laser deposition of YBCO films on ISD MgO buffered metal tapes

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Markowitz, A. R.; Erck, R. A.; Baurceanu, R.; Dorris, S. E.; Miller, D. J.; Balachandran, U.

    2003-04-01

    Biaxially textured magnesium oxide (MgO) films deposited by inclined-substrate deposition (ISD) are desirable for rapid production of high-quality template layers for YBCO-coated conductors. High-quality YBCO films were grown on ISD MgO buffered metallic substrates by pulsed laser deposition (PLD). Columnar grains with a roof-tile surface structure were observed in the ISD MgO films. X-ray pole figure analysis revealed that the (002) planes of the ISD MgO films are tilted at an angle from the substrate normal. A small full-width at half maximum (FWHM) of approx9° was observed in the phi-scan for ISD MgO films deposited at an inclination angle of 55°. In-plane texture in the ISD MgO films developed in the first approx0.5 mum from the substrate surface, and then stabilized with further increases in film thickness. Yttria-stabilized zirconia and ceria buffer layers were deposited on the ISD MgO grown on metallic substrates prior to the deposition of YBCO by PLD. YBCO films with the c-axis parallel to the substrate normal have a unique orientation relationship with the ISD MgO films. An orientation relationship of YBCOlangle100rangleparallelMgOlangle111rangle and YBCOlangle010rangleparallelMgOlangle110rangle was measured by x-ray pole figure analyses and confirmed by transmission electron microscopy. A Tc of 91 K with a sharp transition and transport Jc of 5.5 × 105 A cm-2 at 77 K in self-field were measured on a YBCO film that was 0.46 mum thick, 4 mm wide and 10 mm long.

  13. Corrosion study on high power feeding of telecomunication copper cable in 5 wt.% CaSO4.2H2O solution

    NASA Astrophysics Data System (ADS)

    Shamsudin, Shaiful Rizam; Hashim, Nabihah; Ibrahim, Mohd Saiful Bahri; Rahman, Muhammad Sayuzi Abdul; Idrus, Muhammad Amin; Hassan, Mohd Rezadzudin; Abdullah, Wan Razli Wan

    2016-07-01

    The studies were carried out to find out the best powering scheme over the copper telephone line. It was expected that the application of the higher power feeding could increase the data transfer and capable of providing the customer's satisfaction. To realize the application of higher remote power feeding, the potential of corrosion problem on Cu cables was studied. The natural corrosion behaviour of copper cable in the 0.5% CaSO4.2H2O solution was studied in term of open circuit potential for 30 days. The corrosion behaviour of higher power feeding was studied by the immersion and the planned interval test to determine the corrosion rate as well as the effect of voltage magnitudes and the current scheme i.e. positive direct (DC+) and alternating current (AC) at about 0.40 ± 0.01 mA/ cm2 current density. In the immersion test, both DC+ and AC scheme showed the increasing of feeding voltage magnitude has increased the corrosion rate of Cu samples starting from 60 to 100 volts. It was then reduced at about 100 - 120 volts which may due to the passive and transpassive mechanism. The corrosion rate was slowly reduced further from 120 to 200 volts. Visually, the positively charged of Cu cable was seems susceptible to severe corrosion, while AC scheme exhibited a slight corrosion reaction on the surface. However, the planned interval test and XRD results showed the corrosion activity of the copper cable in the studied solution was a relatively slow process and considered not to be corroded as a partially protective scale of copper oxide formed on the surface.

  14. Noise performance of magneto-inductive cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiltshire, M. C. K., E-mail: michael.wiltshire@imperial.ac.uk; Syms, R. R. A.

    2014-07-21

    Magneto-inductive (MI) waveguides are metamaterial structures based on periodic arrangements of inductively coupled resonant magnetic elements. They are of interest for power transfer, communications and sensing, and can be realised in a flexible cable format. Signal-to-noise ratio is extremely important in applications involving signals. Here, we present the first experimental measurements of the noise performance of metamaterial cables. We focus on an application involving radiofrequency signal transmission in internal magnetic resonance imaging (MRI), where the subdivision of the metamaterial cable provides intrinsic patient safety. We consider MI cables suitable for use at 300 MHz during {sup 1}H MRI at 7more » T, and find noise figures of 2.3–2.8 dB/m, together with losses of 3.0–3.9 dB/m, in good agreement with model calculations. These values are high compared to conventional cables, but become acceptable when (as here) the environment precludes the use of continuous conductors. To understand this behaviour, we present arguments for the fundamental performance limitations of these cables.« less

  15. A wireless smart sensor network for automated monitoring of cable tension

    NASA Astrophysics Data System (ADS)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  16. Electrical cable utilization for wave energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bull, Diana; Baca, Michael; Schenkman, Benjamin

    Here, this paper investigates the suitability of sizing the electrical export cable based on the rating of the contributing WECs within a farm. These investigations have produced a new methodology to evaluate the probabilities associated with peak power values on an annual basis. It has been shown that the peaks in pneumatic power production will follow an exponential probability function for a linear model. A methodology to combine all the individual probability functions into an annual view has been demonstrated on pneumatic power production by a Backward Bent Duct Buoy (BBDB). These investigations have also resulted in a highly simplifiedmore » and perfunctory model of installed cable cost as a function of voltage and conductor cross-section. This work solidifies the need to determine electrical export cable rating based on expected energy delivery as opposed to device rating as small decreases in energy delivery can result in cost savings.« less

  17. Electrical cable utilization for wave energy converters

    DOE PAGES

    Bull, Diana; Baca, Michael; Schenkman, Benjamin

    2018-04-27

    Here, this paper investigates the suitability of sizing the electrical export cable based on the rating of the contributing WECs within a farm. These investigations have produced a new methodology to evaluate the probabilities associated with peak power values on an annual basis. It has been shown that the peaks in pneumatic power production will follow an exponential probability function for a linear model. A methodology to combine all the individual probability functions into an annual view has been demonstrated on pneumatic power production by a Backward Bent Duct Buoy (BBDB). These investigations have also resulted in a highly simplifiedmore » and perfunctory model of installed cable cost as a function of voltage and conductor cross-section. This work solidifies the need to determine electrical export cable rating based on expected energy delivery as opposed to device rating as small decreases in energy delivery can result in cost savings.« less

  18. 30 CFR 75.601 - Short circuit protection of trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to disconnect power from trailing cables shall be plainly marked and identified and such devices... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Short circuit protection of trailing cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.601 Short...

  19. 30 CFR 75.601 - Short circuit protection of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to disconnect power from trailing cables shall be plainly marked and identified and such devices... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Short circuit protection of trailing cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.601 Short...

  20. 30 CFR 75.601 - Short circuit protection of trailing cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to disconnect power from trailing cables shall be plainly marked and identified and such devices... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Short circuit protection of trailing cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.601 Short...

  1. 30 CFR 75.601 - Short circuit protection of trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to disconnect power from trailing cables shall be plainly marked and identified and such devices... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Short circuit protection of trailing cables. 75... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.601 Short...

  2. Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam

    2012-01-01

    A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.

  3. A comparison between the ANSI/IEEE and the CENELEC/IEC approach to overload protection of insulated power cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parise, G.; Rubino, G.

    1995-12-31

    The same basic principles, on which the methods of power cables protection against overloads are based, are summed up by different criteria and formulations within ANSI/IEEE and CENELEC/IEC publications. The studies carried out by the technical committees of these organizations have been examined and compared in order to point out not only their differences but also their complementary aspects. By arranging the two approaches, it has been possible to outline a third way to determine the admissible duration of overload currents and define intermediate criteria for the emergency ratings of cables and for the coordination of protective devices.

  4. Transport performance of a HTS current lead prepared by the TFA-MOD processed YBCO tapes

    NASA Astrophysics Data System (ADS)

    Shiohara, K.; Sakai, S.; Ohki, S.; Yamada, Y.; Tachikawa, K.; Koizumi, T.; Aoki, Y.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.

    2009-10-01

    A superconducting current lead has been prepared using 12 tapes of the trifluoroacetates - metal organic deposition (TFA-MOD) processed Y 1Ba 2Cu 3O 7-δ (YBCO) coated conductors with critical current ( I c) of about 100 A at 77 K in self-field. The tapes are 4.5 mm in width, 220 mm in length and about 120 μm in overall thickness. The 1 μm thick superconducting YBCO layer was formed through the TFA-MOD process on Hastelloy TM substrate tapes with two buffer oxide layers of Gd 2Zr 2O 7 (GZO) and CeO 2. The 12 YBCO tapes were arrayed on the both sides (six tapes on each side) of a stainless steel board with 3 mm in thickness for a board type shape. They were similarly soldered to copper caps at the both ends. The transport current of 1000 A was stably applied for 10 min in the liquid nitrogen temperature without any voltage generation in all tapes. Although some voltage in some YBCO tapes generated at the applied currents of about 1100 A, the transport current of 1200 A was successfully applied without quenching. The voltage between both copper caps linearly increased with increasing the transport current, and it was about 300 μV at an applied current of 1000 A. A low joint resistance between the YBCO tapes and the copper caps resulted in small amounts of the Joule heating at the joints when 1000 A was applied. The overall (effective) thermal conductivity of the current leads composed of YBCO tapes and the stainless steel board was much lower than that of Non-superconducting current leads. Therefore, the present current leads with small heat leakage seemed to be practically promising for superconducting magnets.

  5. Cabling design of booster and storage ring construction progress of TPS

    NASA Astrophysics Data System (ADS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, b.-S.

    2017-06-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  6. Designing and Implementation a Lab Testing Method for Power Cables Insulation Resistance According with STAS 10411-89, SR EN ISO/CEI/17025/2005

    NASA Astrophysics Data System (ADS)

    Dobra, R.; Pasculescu, D.; Marc, G.; Risteiu, M.; Antonov, A.

    2017-06-01

    Insulation resistance measurement is one of the most important tests required by standards and regulations in terms of electrical safety. Why these tests are is to prevent possible accidents caused by electric shock, damage to equipment or outbreak of fire in normal operating conditions of electrical cables. The insulation resistance experiment refers to the testing of electrical cable insulation, which has a measured resistance that must be below the imposed regulations. Using a microcontroller system data regarding the insulation resistance of the power cables is acquired and with SCADA software the test results are displayed.

  7. Total radiated power, infrared output, and heat generation by cold light sources at the distal end of endoscopes and fiber optic bundle of light cables.

    PubMed

    Hensman, C; Hanna, G B; Drew, T; Moseley, H; Cuschieri, A

    1998-04-01

    Skin burns and ignition of drapes have been reported with the use of cold light sources. The aim of the study was to document the temperature generated by cold light sources and to correlate this with the total radiated power and infrared output. The temperature, total radiated power, and infrared output were measured as a function of time at the end of the endoscope (which is inserted into the operative field) and the end of the fiber optic bundle of the light cable (which connects the cable to the light port of the endoscope) using halogen and xenon light sources. The highest temperature recorded at the end of the endoscope was 95 degrees C. The temperature measured at the optical fiber location of the endoscope was higher than at its lens surface (p < 0.0001). At the end of the fiber optic bundle of light cables, the temperature reached 225 degrees C within 15 s. The temperature recorded at the optical fiber location of all endoscopes and light cables studied rose significantly over a period of 10 min to reach its maximum (p <0.0001) and then leveled off for the duration of the study (30 min). The infrared output accounted only for 10% of the total radiated power. High temperatures are reached by 10 min at the end of fiber optic bundle of light cables and endoscopes with both halogen and xenon light sources. This heat generation is largely due to the radiated power in the visible light spectrum.

  8. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... midpoint of the splice. The specimen shall be free from external air currents during testing. (5) Adjust... persistence of yellow coloration. (6) Connect all power conductors of the test specimen to the current source. The connections shall be secure and compatible with the size of the cable's power conductors in order...

  9. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... midpoint of the splice. The specimen shall be free from external air currents during testing. (5) Adjust... persistence of yellow coloration. (6) Connect all power conductors of the test specimen to the current source. The connections shall be secure and compatible with the size of the cable's power conductors in order...

  10. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  11. Sixty-four-Channel Inline Cable Tester

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Faults in wiring are a serious concern for the aerospace and aeronautics (commercial, military, and civil) industries. A number of accidents have occurred because faulty wiring created shorts or opens that resulted in the loss of control of the aircraft or because arcing led to fires and explosions. Some of these accidents have resulted in the massive loss of lives (such as in the TWA Flight 800 accident). Circuits on the Space Shuttle have also failed because of faulty insulation on wiring. STS-93 lost power when a primary power circuit in one engine failed and a second engine had a backup power circuit fault. Cables are usually tested on the ground after the crew reports a fault encountered during flight. Often such failures result from vibration and cannot be replicated while the aircraft is stationary. It is therefore important to monitor faults while the aircraft is in operation, when cables are more likely to fail. Work is in progress to develop a cable fault tester capable of monitoring up to 64 individual wires simultaneously. Faults can be monitored either inline or offline. In the inline mode of operation, the monitoring is performed without disturbing the normal operation of the wires under test. That is, the operations are performed unintrusively and are essentially undetectable for the test signal levels are below the noise floor. A cable can be monitored several times per second in the offline mode and once a second in the inline mode. The 64-channel inline cable tester not only detects the occurrence of a fault, but also determines the type of fault (short/open) and the location of the fault. This will enable the detection of intermittent faults that can be repaired before they become serious problems.

  12. Rotatable electric cable connecting system

    NASA Technical Reports Server (NTRS)

    Manges, D. R. (Inventor)

    1985-01-01

    A cable reel assembly is described which is particularly adapted for, but not limited to, a system for providing electrical connection of power and data signals between an orbiter vehicle, such as a space shuttle, and a recovered satellite. The assembly is comprised of two mutually opposing ring type structures having 180 deg relative rotation with one of the structures being held in fixed position while the other structure is rotatable. Motor controlled berthing latches and umbilical cable connectors for the satellite are located on the rim of the rotatable ring structure. The electrical cable assembly is fed in two sections from the orbiter vehicle into the outer rim portion of the fixed ring structure where they are directed inwardly and attached to two concentrically coiled metal bands whose respective ends are secured to inner and outer post members of circular sets of guide pins located on opposing circular plate members, one rotatable and one fixed. The cable sections are fed out as three output cable sections through openings in the central portion of the circular plate of the rotatable ring structure where they are directed to the latches and connectors located on its rim.

  13. Dose-rate effects on the radiation-induced oxidation of electric cable used in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Reynolds, A. B.; Bell, R. M.; Bryson, N. M. N.; Doyle, T. E.; Hall, M. B.; Mason, L. R.; Quintric, L.; Terwilliger, P. L.

    1995-01-01

    Dose-rate effects were measured for typical ethylene propylene rubber (EPR) and crosslinked polyethylene (XLPE) electric cable used in nuclear power plants. The radiation source was the 60Co Irradiation Facility at the University of Virginia. Dose rates were varied from 5 Gy/h to 2500 Gy/h. It was found that there is little or no dose-rate effect at low doses for four of the five EPR cable products tested from 2500 Gy/h down to dose rates of 5 Gy/h but perhaps a small dose-rate effect at high doses for dose rates above 340 Gy/h. A small dose-rate exists for the fifth EPR above 340 Gy/h at all doses. A dose-rate effect exists above 40 Gy/h for two of the three XLPE cable products tested, but there is no dose-rate for these XLPE's between 40 Gy/h and 5 Gy/h. These results indicate that the dose-rate effects observed are due to oxygen diffusion effects during heterogeneous aging and suggest that there is no dose-rate effect for either EPR or XLPE during homogeneous aging.

  14. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  15. High-stability 48-core bendable and movable optical cable for FAST telescope optical transmission system

    NASA Astrophysics Data System (ADS)

    Liu, Hongfei; Pan, Gaofeng; Lin, Zhong; Liu, Cheng; Zhu, Wenbai; Nan, Rendong; Li, Chunsheng; Gao, Guanjun; Luo, Wenyong; Jin, Chengjin; Song, Jinyou

    2017-11-01

    The construction of FAST telescope was completed in Guizhou province of China in September 2016, and a kind of novel high-stability 48-core bendable and movable optical cable was developed and applied in analog data optical transmission system of FAST. Novel structure and selective material of this optical cable ensure high stability of optical power in the process of cables round-trip motion when telescope is tracking a radio source. The 105 times bend and stretch accelerated experiment for this optical cable was implemented, and real-time optical and RF signal power fluctuation were measured. The physical structure of optical cables after 105 times round-trip motion is in good condition; the real-time optical power attenuation fluctuation is smaller than 0.044 dB; the real-time RF power fluctuation is smaller than 0.12 dB. The optical cable developed in this letter meets the requirement of FAST and has been applied in FAST telescope.

  16. Online Cable Tester and Rerouter

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Medelius, Pedro

    2012-01-01

    Hardware and algorithms have been developed to transfer electrical power and data connectivity safely, efficiently, and automatically from an identified damaged/defective wire in a cable to an alternate wire path. The combination of online cable testing capabilities, along with intelligent signal rerouting algorithms, allows the user to overcome the inherent difficulty of maintaining system integrity and configuration control, while autonomously rerouting signals and functions without introducing new failure modes. The incorporation of this capability will increase the reliability of systems by ensuring system availability during operations.

  17. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineeringmore » Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).« less

  18. Modeling vibration response and damping of cables and cabled structures

    NASA Astrophysics Data System (ADS)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  19. External heating of electrical cables and auto-ignition investigation.

    PubMed

    Courty, L; Garo, J P

    2017-01-05

    Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    NASA Astrophysics Data System (ADS)

    Baranov, M. I.; Rudakov, S. V.

    2018-03-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  1. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    NASA Astrophysics Data System (ADS)

    Baranov, M. I.; Rudakov, S. V.

    2018-05-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  2. Detection of incipient defects in cables by partial discharge signal analysis

    NASA Astrophysics Data System (ADS)

    Martzloff, F. D.; Simmon, E.; Steiner, J. P.; Vanbrunt, R. J.

    1992-07-01

    As one of the objectives of a program aimed at assessing test methods for in-situ detection of incipient defects in cables due to aging, a laboratory test system was implemented to demonstrate that the partial discharge analysis method can be successfully applied to low-voltage cables. Previous investigations generally involved cables rated 5 kV or higher, while the objective of the program focused on the lower voltages associated with the safety systems of nuclear power plants. The defect detection system implemented for the project was based on commercially available signal analysis hardware and software packages, customized for the specific purposes of the project. The test specimens included several cables of the type found in nuclear power plants, including artificial defects introduced at various points of the cable. The results indicate that indeed, partial discharge analysis is capable of detecting incipient defects in low-voltage cables. There are, however, some limitations of technical and non-technical nature that need further exploration before this method can be accepted in the industry.

  3. MS Grunsfeld during cable IFM

    NASA Image and Video Library

    1997-02-24

    STS081-360-003 (12-22 Jan. 1997) --- Astronaut John M. Grunsfeld performs an inflight maintenance (IFM) task to re-activate power cables connected to experiments in the Spacehab Double Module (DM), onboard the Space Shuttle Atlantis.

  4. Thermal and vibration testing of ruggedized IR-transmitting fiber cables

    NASA Astrophysics Data System (ADS)

    Busse, Lynda; Kung, Fred; Florea, Catalin; Shaw, Brandon; Aggarwal, Ishwar; Sanghera, Jas

    2013-05-01

    We present successful results obtained for thermal/ vibration testing of ruggedized, IR-transmitting chalcogenide glass fiber cables using a government facility with state-of-the-art equipment capable of MIL-SPEC environmental testing. We will also present results of a direct imprinting process to create novel "moth eye" patterned surfaces on the IR fiber cable ends that significantly reduces endface reflection losses from 17% to less than 3%. The cables with these imprinted "moth eye" ends transmit much higher IR laser power without damage than was obtained for previous cables with traditional AR coatings.

  5. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner and...

  6. The manufacture of flat conductor cable

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1974-01-01

    The major techniques are described for fabricating flat conductor cable (FCC). Various types of FCC, including unshielded, shielded, power, and signal, in both existing and conceptual constructions, are covered.

  7. Simultaneous Thermal and Gamma Radiation Aging of Electrical Cable Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.

    The polymers used for insulation in nuclear power plant electrical cables are susceptible to aging during long term operation. Elevated temperature is the primary contributor to changes in polymer structure that result loss of mechanical and electrical properties, but gamma radiation is also a significant source of degradation for polymers used within relevant plant locations. Despite many years of polymer degradation research, the combined effects of simultaneous exposure to thermal and radiation stress are not well understood. As nuclear operators contemplate and prepare for extended operations beyond initial license periods, a predictive understanding of exposure-based cable material degradation is becomingmore » an increasingly important input to safety, licensing, operations and economic decisions. We are focusing on carefully-controlled simultaneous thermal and gamma radiation accelerating aging and characterization of the most common nuclear cable polymers to understand the relative contributions of temperature, time, dose and dose rate to changes in cable polymer material structure and properties. Improved understanding of cable performance in long term operation will help support continued sustainable nuclear power generation.« less

  8. An Insight on Right of Way and its Cost for Power Transmission Cable and Conventional Overhead Transmission Lines

    NASA Astrophysics Data System (ADS)

    Khandelwal, P.; Pachori, A.; Khandelwal, T.

    2013-12-01

    This paper provides the complete information related to Right of Way (RoW) for the construction of new power transmission line (TL) in terms of present cost for overhead transmission line and underground XLPE transmission cable. The former part of the paper describes the general procedure and rules for acquisition of land for RoW by transmission asset owner (TAO) while in the later part the cost associated to acquire RoW and its impact on the cost of adjacent land have been detailed. It also discusses the actual dismantling cost including the cost of waste metal what TAO get after completion of lifecycle of TL due to increase in metal prices. In this paper cost of RoW after completion of lifecycle of TL is also highlighted. This paper compares the cost of RoW for overhead transmission line and underground XLPE transmission cable for construction of new TL. Also for old transmission infrastructure cost of RoW for change from overhead transmission line to underground XLPE transmission cable is detailed by application of replacement model.

  9. Comparison of cable ageing

    NASA Astrophysics Data System (ADS)

    Plaček, Vít; Kohout, Tomáš

    2010-03-01

    Two cable types, which currently are used in nuclear power plants (NPP) and which are composed by jacket/insulation materials, i.e. PVC/PVC and PVC/PE, were exposed to accelerated ageing conditions, in order to simulate their behavior after 10 years in service. The cables were aged under two different test conditions: With relatively high accelerating ageing speed:Radiation ageing was carried out at room temperature at a dose rate of 2900 Gy/h, followed by thermal ageing at 100 °C. This accelerated ageing condition was fairly fast, but still in compliance with the standards. With moderate ageing speed:The radiation and thermal ageing was performed simultaneously (superimposed) at a dose rate of 2.7-3.7Gy/h and a temperature of 68-70 °C. Such a test condition seems to be very close to the radiation and temperature impact onto the cables in the real NPP service. Finally, mechanical properties were measured to characterize the ageing status of the cables. The purpose of this study was to compare degradation effects, derived from both ageing methods, and to demonstrate that results obtained from high values of accelerating parameters and from fast ageing simulation can be very different from reality. The observed results corroborated this assumption.

  10. Install of Cygnus controller cable

    NASA Image and Video Library

    2014-07-15

    ISS040-E-063760 (15 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, works with power and data cables in the vestibule between the Destiny laboratory and Unity node of the International Space Station.

  11. In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.

    1990-01-01

    Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  12. Analysis of YBCO high temperature superconductor doped with silver nanoparticles and carbon nanotubes using Williamson-Hall and size-strain plot

    NASA Astrophysics Data System (ADS)

    Dadras, Sedigheh; Davoudiniya, Masoumeh

    2018-05-01

    This paper sets out to investigate and compare the effects of Ag nanoparticles and carbon nanotubes (CNTs) doping on the mechanical properties of Y1Ba2Cu3O7-δ (YBCO) high temperature superconductor. For this purpose, the pure and doped YBCO samples were synthesized by sol-gel method. The microstructural analysis of the samples is performed using X-ray diffraction (XRD). The crystalline size, lattice strain and stress of the pure and doped YBCO samples were estimated by modified forms of Williamson-Hall analysis (W-H), namely, uniform deformation model (UDM), uniform deformation stress model (UDSM) and the size-strain plot method (SSP). These results show that the crystalline size, lattice strain and stress of the YBCO samples declined by Ag nanoparticles and CNTs doping.

  13. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22310 Electrical cables (I-C mines). Electrical cables used to power submersible sump pumps shall be accepted or approved by MSHA as flame... be sealed to prevent entry of explosive gas or dust. [57 FR 61223, Dec. 23, 1992] ...

  14. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22310 Electrical cables (I-C mines). Electrical cables used to power submersible sump pumps shall be accepted or approved by MSHA as flame... be sealed to prevent entry of explosive gas or dust. [57 FR 61223, Dec. 23, 1992] ...

  15. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22310 Electrical cables (I-C mines). Electrical cables used to power submersible sump pumps shall be accepted or approved by MSHA as flame... be sealed to prevent entry of explosive gas or dust. [57 FR 61223, Dec. 23, 1992] ...

  16. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22310 Electrical cables (I-C mines). Electrical cables used to power submersible sump pumps shall be accepted or approved by MSHA as flame... be sealed to prevent entry of explosive gas or dust. [57 FR 61223, Dec. 23, 1992] ...

  17. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22310 Electrical cables (I-C mines). Electrical cables used to power submersible sump pumps shall be accepted or approved by MSHA as flame... be sealed to prevent entry of explosive gas or dust. [57 FR 61223, Dec. 23, 1992] ...

  18. Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola

    Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.

  19. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability

    PubMed Central

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463

  20. Coaxial cable stripping device facilitates RF cabling fabrication

    NASA Technical Reports Server (NTRS)

    Hughes, R. S.; Tobias, R. A.

    1967-01-01

    Coaxial cable stripping device assures clean, right angled shoulder for RF cable connector fabrication. This method requires minimal skill and creates a low voltage standing wave ratio and mechanical stability in the interconnecting RF Cables.

  1. Integrated cable vibration control system using wireless sensors

    NASA Astrophysics Data System (ADS)

    Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han

    2017-04-01

    As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.

  2. The estimation of electrical cable fire-induced damage limits

    NASA Astrophysics Data System (ADS)

    Nowlen, S. P.; Jacobus, M. J.

    Sandia National Laboratories has, for several years, been engaged in the performance of both fire safety and electrical equipment qualification research under independent programs sponsored by the US Nuclear Regulatory Commission. Recent comparisons between electrical cable thermal damageability data gathered independently in these two efforts indicate that a direct correlation exists between certain of the recent cable thermal vulnerability information gathered under equipment qualification conditions and thermal damageability in a fire environment. This direct correlation allows for a significant expansion of the data base on estimated cable thermal vulnerability limits in a fire environment because of the wide range of cable types and products that have been evaluated as a part of the equipment qualification research. This paper provides a discussion of the basis for the derived correlation, and presents estimated cable thermal damage limits for a wide range of generic cable types and specific cable products. The supposition that a direct correlation exists is supported through direct comparisons of the test results for certain specific cable products. The proposed supplemental cable fire vulnerability data gained from examination of the equipment qualification results is presented. These results should be of particular interest to those engaged in the evaluation of fire risk for industrial facilities, including nuclear power plants.

  3. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...

  4. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...

  5. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...

  6. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    NASA Astrophysics Data System (ADS)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  7. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  8. Influence of artificial pinning centers on structural and superconducting properties of thick YBCO films on ABAD-YSZ templates

    NASA Astrophysics Data System (ADS)

    Pahlke, Patrick; Sieger, Max; Ottolinger, Rick; Lao, Mayraluna; Eisterer, Michael; Meledin, Alexander; Van Tendeloo, Gustaaf; Hänisch, Jens; Holzapfel, Bernhard; Schultz, Ludwig; Nielsch, Kornelius; Hühne, Ruben

    2018-04-01

    Recent efforts in the development of YBa2Cu3O7-x (YBCO) coated conductors are devoted to the increase of the critical current I c in magnetic fields. This is typically realized by growing thicker YBCO layers as well as by the incorporation of artificial pinning centers. We studied the growth of doped YBCO layers with a thickness of up to 7 μm using pulsed laser deposition with a growth rate of about 1.2 nm s-1. Industrially fabricated ion-beam textured YSZ templates based on metal tapes were used as substrates for this study. The incorporation of BaHfO3 (BHO) or Ba2Y(Nb0.5Ta0.5)O6 (BYNTO) secondary phase additions leads to a denser microstructure compared to undoped films. A purely c-axis-oriented YBCO growth is preserved up to a thickness of about 4 μm, whereas misoriented texture components were observed in thicker films. The critical temperature is slightly reduced compared to undoped films and independent of film thickness. The critical current density J c of the BHO- and BYNTO-doped YBCO layers is lower at 77 K and self-field compared to pure YBCO layers; however, I c increases up to a thickness of 5 μm. A comparison between films with a thickness of 1.3 μm revealed that the anisotropy of the critical current density J c(θ) strongly depends on the incorporated pinning centers. Whereas BHO nanorods lead to a strong B∣∣c-axis peak, the overall anisotropy is significantly reduced by the incorporation of BYNTO forming a mixture of short c-axis-oriented nanorods and small (a-b)-oriented platelets. As a result, the J c values of the doped films outperform the undoped samples at higher fields and lower temperatures for most magnetic field directions.

  9. The creation of high-temperature superconducting cables of megawatt range in Russia

    NASA Astrophysics Data System (ADS)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  10. Power inverter with optical isolation

    DOEpatents

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  11. Crystal River 3 Cable Materials for Thermal and Gamma Radiation Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Correa, Miguel; Zwoster, Andy

    The Expanded Materials Degradation Assessment Volume 5: Aging of Cables and Cable Systems (EMDA) summarizes the state of knowledge of materials, constructions, operating environments, and aging behavior of low voltage and medium cables in nuclear power plants (NPPs) and identifies potential knowledge gaps with regard to cable operation beyond 60 years. The greatest area of uncertainty relates to how well the accelerated aging used in the original equipment qualification (EQ) processes predicts the performance of cable materials in extended operation. General opinion and utility experience have indicated that actual operating environments of in-plant cables are not as severe, however, asmore » the operating and design basis environments used in the qualification process. Better understanding of the long term aging behavior of cable insulation materials in service conditions and the analysis of actual cable operating environments are the objectives of ongoing research to support subsequent license renewal activities in particular and long term cable aging management in general. A key component of the effort to better understand cable material aging behavior is the availability of representative samples of cables that have been installed in operating light water reactors and have experienced long term service. Unique access to long term service cables, including relatively rich information on cable identity and history, occurred in 2016 through the assistance of the Electric Power Research Institute (EPRI). EPRI facilitated DOE receipt of harvested cables from the decommissioned Crystal River Unit 3 (CR3) pressurized water reactor representing six of the nine most common low voltage cable manufacturers (EPRI 103841R1): Rockbestos, Anaconda Wire and Cable Company (Anaconda), Boston Insulated Wire (BIW), Brand-Rex, Kerite and Okonite. Cable samples received had been installed in the operating plant for durations ranging from 10 years to 36 years. These cables provide

  12. Landing Marine-derived Renewable Energy: Optimising Power Cable Routing in the Nearshore Environment

    NASA Astrophysics Data System (ADS)

    Turner, Rosalind, ,, Dr.; Keane, Tom; Mullins, Brian; Phipps, Peter

    2010-05-01

    Numerous studies have demonstrated that a vast unexploited source of energy can be derived from the marine environment. Recent evolution of the energy market and looming EU renewable energy uptake targets for 2020 have driven a huge explosion of interest in exploiting this resource, triggering both governments and industry to move forward in undertaking feasibility assessments and demonstration projects for wave, tidal and offshore wind farms across coastlines. The locations which naturally lend themselves to high yield energy capture, are by definition, exposed and may be remote, located far from the end user of the electricity generated. A fundamental constraint to successfully exploiting these resources will be whether electricity generated in high energy, variable and constantly evolving environments can be brought safely and reliably to shore without the need for constant monitoring and maintenance of the subsea cables and landfall sites. In the case of riverine cable crossings superficial sediments would typically be used to trench and bury the cable. High energy coastal environments may be stripped of soft sediments. Any superficial sediments present at the site may be highly mobile and subject to re-suspension throughout the tidal cycle or under stormy conditions. EirGrid Plc. and Mott MacDonald Ireland Ltd. have been investigating the potential for routing a cable across the exposed Shannon estuary in Ireland. Information regarding the geological ground model, meteo-oceanographic and archaeological conditions of the proposed site was limited, necessitating a clear investigation strategy. The investigation included gathering site information on currents, bathymetry and geology through desk studies, hydrographic and geophysical surveys, an intrusive ground investigation and coastal erosion assessments at the landfall sites. The study identified a number of difficulties for trenching and protecting a cable through an exposed environment such as the Shannon

  13. Thermal overload characteristics of extruded dielectric cables: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dima, A.; Katz, C.; Eager, G.S. Jr.

    1988-06-01

    This report addresses characteristics of thermoset extruded dielectric power cables in the 15--35 kV class, operated under thermal overload conditions. It presents a methodical study to determine the suitability of extruded type cable for operation at elevated temperatures. The results provide utilities with knowledge on the behavior of thermoset insulated cables at temperatures in the 130 to 175/degree/C conductor temperature range. Present industry specifications recommend a maximum emergency conductor temperature of 130/degree/C. The suitability of this temperature and the time it is to be maintained had been questioned. The present report indicates that crosslinked polyethylene and ethylene propylene insulated cable,more » both new and service aged, are suitable for emergency operation during extended periods at 130/degree/C. When these cables are provided with polyvinyl chloride jackets, long term exposure to temperatures greater than 130/degree/C can adversely affect the integrity of the jacket. Investigations on new cables were performed on short samples in ovens and on long samples in simulated ducts in the laboratory and in a typical utility duct bank. Investigations on cables recovered from service were performed in the laboratory with the cables installed in simulated ducts. 10 refs., 49 figs., 73 tabs.« less

  14. Screening attenuation of coaxial cables determined in GTEM-cells

    NASA Astrophysics Data System (ADS)

    Knobloch, A.; Garbe, H.

    2004-05-01

    This paper describes the determination of the screening attenuation with a GTEM cell. An analytical part gives the link between the voltage at the cell port and the total radiated power. The next section investigates the optimal cable setup in the cell. With a measurement of the common mode current on the cable and a simulation of the radiation resistance the loop antenna characteristic of the cable setup could be verified. It is shown that the use of ferrit cores decrease the difference between the maximum and the minimum screening attenuation. The determination of great screening attenuation could be improved with the use of N-type measurement cables. A comparison between this GTEM cell method and the standard methods shows a good agreement.

  15. A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation

    PubMed Central

    Song, Shuwei; Zhao, Hong; Zheng, Xiaonan; Zhang, Hui; Wang, Ying; Han, Baozhong

    2018-01-01

    The role of a series of functionalized graphene additives in power cable insulation in suppressing the growth of electrical treeing and preventing the degradation of the polymer matrix has been investigated by density functional theory calculations. Bader charge analysis indicates that pristine, doped or defect graphene could effectively capture hot electrons to block their attack on cross-linked polyethylene (XLPE) because of the π–π conjugated unsaturated structures. Further exploration of the electronic properties in the interfacial region between the additives and XLPE shows that N-doped single-vacancy graphene, graphene oxide and B-, N-, Si- or P-doped graphene oxide have relatively strong physical interaction with XLPE to restrict its mobility and rather weak chemical activity to prevent the cleavage of the C–H or C–C bond, suggesting that they are all potential candidates as effective additives. The understanding of the features of functionalized graphene additives in trapping electrons and interfacial interaction will assist in the screening of promising additives as voltage stabilizers in power cables. PMID:29515821

  16. A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation.

    PubMed

    Song, Shuwei; Zhao, Hong; Zheng, Xiaonan; Zhang, Hui; Liu, Yang; Wang, Ying; Han, Baozhong

    2018-02-01

    The role of a series of functionalized graphene additives in power cable insulation in suppressing the growth of electrical treeing and preventing the degradation of the polymer matrix has been investigated by density functional theory calculations. Bader charge analysis indicates that pristine, doped or defect graphene could effectively capture hot electrons to block their attack on cross-linked polyethylene (XLPE) because of the π-π conjugated unsaturated structures. Further exploration of the electronic properties in the interfacial region between the additives and XLPE shows that N-doped single-vacancy graphene, graphene oxide and B-, N-, Si- or P-doped graphene oxide have relatively strong physical interaction with XLPE to restrict its mobility and rather weak chemical activity to prevent the cleavage of the C-H or C-C bond, suggesting that they are all potential candidates as effective additives. The understanding of the features of functionalized graphene additives in trapping electrons and interfacial interaction will assist in the screening of promising additives as voltage stabilizers in power cables.

  17. The creation of high-temperature superconducting cables of megawatt range in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and developmentmore » of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.« less

  18. Modeling of a 10-km optical link exploiting power-over-fiber for cabled submarine observatories

    NASA Astrophysics Data System (ADS)

    Dimitriadou, Evangelia; Ghisa, Laura; Quintard, Véronique; Guégan, Mikael; Pérennou, André

    2017-11-01

    The modeling of the simultaneous propagation of high-power and bidirectional data along the same 10-km-long single-mode fiber is discussed. The intense signal carries the energy needed to supply an instrument in the context of cabled submarine observatories. The considered mathematical description takes into account the fiber's nonlinear behavior in terms of Raman and Brillouin scattering to describe spectral propagation in the static regime. By testing our model against measurements, its validity is evaluated. Preliminary results are promising and reveal the path to follow for its improvement.

  19. Submerged Medium Voltage Cable Systems at Nuclear Power Plants. A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jason; Bernstein, Robert; White, II, Gregory Von

    In a submerged environment, power cables may experience accelerated insulation degradation due to water - related aging mechanisms . Direct contact with water or moisture intrusion in the cable insulation s ystem has been identified in the literature as a significant aging stressor that can affect performance and lifetime of electric cables . Progressive reduction of the dielectric strength is commonly a result of water treeing which involves the development of permanent hydrophilic structures in the insulation coinciding with the absorption of water into the cable . Water treeing is a phenomenon in which dendritic microvoids are formed in electricmore » cable insulation due to electrochemic al reactions , electromechanical forces , and diffusion of contaminants over time . These reactions are caused by the combined effect s of water presence and high electrical stress es in the material . Water tree growth follow s a tree - like branching pattern , i ncreasing in volume and length over time . Although these cables can be "dried out," water tree degradation , specifically the growth of hydrophilic regions, is believed to be permanent and typically worsens over time. Based on established research , water treeing or water induced damage can occur in a variety of electric cables including XLPE, TR - XLPE and other insulating materials, such as EPR and butyl rubber . Once water trees or water induced damage form, the dielectric strength of an insulation materia l will decrease gradually with time as the water trees grow in length, which could eventually result in failure of the insulating material . Under wet conditions or i n submerged environments , several environmental and operational parameters can influence w ater tree initiation and affect water tree growth . These parameters include voltage cycling, field frequency, temperature, ion concentration and chemistry, type of insula tion material , and the characteristics of its defects. In this effort, a review of

  20. Design, development, fabrication and testing of high temperature Flat Conductor Cable (FCC)

    NASA Technical Reports Server (NTRS)

    Rigling, W. S.

    1974-01-01

    The results are presented of a development program for a flat, 25-conductor signal cable and a flat, 3-conductor power cable. Flat cables employ conductors made of strips or flattened round copper conductors insulated with polyimide films. It is shown that conductor thickness ranges from 0.003 to 0.010 inch, and begins to soften and loose mechanical strength at temperatures above 200 C.

  1. Modular Seafloor and Water Column Systems for the Ocean Observatories Initiative Cabled Array

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Manalang, D.; Harrington, M.; Tilley, J.; Dosher, J.; Cram, G.; Harkins, G.; McGuire, C.; Waite, P.; McRae, E.; McGinnis, T.; Kenney, M.; Siani, C.; Michel-Hart, N.; Denny, S.; Boget, E.; Kawka, O. E.; Daly, K. L.; Luther, D. S.; Kelley, D. S.; Milcic, M.

    2016-02-01

    Over the past decade, cabled ocean observatories have become an increasingly important way to collect continuous real-time data at remote subsea locations. This has led to the development of a class of subsea systems designed and built specifically to distribute power and bandwidth among sensing instrumentation on the seafloor and throughout the water column. Such systems are typically powered by shore-based infrastructure and involve networks of fiber optic and electrical cabling that provide real-time data access and control of remotely deployed instrumentation. Several subsea node types were developed and/or adapted for cabled use in order to complete the installation of the largest North American scientific cabled observatory in Oct, 2014. The Ocean Observatories Initiative (OOI) Cabled Array, funded by the US National Science Foundation, consists of a core infrastructure that includes 900 km of fiber optic/electrical cables, seven primary nodes, 18 seafloor junction boxes, three mooring-mounted winched profiling systems, and three wire-crawling profiler systems. In aggregate, the installed infrastructure has 200 dedicated scientific instrument ports (of which 120 are currently assigned), and is capable of further expansion. The installed system has a 25-year design life for reliable, sustained monitoring; and all nodes, profilers and instrument packages are ROV-serviceable. Now in it's second year of operation, the systems that comprise the Cabled Array are providing reliable, 24/7 real-time data collection from deployed instrumentation, and offer a modular and scalable class of subsea systems for ocean observing. This presentation will provide an overview of the observatory-class subsystems of the OOI Cabled Array, focusing on the junction boxes, moorings and profilers that power and communicate with deployed instrumentation.

  2. Potential techniques for non-destructive evaluation of cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, Kenneth T.; Clough, Roger L.; Mattson, Bengt; Stenberg, Bengt; Oestman, Erik

    This paper describes the connection between mechanical degradation of common cable materials, in radiation and elevated temperature environments, and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.

  3. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  4. Apparatus including a plurality of spaced transformers for locating short circuits in cables

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J. (Inventor)

    1978-01-01

    A cable fault locator is described for sensing faults such as short circuits in power cables. The apparatus includes a plurality of current transformers strategically located along a cable. Trigger circuits are connected to each of the current transformers for placing a resistor in series with a resistive element responsive to an abnormally high current flowing through that portion of the cable. By measuring the voltage drop across the resistive element, the location of the fault can be determined.

  5. Fast infrared response of YBCO thin films

    NASA Technical Reports Server (NTRS)

    Ballentine, P. H.; Kadin, A. M.; Donaldson, W. R.; Scofield, J. H.; Bajuk, L.

    1990-01-01

    The response to short infrared pulses of some epitaxial YBCO films prepared by sputter deposition and by electron-beam evaporation is reported. The response is found to be essentially bolometric on the ns timescale, with some indirect hints of nonequilibrium electron transport on the ps scale. Fast switching could be obtained either by biasing the switch close to the critical current or by cooling the film below about 20 K. These results are encouraging for potential application to a high-current optically-triggered opening switch.

  6. Apparatus producing constant cable tension for intermittent demand

    DOEpatents

    Lauritzen, Ted

    1985-01-01

    The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement.

  7. Design and evaluation of 66 kV-class HTS power cable using REBCO wires

    NASA Astrophysics Data System (ADS)

    Ohya, M.; Yumura, H.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Ohkuma, T.

    2011-11-01

    Sumitomo Electric (SEI) has been involved in the development of 66 kV-class HTS cables using REBCO wires. One of the technical targets in this project is to reduce the AC loss to less than 2 W/m/phase at 5 kA. SEI has developed a clad-type of textured metal substrate with lower magnetization loss compared with a conventional NiW substrate. In addition, 30 mm-wide REBCO tapes were slit into 4 mm-wide strips, and these strips were wound spirally on a former with small gaps. The AC loss of a manufactured 4-layer cable conductor was 1.5 W/m at 5 kA at 64 K. Given that the AC loss in a shield layer is supposed to be one-fourth of a whole cable core loss, our cables are expected to achieve the AC loss target of less than 2 W/m/phase at 5 kA. Another important target is to manage a fault current. A cable core was designed and fabricated based on the simulation findings, and over-current tests (max. 31.5 kA, 2 s) were conducted to check its performance. The critical current value of the cable cores were measured before and after the over-current tests and verified its soundness. A 5 kA-class current lead for the cable terminations was also developed. The current loading tests were conducted for the developed current leads. The temperature distribution of the current leads reached to the steady-state within less than 12 h, and it was confirmed that the developed current lead has enough capacity of 5 kA loading.

  8. Operating experience of the southwire high-temperature superconducting cable project

    NASA Astrophysics Data System (ADS)

    Hughey, R. L.; Lindsay, D.

    2002-01-01

    Southwire Company of Carrollton, Georgia in cooperation with Oak Ridge National Laboratory has designed, built, installed and is operating the world's first field installation of a High Temperature Superconducting (HTS) cable system. The cables supply power to three Southwire manufacturing facilities and part of the corporate headquarters building in Carrollton, GA. The system consists of three 30-m single phase cables rated at 12.4 kV, 1250 Amps, liquid nitrogen cooling system, and the computer-based control system. The cables are built using BSCCO-2223 powder-in-tube HTS tapes and a proprietary cryogenic dielectric material called Cryoflex™. The cables are fully shielded with a second layer of HTS tapes to eliminate any external magnetic fields. The Southwire HTS cables were first energized on january 6, 2000. Since that time they have logged over 8,500 hours of operation while supplying 100% of the required customer load. To date, the cables have worked without failure and operations are continuing. The cable design has passed requisite testing for this class of conventional cables including 10× over current to 12,500 Amps and BIL testing to 110 kV. Southwire has also successfully designed and tested a cable splice. System heat loads and AC Losses have been measured and compared to calculated values. On June 1, 2001 on-site monitoring was ceased and the system was changed to unattended operation to further prove the reliability of the HTS cable system. .

  9. Correlation of electrical reactor cable failure with materials degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuetzer, O.M.

    1986-03-01

    Complete circuit failure (shortout) of electrical cables typically used in nuclear power plant containments is investigated. Failure modes are correlated with the mechanical deterioration of the elastomeric cable materials. It is found that for normal reactor operation, electrical cables are reliable and safe over very long periods. During high temperature excursions, however, cables pulled across corners under high stress may short out due to conductor creep. Severe cracking will occur in short times during high temperatures (>150/sup 0/C) and in times of the order of years at elevated temperatures (100/sup 0/C to 140/sup 0/C). A theoretical treatment of stress distributionmore » responsible for creep and for cracking by J.E. Reaugh of Science Applications, Inc. is contained in the Appendix. 29 refs., 32 figs.« less

  10. General approach for the determination of the magneto-angular dependence of the critical current of YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhong, Z.; Ruiz, H. S.; Geng, J.; Coombs, T. A.

    2017-02-01

    The physical understanding and numerical modelling of superconducting devices which exploit the high performance of second generation high temperature superconducting tapes (2G-HTS), is commonly hindered by the lack of accurate functions which allow the consideration of the in-field dependence of the critical current. This is true regardless of the manufacturer of the superconducting tape. In this paper, we present a general approach for determining a unified function I c(B, θ), ultimately capable of describing the magneto-angular dependence of the in-field critical current of commercial 2G-HTS tapes in the Lorentz configuration. Five widely different superconducting tapes, provided by three different manufacturers, have been tested in a liquid nitrogen bath and external magnetic fields of up to 400 mT. The critical current was recorded at 90 different orientations of the magnetic field ranging from θ = 0°, i.e., with B aligned with the crystallographic ab-planes of the YBCO layer, towards ±90°, i.e., with B perpendicular to the wider surfaces of the 2G-HTS tape. The whole set of experimental data has been analysed using a novel multi-objective model capable of predicting a sole function I c(B, θ). This allows an accurate validation of the experimental data regardless of the fabrication differences and widths of the superconducting tapes. It is shown that, in spite of the wide set of differences between the fabrication and composition of the considered tapes, at liquid nitrogen temperature the magneto-angular dependence of the in-field critical current of YBCO-based 2G-HTS tapes, can be described by a universal function I c(f(B), θ), with a power law field dependence dominated by the Kim’s factor B/B 0, and an angular dependence moderated by the electron mass anisotropy ratio of the YBCO layer.

  11. Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables

    PubMed Central

    Xie, Xu; Li, Xiaozhang; Shen, Yonggang

    2014-01-01

    In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance. PMID:28788710

  12. Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables.

    PubMed

    Xie, Xu; Li, Xiaozhang; Shen, Yonggang

    2014-06-23

    In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance.

  13. System for stabilizing cable phase delay utilizing a coaxial cable under pressure

    NASA Technical Reports Server (NTRS)

    Clements, P. A. (Inventor)

    1974-01-01

    Stabilizing the phase delay of signals passing through a pressurizable coaxial cable is disclosed. Signals from an appropriate source at a selected frequency, e.g., 100 MHz, are sent through the controlled cable from a first cable end to a second cable end which, electrically, is open or heavily mismatched at 100 MHz, thereby reflecting 100 MHz signals back to the first cable end. Thereat, the phase difference between the reflected-back signals and the signals from the source is detected by a phase detector. The output of the latter is used to control the flow of gas to or from the cable, thereby controlling the cable pressure, which in turn affects the cable phase delay.

  14. Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) presents a brief description of cable television and explains some basic regulations pertaining to it. The history of cable regulation covers the initial jurisdiction, economic considerations of the regulation, court tests, and the holding of public hearings. The major provisions of new cable rules are…

  15. Cable compliance

    NASA Technical Reports Server (NTRS)

    Kerley, J.; Eklund, W.; Burkhardt, R.; Rossoni, P.

    1992-01-01

    The object of the investigation was to solve mechanical problems using cable-in-bending and cable-in-torsion. These problems included robotic contacts, targets, and controls using cable compliance. Studies continued in the use of cable compliance for the handicapped and the elderly. These included work stations, walkers, prosthetic knee joints, elbow joints, and wrist joints. More than half of these objects were met, and models were made and studies completed on most of the others. It was concluded that the many different and versatile solutions obtained only opened the door to many future challenges.

  16. Method and apparatus for electrical cable testing by pulse-arrested spark discharge

    DOEpatents

    Barnum, John R.; Warne, Larry K.; Jorgenson, Roy E.; Schneider, Larry X.

    2005-02-08

    A method for electrical cable testing by Pulse-Arrested Spark Discharge (PASD) uses the cable response to a short-duration high-voltage incident pulse to determine the location of an electrical breakdown that occurs at a defect site in the cable. The apparatus for cable testing by PASD includes a pulser for generating the short-duration high-voltage incident pulse, at least one diagnostic sensor to detect the incident pulse and the breakdown-induced reflected and/or transmitted pulses propagating from the electrical breakdown at the defect site, and a transient recorder to record the cable response. The method and apparatus are particularly useful to determine the location of defect sites in critical but inaccessible electrical cabling systems in aging aircraft, ships, nuclear power plants, and industrial complexes.

  17. Material Selection for Cable Gland to Improved Reliability of the High-hazard Industries

    NASA Astrophysics Data System (ADS)

    Vashchuk, S. P.; Slobodyan, S. M.; Deeva, V. S.; Vashchuk, D. S.

    2018-01-01

    The sealed cable glands (SCG) are available to ensure safest connection sheathed single wire for the hazard production facility (nuclear power plant and others) the same as pilot cable, control cables, radio-frequency cables et al. In this paper, we investigate the specifics of the material selection of SCG with the express aim of hazardous man-made facility. We discuss the safe working conditions for cable glands. The research indicates the sintering powdered metals cables provide the reliability growth due to their properties. A number of studies have demonstrated the verification of material selection. On the face of it, we make findings indicating that double glazed sealed units could enhance reliability. We had evaluated sample reliability under fire conditions, seismic load, and pressure containment failure. We used the samples mineral insulated thermocouple cable.

  18. Unusual Attenuation Recovery Process After Fiber Optic Cable Irradiation

    NASA Astrophysics Data System (ADS)

    Konečná, Z.; Plaček, V.; Havránek, P.

    2017-11-01

    At present, the number of optical cables in nuclear power plants has been increasing. Fiber optic cables are commonly used at nuclear power plants in instrumentation and control systems but they are usually used in environments without radiation. Nevertheless, currently, the number of applications in NPP containment with radiation is increasing. One of the most prevalent effects of radiation exposure is an increase of signal attenuation (signal loss). This is the result of fiber darkening due to radiation exposure and it is the main limitation factor in application of fiber optics in radiation environment. However, after the irradiation, the fiber optics go through a “recovery process” during which the optical properties improve again; i.e. attenuation decreases. However, we have found cable, where the expected healing process after few days changed its trend and the attenuation increased again to a value well above the attenuation just after the irradiation. This paper describes experiments that were carried out to explain this unusual recovery behaviour.

  19. Cable Economics.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    A guide to the economic factors that influence cable television systems is presented. Designed for local officials who must have some familiarity with cable operations in order to make optimum decisions, the guide analyzes the financial framework of a cable system, not only from the operators viewpoint, but also from the perspective of the…

  20. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    NASA Astrophysics Data System (ADS)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  1. Cable load sensing device

    DOEpatents

    Beus, Michael J.; McCoy, William G.

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  2. Universal Cable Brackets

    NASA Technical Reports Server (NTRS)

    Vanvalkenburgh, C.

    1985-01-01

    Concept allows routing easily changed. No custom hardware required in concept. Instead, standard brackets cut to length and installed at selected locations along cable route. If cable route is changed, brackets simply moved to new locations. Concept for "universal" cable brackets make it easy to route electrical cable around and through virtually any structure.

  3. Multistrand superconductor cable

    DOEpatents

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  4. Automation of Underground Cable Laying Equipment Using PLC and Hmi

    NASA Astrophysics Data System (ADS)

    Mal Kothari, Kesar; Samba, Vishweshwar; Tania, Kinza; Udayakumar, R., Dr; Karthikeyan, Ram, Dr

    2018-04-01

    Underground cable laying is an alternative for overhead cable laying of telecommunication and power transmission lines. It is becoming very popular in recent times because of some of its advantages over overhead cable laying. This type of cable laying is mostly practiced in developed countries because it is more expensive than overhead cable laying. Underground cable laying is more suitable when land is not available, and it also increases the aesthetics. This paper implements the automation on a manually operated cable pulling winch machine using programmable logic controller (PLC). Winch machines are useful in underground cable laying. The main aim of the project is to replace all the mechanical functions with electrical controls which are operated through a touch screen (HMI). The idea is that the machine should shift between parallel and series circuit automatically based on the pressure sensed instead of manually operating the solenoid valve. Traditional means of throttling the engine using lever and wire is replaced with a linear actuator. Sensors such as proximity, pressure and load sensor are used to provide the input to the system. The HMI used will display the speed, length and tension of the rope being winded. Ladder logic is used to program the PLC.

  5. High Tc YBCO superconductor deposited on biaxially textured Ni substrate

    DOEpatents

    Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.

    1999-01-01

    A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.

  6. 105. VIEW NORTH FROM SLC3W CABLE TUNNEL INTO CABLE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    105. VIEW NORTH FROM SLC-3W CABLE TUNNEL INTO CABLE VAULT AND SLC-3E CABLE TUNNEL. NOTE WOODEN PLANKING ON FLOOR OF TUNNEL AND CABLE TRAYS LINING TUNNEL WALLS. STAIRS ON EAST WALL OF CABLE VAULT LEAD INTO LANDLINE INSTRUMENTATION ROOM. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Influence of ZnO doping on the properties of single domain YBCO bulks fabricated by RE+011 TSIG process

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Yuan, X. C.; Guo, Y. X.

    2017-10-01

    Single domain YBCO bulk superconductors with different additions of ZnO have been successfully fabricated by RE+011 TSIG process with a new solid phase of [(100-x)(Y2O3 + 1.2BaCuO2)+xZnO] and a new liquid phase of (Y2O3+6CuO+10BaCuO2). The effects of ZnO additions on the growth morphology, microstructure, critical temperature (Tc), the levitation force and trapped field of the YBCO bulks have been investigated. It is found that within the range of ZnO additions x=0-1.0 wt.%, all the samples are of the typical characteristic of single-domain YBCO bulk; the Tc of the samples decreases from 92 K to 80 K when the ZnO addition x increases from x=0 wt.% to x=1.0 wt.%; the levitation force and trapped field of the samples firstly increase and then decrease with increase of ZnO additions after going through a maximum, which is closely related with the ZnO addition and the resulting flux pinning force caused by lattice distortion due to the substitution of Zn2+ for Cu2+ site in the YBCO crystal; the largest levitation force 36.8 N (77 K, 0.5 T) and trapped field 0.416 T (77 K, 0.5 T) of the samples are obtained when x=0.1 wt.%, respectively. This result is significantly important and helpful for us to improve the properties of YBCO bulk superconductors.

  8. Greatly enhanced flux pinning properties of fluorine-free metal-organic decomposition YBCO films by co-addition of halogens (Cl, Br) and metals (Zr, Sn, Hf)

    NASA Astrophysics Data System (ADS)

    Motoki, Takanori; Ikeda, Shuhei; Nakamura, Shin-ichi; Honda, Genki; Nagaishi, Tatsuoki; Doi, Toshiya; Shimoyama, Jun-ichi

    2018-04-01

    Additive-free YBCO films, as well as those with halogen (X) added, metal (M) added and (X, M) co-added, have been prepared by the fluorine-free metal-organic decomposition method on SrTiO3(100) single crystalline substrates, where X = Cl, Br and M = Zr, Sn, Hf. It was revealed that the addition of both Cl and Br to the starting solution resulted in the generation of oxyhalide, Ba2Cu3O4 X 2, in the YBCO films, and that the oxyhalide was found to promote the bi-axial orientation of the YBCO crystals. By adding a decent amount of Cl or Br, highly textured YBCO films with high J c were reproducibly obtained, even when an impurity metal, M, was co-added, while the addition of M without X did not greatly improve J c owing to the poor bi-axial orientation of the YBCO crystals. Our results suggest that the addition of Br more effectively enhances J c than the addition of Cl. The pinning force density at 40 K in 4.8 T reached ˜55 GN m-3 with the co-addition of (Br, M). This value is much larger than that of the pure YBCO film, reaching ˜17 GN m-3.

  9. 47 CFR 27.1202 - Cable/BRS cross-ownership.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service § 27... modifications, assignments or transfers of control by cable operators of BRS stations shall include a showing... who holds or shares the power to vote such stock, to any person who has the sole power to sell such...

  10. Braided tubular superelastic cables provide improved spinal stability compared to multifilament sublaminar cables.

    PubMed

    Tremblay, Jaëlle; Mac-Thiong, Jean-Marc; Brailovski, Vladimir; Petit, Yvan

    2015-09-01

    This study investigates the use of braided tubular superelastic cables, previously used for sternum closure following sternotomy, as sublaminar fixation method. It compares the biomechanical performance of spinal instrumentation fixation systems with regular sublaminar cables and proprietary superelastic cables. A hybrid experimental protocol was applied to six porcine L1-L4 spinal segments to compare multifilament sublaminar cables (Atlas, Medtronic Sofamor Danek, Memphis, TN) with proprietary superelastic cables. First, intact total range of motion was determined for all specimens using pure moment loading. Second, pure moments were imposed to the instrumented specimens until these intact total ranges of motion were reproduced. Compared to the intact specimens, the use of superelastic cables resulted in stiffer instrumented specimens than the use of multifilament cables for all the loading modes except axial torsion. Consequently, the superelastic cables limited the instrumented segments mobility more than the multifilament cables. Spinal instrumentation fixation systems using superelastic cables could be a good alternative to conventional sublaminar cables as it maintains a constant stabilization of the spine during loading. © IMechE 2015.

  11. 77 FR 19525 - Specification for 15 kV and 25 kV Primary Underground Power Cable

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... has revised the final rule. Comment: Conductor Shield, NRECA T&D suggested adding (for discharge... be 3 through 18 pounds (1.36 through 8.16 kg) for EPR discharge free and TR-XLPE cables. Discharge....16 kg) for EPR discharge free and TR-XLPE cables. Discharge resistant cables shall have strip tension...

  12. Policy Issues in Interactive Cable Television.

    ERIC Educational Resources Information Center

    Kay, Peg

    1978-01-01

    Raises several policy issues concerning interactive cable television, including the role of government and the regulation powers, and the implications of telecommunication/social service system concerning privacy and confidentiality, approaches to electronic opinion polling, and the potential widening of the information gap between rich and poor.…

  13. Fiber optic submarine cables cuts cost modeling and cable protection aspects

    NASA Astrophysics Data System (ADS)

    Al-Lawati, Ali

    2015-03-01

    This work presents a model to calculate costs associated with submarine fiber optic cable cuts. It accounts for both fixed and variable factors determining cost of fixing cables and restoring data transmission. It considers duration of a cut, capacity of fibers, number of fiber pairs and expected number of cuts during cable life time. Moreover, it provides templates for initial feasibility assessments by comparing cut costs to cost of different cable protection schemes. It offers a needed tool to assist in guiding decision makers in selecting type of cable, length and depth of cable burial in terms of increase in initial investment due to adapting such protection methods, and compare it to cost of cuts repair and alternative restoration paths for data.

  14. Levitation force of melt-textured YBCO superconductors under non-quasi-static situation

    NASA Astrophysics Data System (ADS)

    Zhao, Z. M.; Xu, J. M.; Yuan, X. Y.; Zhang, C. P.

    2018-06-01

    The superconducting levitation force of a simple superconductor-magnet system under non-quasi-static situation is investigated experimentally. Two yttrium barium copper oxide (YBCO) samples with different performances are chosen from two small batches of samples prepared by the top-seeded melt-textured growth process. The residual carbon content of the precursor powders of the two batches is different due to different heat treatment processes. During the experimental process for measuring the levitation force, the value of the relative speed between the YBCO sample and the permanent magnet is higher than that in conventional studies. The variation characteristics of the superconducting levitation force are analyzed and a crossing phenomenon in the force-displacement hysteresis curves is observed. The results indicate that the superconducting levitation force is different due to the different residual carbon contents. As residual carbon contents reduce, the crossing phenomenon is more obvious accordingly.

  15. On the stiffness analysis of a cable driven leg exoskeleton.

    PubMed

    Sanjeevi, N S S; Vashista, Vineet

    2017-07-01

    Robotic systems are being used for gait rehabilitation of patients with neurological disorder. These devices are externally powered to apply external forces on human limbs to assist the leg motion. Patients while walking with these devices adapt their walking pattern in response to the applied forces. The efficacy of a rehabilitation paradigm thus depends on the human-robot interaction. A cable driven leg exoskeleton (CDLE) use actuated cables to apply external joint torques on human leg. Cables are lightweight and flexible but can only be pulled, thus a CDLE requires redundant cables. Redundancy in CDLE can be utilized to appropriately tune a robot's performance. In this work, we present the stiffness analysis of CDLE. Different stiffness performance indices are established to study the role of system parameters in improving the human-robot interaction.

  16. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S.more » Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).« less

  17. Acoustic communications for cabled seafloor observatories

    NASA Astrophysics Data System (ADS)

    Freitag, L.; Stojanovic, M.

    2003-04-01

    Cabled seafloor observatories will provide scientists with a continuous presence in both deep and shallow water. In the deep ocean, connecting sensors to seafloor nodes for power and data transfer will require cables and a highly-capable ROV, both of which are potentially expensive. For many applications where very high bandwidth is not required, and where a sensor is already designed to operate on battery power, the use of acoustic links should be considered. Acoustic links are particularly useful for large numbers of low-bandwidth sensors scattered over tens of square kilometers. Sensors used to monitor the chemistry and biology of vent fields are one example. Another important use for acoustic communication is monitoring of AUVs performing pre-programmed or adaptive sampling missions. A high data rate acoustic link with an AUV allows the observer on shore to direct the vehicle in real-time, providing for dynamic event response. Thus both fixed and mobile sensors motivate the development of observatory infrastructure that provides power-efficient, high bandwidth acoustic communication. A proposed system design that can provide the wireless infrastructure, and further examples of its use in networks such as NEPTUNE, are presented.

  18. 30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable couplers and connection boxes; minimum... connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power... materials other than metal. (2) Cable couplers shall be adequate for the intended current and voltage. (3...

  19. 30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Cable couplers and connection boxes; minimum... connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power... materials other than metal. (2) Cable couplers shall be adequate for the intended current and voltage. (3...

  20. 30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...

  1. 30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...

  2. 30 CFR 77.805 - Cable couplers and connection boxes; minimum design requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Cable couplers and connection boxes; minimum... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.805 Cable couplers and connection boxes; minimum design requirements. (a)(1) Couplers that are used in medium- or high-voltage power...

  3. Superconductor cable

    DOEpatents

    Allais, Arnaud [Hannover, DE; Schmidt, Frank [Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  4. Enhanced pinning in YBCO films with BaZrO.sub.3 nanoparticles

    DOEpatents

    Driscoll, Judith L.; Foltyn, Stephen R.

    2010-06-15

    A process and composition of matter are provided and involve flux pinning in thin films of high temperature superconductive oxides such as YBCO by inclusion of particles including barium and a group 4 or group 5 metal, such as zirconium, in the thin film.

  5. Cable equation for general geometry

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Erick J.; Romero, Juan M.

    2017-02-01

    The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.

  6. Effects of densification of precursor pellets on microstructures and critical current properties of YBCO melt-textured bulks

    NASA Astrophysics Data System (ADS)

    Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo

    2016-12-01

    Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.

  7. Detecting Inspection Objects of Power Line from Cable Inspection Robot LiDAR Data

    PubMed Central

    Qin, Xinyan; Wu, Gongping; Fan, Fei

    2018-01-01

    Power lines are extending to complex environments (e.g., lakes and forests), and the distribution of power lines in a tower is becoming complicated (e.g., multi-loop and multi-bundle). Additionally, power line inspection is becoming heavier and more difficult. Advanced LiDAR technology is increasingly being used to solve these difficulties. Based on precise cable inspection robot (CIR) LiDAR data and the distinctive position and orientation system (POS) data, we propose a novel methodology to detect inspection objects surrounding power lines. The proposed method mainly includes four steps: firstly, the original point cloud is divided into single-span data as a processing unit; secondly, the optimal elevation threshold is constructed to remove ground points without the existing filtering algorithm, improving data processing efficiency and extraction accuracy; thirdly, a single power line and its surrounding data can be respectively extracted by a structured partition based on a POS data (SPPD) algorithm from “layer” to “block” according to power line distribution; finally, a partition recognition method is proposed based on the distribution characteristics of inspection objects, highlighting the feature information and improving the recognition effect. The local neighborhood statistics and the 3D region growing method are used to recognize different inspection objects surrounding power lines in a partition. Three datasets were collected by two CIR LIDAR systems in our study. The experimental results demonstrate that an average 90.6% accuracy and average 98.2% precision at the point cloud level can be achieved. The successful extraction indicates that the proposed method is feasible and promising. Our study can be used to obtain precise dimensions of fittings for modeling, as well as automatic detection and location of security risks, so as to improve the intelligence level of power line inspection. PMID:29690560

  8. Detecting Inspection Objects of Power Line from Cable Inspection Robot LiDAR Data.

    PubMed

    Qin, Xinyan; Wu, Gongping; Lei, Jin; Fan, Fei; Ye, Xuhui

    2018-04-22

    Power lines are extending to complex environments (e.g., lakes and forests), and the distribution of power lines in a tower is becoming complicated (e.g., multi-loop and multi-bundle). Additionally, power line inspection is becoming heavier and more difficult. Advanced LiDAR technology is increasingly being used to solve these difficulties. Based on precise cable inspection robot (CIR) LiDAR data and the distinctive position and orientation system (POS) data, we propose a novel methodology to detect inspection objects surrounding power lines. The proposed method mainly includes four steps: firstly, the original point cloud is divided into single-span data as a processing unit; secondly, the optimal elevation threshold is constructed to remove ground points without the existing filtering algorithm, improving data processing efficiency and extraction accuracy; thirdly, a single power line and its surrounding data can be respectively extracted by a structured partition based on a POS data (SPPD) algorithm from "layer" to "block" according to power line distribution; finally, a partition recognition method is proposed based on the distribution characteristics of inspection objects, highlighting the feature information and improving the recognition effect. The local neighborhood statistics and the 3D region growing method are used to recognize different inspection objects surrounding power lines in a partition. Three datasets were collected by two CIR LIDAR systems in our study. The experimental results demonstrate that an average 90.6% accuracy and average 98.2% precision at the point cloud level can be achieved. The successful extraction indicates that the proposed method is feasible and promising. Our study can be used to obtain precise dimensions of fittings for modeling, as well as automatic detection and location of security risks, so as to improve the intelligence level of power line inspection.

  9. Comparison study of cable geometries and superconducting tape layouts for high-temperature superconductor cables

    NASA Astrophysics Data System (ADS)

    Ta, Wurui; Shao, Tianchong; Gao, Yuanwen

    2018-04-01

    High-temperature superconductor (HTS) rare-earth-barium-copper-oxide (REBCO) tapes are very promising for use in high-current cables. The cable geometry and the layout of the superconducting tapes are directly related to the performance of the HTS cable. In this paper, we use numerical methods to perform a comparison study of multiple-stage twisted stacked-tape cable (TSTC) conductors to find better cable structures that can both improve the critical current and minimize the alternating current (AC) losses of the cable. The sub-cable geometry is designed to have a stair-step shape. Three superconducting tape layouts are chosen and their transport performance and AC losses are evaluated. The magnetic field and current density profiles of the cables are obtained. The results show that arrangement of the superconducting tapes from the interior towards the exterior of the cable based on their critical current values in descending order can enhance the cable's transport capacity while significantly reducing the AC losses. These results imply that cable transport capacity improvements can be achieved by arranging the superconducting tapes in a manner consistent with the electromagnetic field distribution. Through comparison of the critical currents and AC losses of four types of HTS cables, we determine the best structural choice among these cables.

  10. Preparation of SmBCO layer for the surface optimization of GdYBCO film by MOCVD process based on a simple self-heating technology

    NASA Astrophysics Data System (ADS)

    Zhao, Ruipeng; Zhang, Fei; Liu, Qing; Xia, Yudong; Lu, Yuming; Cai, Chuanbing; Tao, Bowan; Li, Yanrong

    2018-07-01

    The MOCVD process was adopted to grow the REBa2Cu3O7-δ ((REBCO), RE = rare earth elements) films on the LaMnO3 (LMO) templates. Meanwhile, the LMO-template tapes are heated by the joule effect after applying a heating current through the Hastelloy metal substrates. The surface of GdYBCO films prepared by MOCVD method is prone to form outgrowths. So the surface morphology of GdYBCO film is optimized by depositing the SmBCO layer, which is an important process method for the preparation of high-quality multilayer REBCO films. At last, the GdYBCO/SmBCO/GdYBCO multilayer films were successfully prepared on the LMO templates based on the simple self-heating method. It is demonstrated that the GdYBCO surface was well improved by the characterization analysis of scanning electron microscope. And the Δω of REBCO (005) and Δφ of REBCO (103), which were performed by an X-ray diffraction system, are respectively 1.3° and 3.3° What's more, the critical current density (Jc) has been more than 3 MA/cm2 (77 K, 0 T) and the critical current (Ic) basically shows a trend of good linear increase with the increase of the number of REBCO layers.

  11. AC Loss Measurements on a 2G YBCO Coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype highmore » voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.« less

  12. Status Report and Research Plan for Cables Harvested from Crystal River Unit 3 Nuclear Generating Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.

    Harvested cables from operating or decommissioned nuclear power plants present an important opportunity to validate models, understanding material aging behavior, and validate characterization techniques. Crystal River Unit 3 Nuclear Generating Plant is a pressurized water reactor that was licensed to operate from 1976 to 2013. Cable segments were harvested and made available to the Light Water Reactor Sustainability research program through the Electric Power Research Institute. Information on the locations and circuits within the reactor from whence the cable segments came, cable construction, sourcing and installation information, and photographs of the cable locations prior to harvesting were provided. The cablemore » variations provided represent six of the ten most common cable insulations in the nuclear industry and experienced service usage for periods from 15 to 42 years. Subsequently, these cables constitute a valuable asset for research to understand aging behavior and measurement of nuclear cables. Received cables harvested from Crystal River Unit 3 Nuclear Generating Plant consist of low voltage, insulated conductor surrounded by jackets in lengths from 24 to 100 feet each. Cable materials will primarily be used to investigate aging under simultaneous thermal and gamma radiation exposure. Each cable insulation and jacket material will be characterized in its as-received condition, including determination of the temperatures associated with endothermic transitions in the material using differential scanning calorimetry and dynamic mechanical analysis. Temperatures for additional thermal exposure aging will be selected following the thermal analysis to avoid transitions in accelerated laboratory aging that do not occur in field conditions. Aging temperatures above thermal transitions may also be targeted to investigate the potential for artifacts in lifetime prediction from rapid accelerated aging. Total gamma doses and dose rates targeted for each

  13. Cable and Line Inspection Mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  14. Cable and line inspection mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  15. Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors

    NASA Technical Reports Server (NTRS)

    Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1997-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.

  16. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    NASA Astrophysics Data System (ADS)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  17. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges.

    PubMed

    Sun, Bing-nan; Wang, Zhi-gang; Ko, J M; Ni, Y Q

    2003-01-01

    This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.

  18. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhi, Mingjia; Manivannan, Ayyakkannu; Meng, Fanke; Wu, Nianqiang

    2012-06-01

    This paper presents highly conductive carbon nanofiber/MnO2 coaxial cables in which individual electrospun carbon nanofibers are coated with an ultrathin hierarchical MnO2 layer. In the hierarchical MnO2 structure, an around 4 nm thick sheath surrounds the carbon nanofiber (CNF) in a diameter of 200 nm, and nano-whiskers grow radically outward from the sheath in view of the cross-section of the coaxial cables, giving a high specific surface area of MnO2. The CNFs are synthesized by electrospinning a precursor containing iron acetylacetonate (AAI). The addition of AAI not only enlarges the specific surface area of the CNF but also greatly enhances their electronic conductivity, which leads to a dramatic improvement in the specific capacitance and the rate capability of the CNF/MnO2 electrode. The AAI-CNF/MnO2 electrode shows a specific capacitance of 311 F g-1 for the whole electrode and 900 F g-1 for the MnO2 shell at a scan rate of 2 mV s-1. Good cycling stability, high energy density (80.2 Wh kg-1) and high power density (57.7 kW kg-1) are achieved. This work indicates that high electronic conductivity of the electrode material is crucial to achieving high power and energy density for pseudo-supercapacitors.

  19. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics

    NASA Astrophysics Data System (ADS)

    Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.

    2017-12-01

    We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.

  20. Electronically controlled cable wrapper

    DOEpatents

    Young, Thomas M.

    1984-01-01

    A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.

  1. Electronically controlled cable wrapper

    DOEpatents

    Young, T.M.

    1982-08-17

    A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.

  2. Cables and connectors for Large Space System Technology (LSST)

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1980-01-01

    The effect of the environment and extravehicular activity/remote assembly operations on the cables and connectors for spacecraft with metallic and/or nonmetallic structures was examined. Cable and connector philosophy was outlined for the electrical systems and electronic compartments which contain high-voltage, high-power electrical and electronic equipment. The influence of plasma and particulates on the system is analyzed and the effect of static buildup on the spacecraft electrical system discussed. Conceptual cable and connector designs are assessed for capability to withstand high current and high voltage without danger of arcs and electromagnetic interference. The extravehicular activites required of the space station and/or supply spacecraft crew members to join and inspect the electrical system, using manual or remote assembly construction are also considered.

  3. Field Performance of an Optimized Stack of YBCO Square “Annuli” for a Compact NMR Magnet

    PubMed Central

    Hahn, Seungyong; Voccio, John; Bermond, Stéphane; Park, Dong-Keun; Bascuñán, Juan; Kim, Seok-Beom; Masaru, Tomita; Iwasa, Yukikazu

    2011-01-01

    The spatial field homogeneity and time stability of a trapped field generated by a stack of YBCO square plates with a center hole (square “annuli”) was investigated. By optimizing stacking of magnetized square annuli, we aim to construct a compact NMR magnet. The stacked magnet consists of 750 thin YBCO plates, each 40-mm square and 80- μm thick with a 25-mm bore, and has a Ø10 mm room-temperature access for NMR measurement. To improve spatial field homogeneity of the 750-plate stack (YP750) a three-step optimization was performed: 1) statistical selection of best plates from supply plates; 2) field homogeneity measurement of multi-plate modules; and 3) optimal assembly of the modules to maximize field homogeneity. In this paper, we present analytical and experimental results of field homogeneity and temporal stability at 77 K, performed on YP750 and those of a hybrid stack, YPB750, in which two YBCO bulk annuli, each Ø46 mm and 16-mm thick with a 25-mm bore, are added to YP750, one at the top and the other at the bottom. PMID:22081753

  4. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.

  5. A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges

    PubMed Central

    Asgari, B.; Osman, S. A.; Adnan, A.

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method. PMID:25050400

  6. A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges.

    PubMed

    Asgari, B; Osman, S A; Adnan, A

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  7. I-V Characteristics vs. Spatial Dissipation Maps in YBCO Grain Boundary on Bicrystal Substrates

    NASA Astrophysics Data System (ADS)

    Kwon, Chuhee; Yamamoto, Megumi; Pottish, Samuel; Haugan, Timothy; Barnes, Paul

    2008-03-01

    Grain boundary (GB) properties of YBCO films on SrTiO3 bicrystal substrates with 24 degree misorientations are examined by transport and scanning laser microscopy (SLM) techniques. Thermoelectric SLM clearly shows the location of grain boundaries, and variable temperature SLM confirms that GB has lower Tc. A series of I-V measured in superconducting states exhibit clear step-like features identified in earlier papers as sub-gap structures. The low temperature SLM shows a close relation between the step-like features and the local dissipation pattern in GB. We believe that the activation of Fiske steps is responsible for the step-like I-V, and SLM images show the spatial pattern of the self-excited resonance in GB. We will also discuss how Ca-doping and nanoparticle additions on YBCO affect the junction properties.

  8. Effect of grain-alignment on the levitation force of melt-processed YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wan-min; Zhou, Lian; Feng, Yong; Zhang, Ping-xiang; Wu, Min-zhi; Wu, Xiao-zu; Gawalek, W.

    1999-07-01

    Single-domain YBCO bulk superconductors have been fabricated by Top Seeded Melt Slow Cooling Growth(TSSCG) process. Two typical YBCO cylinder samples with differential grain-alignment were selected for the investigation of the relationship between the grain-alignment and the levitation force under the same testing condition at liquid nitrogen temperature. It is found that the levitation force values is much different for the two samples, the levitation force of the sample with H par c-axis is more than two times higher than that of the samples with H ⊥ c-axis. So it is necessary to take account of this anisotropy in practical applications. The relationship between a magnet and a superconductor can be well described with a double exponential function. All the results are discussed in details.

  9. Numerical minimization of AC losses in coaxial coated conductor cables

    NASA Astrophysics Data System (ADS)

    Rostila, L.; Suuriniemi, S.; Lehtonen, J.; Grasso, G.

    2010-02-01

    Power cables are one of the most promising applications for the superconducting coated conductors. In the AC use, only small resistive loss is generated, but the removal of the dissipated heat from the cryostat is inefficient due to the large temperature difference. The aim of this work is to minimize the AC losses in a multilayer coaxial cable, in which the tapes form current carrying cylinders. The optimized parameters are the tape numbers and lay angles in these cylinders. This work shows how to cope with the mechanical constraints for the lay angles and discrete tape number in optimization. Three common types of coaxial cables are studied here to demonstrate the feasibility of optimization, in which the AC losses were computed with a circuit analysis model formulated here for arbitrary phase currents, number of phases, and layers. Because the current sharing is practically determined by the inductances of the layers, the optima were obtained much faster by neglecting the nonlinear resistances caused by the AC losses. In addition, the example calculations show that the optimal cable structure do not usually depend on the AC loss model for the individual tapes. On the other hand, depending on the cable type, the losses of the optimized cables may be sensitive to the lay angles, and therefore, we recommend to study the sensitivity for the new cable designs individually.

  10. Interdigital Capacitance Local Non-Destructive Examination of Nuclear Power Plant Cable for Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Bowler, Nicola

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection,more » indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket.« less

  11. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  12. Simulation of the cabling process for Rutherford cables: An advanced finite element model

    NASA Astrophysics Data System (ADS)

    Cabanes, J.; Garlasche, M.; Bordini, B.; Dallocchio, A.

    2016-12-01

    In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb3Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb3Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN.

  13. Coaxial cable connector

    NASA Technical Reports Server (NTRS)

    Caro, Edward R. (Inventor); Bonazza, Walter J. (Inventor)

    1987-01-01

    A coaxial cable connector is provided, which resists radio frequency breakdown in coaxial cables used in the vacuum of outer space. The connector body surrounds an insulator which includes an easily compressible elastomeric portion. An insulated coaxial cable is prepared so that its insulation projects beyond the outer conductor and compresses the elastomeric portion of the connector insulator.

  14. Effects of EMF Emissions from Cables and Junction Boxes on Marine Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanak, Manhar; Spieler, Richard; Kilfoyle, Kirk

    Studies have shown that diverse aquatic species are electrosensitive. Many fishes, and marine mammals, can either detect, navigate by, or are affected by electromagnetic fields (EMF) with various sensitivities, and their behavior may be impacted by unnatural EMF emissions in the water column. Sharks, rays and skates are known to have the highest sensitivity to electric fields. Electric field emissions in the range 0.5–100 micro volt/m appear to attract them, and emissions over 100 micro volt/m to repulse them. A marine hydrokinetic MHK device will have multiple components and associated multiple submarine cables on the seafloor and running through themore » water column and would potentially increase the level of EMF emissions to which the marine species at the site may be exposed to. There are therefore concerns amongst stakeholders that EMF emissions associated with MHK devices and their components may act as barriers to species migration, cause disorientation, change community compositions and ecosystems, and that they may attract sharks, leading to a local increase in the risk of shark attacks. However, field data to validate and model potential relationships between observed responses and the EMF emissions in situ are sparse. A program of experimental field surveys were conducted off the coast of South Florida, USA to characterize the electromagnetic field (EMF) emissions in the water column from a submarine cable, and to monitor for responses of local aquatic species. The field surveys were conducted at the South Florida Ocean Measurement Facility (SFOMF) off Fort Lauderdale, which is a cabled offshore in-water navy range. It consists of multiple active submarine power cables and a number of junction boxes, with the capability to transmit AC/DC power at a range of strength and frequencies. The site includes significant marine life activities and community structure, including highly mobile species, such as sharks, stingrays, mammals and turtles. SFOMF

  15. Cable Effects Study. Tangents, Rabbit Holes, Dead Ends, and Valuable Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardelean, Emil V.; Babuška, Vít; Goodding, James C.

    Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. Our study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamicsmore » research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. Methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. Furthermore, a spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed« less

  16. Cable Effects Study. Tangents, Rabbit Holes, Dead Ends, and Valuable Results

    DOE PAGES

    Ardelean, Emil V.; Babuška, Vít; Goodding, James C.; ...

    2014-08-04

    Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. Our study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamicsmore » research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. Methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. Furthermore, a spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed« less

  17. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  18. Improved models of cable-to-post attachments for high-tension cable barriers.

    DOT National Transportation Integrated Search

    2012-05-01

    Computer simulation models were developed to analyze and evaluate a new cable-to-post attachment for high-tension cable : barriers. The models replicated the performance of a keyway bolt currently used in the design of a high-tension cable : median b...

  19. A low cost, disposable cable-shaped Al-air battery for portable biosensors

    NASA Astrophysics Data System (ADS)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum-air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  20. Small, Optically-Driven Power Source

    NASA Technical Reports Server (NTRS)

    Cockrum, Richard H.; Wang, Ke-Li J.

    1988-01-01

    Power transmitted along fiber-optic cables. Transmitted as infrared light along fiber-optic cable, converted to electricity to supply small electronic circuit. Power source and circuit remains electrically isolated from each other for safety or reduces electromagnetic interference. Array of diodes made by standard integrated-circuit techniques and packaged for mounting at end of fiber-optic cable.

  1. Fire related hazards of cables: The Canadian position development of fire resistant inside wiring cable

    NASA Astrophysics Data System (ADS)

    Hartley, M. D.; Jaques, R. E.

    1986-11-01

    The Canadian Electrical Code and the National Building Code in Canada recognize only two designations in regards to fire resistance of cables; cables for use in combustible (residential) buildings and cables for use in non-combustible buildings. The Test standard for cables for non-combustible buildings resembles IEEE-383. However, it is more severe; particularly for small nonarmoured cables such as Inside Wiring Cable. This forthcoming requirement has necessitated material and product development. Although an Inside Wiring cable modification of both insulation and jacket was undertaken, the large volume fraction of combustible material in the jacket vis a vis the insulation made it the area of greatest impact. The paper outlines the development and its effect on cable performance.

  2. Method to improve superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  3. Growth rate of YBCO-Ag superconducting single grains

    NASA Astrophysics Data System (ADS)

    Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.

    2017-12-01

    The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.

  4. Application of Optical Diagnosis to Aged Low-Voltage Cable Insulation in Nuclear Plants

    NASA Astrophysics Data System (ADS)

    Katagiri, Junichi; Takezawa, Yoshitaka; Shouji, Hiroshi

    We have developed a novel non-destructive optical diagnosis technique for low-voltage cable insulations used in nuclear power plants. The key features of this diagnosis are the use of two wavelengths to measure the change in reflective absorbance (ΔAR), the use of polarized light to measure crystallinity and the use of element volatilizing to measure fluorescence. Chemical kinetics is used to predict the lifetimes of the cable insulations. When cable insulations darken and harden by time degradation, the ΔAR and depolarization parameters increase. This means that the cross-linking density in the cable insulations increases due to deterioration reactions. When the cross-linking density of insulation increases, its elasticity, corresponding to the material's life, increases. Similarly, as the crystallinity increases due to the change in the high-order structure of the insulating resin caused by irradiation, its elongation property decreases. The elongation property of insulation is one of the most important parameters that can be used to evaluate material lifetimes, because it relates to elasticity. The ΔAR correlated with the elongation property, and the correlation coefficient of an accelerated experiment using model pieces was over 0.9. Thus, we concluded that this optical diagnosis should be applied to evaluate the degradation of cable insulations used in nuclear power plants.

  5. Space Flight Cable Model Development

    NASA Technical Reports Server (NTRS)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  6. Project NEPTUNE: an innovative, powered, fibre-optic cabled deep ocean observatory spanning the Juan de Fuca plate, NE Pacific

    NASA Astrophysics Data System (ADS)

    Barnes, C.; Delaney, J.

    2003-04-01

    NEPTUNE is an innovative facility, a deep-water cabled observatory, that will transform marine science. MARS and VENUS are deep and shallow-water test bed facilities for NEPTUNE located in Monterey Canyon, California and in southern British Columbia, respectively; both were funded in 2002. NEPTUNE will be a network of over 30 subsea observatories covering the 200,000 sq. km Juan de Fuca tectonic plate, Northeast Pacific. It will draw power via two shore stations and receive and exchange data with scientists through 3000 km of submarine fiber-optic cables. Each observatory, and cabled extensions, will host and power many scientific instruments on the surrounding seafloor, in seafloor boreholes and buoyed through the water column. Remotely operated and autonomous vehicles will reside at depth, recharge at observatories, and respond to distant labs. Continuous near-real-time multidisciplinary measurement series will extend over 30 years. Free from the limitations of battery life, ship schedules/ accommodations, bad weather and delayed access to data, scientists will monitor remotely their deep-sea experiments in real time on the Internet, and routinely command instruments to respond to storms, plankton blooms, earthquakes, eruptions, slope slides and other events. Scientists will be able to pose entirely new sets of questions and experiments to understand complex, interacting Earth System processes such as the structure and seismic behavior of the ocean crust; dynamics of hot and cold fluids and gas hydrates in the upper ocean crust and overlying sediments; ocean climate change and its effect on the ocean biota at all depths; and the barely known deep-sea ecosystem dynamics and biodiversity. NEPTUNE is a US/Canada (70/30) partnership to design, test, build and operate the network on behalf of a wide scientific community. The total cost of the project is estimated at about U.S. 250 million from concept to operation. Over U.S. 50 million has already been funded for

  7. Modeling magnetic fields from a DC power cable buried beneath San Francisco Bay based on empirical measurements

    DOE PAGES

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter; ...

    2016-02-25

    Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the Sanmore » Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured

  8. Modeling magnetic fields from a DC power cable buried beneath San Francisco Bay based on empirical measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter

    Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the Sanmore » Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured

  9. Multi-Aperture Shower Design for the Improvement of the Transverse Uniformity of MOCVD-Derived GdYBCO Films

    PubMed Central

    Zhao, Ruipeng; Liu, Qing; Xia, Yudong; Zhang, Fei; Lu, Yuming; Cai, Chuanbing; Tao, Bowan; Li, Yanrong

    2017-01-01

    A multi-aperture shower design is reported to improve the transverse uniformity of GdYBCO superconducting films on the template of sputtered-LaMnO3/epitaxial-MgO/IBAD-MgO/solution deposition planarization (SDP)-Y2O3-buffered Hastelloy tapes. The GdYBCO films were prepared by the metal organic chemical vapor deposition (MOCVD) process. The transverse uniformities of structure, morphology, thickness, and performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), step profiler, and the standard four-probe method using the criteria of 1 μV/cm, respectively. Through adopting the multi-aperture shower instead of the slit shower, measurement by step profiler revealed that the thickness difference between the middle and the edges based on the slit shower design was well eliminated. Characterization by SEM showed that a GdYBCO film with a smooth surface was successfully prepared. Moreover, the transport critical current density (Jc) of its middle and edge positions at 77 K and self-field were found to be over 5 MA/cm2 through adopting the micro-bridge four-probe method. PMID:28914793

  10. Literature review of environmental qualification of safety-related electric cables: Summary of past work. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subudhi, M.

    1996-04-01

    This report summarizes the findings from a review of published documents dealing with research on the environmental qualification of safety-related electric cables used in nuclear power plants. Simulations of accelerated aging and accident conditions are important considerations in qualifying the cables. Significant research in these two areas has been performed in the US and abroad. The results from studies in France, Germany, and Japan are described in this report. In recent years, the development of methods to monitor the condition of cables has received special attention. Tests involving chemical and physical examination of cable`s insulation and jacket materials, and electricalmore » measurements of the insulation properties of cables are discussed. Although there have been significant advances in many areas, there is no single method which can provide the necessary information about the condition of a cable currently in service. However, it is possible that further research may identify a combination of several methods that can adequately characterize the cable`s condition.« less

  11. High conductance surge cable

    DOEpatents

    Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.

    1998-01-01

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  12. High conductance surge cable

    DOEpatents

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  13. 15. CLOSEUP VIEW OF SOUTHEAST CABLE BOLT, SUSPENSION CABLE, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CLOSE-UP VIEW OF SOUTHEAST CABLE BOLT, SUSPENSION CABLE, AND CONCRETE ANCHORING BLOCK, LOOKING SOUTHEAST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT

  14. Non-Intrusive Cable Tester

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    1999-01-01

    A cable tester is described for low frequency testing of a cable for faults. The tester allows for testing a cable beyond a point where a signal conditioner is installed, minimizing the number of connections which have to be disconnected. A magnetic pickup coil is described for detecting a test signal injected into the cable. A narrow bandpass filter is described for increasing detection of the test signal. The bandpass filter reduces noise so that a high gain amplifier provided for detecting a test signal is not completely saturate by noise. To further increase the accuracy of the cable tester, processing gain is achieved by comparing the signal from the amplifier with at least one reference signal emulating the low frequency input signal injected into the cable. Different processing techniques are described evaluating a detected signal.

  15. Mobile Uninterruptible Power Supply

    NASA Technical Reports Server (NTRS)

    Mears, Robert L.

    1990-01-01

    Proposed mobile unit provides 20 kVA of uninterruptible power. Used with mobile secondary power-distribution centers to provide power to test equipment with minimal cabling, hazards, and obstacles. Wheeled close to test equipment and system being tested so only short cable connections needed. Quickly moved and set up in new location. Uninterruptible power supply intended for tests which data lost or equipment damaged during even transient power failure.

  16. Cable coupling lightning transient qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.

  17. Stable group delay cable

    NASA Technical Reports Server (NTRS)

    Clements, P. A.

    1975-01-01

    It was found that group delay is function of pressure in air dielectric coaxial cable. For example, 600-ft air dielectric cable will change phase 10 deg at 150 MHz when air pressure in cable changes from zero to 20 psi.

  18. The Impact of Satellites on Cable Communications.

    ERIC Educational Resources Information Center

    Chayes, Abram

    Two recent developments in communications satellite technology may speed the coming of cable TV (CATV) networks. First, increases in satellite power are reducing the cost of ground stations. Second, a connection between one ground station, the satellite, and any other ground station is no longer necessarily fixed. Now one station can communicate…

  19. Cable Tester

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA Tech Brief's provided Sonics Associates, Inc. with a method of saving many hours of testing time and money. James B. Cawthon, Sonics Vice-President, read about a device developed at Ames Research Center. Sonics adapted the device and produced an effective tester that uses a clocked shift register to apply a voltage to a cable under test. This is the active part of the Ames development, and the passive is a small box containing light emitting diodes (LEDs). When connected to the other end of the tested cable, the LEDs light in the same sequence as the generator. This procedure allows the technician to immediately identify a miswired cable.

  20. The effect of the YBCO-PST composite composition on the superconducting carrier concentration determined by microwave studies under high pressure

    NASA Astrophysics Data System (ADS)

    Krupski, M.; Stankowski, J.; Przybył, S.; Andrzejewski, B.; Kaczmarek, A.; Hilczer, B.; Marfaing, J.; Caranoni, C.

    1999-07-01

    The effect of hydrostatic pressure ( p<0.6 GPa) on the superconducting critical temperature Tc in YBa 2Cu 3O 7- δ-Pb(Sc 0.5Ta 0.5)O 3 (YBCO-PST) composite is measured by the method of magnetically modulated microwave absorption (MMMA). The Tc dependence on the PST fraction in weight x (0, 0.25, 0.5 and 0.75) is approximated by an inverted parabola function whereas the influence of pressure on Tc is represented by the equation: d Tc/d p=0.61(2)-1.72(6) x. The result may be explained assuming that PST phase in YBCO-PST composite influences the superconducting carrier concentration similar to the chemical substitution in YBa 2Cu 3O 7 [J.J. Neumeier, H.A. Zimmermann, Phys. Rev. B 47 (1993) 8385]. It is suggested that ions from PST diffuse to YBCO cell during the sintering of the composite.

  1. Cable suspended windmill

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G. (Inventor)

    1990-01-01

    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  2. The Effects of Grain Boundaries on the Current Transport Properties in YBCO-Coated Conductors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Xia, Yudong; Xue, Yan; Zhang, Fei; Tao, Bowan; Xiong, Jie

    2015-10-01

    We report a detailed study of the grain orientations and grain boundary (GB) networks in Y2O3 films grown on Ni-5 at.%W substrates. Electron back scatter diffraction (EBSD) exhibited different GB misorientation angle distributions, strongly decided by Y2O3 films with different textures. The subsequent yttria-stabilized zirconia (YSZ) barrier and CeO2 cap layer were deposited on Y2O3 layers by radio frequency sputtering, and YBa2Cu3O7-δ (YBCO) films were deposited by pulsed laser deposition. For explicating the effects of the grain boundaries on the current carry capacity of YBCO films, a percolation model was proposed to calculate the critical current density ( J c) which depended on different GB misorientation angle distributions. The significantly higher J c for the sample with sharper texture is believed to be attributed to improved GB misorientation angle distributions.

  3. Haines - Scagway Submarine Cable Intertie Project, Haines to Scagway, Alaska Final Technical and Construction Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Alan; Rinehart, Bennie N; Marin, Glen

    1998-11-01

    The Haines to Skagway submarine cable project is located n Taiya Inlet, at the north end of Lynn Canal, in Southeast Alaska. The cable is approximately 15 miles long, with three landings and splice vaults. The cable is 35 kV, 3-Phase, and armored. The cable interconnects the Goat Lake Hydro Project near Skagway with the community of Haines. Both communities are now on 100% hydroelectric power. The Haines to Skagway submarine cable is the result of AP&T's goal of an alternative, economic, and environmentally friendly energy source for the communities served and to eliminate the use of diesel fuel asmore » the primary source of energy. Diesel units will continue to be used as a backup system.« less

  4. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  5. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  6. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  7. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  8. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  9. Actin cable dynamics in budding yeast

    PubMed Central

    Yang, Hyeong-Cheol; Pon, Liza A.

    2002-01-01

    Actin cables, bundles of actin filaments that align along the long axis of budding yeast, are crucial for establishment of cell polarity. We fused green fluorescent protein (GFP) to actin binding protein 140 (Abp140p) and visualized actin cable dynamics in living yeast. We detected two populations of actin cables: (i) bud-associated cables, which extend from the bud along the mother-bud axis, and (ii) randomly oriented cables, which are relatively short. Time-lapse imaging of Abp140p–GFP revealed an apparent increase in the length of bud-associated actin cables. Analysis of movement of Abp140p–GFP fiduciary marks on bud-associated cables and fluorescence loss in photobleaching experiments revealed that this apparent elongation occurs by assembly of new material at the end of the cable within the bud and movement of the opposite end of the cable toward the tip of the mother cell distal to the bud. The rate of extension of the tip of an elongating actin cable is 0.29 ± 0.08 μm/s. Latrunculin A (Lat-A) treatment completely blocked this process. We also observed movement of randomly oriented cables around the cortex of cells at a rate of 0.59 ± 0.14 μm/s. Mild treatment with Lat-A did not affect the velocity of movement of randomly oriented cables. However, Lat-A treatment did increase the number of randomly oriented, motile cables per cell. Our observations suggest that establishment of bud-associated actin cables during the cell cycle is accomplished not by realignment of existing cables but by assembly of new cables within the bud or bud neck, followed by elongation. PMID:11805329

  10. Cable Television; A Bibliographic Review.

    ERIC Educational Resources Information Center

    Schoenung, James

    This bibliographic review of publications in the field of cable television begins with an introduction to cable television and an outline of the history and development of cable television. Particular attention is given to the regulatory activities of the Federal Communications Commission and the unfulfilled potential of cable television. The…

  11. Investigation of cables for ionization chambers.

    PubMed

    Spokas, J J; Meeker, R D

    1980-01-01

    Seven coaxial cables which are in use for carrying currents generated in ionization chambers have been critically studied with reference to their suitability to this application. Included in this study are four low-noise triaxial cables and three low-noise two-conductor cables. For each cable the following characteristics were considered: inherent noise currents, currents produced by cable movements, polarization currents, the degree of electrostatic shielding of the central signal-carrying conductor, and radiation-induced cable currents. The study indicated that of the seven cables, two low-noise triaxial cables, both employing solid Teflon dielectric surrounding the central conductor, appear to offer the best overall performance for use with ionization chambers.

  12. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter.

    PubMed

    Meinier, Romain; Sonnier, Rodolphe; Zavaleta, Pascal; Suard, Sylvain; Ferry, Laurent

    2018-01-15

    Fires involving electrical cables are one of the main hazards in Nuclear Power Plants (NPPs). Cables are complex assemblies including several polymeric parts (insulation, bedding, sheath) constituting fuel sources. This study provides an in-depth characterization of the fire behavior of two halogen-free flame retardant cables used in NPPs using the cone calorimeter. The influence of two key parameters, namely the external heat flux and the spacing between cables, on the cable fire characteristics is especially investigated. The prominent role of the outer sheath material on the ignition and the burning at early times was highlighted. A parameter of utmost importance called transition heat flux, was identified and depends on the composition and the structure of the cable. Below this heat flux, the decomposition is limited and concerns only the sheath. Above it, fire hazard is greatly enhanced because most often non-flame retarded insulation part contributes to heat release. The influence of spacing appears complex, and depends on the considered fire property. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 29 CFR 1918.64 - Powered conveyors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the brakes cannot be released until power is applied and the brakes are automatically engaged if the... provided for use in an emergency. Whenever the operation of any power conveyor requires personnel to work... the trimmer. (e) Grain trimmer power cable. Power cables between the deck control box and the grain...

  14. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  15. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  16. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of electric... a minimum of 24 hours at a temperature of 70 ±10 °F (21.1 ±5.5 °C) and a relative humidity of 55 ±10...

  17. Temperature Distribution and Critical Current of Long HTS Cables Cooled with Subcooled Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Ivanov, Y. V.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S.

    2017-07-01

    Cooling of the long HTS power transmission lines performs by pumping of subcooled liquid nitrogen (LN2) along the cable. The temperature of LN2 along the cable increases due to the heat losses of the cryostat and heat generation in the HTS cable. The experiment using test cable line in Ishikari shows that flow rate of 35 L/min retains increasing of LN2 temperature by 1 K per 1 km of length. The technology when the back flow of LN2 cools the radiation shield surrounding the cable pipe is also applied in Ishikari-2 project. In this case the ambient heat flow into cable pipe is 50 times less than that without radiation shield. Back flow of LN2 removes almost all heat coming from the environment. When transport current is close to the critical value the Joule heat of HTS cable is significant. This heat additionally increases the temperature of LN2 flowing along the HTS cable. Near the outlet the temperature of HTS cable is maximal and the local critical current is minimal. The current matching critical current criterion of average electrical field of E 0 = 10-4 V/m provides the voltage drop and significant Joule heat at the hot end of the cable. It can lead the damage of the cable. The present work contains analysis of temperature distribution along the cable and the way to achieve the fail-safe operation of long HTS cable cooled by subcooled LN2. We also performed extrapolation of obtained results for several times longer cable lines by decreasing the LN2 flow rate.

  18. Review of fire test methods and incident data for portable electric cables in underground coal mines

    NASA Astrophysics Data System (ADS)

    Braun, E.

    1981-06-01

    Electrically powered underground coal mining machinery is connected to a load center or distribution box by electric cables. The connecting cables used on mobile machines are required to meet fire performance requirements defined in the Code of Federal Regulations. This report reviews Mine Safety and Health Administration's (MSHA) current test method and compares it to British practices. Incident data for fires caused by trailing cable failures and splice failures were also reviewed. It was found that the MSHA test method is more severe than the British but that neither evaluated grouped cable fire performance. The incident data indicated that the grouped configuration of cables on a reel accounted for a majority of the fires since 1970.

  19. AC loss in YBCO coated conductors at high dB/dt measured using a spinning magnet calorimeter (stator testbed environment)

    NASA Astrophysics Data System (ADS)

    Murphy, J. P.; Gheorghiu, N. N.; Bullard, T.; Haugan, T.; Sumption, M. D.; Majoros, M.; Collings, E. W.

    2017-09-01

    A new facility for the measurement of AC loss in superconductors at high dB/dt has been developed. The test device has a spinning rotor consisting of permanent magnets arranged in a Halbach array; the sample, positioned outside of this, is exposed to a time varying AC field with a peak radial field of 0.566 T. At a rotor speed of 3600 RPM the frequency of the AC field is 240 Hz, the radial dB/dt is 543 T/s and the tangential dB/dt is 249 T/s. Loss is measured using nitrogen boiloff from a double wall calorimeter feeding a gas flow meter. The system is calibrated using power from a known resistor. YBCO tape losses were measured in the new device and compared to the results from a solenoidal magnet AC loss system measurement of the same samples (in this latter case measurements were limited to a field of amplitude 0.1 T and a dB/dt of 100 T/s). Solenoidal magnet system AC loss measurements taken on a YBCO sample agreed with the Brandt loss expression associated with a 0-0.1 T Ic of 128 A. Subsequently, losses for two more YBCO tapes nominally identical to the first were individually measured in this spinning magnet calorimeter (SMC) machine with a Bmax of 0.566 T and dB/dt of up to 272 T/s. The losses, compared to a simplified version of the Brandt expression, were consistent with the average Ic expected for the tape in the 0-0.5 T range at 77 K. The eddy current contribution was consistent with a 77 K residual resistance ratio, RR, of 4.0. The SMC results for these samples agreed to within 5%. Good agreement was also obtained between the results of the SMC AC loss measurement and the solenoidal magnet AC loss measurement on the same samples.

  20. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  1. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  2. Cable Television: Franchising Considerations.

    ERIC Educational Resources Information Center

    Baer, Walter S.; And Others

    This volume is a comprehensive reference guide to cable television technology and issues of planning, franchising, and regulating a cable system. It is intended for local government officials and citizens concerned with the development of cable television systems in their communities, as well as for college and university classes in…

  3. Optimization Research on Ampacity of Underground High Voltage Cable Based on Interior Point Method

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Li, Jing

    2017-12-01

    The conservative operation method which takes unified current-carrying capacity as maximum load current can’t make full use of the overall power transmission capacity of the cable. It’s not the optimal operation state for the cable cluster. In order to improve the transmission capacity of underground cables in cluster, this paper regards the maximum overall load current as the objective function and the temperature of any cables lower than maximum permissible temperature as constraint condition. The interior point method which is very effective for nonlinear problem is put forward to solve the extreme value of the problem and determine the optimal operating current of each loop. The results show that the optimal solutions obtained with the purposed method is able to increase the total load current about 5%. It greatly improves the economic performance of the cable cluster.

  4. 5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM SOUTH FACE OF LAUNCH OPERATIONS BUILDING. MICROWAVE DISH IN FOREGROUND. METEOROLOGICAL TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Assessment of Potential Impact of Electromagnetic Fields from Undersea Cable on Migratory Fish Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimley, A. P.; Wyman, M. T.; Kavet, Rob

    The US Department of Energy and US Department of the Interior, Bureau of Ocean Energy Management commissioned this study to address the limited scientific data on the impacts of high voltage direct current cables on aquatic biota, in particular migratory species within the San Francisco Bay. Empirical evidence exists that marine animals perceive and orient to local distortions in the earth’s main geomagnetic field magnetic field. The electromagnetic fields (EMF) generated by the cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concern exists that animals thatmore » migrate along the continental shelves might orient to the EMF from the cables, and move either inshore or offshore away from their normal path. The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) through the San Francisco Bay. The study addresses the following specific questions based on measurements and projections of the EMF produced by an existing marine cable, the TBC, in San Francisco Bay. Specifically, does the presence of EMF from an operating power cable alter the behavior and path of bony fishes and sharks along a migratory corridor? Does the EMF from an operating power cable guide migratory movements or pose an obstacle to movement? To meet the main study objectives several activities needed to be carried out: 1) modeling of the magnetic fields produced by the TBC, 2) assessing the migratory impacts on Chinook salmon smolts (Oncorhynchus tshawytscha) and green sturgeon (Acipenser medirostris) as a result of local magnetic field distortions produced by bridge structures and 3) analyzing behavioral responses by migratory Chinook salmon and green sturgeon to a high-voltage power cable. To meet the first objective, magnetic field measurements were made using two

  6. Cable Library Survey Results.

    ERIC Educational Resources Information Center

    Public Service Satellite Consortium, Washington, DC.

    This report summarizes a survey of 198 libraries which had been identified as potential cable libraries which assessed: (1) to what extent a national satellite cable library network might already be in technical existence, (2) how many libraries are connected to cooperative cable companies with satellite hardware and excess receiver capacity, and…

  7. Colleges and Cable Franchising.

    ERIC Educational Resources Information Center

    Glenn, Neal D.

    After noting issues of audience appeal and financial and philosophical support for educational broadcasting, this paper urges community colleges to play an active role in the process of cable franchising. The paper first describes a cable franchise as a contract between a government unit and the cable television (CATV) company which specifies what…

  8. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cable systems. 25.689 Section 25.689...

  9. On the use of copper-based substrates for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Vannozzi, A.; Fabbri, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Rizzo, F.; Rufoloni, A.; Padilla, J. A.; Xuriguera, E.; De Felicis, D.; Bemporad, E.; Celentano, G.

    2014-05-01

    It is well known that the recrystallization texture of heavily cold-rolled pure copper is almost completely cubic. However, one of the main drawbacks concerning the use of pure copper cube-textured substrates for YBCO coated conductor is the reduced secondary recrystallization temperature. The onset of secondary recrystallization (i.e., the occurrence of abnormal grains with unpredictable orientation) in pure copper substrate was observed within the typical temperature range required for buffer layer and YBCO processing (600-850 °C). To avoid the formation of abnormal grains the effect of both grain size adjustment (GSA) and recrystallization annealing was analyzed. The combined use of a small initial grain size and a recrystallization two-step annealing (TSA) drastically reduced the presence of abnormal grains in pure copper tapes. Another way to overcome the limitation imposed by the formation of abnormal grains is to deposit a buffer layer at temperatures where secondary recrystallization does not occur. For example, La2Zr2O7 (LZO) film with a high degree of epitaxy was grown by metal-organic decomposition (MOD) at 1000 °C on pure copper substrate. In several samples the substrate underwent secondary recrystallization. Our experiments indicate that the motion of grain boundaries occurring during secondary recrystallization process does not affect the quality of LZO film.

  10. Disposable telemetry cable deployment system

    DOEpatents

    Holcomb, David Joseph

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  11. The Thermal Regime Around Buried Submarine High-Voltage Cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  12. Structural modeling of HTS tapes and cables

    NASA Astrophysics Data System (ADS)

    Allen, N. C.; Chiesa, L.; Takayasu, M.

    2016-12-01

    Structural finite element analysis (FEA) has been used as an insightful tool to investigate the electromechanical behavior of HTS REBCO tapes and twisted stacked-tape cables under tension, torsion, bending and combined loads. A novel technique was developed for modeling the layered composite structure of the 2G tapes with structural solid-shell elements in ANSYS®. The FEA models produced detailed strain information for the REBCO superconducting layer which was then paired with an analytical model to predict the critical current performance of the 2G HTS tapes under various loads. Two commercially available HTS tapes (SuperPower and SuNAM) under tension, torsion and combined tension-torsion were first analyzed with FEA and compared with available experimental results at 77 K. A sharp critical current degradation was experienced at the yield strength of the tapes under tension and below a 100 mm twist-pitch under torsion. Combined tension-torsion loads had a more gradual degradation of critical current for twist-pitches of 115 mm or shorter but had a negligible difference compared to pure tension for longer twist-pitches. Using the structural solid-shell technique for modeling 2G tapes in ANSYS®, an FEA methodology for simulating full scale three-dimensional HTS stacked-tape cables under pure bending was created. A model of a Twisted-Stacked Tape Cable (TSTC), a configuration first proposed at MIT, was initially developed and then adapted to the slotted-core HTS Cable-In-Conduit Conductor produced by the ENEA laboratory in Italy. The numerical axial strain of the HTS REBCO tapes within the cables as calculated by FEA were found to agree with an analytical model for two cases: perfect-slip (frictionless) and no-slip (bonded). The ENEA CICC model was also compared with recent experimental critical current data at 77 K and was found to match best using a low friction coefficient of 0.02 indicating that the tapes within the cable freely slide with respect to each other

  13. Effects of EMF emissions from undersea electric cables on coral reef fish.

    PubMed

    Kilfoyle, Audie K; Jermain, Robert F; Dhanak, Manhar R; Huston, Joseph P; Spieler, Richard E

    2018-01-01

    The objective of this study was to determine if electromagnetic field (EMF) emissions from undersea power cables impacted local marine life, with an emphasis on coral reef fish. The work was done at the South Florida Ocean Measurement Facility of Naval Surface Warfare Center in Broward County, Florida, which has a range of active undersea detection and data transmission cables. EMF emissions from a selected cable were created during non-destructive visual fish surveys on SCUBA. During surveys, the transmission of either alternating current (AC), direct current (DC), or none (OFF) was randomly initiated by the facility at a specified time. Visual surveys were conducted using standardized transect and point-count methods to acquire reef fish abundances and species richness prior to and immediately after a change in transmission frequency. The divers were also tasked to note the reaction of the reef fish to the immediate change in EMF during a power transition. In general, analysis of the data did not find statistical differences among power states and any variables. However, this may be a Type II error as there are strong indications of a potential difference of a higher abundance of reef fish at the sites when the power was off, and further study is warranted. Bioelectromagnetics. 39:35-52, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Cables and fire hazards

    NASA Technical Reports Server (NTRS)

    Zanelli, C.; Philbrick, S.; Beretta, G.

    1986-01-01

    Besides describing the experiments conducted to develop a nonflammable cable, this article discusses several considerations regarding other hazards which might result from cable fires, particularly the toxicity and opacity of the fumes emitted by the burning cable. In addition, this article examines the effects of using the Oxygen Index as a gauge of quality control during manufacture.

  15. 46 CFR 169.686 - Shore power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements: (a) A shore power connection box or receptacle and a cable connecting this box or receptacle to... power cable must be provided with a disconnect means located on or near the main distribution panel...

  16. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cable. This subsidiary record category shall include the original cost of optical fiber cable and other..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to central...

  17. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cable. This subsidiary record category shall include the original cost of optical fiber cable and other..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to central...

  18. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cable. This subsidiary record category shall include the original cost of optical fiber cable and other..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to central...

  19. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cable. This subsidiary record category shall include the original cost of optical fiber cable and other..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to central...

  20. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cable. This subsidiary record category shall include the original cost of optical fiber cable and other..., Buried Cable. (d) The cost of cables leading from the main distributing frame or equivalent to central...

  1. Cable-Dispensing Cart

    NASA Technical Reports Server (NTRS)

    Bredberg, Alan S.

    2003-01-01

    A versatile cable-dispensing cart can support as many as a few dozen reels of cable, wire, and/or rope. The cart can be adjusted to accommodate reels of various diameters and widths, and can be expanded, contracted, or otherwise reconfigured by use of easily installable and removable parts that can be carried onboard. Among these parts are dispensing rods and a cable guide that enables dispensing of cables without affecting the direction of pull. Individual reels can be mounted on or removed from the cart without affecting the other reels: this feature facilitates the replacement or reuse of partially depleted reels, thereby helping to reduce waste. Multiple cables, wires, or ropes can be dispensed simultaneously. For maneuverability, the cart is mounted on three wheels. Once it has been positioned, the cart is supported by rubber mounts for stability and for prevention of sliding or rolling during dispensing operations. The stability and safety of the cart are enhanced by a low-center-of-gravity design. The cart can readily be disassembled into smaller units for storage or shipping, then reassembled in the desired configuration at a job site.

  2. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10-2 Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak

  3. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments.

    PubMed

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10(-2) Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak

  4. Test plan and report for Space Shuttle launch environment testing of Bergen cable technology safety cable

    NASA Technical Reports Server (NTRS)

    Ralph, John

    1992-01-01

    Bergen Cable Technology (BCT) has introduced a new product they refer to as 'safety cable'. This product is intended as a replacement for lockwire when installed per Aerospace Standard (AS) 4536 (included in Appendix D of this document). Installation of safety cable is reportedly faster and more uniform than lockwire. NASA/GSFC proposes to use this safety cable in Shuttle Small Payloads Project (SSPP) applications on upcoming Shuttle missions. To assure that BCT safety cable will provide positive locking of fasteners equivalent to lockwire, the SSPP will conduct vibration and pull tests of the safety cable.

  5. Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables

    NASA Astrophysics Data System (ADS)

    Liu, Ruiwei; Guo, Hongwei; Liu, Rongqiang; Wang, Hongxiang; Tang, Dewei; Song, Xiaoke

    2017-11-01

    Shape accuracy is of substantial importance in deployable structures as the demand for large-scale deployable structures in various fields, especially in aerospace engineering, increases. The main purpose of this paper is to present a shape accuracy optimization method to find the optimal pretensions for the desired shape of cable-rib tension deployable antenna structure with tensioned cables. First, an analysis model of the deployable structure is established by using finite element method. In this model, geometrical nonlinearity is considered for the cable element and beam element. Flexible deformations of the deployable structure under the action of cable network and tensioned cables are subsequently analyzed separately. Moreover, the influence of pretension of tensioned cables on natural frequencies is studied. Based on the results, a genetic algorithm is used to find a set of reasonable pretension and thus minimize structural deformation under the first natural frequency constraint. Finally, numerical simulations are presented to analyze the deployable structure under two kinds of constraints. Results show that the shape accuracy and natural frequencies of deployable structure can be effectively improved by pretension optimization.

  6. Integrated Structural and Cable Connector

    NASA Technical Reports Server (NTRS)

    Totah, R. S.

    1982-01-01

    Ball-and-socket coupling includes fiber-optic cable. Three steps couple two parts of fiber-optic cable: ball is inserted into socket; cone is released in, and cable moves toward plug. Sleeve is pulled to end of its travel and cable and plug are mated. Device is a quick-connect/disconnect coupling that has application in hazardous environments, such as space, undersea and nuclear installations.

  7. Integration of HTS Cables in the Future Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  8. 4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM NORTH FACE OF LAUNCH OPERATIONS BUILDING. TOPS OF BUNKER PERISCOPE AND FLAGPOLE ON ROOF OF LAUNCH OPERATIONS BUILDING IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. A 5.9 tesla conduction-cooled coil composed of a stack of four single pancakes wound with YBCO wide tapes

    NASA Astrophysics Data System (ADS)

    Iwai, Sadanori; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Urata, Masami; Ioka, Shigeru; Ishii, Yusuke

    2013-11-01

    We have been developing a conduction-cooled coil wound with YBCO-coated conductors for HTS applications. Previously, we have fabricated a coil composed of a stack of 12 single pancakes wound with 4 mm-wide YBCO tapes. This coil had a central magnetic field as high as 5.1 T at 10 K under conduction-cooled conditions. In the present study, we fabricated and tested a coil composed of a stack of four single pancakes wound with 12 mm-wide YBCO tapes. The total size of the coil and the Jc value of the tapes were almost the same as those of the former coil. At 77 K, the voltage-current characteristics showed a high n-value of 24, confirming that the coil had no degradation. Furthermore, in a conduction-cooled configuration at 20 K to 60 K, the coil showed a high n-value of over 20. At 20 K, the central magnetic field reached 5.9 T at 903 A, which is 1.3-times higher than that of the former coil.

  10. Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation.

    PubMed

    Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo

    2017-10-31

    Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated.

  11. Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation

    PubMed Central

    Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo

    2017-01-01

    Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated. PMID:29088077

  12. 30 CFR 18.35 - Portable (trailing) cables and cords.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... used to conduct electrical energy to face equipment shall conform to the following: (1) Have each conductor of a current-carrying capacity consistent with the Insulated Power Cable Engineers Association...

  13. 30 CFR 18.35 - Portable (trailing) cables and cords.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... used to conduct electrical energy to face equipment shall conform to the following: (1) Have each conductor of a current-carrying capacity consistent with the Insulated Power Cable Engineers Association...

  14. 30 CFR 18.35 - Portable (trailing) cables and cords.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... used to conduct electrical energy to face equipment shall conform to the following: (1) Have each conductor of a current-carrying capacity consistent with the Insulated Power Cable Engineers Association...

  15. 30 CFR 18.35 - Portable (trailing) cables and cords.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... used to conduct electrical energy to face equipment shall conform to the following: (1) Have each conductor of a current-carrying capacity consistent with the Insulated Power Cable Engineers Association...

  16. Development of inspection robots for bridge cables.

    PubMed

    Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae

    2013-01-01

    This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.

  17. EVALUATION OF FLOORPAN TEARING AND CABLE SPLICES FOR CABLE BARRIER SYSTEMS

    DOT National Transportation Integrated Search

    2017-05-26

    This research effort consisted of two objectives related to components of a prototype cable barrier system. The first objective was to mitigate the potential for vehicle floorpan tearing by modifying the cable guardrail posts. A bogie vehicle was equ...

  18. Environmental Impact of a Submarine Cable: Case Study of the Acoustic Thermometry of Ocean Climate (ATOC)/ Pioneer Seamount Cable

    NASA Astrophysics Data System (ADS)

    Kogan, I.; Paull, C. K.; Kuhnz, L.; von Thun, S.; Burton, E.; Greene, H. G.; Barry, J. P.

    2003-12-01

    To better understand the potential impacts of the presence of cables on the seabed, a topic of interest for which little data is published or publicly available, a study of the environmental impacts of the ATOC/Pioneer Seamount cable was conducted. The 95 km long, submarine, coaxial cable extends between Pioneer Seamount and the Pillar Point Air Force Station in Half Moon Bay, California. Approximately two thirds of the cable lies within the Monterey Bay National Marine Sanctuary. The cable is permitted to NOAA- Oceanic and Atmospheric Research for transmitting data from a hydrophone array on Pioneer Seamount to shore. The cable was installed unburied on the seafloor in 1995. The cable path crosses the continental shelf, descends to a maximum depth of 1,933 m, and climbs back upslope to 998 m depth near the crest of Pioneer Seamount. A total of 42 hours of video and 152 push cores were collected in 10 stations along cable and control transects using the ROVs Ventana and Tiburon equipped with cable-tracking tools. The condition of the cable, its effect on the seafloor, and distribution of benthic megafauna and infauna were determined. Video data indicated the nature of interaction between the cable and the seafloor. Rocky nearshore areas, where wave energies are greatest, showed the clearest evidence of impact. Here, evidence of abrasion included frayed and unraveling portions of the cable's armor and vertical grooves in the rock apparently cut by the cable. The greatest incision and armor damage occurred on ledges between spans in irregular rock outcrop areas. Unlike the nearshore rocky region, neither the rocks nor the cable appeared damaged along outcrops on Pioneer Seamount. Multiple loops of slack cable added during a 1997 cable repair operation were found lying flat on the seafloor. Several sharp kinks in the cable were seen at 240 m water depths in an area subjected to intense trawling activity. Most of the cable has become buried with time in sediment

  19. The effect of growth temperature on the irreversibility line of MPMG YBCO bulk with Y2O3 layer

    NASA Astrophysics Data System (ADS)

    Kurnaz, Sedat; Çakır, Bakiye; Aydıner, Alev

    2017-07-01

    In this study, three kinds of YBCO samples which are named Y1040, Y1050 and Y1060 were fabricated by Melt-Powder-Melt-Growth (MPMG) method without a seed crystal. Samples seem to be single crystal. The compacted powders were located on a crucible with a buffer layer of Y2O3 to avoid liquid to spread on the furnace plate and also to support crystal growth. YBCO samples were investigated by magnetoresistivity (ρ-T) and magnetization (M-T) measurements in dc magnetic fields (parallel to c-axis) up to 5 T. Irreversibility fields (Hirr) and upper critical fields (Hc2) were obtained using 10% and 90% criteria of the normal state resistivity value from ρ-T curves. M-T measurements were carried out using the zero field cooling (ZFC) and field cooling (FC) processes to get irreversible temperature (Tirr). Fitting of the irreversibility line results to giant flux creep and vortex glass models were discussed. The results were found to be consistent with the results of the samples fabricated using a seed crystal. At the fabrication of MPMG YBCO, optimized temperature for crystal growth was determined to be around 1050-1060 °C.

  20. Development of Inspection Robots for Bridge Cables

    PubMed Central

    Kim, Se-Hoon; Lee, Jong-Jae

    2013-01-01

    This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented. PMID:24459453