Sample records for year sunspot cycle

  1. Comparison of the Variations of Sunspot Number, Number of Sunspot Groups, and Sunspot Area, 1875 -2013

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    Examined are the yearly variations and ratios of sunspot number, the number of sunspot groups, and the total corrected sunspot area for the interval 1875-2013. While yearly sunspot number independently correlates strongly (r = 0.98) with the yearly number of sunspot groups (y = -2 + 11.99x) and the total corrected sunspot area (y = 5 + 0.059x), the strongest correlation (Ry12 = 0.99) is the one based on the bivariate fit of sunspot number against the combined variations of the number of sunspot groups and sunspot area (y = 1 + 5.88x1 + 0.031x2, where y refers to sunspot number, x1 refers to the number of sunspot groups, and x2 refers to the sunspot area). While all cycle minima based on the bivariate fit are concurrent with the observed minimum in sunspot number, cycle maxima are sometimes found to differ. For sunspot cycles 12, 19, 20, and 23, cycle maximum is inferred to have occurred in 1884, 1958, 1970, and 2002, respectively, rather than in 1883, 1957, 1968, and 2000, based on the observed sunspot number. Also, cycle 19's maximum amplitude based on observed sunspot number seems too high in comparison to that found using the bivariate fit. During the 139-year interval 1875-2013, the difference between the observed and predicted sunspot number based on the bivariate fit is <1 standard error of estimate (se) (<6.4) for 111 years, between 1 and <2 se (6.4 to <12.8) for 28 years, and =2 se (=12.8) for only 4 years, these years being 1957 (16.6), 1978 (-15.8), 1980 (23), and 1982 (-16.3). For sunspot cycle 24, the difference between observed and predicted values has been only -0.7 and 3.2 (=0.5 se).

  2. Predicting the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    The 11-year sunspot cycle was discovered by an amateur astronomer in 1844. Visual and photographic observations of sunspots have been made by both amateurs and professionals over the last 400 years. These observations provide key statistical information about the sunspot cycle that do allow for predictions of future activity. However, sunspots and the sunspot cycle are magnetic in nature. For the last 100 years these magnetic measurements have been acquired and used exclusively by professional astronomers to gain new information about the nature of the solar activity cycle. Recently, magnetic dynamo models have evolved to the stage where they can assimilate past data and provide predictions. With the advent of the Internet and open data policies, amateurs now have equal access to the same data used by professionals and equal opportunities to contribute (but, alas, without pay). This talk will describe some of the more useful prediction techniques and reveal what they say about the intensity of the upcoming sunspot cycle.

  3. Sunspots, Space Weather and Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  4. A Comparison of Wolf's Reconstructed Record of Annual Sunspot Number with Schwabe's Observed Record of Clusters of Spots for the Interval of 1826-1868

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, observed the Sun routinely from Desau, Germany during the interval of 1826-1869, averaging about 290 observing days per year. His yearly counts of 'clusters of spots' (or, more correctly, the yearly number of newly appearing sunspot groups) provided a simple means for describing the overt features of the sunspot cycle (i.e., the timing and relative strengths of cycle minimum and maximum). In 1848, Rudolf Wolf, a Swiss astronomer, having become aware of Schwabe's discovery, introduced his now familiar 'relative sunspot number' and established an international cadre of observers for monitoring the future behavior of the sunspot cycle and for reconstructing its past behavior (backwards in time to 1818, based on daily sunspot number estimates). While Wolf's reconstruction is complete (without gaps) only from 1849 (hence, the beginning of the modern era), the immediately preceding interval of 1818-1848 is incomplete, being based on an average of 260 observing days per year. In this investigation, Wolf's reconstructed record of annual sunspot number is compared against Schwabe's actual observing record of yearly counts of clusters of spots. The comparison suggests that Wolf may have misplaced (by about 1-2 yr) and underestimated (by about 16 units of sunspot number) the maximum amplitude for cycle 7. If true, then, cycle 7's ascent and descent durations should measure about 5 years each instead of 7 and 3 years, respectively, the extremes of the distributions, and its maximum amplitude should measure about 96 instead of 70. This study also indicates that cycle 9's maximum amplitude is more reliably determined than cycle 8's and that both appear to be of comparable size (about 130 units of sunspot number) rather than being significantly different. Therefore, caution is urged against the indiscriminate use of the pre-modern era sunspot numbers in long-term studies of the sunspot cycle, since such use may lead to specious results.

  5. A comparative look at sunspot cycles

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1984-01-01

    On the basis of cycles 8 through 20, spanning about 143 years, observations of sunspot number, smoothed sunspot number, and their temporal properties were used to compute means, standard deviations, ranges, and frequency of occurrence histograms for a number of sunspot cycle parameters. The resultant schematic sunspot cycle was contrasted with the mean sunspot cycle, obtained by averaging smoothed sunspot number as a function of time, tying all cycles (8 through 20) to their minimum occurence date. A relatively good approximation of the time variation of smoothed sunspot number for a given cycle is possible if sunspot cycles are regarded in terms of being either HIGH- or LOW-R(MAX) cycles or LONG- or SHORT-PERIOD cycles, especially the latter. Linear regression analyses were performed comparing late cycle parameters with early cycle parameters and solar cycle number. The early occurring cycle parameters can be used to estimate later occurring cycle parameters with relatively good success, based on cycle 21 as an example. The sunspot cycle record clearly shows that the trend for both R(MIN) and R(MAX) was toward decreasing value between cycles 8 through 14 and toward increasing value between cycles 14 through 20. Linear regression equations were also obtained for several measures of solar activity.

  6. An Examination of Sunspot Number Rates of Growth and Decay in Relation to the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    On the basis of annual sunspot number averages, sunspot number rates of growth and decay are examined relative to both minimum and maximum amplitudes and the time of their occurrences using cycles 12 through present, the most reliably determined sunspot cycles. Indeed, strong correlations are found for predicting the minimum and maximum amplitudes and the time of their occurrences years in advance. As applied to predicting sunspot minimum for cycle 24, the next cycle, its minimum appears likely to occur in 2006, especially if it is a robust cycle similar in nature to cycles 17-23.

  7. Predictions of Sunspot Cycle 24: A Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Bhatt, N. J.; Jain, R.

    2017-12-01

    The space weather is largely affected due to explosions on the Sun viz. solar flares and CMEs, which, however, in turn depend upon the magnitude of the solar activity i e. number of sunspots and their magnetic configuration. Owing to these space weather effects, predictions of sunspot cycle are important. Precursor techniques, particularly employing geomagnetic indices, are often used in the prediction of the maximum amplitude of a sunspot cycle. Based on the average geomagnetic activity index aa (since 1868 onwards) for the year of the sunspot minimum and the preceding four years, Bhatt et al. (2009) made two predictions for sunspot cycle 24 considering 2008 as the year of sunspot minimum: (i) The annual maximum amplitude would be 92.8±19.6 (1-sigma accuracy) indicating a somewhat weaker cycle 24 as compared to cycles 21-23, and (ii) smoothed monthly mean sunspot number maximum would be in October 2012±4 months (1-sigma accuracy). However, observations reveal that the sunspot minima extended up to 2009, and the maximum amplitude attained is 79, with a monthly mean sunspot number maximum of 102.3 in February 2014. In view of the observations and particularly owing to the extended solar minimum in 2009, we re-examined our prediction model and revised the prediction results. We find that (i) The annual maximum amplitude of cycle 24 = 71.2 ± 19.6 and (ii) A smoothed monthly mean sunspot number maximum in January 2014±4 months. We discuss our failure and success aspects and present improved predictions for the maximum amplitude as well as for the timing, which are now in good agreement with the observations. Also, we present the limitations of our forecasting in the view of long term predictions. We show if year of sunspot minimum activity and magnitude of geomagnetic activity during sunspot minimum are taken correctly then our prediction method appears to be a reliable indicator to forecast the sunspot amplitude of the following solar cycle. References:Bhatt, N.J., Jain, R. & Aggarwal, M.: 2009, Sol. Phys. 260, 225

  8. Essential features of long-term changes of areas and diameters of sunspot groups in solar activity cycles 12-24

    NASA Astrophysics Data System (ADS)

    Efimenko, V. M.; Lozitsky, V. G.

    2018-06-01

    We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf's numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946-1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44 years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44 years.

  9. What the Sunspot Record Tells Us About Space Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2004-01-01

    The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modem measures of solar activity including: 10.7-cm radio flux, total irradiance, x-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modem measures of solar activity, and enough to provide important details about long-term variations in solar activity or Space Climate. The sunspot record shows: 1) sunspot cycles have periods of 131 plus or minus 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5 ) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period, 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 1.45 plus or minus 30 in 2010 while the following cycle should have a maximum of about 70 plus or minus 30 in 2023.

  10. Revised Sunspot Numbers and the Effects on Understanding the Sunspot Cycle

    NASA Astrophysics Data System (ADS)

    Hathaway, D. H.

    2014-12-01

    While sunspot numbers provide only limited information about the sunspot cycle, they provide that information for at least twice as many sunspot cycles as any other direct solar observation. In particular, sunspot numbers are available before, during, and immediately after the Maunder Minimum (1645-1715). The instruments and methods used to count sunspots have changed over the last 400+ years. This leads to systematic changes in the sunspot number that can mask, or artificially introduce, characteristics of the sunspot cycle. The most widely used sunspot number is the International (Wolf/Zurich) sunspot number which is now calculated at the Solar Influences Data Center in Brussels, Belgium. These numbers extend back to 1749. The Group sunspot number extends back to the first telescopic observations of the Sun in 1610. There are well-known and significant differences between these two numbers where they overlap. Recent work has helped us to understand the sources of these differences and has led to proposed revisions in the sunspot numbers. Independent studies now support many of these revisions. These revised sunspot numbers suggest changes to our understanding of the sunspot cycle itself and to our understanding of its connection to climate change.

  11. An Examination of Selected Geomagnetic Indices in Relation to the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    Previous studies have shown geomagnetic indices to be useful for providing early estimates for the size of the following sunspot cycle several years in advance. Examined this study are various precursor methods for predicting the minimum and maximum amplitude of the following sunspot cycle, these precursors based on the aa and Ap geomagnetic indices and the number of disturbed days (NDD), days when the daily Ap index equaled or exceeded 25. Also examined is the yearly peak of the daily Ap index (Apmax), the number of days when Ap greater than or equal to 100, cyclic averages of sunspot number R, aa, Ap, NDD, and the number of sudden storm commencements (NSSC), as well the cyclic sums of NDD and NSSC. The analysis yields 90-percent prediction intervals for both the minimum and maximum amplitudes for cycle 24, the next sunspot cycle. In terms of yearly averages, the best regressions give Rmin = 9.8+/-2.9 and Rmax = 153.8+/-24.7, equivalent to Rm = 8.8+/-2.8 and RM = 159+/-5.5, based on the 12-mo moving average (or smoothed monthly mean sunspot number). Hence, cycle 24 is expected to be above average in size, similar to cycles 21 and 22, producing more than 300 sudden storm commencements and more than 560 disturbed days, of which about 25 will be Ap greater than or equal to 100. On the basis of annual averages, the sunspot minimum year for cycle 24 will be either 2006 or 2007.

  12. Application of Avco data analysis and prediction techniques (ADAPT) to prediction of sunspot activity

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.; Amato, R. A.

    1972-01-01

    The results are presented of the application of Avco Data Analysis and Prediction Techniques (ADAPT) to derivation of new algorithms for the prediction of future sunspot activity. The ADAPT derived algorithms show a factor of 2 to 3 reduction in the expected 2-sigma errors in the estimates of the 81-day running average of the Zurich sunspot numbers. The report presents: (1) the best estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT performance with conventional techniques, and (3) specific approaches to further reduction in the errors of estimated sunspot activity and to recovery of earlier sunspot historical data. The ADAPT programs are used both to derive regression algorithm for prediction of the entire 11-year sunspot cycle from the preceding two cycles and to derive extrapolation algorithms for extrapolating a given sunspot cycle based on any available portion of the cycle.

  13. Sunspot random walk and 22-year variation

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua

    2012-01-01

    We examine two stochastic models for consistency with observed long-term secular trends in sunspot number and a faint, but semi-persistent, 22-yr signal: (1) a null hypothesis, a simple one-parameter random-walk model of sunspot-number cycle-to-cycle change, and, (2) an alternative hypothesis, a two-parameter random-walk model with an imposed 22-yr alternating amplitude. The observed secular trend in sunspots, seen from solar cycle 5 to 23, would not be an unlikely result of the accumulation of multiple random-walk steps. Statistical tests show that a 22-yr signal can be resolved in historical sunspot data; that is, the probability is low that it would be realized from random data. On the other hand, the 22-yr signal has a small amplitude compared to random variation, and so it has a relatively small effect on sunspot predictions. Many published predictions for cycle 24 sunspots fall within the dispersion of previous cycle-to-cycle sunspot differences. The probability is low that the Sun will, with the accumulation of random steps over the next few cycles, walk down to a Dalton-like minimum. Our models support published interpretations of sunspot secular variation and 22-yr variation resulting from cycle-to-cycle accumulation of dynamo-generated magnetic energy.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Feng, W., E-mail: fengwen69@sina.cn

    Extended time series of Solar Activity Indices (ESAI) extended the Greenwich series of sunspot area from the year 1874 back to 1821. The ESAI's yearly sunspot area in the northern and southern hemispheres from 1821 to 2013 is utilized to investigate characteristics of the north–south hemispherical asymmetry of sunspot activity. Periodical behavior of about 12 solar cycles is also confirmed from the ESAI data set to exist in dominant hemispheres, linear regression lines of yearly asymmetry values, and cumulative counts of yearly sunspot areas in the hemispheres for solar cycles. The period is also inferred to appear in both themore » cumulative difference in the yearly sunspot areas in the hemispheres over the entire time interval and in its statistical Student's t-test. The hemispherical bias of sunspot activity should be regarded as an impossible stochastic phenomenon over a long time period.« less

  15. Empirical mode decomposition and long-range correlation analysis of sunspot time series

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Leung, Yee

    2010-12-01

    Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the proposed EMD-based method—are further compared, and possible reasons for the different results are given. Two numerical experiments are designed for quantitatively evaluating the performances of these three methods in removing periodic trends with inexact/exact cycles and in detecting the possible crossover points.

  16. On long-term periodicities in the sunspot record

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1984-01-01

    Sunspot records are systematically maintained, with the knowledge that an 11 year average period exists since about 1850. Thus, the sunspot record of highest quality and considered to be the most reliable is that of cycle eight through the present. On the basis of cycles 8 through 20, various combinations of sine curves were used to approximate the observed R sub MAX values (where R sub MAX is the smoothed sunspot number at cycle maximum). It is found that a three component sinusoidal function, having an 11 cycle and a 2 cycle variation on a 90 cycle periodicity, yields computed R sub MAX values which fit, reasonably well, observed R sub MAX values for the modern sunspot cycles. Extrapolation of the empirical functions forward in time allows for the projection of values of R sub MAX for cycles 21 and 22. For cycle 21, the function projects a value of 157.3, very close to the actually observed value of 164.5. For cycle 22, the function projects a value of about 107. Linear regressions applied to cycle 22 indicate a long-period cycle (cycle duration 132 months). An extensive bibliography on techniques used to estimate the time dependent behavior of sunspot cycles is provided.

  17. Latitudinal migration of sunspots based on the ESAI database

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Li, Fu-Yu; Feng, Wen

    2018-01-01

    The latitudinal migration of sunspots toward the equator, which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone, is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation. The Extended time series of Solar Activity Indices (ESAI) elongated the Greenwich observation record of sunspots by several decades in the past. In this study, ESAI’s yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear. It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function. In addition, the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses, providing a particular constraint for solar dynamo models. Indeed, the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period, and it is located at higher latitudinal position, giving evidence to support the Babcock-Leighton dynamo mechanism.

  18. Extreme Value Theory and the New Sunspot Number Series

    NASA Astrophysics Data System (ADS)

    Acero, F. J.; Carrasco, V. M. S.; Gallego, M. C.; García, J. A.; Vaquero, J. M.

    2017-04-01

    Extreme value theory was employed to study solar activity using the new sunspot number index. The block maxima approach was used at yearly (1700-2015), monthly (1749-2016), and daily (1818-2016) scales, selecting the maximum sunspot number value for each solar cycle, and the peaks-over-threshold (POT) technique was used after a declustering process only for the daily data. Both techniques led to negative values for the shape parameters. This implies that the extreme sunspot number value distribution has an upper bound. The return level (RL) values obtained from the POT approach were greater than when using the block maxima technique. Regarding the POT approach, the 110 year (550 and 1100 year) RLs were lower (higher) than the daily maximum observed sunspot number value of 528. Furthermore, according to the block maxima approach, the 10-cycle RL lay within the block maxima daily sunspot number range, as expected, but it was striking that the 50- and 100-cycle RLs were also within that range. Thus, it would seem that the RL is reaching a plateau, and, although one must be cautious, it would be difficult to attain sunspot number values greater than 550. The extreme value trends from the four series (yearly, monthly, and daily maxima per solar cycle, and POT after declustering the daily data) were analyzed with the Mann-Kendall test and Sen’s method. Only the negative trend of the daily data with the POT technique was statistically significant.

  19. The area and absolute magnetic flux of sunspots over the past 400 years

    NASA Astrophysics Data System (ADS)

    Nagovitsyn, Yu. A.; Tlatov, A. G.; Nagovitsyna, E. Yu.

    2016-09-01

    A new series of yearly-mean relative sunspot numbers SN 2 that has been extrapolated into the past (to 1610) is presented. The Kislovodsk series with the scale factor b = 1.0094 ± 0.0059 represents a reasonable continuation of the mean-monthly and mean-yearly total sunspot areas of the Greenwich series after 1976. The second maximum of the 24th solar-activity cycle was not anomalously low, and was no lower than 6 of the past 13 cycles. A series A 2 of values for the total sunspot area in 1610-2015 has been constructed, and is complementary to new versions of the series of the relative number of sunspots SN 2 and the number of sunspot groups GN 2. When needed, this series can be reduced to yield a quantity having a clear physical meaning—the spot absolute magnetic flux Φ Σ( t)[Mx] = 2.16 × 1019 A( t) [mvh]. The maximum sunspot area during the Maunder minimum is much higher in the new series compared to the previous version. This at least partially supports the validity of arguments that cast doubt on the anomalously low ampltude of the solar cycles during the Maunder minimum that has been assumed by many researchers earlier.

  20. Sunspots, El Niño, and the levels of Lake Victoria, East Africa

    NASA Astrophysics Data System (ADS)

    Stager, J. Curt; Ruzmaikin, Alexander; Conway, Declan; Verburg, Piet; Mason, Peter J.

    2007-08-01

    An association of high sunspot numbers with rises in the level of Lake Victoria, East Africa, has been the focus of many investigations and vigorous debate during the last century. In this paper, we show that peaks in the ~11-year sunspot cycle were accompanied by Victoria level maxima throughout the 20th century, due to the occurrence of positive rainfall anomalies ~1 year before solar maxima. Similar patterns also occurred in at least five other East African lakes, which indicates that these sunspot-rainfall relationships were broadly regional in scale. Although irradiance fluctuations associated with the sunspot cycle are weak, their effects on tropical rainfall could be amplified through interactions with sea surface temperatures and atmospheric circulation systems, including ENSO. If this Sun-rainfall relationship persists in the future, then sunspot cycles can be used for long-term prediction of precipitation anomalies and associated outbreaks of insect-borne disease in much of East Africa. In that case, unusually wet rainy seasons and Rift Valley Fever epidemics should occur a year or so before the next solar maximum, which is expected to occur in 2011-2012 AD.

  1. Digitized archive of the Kodaikanal images: Representative results of solar cycle variation from sunspot area determination

    NASA Astrophysics Data System (ADS)

    Ravindra, B.; Priya, T. G.; Amareswari, K.; Priyal, M.; Nazia, A. A.; Banerjee, D.

    2013-02-01

    Context. Sunspots have been observed since Galileo Galilei invented the telescope. Later, sunspot drawings have been upgraded to image storage using photographic plate in the second half of nineteenth century. These photographic images are valuable data resources for studying long-term changes in the solar magnetic field and its influence on the Earth's climate and weather. Aims: Digitized photographic plates cannot be used directly for the scientific analysis. It requires certain steps of calibration and processing before using them for extracting any useful information. The final data can be used to study solar cycle variations over several cycles. Methods: We digitized more than 100 years of white-light images stored in photographic plates and films that are available at Kodaikanal observatory starting from 1904. The images were digitized using a 4k × 4k format CCD-camera-based digitizer unit.The digitized images were calibrated for relative plate density and aligned in such a way that the solar north is in upward direction. A semi-automated sunspot detection technique was used to identify the sunspots on the digitized images. Results: In addition to describing the calibration procedure and availability of the data, we here present preliminary results on the sunspot area measurements and their variation with time. The results show that the white-light images have a uniform spatial resolution throughout the 90 years of observations. However, the contrast of the images decreases from 1968 onwards. The images are circular and do not show any major geometrical distortions. The measured monthly averaged sunspot areas closely match the Greenwich sunspot area over the four solar cycles studied here. The yearly averaged sunspot area shows a high degree of correlation with the Greenwich sunspot area. Though the monthly averaged sunspot number shows a good correlation with the monthly averaged sunspot areas, there is a slight anti-correlation between the two during solar maximum. Conclusions: The Kodaikanal data archive is hosted at http://kso.iiap.res.in. The long time sequence of the Kodaikanal white-light images provides a consistent data set for sunspot areas and other proxies. Many studies can be performed using Kodaikanal data alone without requiring intercalibration between different data sources.

  2. Length of the solar cycle influence on the relationship NAO-Northern Hemisphere Temperature

    NASA Astrophysics Data System (ADS)

    de La Torre, L.; Gimeno, L.; Tesouro, M.; Añel, J. A.; Nieto, R.; Ribera, P.; García, R.; Hernández, E.

    2003-04-01

    The influence of the length of the solar cycle on the relationship North Atlantic Oscillation (NAO)-Northern Hemisphere Temperature (NHT) is investigated. The results suggest that this relationship is different according to the length of the solar cycle. When the sunspot cycle is 10 or 11 years long, wintertime NAO and NHT are positively correlated, being the signal more intense during 11 years period, but when the sunspot cycle is longer (12 years) correlations between wintertime NAO and NHT are not significant. In fact there are significant negative correlations between wintertime NAO and spring NHT, with predictive potential.

  3. Long-term solar activity explored with wavelet methods

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.; Liszka, L.; Lundin, R.; Muscheler, R.

    2006-03-01

    Long-term solar activity has been studied with a set of wavelet methods. The following indicators of long-term solar activity were used; the group sunspot number, the sunspot number, and the 14C production rate. Scalograms showed the very long-term scales of 2300 years (Hallstat cycle), 900-1000 years, 400-500 years, and 200 years (de Vries cycle). Scalograms of a newly-constructed 14C production rate showed interesting solar modulation during the Maunder minimum. Multi-Resolution Analysis (MRA) revealed the modulation in detail, as well as peaks of solar activity not seen in the sunspot number. In both the group sunspot number scalogram and the 14C production rate scalogram, a process appeared, starting or ending in late 1700. This process has not been discussed before. Its solar origin is unclear.

    The group sunspot number ampligram and the sunspot number ampligram showed the Maunder and the Dalton minima, and the period of high solar activity, which already started about 1900 and then decreased again after mid 1990. The decrease starts earlier for weaker components. Also, weak semiperiodic activity was found.

    Time Scale Spectra (TSS) showed both deterministic and stochastic processes behind the variability of the long-term solar activity. TSS of the 14C production rate, group sunspot number and Mt. Wilson sunspot index and plage index were compared in an attempt to interpret the features and processes behind the long-term variability.

  4. Predictions of Solar Cycle 24: How are We Doing?

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2016-01-01

    Predictions of solar activity are an essential part of our Space Weather forecast capability. Users are requiring usable predictions of an upcoming solar cycle to be delivered several years before solar minimum. A set of predictions of the amplitude of Solar Cycle 24 accumulated in 2008 ranged from zero to unprecedented levels of solar activity. The predictions formed an almost normal distribution, centered on the average amplitude of all preceding solar cycles. The average of the current compilation of 105 predictions of the annual-average sunspot number is 106 +/- 31, slightly lower than earlier compilations but still with a wide distribution. Solar Cycle 24 is on track to have a below-average amplitude, peaking at an annual sunspot number of about 80. Our need for solar activity predictions and our desire for those predictions to be made ever earlier in the preceding solar cycle will be discussed. Solar Cycle 24 has been a below-average sunspot cycle. There were peaks in the daily and monthly averaged sunspot number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014. With the rapid increase in solar data and capability of numerical models of the solar convection zone we are developing the ability to forecast the level of the next sunspot cycle. But predictions based only on the statistics of the sunspot number are not adequate for predicting the next solar maximum. I will describe how we did in predicting the amplitude of Solar Cycle 24 and describe how solar polar field predictions could be made more accurate in the future.

  5. Sunspot analysis and prediction

    NASA Technical Reports Server (NTRS)

    Steyer, C. C.

    1971-01-01

    An attempt is made to develop an accurate functional representation, using common trigonometric functions, of all existing sunspot data, both quantitative and qualitative, ancient and modern. It is concluded that the three periods of high sunspot activity (1935 to 1970, 1835 to 1870, and 1755 to 1790) are independent populations. It is also concluded that these populations have long periods of approximately 400, 500, and 610 years, respectively. The difficulties in assuming a periodicity of seven 11-year cycles of approximately 80 years are discussed.

  6. Visual Circular Analysis of 266 Years of Sunspot Counts.

    PubMed

    Buelens, Bart

    2016-06-01

    Sunspots, colder areas that are visible as dark spots on the surface of the Sun, have been observed for centuries. Their number varies with a period of ∼11 years, a phenomenon closely related to the solar activity cycle. Recently, observation records dating back to 1749 have been reassessed, resulting in the release of a time series of sunspot numbers covering 266 years of observations. This series is analyzed using circular analysis to determine the periodicity of the occurrence of solar maxima. The circular analysis is combined with spiral graphs to provide a single visualization, simultaneously showing the periodicity of the series, the degree to which individual cycle lengths deviate from the average period, and differences in levels reached during the different maxima. This type of visualization of cyclic time series with varying cycle lengths in which significant events occur periodically is broadly applicable. It is aimed particularly at science communication, education, and public outreach.

  7. Examination of the Armagh Observatory Annual Mean Temperature Record, 1844-2004

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    The long-term annual mean temperature record (1844-2004) of the Armagh Observatory (Armagh, Northern Ireland, United Kingdom) is examined for evidence of systematic variation, in particular, as related to solar/geomagnetic forcing and secular variation. Indeed, both are apparent in the temperature record. Moving averages for 10 years of temperature are found to highly correlate against both 10-year moving averages of the aa-geomagnetic index and sunspot number, having correlation coefficients of approx. 0.7, inferring that nearly half the variance in the 10-year moving average of temperature can be explained by solar/geomagnetic forcing. The residuals appear episodic in nature, with cooling seen in the 1880s and again near 1980. Seven of the last 10 years of the temperature record has exceeded 10 C, unprecedented in the overall record. Variation of sunspot cyclic averages and 2-cycle moving averages of temperature strongly associate with similar averages for the solar/geomagnetic cycle, with the residuals displaying an apparent 9-cycle variation and a steep rise in temperature associated with cycle 23. Hale cycle averages of temperature for even-odd pairs of sunspot cycles correlate against similar averages for the solar/geomagnetic cycle and, especially, against the length of the Hale cycle. Indications are that annual mean temperature will likely exceed 10 C over the next decade.

  8. Examination of Solar Cycle Statistical Model and New Prediction of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.

    2000-01-01

    Sunspot numbers in the current solar cycle 23 were estimated by using a statistical model with the accumulating cycle sunspot data based on the odd-even behavior of historical sunspot cycles from 1 to 22. Since cycle 23 has progressed and the accurate solar minimum occurrence has been defined, the statistical model is validated by comparing the previous prediction with the new measured sunspot number; the improved sunspot projection in short range of future time is made accordingly. The current cycle is expected to have a moderate level of activity. Errors of this model are shown to be self-correcting as cycle observations become available.

  9. On the Relationship Between Spotless Days and the Sunspot Cycle: A Supplement

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    This study provides supplemental material to an earlier study concerning the relationship between spotless days and the sunspot cycle. Our previous study, Technical Publication (TP)-2005-213608 determined the timing and size of sunspot minimum and maximum for the new sunspot cycle, relative to the occurrence of the first spotless day during the declining phase of the old sunspot cycle and the last spotless day during the rising portion of the new cycle. Because the number of spotless days (NSD) rapidly increases as the cycle nears sunspot minimum and rapidly decreases thereafter, the size and timing of sunspot minimum and maximum might be more accurately determined using a higher threshold for comparison, rather than using the first and last spotless day occurrences. It is this aspect that is investigated more thoroughly in this TP.

  10. Temporal relations between magnetic bright points and the solar sunspot cycle

    NASA Astrophysics Data System (ADS)

    Utz, Dominik; Muller, Richard; Van Doorsselaere, Tom

    2017-12-01

    The Sun shows a global magnetic field cycle traditionally best visible in the photosphere as a changing sunspot cycle featuring roughly an 11-year period. In addition we know that our host star also harbours small-scale magnetic fields often seen as strong concentrations of magnetic flux reaching kG field strengths. These features are situated in inter-granular lanes, where they show up bright as so-called magnetic bright points (MBPs). In this short paper we wish to analyse an homogenous, nearly 10-year-long synoptic Hinode image data set recorded from 2006 November up to 2016 February in the G-band to inspect the relationship between the number of MBPs at the solar disc centre and the relative sunspot number. Our findings suggest that the number of MBPs at the solar disc centre is indeed correlated to the relative sunspot number, but with the particular feature of showing two different temporal shifts between the decreasing phase of cycle 23 including the minimum and the increasing phase of cycle 24 including the maximum. While the former is shifted by about 22 months, the latter is only shifted by less than 12 months. Moreover, we introduce and discuss an analytical model to predict the number of MBPs at the solar disc centre purely depending on the evolution of the relative sunspot number as well as the temporal change of the relative sunspot number and two background parameters describing a possibly acting surface dynamo as well as the strength of the magnetic field diffusion. Finally, we are able to confirm the plausibility of the temporal shifts by a simplistic random walk model. The main conclusion to be drawn from this work is that the injection of magnetic flux, coming from active regions as represented by sunspots, happens on faster time scales than the removal of small-scale magnetic flux elements later on.

  11. Planetary resonances, bi-stable oscillation modes, and solar activity cycles

    NASA Technical Reports Server (NTRS)

    Sleeper, H. P., Jr.

    1972-01-01

    The natural resonance structure of the planets in the solar system yields resonance periods of 11.08 and 180 years. The 11.08 year period is due to resonance of the sidereal periods of the three inner planets. The 180-year period is due to synodic resonances of the four major planets. These periods are also observed in the sunspot time series. The 11-year sunspot cycles from 1 to 19 are separated into categories of positive and negative cycles, Mode 1 and Mode 2 cycles, and typical and anomalous cycles. Each category has a characteristic shape, magnitude, or duration, so that statistical prediction techniques are improved when a cycle can be classified in a given category. These categories provide evidence for bistable modes of solar oscillation. The next minimum is expected in 1977 and the next maximum in 1981 or later. These epoch values are 2.5 years later than those based on typical cycle characteristics.

  12. Comment on "The Predicted Size of Cycle 23 Based on the Inferred three-cycle Quasiperiodicity of the Planetary Index Ap"

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    1999-01-01

    Recently, Ahluwalia reviewed the solar and geomagnetic data for the last 6 decades and remarked that these data "indicate the existence of a three-solar-activity-cycle quasiperiodicity in them." Furthermore, on the basis of this inferred quasiperiodicity, he asserted that cycle 23 represents the initial cycle in a new three-cycle string, implying that it "will be more modest (a la cycle 17) with an annual mean sunspot number count of 119.3 +/- 30 at the maximum", a prediction that is considerably below the consensus prediction of 160 +/- 30 by Joselin et al. and of similar predictions by others based on a variety of predictive techniques. Several major sticking points of Ahluwalia's presentation, however, must be readdressed, and these issues form the basis of this comment. First, Ahluwalia appears to have based his analysis on a data set of Ap index values that is erroneous. For example, he depicts for the interval of 1932-1997 the variation of the Ap index in terms of annual averages, contrasting them against annual averages of sunspot number (SSN), and he lists for cycles 17-23 the minimum and maximum value of each, as well as the years in which they occur and a quantity which he calls "Amplitude" (defined as the numeric difference between the maximum and minimum values). In particular, he identifies the minimum Ap index (i.e., the minimum value of the Ap index in the vicinity of sunspot cycle minimum, which usually occurs in the year following sunspot minimum and which will be called hereafter, simply, Ap min) and the year in which it occur for cycles 17 - 23 respectively.

  13. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, S.; Yi, Y., E-mail: suyeonoh@jnu.ac.kr

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cyclesmore » and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.« less

  14. A Comparison of Wolf's Reconstructed Record of Annual Sunspot Number with Schwabe's Observed Record of 'Clusters of Spots' for the Interval of 1826-1868

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1997-01-01

    On the basis of a comparison of Wolf s reconstructed record of yearly averages of sunspot number against Schwabe's observations of yearly counts of 'clusters of spots' (i.e., the yearly number of newly appearing sunspot groups) during the interval of 1826-1868, one infers that Wolf probably misplaced and underestimated the maximum amplitude for cycle 7. In particular, Schwabe's data suggest that the maximum amplitude for cycle 7 occurred in 1828 rather than in 1830 and that it measured about 86.3 (+/-13.9; i.e., the 90% confidence level) rather than 70.4. If true, then, the ascent and descent durations for cycle 7 should be 5 years each instead of 7 and 3 years, respectively. Likewise, on the basis of the same comparison, one infers that the maximums for cycles 8 and 9, occurring, respectively, in 1837 and 1848, were of comparable size (approximately 130), although, quite possibly, the one for cycle 8 may have been smaller. Lastly, presuming the continued action of the 'odd-even' effect (i.e., the odd-numbered following cycle of Hale even-odd cycle pairs having a maximum amplitude that is of comparable or larger size than the even-numbered leading cycle) during the earlier pre-modem era of cycles 6-9, one infers that Wolf's estimate for the size of cycle 6 probably is too low.

  15. A Standard Law for the Equatorward Drift of the Sunspot Zones

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2012-01-01

    The latitudinal location of the sunspot zones in each hemisphere is determined by calculating the centroid position of sunspot areas for each solar rotation from May 1874 to June 2012. When these centroid positions are plotted and analyzed as functions of time from each sunspot cycle maximum there appears to be systematic differences in the positions and equatorward drift rates as a function of sunspot cycle amplitude. If, instead, these centroid positions are plotted and analyzed as functions of time from each sunspot cycle minimum then most of the differences in the positions and equatorward drift rates disappear. The differences that remain disappear entirely if curve fitting is used to determine the starting times (which vary by as much as 8 months from the times of minima). The sunspot zone latitudes and equatorward drift measured relative to this starting time follow a standard path for all cycles with no dependence upon cycle strength or hemispheric dominance. Although Cycle 23 was peculiar in its length and the strength of the polar fields it produced, it too shows no significant variation from this standard. This standard law, and the lack of variation with sunspot cycle characteristics, is consistent with Dynamo Wave mechanisms but not consistent with current Flux Transport Dynamo models for the equatorward drift of the sunspot zones.

  16. A SOLAR CYCLE LOST IN 1793-1800: EARLY SUNSPOT OBSERVATIONS RESOLVE THE OLD MYSTERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usoskin, Ilya G.; Mursula, Kalevi; Arlt, Rainer

    2009-08-01

    Because of the lack of reliable sunspot observations, the quality of the sunspot number series is poor in the late 18th century, leading to the abnormally long solar cycle (1784-1799) before the Dalton minimum. Using the newly recovered solar drawings by the 18-19th century observers Staudacher and Hamilton, we construct the solar butterfly diagram, i.e., the latitudinal distribution of sunspots in the 1790s. The sudden, systematic occurrence of sunspots at high solar latitudes in 1793-1796 unambiguously shows that a new cycle started in 1793, which was lost in the traditional Wolf sunspot series. This finally confirms the existence of themore » lost cycle that has been proposed earlier, thus resolving an old mystery. This Letter brings the attention of the scientific community to the need of revising the sunspot series in the 18th century. The presence of a new short, asymmetric cycle implies changes and constraints to sunspot cycle statistics, solar activity predictions, and solar dynamo theories, as well as for solar-terrestrial relations.« less

  17. The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability

    NASA Astrophysics Data System (ADS)

    McIntosh, Scott W.; Leamon, Robert J.; Krista, Larisza D.; Title, Alan M.; Hudson, Hugh S.; Riley, Pete; Harder, Jerald W.; Kopp, Greg; Snow, Martin; Woods, Thomas N.; Kasper, Justin C.; Stevens, Michael L.; Ulrich, Roger K.

    2015-04-01

    Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the `Gnevyshev Gap'--a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales.

  18. Hemispheric Sunspot Unit Area: Comparison with Hemispheric Sunspot Number and Sunspot Area

    NASA Astrophysics Data System (ADS)

    Li, K. J.; Xiang, N. B.; Qu, Z. N.; Xie, J. L.

    2014-03-01

    The monthly mean northern and southern hemispheric sunspot numbers (SNs) and sunspot areas (SAs) in the time interval of 1945 January to 2012 December are utilized to construct the monthly northern and southern hemispheric sunspot unit areas (SUAs), which are defined as the ratio of hemispheric SA to SN. Hemispheric SUAs are usually found to rise at the beginning and to fall at the ending time of a solar cycle more rapidly, forming a more irregular cycle profile than hemispheric SNs and SAs, although it also presents Schwabe-cycle-like hemispheric SNs and SAs. Sunspot activity (SN, SA, and SUA) is found asynchronously and is asymmetrically distributed in the northern and southern hemispheres, and hemispheric SNs, SAs, and SUAs are not in phase in the two hemispheres. The similarity of hemispheric SNs and SAs is found to be much more obvious than that of hemispheric SUAs and SNs (or SAs), and also for their north-south asymmetry. A notable feature is found for the behavior of the SUA around the minimum time of cycle 24: the SUA rapidly decreases from the cycle maximum value to the cycle minimum value of sunspot cycles 19-24 within just 22 months.

  19. Hemispheric sunspot unit area: comparison with hemispheric sunspot number and sunspot area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K. J.; Xiang, N. B.; Qu, Z. N.

    2014-03-01

    The monthly mean northern and southern hemispheric sunspot numbers (SNs) and sunspot areas (SAs) in the time interval of 1945 January to 2012 December are utilized to construct the monthly northern and southern hemispheric sunspot unit areas (SUAs), which are defined as the ratio of hemispheric SA to SN. Hemispheric SUAs are usually found to rise at the beginning and to fall at the ending time of a solar cycle more rapidly, forming a more irregular cycle profile than hemispheric SNs and SAs, although it also presents Schwabe-cycle-like hemispheric SNs and SAs. Sunspot activity (SN, SA, and SUA) is foundmore » asynchronously and is asymmetrically distributed in the northern and southern hemispheres, and hemispheric SNs, SAs, and SUAs are not in phase in the two hemispheres. The similarity of hemispheric SNs and SAs is found to be much more obvious than that of hemispheric SUAs and SNs (or SAs), and also for their north-south asymmetry. A notable feature is found for the behavior of the SUA around the minimum time of cycle 24: the SUA rapidly decreases from the cycle maximum value to the cycle minimum value of sunspot cycles 19-24 within just 22 months.« less

  20. A physical mechanism for the prediction of the sunspot number during solar cycle 21. [graphs (charts)

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the sun's polar field strength near a solar minimum is closely related to the following cycle's solar activity. Four methods of estimating the sun's polar magnetic field strength near solar minimum are employed to provide an estimate of cycle 21's yearly mean sunspot number at solar maximum of 140 plus or minus 20. This estimate is considered to be a first order attempt to predict the cycle's activity using one parameter of physical importance.

  1. A STUDY OF THE HEMISPHERIC ASYMMETRY OF SUNSPOT AREA DURING SOLAR CYCLES 23 AND 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Partha; Choudhary, D. P.; Gosain, Sanjay, E-mail: partha240@yahoo.co.in, E-mail: parthares@gmail.com, E-mail: debiprasad.choudhary@csun.edu, E-mail: sgosain@nso.edu

    2013-05-10

    Solar activity indices vary over the Sun's disk, and various activity parameters are not considered to be symmetric between the northern and southern hemispheres of the Sun. The north-south asymmetry of different solar indices provides an important clue to understanding subphotospheric dynamics and solar dynamo action, especially with regard to nonlinear dynamo models. In the present work, we study the statistical significance of the north-south asymmetry of sunspot areas for the complete solar cycle 23 (1996-2008) and rising branch of cycle 24 (first 45 months). The preferred hemisphere in each year of cycles 23 and 24 has been identified bymore » calculating the probability of hemispheric distribution of sunspot areas. The statistically significant intermediate-term periodicities of the north-south asymmetry of sunspot area data have also been investigated using Lomb-Scargle and wavelet techniques. A number of short- and mid-term periods including the best-known Rieger one (150-160 days) are detected in cycle 23 and near Rieger-type periods during cycle 24, and most of them are found to be time variable. We present our results and discuss their possible explanations with the help of theoretical models and observations.« less

  2. Properties of sunspot cycles and hemispheric wings since the 19th century

    NASA Astrophysics Data System (ADS)

    Leussu, Raisa; Usoskin, Ilya G.; Arlt, Rainer; Mursula, Kalevi

    2016-08-01

    Aims: The latitudinal evolution of sunspot emergence over the course of the solar cycle, the so-called butterfly diagram, is a fundamental property of the solar dynamo. Here we present a study of the butterfly diagram of sunspot group occurrence for cycles 7-10 and 11-23 using data from a recently digitized sunspot drawings by Samuel Heinrich Schwabe in 1825-1867, and from RGO/USAF/NOAA(SOON) compilation of sunspot groups in 1874-2015. Methods: We developed a new, robust method of hemispheric wing separation based on an analysis of long gaps in sunspot group occurrence in different latitude bands. The method makes it possible to ascribe each sunspot group to a certain wing (solar cycle and hemisphere), and separate the old and new cycle during their overlap. This allows for an improved study of solar cycles compared to the common way of separating the cycles. Results: We separated each hemispheric wing of the butterfly diagram and analysed them with respect to the number of groups appearing in each wing, their lengths, hemispheric differences, and overlaps. Conclusions: The overlaps of successive wings were found to be systematically longer in the northern hemisphere for cycles 7-10, but in the southern hemisphere for cycles 16-22. The occurrence of sunspot groups depicts a systematic long-term variation between the two hemispheres. During Schwabe time, the hemispheric asymmetry was north-dominated during cycle 9 and south-dominated during cycle 10.

  3. Sub- and Quasi-Centurial Cycles in Solar and Geomagnetic Activity Data Series

    NASA Astrophysics Data System (ADS)

    Komitov, B.; Sello, S.; Duchlev, P.; Dechev, M.; Penev, K.; Koleva, K.

    2016-07-01

    The subject of this paper is the existence and stability of solar cycles with durations in the range of 20-250 years. Five types of data series are used: 1) the Zurich series (1749-2009 AD), the mean annual International sunspot number Ri, 2) the Group sunspot number series Rh (1610-1995 AD), 3) the simulated extended sunspot number from Extended time series of Solar Activity Indices (ESAI) (1090-2002 AD), 4) the simulated extended geomagnetic aa-index from ESAI (1099-2002 AD), 5) the Meudon filament series (1919-1991 AD). Two principally independent methods of time series analysis are used: the T-R periodogram analysis (both in standard and ``scanning window'' regimes) and the wavelet-analysis. The obtained results are very similar. A strong cycle with a mean duration of 55-60 years is found to exist in all series. On the other hand, a strong and stable quasi 110-120 years and ˜200-year cycles are obtained in all of these series except in the Ri one. The high importance of the long term solar activity dynamics for the aims of solar dynamo modeling and predictions is especially noted.

  4. Sunspot Time Series - Relations Inferred from the Location of the Longest Spotless Segments

    NASA Astrophysics Data System (ADS)

    Zięba, Stanisław; Nieckarz, Zenon

    2012-06-01

    Spotless days ( i.e., days when no sunspots are observed on the Sun) occur during the interval between the declining phase of the old sunspot cycle and the rising phase of the new sunspot cycle, being greatest in number and of longest continuous length near a new cycle minimum. In this paper, we introduce the concept of the longest spotless segment (LSS) and examine its statistical relation to selected characteristic points in the sunspot time series (STS), such as the occurrences of first spotless day and sunspot maximum. The analysis has revealed statistically significant relations that appear to be of predictive value. For example, for Cycle 24 the last spotless day during its rising phase should be about August 2012 (± 9.1 months), the daily maximum sunspot number should be about 227 (± 50; occurring about January 2014±9.5 months), and the maximum Gaussian smoothed sunspot number should be about 87 (± 25; occurring about July 2014). Using the Gaussian-filtered values, slightly earlier dates of August 2011 and March 2013 are indicated for the last spotless day and sunspot maximum for Cycle 24, respectively.

  5. A Normalized Sunspot-Area Series Starting in 1832: An Update

    NASA Astrophysics Data System (ADS)

    Carrasco, V. M. S.; Vaquero, J. M.; Gallego, M. C.; Sánchez-Bajo, F.

    2016-11-01

    A new normalized sunspot-area series has been reconstructed from the series obtained by the Royal Greenwich Observatory and other contemporary institutions for the period 1874 - 2008 and the area series compiled by De la Rue, Stewart, and Loewy from 1832 to 1868. Since the two sets of series do not overlap in time, we used the new version of sunspot index number (Version 2) published by Sunspot Index and Long-term Solar Observations (SILSO) as a link between them. We also present a spectral analysis of the normalized-area series in search of periodicities beyond the well-known solar cycle of 11 years and a study of the Waldmeier effect in the new version of sunspot number and the sunspot-area series presented in this study. We conclude that while this effect is significant in the new series of sunspot number, it has a weak relationship with the sunspot-area series.

  6. On the Importance of Cycle Minimum in Sunspot Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1996-01-01

    The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.

  7. Reexamination of the coronal index of solar activity

    NASA Astrophysics Data System (ADS)

    Rybanský, M.; Rušin, V.; Minarovjech, M.; Klocok, L.; Cliver, E. W.

    2005-08-01

    The coronal index (CI) of solar activity is the irradiance of the Sun as a star in the coronal green line (Fe XIV, 530.3 nm or 5303 Å). It is derived from ground-based observations of the green corona made by the network of coronal stations (currently Kislovodsk, Lomnický Štít, Norikura, and Sacramento Peak). The CI was introduced by Rybanský (1975) to facilitate comparison of ground-based green line measurements with satellite-based extreme ultraviolet and soft X-ray observations. The CI since 1965 is based on the Lomnický Štít photometric scale; the CI was extended to earlier years by Rybanský et al. (1994) based on cross-calibrations of Lomnický Štít data with measurements made at Pic du Midi and Arosa. The resultant 1939-1992 CI had the interesting property that its value at the peak of the 11-year cycle increased more or less monotonically from cycle 18 through cycle 22 even though the peak sunspot number of cycle 20 exhibited a significant local minimum between that of cycles 19 and 21. Rušin and Rybanský (2002) recently showed that the green line intensity and photospheric magnetic field strength were highly correlated from 1976 to 1999. Since the photospheric magnetic field strength is highly correlated with sunspot number, the lack of close correspondence between the sunspot number and the CI from 1939 to 2002 is puzzling. Here we show that the CI and sunspot number are highly correlated only after 1965, calling the previously-computed coronal index for earlier years (1939-1965) into question. We can use the correlation between the CI and sunspot number (also the 2800 MHz radio flux and the cosmic ray intensity) to recompute daily values of the CI for years before 1966. In fact, this method can be used to obtain CI values as far back as we have reliable sunspot observations (˜1850). The net result of this exercise is a CI that closely tracks the sunspot number at all times. We can use the sunspot-CI relationship (for 1966-2002) to identify which coronal stations can be used as a basis for the homogeneous coronal data set (HDS) before 1966. Thus we adopt the photometric scale of the following observatories for the indicated times: Norikura (1951-1954; the Norikura photometric scale was also used from 1939 to 1954); Pic du Midi (1955-1959); Kislovodsk (1960-1965). Finally, we revised the post-1965 HDS and made several small corrections and now include data from Kislovodsk, Norikura, and Sacramento Peak to fill gaps at Lomnický Štít.

  8. Sunspot variation and selected associated phenomena: A look at solar cycle 21 and beyond

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1982-01-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated.

  9. Sunspot Activity Near Cycle Minimum and What it Might Suggest for Cycle 24, the Next Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2009-01-01

    In late 2008, 12-month moving averages of sunspot number, number of spotless days, number of groups, area of sunspots, and area per group were reflective of sunspot cycle minimum conditions for cycle 24, these values being of or near record value. The first spotless day occurred in January 2004 and the first new-cycle, high-latitude spot was reported in January 2008, although old-cycle, low-latitude spots have continued to be seen through April 2009, yielding an overlap of old and new cycle spots of at least 16 mo. New-cycle spots first became dominant over old-cycle spots in September 2008. The minimum value of the weighted mean latitude of sunspots occurred in May 2007, measuring 6.6 deg, and the minimum value of the highest-latitude spot followed in June 2007, measuring 11.7 deg. A cycle length of at least 150 mo is inferred for cycle 23, making it the longest cycle of the modern era. Based on both the maximum-minimum and amplitude-period relationships, cycle 24 is expected to be only of average to below-average size, peaking probably in late 2012 to early 2013, unless it proves to be a statistical outlier.

  10. Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms

    NASA Astrophysics Data System (ADS)

    Dasi-Espuig, M.; Jiang, J.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Yeo, K. L.

    2016-05-01

    Aims: We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. Methods: The record of sunspot group areas and positions from the Royal Greenwich Observatory (RGO) is only available since 1874. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semi-synthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number. The magnetic flux in each surface component (sunspots, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance (TSI) between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. Results: We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the TSI on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2+0.2-0.3 Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-α composite. The complete total and spectral (115 nm-160 μm) irradiance reconstructions since 1700 will be available from http://www2.mps.mpg.de/projects/sun-climate/data.html

  11. The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability

    PubMed Central

    McIntosh, Scott W.; Leamon, Robert J.; Krista, Larisza D.; Title, Alan M.; Hudson, Hugh S.; Riley, Pete; Harder, Jerald W.; Kopp, Greg; Snow, Martin; Woods, Thomas N.; Kasper, Justin C.; Stevens, Michael L.; Ulrich, Roger K.

    2015-01-01

    Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the ‘Gnevyshev Gap'—a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales. PMID:25849045

  12. TEMPORAL STABILITY OF SUNSPOT UMBRAL INTENSITIES: 1986-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Toma, G.; Chapman, G. A.; Cookson, A. M.

    2013-07-10

    We examine the relative intensity of sunspot umbrae during the period from 1986 to 2012 using photometric images from the San Fernando Observatory. We confirm the presence of a relationship between the mean umbral core intensity and the mean sunspot area, as found in previous studies, and do not find a notable change in this relationship between cycles 22 and 23. We looked for a possible time variation in the sunspot umbral contrast during the 27 yr covering cycles 22, 23, and the rise of cycle 24, and we did not find a significant change. These findings do not indicatemore » that sunspots have become less dark during cycles 23 and 24.« less

  13. Gauging the Nearness and Size of Cycle Minimum

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1997-01-01

    By definition, the conventional onset for the start of a sunspot cycle is the time when smoothed sunspot number (i.e., the 12-month moving average) has decreased to its minimum value (called minimum amplitude) prior to the rise to its maximum value (called maximum amplitude) for the given sunspot cycle. On the basis (if the modern era sunspot cycles 10-22 and on the presumption that cycle 22 is a short-period cycle having a cycle length of 120 to 126 months (the observed range of short-period modern era cycles), conventional onset for cycle 23 should not occur until sometime between September 1996 and March 1997, certainly between June 1996 and June 1997, based on the 95-percent confidence level deduced from the mean and standard deviation of period for the sample of six short-pei-iod modern era cycles. Also, because the first occurrence of a new cycle, high-latitude (greater than or equal to 25 degrees) spot has always preceded conventional onset of the new cycle by at least 3 months (for the data-available interval of cycles 12-22), conventional onset for cycle 23 is not expected until about August 1996 or later, based on the first occurrence of a new cycle 23, high-latitude spot during the decline of old cycle 22 in May 1996. Although much excitement for an earlier-occurring minimum (about March 1996) for cycle 23 was voiced earlier this year, the present study shows that this exuberance is unfounded. The decline of cycle 22 continues to favor cycle 23 minimum sometime during the latter portion of 1996 to the early portion of 1997.

  14. Babcock Redux: An Amendment of Babcock's Schematic of the Sun's Magnetic Cycle

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2017-08-01

    We amend Babcock's original scenario for the global dynamo process that sustains the Sun's 22-year magnetic cycle. The amended scenario fits post-Babcock observed features of the magnetic activity cycle and convection zone, and is based on ideas of Spruit & Roberts (1983, Nature, 304, 401) about magnetic flux tubes in the convection zone. A sequence of four schematic cartoons lays out the proposed evolution of the global configuration of the magnetic field above, in, and at the bottom of the convection zone through sunspot Cycle 23 and into Cycle 24. Three key elements of the amended scenario are: (1) as the net following-polarity magnetic field from the sunspot-region Ω-loop fields of an ongoing sunspot cycle is swept poleward to cancel and replace the opposite-polarity polar-cap field from the previous sunspot cycle, it remains connected to the ongoing sunspot cycle's toroidal source-field band at the bottom of the convection zone; (2) topological pumping by the convection zone's free convection keeps the horizontal extent of the poleward-migrating following-polarity field pushed to the bottom, forcing it to gradually cancel and replace old horizontal field below it that connects the ongoing-cycle source-field band to the previous-cycle polar-cap field; (3) in each polar hemisphere, by continually shearing the poloidal component of the settling new horizontal field, the latitudinal differential rotation low in the convection zone generates the next-cycle source-field band poleward of the ongoing-cycle band. The amended scenario is a more-plausible version of Babcock's scenario, and its viability can be explored by appropriate kinematic flux-transport solar-dynamo simulations. A paper giving a full description of our dynamo scenario is posted on arXiv (http://arxiv.org/abs/1606.05371).This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program and the Hinode Project.

  15. Evaluation of our prognosis of ST-phenomena made according to the solar inertial motion (SIM) and expected further development

    NASA Astrophysics Data System (ADS)

    Charvátová, Ivanka; Hejda, Pavel

    2016-04-01

    During several latest years, a behavior of the Sun is slightly unusual (hibernation stage?). Our prediction of cycle 24 height and of geomagnetic index aa (Charvátová, 2011) was confirmed in two basic points: the cycle 24 height is around 100 W (predicted value according to a close similarity between the SIMs in the years 1840-1905 and 1980-2045 was 140(100) W). (Other predictions for cycle 24 were between 40 W and 185 W.) As concerns aa-index of geomagnetic activity, predicted great depression bellow 10 nT appeared, but before the predicted year. Although the continuation of our SIMs prediction shows lower future sunspot cycles 25(65 W), 26 (80 W), 27 (60 W), the values are much higher than during the Maunder minimum. These cycles could be longer, up to 12 years. A future course of geomagnetic index aa could follow its course after 1880. In aa-index and also in sunspot numbers, the cycle of 1.6 years, dominant period in the SIM due to the inner planets (synodic period of Venus and Earth), is permanently seen, including in distances between two peaks of sunspot cycles. We can use this for prediction of higher values of these both phenomena - it can occur in the years 2016.42, 2018.02, 2019.62. During the interval 1840-1905 also higher volcanic activity occurred - up to force of Krakatoa (1883, DVI=400). Since 1980, several great volcanic events appeared again (e.g. Mt. Pinatubo (1991), DVI=350). Survey and comparison of volcanic indices DVI and AI in the two corresponding mentioned intervals will be also presented.

  16. SOLAR CYCLE PROPAGATION, MEMORY, AND PREDICTION: INSIGHTS FROM A CENTURY OF MAGNETIC PROXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Jaramillo, Andres; DeLuca, Edward E.; Dasi-Espuig, Maria

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databasesmore » covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock-Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.« less

  17. Magnetic Flux Emergence Along the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Archontis, V.; Pariat, E.

    2014-12-01

    Flux emergence plays an important role along the solar cycle. Magnetic flux emergence builds sunspot groups and solar activity. The sunspot groups contribute to the large scale behaviour of the magnetic field over the 11 year cycle and the reversal of the North and South magnetic polarity every 22 years. The leading polarity of sunspot groups is opposite in the North and South hemispheres and reverses for each new solar cycle. However the hemispheric rule shows the conservation of sign of the magnetic helicity with positive and negative magnetic helicity in the South and North hemispheres, respectively. MHD models of emerging flux have been developed over the past twenty years but have not yet succeeded to reproduce solar observations. The emergence of flux occurs through plasma layers of very high gradients of pressure and changing of modes from a large β to a low β plasma (<1). With the new armada of high spatial and temporal resolution instruments on the ground and in space, emergence of magnetic flux is observed in tremendous detail and followed during their transit through the upper atmosphere. Signatures of flux emergence in the corona depend on the pre-existing magnetic configuration and on the strength of the emerging flux. We review in this paper new and established models as well as the recent observations.

  18. ON THE ROTATION OF SUNSPOTS AND THEIR MAGNETIC POLARITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianchuan; Yang, Zhiliang; Guo, Kaiming

    2016-07-20

    The rotation of sunspots of 2 yr in two different solar cycles is studied with the data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observataory . We choose the α sunspot groups and the relatively large and stable sunspots of complex active regions in our sample. In the year of 2003, the α sunspot groups and the preceding sunspots tend to rotate counterclockwise and have positive magnetic polarity in the northern hemisphere. In the southern hemisphere, the magnetic polarity and rotational tendency ofmore » the α sunspot groups and the preceding sunspots are opposite to the northern hemisphere. The average rotational speed of these sunspots in 2003 is about 0.°65 hr{sup 1}. From 2014 January to 2015 February, the α sunspot groups and the preceding sunspots tend to rotate clockwise and have negative magnetic polarity in the northern hemisphere. The patterns of rotation and magnetic polarity of the southern hemisphere are also opposite to those of the northern hemisphere. The average rotational speed of these sunspots in 2014/2015 is about 1.°49 hr{sup 1}. The rotation of the relatively large and stable preceding sunspots and that of the α sunspot groups located in the same hemisphere have opposite rotational direction in 2003 and 2014/2015.« less

  19. Spotless

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Everything runs in cycles and what goes up must come down. We hear that a lot these days. The topic of conversation is of course the sun. The solar cycle takes 11 years to go from sunspot minimum to maximum and back to minimum. The cycle is driven by changes in the Sun's magnetic field, and is actually a 22-year cycle: during the second 11 years the magnetic polarity of the solar field is reversed. The Solar and Heliospheric Observatory satellite (or SOHO for short), a joint ESA and NASA mission, has been watching the sun since 1995. Rarely is the sun as quiet as it was on September 27, 2008 - as shown in the visible-light image above left, there were absolutely no sunspots to be seen. If the activity stays this low, this might be the most inactive the Sun has been since the dawn of the space age. This still pales in comparison to the 17th century when for a period of 70 years (called the Maunder Minimum) there were no reported sunspots. Some scientists believe the Maunder Minimum responsible for a 'Little Ice Age' and the sound of some violins. The image on the right, taken 3 days later in extreme UV light, shows the formation of two active regions (in the circles) but both faded away before becoming full-fledged spots. So how low will it go? Only time will tell.

  20. An Estimate of the Size and Shape of Sunspot Cycle 24 Based on its Early Cycle Behavior using the Hathaway-Wilson-Reichmann Shape-Fitting Function

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2011-01-01

    On the basis of 12-month moving averages (12-mma) of monthly mean sunspot number (R), sunspot cycle 24 had its minimum amplitude (Rm = 1.7) in December 2008. At 12 mo past minimum, R measured 8.3, and at 18 mo past minimum, it measured 16.4. Thus far, the maximum month-to-month rate of rise in 12-mma values of monthly mean sunspot number (AR(t) max) has been 1.7, having occurred at elapsed times past minimum amplitude (t) of 14 and 15 mo. Compared to other sunspot cycles of the modern era, cycle 24?s Rm and AR(t) max (as observed so far) are the smallest on record, suggesting that it likely will be a slow-rising, long-period sunspot cycle of below average maximum amplitude (RM). Supporting this view is the now observed relative strength of cycle 24?s geomagnetic minimum amplitude as measured using the 12-mma value of the aa-geomagnetic index (aam = 8.4), which also is the smallest on record, having occurred at t equals 8 and 9 mo. From the method of Ohl (the inferred preferential association between RM and aam), one predicts RM = 55 +/- 17 (the ?1 se prediction interval) for cycle 24. Furthermore, from the Waldmeier effect (the inferred preferential association between the ascent duration (ASC) and RM) one predicts an ASC longer than 48 mo for cycle 24; hence, maximum amplitude occurrence should be after December 2012. Application of the Hathaway-Wilson-Reichmann shape-fitting function, using an RM = 70 and ASC = 56 mo, is found to adequately fit the early sunspot number growth of cycle 24.

  1. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  2. Status of Cycle 23 Forecasts

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2000-01-01

    A number of techniques for predicting solar activity on a solar cycle time scale are identified, described, and tested with historical data. Some techniques, e.g,, regression and curve-fitting, work well as solar activity approaches maximum and provide a month- by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but provide an estimate only of the amplitude of the cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. A combination of two uncorrelated geomagnetic precursor techniques provides the most accurate prediction for the amplitude of a solar activity cycle at a time well before activity minimum. This precursor method gave a smoothed sunspot number maximum of 154+21 for cycle 23. A mathematical function dependent upon the time of cycle initiation and the cycle amplitude then describes the level of solar activity for the complete cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between recent activity levels and this function. This Combined Solar Cycle Activity Forecast now gives a smoothed sunspot maximum of 140+20 for cycle 23. The success of the geomagnetic precursors in predicting future solar activity suggests that solar magnetic phenomena at latitudes above the sunspot activity belts are linked to solar activity, which occurs many years later in the lower latitudes.

  3. Sunspot cycle-dependent changes in the distribution of GSE latitudinal angles of IMF observed near 1 AU

    NASA Astrophysics Data System (ADS)

    Felix Pereira, B.; Girish, T. E.

    2004-05-01

    The solar cycle variations in the characteristics of the GSE latitudinal angles of the Interplanetary Magnetic Field ($\\theta$GSE) observed near 1 AU have been studied for the period 1967-2000. It is observed that the statistical parameters mean, standard deviation, skewness and kurtosis vary with sunspot cycle. The $\\theta$GSE distribution resembles the Gaussian curve during sunspot maximum and is clearly non-Gaussian during sunspot minimum. The width of the $\\theta$GSE distribution is found to increase with sunspot activity, which is likely to depend on the occurrence of solar transients. Solar cycle variations in skewness are ordered by the solar polar magnetic field changes. This can be explained in terms of the dependence of the dominant polarity of the north-south component of IMF in the GSE system near 1 AU on the IMF sector polarity and the structure of the heliospheric current sheet.

  4. Prediction Methods in Solar Sunspots Cycles

    PubMed Central

    Ng, Kim Kwee

    2016-01-01

    An understanding of the Ohl’s Precursor Method, which is used to predict the upcoming sunspots activity, is presented by employing a simplified movable divided-blocks diagram. Using a new approach, the total number of sunspots in a solar cycle and the maximum averaged monthly sunspots number Rz(max) are both shown to be statistically related to the geomagnetic activity index in the prior solar cycle. The correlation factors are significant and they are respectively found to be 0.91 ± 0.13 and 0.85 ± 0.17. The projected result is consistent with the current observation of solar cycle 24 which appears to have attained at least Rz(max) at 78.7 ± 11.7 in March 2014. Moreover, in a statistical study of the time-delayed solar events, the average time between the peak in the monthly geomagnetic index and the peak in the monthly sunspots numbers in the succeeding ascending phase of the sunspot activity is found to be 57.6 ± 3.1 months. The statistically determined time-delayed interval confirms earlier observational results by others that the Sun’s electromagnetic dipole is moving toward the Sun’s Equator during a solar cycle. PMID:26868269

  5. Periodicity of sunspot group number during the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    Gao, P. X.

    2017-12-01

    Applying the Hilbert-Huang Transform (HHT) method to the yearly average sunspot group (SG) number reconstructed by Svalgaard & Schatten, we investigate the periodicity of SG number from 1610 to 2015. Our main findings are summarized below. Periodicities of 3.56 ± 0.24 (Quasi-Triennial Oscillations), 9.22 ± 0.13 (Schwabe Cycle), 16.91 ± 0.99 (Hale Cycle), 49.25 ± 0.96, 118.64 ± 2.52 (Centennial Gleissberg Cycle), and 206.32 ± 4.60 yr are statistically significant in the SG numbers. During the Maunder Minimum (MM), the occurrences of the Schwabe Cycle and the Hale Cycle, extracted from SG numbers, are suspended; before and after the MM, Schwabe Cycle and the Hale Cycle, extracted from SG numbers, all exist. The results of applying the Morlet Wavelet Analysis to the SG number confirm that, for SG number, the occurrence of the Schwabe Cycle is suspended during the MM, and, before and after the MM, the Schwabe Cycle all exist. Then we investigate the periodicity in the annual 10Be data from 1391 to 1983, which are given in a supplementary file to McCracken & Beer, using HHT and the Morlet wavelet transform. We find that, for the 10Be data, the Schwabe Cycle and the Hale Cycle persist throughout the MM. Our results support the suggestion that the Schwabe Cycle is too weak to be detected in the sunspot data.

  6. Witnessing Solar Rejuvenation

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    At the end of last year, the Suns large-scale magnetic field suddenly strengthened, reaching its highest value in over two decades. Here, Neil Sheeley and Yi-Ming Wang (both of the Naval Research Laboratory) propose an explanation for why this happened and what it predicts for the next solar cycle.Magnetic StrengtheningUntil midway through 2014, solar cycle 24 the current solar cycle was remarkably quiet. Even at its peak, it averaged only 79 sunspots per year, compared to maximums of up to 190 in recent cycles. Thus it was rather surprising when, toward the end of 2014, the Suns large-scale magnetic field underwent a sudden rejuvenation, with its mean field leaping up to its highest values since 1991 and causing unprecedentedly large numbers of coronal loops to collapse inward.Yet in spite of the increase we observed in the Suns open flux (the magnetic flux leaving the Suns atmosphere, measured from Earth), there was not a significant increase in solar activity, as indicated by sunspot number and the rate of coronal mass ejections. This means that the number of sources of magnetic flux didnt increase so Sheeley and Wang conclude that flux must instead have been emerging from those sources in a more efficient way! But how?Aligned ActivityWSO open flux and the radial component of the interplanetary magnetic field (measures of the magnetic flux leaving the Suns photosphere and heliosphere, respectively), compared to sunspot number (in units of 100 sunspots). A sudden increase in flux is visible after the peak of each of the last four sunspot cycles. Click for a larger view! [Sheeley Wang 2015]The authors show that the active regions on the solar surface in late 2014 lined up in such a way that the emerging flux was enhanced, forming a strong equatorial dipole field that accounts for the sudden rejuvenation observed.Interestingly, this rejuvenation of the Suns open flux wasnt just a one-time thing; similar bursts have occurred shortly after the peak of every sunspot cycle that we have flux measurements for. The authors find that three factors (how the active regions are distributed longitudinally, their sizes, and the contribution of the axisymmetric component of the magnetic field) determine the strength of this rejuvenation. All three of these factors happened to contribute optimally in 2014.As a final note, Sheeley and Wang suggest that the current strength of the axisymmetric component of the magnetic field can be used to provide an early indication of how active the next solar cycle might be. Using this method, they predict that solar cycle 25 will be similar to the current cycle in amplitude.CitationN. R. Sheeley Jr. and Y.-M. Wang2015 ApJ 809 113. doi:10.1088/0004-637X/809/2/113

  7. VizieR Online Data Catalog: Butterfly diagram wings (Leussu+, 2017)

    NASA Astrophysics Data System (ADS)

    Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Mursula, K.

    2016-11-01

    fig1data.dat contains the separated wings in a butterfly diagram for sunspot groups from three different origins: Sunspot observations by S.H. Schwabe and G. Spoerer, and the RGO/SOON compilation. The latitudes for sunspot groups from the Schwabe and Spoerer data are given as size-weighted averages from sunspots belonging to each group. Latitudes for the RGO compilation are given as they are stated in the original data. The columns report the year, month, day, date [yr], latitude [deg], cycle, hemisphere, and data set tag. Northern hemisphere wings are tagged with "1" and southern hemisphere wings with "2". The data set tag is "1" for Schwabe data, "2" for Spoerer data and "3" for RGO data. (1 data file).

  8. Adverse Space Weather at the Solar Cycle Minimum

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Kanekal, S. G.; McCollough, J. P.; Singer, H. J.; Chappell, S. P.; Allen, J. H.

    2008-05-01

    It is commonly understood that many types of adverse space weather (solar flares, coronal mass ejections, geomagnetic storms) occur most commonly around the maximum of the 11-year sunspot activity cycle. Other types of well-known space weather such as relativistic electron events in the Earth's outer magnetosphere (that produce deep dielectric charging in spacecraft systems) are usually associated with the period just after sunspot maximum. At the present time, we are in the very lowest activity phase of the sunspot cycle (solar minimum). As such we would not expect much in the way of adverse space weather events. However, in early to mid-February of 2008 quite prominent solar coronal holes produced two high-speed streams that in turn stimulated very large, long-duration relativistic electron enhancements in Earth's magnetosphere. These seem to have been associated with several spacecraft operational anomalies at various spacecraft orbital locations. We describe these recent space weather events and assess their operational significance in this presentation. These results show that substantial space weather events can and do occur even during the quietest parts of the solar cycle.

  9. An early prediction of 25th solar cycle using Hurst exponent

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Bhargawa, Asheesh

    2017-11-01

    The analysis of long memory processes in solar activity, space weather and other geophysical phenomena has been a major issue even after the availability of enough data. We have examined the data of various solar parameters like sunspot numbers, 10.7 cm radio flux, solar magnetic field, proton flux and Alfven Mach number observed for the year 1976-2016. We have done the statistical test for persistence of solar activity based on the value of Hurst exponent (H) which is one of the most classical applied methods known as rescaled range analysis. We have discussed the efficiency of this methodology as well as prediction content for next solar cycle based on long term memory. In the present study, Hurst exponent analysis has been used to investigate the persistence of above mentioned (five) solar activity parameters and a simplex projection analysis has been used to predict the ascension time and the maximum number of counts for 25th solar cycle. For available dataset of the year 1976-2016, we have calculated H = 0.86 and 0.82 for sunspot number and 10.7 cm radio flux respectively. Further we have calculated maximum number of counts for sunspot numbers and F10.7 cm index as 102.8± 24.6 and 137.25± 8.9 respectively. Using the simplex projection analysis, we have forecasted that the solar cycle 25th would start in the year 2021 (January) and would last up to the year 2031 (September) with its maxima in June 2024.

  10. Estimating sunspot number

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Reichmann, E. J.; Teuber, D. L.

    1984-01-01

    An empirical method is developed to predict certain parameters of future solar activity cycles. Sunspot cycle statistics are examined, and curve fitting and linear regression analysis techniques are utilized.

  11. Nonlinear analysis of solar cycles

    NASA Astrophysics Data System (ADS)

    Serre, T.; Nesme-Ribes, E.

    2000-08-01

    In this paper, the recent improvement of the Wolf sunspot time-series by Hoyt and co-workers has been analysed with the Global Flow Reconstruction (GFR) method (Serre et al. 1996a and b). A nonlinear 4-dimensional chaotic model has been extracted from the data which captures the principal characteristic features of the sunspot group time-series. The hypothesis of interactions between magnetic modes is implicitly tested; presumably, this is the cause of the irregular variations of solar cycle amplitudes recorded since the year 1610. The present results indicate that interactions are occurring between few global magnetic modes.

  12. Implications of Extended Solar Minima

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Davis, J. M.

    2009-01-01

    Since the discovery of periodicity in the solar cycle, the historical record of sunspot number has been carefully examined, attempting to make predictions about the next cycle. Much emphasis has been on predicting the maximum amplitude and length of the next cycle. Because current space-based and suborbital instruments are designed to study active phenomena, there is considerable interest in estimating the length and depth of the current minimum. We have developed criteria for the definition of a minimum and applied it to the historical sunspot record starting in 1749. In doing so, we find that 1) the current minimum is not yet unusually long and 2) there is no obvious way of predicting when, using our definition, the current minimum may end. However, by grouping the data into 22- year cycles there is an interesting pattern of extended minima that recurs every fourth or fifth 22-year cycle. A preliminary comparison of this pattern with other records, suggests the possibility of a correlation between extended minima and lower levels of solar irradiance.

  13. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow can modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields.

  14. The Solar Cycle.

    PubMed

    Hathaway, David H

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24. Supplementary material is available for this article at 10.1007/lrsp-2015-4.

  15. Using the Inflection Points and Rates of Growth and Decay to Predict Levels of Solar Activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The ascending and descending inflection points and rates of growth and decay at specific times during the sunspot cycle are examined as predictors for future activity. On average, the ascending inflection point occurs about 1-2 yr after sunspot minimum amplitude (Rm) and the descending inflection point occurs about 6-7 yr after Rm. The ascending inflection point and the inferred slope (including the 12-mo moving average (12-mma) of (Delta)R (the month-to-month change in the smoothed monthly mean sunspot number (R)) at the ascending inflection point provide strong indications as to the expected size of the ongoing cycle s sunspot maximum amplitude (RM), while the descending inflection point appears to provide an indication as to the expected length of the ongoing cycle. The value of the 12-mma of (Delta)R at elapsed time T = 27 mo past the epoch of RM (E(RM)) seems to provide a strong indication as to the expected size of Rm for the following cycle. The expected Rm for cycle 24 is 7.6 +/- 4.4 (the 90-percent prediction interval), occurring before September 2008. Evidence is also presented for secular rises in selected cycle-related parameters and for preferential grouping of sunspot cycles by amplitude and/or period.

  16. Cyclic and Long-Term Variation of Sunspot Magnetic Fields

    DTIC Science & Technology

    2014-10-15

    observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for...cycles 15 – 19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA...Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot ar- Solar Origins of

  17. ANALYSIS OF SUNSPOT AREA OVER TWO SOLAR CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Toma, G.; Chapman, G. A.; Preminger, D. G.

    2013-06-20

    We examine changes in sunspots and faculae and their effect on total solar irradiance during solar cycles 22 and 23 using photometric images from the San Fernando Observatory. We find important differences in the very large spots between the two cycles, both in their number and time of appearance. In particular, there is a noticeable lack of very large spots in cycle 23 with areas larger than 700 millionths of a solar hemisphere which corresponds to a decrease of about 40% relative to cycle 22. We do not find large differences in the frequencies of small to medium spots betweenmore » the two cycles. There is a decrease in the number of pores and very small spots during the maximum phase of cycle 23 which is largely compensated by an increase during other phases of the solar cycle. The decrease of the very large spots, in spite of the fact that they represent only a few percent of all spots in a cycle, is primarily responsible for the observed changes in total sunspot area and total sunspot deficit during cycle 23 maximum. The cumulative effect of the decrease in the very small spots is an order of magnitude smaller than the decrease caused by the lack of large spots. These data demonstrate that the main difference between cycles 22 and 23 was in the frequency of very large spots and not in the very small spots, as previously concluded. Analysis of the USAF/NOAA and Debrecen sunspot areas confirms these findings.« less

  18. Predicting Solar Cycle 24 Using a Geomagnetic Precursor Pair

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean

    2014-01-01

    We describe using Ap and F(10.7) as a geomagnetic-precursor pair to predict the amplitude of Solar Cycle 24. The precursor is created by using F(10.7) to remove the direct solar-activity component of Ap. Four peaks are seen in the precursor function during the decline of Solar Cycle 23. A recurrence index that is generated by a local correlation of Ap is then used to determine which peak is the correct precursor. The earliest peak is the most prominent but coincides with high levels of non-recurrent solar activity associated with the intense solar activity of October and November 2003. The second and third peaks coincide with some recurrent activity on the Sun and show that a weak cycle precursor closely following a period of strong solar activity may be difficult to resolve. A fourth peak, which appears in early 2008 and has recurrent activity similar to precursors of earlier solar cycles, appears to be the "true" precursor peak for Solar Cycle 24 and predicts the smallest amplitude for Solar Cycle 24. To determine the timing of peak activity it is noted that the average time between the precursor peak and the following maximum is approximately equal to 6.4 years. Hence, Solar Cycle 24 would peak during 2014. Several effects contribute to the smaller prediction when compared with other geomagnetic-precursor predictions. During Solar Cycle 23 the correlation between sunspot number and F(10.7) shows that F(10.7) is higher than the equivalent sunspot number over most of the cycle, implying that the sunspot number underestimates the solar-activity component described by F(10.7). During 2003 the correlation between aa and Ap shows that aa is 10 % higher than the value predicted from Ap, leading to an overestimate of the aa precursor for that year. However, the most important difference is the lack of recurrent activity in the first three peaks and the presence of significant recurrent activity in the fourth. While the prediction is for an amplitude of Solar Cycle 24 of 65 +/- 20 in smoothed sunspot number, a below-average amplitude for Solar Cycle 24, with maximum at 2014.5+/-0.5, we conclude that Solar Cycle 24 will be no stronger than average and could be much weaker than average.

  19. Latitude Distribution of Sunspots: Analysis Using Sunspot Data and a Dynamo Model

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Karak, Bidya Binay; Banerjee, Dipankar

    2017-12-01

    In this paper, we explore the evolution of sunspot latitude distribution and explore its relations with the cycle strength. With the progress of the solar cycle, the distributions in two hemispheres from mid-latitudes propagate toward the equator and then (before the usual solar minimum) these two distributions touch each other. By visualizing the evolution of the distributions in two hemispheres, we separate the solar cycles by excluding this hemispheric overlap. From these isolated solar cycles in two hemispheres, we generate latitude distributions for each cycle, starting from cycle 8 to cycle 23. We find that the parameters of these distributions, namely the central latitude (C), width (δ), and height (H), evolve with the cycle number, and they show some hemispheric asymmetries. Although the asymmetries in these parameters persist for a few successive cycles, they get corrected within a few cycles, and the new asymmetries appear again. In agreement with the previous study, we find that distribution parameters are correlated with the strengths of the cycles, although these correlations are significantly different in two hemispheres. The general trend features, i.e., (i) stronger cycles that begin sunspot eruptions at relatively higher latitudes, and (ii) stronger cycles that have wider bands of sunspot emergence latitudes, are confirmed when combining the data from two hemispheres. We explore these features using a flux transport dynamo model with stochastic fluctuations. We find that these features are correctly reproduced in this model. The solar cycle evolution of the distribution center is also in good agreement with observations. Possible explanations of the observed features based on this dynamo model are presented.

  20. SYSTEMATIC REGULARITY OF HEMISPHERIC SUNSPOT AREAS OVER THE PAST 140 YEARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, L. H.; Xiang, Y. Y.; Qu, Z. N.

    2016-03-15

    Solar magnetic activity varies with time in the two hemispheres in different ways. The hemispheric interconnection of solar activity phenomena provides an important clue to understanding the dynamical behavior of solar dynamo actions. In this paper, several analysis approaches are proposed to analyze the systematic regularity of hemispheric asynchronism and amplitude asymmetry of long-term sunspot areas during solar cycles 9–24. It is found that, (1) both the hemispheric asynchronism and the amplitude asymmetry of sunspot areas are prevalent behaviors and are not anomalous, but the hemispheric asynchronism exhibits a much more regular behavior than the amplitude asymmetry; (2) the phase-leadingmore » hemisphere returns back to the identical hemisphere every 8 solar cycles, and the secular periodic pattern of hemispheric phase differences follows 3 (south leading) + 5 (north leading) solar cycles, which probably corresponds to the Gleissberg cycle; and (3) the pronounced periodicities of (absolute and normalized) asymmetry indices and lines of synchronization (LOSs) are not identical: the significant periodic oscillations are 80.65 ± 6.31, 20.91 ± 0.40, and 13.45 ± 0.16 years for the LOS values, and 51.34 ± 2.48, 8.83/8.69 ± 0.07, and 3.77 ± 0.02 years for the (absolute and normalized) asymmetry indices. The analysis results improve our knowledge on the hemispheric interrelation of solar magnetic activity and may provide valuable constraints for solar dynamo models.« less

  1. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?

    USGS Publications Warehouse

    Love, J.J.; Mursula, K.; Tsai, V.C.; Perkins, D.M.

    2011-01-01

    Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically- significant correlation between sunspot number and geomagnetic activity, Pearson p < 10-4, but correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction. ?? 2011 by the American Geophysical Union.

  2. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?

    NASA Astrophysics Data System (ADS)

    Love, Jeffrey J.; Mursula, Kalevi; Tsai, Victor C.; Perkins, David M.

    2011-11-01

    Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically-significant correlation between sunspot number and geomagnetic activity, Pearson p < 10-4, but correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction.

  3. Reconstructing the 11-year solar cycle length from cosmogenic radionuclides for the last 600 years

    NASA Astrophysics Data System (ADS)

    Nilsson, Emma; Adolphi, Florian; Mekhaldi, Florian; Muscheler, Raimund

    2017-04-01

    The cyclic behavior of the solar magnetic field has been known for centuries and the 11-year solar cycle is one of the most important features directly visible on the solar disc. Using sunspot records it is evident that the length of this cycle is variable. A hypothesis of an inverse relationship between the average solar activity level and the solar cycle length has been put forward (e.g. Friis-Christensen & Lassen, 1991), indicating longer solar cycles during periods of low solar activity and vice versa. So far, studies of the behavior of the 11-year solar cycle have largely been limited for the last 4 centuries where observational sunspot data are available. However, cosmogenic radionuclides, such as 10Be and 14C from ice cores and tree rings allow an assessment of the strength of the open solar magnetic field due to its shielding influence on galactic cosmic rays in the heliosphere. Similarly, very strong solar storms can leave their imprint in cosmogenic radionuclide records via solar proton-induced direct production of cosmogenic radionuclides in the Earth atmosphere. Here, we test the hypothesis of an inverse relationship between solar cycle length and the longer-term solar activity level by using cosmogenic radionuclide records as a proxy for solar activity. Our results for the last six centuries suggest significant solar cycle length variations that could exceed the range directly inferred from sunspot records. We discuss the occurrence of SPEs within the 11-year solar cycle from a radionuclide perspective, specifically the largest one known yet, at AD 774-5 (Mekhaldi et al., 2015). References: Friis-Christensen, E. & Lassen, K. Length of the solar-cycle - An indicator of solar activity closely associated with climate. Science 254, 698-700, doi:10.1126/science.254.5032.698 (1991). Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell, J. R., Possnert, G., Sigl, M., Svensson, A., Synal, H. A., Welten, K. C. & Woodruff, T. E. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6: 8, doi:10.1038/ncomms9611 (2015).

  4. Effects of long-period solar activity fluctuation on temperature and pressure of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Rubashev, B. M.

    1978-01-01

    The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.

  5. Solar proton fluxes since 1956. [sunspot activity correlation

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of Co-56 in several lunar rocks are consistent with the solar proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of Na-22 and Fe-55 in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965-1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954-1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20 and are about five times the previous estimate for cycle 19 based on neutron-monitor and radio ionospheric measurements. These solar-proton flux variations correlate with changes in sunspot activity.

  6. Terrestrial cooling and solar variability

    NASA Technical Reports Server (NTRS)

    Agee, E. M.

    1982-01-01

    Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.

  7. Predicting the Size of Sunspot Cycle 24 on the Basis of Single- and Bi-Variate Geomagnetic Precursor Methods

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2009-01-01

    Examined are single- and bi-variate geomagnetic precursors for predicting the maximum amplitude (RM) of a sunspot cycle several years in advance. The best single-variate fit is one based on the average of the ap index 36 mo prior to cycle minimum occurrence (E(Rm)), having a coefficient of correlation (r) equal to 0.97 and a standard error of estimate (se) equal to 9.3. Presuming cycle 24 not to be a statistical outlier and its minimum in March 2008, the fit suggests cycle 24 s RM to be about 69 +/- 20 (the 90% prediction interval). The weighted mean prediction of 11 statistically important single-variate fits is 116 +/- 34. The best bi-variate fit is one based on the maximum and minimum values of the 12-mma of the ap index; i.e., APM# and APm*, where # means the value post-E(RM) for the preceding cycle and * means the value in the vicinity of cycle minimum, having r = 0.98 and se = 8.2. It predicts cycle 24 s RM to be about 92 +/- 27. The weighted mean prediction of 22 statistically important bi-variate fits is 112 32. Thus, cycle 24's RM is expected to lie somewhere within the range of about 82 to 144. Also examined are the late-cycle 23 behaviors of geomagnetic indices and solar wind velocity in comparison to the mean behaviors of cycles 2023 and the geomagnetic indices of cycle 14 (RM = 64.2), the weakest sunspot cycle of the modern era.

  8. Solar Variability from 240 to 1750 nm in Terms of Faculae Brightening and Sunspot Darkening from SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-08-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  9. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-08-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variationsmore » above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.« less

  10. Prelude to Cycle 23: The Case for a Fast-Rising, Large Amplitude Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1996-01-01

    For the common data-available interval of cycles 12 to 22, we show that annual averages of sunspot number for minimum years (R(min)) and maximum years (R(max)) and of the minimum value of the aa geomagnetic index in the vicinity of sunspot minimum (aa(min)) are consistent with the notion that each has embedded within its respective record a long-term, linear, secular increase. Extrapolating each of these fits to cycle 23, we infer that it will have R(min) = 12.7 +/- 5.7, R(max) = 176.7 +/- 61.8, and aa(min) = 21.0 +/- 5.0 (at the 95-percent level of confidence), suggesting that cycle 23 will have R(min) greater than 7.0, R(max) greater than 114.9, and aa(min) greater than 16.0 (at the 97.5-percent level of confidence). Such values imply that cycle 23 will be larger than average in size and, consequently (by the Waidmeier effect), will be a fast riser. We also infer from the R(max) and aa(min) records the existence of an even- odd cycle effect, one in which the odd-following cycle is numerically larger in value than the even-leading cycle. For cycle 23, the even-odd cycle effect suggests that R(max) greater than 157.6 and aa(min) greater than 19.0, values that were recorded for cycle 22, the even-leading cycle of the current even-odd cycle pair (cycles 22 and 23). For 1995, the annual average of the aa index measured about 22, while for sunspot number, it was about 18. Because aa(min) usually lags R(min) by 1 year (true for 8 of 11 cycles) and 1996 seems destined to be the year of R(min) for cycle 23, it may be that aa(min) will occur in 1997, although it could occur in 1996 in conjunction with R(min) (true for 3 of 11 cycles). Because of this ambiguity in determining aa(min), no formal prediction based on the correlation of R(max) against aa(min), having r = 0.90, or of R(max) against the combined effects of R(min) and aa(min)-the bivariate technique-having r = 0.99, is possible until 1997, at the earliest.

  11. The Solar Cycle and, How Do We Know What We Know?

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2013-01-01

    Through the use of observations, mathematics, mathematical tools (such as graphs), inference, testing, and prediction we have gathered evidence that there are sunspots, a solar cycle, and have begun to understand more about our star, the Sun. We are making progress in understanding the cause of the solar cycle. We expect solar cycle 24 to peak soon. Cycle 24 will be the smallest cycle in 100 years.

  12. NASA's SDO Observes Largest Sunspot of the Solar Cycle

    NASA Image and Video Library

    2017-12-08

    On Oct. 18, 2014, a sunspot rotated over the left side of the sun, and soon grew to be the largest active region seen in the current solar cycle, which began in 2008. Currently, the sunspot is almost 80,000 miles across -- ten Earth's could be laid across its diameter. Sunspots point to relatively cooler areas on the sun with intense and complex magnetic fields poking out through the sun's surface. Such areas can be the source of solar eruptions such as flares or coronal mass ejections. So far, this active region – labeled AR 12192 -- has produced several significant solar flares: an X-class flare on Oct. 19, an M-class flare on Oct. 21, and an X-class flare on Oct. 22, 2014. The largest sunspot on record occurred in 1947 and was almost three times as large as the current one. Active regions are more common at the moment as we are in what's called solar maximum, which is the peak of the sun's activity, occurring approximately every 11 years. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Solar activity prediction

    NASA Technical Reports Server (NTRS)

    Slutz, R. J.; Gray, T. B.; West, M. L.; Stewart, F. G.; Leftin, M.

    1971-01-01

    A statistical study of formulas for predicting the sunspot number several years in advance is reported. By using a data lineup with cycle maxima coinciding, and by using multiple and nonlinear predictors, a new formula which gives better error estimates than former formulas derived from the work of McNish and Lincoln is obtained. A statistical analysis is conducted to determine which of several mathematical expressions best describes the relationship between 10.7 cm solar flux and Zurich sunspot numbers. Attention is given to the autocorrelation of the observations, and confidence intervals for the derived relationships are presented. The accuracy of predicting a value of 10.7 cm solar flux from a predicted sunspot number is dicussed.

  14. Nonlinear solar cycle forecasting: theory and perspectives

    NASA Astrophysics Data System (ADS)

    Baranovski, A. L.; Clette, F.; Nollau, V.

    2008-02-01

    In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters - the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

  15. The Recalibrated Sunspot Number: Impact on Solar Cycle Predictions

    NASA Astrophysics Data System (ADS)

    Clette, F.; Lefevre, L.

    2017-12-01

    Recently and for the first time since their creation, the sunspot number and group number series were entirely revisited and a first fully recalibrated version was officially released in July 2015 by the World Data Center SILSO (Brussels). Those reference long-term series are widely used as input data or as a calibration reference by various solar cycle prediction methods. Therefore, past predictions may now need to be redone using the new sunspot series, and methods already used for predicting cycle 24 will require adaptations before attempting predictions of the next cycles.In order to clarify the nature of the applied changes, we describe the different corrections applied to the sunspot and group number series, which affect extended time periods and can reach up to 40%. While some changes simply involve constant scale factors, other corrections vary with time or follow the solar cycle modulation. Depending on the prediction method and on the selected time interval, this can lead to different responses and biases. Moreover, together with the new series, standard error estimates are also progressively added to the new sunspot numbers, which may help deriving more accurate uncertainties for predicted activity indices. We conclude on the new round of recalibration that is now undertaken in the framework of a broad multi-team collaboration articulated around upcoming ISSI workshops. We outline the future corrections that can still be expected in the future, as part of a permanent upgrading process and quality control. From now on, future sunspot-based predictive models should thus be made more adaptable, and regular updates of predictions should become common practice in order to track periodic upgrades of the sunspot number series, just like it is done when using other modern solar observational series.

  16. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable secondmore » maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.« less

  17. Invited Talks at Naples and Coimbra

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart

    2003-01-01

    Prior to observations of the solar irradiance from space that began in 1979 there was no hope of obtaining even rough estimates of the solar irradiance variation over a solar cycle, since the space observations made since showed that the magnitude of the variation over a cycle to date is less than 0.1 %, a value too small to measure from the ground. At the same time, it would be useful to know the cycle-dependent variation over more than just the two recent cycles. Lacking a complete theory for the solar dynamo responsible for this variation, the current hope is to determine what proxy might yield the best values. Because there is an excellent database on sunspot umbral and penumbral areas from the Greenwich Observatory for the years 1874-1976 (but not beyond), the possibility exists that these data could be used. This talk will summarize results of a joint study in which satellite measurements of the solar irradiance variation are compared with ground-based measurements from the Coimbra Observatory of sunspot number, umbral area, and total sunspot area to determine which would serve as the best proxy for using the Greenwich observations back to 1874. From the near constancy of sunspot umbral magnetic fields upon which the useful parameter photometric sunspot index is based, we expected that umbral area would yield the beat proxy. To our surprise, after performing a statistical study of the observations over the period 1980-1990, preliminary indications are that sunspot number (a parameter available back into the 18th century) may be just as useful as the umbral area. As expected, both are quite superior as proxies to total sunspot area, which includes the penumbral area. This conclusion is consistent with earlier work of Hop and Schatten, who sought a proxy by studies of the umbral-penumbral area ratio. A second motivation for pursuing this work is the possibility that relatively small variations in the solar irradiance may induce larger responses in Earth's climate than would occur from simply introducing the corresponding heat differential into the terrestrial atmosphere. The talk will conclude with a description of why some climatologists are beginning to explore this possibility, which is suggest by some of the space observations used in the above search for a solar irradiance variation proxy.

  18. Gauging the Nearness and Size of Cycle Maximum

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2003-01-01

    A simple method for monitoring the nearness and size of conventional cycle maximum for an ongoing sunspot cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international sunspot number and the maximum value of the 2-mo moving average of monthly mean sunspot number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be approx. 124.5, occurring near July 2002 +/-5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23-120.8 in April 2000.

  19. Sunspot Cycle 24: Smallest Cycle in 100 Years?

    DTIC Science & Technology

    2005-01-11

    and power systems Wilcox Solar Observatories (WSO [Svalgaard et al., [National Oceanic and Atmospheric Administration, 2004; 1978], since 1976). The...are _W taken to be a measure of how well the procedure works (the oun* Wilson Solor Obs. Wico ,*Uf ts,. only real measure as far as we are concerned

  20. A preliminary analysis on the dependence of the human diseases on the relative number of sunspot.

    NASA Astrophysics Data System (ADS)

    Ma, Yuehua; Song, Yi

    1996-03-01

    On the basis of the solar-terrestrial relations point of view, the paper investigates the influences of solar activities upon the human race. According to the data of Nanjing Hospital for Infectious Diseases, both the curve of the occurrence of various diseases and the relative number of sunspots with time are drawn, and their related coefficients are calculated. The preliminary results show that the incidences of typhus and scarlet fever keep in step with the 11-year cycle of solar activities, they get the maximum at the same year, while other diseases are not definite.

  1. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described.

  2. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  3. Almost Spotless

    NASA Image and Video Library

    2016-11-30

    This week the sun was hitting its lowest level of solar activity since 2011 (Nov. 14-18, 2016) as it gradually marches toward solar minimum. This activity is usually measured by sunspot count and over the past several days the sun has been almost spotless. The sun has a pendulum-like pattern of solar cycle of activity that extends over about an 11-year period. The last peak of activity was in early 2014. At this point in time, the sunspot numbers seem to be sliding downwards faster than expected, though the solar minimum level should not occur until 2021. No doubt more and larger sunspots will inevitably appear, but we'll just have to wait and see. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21207

  4. Determining the Sun's Deep Meridional Flow Speed Using Active Latitude Drift Rates Since 1874

    NASA Astrophysics Data System (ADS)

    Hathaway, D. H.; Wilson, R. M.

    2005-05-01

    Dynamo models that incorporate a deep meridional return flow indicate that this flow regulates both the period and the amplitude of the sunspot cycle (Dikpati & Charbonneau 1999, ApJ, 518, 508 and Charbonneau & Dikpati 2000, ApJ, 543, 1027). We recently examined the equatorward drift of the active latitudes (as given by the centroid of the sunspot areas in each hemisphere) and found evidence supporting this view (Hathaway et al. 2003, ApJ, 589, 665 and Hathaway et al. 2004, ApJ, 602, 543). In those studies we fit the equatorward drift in each hemisphere for each sunspot cycle with a simple parabola - giving us a drift rate and its deceleration for each hemisphere/cycle. Here we analyze the same data (the Royal Greenwich Observatory/USAF/NOAA daily active region summaries) to determine the drift rates in each hemisphere on a yearly basis (rotation-by-rotation measurements smoothed to remove high frequencies) and fit them with a simple model for the meridional flow that provides the meridional flow speed as a function of latitude and time from 1874 to 2005. These flow speeds can be used to test dynamo models -- some of which have predictive capabilities.

  5. Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23

    NASA Astrophysics Data System (ADS)

    Sierra-Porta, D.

    2018-07-01

    In the present paper a systematic study is carried out to validate the similarity or co-variability between daily terrestrial cosmic-ray intensity and three parameters of the solar corona evolution, i.e., the number of sunspots and flare index observed in the solar corona and the Ap index for regular magnetic field variations caused by regular solar radiation changes. The study is made for a period including three solar cycles starting with cycle 21 (year 1976) and ending on cycle 23 (year 2008). A cross-correlation analysis was used to establish patterns and dependence of the variables. This study focused on the time lag calculation for these variables and found a maximum of negative correlation over CC1≈ 0.85, CC2≈ 0.75 and CC3≈ 0.63 with an estimation of 181, 156 and 2 days of deviation between maximum/minimum of peaks for the intensity of cosmic rays related with sunspot number, flare index and Ap index regression, respectively.

  6. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Cameron, R. H.; Schüssler, M., E-mail: jiejiang@nao.cas.cn

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input basedmore » upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.« less

  7. The Causes of Geomagnetic Storms During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Gonzalez, W. D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine (1852).

  8. Sunspot Dynamics Are Reflected in Human Physiology and Pathophysiology

    NASA Astrophysics Data System (ADS)

    Hrushesky, William J. M.; Sothern, Robert B.; Du-Quiton, Jovelyn; Quiton, Dinah Faith T.; Rietveld, Wop; Boon, Mathilde E.

    2011-03-01

    Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10-11 and 5-6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9"N, 4°29"E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ∼5 times daily during ∼34,500 self-measurement sessions (44°56"N, 93°8"W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology.

  9. Anticipating Cycle 24 Minimum and Its Consequences

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2007-01-01

    On the basis of the 12-mo moving average of monthly mean sunspot number (R) through November 2006, cycle 23 has persisted for 126 mo, having had a minimum of 8.0 in May 1996, a peak of 120.8 in April 2000, and an ascent duration of 47 mo. In November 2006, the 12-mo moving average of monthly mean sunspot number was 12.7, a value just outside the upper observed envelope of sunspot minimum values for the most recent cycles 16-23 (range 3.4-12.3), but within the 90-percent prediction interval (7.8 +/- 6.7). The first spotless day during the decline of cycle 23 occurred in January 2004, and the first occurrence of 10 or more and 20 or more spotless days was February 2006 and April 2007, respectively, inferring that sunspot minimum for cycle 24 is imminent. Through May 2007, 121 spotless days have accumulated. In terms of the weighted mean latitude (weighed by spot area) (LAT) and the highest observed latitude spot (HLS) in November 2006, 12-mo moving averages of these parameters measured 7.9 and 14.6 deg, respectively, these values being the lowest values yet observed during the decline of cycle 23 and being below corresponding mean values found for cycles 16-23. As yet, no high-latitude new-cycle spots have been seen nor has there been an upturn in LAT and HLS, these conditions having always preceded new cycle minimum by several months for past cycles. Together, these findings suggest that cycle 24 s minimum amplitude still lies well beyond November 2006. This implies that cycle 23 s period either will lie in the period "gap" (127-134 mo), a first for a sunspot cycle, or it will be longer than 134 mo, thus making cycle 23 a long-period cycle (like cycle 20) and indicating that cycle 24 s minimum will occur after July 2007. Should cycle 23 prove to be a cycle of longer period, a consequence might be that the maximum amplitude for cycle 24 may be smaller than previously predicted.

  10. Observations of Space Weather and Space Climate Over the Past 15 Years From SABER (And Longer!)

    NASA Technical Reports Server (NTRS)

    Mlynczak, Marty; Hunt, Linda; Russell, James M., III

    2016-01-01

    The global infrared (IR) energy budget of the thermosphere has been reconstructed back 70 years (to 1947). IR cooling, integrated over a solar cycle, is relatively constant over the 5 complete cycles (19 -23) studied. Result implies that solar energy (particles and photons) has similar, small (< 7%) variation from one cycle to next. From Earth's upper atmosphere perspective, solar cycles are really more similar than different, over their length. No consistent relationship between peak of IR cooling and sunspot number peak. Results submitted to GRL 8/2016.

  11. Hemispheric Coupling: Comparing Dynamo Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Charbonneau, P.; Passos, D.

    2014-12-01

    Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17-23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long "millennium simulation" spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (˜40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. "banana cells") and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby the oppositely directed fields come in close proximity and cancel each other across the magnetic equator late in the solar cycle. We discuss the discrepancies between model and observations and the constraints they pose on possible mechanisms of hemispheric coupling.

  12. A study of the asymmetrical distribution of solar activity features on solar and plasma parameters (1967-2016)

    NASA Astrophysics Data System (ADS)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-04-01

    The impact of asymmetrical distribution of hemispheric sunspot areas (SSAs) on the interplanetary magnetic field, plasma, and solar parameters from 1967 to 2016 has been studied. The N-S asymmetry of solar-plasma activities based on SSAs has a northern dominance during solar cycles 20 and 24. However, it has a tendency to shift to the southern hemisphere in cycles 21, 22, and 23. The solar cycle 23 showed that the sorted southern SSAs days predominated over the northern days by ˜17%. Through the solar cycles 21-24, the SSAs of the southern hemisphere were more active. In contrast, the northern SSAs predominate over the southern one by 9% throughout solar cycle 20. On the other hand, the average differences of field magnitude for the sorted northern and southern groups during solar cycles 20-24 are statistically insignificant. Clearly, twenty years showed that the solar plasma ion density from the sorted northern group was denser than that of southern group and a highest northern dominant peak occurred in 1971. In contrast, seventeen out of fifty years showed the reverse. In addition, there are fifteen clear asymmetries of solar wind speed (SWS), with SWS (N) > SWS (S), and during the years 1972, 2002, and 2008, the SWS from the sorted northern group was faster than that of southern activity group by 6.16 ± 0.65 km/s, 5.70 ± 0.86 km/s, and 5.76 ± 1.35 km/s, respectively. For the solar cycles 20-24, the grand-averages of P from the sorted solar northern and southern have nearly the same parameter values. The solar plasma was hotter for the sorted northern activity group than the southern ones for 17 years out of 50. Most significant northern prevalent asymmetries were found in 1972 (5.76 ± 0.66 × 103 K) and 1996 (4.7 ± 0.8 × 103 K), while two significant equivalent dominant southern asymmetries (˜3.8 ± 0.3 × 103 K) occurred in 1978 and 1993. The grand averages of sunspot numbers have symmetric activity for the two sorted northern and southern hemispheres through the solar cycles 20 and 21. The sunspots tend to be the southern dominance during the solar cycles 22 and 23, and it shifted during solar cycle 24 to symmetric distribution on both solar hemispheres.

  13. On the variation of the Nimbus 7 total solar irradiance

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1992-01-01

    For the interval December 1978 to April 1991, the value of the mean total solar irradiance, as measured by the Nimbus-7 Earth Radiation Budget Experiment channel 10C, was 1,372.02 Wm(exp -2), having a standard deviation of 0.65 Wm(exp -2), a coefficient of variation (mean divided by the standard deviation) of 0.047 percent, and a normal deviate z (a measure of the randomness of the data) of -8.019 (inferring a highly significant non-random variation in the solar irradiance measurements, presumably related to the action of the solar cycle). Comparison of the 12-month moving average (also called the 13-month running mean) of solar irradiance to those of the usual descriptors of the solar cycle (i.e., sunspot number, 10.7-cm solar radio flux, and total corrected sunspot area) suggests possibly significant temporal differences. For example, solar irradiance is found to have been greatest on or before mid 1979 (leading solar maximum for cycle 21), lowest in early 1987 (lagging solar minimum for cycle 22), and was rising again through late 1990 (thus, lagging solar maximum for cycle 22), having last reported values below those that were seen in 1979 (even though cycles 21 and 22 were of comparable strength). Presuming a genuine correlation between solar irradiance and the solar cycle (in particular, sunspot number) one infers that the correlation is weak (having a coefficient of correlation r less than 0.84) and that major excursions (both as 'excesses' and 'deficits') have occurred (about every 2 to 3 years, perhaps suggesting a pulsating Sun).

  14. Isolated quasi-axisymmetric sunspots

    NASA Astrophysics Data System (ADS)

    Koutchmy, Serge; Le Piouffle, Vincent

    2009-04-01

    We briefly review the question of the origin, during a sunspot cycle, of well isolated sunspots. This includes big sunspots like the one observed in Nov. 2006. An overall axi-symmetric morphology is not perfectly observed when the morphological details of both the umbra and of the penumbra are considered. This is especially the case of umbral dots always present inside the core of a sunspot and also of penumbral filaments with non radial parts. However, the distribution of the surrounding fields, including deep layers, the occurrence of persistent coherent running penumbral waves, the magnetic moat behavior, the bright ring phenomena, etc. seem to justify a revival of the naive former but revised (converging motions are considered) Larmor model of a sunspot (as suggested by Lorrain et al. 2006). To discuss the “emergence” of single isolated sunspots from deep layers we performed a quasi-statistical analysis limited to cycle 23. It is based on MDI data taken in the continuum, using the accompanying magnetograms to check our assertion. Surprisingly, single sunspots are definitely and preferably found to occur at low latitude and during the descending branch of the cycle. To explain our observations we speculate about the behavior of the deeply seated magnetic loop, following the original idea of H. Alfven (with whirl rings which follow the global dipolar field when approaching the surface). It could lead to a closed loop approximately orthogonal to the local radius, similar to “smoke rings” arriving at the surface of the Sun and sometimes also called a plasmoid. The ring will only very weakly feel the destabilizing Coriolis force, when emerging at very low latitudes, which seems consistent with our observations.

  15. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    NASA Astrophysics Data System (ADS)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  16. Comparison of Total Solar Irradiance with NASA/NSO Spectromagnetograph Data in Solar Cycles 22 and 23

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Branston, Detrick D.; Jones, Patricia B.; Popescu, Miruna D.

    2002-01-01

    An earlier study compared NASA/NSO Spectromagnetograph (SPM) data with spacecraft measurements of total solar irradiance (TSI) variations over a 1.5 year period in the declining phase of solar cycle 22. This paper extends the analysis to an eight-year period which also spans the rising and early maximum phases of cycle 23. The conclusions of the earlier work appear to be robust: three factors (sunspots, strong unipolar regions, and strong mixed polarity regions) describe most of the variation in the SPM record, but only the first two are associated with TSI. Additionally, the residuals of a linear multiple regression of TSI against SPM observations over the entire eight-year period show an unexplained, increasing, linear time variation with a rate of about 0.05 W m(exp -2) per year. Separate regressions for the periods before and after 1996 January 01 show no unexplained trends but differ substantially in regression parameters. This behavior may reflect a solar source of TSI variations beyond sunspots and faculae but more plausibly results from uncompensated non-solar effects in one or both of the TSI and SPM data sets.

  17. The study on the new approach to the prediction of the solar flares: The statistical relation from the SOHO archive

    NASA Astrophysics Data System (ADS)

    Lee, S.; Oh, S.; Lee, J.; Hong, S.

    2013-12-01

    We have investigated the statistical relationship of the solar active region to predict the solar flare event analyzing the sunspot catalogue, which has been newly constructed from the SOHO MDI observation data during the period from 1996 to 2011 (Solar Cycle 23 & 24) by ASSA(Automatic Solar Synoptic Analyzer) algorithms. The prediction relation has been made by machine-learning algorithms to establish a short- term flare prediction model for operational use in near future. In this study, continuum and magnetogram images observed by SOHO has been processed to yield 15-year sunspot group catalogue that contains various physical parameters such as sunspot area, extent, asymmetry measure of largest penumbral sunspot, roughness of magnetic neutral line as well as McIntosh and Mt. Wilson classification results.The latest result of our study will be presented and the new approach to the prediction of the solar flare will be discussed.

  18. Solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Hood, Alan W.; Hughes, David W.

    2011-08-01

    This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulations can help to determine the physical processes governing the emergence of sunspots. We discuss the interaction of these emerging fields with the pre-existing coronal field, resulting in a variety of dynamic phenomena.

  19. Spatial-temporal forecasting the sunspot diagram

    NASA Astrophysics Data System (ADS)

    Covas, Eurico

    2017-09-01

    Aims: We attempt to forecast the Sun's sunspot butterfly diagram in both space (I.e. in latitude) and time, instead of the usual one-dimensional time series forecasts prevalent in the scientific literature. Methods: We use a prediction method based on the non-linear embedding of data series in high dimensions. We use this method to forecast both in latitude (space) and in time, using a full spatial-temporal series of the sunspot diagram from 1874 to 2015. Results: The analysis of the results shows that it is indeed possible to reconstruct the overall shape and amplitude of the spatial-temporal pattern of sunspots, but that the method in its current form does not have real predictive power. We also apply a metric called structural similarity to compare the forecasted and the observed butterfly cycles, showing that this metric can be a useful addition to the usual root mean square error metric when analysing the efficiency of different prediction methods. Conclusions: We conclude that it is in principle possible to reconstruct the full sunspot butterfly diagram for at least one cycle using this approach and that this method and others should be explored since just looking at metrics such as sunspot count number or sunspot total area coverage is too reductive given the spatial-temporal dynamical complexity of the sunspot butterfly diagram. However, more data and/or an improved approach is probably necessary to have true predictive power.

  20. THE RECENT REJUVENATION OF THE SUN’S LARGE-SCALE MAGNETIC FIELD: A CLUE FOR UNDERSTANDING PAST AND FUTURE SUNSPOT CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheeley, N. R. Jr.; Wang, Y.-M.

    The quiet nature of sunspot cycle 24 was disrupted during the second half of 2014 when the Sun’s large-scale field underwent a sudden rejuvenation: the solar mean field reached its highest value since 1991, the interplanetary field strength doubled, and galactic cosmic rays showed their strongest 27-day modulation since neutron-monitor observations began in 1957; in the outer corona, the large increase of field strength was reflected by unprecedentedly large numbers of coronal loops collapsing inward along the heliospheric current sheet. Here, we show that this rejuvenation was not caused by a significant increase in the level of solar activity asmore » measured by the smoothed sunspot number and CME rate, but instead was caused by the systematic emergence of flux in active regions whose longitudinal distribution greatly increased the Sun’s dipole moment. A similar post-maximum increase in the dipole moment occurred during each of the previous three sunspot cycles, and marked the start of the declining phase of each cycle. We note that the north–south component of this peak dipole moment provides an early indicator of the amplitude of the next cycle, and conclude that the amplitude of cycle 25 may be comparable to that of cycle 24, and well above the amplitudes obtained during the Maunder Minimum.« less

  1. Statistical Analysis of Acoustic Wave Power and Flows around Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2018-05-01

    We analyze the effect of a sunspot in its quiet surroundings applying a helioseismic technique on almost three years of Helioseismic and Magnetic Imager (HMI) observations obtained during solar cycle 24 to further study the sunspot structure below the solar surface. The attenuation of acoustic waves with frequencies lower than 4.2 mHz depends more strongly on the wave direction at a distance of 6°–7° from the sunspot center. The amplification of higher frequency waves is highest 6° away from the active region and is largely independent of the wave’s direction. We observe a mean clockwise flow around active regions, the angular speed of which decreases exponentially with distance and has a coefficient close to ‑0.7 degree‑1. The observed horizontal flow in the direction of the nearby active region agrees with a large-scale circulation around the sunspot in the shape of cylindrical shell. The center of the shell seems to be centered around 7° from the sunspot center, where we observe an inflow close to the surface down to ∼2 Mm, followed by an outflow at deeper layers until at least 7 Mm.

  2. Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1974-01-01

    Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  3. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClintock, B. H.; Norton, A. A.; Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude ofmore » umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.« less

  4. A Solar-luminosity Model and Climate

    NASA Technical Reports Server (NTRS)

    Perry, Charles A.

    1990-01-01

    Although the mechanisms of climatic change are not completely understood, the potential causes include changes in the Sun's luminosity. Solar activity in the form of sunspots, flares, proton events, and radiation fluctuations has displayed periodic tendencies. Two types of proxy climatic data that can be related to periodic solar activity are varved geologic formations and freshwater diatom deposits. A model for solar luminosity was developed by using the geometric progression of harmonic cycles that is evident in solar and geophysical data. The model assumes that variation in global energy input is a result of many periods of individual solar-luminosity variations. The 0.1-percent variation of the solar constant measured during the last sunspot cycle provided the basis for determining the amplitude of each luminosity cycle. Model output is a summation of the amplitudes of each cycle of a geometric progression of harmonic sine waves that are referenced to the 11-year average solar cycle. When the last eight cycles in Emiliani's oxygen-18 variations from deep-sea cores were standardized to the average length of glaciations during the Pleistocene (88,000 years), correlation coefficients with the model output ranged from 0.48 to 0.76. In order to calibrate the model to real time, model output was graphically compared to indirect records of glacial advances and retreats during the last 24,000 years and with sea-level rises during the Holocene. Carbon-14 production during the last millenium and elevations of the Great Salt Lake for the last 140 years demonstrate significant correlations with modeled luminosity. Major solar flares during the last 90 years match well with the time-calibrated model.

  5. Skin Cancer, Irradiation, and Sunspots: The Solar Cycle Effect

    PubMed Central

    Zurbenko, Igor

    2014-01-01

    Skin cancer is diagnosed in more than 2 million individuals annually in the United States. It is strongly associated with ultraviolet exposure, with melanoma risk doubling after five or more sunburns. Solar activity, characterized by features such as irradiance and sunspots, undergoes an 11-year solar cycle. This fingerprint frequency accounts for relatively small variation on Earth when compared to other uncorrelated time scales such as daily and seasonal cycles. Kolmogorov-Zurbenko filters, applied to the solar cycle and skin cancer data, separate the components of different time scales to detect weaker long term signals and investigate the relationships between long term trends. Analyses of crosscorrelations reveal epidemiologically consistent latencies between variables which can then be used for regression analysis to calculate a coefficient of influence. This method reveals that strong numerical associations, with correlations >0.5, exist between these small but distinct long term trends in the solar cycle and skin cancer. This improves modeling skin cancer trends on long time scales despite the stronger variation in other time scales and the destructive presence of noise. PMID:25126567

  6. Sunspot Dynamics Are Reflected in Human Physiology and Pathophysiology

    PubMed Central

    Sothern, Robert B.; Du-Quiton, Jovelyn; Quiton, Dinah Faith T.; Rietveld, Wop; Boon, Mathilde E.

    2011-01-01

    Abstract Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10–11 and 5–6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9″N, 4°29″E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ∼5 times daily during ∼34,500 self-measurement sessions (44°56″N, 93°8″W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology. Key Words: Cervical infections—Cervical premalignancy—Geo-solar magnetic interactions—Pap smear—Schwabe cycle—10-year rhythm. Astrobiology 11, 93–103. PMID:21391821

  7. On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    NASA Astrophysics Data System (ADS)

    Santos, Ângela R. G.; Cunha, Margarida S.; Avelino, Pedro P.; Chaplin, William J.; Campante, Tiago L.

    2017-10-01

    The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short-and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.

  8. Maunder's Butterfly Diagram in the 21st Century

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2005-01-01

    E. Walter Maunder created his first "Butterfly Diagram" showing the equatorward drift of the sunspot latitudes over the course of each of two solar cycles in 1903. This diagram was constructed from data obtained through the Royal Greenwich Observatory (RGO) starting in 1874. The RGO continued to acquire data up until 1976. Fortunately, the US Air Force (USAF) and the US National Oceanic and Atmospheric Administration (NOAA) have continued to acquire similar data since that time. This combined RGO/USAF/NOAA dataset on sunspot group positions and areas now extends virtually unbroken from the 19th century to the 21st century. The data represented in the Butterfly Diagram contain a wealth of information about solar activity and the solar cycle. Solar activity (as represented by the sunspots) appears at mid-latitudes at the start of each cycle. The bands of activity spread in each hemisphere and then drift toward the equator as the cycle progresses. Although the equator itself tends to be avoided, the spread of activity reaches the equator at about the time of cycle maximum. The cycles overlap at minimum with old cycle spots appearing near the equator while new cycle spots emerge in the mid-latitudes. Large amplitude cycles tend to have activity starting at higher latitudes with the activity spreading to higher latitudes as well. Large amplitude cycles also tend to be preceded by earlier cycles with faster drift rates. These drift rates may be tied to the Sun s meridional circulation - a component in many dynamo theories for the origin of the sunspot cycle. The Butterfly Diagram must be reproduced in any successful dynamo model for the Sun.

  9. Possible Explanation of the Different Temporal Behaviors of Various Classes of Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin; Li, Ke-Jun; Li, Fu-Yu

    2017-09-01

    In order to investigate the periodicity and long-term trends of various classes of sunspot groups (SGs), we separated SGs into two categories: simple SGs (A/U ≤ 4.5, where A represents the total corrected whole spot area of the group in millionths of the solar hemisphere (msh), and U represents the total corrected umbral area of the group in msh); and complex SGs (A/U > 6.2). Based on the revised version of the Greenwich Photoheliographic Results sunspot catalogue, we investigated the periodic behaviors and long-term trends of simple and complex SGs from 1875 to 1976 using the Hilbert-Huang Transform method, and we confirm that the temporal behaviors of simple and complex SGs are quite different. Our main findings are as follows. i) For simple and complex SGs, the values of the Schwabe cycle wax and wane, following the solar activity cycle. ii) There are significant phase differences (almost antiphase) between the periodicity of 53.50 ± 3.79 years extracted from yearly simple SG numbers and the periodicity of 56.21 ± 2.92 years extracted from yearly complex SG numbers. iii) The adaptive trends of yearly simple and complex SG numbers are also quite different: for simple SGs, the values of the adaptive trend gradually increase during the time period of 1875 - 1949, then they decrease gradually from 1949 to 1976, similar to the rise and the maximum phase of a sine curve; for complex SGs, the values of the adaptive trend first slowly increase and then quickly increase, similar to the minimum and rise phase of a sine curve.

  10. The effects of low solar activity upon the cosmic radiation and the interplanetary magnetic field over the past 10,000 years, and implications for the future. (Invited)

    NASA Astrophysics Data System (ADS)

    McCracken, K. G.; McDonald, F. B.; Beer, J.; Abreu, J.; Steinhilber, F.

    2009-12-01

    The paleo-cosmic ray records based on the radionuclides 10Be and 14 C show that the Sun has experienced twenty two extended periods of low activity (similar to, or longer than the Maunder Minimum) in the past 10,000 years, and many more periods of reduced activity for 2 or more solar cycles similar to the period 1880-1910. The 10,000 yr record shows that solar activity has exhibited three persistent periodicities that modulate the amplitude of the Hale (11/22 year) cycle. They are the Gleissberg (~85 yr); the de Vries (~208 yr); and the Hallstatt (~2200 yr) periodicities. It is possible that the Sun is entering a somewhat delayed Gleissberg repetition of the 1880-1910 period of reduced activity or a de Vries repetition of the Dalton Minimum of 1800-1820; or a combination of both. The historic record shows that the cosmic ray intensity at sunspot minimum increases substantially during periods of reduced solar activity- during the Dalton minimum it was twice the present-day sunspot minimum intensity at 2GeV/nucleon ; and 10 times greater at 100 MeV/nucleon. The Hale cycle of solar activity continued throughout the Spoerer (1420-1540) and Maunder Minima, and it appears possible that the local interstellar cosmic ray spectrum was occasionally incident on Earth. Using the cosmic ray transport equation to invert the paleo-cosmic ray record shows that the magnetic field was <1nT at Hale minima during the Spoerer Minimum and late in the Maunder Minimum. The Sun was at a minimum of the Hallstatt (2200yr) cycle of activity in the 15th century, and is now on a steadily rising plane of activity. Paleo-cosmic ray evidence suggests that there was a greater production of impulsive solar energetic particle events in the solar cycles of reduced solar activity 1880-1910. Based on these observations, three scenarios for the next several decades will be outlined- (a) a single, deep sunspot minimum followed by an active sun; (b) several cycles of reduced solar activity similar to 1880-1910; and (c) a “Grand Minimum” with one or more 11 year cycles of very low activity similar to the Dalton Minimum.

  11. Diary of a Wimpy Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David; Upton, Lisa

    2013-01-01

    The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. Here we discuss the observed characteristics of Cycle 24 and contrast them to the characteristics of previous cycles. We present observations and Magnetic Flux Transport simulations with data assimilated from SOHO/MDI and SDO/HMI that help to explain these differences and point the way to predictions of future activity levels.

  12. Prediction of the Length of Upcoming Solar Cycles

    NASA Astrophysics Data System (ADS)

    Kakad, Bharati; Kakad, Amar; Ramesh, Durbha Sai

    2017-12-01

    The forecast of solar cycle (SC) characteristics is crucial particularly for several space-based missions. In the present study, we propose a new model for predicting the length of the SC. The model uses the information of the width of an autocorrelation function that is derived from the daily sunspot data for each SC. We tested the model on Versions 1 and 2 of the daily international sunspot number data for SCs 10 - 24. We found that the autocorrelation width Aw n of SC n during the second half of its ascending phase correlates well with the modified length that is defined as T_{cy}^{n+2} - Tan. Here T_{cy}^{n+2} and T_{ a}n are the length and ascent time of SCs n+2 and n, respectively. The estimated correlation coefficient between the model parameters is 0.93 (0.91) for Version 1 (Version 2) sunspot series. The standard errors in the observed and predicted lengths of the SCs for Version 1 and Version 2 data are 0.38 and 0.44 years, respectively. The advantage of the proposed model is that the predictions of the length of the upcoming two SCs ( i.e., n+1, n+2) are readily available at the time of the peak of SC n. The present model gives a forecast of 11.01, 10.52, and 11.91 years (11.01, 12.20, and 11.68 years) for the length of SCs 24, 25, and 26, respectively, for Version 1 (Version 2).

  13. Long-term Trends in the Solar Wind Proton Measurements

    NASA Astrophysics Data System (ADS)

    Elliott, Heather A.; McComas, David J.; DeForest, Craig E.

    2016-11-01

    We examine the long-term time evolution (1965-2015) of the relationships between solar wind proton temperature (T p) and speed (V p) and between the proton density (n p) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature-speed (T p-V p) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density-speed (n p-V p) relationship is not linear like the T p-V p relationship, we perform power-law fits for n p-V p. The exponent (steepness in the n p-V p relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n p for different speed ranges, and found that for the slow wind n p is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n p variation was less, but in phase with the cycle. This phase difference may contribute to the n p-V p exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T p and V p data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.

  14. Centennial variations in sunspot number, open solar flux, and streamer belt width: 2. Comparison with the geomagnetic data

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Owens, M. J.; Barnard, L.

    2014-07-01

    We investigate the relationship between interdiurnal variation geomagnetic activity indices, IDV and IDV(1d), corrected sunspot number, RC , and the group sunspot number RG . RC uses corrections for both the "Waldmeier discontinuity," as derived in Paper 1, and the "Wolf discontinuity" revealed by Leussu et al. (2013). We show that the simple correlation of the geomagnetic indices with RCn or RGn masks a considerable solar cycle variation. Using IDV(1d) or IDV to predict or evaluate the sunspot numbers, the errors are almost halved by allowing for the fact that the relationship varies over the solar cycle. The results indicate that differences between RC and RG have a variety of causes and are highly unlikely to be attributable to errors in either RG alone, as has recently been assumed. Because it is not known if RC or RG is a better predictor of open flux emergence before 1874, a simple sunspot number composite is suggested which, like RG , enables modeling of the open solar flux for 1610 onward in Paper 3 but maintains the characteristics of RC .

  15. H-alpha synoptic charts of solar activity during the first year of solar cycle 20, October 1964 - August 1965. [Skylab program

    NASA Technical Reports Server (NTRS)

    Mcintosh, P. S.

    1975-01-01

    Solar activity during the period October 28, 1964 through August 27, 1965 is presented in the form of charts for each solar rotation constructed from observations made with the chromospheric H-alpha spectra line. These H-alpha synoptic charts are identical in format and method of construction to those published for the period of Skylab observations. The sunspot minimum marking the start of Solar Cycle 20 occurred in October, 1964; therefore, charts represent solar activity during the first year of this solar cycle.

  16. The Complexity of Solar and Geomagnetic Indices

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean

    2017-08-01

    How far in advance can the sunspot number be predicted with any degree of confidence? Solar cycle predictions are needed to plan long-term space missions. Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Statistical and timeseries analyses of the sunspot number are often used to predict solar activity. These methods have not been completely successful as the solar dynamo changes over time and one cycle's sunspots are not a faithful predictor of the next cycle's activity. In some ways, using these techniques is similar to asking whether the stock market can be predicted. It has been shown that the Dow Jones Industrial Average (DJIA) can be more accurately predicted during periods when it obeys certain statistical properties than at other times. The Hurst exponent is one such way to partition the data. Another measure of the complexity of a timeseries is the fractal dimension. We can use these measures of complexity to compare the sunspot number with other solar and geomagnetic indices. Our concentration is on how trends are removed by the various techniques, either internally or externally. Comparisons of the statistical properties of the various solar indices may guide us in understanding how the dynamo manifests in the various indices and the Sun.

  17. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which would be produced mostly by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts that during low solar activity periods, the solar cycle length tends to be longer, as some researchers have claimed. These results clearly indicate that both solar and climate oscillations are linked to planetary motion and, furthermore, their timing can be reasonably hindcast and forecast for decades, centuries and millennia. Scafetta, N.: Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. J. Atmos. Sol.- Terr. Phys. 80, 296-311 (2012). Scafetta, N.: Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Sol.-Terr. Phys. 81-82, 27-40 (2012). Scafetta, N.: Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques. Astrophys. Space Sci. 354, 275-299 (2014).

  18. Sunspots

    NASA Technical Reports Server (NTRS)

    Moore, R.; Rabin, D.

    1985-01-01

    It is pointed out that the sun provides a close-up view of many astrophysically important phenomena, nearly all connected with the causes and effects of solar magnetic fields. The present article provides a review of the role of sunspots in a number of new areas of research. Connections with other solar phenomena are examined, taking into account flares, the solar magnetic cycle, global flows, luminosity variation, and global oscillations. A selective review of the structure and dynamic phenomena observed within sunspots is also presented. It is found that sunspots are usually contorted during the growth phase of an active region as magnetic field rapidly emerges and sunspots form, coalesce, and move past or even through each other. Attention is given to structure and flows, oscillations and waves, and plans for future studies.

  19. Variations of Solar Non-axisymmetric Activity

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    The temporal behaviour of solar active longitudes has been examined by using two sunspot catalogues, the Greenwich Photoheliographic Results (GPR) and the Debrecen Photoheliographic Data (DPD). The time-longitude diagrams of the activity distribution reveal the preferred longitudinal zones and their migration with respect to the Carrington frame. The migration paths outline a set of patterns in which the activity zone has alternating prograde/retrograde angular velocities with respect to the Carrington rotation rate. The time profiles of these variations can be described by a set of successive parabolae. Two similar migration paths have been selected from these datasets, one northern path during cycles 21 - 22 and one southern path during cycles 13 - 14, for closer examination and comparison of their dynamical behaviours. The rates of sunspot emergence exhibited in both migration paths similar periodicities, close to 1.3 years. This behaviour may imply that the active longitude is connected to the bottom of convection zone.

  20. On the Relation Between Spotless Days and the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2005-01-01

    Spotless days are examined as a predictor for the size and timing of a sunspot cycle. For cycles 16-23 the first spotless day for a new cycle, which occurs during the decline of the old cycle, is found to precede minimum amplitude for the new cycle by about approximately equal to 34 mo, having a range of 25-40 mo. Reports indicate that the first spotless day for cycle 24 occurred in January 2004, suggesting that minimum amplitude for cycle 24 should be expected before April 2007, probably sometime during the latter half of 2006. If true, then cycle 23 will be classified as a cycle of shorter period, inferring further that cycle 24 likely will be a cycle of larger than average minimum and maximum amplitudes and faster than average rise, peaking sometime in 2010.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id; Arif, Johan; Nurzaman, Muhamad Zamzam

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicatemore » technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.« less

  2. Wings of the butterfly: Sunspot groups for 1826-2015

    NASA Astrophysics Data System (ADS)

    Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Denker, C.; Mursula, K.

    2017-03-01

    The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Spörer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30°-45°) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20°-30°) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2°-10°) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. Digital data for Fig. 1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A131

  3. The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions

    NASA Astrophysics Data System (ADS)

    Kopp, G.; Krivova, N.; Wu, C. J.; Lean, J.

    2016-11-01

    Reliable historical records of the total solar irradiance (TSI) are needed to assess the extent to which long-term variations in the Sun's radiant energy that is incident upon Earth may exacerbate (or mitigate) the more dominant warming in recent centuries that is due to increasing concentrations of greenhouse gases. We investigate the effects that the new Sunspot Index and Long-term Solar Observations (SILSO) sunspot-number time series may have on model reconstructions of the TSI. In contemporary TSI records, variations on timescales longer than about a day are dominated by the opposing effects of sunspot darkening and facular brightening. These two surface magnetic features, retrieved either from direct observations or from solar-activity proxies, are combined in TSI models to reproduce the current TSI observational record. Indices that manifest solar-surface magnetic activity, in particular the sunspot-number record, then enable reconstructing historical TSI. Revisions of the sunspot-number record therefore affect the magnitude and temporal structure of TSI variability on centennial timescales according to the model reconstruction methods that are employed. We estimate the effects of the new SILSO record on two widely used TSI reconstructions, namely the NRLTSI2 and the SATIRE models. We find that the SILSO record has little effect on either model after 1885, but leads to solar-cycle fluctuations with greater amplitude in the TSI reconstructions prior. This suggests that many eighteenth- and nineteenth-century cycles could be similar in amplitude to those of the current Modern Maximum. TSI records based on the revised sunspot data do not suggest a significant change in Maunder Minimum TSI values, and from comparing this era to the present, we find only very small potential differences in the estimated solar contributions to the climate with this new sunspot record.

  4. The cosmogenic Berryllium, solar activity and climate

    NASA Astrophysics Data System (ADS)

    Komitov, B.; Nedev, P.; Minev, P.

    2003-04-01

    An analysis of 10Be production rate (Δ10Be) series in Dye-3 ice probe /Greenland/ has been made. By using of T-R periodogramm analysis a cycles of 8-14, 18-24, 40-44, 52, 66-70, 115-120, 190 and 360 years are detected. The correlation analysis of Δ10Be and group sunspot numbers index /Rg/ for the period 1610-1985 point, that there is a phase shifting between the both series of 6-6.5 years. It correspond of the "cosmogenic" origin of 10Be in stratosphere by the galactic cosmic rays, wich maximal production rate is in periods of solar activity minimums and very short "resident time" of this isotope /˜1 year/. By T-R analysus of the Rg-series powerful cycles of 10-11 /Schwabe-Wolf/, 118 and 193 years has been obtained. There are weak spures of cyclity at 29-31, 38, 52 and 66-70 years too. However the magnitudes of quasy 11 and 20-22 years oscilations in Δ10Be are low. The fine structure of T-R spectra in regions 8-14 and 18-24 years is very complicate /multipletic/. In other hand there is a evidence that weack quasy 10 years cycle in Δ10Be exist during the Maunder minimum in 17th century. The fine structure of the Schwabe-Wolf cycle in Rg series is too complicate. Except the main local peak in the T-R spectra at T=11 years, there is a secondary strong maximum at T=10 years and weaker peaks at 8.5, 11.75 and 12.25 years. The relative powerful 52 year cycle in Δ10Be series have an analog in sunspot index of assymetry series, wich is derived on the base of Zurich series after 1871 AD. It correspond of increasing and decreasing of the sunspot activity in the northen hemisphere of the Sun by the same cycle. The main T-R spectra features of Δ10Be series in region of the low frecuences /powerful subcenturial and centurial cycles/ are similar to the same in large number of tree rings data series in Northern hemisphere during 15th -20th centuries /published in the International Tree Rings Data Base/. This is indirect evidence that the Δ10Be data are rather an indicator for the climate and the solar - climatic relatiaons in the past. On the base of the T-R spectra a model of Δ10Be series has been made. Its extrapolation for the next 200 years predict a significant increasing of 10Be production rate during the 21th century. It can be interpreted as a forcomming of new supercenturial solar minimum, similar to the Dalton minimum at the beginning of the 19th century and for a possible climate cooling during the next few decades too.

  5. Investigation of Sunspot Area Varying with Sunspot Number

    NASA Astrophysics Data System (ADS)

    Li, K. J.; Li, F. Y.; Zhang, J.; Feng, W.

    2016-11-01

    The statistical relationship between sunspot area (SA) and sunspot number (SN) is investigated through analysis of their daily observation records from May 1874 to April 2015. For a total of 1607 days, representing 3 % of the total interval considered, either SA or SN had a value of zero while the other parameter did not. These occurrences most likely reflect the report of short-lived spots by a single observatory and subsequent averaging of zero values over multiple stations. The main results obtained are as follows: i) The number of spotless days around the minimum of a solar cycle is statistically negatively correlated with the maximum strength of solar activity of that cycle. ii) The probability distribution of SA generally decreases monotonically with SA, but the distribution of SN generally increases first, then it decreases as a whole. The different probability distribution of SA and SN should strengthen their non-linear relation, and the correction factor [k] in the definition of SN may be one of the factors that cause the non-linearity. iii) The non-linear relation of SA and SN indeed exists statistically, and it is clearer during the maximum epoch of a solar cycle.

  6. Estimating the Mean Annual Surface Air Temperature at Armagh Observatory, Northern Ireland, and the Global Land-Ocean Temperature Index for Sunspot Cycle 24, the Current Ongoing Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    As noted by Gray et al., Sir William Herschel was the first to suggest a possible close connection between the Sun and the Earth’s climate. The Sun, being the source of energy that impacts and drives the Earth’s climate system, displays a variety of changes over both short and long term time scales, the most obvious examples being the somewhat regular waxing and waning of sunspots with time (i.e., the sunspot cycle (SC)), first described by Samuel Heinrich Schwabe, a German apothecary and amateur astronomer who observed the Sun from Dessau, Germany, and the now well established variation of the Sun’s irradiance over the SC. Other factors related to the SC have been linked to changes in climate as well. Some of these other factors include the role of cosmic rays and the solar wind (i.e., the geomagnetic cycle) on climate, as well as the apparent close association between trends in global and northern hemispheric temperature and the length of the SC, although some investigators have described the inferred association between climate and, in particular, SC length as now being weak. More recently, Solheim et al. have reported on the relation between SC length and the average temperature in the same and immediately following SC for a number of meteorological stations in Norway and in the North Atlantic region. They noted that while they found no significant trend (correlation) between SC length and the average temperature when measured for the same cycle, in contrast, they found a significant negative trend when SC length was compared with the following cycle’s average temperature. From this observation, they suggested that average northern hemispheric temperature during the present ongoing SC (SC24) will be lower by about 0.9 °C than was seen in SC23 (spanning 1996–2007, based on yearly averages of sunspot number (SSN), and onset for SC24 occurring in 2008). The purpose of this Technical Publication (TP) is to examine the annual variations of the Armagh surface air temperature (ASAT) and the Global Land-Ocean Temperature Index (GLOTI) in relation to SSN and the SC in order to determine their likely values during SC24. Hence, it may provide insight as to whether solar forcing of global temperature is now lessening as a contributor to global warming, thereby indicating a possible cooling in the near term immediate future that potentially could ameliorate the effect of increased anthropogenic warming.

  7. Ms. Hisako Koyama: From Amateur Astronomer to Long-Term Solar Observer

    NASA Astrophysics Data System (ADS)

    Knipp, Delores; Liu, Huixin; Hayakawa, Hisashi

    2017-10-01

    The path to science for a girl of any nationality born in the early twentieth century was formidable-to-nonexistent. Yet paths were forged by a few. We present the little-known story of one of Japan's premier solar observers and her contribution to the world's understanding of sunspots and space weather cycles. Ms. Hisako Koyama, born in Tokyo in 1916, became a passionate amateur astronomer, a dedicated solar observer, and a long-serving staff member of the National Museum of Nature and Science, Tokyo. As a writer for amateur astronomy journals she advised many on the details and joys of sky viewing. She created a consistent, extended record of sunspots. Her multidecade archive of sunspot drawings is one of the "backbones" for the recent international recalibration of the sunspot record that provides insight into space weather reaching back to the early 1600s. We detail her contributions to the citizens of Japan as an ambassador of astronomy and her international contribution to understanding the symmetries and asymmetries of the solar cycle. We comment on the value of her continuous record of sunspots and on her tenacity in promoting a science that links to space weather.

  8. Predicting the Size and Timing of Sunspot Maximum for Cycle 24

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2010-01-01

    For cycle 24, the minimum value of the 12-month moving average (12-mma) of the AA-geomagnetic index in the vicinity of sunspot minimum (AAm) appears to have occurred in September 2009, measuring about 8.4 nT and following sunspot minimum by 9 months. This is the lowest value of AAm ever recorded, falling below that of 8.9 nT, previously attributed to cycle 14, which also is the smallest maximum amplitude (RM) cycle of the modern era (RM = 64.2). Based on the method of Ohl (the preferential association between RM and AAm for an ongoing cycle), one expects cycle 24 to have RM = 55+/-17 (the +/-1 - sigma prediction interval). Instead, using a variation of Ohl's method, one based on using 2-cycle moving averages (2-cma), one expects cycle 23's 2-cma of RM to be about 115.5+/-8.7 (the +/-1 - sigma prediction interval), inferring an RM of about 62+/-35 for cycle 24. Hence, it seems clear that cycle 24 will be smaller in size than was seen in cycle 23 (RM = 120.8) and, likely, will be comparable in size to that of cycle 14. From the Waldmeier effect (the preferential association between the ascent duration (ASC) and RM for an ongoing cycle), one expects cycle 24 to be a slow-rising cycle (ASC > or equal to 48 months), having RM occurrence after December 2012, unless it turns out to be a statistical outlier.

  9. THE MINIMUM OF SOLAR CYCLE 23: AS DEEP AS IT COULD BE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz-Jaramillo, Andrés; Longcope, Dana W.; Senkpeil, Ryan R.

    2015-05-01

    In this work we introduce a new way of binning sunspot group data with the purpose of better understanding the impact of the solar cycle on sunspot properties and how this defined the characteristics of the extended minimum of cycle 23. Our approach assumes that the statistical properties of sunspots are completely determined by the strength of the underlying large-scale field and have no additional time dependencies. We use the amplitude of the cycle at any given moment (something we refer to as activity level) as a proxy for the strength of this deep-seated magnetic field. We find that themore » sunspot size distribution is composed of two populations: one population of groups and active regions and a second population of pores and ephemeral regions. When fits are performed at periods of different activity level, only the statistical properties of the former population, the active regions, are found to vary. Finally, we study the relative contribution of each component (small-scale versus large-scale) to solar magnetism. We find that when hemispheres are treated separately, almost every one of the past 12 solar minima reaches a point where the main contribution to magnetism comes from the small-scale component. However, due to asymmetries in cycle phase, this state is very rarely reached by both hemispheres at the same time. From this we infer that even though each hemisphere did reach the magnetic baseline, from a heliospheric point of view the minimum of cycle 23 was not as deep as it could have been.« less

  10. Spectral analysis of the Elatina varve series

    NASA Technical Reports Server (NTRS)

    Bracewell, R. N.

    1988-01-01

    The Elatina formation in South America, which provides a rich fossil record of presumptive solar activity in the late Precambrian, is of great potential significance for the physics of the sun because it contains luminae grouped in cycles of about 12, an appearance suggestive of the solar cycle. Here, the laminae are treated as varves laid down yearly and modulated in thickness in accordance with the late Precambrian sunspot activity for the year of deposition. The purpose is to present a simple structure, or intrinsic spectrum, that will be uncovered by appropriate data analysis.

  11. Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise; Hudson, Hugh S.; Nagashima, Kaori

    2017-08-01

    Strong flares and CMEs are often produced from active regions (ARs). In order to better understand the magnetic properties and evolutions of such ARs, we conducted statistical investigations on the SDO/HMI and AIA data of all flare events with GOES levels >M5.0 within 45 deg from the disk center for 6 years from May 2010 (from the beginning to the declining phase of solar cycle 24). Out of the total of 51 flares from 29 ARs, more than 80% have delta-sunspots and about 15% violate Hale’s polarity rule. We obtained several key findings including (1) the flare duration is linearly proportional to the separation of the flare ribbons (i.e., scale of reconnecting magnetic fields) and (2) CME-eruptive events have smaller sunspot areas. Depending on the magnetic properties, flaring ARs can be categorized into several groups, such as spot-spot, in which a highly-sheared polarity inversion line is formed between two large sunspots, and spot-satellite, where a newly-emerging flux next to a mature sunspot triggers a compact flare event. These results point to the possibility that magnetic structures of the ARs determine the characteristics of flares and CMEs. In the presentation, we will also show new results from the systematic flux emergence simulations of delta-sunspot formation and discuss the evolution processes of flaring ARs.

  12. Tests of Sunspot Number Sequences: 3. Effects of Regression Procedures on the Calibration of Historic Sunspot Data

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Owens, M. J.; Barnard, L.; Usoskin, I. G.

    2016-11-01

    We use sunspot-group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups [RB] above a variable cut-off threshold of observed total whole spot area (uncorrected for foreshortening) to simulate what a lower-acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number [RA] using a variety of regression techniques. It is found that a very high correlation between RA and RB (r_{AB} > 0.98) does not prevent large errors in the intercalibration (for example sunspot-maximum values can be over 30 % too large even for such levels of r_{AB}). In generating the backbone sunspot number [R_{BB}], Svalgaard and Schatten ( Solar Phys., 2016) force regression fits to pass through the scatter-plot origin, which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot-cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile ("Q-Q") plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least-squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot-group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar-cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.

  13. Anticipating Cycle 24 Minimum and its Consequences: An Update

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    This Technical Publication updates estimates for cycle 24 minimum and discusses consequences associated with cycle 23 being a longer than average period cycle and cycle 24 having parametric minimum values smaller (or larger for the case of spotless days) than long term medians. Through December 2007, cycle 23 has persisted 140 mo from its 12-mo moving average (12-mma) minimum monthly mean sunspot number occurrence date (May 1996). Longer than average period cycles of the modern era (since cycle 12) have minimum-to-minimum periods of about 139.0+/-6.3 mo (the 90-percent prediction interval), inferring that cycle 24 s minimum monthly mean sunspot number should be expected before July 2008. The major consequence of this is that, unless cycle 24 is a statistical outlier (like cycle 21), its maximum amplitude (RM) likely will be smaller than previously forecast. If, however, in the course of its rise cycle 24 s 12-mma of the weighted mean latitude (L) of spot groups exceeds 24 deg, then one expects RM >131, and if its 12-mma of highest latitude (H) spot groups exceeds 38 deg, then one expects RM >127. High-latitude new cycle spot groups, while first reported in January 2008, have not, as yet, become the dominant form of spot groups. Minimum values in L and H were observed in mid 2007 and values are now slowly increasing, a precondition for the imminent onset of the new sunspot cycle.

  14. Using the Modified Precursor Method to Estimate the Size of Cycle 24

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Modified geomagnetic precursor techniques for predicting the size of the following sunspot cycle are developed, where these techniques use the 12-month moving averages of the number of disturbed days (when Ap greater than or equals 25), the Ap index, the aa index, and the aaI index at about 4 yr during the declining portion of the preceding sunspot cycle. For cycle 24, these techniques suggest that its RM will measure about 130 +/- 14, a value outside the consensus prediction interval of the low prediction (90 +/- 10) given by the NOAA Solar Cycle 24 Prediction Panel. Furthermore, cycle 24 is predicted to be a fast-rising cycle (ASC = 44 +/- 5 months), peaking before April 2012, presuming the official start of cycle 24 in March 2008. Also discussed are the variation of solar cycle lengths and Hale cycle effects, as related to cycles 23 and 24.

  15. Long-term monitoring of airborne pollen in Alaska and the Yukon: Possible implications for global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.H.

    Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that theymore » are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.« less

  16. Correlations for number of sunspots, unemployment rate, and suicide mortality in Japan.

    PubMed

    Otsu, Akiko; Chinami, Masanobu; Morgenthale, Stephan; Kaneko, Yoshihiro; Fujita, Daisuke; Shirakawa, Taro

    2006-04-01

    We studied the correlations among sunspot numbers, business cycles, and suicide mortalitites. Based on data from Japan between 1971 and 2001, a significant negative correlation between sunspot numbers and unemployment rate was found, R= -.17. The correlation between suicide mortality and unemployment rate was positive for males (R=.46) and negative for females (R =-.69). Both are statistically significant. The hypothesis that variation of sun activity may affect the economy and the unemployment rate and hence increase the male suicide mortality is raised.

  17. Lomb-Scargle periodogram analysis of the periods around 5.5 year and 11 year in the international sunspot numbers

    NASA Astrophysics Data System (ADS)

    Zhu, F. R.; Jia, H. Y.

    2018-07-01

    The New International Sunspot Numbers (NISNs) have been successfully compiled and can be downloaded from the World Data Center-Sunspot index and Long-term Solar Observations, Royal Observatory of Belgium, Brussels. The periods in these NISNs have been studied by using the Lomb-Scargle periodogram. The results show that the international sunspot numbers have a lot of periods. Of the various periods, the most outstanding period around 11 year is 10.108 year after removing the 10.862 year signal from the time series of sunspot numbers, while the periods of 11.988 year, 7.990 year, 9.612 year, 5.445 year, 8.915 year, 5.792 year are also found with the period of 5.445 year being stronger than those of 5.792 year and 8.915 year. However, the period of 5.445 year is still much weaker than the period of 10.862 year. It is evident that the periods around 11 year and 5.5 year in the revised international sunspot numbers obtained by using the Lomb-Scargle periodogram method is somewhat different from the ones in previous studies.

  18. SIMULATION STUDY OF HEMISPHERIC PHASE-ASYMMETRY IN THE SOLAR CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukuya, D.; Kusano, K., E-mail: kusano@nagoya-u.jp

    2017-01-20

    Observations of the Sun suggest that solar activities systematically create north–south hemispheric asymmetries. For instance, the hemisphere in which sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard and Kamide recently pointed out that the time gaps of polar field reversal between the northern and southern hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activity is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigatemore » the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model explains well the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.« less

  19. IS SOLAR CYCLE 24 PRODUCING MORE CORONAL MASS EJECTIONS THAN CYCLE 23?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M.; Colaninno, R., E-mail: yi.wang@nrl.navy.mil, E-mail: robin.colaninno@nrl.navy.mil

    2014-04-01

    Although sunspot numbers are roughly a factor of two lower in the current cycle than in cycle 23, the rate of coronal mass ejections (CMEs) appears to be at least as high in 2011-2013 as during the corresponding phase of the previous cycle, according to three catalogs that list events observed with the Large Angle and Spectrometric Coronagraph (LASCO). However, the number of CMEs detected is sensitive to such factors as the image cadence and the tendency (especially by human observers) to under-/overcount small or faint ejections during periods of high/low activity. In contrast to the total number, the totalmore » mass of CMEs is determined mainly by larger events. Using the mass measurements of 11,000 CMEs given in the manual CDAW catalog, we find that the mass loss rate remains well correlated with the sunspot number during cycle 24. In the case of the automated CACTus and SEEDS catalogs, the large increase in the number of CMEs during cycle 24 is almost certainly an artifact caused by the near-doubling of the LASCO image cadence after mid-2010. We confirm that fast CMEs undergo a much stronger solar-cycle variation than slow ones, and that the relative frequency of slow and less massive CMEs increases with decreasing sunspot number. We conclude that cycle 24 is not only producing fewer CMEs than cycle 23, but that these ejections also tend to be slower and less massive than those observed one cycle earlier.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Heather A.; McComas, David J.; DeForest, Craig E.

    We examine the long-term time evolution (1965–2015) of the relationships between solar wind proton temperature ( T {sub p}) and speed ( V {sub p}) and between the proton density ( n {sub p}) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature–speed ( T {sub p}– V {sub p}) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density–speed ( n {sub p}– V {sub p}) relationship is not linear like the T {sub p}– V {sub p} relationship,more » we perform power-law fits for n {sub p}– V {sub p}. The exponent (steepness in the n {sub p}– V {sub p} relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n {sub p} for different speed ranges, and found that for the slow wind n {sub p} is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n {sub p} variation was less, but in phase with the cycle. This phase difference may contribute to the n {sub p}– V {sub p} exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T {sub p} and V {sub p} data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.« less

  1. Latitude and Power Characteristics of Solar Activity at the End of the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    Ivanov, V. G.; Miletsky, E. V.

    2017-12-01

    Two important sources of information about sunspots in the Maunder minimum are the Spörer catalog (Spörer, 1889) and observations of the Paris observatory (Ribes and Nesme-Ribes, 1993), which cover in total the last quarter of the 17th and the first two decades of the 18th century. These data, in particular, contain information about sunspot latitudes. As we showed in (Ivanov et al., 2011; Ivanov and Miletsky, 2016), dispersions of sunspot latitude distributions are tightly related to sunspot indices, and we can estimate the level of solar activity in the past using a method which is not based on direct calculation of sunspots and weakly affected by loss of observational data. The latitude distributions of sunspots in the time of transition from the Maunder minimum to the regular regime of solar activity proved to be wide enough. It gives evidences in favor of, first, not very low cycle no.-3 (1712-1723) with the Wolf number in maximum W = 100 ± 50, and, second, nonzero activity in the maximum of cycle no.-4 (1700-1711) W = 60 ± 45. Therefore, the latitude distributions in the end of the Maunder minimum are in better agreement with the traditional Wolf numbers and new revisited indices of activity SN and GN (Clette et al., 2014; Svalgaard and Schatten, 2016) than with the GSN (Hoyt and Schatten, 1998); the latter provide much lower level of activity in this epoch.

  2. A Comparison of Rome Observatory Sunspot Area and Sunspot Number Determinations With International Measures, 1958-1998

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2005-01-01

    Two changes in recording the sunspot record have occurred in recent years. First, in 1976, the longer-than-100-yr daily photographic record of the Royal Greenwich Observatory (RGO), used for determination of numbers and positions of sunspot groups and sunspot areas ended, and second, at the end of 1980, after more than 130 years, Zurich s Swiss Federal Observatory stopped providing daily sunspot numbers. To extend the sunspot record beyond 1976, use of United States Air Force/National Oceanic and Atmospheric Administration (USAF/NOAA) sunspot drawing observations from the Solar Optical Observing Network began in 1977, and the combined record of sunspot activity from RGO/USAF/NOAA was made accessible at http://science.nasa.gov/ssl/PAD/SOLAR/greenwch.htm. Also, in 1981, the task of providing daily sunspot numbers was taken up by the Royal Observatory of Belgium s Solar Influences and Data analysis Center, and the combined Zurich/International sunspot number database was made available at http://sidc.oma.be/index.php3. In this study, Rome Observatory 1958-1998 photographic records of sunspot areas, numbers of groups, and derived sunspot numbers are compared against same-day international values to determine relative behaviors and to evaluate whether any potential changes might have been introduced in the overall sunspot record, due to the aforementioned changes.

  3. The magnetic nature of umbra-penumbra boundary in sunspots

    NASA Astrophysics Data System (ADS)

    Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.

    2018-03-01

    Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.

  4. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre

    2018-06-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.

  5. A fickle sun could be altering Earth`s climate after all

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1995-08-01

    A long effort to link slight fluctuations in solar output with climate on Earth may finally be succeeding. A cycle of temperature changes in much of the middle and low atmosphere matches the 11 year sunspot cycle over much of the Northern Hemisphere. The findings were reported at the International Union of Geodesy and Gophysics meeting in Colorado. This article discusses the evidence and the modeling which has been done to reveal this possible connection. 1 fig.

  6. Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days (1818-1858): A Connection?

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    During the interval of 1818-1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 13 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages). as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of' each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1-0.7 C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere. In particular, the interval of increasing number of observing days at the beginning of the record (i.e., 1818-1819) may be related to the improving atmospheric conditions in Europe following the 1815 eruption of Tambora (Indonesia; 8 deg. S), which previously, has been linked to "the year without a summer" (in 1816) and which is the strongest eruption in recent history, while the decreases associated with the years of 1824, 1837, and 1847 may, be linked, respectively, to the large, catacivsmic volcanic eruptions of Galunggung (Indonesia; 7 deg. S) in 1822, Cosiguina (Nicaragua) in 1835, and, perhaps, Hekla (Iceland; 64 deg. N) in 1845. Surprisingly, the number of observing days per year, as recorded specifically b), SchAabe (from Dessau, Germany), is found to be linearly correlated against the yearly mean temperature at Armagh Observatory (r = 0.5 at the 2 percent level of significance); thus. years of fewer sunspot observing days in the historical record seem to indicate years of probable cooler clime, while years (if many sunspot observing days seem to indicate years of probable warmer clime (and Vice versa). Presuming this relationship to be real, one infers that the observed decrease in the number of observing days near 1830 (i.e., during "the lost record years" of 1825 to 1833) provides a strong indication that temperatures at Armagh (and, perhaps, most of Europe, as well) were correspondingly cooler. If true, then, the inferred cooling may have resulted from the eruption of Kliuchevsoi(Russia; 56 deg. N) in 1829.

  7. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V., E-mail: s.j.shepherd@brad.ac.uk, E-mail: s.zharkov@hull.ac.uk, E-mail: valentina.zharkova@northumbria.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in differentmore » layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.« less

  8. Under the Lens: Investigating the Sun's Mysteries

    NASA Astrophysics Data System (ADS)

    Harwood, William; Klotz, Irene

    2008-11-01

    Sometime around 2012, the waxing 11-year solar cycle once again will reach its peak. Between now and then, magnetically turbulent sunspots, spawned by some still mysterious process, will form near the poles in increasing numbers and migrate toward the Sun's faster-rotating equator in pairs of opposite polarity. Titanic magnetic storms will rage as immense flux tubes rise to the surface in active regions around sunspots and spread out in a boiling sea of electric charge. Magnetic field lines across an enormous range of scales will arc and undulate, rip apart and reconnect, heating the Sun's upper atmosphere and occasionally triggering brilliant flares and multibillion-megaton coronal mass ejections (CMEs) that travel through the solar wind and slam into Earth.

  9. Association of Plages with Sunspots: A Multi-Wavelength Study Using Kodaikanal Ca ii K and Greenwich Sunspot Area Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in

    Plages are the magnetically active chromospheric structures prominently visible in the Ca ii K line (3933.67 Å). A plage may or may not be associated with a sunspot, which is a magnetic structure visible in the solar photosphere. In this study we explore this aspect of association of plages with sunspots using the newly digitized Kodaikanal Ca ii K plage data and the Greenwich sunspot area data. Instead of using the plage index or fractional plage area and its comparison with the sunspot number, we use, to our knowledge for the first time, the individual plage areas and compare themmore » with the sunspot area time series. Our analysis shows that these two structures, formed in two different layers, are highly correlated with each other on a timescale comparable to the solar cycle. The area and the latitudinal distributions of plages are also similar to those of sunspots. Different area thresholdings on the “butterfly diagram” reveal that plages of area ≥4 arcmin{sup 2} are mostly associated with a sunspot in the photosphere. Apart from this, we found that the cyclic properties change when plages of different sizes are considered separately. These results may help us to better understand the generation and evolution of the magnetic structures in different layers of the solar atmosphere.« less

  10. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  11. On the level of skill in predicting maximum sunspot number - A comparative study of single variate and bivariate precursor techniques

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1990-01-01

    The level of skill in predicting the size of the sunspot cycle is investigated for the two types of precursor techniques, single variate and bivariate fits, both applied to cycle 22. The present level of growth in solar activity is compared to the mean level of growth (cycles 10-21) and to the predictions based on the precursor techniques. It is shown that, for cycle 22, both single variate methods (based on geomagnetic data) and bivariate methods suggest a maximum amplitude smaller than that observed for cycle 19, and possibly for cycle 21. Compared to the mean cycle, cycle 22 is presently behaving as if it were a +2.6 sigma cycle (maximum amplitude of about 225), which means that either it will be the first cycle not to be reliably predicted by the combined precursor techniques or its deviation relative to the mean cycle will substantially decrease over the next 18 months.

  12. Understanding The Behavior Of The Sun'S Large Scale Magnetic Field And Its Relation With The Meridional Flow

    NASA Astrophysics Data System (ADS)

    Hazra, Gopal

    2018-02-01

    In this thesis, various studies leading to better understanding of the 11-year solar cycle and its theoretical modeling with the flux transport dynamo model are performed. Although this is primarily a theoretical thesis, there is a part dealing with the analysis of observational data. The various proxies of solar activity (e.g., sunspot number, sunspot area and 10.7 cm radio flux) from various observatory including the sunspot area records of Kodaikanal Observatory have been analyzed to study the irregular aspects of solar cycles and an analysis has been carried out on the correlation between the decay rate and the next cycle amplitude. The theoretical analysis starts with explaining how the magnetic buoyancy has been treated in the flux transport dynamo models, and advantages and disadvantages of different treatments. It is found that some of the irregular properties of the solar cycle in the decaying phase can only be well explained using a particular treatment of the magnetic buoyancy. Next, the behavior of the dynamo with the different spatial structures of the meridional flow based on recent helioseismology results has been studied. A theoretical model is constructed considering the back reaction due to the Lorentz force on the meridional flows which explains the observed variation of the meridional flow with the solar cycle. Finally, some results with 3D FTD models are presented. This 3D model is developed to handle the Babcock-Leighton mechanism and magnetic buoyancy more realistically than previous 2D models and can capture some important effects connected with the subduction of the magnetic field in polar regions, which are missed in 2D surface flux transport models. This 3D model is further used to study the evolution of the magnetic fields due to a turbulent non-axisymmetric velocity field and to compare the results with the results obtained by using a simple turbulent diffusivity coefficient.

  13. An Early Prediction of Sunspot Cycle 25

    NASA Astrophysics Data System (ADS)

    Nandy, D.; Bhowmik, P.

    2017-12-01

    The Sun's magnetic activity governs our space environment, creates space weather and impacts our technologies and climate. With increasing reliance on space- and ground-based technologies that are subject to space weather, the need to be able to forecast the future activity of the Sun has assumed increasing importance. However, such long-range, decadal-scale space weather prediction has remained a great challenge as evident in the diverging forecasts for solar cycle 24. Based on recently acquired understanding of the physics of solar cycle predictability, we have devised a scheme to extend the forecasting window of solar cycles. Utilizing this we present an early forecast for sunspot cycle 25 which would be of use for space mission planning, satellite life-time estimates, and assessment of the long-term impacts of space weather on technological assets and planetary atmospheres.

  14. Chaos in the sunspot cycle - Analysis and prediction

    NASA Technical Reports Server (NTRS)

    Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.

    1991-01-01

    The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.

  15. A Novel Analysis Of The Connection Between Indian Monsoon Rainfall And Solar Activity

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Narasimha, R.

    2005-12-01

    The existence of possible correlations between the solar cycle period as extracted from the yearly means of sunspot numbers and any periodicities that may be present in the Indian monsoon rainfall has been addressed using wavelet analysis. The wavelet transform coefficient maps of sunspot-number time series and those of the homogeneous Indian monsoon rainfall annual time series data reveal striking similarities, especially around the 11-year period. A novel method to analyse and quantify this similarity devising statistical schemes is suggested in this paper. The wavelet transform coefficient maxima at the 11-year period for the sunspot numbers and the monsoon rainfall have each been modelled as a point process in time and a statistical scheme for identifying a trend or dependence between the two processes has been devised. A regression analysis of parameters in these processes reveals a nearly linear trend with small but systematic deviations from the regressed line. Suitable function models for these deviations have been obtained through an unconstrained error minimisation scheme. These models provide an excellent fit to the time series of the given wavelet transform coefficient maxima obtained from actual data. Statistical significance tests on these deviations suggest with 99% confidence that the deviations are sample fluctuations obtained from normal distributions. In fact our earlier studies (see, Bhattacharyya and Narasimha, 2005, Geophys. Res. Lett., Vol. 32, No. 5) revealed that average rainfall is higher during periods of greater solar activity for all cases, at confidence levels varying from 75% to 99%, being 95% or greater in 3 out of 7 of them. Analysis using standard wavelet techniques reveals higher power in the 8--16 y band during the higher solar activity period, in 6 of the 7 rainfall time series, at confidence levels exceeding 99.99%. Furthermore, a comparison between the wavelet cross spectra of solar activity with rainfall and noise (including those simulating the rainfall spectrum and probability distribution) revealed that over the two test-periods respectively of high and low solar activity, the average cross power of the solar activity index with rainfall exceeds that with the noise at z-test confidence levels exceeding 99.99% over period-bands covering the 11.6 y sunspot cycle (see, Bhattacharyya and Narasimha, SORCE 2005 14-16th September, at Durango, Colorado USA). These results provide strong evidence for connections between Indian rainfall and solar activity. The present study reveals in addition the presence of subharmonics of the solar cycle period in the monsoon rainfall time series together with information on their phase relationships.

  16. On the Relation between Atmospheric Ozone and Sunspot Number.

    NASA Astrophysics Data System (ADS)

    Angell, J. K.

    1989-11-01

    Based on data from the Dobson network, between 1960 and 1987 there has been a zero-lag correlation of 0.48 between the 112 unsmoothed seasonal values of sunspot number and global total ozone, significant at the 1% level taking into account the considerable serial correlation in these data. The maximum correlation of 0.54 is found when sunspot number lags total ozone by two seasons, the result mainly of a phase difference early in the record. On the basis of only 2 1/2 solar cycles, the global total ozone has increased by 1.4% for an increase in sunspot number of 100. The correlation between sunspot number and total ozone has been significant at the 5% level in north temperate and tropical zones-the zones with the most representative data. In the north temperate zone, the correlation between sunspot number and total ozone has been much higher in the west-wind phase of the 50 mb equatorial QBO than in the east-wind phase, but in the tropics the correlation has been much higher in the east-wind phase. Umkehr measurements between 1966 and 1987 in the north temperate zone indicate that the correlation between sunspot number and ozone amount has been higher (0.35, almost significant at the 5% level) in the low stratosphere where transport processes dominate than in the high stratosphere where photochemical processes dominate. During 1932-60 there was a significant correlation of 0.35 between sunspot number and Arosa total ozone 14 seasons later, very different from the nearly in-phase relation found after 1960. Considered is the possible impact of long-term change in transport processes in the low stratosphere on the total-ozone record at a single station such as Arosa.Between 1966 and 1985 there has been very good agreement between observed global total ozone, and global total ozone calculated from three 2-D stratospheric models that take into account the solar cycle, the time variation in trace gases, and nuclear tests; both observed and calculated variations are closely related to the variation in sunspot number. Between 1960 and 1966, however, the agreement between observation and calculation is poor, the models indicating a pronounced minimum in global total ozone in 1963 due to the nuclear tests of the early 1960s-a minimum not found in this analysis. The observed variation in global total ozone has been compared with the variation predicted by one of the models up to the sunspot maximum in 1990, and the agreement is shown to be good through the northern summer of 1988 if the impact of the QBO on global total ozone is taken into account. On the basis of the present analysis, there has been a 1.0 ± 0.9% decrease in global total ozone between solar cycles 20 and 21, a decrease 70% larger than that indicated by the three stratospheric models.

  17. Solar Cycle Variation and Application to the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William

    1999-01-01

    The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.

  18. The Effect of the Ionosphere on Radiowave Signals and Systems Performance Based on Ionospheric Effects Symposium Held on 1-3 May 1990

    DTIC Science & Technology

    1990-05-03

    winter and a minimum in summer ; in contrast, at sunspot maximum the seasonal peaks tend to occur around the equinoxes and the minima in summer . ’riis is...more clearly seen in Figures 4(b) ahnd 4(c). Note that around sunspot maximum the summer noon value may be less than the summer midnight value. (3) The...seasonal variation of the midnight values show summer peaks and winter minima with high values near the peaks of the sunspot cycles and low values

  19. Towards a first detailed reconstruction of sunspot information over the last 150 years

    NASA Astrophysics Data System (ADS)

    Lefevre, Laure; Clette, Frédéric

    2013-04-01

    With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. For such a quantitative use, this unique time-series must be closely monitored for any possible biases and drifts. This is the main objective of the Sunspot Workshops organized jointly by the National Solar Observatory (NSO) and the Royal Observatory of Belgium (ROB) since 2010. Here, we will report about some recent outcomes of past workshops, like diagnostics of scaling errors and their proposed corrections, or the recent disagreement between the sunspot sumber and other solar indices like the 10.7cm radio flux. Our most recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the SOTERIA, TOSCA and SOLID projects, we produced a survey of all existing catalogs providing detailed sunspot information and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs (COMESEP project). These are first steps towards the construction of a multi-parametric time series of multiple sunspot group properties over at least the last 150 years, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The catalog now extends over the last 3 cycles (Lefevre & Clette 2011,doi:10.1007/s11207-012-0184-5). A partially complete version extends back to 1965, and will soon reach 1940 thanks to the data from the Uccle Solar Equatorial Table (USET) operated by the ROB. We will also present initial applications derived from the present version of the catalog, such as new sunspot-based solar fluxes and proxies that should ultimately help refine our knowledge of the influence of the Sun on our environment, now and throughout the ages. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  20. Recent Progress in Understanding the Sun's Magnetic Dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David. H.

    2004-01-01

    100 years ago we thought that the Sun and stars shone as a result of slow gravitational contraction over a few tens of millions of years - putting astronomers at odds with geologists who claimed that the Earth was much, much older. That mystery was solved in the 1920s and 30s with the discovery of nuclear energy (proving that the geologists had it right all along). Other scientific mysteries concerning the Sun have come and gone but three major mysteries remain: 1) How does the Sun produce sunspots with an 11-year cycle? 2) What produces the huge explosions that result in solar flares, prominence eruptions, and coronal mass ejections? and 3) Why is the Sun's outer atmosphere, the corona, so darned hot? Recent progress in solar astronomy reveals a single key to understanding all three of these mysteries.The 11-year time scale for the sunspot cycle indicates the presence of a magnetic dynamo within the Sun. For decades this dynamo was though to operate within the Sun's convection zone - the outmost 30% of the Sun where convective currents transport heat and advect magnetic lines of force. The two leading theories for the dynamo had very different models for the dynamics of the convection zone. Actual measurements of the dynamics using the techniques of helioseismology showed that both of these models had to be wrong some 20 years ago. A thin layer of strongly sheared flow at the base of the convection zone (now called the tachocline) was then taken to be the seat of the dynamo. Over the last 10 years it has become apparent that a weak meridional circulation within the convection zone also plays a key role in the dynamo. This meridional circulation has plasma rising up from the tachocline in the equatorial regions, spreading out toward the poles at a top speed of about 10-20 m/s at the surface, sinking back down to the tachocline in the polar regions, and then flowing back toward the equator at a top speed of about 1-2 m/s in the tachocline itself. Recent dynamo models that include this meridional flow now appear to have some power for predicting the size of future sunspot cycles.

  1. Extreme phenophase delays and their relationship with natural forcings in Beijing over the past 260 years.

    PubMed

    Liu, Yang; Zhang, Mingqing; Fang, Xiuqi

    2018-03-20

    By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.

  2. Extreme phenophase delays and their relationship with natural forcings in Beijing over the past 260 years

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Mingqing; Fang, Xiuqi

    2018-03-01

    By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.

  3. Period and phase comparisons of near-decadal oscillations in solar, geomagnetic, and cosmic ray time series

    NASA Astrophysics Data System (ADS)

    Juckett, David A.

    2001-09-01

    A more complete understanding of the periodic dynamics of the Sun requires continued exploration of non-11-year oscillations in addition to the benchmark 11-year sunspot cycle. In this regard, several solar, geomagnetic, and cosmic ray time series were examined to identify common spectral components and their relative phase relationships. Several non-11-year oscillations were identified within the near-decadal range with periods of ~8, 10, 12, 15, 18, 22, and 29 years. To test whether these frequency components were simply low-level noise or were related to a common source, the phases were extracted for each component in each series. The phases were nearly identical across the solar and geomagnetic series, while the corresponding components in four cosmic ray surrogate series exhibited inverted phases, similar to the known phase relationship with the 11-year sunspot cycle. Cluster analysis revealed that this pattern was unlikely to occur by chance. It was concluded that many non-11-year oscillations truly exist in the solar dynamical environment and that these contribute to the complex variations observed in geomagnetic and cosmic ray time series. Using the different energy sensitivities of the four cosmic ray surrogate series, a preliminary indication of the relative intensities of the various solar-induced oscillations was observed. It provides evidence that many of the non-11-year oscillations result from weak interplanetary magnetic field/solar wind oscillations that originate from corresponding variations in the open-field regions of the Sun.

  4. The dynamic relation between activities in the Northern and Southern solar hemispheres

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.

    2016-12-01

    The north-south (N/S) asymmetry of solar activity is the most pronounced phenomenon during 11-year cycle minimums. The goal of this work is to try to interpret the asymmetry as a result of the generalized synchronization of two dynamic systems. It is assumed that these systems are localized in two solar hemispheres. The evolution of these systems is considered in the topological embeddings of a sunspot area time series obtained with the use of the Takens algorithm. We determine the coupling measure and estimate it on the time series of daily sunspot areas. The measurement made it possible to interpret the asymmetry as an exchangeable dynamic equation, in which the roles of the driver-slave components change in time for two hemispheres.

  5. The Global Solar Dynamo

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2017-09-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  6. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution

    NASA Astrophysics Data System (ADS)

    Lockwood, Mike; Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.

    2017-06-01

    Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25.Plain Language SummaryThere is growing interest in being able to predict the evolution in solar conditions on a better basis than past experience, which is necessarily limited. Two of the key features of the solar magnetic cycle are that the polar fields reverse just after the peak of each sunspot cycle and that the polar field that has accumulated by the time of each sunspot minimum is a good indicator of the amplitude of the following cycle. Thus, understanding the evolution of the polar fields becomes crucial. We here use observations of the magnetic fields at the surface of the Sun and from satellites near Earth and Mercury, to identify how three unusually pronounced features of the most recent solar cycle have revealed that not all the magnetic flux emerging in sunspot regions progresses the evolution of the polar fields. The results have important implications for our understanding and prediction of the long-term evolution of the Sun and the "space climate" it produces near Earth, which will influence the design and performance of several of humankind's operational systems such as spacecraft, long pipelines, and power grids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015HiA....16..638C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015HiA....16..638C"><span>Communicating the science of the 11-year sunspot cycle to the general public</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choudhuri, A. R.</p> <p>2015-03-01</p> <p>Astrophysics is one branch of science which excites the imagination of the general public. Pioneer science popularizers like George Gamow and Fred Hoyle wrote on different aspects of astrophysics. However, of late, we see a trend which I find disturbing. While it has become extremely fashionable to write popular science books on cosmology, other areas of astrophysics are grossly neglected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.692D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.692D"><span>The Variability of Solar Spectral Irradiance and Solar Surface Indices Through the Solar Activity Cycles 21-23</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deniz Goker, Umit</p> <p>2016-07-01</p> <p>A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We developed a special software for extracting the data and reduced this data by using the MATLAB. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) emission lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar cycles (SCs) 23 and 24. We also compared our results with the ground-based telescopes as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal Data (KKL) and NGDC Homepage (Rome and Learmonth Solar Observatories). We studied the variations of total solar irradiance (TSI), magnetic field, sunspots/sunspot groups, Ca II K-flux, faculae and plage areas data with these ground-based telescopes, respectively. We reduced the selected data using the Phyton programming language and plot with the IDL programme. Therefore, we found that there was a decrease in the area of bright faculae and chromospheric plages while the percentage of dark faculae and plage decrease, as well. However, these decreases mainly occurred in small sunspots, contrary to this, these terms in large sunspot groups were comparable to previous SCs or even larger. Nevertheless, negative correlations between ISSN and SSI data indicate that these emissions are in close connection with the classes of sunspots/sunspot groups and "PLAGE" regions. Finally, we applied the time series of the chemical elements correspond to the wavelengths 121.5 nm-300.5 nm and compared with the ISSN data. We found an unexpected increasing in the 298.5 nm for the Fe II element. The variability of Fe II (298.5 nm) is in close connection with the plage regions and the sizes of the plage regions play an important role for the SSI variability, as well. So, we found an important connection between the sizes of the plage regions, sunspots/sunspot groups, chemical elements and SSI variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.477..293K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.477..293K"><span>The evolution of flaring and non-flaring active regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kilcik, A.; Yurchyshyn, V.; Sahin, S.; Sarp, V.; Obridko, V.; Ozguc, A.; Rozelot, J. P.</p> <p>2018-06-01</p> <p>According to the modified Zurich classification, sunspot groups are classified into seven different classes (A, B, C, D, E, F and H) based on their morphology and evolution. In this classification, classes A and B, which are small groups, describe the beginning of sunspot evolution, while classes D, E and F describe the large and evolved groups. Class C describes the middle phase of sunspot evolution and the class H describes the end of sunspot evolution. Here, we compare the lifetime and temporal evolution of flaring and non-flaring active regions (ARs), and the flaring effect on ARs in these groups in detail for the last two solar cycles (1996 through 2016). Our main findings are as follows: (i) Flaring sunspot groups have longer lifetimes than non-flaring ones. (ii) Most of the class A, B and C flaring ARs rapidly evolve to higher classes, while this is not applicable for non-flaring ARs. More than 50 per cent of the flaring A, B and C groups changed morphologically, while the remaining D, E, F and H groups did not change remarkably after the flare activity. (iii) 75 per cent of all flaring sunspot groups are large and complex. (iv) There is a significant increase in the sunspot group area in classes A, B, C, D and H after flaring activity. In contrast, the sunspot group area of classes E and F decreased. The sunspot counts of classes D, E and F decreased as well, while classes A, B, C and H showed an increase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950058980&hterms=discussion+english&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddiscussion%2Benglish','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950058980&hterms=discussion+english&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddiscussion%2Benglish"><span>A discussion of plausible solar irradiance variations, 1700-1992</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoyt, Douglas V.; Schatten, Kenneth H.</p> <p>1993-01-01</p> <p>From satellite observations the solar total irradiance is known to vary. Sunspot blocking, facular emission, and network emission are three identified causes for the variations. In this paper we examine several different solar indices measured over the past century that are potential proxy measures for the Sun's irradiance. These indices are (1) the equatorial solar rotation rate, (2) the sunspot structure, the decay rate of individual sunspots, and the number of sunspots without umbrae, and (3) the length and decay rate of the sunspot cycle. Each index can be used to develop a model for the Sun's total irradiance as seen at the Earth. Three solar indices allow the irradiance to be modeled back to the mid-1700s. The indices are (1) the length of the solar cycle, (2) the normalized decay rate of the solar cycle, and (3) the mean level of solar activity. All the indices are well correlated, and one possible explanation for their nearly simultaneous variations is changes in the Sun's convective energy transport. Although changes in the Sun's convective energy transport are outside the realm of normal stellar structure theory (e.g., mixing length theory), one can imagine variations arising from even the simplest view of sunspots as vertical tubes of magnetic flux, which would serve as rigid pillas affecting the energy flow patterns by ensuring larger-scale eddies. A composite solar irradiance model, based upon these proxies, is compared to the northern hemisphere temperature depatures for 1700-1992. Approximately 71% of the decadal variance in the last century can be modeled with these solar indices, although this analysis does not include anthropogenic or other variations which would affect the results. Over the entire three centuries, approx. 50% of the variance is modeled. Both this analysis and previous similar analyses have correlations of model solar irradiances and measured Earth surface temperatures that are significant at better than the 95% confidence level. To understand our present climate variations, we must place the anthropogenic variations in the context of natural variability from solar, volcanic, oceanic, and other sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPD....42.0203H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPD....42.0203H"><span>The Sun's Meridional Circulation - not so Deep</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hathaway, David H.</p> <p>2011-05-01</p> <p>The Sun's global meridional circulation is evident as a slow poleward flow at its surface. This flow is observed to carry magnetic elements poleward - producing the Sun's polar magnetic fields as a key part of the 11-year sunspot cycle. Flux Transport Dynamo models for the sunspot cycle are predicated on the belief that this surface flow is part of a circulation which sinks inward at the poles and returns to the equator in the bottom half of the convection zone - at depths between 100 and 200 Mm. Here I use the advection of the supergranule cells by the meridional flow to map the flow velocity in latitude and depth. My measurements show that the equatorward return flow begins at a depth of only 35 Mm - the base of the Sun's surface shear layer. This is the first clear (10 sigma) detection of the meridional return flow. While the shallow depth of the return flow indicates a false foundation for Flux Transport Dynamo models it helps to explain the different meridional flow rates seen for different features and provides a mechanism for selecting the characteristic size of supergranules.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663221-northsouth-asymmetry-rieger-type-periodicity-during-solar-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663221-northsouth-asymmetry-rieger-type-periodicity-during-solar-cycles"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil</p> <p></p> <p>Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generally asymmetric between northern and southern hemispheres, which could suggest the presence of a similar behavior in the Rieger-type periodicity. We analyze the sunspot area/number and the total magnetic flux data for northern and southern hemispheres during solar cycles 19–23, which had remarkable north–south asymmetry. Using wavelet analysis of sunspot area and number during the north-dominated cycles (19–20), we obtained the periodicity of 160–165 daysmore » in the stronger northern hemisphere and 180–190 days in the weaker southern hemisphere. On the other hand, south-dominated cycles (21–23) display the periodicity of 155–160 days in the stronger southern hemisphere and 175–188 days in the weaker northern hemisphere. Therefore, the Rieger-type periodicity has the north–south asymmetry in sunspot area/number data during solar cycles with strong hemispheric asymmetry. We suggest that the periodicity is caused by magnetic Rossby waves in the internal dynamo layer. Using the dispersion relation of magnetic Rossby waves and observed Rieger periodicity, we estimated the magnetic field strength in the layer as 45–49 kG in more active hemispheres (north during cycles 19–20 and south during cycles 21–23) and 33–40 kG in weaker hemispheres. The estimated difference in the hemispheric field strength is around 10 kG, which provides a challenge for dynamo models. Total magnetic flux data during cycles 20–23 reveals no clear north–south asymmetry, which needs to be explained in the future.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21574787-time-distributions-large-small-sunspot-groups-over-four-solar-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21574787-time-distributions-large-small-sunspot-groups-over-four-solar-cycles"><span>TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.</p> <p>2011-04-10</p> <p>Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers frommore » their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040110974','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040110974"><span>Application of the Maximum Amplitude-Early Rise Correlation to Cycle 23</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Willson, Robert M.; Hathaway, David H.</p> <p>2004-01-01</p> <p>On the basis of the maximum amplitude-early rise correlation, cycle 23 could have been predicted to be about the size of the mean cycle as early as 12 mo following cycle minimum. Indeed, estimates for the size of cycle 23 throughout its rise consistently suggested a maximum amplitude that would not differ appreciably from the mean cycle, contrary to predictions based on precursor information. Because cycle 23 s average slope during the rising portion of the solar cycle measured 2.4, computed as the difference between the conventional maximum (120.8) and minimum (8) amplitudes divided by the ascent duration in months (47), statistically speaking, it should be a cycle of shorter period. Hence, conventional sunspot minimum for cycle 24 should occur before December 2006, probably near July 2006 (+/-4 mo). However, if cycle 23 proves to be a statistical outlier, then conventional sunspot minimum for cycle 24 would be delayed until after July 2007, probably near December 2007 (+/-4 mo). In anticipation of cycle 24, a chart and table are provided for easy monitoring of the nearness and size of its maximum amplitude once onset has occurred (with respect to the mean cycle and using the updated maximum amplitude-early rise relationship).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrASS...5...17M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrASS...5...17M"><span>Observational Evidence of Shallow Origins for the Magnetic Fields of Solar Cycles - a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Sara F.</p> <p>2018-05-01</p> <p>Observational evidence for the origin of active region magnetic fields has been sought from published information on extended solar cycles, statistical distributions of active regions and ephemeral regions, helioseismology results, positional relationships to supergranules, and fine-scale magnetic structure of active regions and their sunspots during their growth. Statistical distributions of areas of ephemeral and active regions blend together to reveal a single power law. The shape of the size distribution in latitude of all active regions is independent of time during the solar cycle, yielding further evidence that active regions of all sizes belong to the same population. Elementary bipoles, identified also by other names, appear to be the building blocks of active regions; sunspots form from elementary bipoles and are therefore deduced to develop from the photosphere downward, consistent with helioseismic detection of downflows to 3-4 Mm below sunspots as well as long-observed downflows from chromospheric/coronal arch filaments into sunspots from their earliest appearance. Time-distance helioseismology has been effective in revealing flows related to sunspots to depths of 20 Mm. Ring diagram analysis shows a statistically significant preference for upflows to precede major active region emergence and downflows after flux emergence but both are often observed together or sometimes not detected. From deep-focus helioseismic techniques for seeking magnetic flux below the photosphere prior major active regions, there is evidence of acoustic travel-time perturbation signatures rising in the limited range of depths of 42-75 Mm but these have not been verified or found at more shallow depths by helioseismic holographic techniques. The development of active regions from clusters of elementary bipoles appears to be the same irrespective of how much flux an active region eventually develops. This property would be consistent with the magnetic fields of large active regions being generated in the same way and close the same depth as small active regions in a shallow zone below the photosphere. All evidence considered together, understanding the origins of the magnetic fields of solar cycles boils down to learning how and where elementary bipoles are generated beneath the photosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060015720&hterms=art+science&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dart%2Bscience','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060015720&hterms=art+science&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dart%2Bscience"><span>The Art and Science of Long-Range Space Weather Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hathaway, David H.; Wilson, Robert M.</p> <p>2006-01-01</p> <p>Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010nspm.conf..184S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010nspm.conf..184S"><span>Impact of solar activity on growth of pine trees (Pinus cembra: 1610 - 1970; Pinus pinaster: 1910 -1989)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surový, P.; Dorotovič, I.; Karlovský, V.; Rodrigues, J. C.; Rybanský, M.; Fleischer, P.</p> <p>2010-12-01</p> <p>In this work we have focused on the analysis of the data on the annual growth of cembra pine (Pinus cembra) grown in the Kôprová dolina Valley in the High Tatra Mountains. The database covers the period of 1406 - 1970, however, the sunspot data (minima and maxima) at the NGDC web site are only available since 1610. Moreover, reliable sunspot data are only available since 1749. The results of this analysis agree with the observation made in our previous work, i.e. there is a negative impact of high SA on the pine tree growth. However, it should be noted that statistical significance of the results is low. We also applied wavelet analysis to the data on the tree growth evolution, with the results indicating growth variations' period of about 20 years (duration of approximately two solar cycles or one magnetic cycle, respectively). A negative impact of the SA was also observed in growth of a 90 year-old maritime pine tree (Pinus pinaster) grown in northern Portugal. The width of the annual rings was smaller in the years of maximum SA; furthermore, it was found that it is the latewood growth that it is affected while the earlywood growth is not, and consequently the latewood additions also show a significative negative correlation with SA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910003186&hterms=climate+change+evidence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dclimate%2Bchange%2Bevidence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910003186&hterms=climate+change+evidence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dclimate%2Bchange%2Bevidence"><span>A Review and Reflections on the Sun-Climate Connection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldberg, Richard A.</p> <p>1990-01-01</p> <p>The field of sun-climate is beset with an extraordinary number of numerical correlations attempting to relate various periodicities of solar activity with changes in the Earth's weather and climate. Signatures representing climatological variability have been sought for cycles as short as the solar 28-day rotational period up to Milankovich periods of thousands of years, although a majority of correlations have concentrated on the 11-year sunspot and 22-year Hale double sunspot cycles. For the shorter term, parameters including temperature, pressure, winds storm tracks, rainfall, and water levels in rivers and lakes, etc. have been correlated with solar variability. For longer periods, it has been necessary to seek more indirect evidence in ice cores, tree rings, and geologic deep sea cores. Other atmospheric parameters relating to atmospheric electricity and the global electric circuit have also been correlated in similar fashion. Unfortunately, few, if any, of this wide spectrum of numerical correlations have been associated with any viable physical explanation, making most studies in the field an exercise in numerical statistics. More recently, a few suggestions for plausible coupling processes have begun to appear. These, coupled with new and stronger correlations involving selective binning of climatological data sets have injected new life and hope to this field. An overview is given of the historical past and current perspectives, to evaluate possible avenues for defining physical linking processes in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060036601&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Banthropogenic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060036601&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Banthropogenic"><span>(abstract) A Geomagnetic Contribution to Climate Change in this Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Feynman, J.; Ruzmaikin, A.; Lawrence, J.</p> <p>1996-01-01</p> <p>There is a myth that all solar effects can be parameterized by the sun spot number. This is not true. For example, the level of geomagnetic activity during this century was not proportional to the sunspot number. Instead there is a large systematic increase in geomagnetic activity, not reflected in the sunspot number. This increase occurred gradually over at least 60 years. The 11 year solar cycle variation was superimposed on this systematic increase. Here we show that this systematic increase in activity is well correlated to the simultaneous increase in terrestrial temperature that occurred during the first half of this century. We discuss these findings in terms of mechanisms by which geomagnetics can be coupled to climate. These mechanisms include possible changes in weather patterns and cloud cover due to increased cosmic ray fluxes, or to increased fluxes of high energy electrons. We suggest that this systematic increase in geomagnetic activity contributed (along with anthropogenic effects and possible changes in solar irradiance) to the changes in climate recorded during this period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA256685','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA256685"><span>Long-Term Solar and Cosmic Radiation Data Bases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-01-01</p> <p>determine the magnitude of the variations in the cosmic ray intensity caused by solar activity. Neutron monitors, with their much lower energy threshold...expression that neutron monitors are sensors on spacecraft EARTH. Here we will consider cosmic ray detectors to measure two components of cosmic ...A comparison with the solar cycle as illustrated by the sunspot number in Fig. 1. shows that the maximum cosmic ray intensity occurs near sunspot</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070025111','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070025111"><span>Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hung, Ching-Cheh</p> <p>2007-01-01</p> <p>A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1762S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1762S"><span>Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy</p> <p>2016-07-01</p> <p>A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22130978-two-novel-parameters-evaluate-global-complexity-sun-magnetic-field-track-solar-cycle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22130978-two-novel-parameters-evaluate-global-complexity-sun-magnetic-field-track-solar-cycle"><span>TWO NOVEL PARAMETERS TO EVALUATE THE GLOBAL COMPLEXITY OF THE SUN'S MAGNETIC FIELD AND TRACK THE SOLAR CYCLE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, L.; Landi, E.; Gibson, S. E., E-mail: lzh@umich.edu</p> <p>2013-08-20</p> <p>Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make itmore » timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier HCS in the north than the south, associated with the early reversal of the polar magnetic field in the north relative to the south.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1419B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1419B"><span>Questioning the Influence of Sunspots on Amazon Hydrology: Even a Broken Clock Tells the Right Time Twice a Day</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, J. C. A.; Gloor, M.; Boom, A.; Neill, D. A.; Cintra, B. B. L.; Clerici, S. J.; Brienen, R. J. W.</p> <p>2018-02-01</p> <p>It was suggested in a recent article that sunspots drive decadal variation in Amazon River flow. This conclusion was based on a novel time series decomposition method used to extract a decadal signal from the Amazon River record. We have extended this analysis back in time, using a new hydrological proxy record of tree ring oxygen isotopes (δ18OTR). Consistent with the findings of Antico and Torres, we find a positive correlation between sunspots and the decadal δ18OTR cycle from 1903 to 2012 (<fi>r</fi> = 0.60, <fi>p</fi> < 0.001). However, the relationship does not persist into the preceding century and even becomes weakly negative (<fi>r</fi> = -0.30, <fi>p</fi> = 0.11, 1799-1902). This result casts considerable doubt over the mechanism by which sunspots are purported to influence Amazon hydrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880050091&hterms=1095&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231095','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880050091&hterms=1095&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231095"><span>Solar luminosity variations in solar cycle 21</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Willson, Richard C.; Hudson, H. S.</p> <p>1988-01-01</p> <p>Long-term variations in the solar total irradiance found in the ACRIM I experiment on the SMM satellite have revealed a downward trend during the declining phase of solar cycle 21 of the sunspot cycle, a flat period between mid-1095 and mid-1987, and an upturn in late 1987 which suggests a direct correlation of luminosity and solar active region population. If the upturn continues into the activity maximum of solar cycle 22, a relation between solar activity and luminosity of possible climatological significance could be ascertained. The best-fit relationship for the variation of total irradiance S with sunspot number Rz and 10-cm flux F(10) are S = 1366.82 + 7.71 x 10 to the -3rd Rz and S = 1366.27 + 8.98 x 10 to the -3rd F(10)(W/sq m). These findings could be used to approximate total irradiance variations over the periods for which these indices have been compiled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AdSpR..56..992T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AdSpR..56..992T"><span>An econometric investigation of the sunspot number record since the year 1700 and its prediction into the 22nd century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Travaglini, Guido</p> <p>2015-09-01</p> <p>Solar activity, as measured by the yearly revisited time series of sunspot numbers (SSN) for the period 1700-2014 (Clette et al., 2014), undergoes in this paper a triple statistical and econometric checkup. The conclusions are that the SSN sequence: (1) is best modeled as a signal that features nonlinearity in mean and variance, long memory, mean reversion, 'threshold' symmetry, and stationarity; (2) is best described as a discrete damped harmonic oscillator which linearly approximates the flux-transport dynamo model; (3) its prediction well into the 22nd century testifies of a substantial fall of the SSN centered around the year 2030. In addition, the first and last Gleissberg cycles show almost the same peak number and height during the period considered, yet the former slightly prevails when measured by means of the estimated smoother. All of these conclusions are achieved by making use of modern tools developed in the field of Financial Econometrics and of two new proposed procedures for signal smoothing and prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090005029&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcorona','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090005029&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcorona"><span>Recent Studies of the Behavior of the Sun's White-Light Corona Over Time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>SaintCyr, O. C.; Young, D. E.; Pesnell, W. D.; Lecinski, A.; Eddy, J.</p> <p>2008-01-01</p> <p>Predictions of upcoming solar cycles are often related to the nature and dynamics of the Sun's polar magnetic field and its influence on the corona. For the past 30 years we have a more-or-less continuous record of the Sun's white-light corona from groundbased and spacebased coronagraphs. Over that interval, the large scale features of the corona have varied in what we now consider a 'predictable' fashion--complex, showing multiple streamers at all latitudes during solar activity maximum; and a simple dipolar shape aligned with the rotational pole during solar minimum. Over the past three decades the white-light corona appears to be a better indicator of 'true' solar minimum than sunspot number since sunspots disappear for months (even years) at solar minimum. Since almost all predictions of the timing of the next solar maximum depend on the timing of solar minimum, the white-light corona is a potentially important observational discriminator for future predictors. In this contribution we describe recent work quantifying the large-scale appearance of the Sun's corona to correlate it with the sunspot record, especially around solar minimum. These three decades can be expanded with the HAO archive of eclipse photographs which, although sparse compared to the coronagraphic coverage, extends back to 1869. A more extensive understanding of this proxy would give researchers confidence in using the white-light corona as an indicator of solar minimum conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990018406','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990018406"><span>Evidence for Solar-Cycle Forcing and Secular Variation in the Armagh Observatory Temperature Record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.</p> <p>1998-01-01</p> <p>A prominent feature of previous long-term temperature studies has been the appearance of warming since the 1880s, this often being taken as evidence for anthropogenic-induced global warming. In this investigation, the long-term, annual, mean temperature record (1844-1992) of the Armagh Observatory (Armagh, North Ireland), a set of temperature data based on maximum and minimum thermometers that predates the 1880s and correlates well with northern hemispheric and global standards, is examined for evidence of systematic variation, in particular, as related to solar-cycle forcing and secular variation. Indeed, both appear to be embedded within the Armagh data. Removal of these effects, each contributing about 8% to the overall reduction in variance, yields residuals that are randomly distributed. Application of the 10-year moving average to the residuals, furthermore, strongly suggests that the behavior of the residuals is episodic, inferring that (for extended periods of time) temperatures at Armagh sometimes were warmer or cooler (than expected), while at other times they were stable. Comparison of cyclic averages of annual mean temperatures against the lengths of the associated Hale cycles (i.e., the length of two, sequentially numbered, even-odd sunspot cycle pairs) strongly suggests that the temperatures correlate inversely (r = -0.886 at less than 2% level of significance) against the length of the associated Hale cycle. Because sunspot cycle 22 ended in 1996, the present Hale cycle probably will be shorter than average, implying that temperatures at Armagh over this Hale cycle will be warmer (about 9.31 q 0.23 C at the 90% confidence level) than average (= 9.00 C).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16193922','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16193922"><span>[Correlation between the microbiological (S. aureus) and seismic activities with regard to the sun-earth interactions and neutron flux generation].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shestopalov, I P; Rogozhin, Iu A</p> <p>2005-01-01</p> <p>The study searched for interactions between the solar activity, seismic energy of the Earth and microbiological processes in the period from 1969 to 1997. Microbiological processes were found dependent on as the solar, so intraterrestrial (e.g. seismic) activity. The 11-year seismic on biological cycles on Earth display a positive inter-correlation and a negative one with the solar activity (sun-spots cycles). There is also correlation between the Earth's seismic energy and neutron fluxes generated at the times of earthquakes on our planet, and microbiological parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364697-active-region-tilt-angles-magnetic-versus-white-light-determinations-joy-law','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364697-active-region-tilt-angles-magnetic-versus-white-light-determinations-joy-law"><span>ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.</p> <p>2015-01-01</p> <p>The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magneticmore » data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22140304-reversals-gnevyshev-ohl-rule','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22140304-reversals-gnevyshev-ohl-rule"><span>REVERSALS OF GNEVYSHEV-OHL RULE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tlatov, Andrey G., E-mail: tlatov@mail.ru</p> <p>2013-08-01</p> <p>We perform an analysis of the number of sunspot groups in activity cycles from 1610 through the present. Here we use the G{sub n} index, which is defined as the average daily number of sunspot groups in cycle n. There is a high positive correlation between the parameter G{sub n} in the current cycle and an analogous parameter in the following cycle G{sub n{sub +1}} both for pairs of even-odd cycles and odd-even activity cycles. In cycle Nos. 10-21 for pairs of even-odd cycles, the ratio of parameter G{sub n} corresponds to the GO rule G{sub n{sub +1}{sup odd}}/G{sub n}{supmore » even}>1. However, during the period {approx}1745-1850, odd cycles were less than the preceding even cycles G{sub n{sub +1}{sup odd}}/G{sub n}{sup even}<1. The ratio of the parameter G{sub n{sub +1}{sup odd}}/G{sub n}{sup even} has a long-term variation within the range 0.5-1.5 with a period of about 21 activity cycles, and it proves the reversal of the GO rule.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.4171L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.4171L"><span>On the insignificance of Herschel's sunspot correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Love, Jeffrey J.</p> <p>2013-08-01</p> <p>We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is "statistically significant." On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are "insignificant." Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AnGeo..28.1463K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AnGeo..28.1463K"><span>Size of the coming solar cycle 24 based on Ohl's Precursor Method, final estimate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kane, R. P.</p> <p>2010-07-01</p> <p>In Ohl's Precursor Method (Ohl, 1966, 1976), the geomagnetic activity during the declining phase of a sunspot cycle is shown to be well correlated with the size (maximum sunspot number Rz(max)) of the next cycle. For solar cycle 24, Kane (2007a) used aa(min)=15.5 (12-month running mean), which occurred during March-May of 2006 and made a preliminary estimate Rz(max)=124±26 (12-month running mean). However, in the next few months, the aa index first increased and then decreased to a new low value of 14.8 in July 2007. With this new low value, the prediction was Rz(max)=117±26 (12-month running mean). However, even this proved a false signal. Since then, the aa values have decreased considerably and the last 12-monthly value is 8.7, centered at May 2009. For solar cycle 24, using aa(min)=8.7, the latest prediction is, Rz(max)=58.0±25.0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790050227&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DKrieger','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790050227&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DKrieger"><span>Anticorrelation of X-ray bright points with sunspot number, 1970-1978</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Golub, L.; Davis, J. M.; Krieger, A. S.</p> <p>1979-01-01</p> <p>Soft X-ray observations of the solar corona over the period 1970-1978 show that the number of small short-lived bipolar magnetic features (X-ray bright points) varies inversely with the sunspot index. During the entire period from 1973 to 1978 most of the magnetic flux emerging at the solar surface appeared in the form of bright points. In 1970, near the peak of solar cycle 20, the contributions from bright points and from active regions appear to be approximately equal. These observations strongly support an earlier suggestion that the solar cycle may be characterized as an oscillator in wave-number space with relatively little variation in the average total rate of flux emergence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSWSC...8A..23B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSWSC...8A..23B"><span>What can the annual 10Be solar activity reconstructions tell us about historic space weather?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnard, Luke; McCracken, Ken G.; Owens, Mat J.; Lockwood, Mike</p> <p>2018-04-01</p> <p>Context: Cosmogenic isotopes provide useful estimates of past solar magnetic activity, constraining past space climate with reasonable uncertainty. Much less is known about past space weather conditions. Recent advances in the analysis of 10Be by McCracken & Beer (2015, Sol Phys 290: 305-3069) (MB15) suggest that annually resolved 10Be can be significantly affected by solar energetic particle (SEP) fluxes. This poses a problem, and presents an opportunity, as the accurate quantification of past solar magnetic activity requires the SEP effects to be determined and isolated, whilst doing so might provide a valuable record of past SEP fluxes. Aims: We compare the MB15 reconstruction of the heliospheric magnetic field (HMF), with two independent estimates of the HMF derived from sunspot records and geomagnetic variability. We aim to quantify the differences between the HMF reconstructions, and speculate on the origin of these differences. We test whether the differences between the reconstructions appear to depend on known significant space weather events. Methods: We analyse the distributions of the differences between the HMF reconstructions. We consider how the differences vary as a function of solar cycle phase, and, using a Kolmogorov-Smirnov test, we compare the distributions under the two conditions of whether or not large space weather events were known to have occurred. Results: We find that the MB15 reconstructions are generally marginally smaller in magnitude than the sunspot and geomagnetic HMF reconstructions. This bias varies as a function of solar cycle phase, and is largest in the declining phase of the solar cycle. We find that MB15's excision of the years with very large ground level enhancement (GLE) improves the agreement of the 10Be HMF estimate with the sunspot and geomagnetic reconstructions. We find no statistical evidence that GLEs, in general, affect the MB15 reconstruction, but this analysis is limited by having too few samples. We do find evidence that the MB15 reconstructions appear statistically different in years with great geomagnetic storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918825M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918825M"><span>Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maliniemi, Ville; Mursula, Kalevi; Roy, Indrani; Asikainen, Timo</p> <p>2017-04-01</p> <p>We compare here the effect of geomagnetic activity (using the aa index) and sunspot activity on surface climate using sea level pressure dataset from Hadley centre during northern winter. Previous studies using the multiple linear regression method have been limited to using sunspots as a solar activity predictor. Sunspots and total solar irradiance indicate a robust positive influence around the Aleutian Low. This is valid up to a lag of one year. However, geomagnetic activity yields a positive NAM pattern at high to polar latitudes and a positive signal around Azores High pressure region. Interestingly, while there is a positive signal around Azores High for a 2-year lag in sunspots, the strongest signal in this region is found for aa index at 1-year lag. There is also a weak but significant negative signature present around central Pacific for both sunspots and aa index. The combined influence of geomagnetic activity and Quasi Biannual Oscillation (QBO 30 hPa) produces a particularly strong response at mid to polar latitudes, much stronger than the combined influence of sunspots and QBO, which was mostly studied in previous studies so far. This signal is robust and insensitive to the selected time period during the last century. Our results provide a useful way for improving the prediction of winter weather at middle to high latitudes of the northern hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22270720-mean-field-solar-dynamo-double-cell-meridional-circulation-pattern','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22270720-mean-field-solar-dynamo-double-cell-meridional-circulation-pattern"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pipin, V. V.; Kosovichev, A. G.</p> <p></p> <p>Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity.more » Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880049591&hterms=sun+hot&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DWhy%2Bsun%2Bhot','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880049591&hterms=sun+hot&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DWhy%2Bsun%2Bhot"><span>Distribution of flares on the sun during 1955-1985 - 'Hot spots' (active zones) lasting for 30 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bai, Taeil</p> <p>1988-01-01</p> <p>The coordinates of 'major solar flares' observed during the period from January 1955 through August 1985 are analyzed. About 100 'superactive' regions (large, complex, active regions containing large sunspots) produced 46 percent of the major flares during the period. Superactive regions appeared more frequently in certain areas of the sun called 'hot spots' or 'active zones'. The synodic rotation periods of the northern and southern hemisphere hot spots were 26.72 d and 26.61 d, respectively. One of the two hot spots persisted through three solar cycles, and the other was active during cycles 19 and 21 but was dormant during cycle 20. These findings suggest that the mechanism producing hot spots must be stable for two or three solar cycles or longer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH13A2464M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH13A2464M"><span>The Evolution of the Solar Magnetic Field: A Comparative Analysis of Two Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMichael, K. D.; Karak, B. B.; Upton, L.; Miesch, M. S.; Vierkens, O.</p> <p>2017-12-01</p> <p>Understanding the complexity of the solar magnetic cycle is a task that has plagued scientists for decades. However, with the help of computer simulations, we have begun to gain more insight into possible solutions to the plethora of questions inside the Sun. STABLE (Surface Transport and Babcock Leighton) is a newly developed 3D dynamo model that can reproduce features of the solar cycle. In this model, the tilted bipolar sunspots are formed on the surface (based on the toroidal field at the bottom of the convection zone) and then decay and disperse, producing the poloidal field. Since STABLE is a 3D model, it is able to solve the full induction equation in the entirety of the solar convection zone as well as incorporate many free parameters (such as spot depth and turbulent diffusion) which are difficult to observe. In an attempt to constrain some of these free parameters, we compare STABLE to a surface flux transport model called AFT (Advective Flux Transport) which solves the radial component of the magnetic field on the solar surface. AFT is a state-of-the-art surface flux transport model that has a proven record of being able to reproduce solar observations with great accuracy. In this project, we implement synthetic bipolar sunspots into both models, using identical surface parameters, and run the models for comparison. We demonstrate that the 3D structure of the sunspots in the interior and the vertical diffusion of the sunspot magnetic field play an important role in establishing the surface magnetic field in STABLE. We found that when a sufficient amount of downward magnetic pumping is included in STABLE, the surface magnetic field from this model becomes insensitive to the internal structure of the sunspot and more consistent with that of AFT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AdSpR..54.1704A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AdSpR..54.1704A"><span>Sunspot activity and cosmic ray modulation at 1 a.u. for 1900-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahluwalia, H. S.</p> <p>2014-10-01</p> <p>The descent of sunspot cycle 23 to an unprecedented minimum of long duration in 2006-2009 led to a prolonged galactic cosmic ray (GCR) recovery to the highest level observed in the instrumental era for a variety of energetic charged particle species on Earth, over a wide range of rigidities. The remarkable GCR increase measured by several ground-based, balloon-borne, and detectors on a satellite is described and discussed. It is accompanied by a decrease in solar wind velocity and interplanetary magnetic field at 1 a.u., reaching the lowest values since measurements of the solar wind began in October 1963; the solar polar field strength (μT) measured at the Wilcox Solar Observatory (WSO) is also significantly reduced compared to prior cycles since the start of the program in 1976, the polar field in the northern hemisphere reversed in June 2012 and again in February 2014, that in the southern hemisphere reversed in July 2013. If updates of WSO data confirm the second reversal in northern solar hemisphere, it would pose a serious challenge to the Dynamo Theory. The long-term change in solar behavior may have begun in 1992, perhaps earlier. The physical underpinnings of these solar changes need to be understood and their effect on GCR modulation processes clarified. The study discusses the recent phenomena in the context of GCR modulation since 1900. These happenings affected our empirical predictions for the key parameters for the next two sunspot cycles (they may be progressively less active than sunspot cycle 24) but it enhanced support for our prediction that solar activity is descending into a Dalton-like grand minimum in the middle of the twentyfirst century, reducing the frequency of the coronal mass ejections; they determine the space weather affecting the quality of life on Earth, radiation dose for hardware and human activities in space as well as the frequency of large Forbush decreases at 1 a.u.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22608858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22608858"><span>Solar cycle predicts folate-sensitive neonatal genotypes at discrete phases of the first trimester of pregnancy: a novel folate-related human embryo loss hypothesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lucock, Mark; Glanville, Tracey; Yates, Zoë; Walker, James; Furst, John; Simpson, Nigel</p> <p>2012-08-01</p> <p>Folate, a key periconceptional nutrient, is ultraviolet light (UV-R) sensitive. We therefore hypothesise that a relationship exists between sunspot activity, a proxy for total solar irradiance (particularly UV-R) reaching Earth, and the occurrence of folate-sensitive, epigenomic-related neonatal genotypes during the first trimester of pregnancy. Limited data is provided to support the hypothesis that the solar cycle predicts folate-related human embryo loss: 379 neonates born at latitude 54°N between 1998 and 2000 were examined for three folate-sensitive, epigenome-related polymorphisms, with solar activity for trimester one accessed via the Royal Greenwich Observatory-US Air force/National Oceanic and Atmospheric Administration Sunspot Database (34,110 total observation days). Logistic regression showed solar activity predicts C677T-methylenetetrahydrofolate reductase (C677T-MTHFR) and A66G-methionine synthase reductase (A66G-MSR) genotype at discrete phases of trimester one. Total and maximal sunspot activity predicts C677T-MTHFR genotype for days 31-60 of trimester one (p=0.0181 and 0.0366, respectively) and A66G-MSR genotype for days 61-90 of trimester one (p=0.0072 and 0.0105, respectively). Loss of UV-R sensitive folate associated with the sunspot cycle might therefore interact with variant folate genes to perturb DNA methylation and/or elaboration of the primary base sequence (thymidylate synthesis), as well as increase embryo-toxic homocysteine. We hypothesise that this may influence embryo viability leading to 677CC-MTHFR and 66GG-MSR embryo loss at times of increased solar activity. This provides an interesting and plausible link between well recognised 'folate gene originated developmental disorders' and 'solar activity/seasonality modulated developmental disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047679','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047679"><span>On the insignificance of Herschel's sunspot correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, Jeffrey J.</p> <p>2013-01-01</p> <p>We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is “statistically significant.” On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are “insignificant.” Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060020186','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060020186"><span>On the Relation Between Sunspot Area and Sunspot Number</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2006-01-01</p> <p>Often, the relation between monthly or yearly averages of total sunspot area, A, and sunspot number, R, has been described using the formula A = 16.7 R. Such a simple relation, however, is erroneous. The yearly ratio of A/R has varied between 5.3 in 1964 to 19.7 in 1926, having a mean of 13.1 with a standard deviation of 3.5. For 1875-1976 (corresponding to the Royal Greenwich Observatory timeframe), the yearly ratio of A/R has a mean of 14.1 with a standard deviation of 3.2, and it is found to differ significantly from the mean for 1977-2004 (corresponding to the United States Air Force/National Oceanic and Atmospheric Administration Solar Optical Observing Network timeframe), which equals 9.8 with a standard deviation of 2.1. Scatterplots of yearly values of A versus R are highly correlated for both timeframes and they suggest that a value of R = 100 implies A=1,538 +/- 174 during the first timeframe, but only A=1,076 +/- 123 for the second timeframe. Comparison of the yearly ratios adjusted for same day coverage against yearly ratios using Rome Observatory measures for the interval 1958-1998 indicates that sunspot areas during the second timeframe are inherently too low.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28428872','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28428872"><span>Are whooping cranes destined for extinction? Climate change imperils recruitment and population growth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Butler, Matthew J; Metzger, Kristine L; Harris, Grant M</p> <p>2017-04-01</p> <p>Identifying climatic drivers of an animal population's vital rates and locating where they operate steers conservation efforts to optimize species recovery. The population growth of endangered whooping cranes ( Grus americana ) hinges on juvenile recruitment. Therefore, we identify climatic drivers (solar activity [sunspots] and weather) of whooping crane recruitment throughout the species' life cycle (breeding, migration, wintering). Our method uses a repeated cross-validated absolute shrinkage and selection operator approach to identify drivers of recruitment. We model effects of climate change on those drivers to predict whooping crane population growth given alternative scenarios of climate change and solar activity. Years with fewer sunspots indicated greater recruitment. Increased precipitation during autumn migration signified less recruitment. On the breeding grounds, fewer days below freezing during winter and more precipitation during breeding suggested less recruitment. We predicted whooping crane recruitment and population growth may fall below long-term averages during all solar cycles when atmospheric CO 2 concentration increases, as expected, to 500 ppm by 2050. Species recovery during a typical solar cycle with 500 ppm may require eight times longer than conditions without climate change and the chance of population decline increases to 31%. Although this whooping crane population is growing and may appear secure, long-term threats imposed by climate change and increased solar activity may jeopardize its persistence. Weather on the breeding grounds likely affects recruitment through hydrological processes and predation risk, whereas precipitation during autumn migration may influence juvenile mortality. Mitigating threats or abating climate change should occur within ≈30 years or this wild population of whooping cranes may begin declining.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1389514','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1389514"><span>Solar Records: The Wolf Sunspot Index and Umbral/Penumbral Ratio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Hoyt, Douglas V. [National Center for Atmospheric Research, Boulder, CO (United States)</p> <p>1985-01-01</p> <p>These data from observations of sunspot activity cover the period 1875 through 1981; reconstructions are possible back to 1832. Available sunspot models and the theory of mixing length indicate that the observed changes in the umbral/penumbral (U/P) ratio may be equivalent to changes in the solar constant. The U/P ratio is calculated from measurements of solar activity and has been shown to be in good agreement with the Northern Hemisphere temperature record. The data consist of year, number of sunspot groups, Wolf sunspot number, umbra area, whole area, penumbral area, and umbral/penumbral ratio. The data are in one file (3.3 kB).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11541945','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11541945"><span>Resonance of about-weekly human heart rate rhythm with solar activity change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V</p> <p>1996-12-01</p> <p>In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA497586','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA497586"><span>Influence of Different Solar Drivers on the Winds in the Middle Atmosphere and on Geomagnetic Disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-05-18</p> <p>number and intensity are highest in sunspot maximum. CME’s are considered the sources of the most intense geomagnetic storms (Gonzalez et al., 2002... storm . High speed solar wind The geomagnetic activity during the declining phase of the solar cycle can be even higher that at sunspot maximum. In...characteristic “calm before the storm ” – the decrease a couple of days before the maximum disturbance – in the case of high speed streams (Borovsky and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25685427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25685427"><span>Geomagnetism during solar cycle 23: Characteristics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric</p> <p>2013-05-01</p> <p>On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996-2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995AAS...18710103L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995AAS...18710103L"><span>Solar Minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopresto, James C.; Mathews, John; Manross, Kevin</p> <p>1995-12-01</p> <p>Calcium K plage, H alpha plage and sunspot area have been monitored daily on the INTERNET since November of 1992. The plage and sunspot area have been measured by image processing. The purpose of the project is to investigate the degree of correlation between plage area and solar irradiance. The plage variation shows the expected variation produced by solar rotation and the longer secular changes produced by the solar cycle. The H alpha and sunspot plage area reached a minimum in about late 1994 or early 1995. This is in agreement with the K2 spectral index obtained daily from Sacramento Peak Observatory. The Calcium K plage area minimum seems delayed with respect to the others mentioned above. The minimum of the K line plage area is projected to come within the last few months of 1995.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011BAAA...54....3V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011BAAA...54....3V"><span>Estudios de clima espacial basados en observaciones solares históricas: recientes progresos y perspectivas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaquero, J. M.</p> <p></p> <p>During the last decades, an effort has been made to improve the sunspot number time-series, one of the more useful data set for space climate stud- ies, using historical solar observations. Moreover, not only the sunspot number can be studied using these early solar records. During the last years, historical sources (i.e., sunspot drawings and solar radius measurements) have been also used to study the space climate. Here, I review some recent progress on these issues. In a hand, there are some periods with very few sunspot records and sunspot numbers are not so reliable in these intervals. I discuss the quality of sunspot records during these interesting periods: (a) 1610-1645, (b) 1721-1761, and (c) 1779-1795. On the other hand, I dis- cuss the reliability of early sunspot drawings, sunspot position data, and solar diameter determinations to study long-term variations in our Sun. Fi- nally, some information on historical documents from Argentina and Chile related with space climate are summarised. FULL TEXT IN SPANISH</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15..857D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15..857D"><span>Early American sunspot drawings from the "year without a summer"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denig, W. F.; McVaugh, M. R.</p> <p>2017-07-01</p> <p>A set of sunspot drawings from the early nineteenth century were discovered in the journals of the Reverend Jonathan Fisher. These drawings were made during a time when abnormally cold weather caused crops in New England to fail due to intermittent frost throughout the summer months of 1816, normally referred to as the "year without a summer." Global changes in weather patterns were the result of the Mount Tambora volcano eruption. Since this association was unknown at the time, there was speculation that the Sun was the cause inspiring the Reverend Fisher to monitor changes in sunspots during the summer of 1816 and continuing into 1817. These sunspot drawings for the summer of 1816 overlap the solar observations of Sir William Hershel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000012415','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000012415"><span>A Synthesis of Solar Cycle Prediction Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hathaway, David H.; Wilson, Robert M.; Reichmann, Edwin J.</p> <p>1999-01-01</p> <p>A number of techniques currently in use for predicting solar activity on a solar cycle timescale are tested with historical data. Some techniques, e.g., regression and curve fitting, work well as solar activity approaches maximum and provide a month-by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but only provide an estimate of the amplitude of the cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. A combination of two uncorrelated geomagnetic precursor techniques provides a more accurate prediction for the amplitude of a solar activity cycle at a time well before activity minimum. This combined precursor method gives a smoothed sunspot number maximum of 154 plus or minus 21 at the 95% level of confidence for the next cycle maximum. A mathematical function dependent on the time of cycle initiation and the cycle amplitude is used to describe the level of solar activity month by month for the next cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between previous activity levels and this function. This Combined Solar Cycle Activity Forecast gives, as of January 1999, a smoothed sunspot maximum of 146 plus or minus 20 at the 95% level of confidence for the next cycle maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SoPh..289.2705Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SoPh..289.2705Z"><span>Sunspot Time Series: Passive and Active Intervals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zięba, S.; Nieckarz, Z.</p> <p>2014-07-01</p> <p>Solar activity slowly and irregularly decreases from the first spotless day (FSD) in the declining phase of the old sunspot cycle and systematically, but also in an irregular way, increases to the new cycle maximum after the last spotless day (LSD). The time interval between the first and the last spotless day can be called the passive interval (PI), while the time interval from the last spotless day to the first one after the new cycle maximum is the related active interval (AI). Minima of solar cycles are inside PIs, while maxima are inside AIs. In this article, we study the properties of passive and active intervals to determine the relation between them. We have found that some properties of PIs, and related AIs, differ significantly between two group of solar cycles; this has allowed us to classify Cycles 8 - 15 as passive cycles, and Cycles 17 - 23 as active ones. We conclude that the solar activity in the PI declining phase (a descending phase of the previous cycle) determines the strength of the approaching maximum in the case of active cycles, while the activity of the PI rising phase (a phase of the ongoing cycle early growth) determines the strength of passive cycles. This can have implications for solar dynamo models. Our approach indicates the important role of solar activity during the declining and the rising phases of the solar-cycle minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22365081-effects-meridional-flow-variations-solar-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22365081-effects-meridional-flow-variations-solar-cycles"><span>Effects of meridional flow variations on solar cycles 23 and 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Upton, Lisa; Hathaway, David H., E-mail: lisa.a.upton@vanderbilt.edu, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov</p> <p>2014-09-10</p> <p>The faster meridional flow that preceded the solar cycle 23/24 minimum is thought to have led to weaker polar field strengths, producing the extended solar minimum and the unusually weak cycle 24. To determine the impact of meridional flow variations on the sunspot cycle, we have simulated the Sun's surface magnetic field evolution with our newly developed surface flux transport model. We investigate three different cases: a constant average meridional flow, the observed time-varying meridional flow, and a time-varying meridional flow in which the observed variations from the average have been doubled. Comparison of these simulations shows that the variationsmore » in the meridional flow over cycle 23 have a significant impact (∼20%) on the polar fields. However, the variations produced polar fields that were stronger than they would have been otherwise. We propose that the primary cause of the extended cycle 23/24 minimum and weak cycle 24 was the weakness of cycle 23 itself—with fewer sunspots, there was insufficient flux to build a big cycle. We also find that any polar counter-cells in the meridional flow (equatorward flow at high latitudes) produce flux concentrations at mid-to-high latitudes that are not consistent with observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA581121','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA581121"><span>Risk on the Horizon, Rig for Dark: Solutions to Mitigate DoD’s Reliance on the Fragile Electric Grid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-04-01</p> <p>occurring event that could disrupt the production and delivery of power is a solar storm. Solar storms can create effects in the earth’s magnetic fields ...solar storms, their potential for disruption is evident. The magnetic fields within the sun undergo a 22-year cycle during which the magnetic poles...sunspots.27 Contained in this CME are low- to medium-charged 25 “The Sun’s Magnetic Field ,” NASA’s</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23228468','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23228468"><span>Geographically selective assortment of cycles in pandemics: meta-analysis of data collected by Chizhevsky.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gumarova, L; Cornélissen, G; Hillman, D; Halberg, F</p> <p>2013-10-01</p> <p>In the incidence patterns of cholera, diphtheria and croup during the past when they were of epidemic proportions, we document a set of cycles (periods), one of which was reported and discussed by A. L. Chizhevsky in the same data with emphasis on the mirroring in human disease of the ~11-year sunspot cycle. The data in this study are based on Chizhevsky’s book The Terrestrial Echo of Solar Storms and on records from the World Health Organization. For meta-analysis, we used the extended linear and nonlinear cosinor. We found a geographically selective assortment of various cycles characterizing the epidemiology of infections, which is the documented novel topic of this paper, complementing the earlier finding in the 21st century or shortly before, of a geographically selective assortment of cycles characterizing human sudden cardiac death. Solar effects, if any, interact with geophysical processes in contributing to this assortment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.763G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.763G"><span>Major revision of sunspot number: implication for the ionosphere models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulyaeva, Tamara</p> <p>2016-07-01</p> <p>Recently on 1st July, 2015, a major revision of the historical sunspot number series has been carried out as discussed in [Clette et al., Revisiting the Sunspot Number. A 400-Year Perspective on the Solar Cycle, Space Science Reviews, 186, Issue 1-4, pp. 35-103, 2014). The revised SSN2.0 dataset is provided along with the former SSN1.0 data at http://sidc.oma.be/silso/. The SSN2.0 values exceed the former conventional SSN1.0 data so that new SSNs are greater in many cases than the solar radio flux F10.7 values which pose a problem of SSN2.0 implementation as a driver of the International Reference Ionosphere, IRI, its extension to plasmasphere, IRI-Plas, NeQuick model, Russian Standard Ionosphere, SMI. In particular, the monthly predictions of the F2 layer peak are based on input of the ITU-R (former CCIR) and URSI maps. The CCIR and URSI maps coefficients are available for each month of the year, and for two levels of solar activity: low (SSN = 0) and high (SSN = 100). SSN is the monthly smoothed sunspot number from the SSN1.0 data set used as an index of the level of solar activity. For every SSN different from 0 or 100 the critical frequency foF2 and the M3000F2 radio propagation factor used for the peak height hmF2 production may be evaluated by an interpolation. The ionospheric proxies of the solar activity IG12 index or Global Electron Content GEC12 index, driving the ionospheric models, are also calibrated with the former SSN1.0 data. The paper presents a solar proxy intended to calibrate SSN2.0 data set to fit F10.7 solar radio flux and/or SSN1.0 data series. This study is partly supported by TUBITAK EEEAG 115E915.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AN....336..225N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AN....336..225N"><span>Solar activity around AD 775 from aurorae and radiocarbon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neuhäuser, R.; Neuhäuser, D. L.</p> <p>2015-04-01</p> <p>A large variation in 14C around AD 775 has been considered to be caused by one or more solar super-flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbak\\i r in Turkey near the Turkish-Syrian border), which were not only red, but also green-yellow - being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super-flares causing the 14C increase around AD 775: There are several reports about low- to mid-latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi-)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 - always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD {˜ 733} to {˜ 823}, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles - reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked-eye sunspots, we discuss two more Schwabe cycles until AD {˜ 844}. The 14C record (from both Intcal and Miyake et al. 2013a) is anti-correlated to auroral and sunspot activity, as expected from solar wind modulation of cosmic rays which produce the radiocarbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910003165','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910003165"><span>Solar Activity and the Sea-surface Temperature Record-evidence of a Long-period Variation in Solar Total Irradiance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reid, George C.</p> <p>1990-01-01</p> <p>There have been many suggestions over the years of a connection between solar activity and the Earth's climate on time scales long compared to the 11-year sunspot cycle. They have remained little more than suggestions largely because of the major uncertainties in the climate record itself, and the difficulty in trying to compile a global average from an assembly of measurements that are uneven in both quality and distribution. Different climate time response to solar activity, some suggesting a positive correlation, some a negative correlation, and some no correlation at all. The only excuse for making yet another such suggestion is that much effort has been devoted in recent years to compiling climate records for the past century or more that are internally consistent and believable, and that a decadal-scale record of solar total irradiance is emerging from spacecraft measurements, and can be used to set limits on the variation that is likely to have occurred on these time scales. The work described here was originally inspired by the observation that the time series of globally averaged sea-surface temperatures over the past 120 years or so, as compiled by the British Meteorological Office group (Folland and Kates, 1984), bore a resonable similarity to the long-term average sunspot number, which is an indicator of the secular variability of solar activity. The two time series are shown where the sunspot number is shown as the 135-month running mean, and the SST variation is shown as the departure from an arbitrary average value. The simplest explanation of the similarity, if one accepts it as other than coincidental, is that the sun's luminosity may have been varying more or less in step with the level of solar activity, or in other words that there is a close coupling between the sun's magnetic condition and its radiative output on time scales longer than the 11-year cycle. Such an idea is not new, and in fact the time series shown can be regarded as a modern extension of the proposal put forward by Eddy (1977) to explain the covariance between various global climate indicators and solar activity as revealed by the C-14 record over the past millenium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH53A2153L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH53A2153L"><span>Solar Flare Occurrence Rate and Probability in Terms of the Sunspot Classification Supplemented with Sunspot Area and Its Changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, K.; Moon, Y.; Lee, J.; Na, H.; Lee, K.</p> <p>2013-12-01</p> <p>We investigate the solar flare occurrence rate and daily flare probability in terms of the sunspot classification supplemented with sunspot area and its changes. For this we use the NOAA active region data and GOES solar flare data for 15 years (from January 1996 to December 2010). We consider the most flare-productive 11 sunspot classes in the McIntosh sunspot group classification. Sunspot area and its changes can be a proxy of magnetic flux and its emergence/cancellation, respectively. We classify each sunspot group into two sub-groups by its area: 'Large' and 'Small'. In addition, for each group, we classify it into three sub-groups according to sunspot area changes: 'Decrease', 'Steady', and 'Increase'. As a result, in the case of compact groups, their flare occurrence rates and daily flare probabilities noticeably increase with sunspot group area. We also find that the flare occurrence rates and daily flare probabilities for the 'Increase' sub-groups are noticeably higher than those for the other sub-groups. In case of the (M + X)-class flares in the ';Dkc' group, the flare occurrence rate of the 'Increase' sub-group is three times higher than that of the 'Steady' sub-group. The mean flare occurrence rates and flare probabilities for all sunspot groups increase with the following order: 'Decrease', 'Steady', and 'Increase'. Our results statistically demonstrate that magnetic flux and its emergence enhance the occurrence of major solar flares.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811910N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811910N"><span>Studying the start of the Maunder Minimum to understand the current situation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neuhäuser, Ralph; Neuhäuser, Dagmar L.</p> <p>2016-04-01</p> <p>To investigate whether we now enter a Maunder-like grand minimum, we have to compare the current situation with the time around the start of the Maunder minimum. Sunspot observations in the 1610s are of particular importance and relevance, because they are shortly before the start of the Maunder Grand Minimum. While the Maunder Minimum it is usually dated from 1645 to 1715, Vaquero & Trigo (2015) argue that what they call the "Extended Maunder Minimum" would have started in 1618 during or around a Schwabe cycle minimum around that time. We have therefore studied the sunspot record of that time in detail. Hoyt & Schatten (1998) compiled for all known telescopic observers a list of their observations; recent solar activity studies for the past four centuries are based on their compilation. In addition to 12 observers listed by Hoyt & Schatten (1998) for the 1610s, we list six more observers with datable spot observations. Furthermore, while Hoyt & Schatten (1998) argue that Simon Marius would have observed from mid 1617 to the end of 1618 almost every day, but would have never seen a spot, we can show with the original reports by Marius that he observed from Aug 1611 to spring 1619 with a lot of sunspot detections. Similar, while Hoyt & Schatten (1998) argue that Giovanni Riccioli would have observed on almost every day in 1618, but would have never seen a spot, he did not report any own observations at all that year, but quoted Argoli for that there were no spots during the periods with comets in 1618. The data base by Hoyt & Schatten (1998) has several more errors in the 1610s, as we show also for the observations by Harriot, Scheiner, Malapert, Saxonius, and Tarde. We also compare drawings from Jungius with the observations by Harriot, Galilei, and Marius. In contrast to what is specified in Hoyt & Schatten (1998), after Harriot, the two Fabricius (father and son), Scheiner and Cysat, Marius and Schmidnerus are among the earliest datable telescopic sunspot observers (1611 Aug 3, Julian). It is very important to go back to the original drawings and observational reports (written often in Latin or German). The active day fractions was high from 1611 to 1616 (1.0 to 0.9), but then dropped to much lower values 1617 to 1620. Sunspots records by Malapert from 1618 to 1621 show that the last low-latitude spot was seen in Dec 1620, while the first high-latitude spots were noticed in June and Oct 1620 (we show his drawings), so that the turnover from one Schwabe cycle to the next (minimum) took place around that time, also seen in longer periods without naked-eye and telescopic spots nor any likely true aurorae. Did the Maunder Minimum start with or right after this Schwabe cycle minimum in the second half of 1620 or one or two cycles later? We will then compare the start of the Maunder minimum with the current situation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005KFNTS...5..189K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005KFNTS...5..189K"><span>Differential rotation of chromosphere and photosphere in the rising phase of N22 cycle of the Sun: torsional oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kasinskii, V.; Kasinskaia, L. I.</p> <p>2005-06-01</p> <p>The angular velocities of chromosphere and photosphere are calculated for 1987-1990 on the basis of heliographic coordinates of the chromospheric flares and sunspots (Solar Geophysical Data). The time resolution accepted is 0.25 year. The mean equatorial rotations of chromosphere and photosphere practically coincide. However, the differential coefficients in the chromosphere and photosphere, b, have strongly different behaviour. The value bch - bph change regularly from ``+'' sign to ``-'' sign over two-year interval. Thus, the idea of a torsion like oscillations of ``chromosphere-photosphere'' is supported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27136236','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27136236"><span>Is sunspot activity a factor in influenza pandemics?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qu, Jiangwen</p> <p>2016-09-01</p> <p>The 2009 AH1N1 pandemic became a global health concern, although fortunately, its worst anticipated effects were not realised. While the origins of such outbreaks remain poorly understood, it is very important to identify the precipitating factors in their emergence so that future pandemics can be detected as quickly as possible. Methords: Descriptive epidemiology was used to analyse the association between influenza pandemics and possible pandemics and relative number of sunspots. Non-conditional logistic regression was performed to analyse the statistical association between sunspot extremes and influenza pandemics to within plus or minus 1 year. Almost all recorded influenza/possible pandemics have occurred in time frames corresponding to sunspot extremes, or +/- 1 year within such extremes. These periods were identified as important risk factors in both possible and confirmed influenza pandemics (odds ratio: 3.87; 95% confidence interval: 1.08 to 13.85). Extremes of sunspot activity to within plus or minus 1 year may precipitate influenza pandemics. Mechanisms of epidemic initiation and early spread are discussed including primary causation by externally derived viral variants (from space via cometary dust). Efforts to construct a comprehensive early warning system for potential influenza and other viral pandemics that include analysis of sunspot activity and stratospheric sampling for viral variants should be supported. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994SoPh..152..111F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994SoPh..152..111F"><span>Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Froehlich, Claus; Pap, Judit M.; Hudson, Hugh S.</p> <p>1994-06-01</p> <p>The photometric sunspot index (PSI) was developed to study the effects of sunspots on solar irradiance. It is calculated from the sunspot data published in the Solar-Geophysical Data catalog. It has been shown that the former PSI models overestimate the effect of dark sunspots on solar irradiance; furthermore results of direct sunspot photometry indicate that the contrast of spots depends on their area. An improved PSI calculation is presented; it takes into account the area dependence of the contrast and calculates `true' daily means for each observation using the differential rotation of the spots. Moreover, the observations are screened for outliers which improves the homogeneity of the data set substantially, at least for the period after December 1981 when NOAA started to report data from a few instead of one to two stations. A detailed description of the method is provided. The correlation between the newly calculated PSI and total solar irradiance is studied for different phases of the solar cycles 21 and 22 using bi-variate spectral analysis. The results can be used as a `calibration' of PSI in terms of gain, the factor by which PSI has to be multiplied to yield the observed irradiance change. The factor changes with time from about 0.6 in 1980 to 1.1 in 1990. This unexpected result cannot be interpreted by a change of the contrast relative to the quiet Sun (as it is normally defined and determined by direct photometry) but rather as a change of the contrast between the spots and their surrounding as seen in total irradiance (integrated over the solar disk). This may partly be explained by a change in the ratio between the areas of the spots and the surrounding faculae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046586&hterms=photometric&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dphotometric','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046586&hterms=photometric&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dphotometric"><span>Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Froehlich, Claus; Pap, Judit M.; Hudson, Hugh S.</p> <p>1994-01-01</p> <p>The photometric sunspot index (PSI) was developed to study the effects of sunspots on solar irradiance. It is calculated from the sunspot data published in the Solar-Geophysical Data catalog. It has been shown that the former PSI models overestimate the effect of dark sunspots on solar irradiance; furthermore results of direct sunspot photometry indicate that the contrast of spots depends on their area. An improved PSI calculation is presented; it takes into account the area dependence of the contrast and calculates `true' daily means for each observation using the differential rotation of the spots. Moreover, the observations are screened for outliers which improves the homogeneity of the data set substantially, at least for the period after December 1981 when NOAA started to report data from a few instead of one to two stations. A detailed description of the method is provided. The correlation between the newly calculated PSI and total solar irradiance is studied for different phases of the solar cycles 21 and 22 using bi-variate spectral analysis. The results can be used as a `calibration' of PSI in terms of gain, the factor by which PSI has to be multiplied to yield the observed irradiance change. The factor changes with time from about 0.6 in 1980 to 1.1 in 1990. This unexpected result cannot be interpreted by a change of the contrast relative to the quiet Sun (as it is normally defined and determined by direct photometry) but rather as a change of the contrast between the spots and their surrounding as seen in total irradiance (integrated over the solar disk). This may partly be explained by a change in the ratio between the areas of the spots and the surrounding faculae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293....8H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293....8H"><span>Iwahashi Zenbei's Sunspot Drawings in 1793 in Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Toriumi, Shin; Shibata, Kazunari</p> <p>2018-01-01</p> <p>Three Japanese sunspot drawings associated with Iwahashi Zenbei (1756 - 1811) are shown here from contemporary manuscripts and woodprint documents with the relevant texts. We reveal the observational date of one of the drawings to be 26 August 1793, and the overall observations lasted for over a year. Moreover, we identify the observational site for the dated drawing as Fushimi in Japan. We then compare Zenbei's observations with the group sunspot number and the raw group count from the Sunspot Index and Long-term Solar Observations (SILSO) to reveal the context of the data, and we conclude that these drawings fill gaps in our understanding that are due to the fragmental sunspot observations around 1793. These drawings are important as a clue to evaluate astronomical knowledge of contemporary Japan in the late eighteenth century and are valuable as a non-European observation, considering that most sunspot observations up to the middle of the nineteenth century are from Europe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5510962','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5510962"><span>Global conditions in the solar corona from 2010 to 2017</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Morgan, Huw; Taroyan, Youra</p> <p>2017-01-01</p> <p>Through reduction of a huge data set spanning 2010–2017, we compare mean global changes in temperature, emission measure (EM), and underlying photospheric magnetic field of the solar corona over most of the last activity cycle. The quiet coronal mean temperature rises from 1.4 to 1.8 MK, whereas EM increases by almost a factor of 50% from solar minimum to maximum. An increased high-temperature component near 3 MK at solar maximum drives the increase in quiet coronal mean temperature, whereas the bulk of the plasma remains near 1.6 MK throughout the cycle. The mean, spatially smoothed magnitude of the quiet Sun magnetic field rises from 1.6 G in 2011 to peak at 2.0 G in 2015. Active region conditions are highly variable, but their mean remains approximately constant over the cycle, although there is a consistent decrease in active region high-temperature emission (near 3 MK) between the peak of solar maximum and present. Active region mean temperature, EM, and magnetic field magnitude are highly correlated. Correlation between sunspot/active region area and quiet coronal conditions shows the important influence of decaying sunspots in driving global changes, although we find no appreciable delay between changes in active region area and quiet Sun magnetic field strength. The hot coronal contribution to extreme ultraviolet (EUV) irradiance is dominated by the quiet corona throughout most of the cycle, whereas the high variability is driven by active regions. Solar EUV irradiance cannot be predicted accurately by sunspot index alone, highlighting the need for continued measurements. PMID:28740861</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoPh..291.3807A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoPh..291.3807A"><span>Salient Features of the New Sunspot Number Time Series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahluwalia, H. S.; Ygbuhay, R. C.</p> <p>2016-12-01</p> <p>Recently Clette et al. (Space Sci. Rev. 186, 35, 2014) completed the first revision of the international sunspot number SSN(V2) since its creation by Wolf in 1849 SSN(V1) starting in 1700 and ending in May 2015. The yearly values of SSN(V2) are larger than those of SSN(V1) but the secular trend in their timelines both exhibit a gradual descent after Cycle 21 minimum resulting in greatly reduced activity for Cycle 24. It has two peaks; one in 2012 due to activity in the north hemisphere (NH) and the other in 2014 due to excess activity in the south hemisphere (SH). The N-S excess of hemispheric SSNs is examined for 1950 - 2014, in relation to the time variations of the solar polar field for 1976 - 2015, covering five complete solar cycles (19 - 23) and parts of the bordering two (18, 24). We find that SH tends to become progressively more active in the declining phase of the cycles reaching an extreme value that gave rise to a second higher peak in October 2014 in the smoothed SSNs accompanied by a strong solar polar field in SH. There may be a Gleissberg cyclicity in the asymmetric solar dynamo operation. The continuing descent of the secular trend in SSNs implies that we may be near a Dalton-level grand minimum. The low activity spell may last well past 2060, accompanied by a stable but reduced level of the space weather/climate. Fourier spectrum of the time domain of SSNs shows no evidence of the 208 year/cycle (ypc) (DeVries/Suess cycle) seen in the cosmogenic radionuclide ({}^{10}Be) concentration in the polar ice cores and {}^{14}C record in trees indicating that 208 ypc peak may be of non-solar origin. It may arise from the climate process(es) that change(s) the way radionuclides are deposited on polar ice. It should be noted that we only have {˜} 400 years of SSN data, so it is possible that DeVries/Suess cycle is really driven by the Sun but for now we do not have any evidence of that; there is no known physical process linking 208 ypc to solar dynamo operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850040706&hterms=carbon+14+dating&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcarbon%2B14%2Bdating','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850040706&hterms=carbon+14+dating&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcarbon%2B14%2Bdating"><span>11-year cycle solar modulation of cosmic ray intensity inferred from C-14 content variation in dated tree rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fan, C. Y.; Chen, T. M.; Yun, S. X.; Dai, K. M.</p> <p>1983-01-01</p> <p>A liquid scintillation-photomultiplier tube counter system was used to measure the Delta-C-14 values of 60 tree rings, dating from 1866 to 1925, that were taken from a white spruce grown in Canada at 68 deg N, 130 deg W. A 10-percent variation is found which is anticorrelated with sunspot numbers, although the amplitude of the variation is 2-3 times higher than expected in trees grown at lower latitudes. A large dip in the data at about 1875 suggests an anomalously large modulation of cosmic ray intensity during the 1867-1878 AD solar cycle, which was the most active of the 19th century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988PApGe.127..143K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988PApGe.127..143K"><span>Long-term variation of total ozone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kane, R. P.</p> <p>1988-03-01</p> <p>The long-term variation of total ozone is studied for 1957 up to date for different latitude zones. The 3-year running averages show that, apart from a small portion showing parallelism with sunspot cycles, the trends in different latitude zones are dissimilar. In particular, where northern latitudes show a rising trend, the southern latitudes show an opposite (decreasing) trend. In the north-temperate group, Europe, North America and Asia show dissimilar trends. The longer data series (1932 ownards) for Arosa shows, besides a solar-cycle-dependent component, a steady level during 1932 1953 and a down-trend thereafter up to date. Very localised but long-lasting circulation patterns, different in different geographical regions, are indicated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040139271','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040139271"><span>Validation of Spacecraft Active Cavity Radiometer Total Solar Irradiance (TSI) Long Term Measurement Trends Using Proxy TSI Least Squares Analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Robert Benjamin, III; Wilson, Robert S.</p> <p>2003-01-01</p> <p>Long-term, incoming total solar irradiance (TSI) measurement trends were validated using proxy TSI values, derived from indices of solar magnetic activity. Spacecraft active cavity radiometers (ACR) are being used to measure longterm TSI variability, which may trigger global climate changes. The TSI, typically referred to as the solar constant, was normalized to the mean earth-sun distance. Studies of spacecraft TSI data sets confirmed the existence of a 0.1 %, long-term TSI variability component within a 10-year period. The 0.1% TSI variability component is clearly present in the spacecraft data sets from the 1984-2004 time frame. Typically, three overlapping spacecraft data sets were used to validate long-term TSI variability trends. However, during the years of 1978-1984, 1989-1991, and 1993-1996, three overlapping spacecraft data sets were not available in order to validate TSI trends. The TSI was found to vary with indices of solar magnetic activity associated with recent 10-year sunspot cycles. Proxy TSI values were derived from least squares analyses of the measured TSI variability with the solar indices of 10.7-cm solar fluxes, and with limb-darked sunspot fluxes. The resulting proxy TSI values were compared to the spacecraft ACR measurements of TSI variability to detect ACR instrument degradation, which may be interpreted as TSI variability. Analyses of ACR measurements and TSI proxies are presented primarily for the 1984-2004, Earth Radiation Budget Experiment (ERBE) ACR solar monitor data set. Differences in proxy and spacecraft measurement data sets suggest the existence of another TSI variability component with an amplitude greater than or equal to 0.5 Wm-2 (0.04%), and with a cycle of 20 years or more.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH23C2451K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH23C2451K"><span>The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopp, G.; Krivova, N.; Lean, J.; Wu, C. J.</p> <p>2015-12-01</p> <p>We describe the expected effects of the new sunspot number time series on proxy model based reconstructions of the total solar irradiance (TSI), which is largely explained by the opposing effects of dark sunspots and bright faculae. Regressions of indices for facular brightening and sunspot darkening with time series of direct TSI observations during the recent 37-year spacecraft TSI measurement era determine the relative contributions from each. Historical TSI reconstructions are enabled by extending these proxy models back in time prior to the start of the measurement record using a variety of solar activity indices including the sunspot number time series alone prior to 1882. Such reconstructions are critical for Earth climate research, which requires knowledge of the incident energy from the Sun to assess climate sensitivity to the natural influence of solar variability. Two prominent TSI reconstructions that utilize the sunspot record starting in 1610 are the NRLTSI and the SATIRE models. We review the indices that each currently uses and estimate the effects the revised sunspot record has on these reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22048052-magnetic-topology-naked-sunspot-really-naked','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22048052-magnetic-topology-naked-sunspot-really-naked"><span>MAGNETIC TOPOLOGY OF A NAKED SUNSPOT: IS IT REALLY NAKED?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sainz Dalda, A.; Vargas Dominguez, S.; Tarbell, T. D.</p> <p></p> <p>The high spatial, temporal, and spectral resolution achieved by Hinode instruments gives much better understanding of the behavior of some elusive solar features, such as pores and naked sunspots. Their fast evolution and, in some cases, their small sizes have made their study difficult. The moving magnetic features (MMFs) have been studied during the last 40 years. They have been always associated with sunspots, especially with the penumbra. However, a recent observation of a naked sunspot (one with no penumbra) has shown MMF activity. The authors of this reported observation expressed their reservations about the explanation given to the bipolarmore » MMF activity as an extension of the penumbral filaments into the moat. How can this type of MMF exist when a penumbra does not? In this Letter, we study the full magnetic and (horizontal) velocity topology of the same naked sunspot, showing how the existence of a magnetic field topology similar to that observed in sunspots can explain these MMFs, even when the intensity map of the naked sunspot does not show a penumbra.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.A43C0109P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.A43C0109P"><span>Understanding Sun-Climate Connection by Analysis of Historical Sunspot, Auroral and Weather Records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pang, K. D.; Yau, K. K.</p> <p>2005-12-01</p> <p>Fifty years of galactic cosmic ray data show changes with the solar cycle. Deflection of the highly energetic particles from exploding supernovae by the solar wind and associated magnetic field also modulates cosmogenic radioisotope production high in the atmosphere. The same trends are seen in carbon-14 and beryllium-10 abundances from long-lived trees and polar ice cores, respectively. Total solar irradiances measured by satellite radiometers show a 0.1% variance over the last two solar cycles, with only a small effect on global temperatures. A longer view is obviously needed. During the Maunder Minimum (1645-1715) sunspots were rarely seen. Total solar irradiances, reconstructed from historical sunspot data, were 0.24% lower, correlating nicely with an estimated 0.5-degree drop in Northern Hemisphere surface temperatures during the Little Ice Age [Lean and Rind, J. Clim. 11, 3069, 1998]. A longer time series has been reconstructed from even earlier records. From the frequencies of sunspot and auroral sightings in East Asian and European chronicles, C-14 and Be-10 abundances we have reconstructed the recent history of a variable Sun. In the past 1800 years the Sun has gone through nine cycles of brightness change. Although these long-term changes were <1% they have clearly affected the climate [Pang and Yau, Eos 83, No. 43, 481, 2002]. We have also analyzed Chinese historical weather records for comparison. Reports of unseasonable cold are classified by their degree of severity: (1) Late (April-June) or early (July-Sept.) killing frosts; (2) Bitter cold/heavy snowfall; and (3) Heavy sustained snowfall, bitter cold with frozen wells, lakes, rivers and icebound seas. The latter cases were often widespread and multi-year. All categories occurred most often during Maunder Minimum. The Category 3 episodes were in 1652-54, 1656, 1664, 1670-72, 1676-77, 1683, 1688-91, 1716 and 1718-19. The coldest time 1670-1697 coincides with lows in aurora sightings and numerical model simulated temperatures, and highs in radioisotope production. There was only one Category 3 episode between the Maunder and Dalton Minima-in 1761 (due to a big eruption); and two in the Dalton Minimum (1795-1825)-in 1796 and 1814-17. The 1815 Tambora eruption, with the reduced solar luminosity, seem to have been responsible for the "year without summer" and long-cold spell. The Sun has brightened since the Dalton Minimum, but the climate of China stayed cold through the 19th century. However there were only two Category 3 episodes: in 1841 and 1877. The onset of global warming reduced that to just once in the 20th century: 1955. The climate of China seems to have been warm during the Late 14th-Century Maximum (1350-1410). We have found only one Category 1 episode: in 1393. It then turned cold during the Sporer Minimum (1410-1590). Category 3 episodes occurred in 1453-54, 1493, 1513, 1569, and 1577-78. The early 1453 great Kuwae eruption apparently deepened and prolonged the first [Pang, Eos 74, No. 43, 106, 1993; Simarski, Aramco World 47, No.6, 8, 1996]. We conclude that the climate of China in the past 650 years generally follows world trend. The major forcing seems to have been changing solar luminosity, as all but four severe weather episodes coincide with solar minimum. The exact mechanism remains unknown, but could have been increased cloudiness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22356531-stochastically-forced-time-delay-solar-dynamo-model-self-consistent-recovery-from-maunder-like-grand-minimum-necessitates-mean-field-alpha-effect','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22356531-stochastically-forced-time-delay-solar-dynamo-model-self-consistent-recovery-from-maunder-like-grand-minimum-necessitates-mean-field-alpha-effect"><span>A stochastically forced time delay solar dynamo model: Self-consistent recovery from a maunder-like grand minimum necessitates a mean-field alpha effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hazra, Soumitra; Nandy, Dibyendu; Passos, Dário, E-mail: s.hazra@iiserkol.ac.in, E-mail: dariopassos@ist.utl.pt, E-mail: dnandi@iiserkol.ac.in</p> <p></p> <p>Fluctuations in the Sun's magnetic activity, including episodes of grand minima such as the Maunder minimum have important consequences for space and planetary environments. However, the underlying dynamics of such extreme fluctuations remain ill-understood. Here, we use a novel mathematical model based on stochastically forced, non-linear delay differential equations to study solar cycle fluctuations in which time delays capture the physics of magnetic flux transport between spatially segregated dynamo source regions in the solar interior. Using this model, we explicitly demonstrate that the Babcock-Leighton poloidal field source based on dispersal of tilted bipolar sunspot flux, alone, cannot recover the sunspotmore » cycle from a grand minimum. We find that an additional poloidal field source effective on weak fields—e.g., the mean-field α effect driven by helical turbulence—is necessary for self-consistent recovery of the sunspot cycle from grand minima episodes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPD....4810606K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPD....4810606K"><span>The study of Equatorial coronal hole during maximum phase of Solar Cycle 21, 22, 23 and 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karna, Mahendra; Karna, Nishu</p> <p>2017-08-01</p> <p>The 11-year Solar Cycle (SC) is characterized by the periodic change in the solar activity like sunspot numbers, coronal holes, active regions, eruptions such as flares and coronal mass ejections. We study the relationship between equatorial coronal holes (ECH) and the active regions (AR) as coronal whole positions and sizes change with the solar cycle. We made a detailed study of equatorial coronal hole for four solar maximum: Solar Cycle 21 (1979,1980,1981 and 1982), Solar Cycle 22 (1989, 1990, 1991 and 1992), Solar Cycle 23 (1999, 2000, 2001 and 2002) and Solar Cycle 24 (2012, 2013, 2014 and 2015). We used publically available NOAA solar coronal hole data for cycle 21 and 22. We measured the ECH region using the EIT and AIA synoptic map for cycle 23 and 24. We noted that in two complete 22-year cycle of solar activity, the equatorial coronal hole numbers in SC 22 is greater than SC 21 and similarly, SC 24 equatorial coronal hole numbers are greater than SC 23. Moreover, we also compared the position of AR and ECH during SC 23 and 24. We used daily Solar Region Summary (SRS) data from SWPC/NOAA website. Our goal is to examine the correlation between equatorial holes, active regions, and flares.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4625153','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4625153"><span>Heartbeat of the Sun from Principal Component Analysis and prediction of solar activity on a millenium timescale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zharkova, V. V.; Shepherd, S. J.; Popova, E.; Zharkov, S. I.</p> <p>2015-01-01</p> <p>We derive two principal components (PCs) of temporal magnetic field variations over the solar cycles 21–24 from full disk magnetograms covering about 39% of data variance, with σ = 0.67. These PCs are attributed to two main magnetic waves travelling from the opposite hemispheres with close frequencies and increasing phase shift. Using symbolic regeression analysis we also derive mathematical formulae for these waves and calculate their summary curve which we show is linked to solar activity index. Extrapolation of the PCs backward for 800 years reveals the two 350-year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past including the Maunder and Dalton minimum. The summary curve calculated for the next millennium predicts further three grand cycles with the closest grand minimum occurring in the forthcoming cycles 26–27 with the two magnetic field waves separating into the opposite hemispheres leading to strongly reduced solar activity. These grand cycle variations are probed by α − Ω dynamo model with meridional circulation. Dynamo waves are found generated with close frequencies whose interaction leads to beating effects responsible for the grand cycles (350–400 years) superimposed on a standard 22 year cycle. This approach opens a new era in investigation and confident prediction of solar activity on a millenium timescale. PMID:26511513</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4295039','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4295039"><span>Geomagnetism during solar cycle 23: Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric</p> <p>2012-01-01</p> <p>On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum. PMID:25685427</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AIPC..919...49C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AIPC..919...49C"><span>An Elementary Introduction to Solar Dynamo Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choudhuri, Arnab Rai</p> <p>2007-07-01</p> <p>The cyclically varying magnetic field of the Sun is believed to be produced by the hydromagnetic dynamo process. We first summarize the relevant observational data pertaining to sunspots and solar cycle. Then we review the basic principles of MHD needed to develop the dynamo theory. This is followed by a discussion how bipolar sunspots form due to magnetic buoyancy of flux tubes formed at the base of the solar convection zone. Following this, we come to the heart of dynamo theory. After summarizing the basic ideas of a turbulent dynamo and the basic principles of its mean field formulation, we present the famous dynamo wave solution, which was supposed to provide a model for the solar cycle. Finally we point out how a flux transport dynamo can circumvent some of the difficulties associated with the older dynamo models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22520044-comparison-chaotic-fractal-properties-polar-faculae-sunspot-activity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22520044-comparison-chaotic-fractal-properties-polar-faculae-sunspot-activity"><span>COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deng, L. H.; Xiang, Y. Y.; Dun, G. T.</p> <p></p> <p>The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaoticmore » attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2616S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2616S"><span>Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Lu; Miao, Chiyuan; Duan, Qingyun</p> <p>2017-04-01</p> <p>Water scarcity in the Yellow River, China, has become increasingly severe over the past half century. In this paper, wavelet transform analysis was used to detect the variability of observed and reconstructed streamflow in the Yellow River at 500-, 100-, and 50-year timescales. The periodicity of the streamflow series and the co-varying relationships between streamflow and atmospheric circulation indices / sunspot number were assessed via the continuous wavelet transform (CWT) and the wavelet coherence transform (WTC). The CWT results showed intermittent oscillations in streamflow with increasing periodicities of 1-6 years at all timescales. Significant multidecadal and century-scale periodicities were identified in the 500-year streamflow series. The WTC results showed intermittent interannual covariance of streamflow with atmospheric circulation indices and sunspots. At the 50-year timescale, there were significant decadal oscillations between streamflow and the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO), and bidecadal oscillations with the PDO. At the 100-year timescale, there were significant decadal oscillations between streamflow and Niño 3.4, the AO, and sunspots. At the 500-year timescale, streamflow in the middle reaches of the Yellow River showed prominent covariance with the AO with an approximately 32-year periodicity, and with sunspots with an approximately 80-year periodicity. Atmospheric circulation indices modulate streamflow by affecting temperature and precipitation. Sunspots impact streamflow variability by influencing atmospheric circulation, resulting in abundant precipitation. In general, for both the CWT and the WTC results, the periodicities were spatially continuous, with a few gradual changes from upstream to downstream resulting from the varied topography and runoff. At the temporal scale, the periodicities were generally continuous over short timescales and discontinuous over longer timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43B1640S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43B1640S"><span>Wavelet-based Variability of Yellow River Discharge at 500-, 100-, and 50-Year Timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, L.</p> <p>2017-12-01</p> <p>Water scarcity in the Yellow River, China, has become increasingly severe over the past half century. In this paper, wavelet transform analysis was used to detect the variability of natural, observed, and reconstructed streamflow in the Yellow River at 500-, 100-, and 50-year timescales. The periodicity of the streamflow series and the co-varying relationships between streamflow and atmospheric circulation indices/sunspot number were assessed by means of continuous wavelet transform (CWT) and wavelet transform coherence (WTC) analyses. The CWT results showed intermittent oscillations in streamflow with increasing periodicities of 1-6 years at all timescales. Significant multidecadal and century-scale periodicities were identified in the 500-year streamflow series. The WTC results showed intermittent interannual covariance of streamflow with atmospheric circulation indices and sunspots. At the 50-year timescale, there were significant decadal oscillations between streamflow and the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO), and bidecadal oscillations with the PDO. At the 100-year timescale, there were significant decadal oscillations between streamflow and Niño 3.4, the AO, and sunspots. At the 500-year timescale, streamflow in the middle reaches of the Yellow River showed prominent covariance with the AO with an approximately 32-year periodicity, and with sunspots with an approximately 80-year periodicity. Atmospheric circulation indices modulate streamflow by affecting temperature and precipitation. Sunspots impact streamflow variability by influencing atmospheric circulation, resulting in abundant precipitation. In general, for both the CWT and the WTC results, the periodicities were spatially continuous, with a few gradual changes from upstream to downstream resulting from the varied topography and runoff. At the temporal scale, the periodicities were generally continuous over short timescales and discontinuous over longer timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH43B2818C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH43B2818C"><span>A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.</p> <p>2017-12-01</p> <p>An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using Debrecen Photoheliographic sunspot area and location data produced by the Debrecen Heliophysical Observatory as the proxy of sunspot darkening. Our results describe comparisons of the modeled TSI and SSI with observational records and with other solar irradiance models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMSA21A..03V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMSA21A..03V"><span>Changes of Linearity in MF2 Index with R12 and Solar Activity Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villanueva, L.</p> <p>2013-05-01</p> <p>Critical frequency of F2 layer is related to the solar activity, and the sunspot number has been the standard index for ionospheric prediction programs. This layer, being considered the most important in HF radio communications due to its highest electron density, determines the maximum frequency coming back from ground base transmitter signals, and shows irregular variation in time and space. Nowadays the spatial variation, better understood due to the availability of TEC measurements, let Space Weather Centers have observations almost in real time. However, it is still the most difficult layer to predict in time. Short time variations are improved in IRI model, but long term predictions are only related to the well-known CCIR and URSI coefficients and Solar activity R12 predictions, (or ionospheric indexes in regional models). The concept of the "saturation" of the ionosphere is based on data observations around 3 solar cycles before 1970, (NBS, 1968). There is a linear relationship among MUF (0Km) and R12, for smooth Sunspot numbers R12 less than 100, but constant for higher R12, so, no rise of MUF is expected for R12 higher than 100. This recommendation has been used in most of the known Ionospheric prediction programs for HF Radio communication. In this work, observations of smoothed ionospheric index MF2 related to R12 are presented to find common features of the linear relationship, which is found to persist in different ranges of R12 depending on the specific maximum level of each solar cycle. In the analysis of individual solar cycles, the lapse of linearity is less than 100 for a low solar cycle and higher than 100 for a high solar cycle. To improve ionospheric predictions we can establish levels for solar cycle maximum sunspot numbers R12 around low 100, medium 150 and high 200 and specify the ranges of linearity of MUF(0Km) related to R12 which is not only 100 as assumed for all the solar cycles. For lower levels of solar cycle, discussions of present observations are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21569.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21569.html"><span>Spotless Sun</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-03-22</p> <p>The sun has been virtually spotless, as in no sunspots, over the past 11 days, a spotless stretch that we have not seen since the last solar minimum many years ago. The videos shows the past four days (Mar. 14-17, 2017) with a combination of an extreme ultraviolet image blended with just the filtered sun. If we just showed the filtered sun with no spots for reference points, any viewer would have a hard time telling that the sun was even rotating. The sun is trending again towards the solar minimum period of its 11 year cycle, which is predicted to be around 2020. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21569</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22242.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22242.html"><span>Spotless Days</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-02-07</p> <p>The sun has had no sunspots for almost two weeks (as of Feb. 1, 2018) and just has a single, tiny one that appeared on Jan. 31, 2018. The video shows a rotating sun in filtered light for the past week, but it is even hard to tell the sun is rotating since there are just about no features. Even the small spot that appears on the 31st is hard to see. This spotless period is a prelude to the approaching period of solar minimum next year, when the sun's activity will be at the low end of its 11-year cycle. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22242</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740048143&hterms=think+like&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dthink%2Blike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740048143&hterms=think+like&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dthink%2Blike"><span>What we think we know and do not know about solar flares</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parker, E. N.</p> <p>1973-01-01</p> <p>Solar-terrestrial relations begin in the convective zone of the sun. A combination of nonuniform rotation and cyclonic convection generates magnetic fields in migratory waves, which can account for the observed 22-year solar magnetic cycle. The magnetic fields are the active agent in creating the active magnetic regions, with sunspots, prominences, and flares. The present status of knowledge regarding the solar flare phenomenon is reviewed, giving attention to the extraordinary complexity of the solar flare and the broad spectrum of theoretical ideas that have been generated to meet the challenge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25685425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25685425"><span>How unprecedented a solar minimum was it?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Russell, C T; Jian, L K; Luhmann, J G</p> <p>2013-05-01</p> <p>The end of the last solar cycle was at least 3 years late, and to date, the new solar cycle has seen mainly weaker activity since the onset of the rising phase toward the new solar maximum. The newspapers now even report when auroras are seen in Norway. This paper is an update of our review paper written during the deepest part of the last solar minimum [1]. We update the records of solar activity and its consequent effects on the interplanetary fields and solar wind density. The arrival of solar minimum allows us to use two techniques that predict sunspot maximum from readings obtained at solar minimum. It is clear that the Sun is still behaving strangely compared to the last few solar minima even though we are well beyond the minimum phase of the cycle 23-24 transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JAVSO..40..407L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JAVSO..40..407L"><span>Flares, Fears, and Forecasts: Public Misconceptions About the Sunspot Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larsen, K.</p> <p>2012-06-01</p> <p>Among the disaster scenarios perpetrated by 2012 apocalypse aficionados is the destruction of humankind due to solar flares and coronal mass ejections (CMEs). These scenarios reflect common misconceptions regarding the solar cycle. This paper (based on an annual meeting poster) sheds light on those misconceptions and how the AAVSO Solar Section can address them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SSRv..214...56C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SSRv..214...56C"><span>Evolution of the Sunspot Number and Solar Wind B Time Series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cliver, Edward W.; Herbst, Konstantin</p> <p>2018-03-01</p> <p>The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610-1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ˜1885. An effort from 2011-2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (B) from 1750-present that can be compared with two independent long-term (> ˜600 year) series of annual B-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ASInC..10..109C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ASInC..10..109C"><span>On the statistical aspects of sunspot number time series and its association with the summer-monsoon rainfall over India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chattopadhyay, Surajit; Chattopadhyay, Goutami</p> <p></p> <p>The present paper reports studies on the association between the mean annual sunspot numbers and the summer monsoon rainfall over India. The cross correlations have been studied. After Box-Cox transformation, the time spectral analysis has been executed and it has been found that both of the time series have an important spectrum at the fifth harmonic. An artificial neural network (ANN) model has been developed on the data series averaged continuously by five years and the neural network could establish a predictor-predict and relationship between the sunspot numbers and the mean yearly summer monsoon rainfall over India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SunGe...4...55C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SunGe...4...55C"><span>Investigation of Solar about 5-Month Cycle in Human Circulating Melatonin: Signature of Weather in Extraterrestrial Space?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cornélissen, G.; Tarquini, R.; Perfetto, F.; Otsuka, K.; Gigolashvili, M.; Halberg, F.</p> <p>2009-12-01</p> <p>Melatonin, produced mainly in the pineal and the gut, is often thought of as the "dark hormone" as its concentration in the circulation is high during darkness and low during light in diurnally- and nocturnally-active mammals in health. About-daily and about-yearly periodicities can thus be anticipated to characterize melatonin, matching the two major photic environmental cycles. Non-photic solar influences have also been observed, melatonin being depressed in association with magnetic storms. While less stable than the daily and yearly changes, non-photic solar dynamics also undergo various periodicities. Among them is an about 0.42-year (about 5-month or 154-day) cycle, reported by several physicists in relation to Zürich relative sunspot numbers and to solar flares. This putative signature of solar activity was found in the incidence pattern of sudden cardiac death in Minnesota, USA, among other geographic locations. A cycle with a period of about 0.42 year is here reported in data on circulating melatonin of 172 patients studied between Oct 1992 and Dec 1995 in Florence, Italy. Melatonin may mediate some of the Sun's effects upon the biosphere in certain frequency-windows such as a cis-half-year of about 5 months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663416-understanding-solar-cycle-variability','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663416-understanding-solar-cycle-variability"><span>Understanding Solar Cycle Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de</p> <p></p> <p>The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to amore » generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960014136&hterms=hot+spot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhot%2Bspot','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960014136&hterms=hot+spot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dhot%2Bspot"><span>Hot spots and active longitudes: Organization of solar activity as a probe of the interior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bai, Taeil; Hoeksema, J. Todd; Scherrer, Phil H.</p> <p>1995-01-01</p> <p>In order to investigate how solar activity is organized in longitude, major solar flares, large sunspot groups, and large scale photospheric magnetic field strengths were analyzed. The results of these analyses are reported. The following results are discussed: hot spots, initially recognized as areas of high concentration of major flares, are the preferred locations for the emergence of big sunspot groups; double hot spots appear in pairs that rotate at the same rate separated by about 180 deg in longitude, whereas, single hot spots have no such companions; the northern and southern hemispheres behave differently in organizing solar activity in longitude; the lifetime of hot spots range from one to several solar cycles; a hot spot is not always active throughout its lifetime, but goes through dormant periods; and hot spots with different rotational periods coexist in the same hemisphere during the same solar cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...606A..72P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...606A..72P"><span>Solar differential rotation in the period 1964-2016 determined by the Kanzelhöhe data set</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poljančić Beljan, I.; Jurdana-Šepić, R.; Brajša, R.; Sudar, D.; Ruždjak, D.; Hržina, D.; Pötzi, W.; Hanslmeier, A.; Veronig, A.; Skokić, I.; Wöhl, H.</p> <p>2017-10-01</p> <p>Context. Kanzelhöhe Observatory for Solar and Environmental Research (KSO) provides daily multispectral synoptic observations of the Sun using several telescopes. In this work we made use of sunspot drawings and full disk white light CCD images. Aims: The main aim of this work is to determine the solar differential rotation by tracing sunspot groups during the period 1964-2016, using the KSO sunspot drawings and white light images. We also compare the differential rotation parameters derived in this paper from the KSO with those collected fromf other data sets and present an investigation of the north - south rotational asymmetry. Methods: Two procedures for the determination of the heliographic positions were applied: an interactive procedure on the KSO sunspot drawings (1964-2008, solar cycles Nos. 20-23) and an automatic procedure on the KSO white light images (2009-2016, solar cycle No. 24). For the determination of the synodic angular rotation velocities two different methods have been used: a daily shift (DS) method and a robust linear least-squares fit (rLSQ) method. Afterwards, the rotation velocities had to be converted from synodic to sidereal, which were then used in the least-squares fitting for the solar differential rotation law. A comparison of the interactive and automatic procedures was performed for the year 2014. Results: The interactive procedure of position determination is fairly accurate but time consuming. In the case of the much faster automatic procedure for position determination, we found the rLSQ method for calculating rotational velocities to be more reliable than the DS method. For the test data from 2014, the rLSQ method gives a relative standard error for the differential rotation parameter B that is three times smaller than the corresponding relative standard error derived for the DS method. The best fit solar differential rotation profile for the whole time period is ω(b) = (14.47 ± 0.01)-(2.66 ± 0.10)sin2b (deg/day) for the DS method and ω(b) = (14.50 ± 0.01)-(2.87 ± 0.12)sin2b (deg/day) for the rLSQ method. A barely noticeable north - south asymmetry is observed for the whole time period 1964-2016 in the present paper. Rotation profiles, using different data sets, presented by other authors for the same time periods and the same tracer types, are in good agreement with our results. Conclusions: The KSO data set used in this paper is in good agreement with the Debrecen Photoheliographic Data and Greenwich Photoheliographic Results and is suitable for the investigation of the long-term variabilities in the solar rotation profile. Also, the quality of the KSO sunspot drawings has gradually increased during the last 50 yr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSH14A..01F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSH14A..01F"><span>Solar Changes and Climate Changes. (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feynman, J.</p> <p>2009-12-01</p> <p>During the early decades of the Space Age there was general agreement in the scientific community on two facts: (1) sunspot cycles continued without interruption; (2) decadal timescale variations in the solar output has no effect on Earth’s climate. Then in 1976 Jack Eddy published a paper called ‘The Maunder Minimum” in Science magazine arguing that neither of these two established facts was true. He reviewed the observations from the 17th century that show the Sun did not appear to cycle for several decades and he related that to the cold winters in Northern Europe at that time. The paper has caused three decades of hot discussions. When Jack Eddy died on June 10th of this year the arguments were sill going on, and there were no sunspots that day. The Sun was in the longest and deepest solar minimum since 1900. In this talk I will describe the changes in the solar output that have taken place over the last few decades and put them in their historical context. I will also review recent work on the influence of decadal and century scale solar variations on the Earth’s climate. It is clear that this long, deep “solar minimum” is an opportunity to make fundamental progress on our understanding of the solar dynamo and to separate climate change due to the Sun from anthropogenic climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522047-occurrence-high-speed-solar-wind-streams-over-grand-modern-maximum','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522047-occurrence-high-speed-solar-wind-streams-over-grand-modern-maximum"><span>OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mursula, K.; Holappa, L.; Lukianova, R., E-mail: kalevi.mursula@oulu.fi</p> <p>2015-03-01</p> <p>In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculatemore » the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22666048-rieger-type-periodicity-during-solar-cycles-estimation-dynamo-magnetic-field-strength-solar-interior','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22666048-rieger-type-periodicity-during-solar-cycles-estimation-dynamo-magnetic-field-strength-solar-interior"><span>RIEGER-TYPE PERIODICITY DURING SOLAR CYCLES 14–24: ESTIMATION OF DYNAMO MAGNETIC FIELD STRENGTH IN THE SOLAR INTERIOR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil</p> <p>2016-07-20</p> <p>Solar activity undergoes a variation over timescales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14–24. We found that the Rieger-type periods occur in all cycles, but they are cycle dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185–195more » days during the weak cycles 14–15 and 24 and a periodicity of 155–165 days during the stronger cycles 16–23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonics of fast Rossby waves with m = 1 and n = 4, where m ( n ) indicates the toroidal (poloidal) wavenumbers, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14–24. Our estimations suggest a field strength of ∼40 kG for the stronger cycles and ∼20 kG for the weaker cycles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoPh..291.2843L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoPh..291.2843L"><span>Tests of Sunspot Number Sequences: 4. Discontinuities Around 1946 in Various Sunspot Number and Sunspot-Group-Number Reconstructions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lockwood, M.; Owens, M. J.; Barnard, L.</p> <p>2016-11-01</p> <p>We use five test data series to search for, and quantify, putative discontinuities around 1946 in five different annual-mean sunspot-number or sunspot-group-number data sequences. The data series tested are the original and new versions of the Wolf/Zürich/International sunspot number composite [R_{{ISNv1}} and R_{{ISNv2}}] (respectively Clette et al. in Adv. Space Res. 40, 919, 2007 and Clette et al. in The Solar Activity Cycle 35, Springer, New York, 2015); the corrected version of R ISNv1 proposed by Lockwood, Owens, and Barnard ( J. Geophys. Res. 119, 5193, 2014a) [R C]; the new "backbone" group-number composite proposed by Svalgaard and Schatten ( Solar Phys. 291, 2016) [R_{{BB}}]; and the new group-number composite derived by Usoskin et al. ( Solar Phys. 291, 2016) [R_{{UEA}}]. The test data series used are the group-number [NG] and total sunspot area [A G] from the Royal Observatory, Greenwich/Royal Greenwich Observatory (RGO) photoheliographic data; the Ca K index from the recent re-analysis of Mount Wilson Observatory (MWO) spectroheliograms in the Calcium ii K ion line; the sunspot-group-number from the MWO sunspot drawings [N_{{MWO}}]; and the dayside ionospheric F2-region critical frequencies measured by the Slough ionosonde [foF2]. These test data all vary in close association with sunspot numbers, in some cases non-linearly. The tests are carried out using both the before-and-after fit-residual comparison method and the correlation method of Lockwood, Owens, and Barnard, applied to annual mean data for intervals iterated to minimise errors and to eliminate uncertainties associated with the precise date of the putative discontinuity. It is not assumed that the correction required is by a constant factor, nor even linear in sunspot number. It is shown that a non-linear correction is required by RC, R_{BB}, and R_{{ISNv1}}, but not by R_{{ISNv2}} or R_{{UEA}}. The five test datasets give very similar results in all cases. By multiplying the probability distribution functions together, we obtain the optimum correction for each sunspot dataset that must be applied to pre-discontinuity data to make them consistent with the post-discontinuity data. It is shown that, on average, values for 1932 - 1943 are too low (relative to later values) by about 12.3 % for R_{{ISNv1}} but are too high for R_{{ISNv2}} and R_{BB} by 3.8 % and 5.2 %, respectively. The correction that was applied to generate RC from R ISNv1 reduces this average factor to 0.5 % but does not remove the non-linear variation with the test data, and other errors remain uncorrected. A valuable test of the procedures used is provided by R_{{UEA}}, which is identical to the RGO NG values over the interval employed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730007113','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730007113"><span>High resolution power spectra of daily Zurich sunspot numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Euler, H. C., Jr.</p> <p>1973-01-01</p> <p>High resolution power spectra of 77 years of Zurich daily sunspot numbers were computed using various lags and data point intervals. Major harmonic peaks of the approximately 124-month period showed up strongly as well as the 27-day solar rotational period.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002cosp...34E2532S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002cosp...34E2532S"><span>The ancient Egyptian civilization: maximum and minimum in coincidence with solar activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaltout, M.</p> <p></p> <p>It is proved from the last 22 years observations of the total solar irradiance (TSI) from space by artificial satellites, that TSI shows negative correlation with the solar activity (sunspots, flares, and 10.7cm Radio emissions) from day to day, but shows positive correlations with the same activity from year to year (on the base of the annual average for each of them). Also, the solar constant, which estimated fromth ground stations for beam solar radiations observations during the 20 century indicate coincidence with the phases of the 11- year cycles. It is known from sunspot observations (250 years) , and from C14 analysis, that there are another long-term cycles for the solar activity larger than 11-year cycle. The variability of the total solar irradiance affecting on the climate, and the Nile flooding, where there is a periodicities in the Nile flooding similar to that of solar activity, from the analysis of about 1300 years of the Nile level observations atth Cairo. The secular variations of the Nile levels, regularly measured from the 7 toth 15 century A.D., clearly correlate with the solar variations, which suggests evidence for solar influence on the climatic changes in the East African tropics The civilization of the ancient Egyptian was highly correlated with the Nile flooding , where the river Nile was and still yet, the source of the life in the Valley and Delta inside high dry desert area. The study depends on long -time historical data for Carbon 14 (more than five thousands years), and chronical scanning for all the elements of the ancient Egyptian civilization starting from the firs t dynasty to the twenty six dynasty. The result shows coincidence between the ancient Egyptian civilization and solar activity. For example, the period of pyramids building, which is one of the Brilliant periods, is corresponding to maximum solar activity, where the periods of occupation of Egypt by Foreign Peoples corresponding to minimum solar activity. The decline of the Kingdoms in ancient Egypt and occurrence of the intermediate periods are generally explained by very low Nile floods and prolonged droughts followed by severe famines and the destruction of the political structure. The study declear the role of solar activity on the climatic change, and the humankind history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AIPC..679..234H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AIPC..679..234H"><span>Repeated Structures Found After the Solar Maximum in the Butterfly Diagrams of Coronal Holes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofer, M. Y.; Storini, M.</p> <p>2003-09-01</p> <p>The influence of the solar cycle evolution on the coronal hole space-time distribution is well known, for polar as well as for equatorial isolated sources of high speed solar wind. Among them the long-lived coronal holes occurrence from the sunspot cycle 21 on is investigated, using the coronal hole catalogue based on HeI (1083 nm) observations (Sanchez-Ibarra and Barraza-Paredes). In at least these two solar cycles (n. 21 and n. 22) a similar structure in the latitude-time diagram of coronal holes is found. The area occurs shortly after the solar maximum at around ~35° heliolatitude and consists of over several Carrington Rotations stable coronal holes (>5 Carr. Rot.s). The diagonal disappears 2-3 years later at the helioequator. Furthermore, the analysis results in a close relation between long-lived isolated coronal holes and the soft X-class flares.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CEAB...40..143P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CEAB...40..143P"><span>70 Years of Sunspot Observations at Kanzelhoehe Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pötzi, W.; Veronig, A.; Temmer, M.; Baumgartner, D. J.; Freislich, H.; Strutzmann, H.</p> <p></p> <p>During World War II the German Airforce established a network of observatories, among them the Kanzelhöhe Observatory (KSO), which would provide information on solar activity in order to investigate the conditions of the Earth's ionosphere in terms of radio-wave propagation. Solar observations began already in 1943 with photographs of the photosphere and drawings of sunspots, plage regions and faculae, as well as patrol observations of the solar corona. Since 1944 relative sunspot numbers were derived, these relative numbers agree with the new International Sunspot Number tep[ISN,][]{SIDC,Clette2014} within ≈ 10%. However, revisiting the historical data, we also find periods with larger deviations. There were two main reasons for these deviations. On the one hand major instrumental changes took place and the instrument was relocated to another observation tower. On the other hand there were periods of frequent replacements of personnel. In the long term, the instrumental improvements led to better image quality, and a trend towards better seeing conditions since the year 2000 was found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513198V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513198V"><span>Study of Ionospheric Indexes T and MF2 related to R12 for Solar Cycles 19-21</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villanueva, Lucia</p> <p>2013-04-01</p> <p>Modern worldwide communications are mainly based on satellite systems, remote communication networks, and advanced technologies. The most important space weather "meteorological" events produce negative effects on signal transmissions. Magnetic storm conditions that follow coronal mass ejections are particularly of great importance for radio communication at HF frequencies (3-30 MHz range), because the Ionization increase (or decrease), significantly over (or below), the Average Values. Nowadays new technologies make possible to establish Geophysical Observatories and monitor the sun almost in real time giving information about geomagnetic indices. Space Weather programs have interesting software predictions of foF2 producing maps and plots, every some minutes. The Average Values of the ionospheric parameters mainly depend on the position, hour, season and the phase of the 11-year cycle of the solar activity. Around 1990´s several ionospheric indexes were suggested to better predict the state of the foF2 monthly media, as: IF2, G, T and MF2, based on foF2 data from different latitude ionospheric observatories. They really show better seasonal changes than monthly solar indexes of solar flux F10.7 or the international sunspot numbers Ri. The main purpose of this paper is to present an analogic model for the ionospheric index MF2, to establish the average long term predictions of this index. Changes of phase from one cycle to the other of one component of the model is found to fit the data. The usefulness of this model could be the prediction of the ionospheric normal conditions for one entire solar cycle having just the prediction of the maximum of the next smooth sunspot number R12. In this presentation, comparisons of the Australian T index and and the Mikhailov MF2 index show an hysteresis variation with the solar monthly index Ri, such dependence is quite well represented by a polynomial fit of degree 6 for rising and decaying fases for solar cycles 19, 20 and 21.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ICRC....7.3875G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ICRC....7.3875G"><span>Real Distribution of the Coronal Green Line Intensity and Modelling Study of Galactic Cosmic Ray Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gushchina, R. T.; Alania, M. V.; Gil, A.; Iskra, K.; Siluszyk, M.</p> <p>2003-07-01</p> <p>transport equation of galactic cosmic rays (GCR) has been numerically solved for different qA>0 (1996) and qA<0 (1987) epochs assuming that free path of GCR scattering in the interplanetary space is controlled by the Sun's coronal green line intensity (CGLI). We found some distinctions in the distribution of the expected heliolatitudinal gradients of GCR for two and three dimensional interplanetary magnetic field. INTRODUCTION. modulation of GCR in the interplanetary space is generally determined by four processesdiffusion, convection, drift and energy change of GCR particles due to interaction with the solar wind. The joint effect of all above mentioned processes result the 11year variation of GCR. In papers [1-3] are assumed that the general reason of the 11-year variation of GCR in the energy range more than 1 GeV is different structure of the irregularities of the IMF in the maxima and minima epochs of solar activity (SA) caused the radical changes of the dependence of diffusion coefficient on the rigidity of GCR particles. EXPERIMENTAL DATA AND METHOD OF INVESTIGATION. experimental data of sunspot numbers, sunspots' areas and CGLI (λ = 5303˚) show a considerable changes during the 11-year cycle of SA, while e.g. A the changes of the solar wind velocity are not so noticeable [4, 5]. An attempt to take into account influences of the real distributions of the sunspot's areas and the Sun's CGLI on the modulation of GCR considering delay time of the phenomena in the interplanetary space with respect to the processes on the Sun have been undertaken in papers [6-8]. One of parameters of SA contentiously observed on the Earth is the Sun's CGLI. One can suppose that a modulation of GCR by some means is controlled by the changes of the CGLI; particularly there is assumed that a scattering free path of GCR transport is related with the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASS...30..101O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASS...30..101O"><span>Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oh, Suyeon; Kim, Bogyeong</p> <p>2013-06-01</p> <p>The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=S73-33788&hterms=physics+experiment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dphysics%2Bexperiment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=S73-33788&hterms=physics+experiment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dphysics%2Bexperiment"><span>Skylab 2 Solar Physics Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1973-01-01</p> <p>Skylab 2 Solar Physics Experiment. This black and white view of a solar flare was taken from the skylab remote solar experiment module mounted on top of the vehicle and worked automatically without any interaction from the crew. Solar flares or sunspots are eruptions on the sun's surface and appear to occur in cycles. When these cycles occur, there is worldwide electromagnetic interference affecting radio and television transmission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AdSpR..53..403G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AdSpR..53..403G"><span>Imaging Global Electron Content backwards in time more than 160 years ago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulyaeva, T. L.; Veselovsky, I. S.</p> <p>2014-02-01</p> <p>The Global Electron Content, GEC, represents the total number of electrons in the spherical layer over the Earth restricted by orbit of Global Positioning Satellite system (20,200 km). GEC is produced from Global Ionospheric Map of Total Electron Content, GIM-TEC, transformed to the electron density varying with height using the International Reference Ionosphere and Plasmasphere model, IRI-Plas. The climatologic GEC model is developed from GIM-TEC maps for a period 1999-2012 including the solar activity, annual and semiannual cycles as the most important factors affecting daily GEC variation. The proxy Rzp of the international sunspot numbers, Ri, is used as a measure of solar activity composed of 3 day smoothed Ri, 7 day and 81 day backwards mean of Ri scaled to the range of 1-40 proxy units, p.u. The root mean square error of the GEC climatologic model is found to vary from 8% to 13% of GEC. Taking advantage of a long history of sunspot numbers, the climatologic GEC model is applied for GEC reconstruction backwards in time for more than 160 years ago since 1850. The extended set of GEC values provides the numerical representation of the ionosphere and plasmasphere electron content coherent with variations of solar activity as a potential proxy index driving the ionosphere models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060021461&hterms=probability+statistical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dprobability%2Bstatistical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060021461&hterms=probability+statistical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dprobability%2Bstatistical"><span>The Projection of Space Radiation Environments with a Solar Cycle Statistical Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kim, Myung-Hee; Cucinotta, Francis A.; Wilson, John W.</p> <p>2006-01-01</p> <p>A solar cycle statistical model has been developed to project sunspot numbers which represent the variations in the space radiation environment. The resultant projection of sunspot numbers in near future were coupled to space-related quantities of interest in radiation protection, such as the galactic cosmic radiation (GCR) deceleration potential (f) and the mean occurrence frequency of solar particle event (SPE). Future GCR fluxes have been derived from a predictive model, in which GCR temporal dependence represented by f was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. Results showed that the point dose equivalent inside a typical spacecraft in interplanetary radiation fields was influenced by solar modulation up to a factor of three. One important characteristic of sporadic SPEs is their mean frequency of occurrence, which is dependent on solar activity. Projections of future mean frequency of SPE occurrence were estimated from a power law function of sunspot number. Furthermore, the cumulative probabilities of SPE during short-period missions were defined with the continuous database of proton fluences of SPE. The analytic representation of energy spectra of SPE was constructed by the Weibull distribution for different event sizes. The representative exposure level at each event size was estimated for the guideline of protection systems for astronauts during future space exploration missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH43D2588P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH43D2588P"><span>Reinforcement of double dynamo waves as a source of solar activity and its prediction on millennium timescale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Popova, E.; Zharkova, V. V.; Shepherd, S. J.; Zharkov, S.</p> <p>2016-12-01</p> <p>Using the principal components of solar magnetic field variations derived from the synoptic maps for solar cycles 21-24 with Principal Components Analysis (PCA) (Zharkova et al, 2015) we confirm our previous prediction of the upcoming Maunder minimum to occur in cycles 25-27, or in 2020-2055. We also use a summary curve of the two eigen vectors of solar magnetic field oscillations (or two dynamo waves) to extrapolate solar activity backwards to the three millennia and to compare it with relevant historic and Holocene data. Extrapolation of the summary curve confirms the eight grand cycles of 350-400-years superimposed on 22 year-cycles caused by beating effect of the two dynamo waves generated in the two (deep and shallow) layers of the solar interior. The grand cycles in different periods comprise a different number of individual 22-year cycles; the longer the grand cycles the larger number of 22 year cycles and the smaller their amplitudes. We also report the super-grand cycle of about 2000 years often found in solas activity with spectral analysis. Furthermore, the summary curve reproduces a remarkable resemblance to the sunspot and terrestrial activity reported in the past: the recent Maunder Minimum (1645-1715), Dalton minimum (1790-1815), Wolf minimum (1200), Homeric minimum (800-900 BC), the Medieval Warmth Period (900-1200), the Roman Warmth Period (400-10BC) and so on. Temporal variations of these dynamo waves are modelled with the two layer mean dynamo model with meridional circulation revealing a remarkable resemblance of the butterfly diagram to the one derived for the last Maunder minimum in 17 century and predicting the one for the upcoming Maunder minimum in 2020-2055.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PApGe.169.2181R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PApGe.169.2181R"><span>Solar-Terrestrial Signal Record in Tree Ring Width Time Series from Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rigozo, Nivaor Rodolfo; Lisi, Cláudio Sergio; Filho, Mário Tomazello; Prestes, Alan; Nordemann, Daniel Jean Roger; de Souza Echer, Mariza Pereira; Echer, Ezequiel; da Silva, Heitor Evangelista; Rigozo, Valderez F.</p> <p>2012-12-01</p> <p>This work investigates the behavior of the sunspot number and Southern Oscillation Index (SOI) signal recorded in the tree ring time series for three different locations in Brazil: Humaitá in Amazônia State, Porto Ferreira in São Paulo State, and Passo Fundo in Rio Grande do Sul State, using wavelet and cross-wavelet analysis techniques. The wavelet spectra of tree ring time series showed signs of 11 and 22 years, possibly related to the solar activity, and periods of 2-8 years, possibly related to El Niño events. The cross-wavelet spectra for all tree ring time series from Brazil present a significant response to the 11-year solar cycle in the time interval between 1921 to after 1981. These tree ring time series still have a response to the second harmonic of the solar cycle (5.5 years), but in different time intervals. The cross-wavelet maps also showed that the relationship between the SOI x tree ring time series is more intense, for oscillation in the range of 4-8 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080030106','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080030106"><span>On the Relationship between Solar Wind Speed, Earthward-Directed Coronal Mass Ejections, Geomagnetic Activity, and the Sunspot Cycle Using 12-Month Moving Averages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2008-01-01</p> <p>For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4408405-solar-cycle-influence-lunar-magnetic-variation-istanbul','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4408405-solar-cycle-influence-lunar-magnetic-variation-istanbul"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Isikara, A.M.</p> <p></p> <p>The dependence of the amplitude of the lunar daily geomagnetic variation on sunspot number and magnetic activity is investigated using data from Istanbul for the years 1952 to 1968. Annual and seasonal values of the amplitudes of the lunar semi-diurnal variation are determined, and compared with sunspot number and magnetic activity using partial correlation techniques. (auth)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050070873','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050070873"><span>The "Approximate 150 Day Quasi-Periodicity" in Interplanetary and Solar Phenomena During Cycle 23</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richardson, I. G.; Cane, H. V.</p> <p>2004-01-01</p> <p>A"quasi-periodicity" of approx. 150 days in various solar and interplanetary phenomena has been reported in earlier solar cycles. We suggest that variations in the occurrence of solar energetic particle events, inter-planetary coronal mass ejections, and geomagnetic storm sudden commenceents during solar cycle 23 show evidence of this quasi-periodicity, which is also present in the sunspot number, in particular in the northern solar hemisphere. It is not, however, prominent in the interplanetary magnetic field strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E.634D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E.634D"><span>Total solar irradiance reconstruction since 1700 using a flux transport model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie</p> <p></p> <p>Reconstructions of solar irradiance into the past are crucial for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic fields have been most successful in reproducing the measured irradiance variations. Daily magnetograms, such as those from MDI and HMI, provide the most detailed information on the changing distribution of the photospheric magnetic fields. Since such magnetograms are only available from 1974, we used a surface flux transport model to describe the evolution of the magnetic fields on the solar surface due to the effects of differential rotation, meridional circulation, and turbulent diffusivity, before 1974. In this model, the sources of magnetic flux are the active regions, which are introduced based on sunspot group areas, positions, and tilt angles. The RGO record is, however, only available since 1874. Here we present a model of solar irradiance since 1700, which is based on a semi-synthetic sunspot record. The semi-synthetic record was obtained using statistical relationships between sunspot group properties (areas, positions, tilt angles) derived from the RGO record on one hand, and the cycle strength and phase derived from the sunspot group number (Rg) on the other. These relationships were employed to produce daily records of sunspot group positions, areas, and tilt angles before 1874. The semi-synthetic records were fed into the surface flux transport model to simulate daily magnetograms since 1700. By combining the simulated magnetograms with a SATIRE-type model, we then reconstructed total solar irradiance since 1700.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PRP.....1..177S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PRP.....1..177S"><span>Signals from the planets, via the Sun to the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solheim, J.-E.</p> <p>2013-12-01</p> <p>The best method for identification of planetary forcing of the Earth's climate is to investigate periodic variations in climate time series. Some natural frequencies in the Earth climate system seem to be synchronized to planetary cycles, and amplified to a level of detection. The response by the Earth depends on location, and in global averaged series, some planetary signals may be below detection. Comparing sea level rise with sunspot variations, we find phase variations, and even a phase reversal. A periodogram of the global temperature shows that the Earth amplifies other periods than observed in sunspots. A particular case is that the Earth amplifies the 22 yr Hale period, and not the 11 yr Schwabe period. This may be explained by alternating peak or plateau appearance of cosmic ray counts. Among longer periods, the Earth amplifies the 60 yr planetary period and keeps the phase during centennials. The recent global warming may be interpreted as a rising branch of a millennium cycle, identified in ice cores and sediments and also recorded in history. This cycle peaks in the second half of this century, and then a 500 yr cooling trend will start. An expected solar grand minimum due to a 200 yr cycle will introduce additional cooling in the first part of this century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....2835D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....2835D"><span>Changes in the relationship NAO-Northern Hemisphere Temperature due to solar activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de La Torre, L.; Gimeno, L.; Añel, J. A.; Nieto, R.; Tesouro, M.; Ribera, P.; García, R.; Hernández, E.</p> <p>2003-04-01</p> <p>The influence of the North Atlantic Oscillation (NAO) on wintertime Northern Hemisphere Temperature (NHT) is investigated. To check the hypothesis that the solar cycle is modulating this relationship, the sample was divided into two groups, one included the years corresponding to the three consecutive lowest values of sunspots number for every 11-years cycle (43 years) and the other the ones corresponding to the three consecutive highest numbers (39 years) for every 11-years cycle. If the data of each year were independent, the correlation coefficients between NAO index and NHT for 43 (39) years would be 0.30 (0.32) at 95% confidence level. Correlation index corresponding to the solar minimum phases was -0.17 and to the solar maximum phases was 0.35. The second result is statistically significant and indicates that there are periods when a positive phase of the NAO is related to positive anomalies of NHT- result that supports our current idea of the influence of the NAO on temperature- but there are other periods when NAO and NHT are not correlated. So, results suggest that this relationship has different sign according to the phase of the solar cycle. For solar maximum phases NAO and NHT are positively correlated -result assumed up to the moment- but for solar minimum phases correlations are not significant or even negative. This result is in agreement with the different extension of the NAO for solar cycle phases [1] - almost hemispheric for maximum phases and confined to the eastern Atlantic for minimum phases-.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033050','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033050"><span>Solar forcing of Gulf of California climate during the past 2000 yr suggested by diatoms and silicoflagellates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barron, John A.; Bukry, David</p> <p>2007-01-01</p> <p>Cores BAM80 E-17 (27.9° N) and NH01-26 (24.3° N) contain longer-duration cycles of diatoms and silicoflagellates. The early part of Medieval Climate Anomaly (∼ A.D. 900 to 1200) is characterized by two periods of reduced productivity (warmer SST) with an intervening high productivity (cool) interval centered at ∼ A.D. 1050. Reduced productivity and higher SST also characterize the record of the last ∼ 100 to 200 yr in these cores. Solar variability appears to be driving productivity cycles, as intervals of increased radiocarbon production (sunspot minima) correlate with intervals of enhanced productivity. It is proposed that increased winter cooling of the atmosphere above southwest U.S. during sunspot minima causes intensification of the northwest winds that blow down the Gulf during the late fall to early spring, leading to intensified overturn of surface waters and enhanced productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040070946&hterms=Mysteries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMysteries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040070946&hterms=Mysteries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMysteries"><span>Modern Solar Mysteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hathaway, David H.</p> <p>2004-01-01</p> <p>100 years ago we thought that the Sun and stars shone as a result of slow gravitational contraction over a few tens of millions of years - putting astronomers at odds with geologists who claimed that the Earth was much, much older. That mystery was solved in the 1920s and 30s with the discovery of nuclear energy (proving that the geologists had it right all along). Other scientific mysteries concerning the Sun have come and gone but three major mysteries remain: 1) How does the Sun produce sunspots with an 11-year cycle? 2) What produces the huge explosions that result in solar flares, prominence eruptions, and coronal mass ejections? and 3) Why is the Sun's outer atmosphere, the corona, so darned hot? Recent progress in solar astronomy reveals a single key to understanding all three of these mysteries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMED33A0706W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMED33A0706W"><span>NASA's Global Climate Change Education (GCCE) Program: New modules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Witiw, M. R.; Myers, R. J.; Schwerin, T. G.</p> <p>2010-12-01</p> <p>In existence for over 10 years, the Earth System Science Educational Alliance (ESSEA) through the Institute of Global Environmental Strategies (IGES) has developed a series of modules on Earth system science topics. To date, over 80 educational modules have been developed. The primary purpose of these modules is to provide graduate courses for teacher education. A typical course designed for teachers typically consists of from three to five content modules and a primer on problem-based learning. Each module is designed to take three weeks in a normal university semester. Course delivery methods vary. Some courses are completed totally online. Others are presented in the classroom. Still others are delivered using a hybrid method which combines classroom meetings with online delivery of content. Although originally designed for teachers and education students, recent changes, provide a format for general education students to use these module. In 2009, under NASA’s Global Climate Change Education (GCCE) initiative, IGES was tasked to develop 16 new modules addressing the topic of climate change. Two of the modules recently developed under this program address the topics of sunspots and thermal islands. Sunspots is a problem-based learning module where students are provided resources and sample investigations related to sunspots. The history of sunspot observations, the structure of sunspots and the possible role sunspots may have in Earth’s climate are explored. Students are then asked to determine what effects a continued minimum in sunspot activity may have on the climate system. In Thermal Islands, the topic of urban heat islands is addressed. How heat islands are produced and the role of urban heat islands in exacerbating heat waves are two of the topics covered in the resources. In this problem-based learning module, students are asked to think of mitigating strategies for these thermal islands as Earth’s urban population grows over the next 50 years. These modules were successfully piloted with undergraduate students at Seattle Pacific University.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22020348-quasi-biennial-modulation-galactic-cosmic-rays','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22020348-quasi-biennial-modulation-galactic-cosmic-rays"><span>QUASI-BIENNIAL MODULATION OF GALACTIC COSMIC RAYS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Laurenza, M.; Storini, M.; Vecchio, A.</p> <p>2012-04-20</p> <p>The time variability of the cosmic-ray (CR) intensity at three different rigidities has been analyzed through the empirical mode decomposition technique for the period 1964-2004. Apart from the {approx}11 yr cycle, quasi-biennial oscillations (QBOs) have been detected as a prominent scale of variability in CR data, as well as in the heliomagnetic field magnitude at 1 AU and in the sunspot area. The superposition of the {approx}11 yr and QBO contributions reproduces the general features of the CR modulation, such as most of the step-like decreases and the Gnevyshev Gap phenomenon. A significant correlation has also been found between QBOsmore » of the heliospheric magnetic field and the CR intensity during even solar activity cycles, suggesting that the former are responsible for step-like decreases in CR modulation, probably dominated by the particle diffusion/convection in such periods. In contrast, during odd-numbered cycles, no significant correlation is found. This could be explained with an enhanced drift effect also during the solar maximum or a greater influence of merged interaction regions at great heliocentric distances during odd cycles. Moreover, the QBOs of CR data are delayed with respect to sunspot activity, the lag being shorter for A > 0 periods of even cycles ({approx}1-4 months) than for A < 0 periods of odd cycles ({approx}7-9 months); we suggest that solar QBOs also affect the recovery of the CR intensity after the solar activity maximum.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036012','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036012"><span>Secular trends in storm-level geomagnetic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, J.J.</p> <p>2011-01-01</p> <p>Analysis is made of K-index data from groups of ground-based geomagnetic observatories in Germany, Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. Methods include nonparametric measures of trends and statistical significance used by the hydrological and climatological research communities. Among the three observatory groups, German K data systematically record the highest disturbance levels, followed by the British and, then, the Australian data. Signals consistently seen in K data from all three observatory groups can be reasonably interpreted as physically meaninginful: (1) geomagnetic activity has generally increased over the past 141 years. However, the detailed secular evolution of geomagnetic activity is not well characterized by either a linear trend nor, even, a monotonic trend. Therefore, simple, phenomenological extrapolations of past trends in solar and geomagnetic activity levels are unlikely to be useful for making quantitative predictions of future trends lasting longer than a solar cycle or so. (2) The well-known tendency for magnetic storms to occur during the declining phase of a sunspot-solar cycles is clearly seen for cycles 14-23; it is not, however, clearly seen for cycles 11-13. Therefore, in addition to an increase in geomagnetic activity, the nature of solar-terrestrial interaction has also apparently changed over the past 141 years. ?? Author(s) 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950005660&hterms=hre&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhre','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950005660&hterms=hre&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhre"><span>Modification of mesospheric OH and O3 during a measured highly relativistic electron precipitation event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldberg, R. A.; Jackman, C. H.; Backer, D. N.; Herrero, F. A.</p> <p>1994-01-01</p> <p>Highly relativistic electron precipitation events (HRE's) can provide a major source of energy affecting mesospheric constituents and ionization. Based on satellite data, these events are most pronounced near the minimum of the solar sunspot cycle, increasing in intensity, spectral hardness, and frequency of occurrence as the solar cycle declines. Since such events can be sustained up to several days, their integrated effect in the mesosphere can dominate over those of other energy sources such as relativistic electron precipitation events (REP's) and auroral precipitation. The energy deposition data to be discussed and analyzed were obtained by rocket at Poker Flat, Alaska, in May 1990 during a modest HRE observed at midday near the peak of the sunspot cycle. Using a NASA two dimensional model, significant enhancement of OH and depletion of O3 at 75 +/- 10 km altitude from the measured radiation are found. Estimates of enhanced effects were made for more intense HRE events, as might be expected during solar minimum. By causing O3 depletion, the electron precipitation can also regulate the penetration of solar UV radiation, which could affect the thermal properties of the mesosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...849...44C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...849...44C"><span>Long-term Study of the Solar Filaments from the Synoptic Maps as Derived from {{\\rm{H}}}_{\\alpha } Spectroheliograms of the Kodaikanal Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatterjee, Subhamoy; Hegde, Manjunath; Banerjee, Dipankar; Ravindra, B.</p> <p>2017-11-01</p> <p>The century long (1914-2007) {{{H}}}α (656.28 nm) spectroheliograms from the Kodaikanal Solar Observatory (KSO) have been recently digitized. Using these newly calibrated, processed images we study the evolution of dark elongated on-disk structures called filaments, which are potential representatives of magnetic activities on the Sun. To our knowledge, this is the oldest uniform digitized data set with daily images available today in {{{H}}}α . We generate Carrington maps for the entire time duration and try to find the correlations with maps of the same Carrington rotation from the Ca II K KSO data. Filaments are segmented from the Carrington maps using a semi-automated technique and are studied individually to extract their centroids and tilts. We plot the time-latitude distribution of the filament centroids, producing a butterfly diagram which clearly shows the presence of poleward migration. We separate polar filaments for each cycle and try to estimate the delay between the polar filament number cycle and the sunspot number cycle peaks. We correlate this delay with the delay between polar reversal and sunspot number maxima. This provides new insight on the role of polar filaments on polar reversal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoPh..291.3103P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoPh..291.3103P"><span>70 Years of Sunspot Observations at the Kanzelhöhe Observatory: Systematic Study of Parameters Affecting the Derivation of the Relative Sunspot Number</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pötzi, Werner; Veronig, Astrid M.; Temmer, Manuela; Baumgartner, Dietmar J.; Freislich, Heinrich; Strutzmann, Heinz</p> <p>2016-11-01</p> <p>The Kanzelhöhe Observatory (KSO) was founded during World War II by the Deutsche Luftwaffe (German Airforce) as one station of a network of observatories that were set up to provide information on solar activity in order to better assess the actual conditions of the Earth's ionosphere in terms of radio-wave propagation. Solar observations began in 1943 with photographs of the photosphere and drawings of sunspots, plage regions, and faculae, as well as patrol observations of the solar corona. At the beginning, all data were sent to Freiburg (Germany). After WW II, international cooperation was established and the data were sent to Zurich, Paris, Moscow, and Greenwich. Relative sunspot numbers have been derived since 1944. The agreement between relative sunspot numbers derived at KSO and the new International Sunspot Number (ISN) (SILSO World Data Center in International Sunspot Number Monthly Bulletin and online catalogue, 1945 - 2015) lies within {≈} 10 %. However, revisiting the historical data, we also find periods with larger deviations. The reasons for the deviations were twofold: On the one hand, a major instrumental change took place during which the instrument was relocated and modified. On the other hand, a period of frequent replacements of personnel caused significant deviations; this clearly shows the importance of experienced observers. In the long term, the instrumental improvements led to better image quality. Additionally, we find a long-term trend towards better seeing conditions that began in 2000.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AAS...210.2206B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AAS...210.2206B"><span>Sunspot Seismology: Testing Surface Effects with Numerical Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braun, Douglas; Birch, A. C.; Hanasoge, S. M.</p> <p>2007-05-01</p> <p>The discovery that sunspots absorb acoustic waves was first announced twenty years ago at a previous SPD meeting in Honolulu. A considerable effort has been made to understand the physics of the interaction between acoustic waves and sunspots. However, the implications of this two-decade old discovery are still being explored in helioseismology. An ongoing controversy involves the role of surface effects, including absorption, in modeling the subsurface structure of sunspots. Braun and Birch recently suggested that observed frequency variations, at fixed phase speeds, of acoustic travel-time perturbations through sunspots offers evidence for a strong contribution to travel times from structures with vertical scales smaller than about one Mm near the solar surface. We test this suggestion with the numerical simulations of acoustic-wave propagation hrough specified sound-speed perturbations of a background solar model. An important finding is that travel times measured using helioseismic holography from simulations employing sound-speed perturbations typical of recent time-distance inversions do not predict the strong frequency variations observed in with solar data. We are in the process of evaluating whether shallow sound-speed perturbations, such as that proposed by Fan, Braun and Chou to explain the acoustic scattering propertis of sunspots observed with Hankel analysis, can reproduce the frequency variations observed in sunspots. This work is supported by contracts NAS5-02139, NNH05CC76C and NNH04CC05C from NASA, and grant AST-0406225 from the NSF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SerAJ.194...71G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SerAJ.194...71G"><span>Solar Spectral Irradiance Variability of Some Chromospheric Emission Lines Through the Solar Activity Cycles 21-23</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Göker, Ü. D.; Gigolashvili, M. Sh.; Kapanadze, N.</p> <p>2017-06-01</p> <p>A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers such as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We reduced these data by using the MATLAB software package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs) 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs), contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA184352','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA184352"><span>Three-Halves Law in Sunspot Cycle Shape,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-07-01</p> <p>Naturwiss., 47, 197. Kiepenheuer, K.O., (1953). The Sun, G. Kuiper, ed., Chicago University Press, p. -324. Waldmeier, M., (1935). Asir . Mitt. Zirich...133, 105. Waldmeier, M., (1968). Asir . Mitt. Zirich, 358, 23. Williams, G.E., (1981). Nature, 291, 624. Williams, G.E., (1985). Aust. J. Phys., 38</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010924','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010924"><span>The Sunspot Record: 1826-1980</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hathaway, David H.</p> <p>2014-01-01</p> <p>The International Sunspot Number is used as a measure of the level of solar activity in many important studies. This includes studies of the effects of solar activity on climate change and on the generation of radioisotopes used to infer levels of solar activity going back thousands of years. Any systematic errors in the historical record of the sunspot number can profoundly alter the conclusions of these studies. There is substantial evidence that the currently accepted International Sunspot Numbers have been subjected to changes in the way the numbers are calculated and to changes in the weights given to observations of various observers. In this talk I will focus on the time period from 1826 to 1980 which covers principal observers Schwabe, Wolf, Wolfer, Brunner, and Waldmeier. Previous investigations have indicated problems associated with Schwabe's observations (1826 to 1867), the first decades of the Greenwich observations (1874 to about 1910), and the introduction of a different counting method by Waldmeier (1946-1980). I will examine the evidence for these problems and the possible solutions that might be used to provide improved estimates of the sunspot numbers and their errors over this time interval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521567-multi-wavelength-study-delta-spot-region-very-strong-horizontal-magnetic-field','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521567-multi-wavelength-study-delta-spot-region-very-strong-horizontal-magnetic-field"><span>MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jaeggli, S. A., E-mail: sarah.jaeggli@nasa.gov</p> <p></p> <p>Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in anmore » adjacent region. Analysis of the profiles is carried out using a Milne–Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500–3800 G in close proximity to blueshifts as strong as 3.8 km s{sup −1}. The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130013860','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130013860"><span>Effects of the Observed Meridional Flow Variations since 1996 on the Sun's Polar Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hathaway, David; Upton, Lisa</p> <p>2013-01-01</p> <p>The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. The polar fields are produced by the latitudinal transport of magnetic flux that emerged in low-latitude active regions. The polar fields thus depend upon the details of both the flux emergence and the flux transport. We have measured the flux transport flows (differential rotation, meridional flow, and supergranules) since 1996 and find systematic and substantial variation in the meridional flow alone. Here we present experiments using a Surface Flux Transport Model in which magnetic field data from SOHO/MDI and SDO/HMI are assimilated into the model only at latitudes between 45-degrees north and south of the equator (this assures that the details of the active region flux emergence are well represented). This flux is then transported in both longitude and latitude by the observed flows. In one experiment the meridional flow is given by the time averaged (and north-south symmetric) meridional flow profile. In the second experiment the time-varying and north-south asymmetric meridional flow is used. Differences between the observed polar fields and those produced in these two experiments allow us to ascertain the effects of these meridional flow variations on the Sun s polar fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840052843&hterms=Second+chance&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSecond%2Bchance','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840052843&hterms=Second+chance&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSecond%2Bchance"><span>A second chance for Solar Max</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maran, S. P.; Woodgate, B. E.</p> <p>1984-01-01</p> <p>Using NASA's Tracking and Data Relay Satellite as a communications link, astronomers are able to receive scans from the Solar Maximum Mission (SMM) satellite immediately and regularly at the Goddard Space Flight Center. This major operational improvement permits the examination of SMM imagery and spectra as they arrive, as well as the formulation of future observational sequences on the basis of the solar activity in progress. Attention is given to aspects of the sun that change in the course of the 11-year sunspot cycle's movement from maximum to minimum. Proof has been obtained by means of SMM for the near-simultaneity of X-ray and UV bursts at flare onset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SoPh..292..144C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SoPh..292..144C"><span>Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chertok, I. M.; Belov, A. V.</p> <p>2017-10-01</p> <p>Using data from the Geostationary Operational Environmental Satellites (GOES) spacecraft in the 1 - 8 Å wavelength range for Solar Cycles 23, 24, and part of Cycles 21 and 22, we compare mean temporal parameters (rise and decay times, and duration) and the proportion of impulsive short-duration events (SDE) and gradual long-duration events (LDE) among C- and ≥ M1.0-class flares. It is found that the fraction of the SDE ≥ M1.0-class flares (including spikes) in Cycle 24 exceeds that in Cycle 23 in all three temporal parameters at the maximum phase and in the decay time during the ascending cycle phase. However, Cycles 23 and 24 barely differ in the fraction of the SDE C-class flares. The temporal parameters of SDEs, their fraction, and consequently the relationship between the SDE and LDE flares do not remain constant, but reveal regular changes within individual cycles and during the transition from one cycle to another. In all phases of all four cycles, these changes have the character of pronounced, large-amplitude "quasi-biennial" oscillations (QBOs). In different cycles and at the separate phases of individual cycles, such QBOs are superimposed on various systematic trends displayed by the analyzed temporal flare parameters. In Cycle 24, the fraction of the SDE ≥ M1.0-class flares from the N- and S-hemispheres displays the most pronounced synchronous QBOs. The QBO amplitude and general variability of the intense ≥ M1.0-class flares almost always markedly exceeds those of the moderate C-class flares. The ordered quantitative and qualitative variations of the flare type revealed in the course of the solar cycles are discussed within the framework of the concept that the SDE flares are associated mainly with small sunspots (including those in developed active regions) and that small and large sunspots behave differently during cycles and form two distinct populations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1414N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1414N"><span>Non-Stationary Effects and Cross Correlations in Solar Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey</p> <p>2016-07-01</p> <p>In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the information about cross correlation dynamics between the signals from separate points of the studied system. The 3D cross correlators and their plain projections allow revealing the periodic laws of solar evolution. Work was supported by grants RFBR 15-02-01638-a and 16-02-00496-a.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IAUS..286..423K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IAUS..286..423K"><span>Parallels among the ``music scores'' of solar cycles, space weather and Earth's climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolláth, Zoltán; Oláh, Katalin; van Driel-Gesztelyi, Lidia</p> <p>2012-07-01</p> <p>Solar variability and its effects on the physical variability of our (space) environment produces complex signals. In the indicators of solar activity at least four independent cyclic components can be identified, all of them with temporal variations in their timescales. Time-frequency distributions (see Kolláth & Oláh 2009) are perfect tools to disclose the ``music scores'' in these complex time series. Special features in the time-frequency distributions, like frequency splitting, or modulations on different timescales provide clues, which can reveal similar trends among different indices like sunspot numbers, interplanetary magnetic field strength in the Earth's neighborhood and climate data. On the pseudo-Wigner Distribution (PWD) the frequency splitting of all the three main components (the Gleissberg and Schwabe cycles, and an ~5.5 year signal originating from cycle asymmetry, i.e. the Waldmeier effect) can be identified as a ``bubble'' shaped structure after 1950. The same frequency splitting feature can also be found in the heliospheric magnetic field data and the microwave radio flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033056&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dphysical%2Bactivity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033056&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dphysical%2Bactivity"><span>Observations of hysteresis in solar cycle variations among seven solar activity indicators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bachmann, Kurt T.; White, Oran R.</p> <p>1994-01-01</p> <p>We show that smoothed time series of 7 indices of solar activity exhibit significant solar cycle dependent differences in their relative variations during the past 20 years. In some cases these observed hysteresis patterns start to repeat over more than one solar cycle, giving evidence that this is a normal feature of solar variability. Among the indices we study, we find that the hysteresis effects are approximately simple phase shifts, and we quantify these phase shifts in terms of lag times behind the leading index, the International Sunspot Number. Our measured lag times range from less than one month to greater than four months and can be much larger than lag times estimated from short-term variations of these same activity indices during the emergence and decay of major active regions. We argue that hysteresis represents a real delay in the onset and decline of solar activity and is an important clue in the search for physical processes responsible for changing solar emission at various wavelengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH51C2513A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH51C2513A"><span>Periodicities observed on solar flux index (F10.7) during geomagnetic disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adhikari, B.; Narayan, C.; Chhatkuli, D. N.</p> <p>2017-12-01</p> <p>Solar activities change within the period of 11 years. Sometimes the greatest event occurs in the period of solar maxima and the lowest activity occurs in the period of solar minimum. During the time period of solar activity sunspots number will vary. A 10.7 cm solar flux measurement is a determination of the strength of solar radio emission. The solar flux index is more often used for the prediction and monitoring of the solar activity. This study mainly focused on the variation on solar flux index and amount of electromagnetic wave in the atmosphere. Both seasonal and yearly variation on solar F10.7 index. We also analyzed the dataset obatained from riometer.Both instruments show seasonal and yearly variations. We also observed the solar cycle dependence on solar flux index and found a strong dependence on solar activity. Results also show that solar intensities higher during the rising phase of solar cycle. We also observed periodicities on solar flux index using wavelet analysis. Through this analysis, it was found that the power intensities of solar flux index show a high spectral variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001xmm..pres....9.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001xmm..pres....9."><span>SOHO reveals how sunspots take a stranglehold on the Sun</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2001-11-01</p> <p>Bernhard Fleck, ESA's project scientist for SOHO, comments, "The origin and stability of sunspots has been one of the long-standing mysteries in solar physics. I am delighted to see that with SOHO we are beginning to crack this problem." The gas flows around and beneath a sunspot have been detected by a team of scientists in the USA, using the Michelsen Doppler Imager (MDI) on SOHO. The instrument explores the solar interior by detecting natural sound waves at a million points on the Sun's surface. "After many years of contradictory theories about sunspots, MDI on SOHO is at last telling us what really happens," comments Junwei Zhao of Stanford University, California, lead author of a report published in the Astrophysical Journal. Inflows and downflows similar to those now detected with SOHO were envisaged in 1974 by Friedrich Meyer of Germany's Max-Planck- Institut für Physik und Astrophysik, and his colleagues. A similar expectation figured in a theory of sunspots advanced in 1979 by Eugene Parker of Chicago. "Our observation seems to provide strong evidence for both predictions," Zhao says. Sunspots have fascinated scientists since Galileo's time, 400 years ago, when they shattered a belief that the Sun was divinely free of any blemish. As symptoms of intense magnetic activity, sunspots are often associated with solar flares and mass ejections that affect space weather and the Earth itself. The Sun's activity peaks roughly every 11 years, and the latest maximum in the sunspot count occurred in 2000. Even with huge advances in helioseismology, which deduces layers and flows inside the Sun by analysis of sound waves that travel through it and agitate the surface, seeing behind the scenes in sunspots was never going to be easy. The MDI team refined a method of measuring the travel time of sound waves, invented in 1993 by Thomas Duvall of NASA Goddard, called solar tomography. It is like deducing what obstacles cross-country runners have faced, just by seeing in what order the contestants arrive at the finish. Here the runners are packets of sound waves, and the obstacles are local variations in temperature, magnetic fields and gas flows beneath the Sun's surface. "We needed better mathematical tricks," comments Duvall. "So we put together ideas from classical and quantum physics, and also from a recent advance in seismology on the Earth." In an earlier application of solar tomography, the team examined in detail the ante-natal events for an important group of sunspots born on 12 January 1998. They found sound waves beginning to travel faster and faster through the region where sunspots were about to form. Less than half a day elapsed between signs of unusual magnetic activity in the Sun's interior and the appearance of the dark spots on a previously unblemished surface. "Sunspots form when intense magnetic fields break through the visible surface," says Alexander Kosovichev of Stanford. "We could see the magnetic field shooting upwards like a fountain, faster than we expected." Even late on the previous day there was little hint of anything afoot, either at the surface or in the interior. By midnight (Universal Time) a region of strong magnetic field had risen from a depth of 18 000 kilometres and was already half way to the surface, travelling at 4500 km/hr. Sound speeds were increasing above the perturbed zone. By 8:00 a.m. an intense, rope-like magnetic field was in possession of a column of gas 20 000 kilometres wide and reaching almost to the visible surface. In the uppermost layer beneath the surface, the magnetic rope divided itself into strands that made the individual sunspots of the group. Under a large, well-established sunspot, in June 1998, the sound waves revealed a persistent column of hot, magnetised gas rising from deep in the interior. At a depth of 4000 kilometres it spread fingers towards neighbouring parts of the surface where it sustained some smaller sunspots. The magnetic column was not connected to another nearby spot where the magnetic field went in the opposite direction. Immediately below the large spot was a cushion of cooler, less intensely magnetised gas. A closer look at the gas flows, during the development of that June 1998 sunspot, led to the further findings now reported. The inflows and downflows in the immediate vicinity of the sunspot reach downwards for only a few thousand kilometres from the surface, which means less than one per cent of the distance to the Sun's centre. The discovery therefore depended on MDI's unique ability to explore just below the surface. The whirlpool of gas is responsible for the persistence of a sunspot. The cooling due to the magnetic field of the sunspot provokes the down-flow, and the gas disappearing downwards is replaced by more gas flowing inwards towards the spot. It brings with it its own associated magnetic field and prevents the strong magnetic field of the sunspot from dissipating. So the cooling and downflow continue, and the process is self-sustaining. The downflow of gas may also help to explain the puzzling fact that the Sun is actually brighter when it is freckled with dark spots. The VIRGO instrument on SOHO, operated by a Swiss-led team, confirmed the observations of earlier solar spacecraft, showing that sunshine is slightly more intense at sunspot maximum. Douglas Gough of Cambridge University, a leading solar theorist, notes that the downflow of gas seen by MDI on SOHO can redistribute energy bottled up by a sunspot. "What is interesting from the physical point of view is that, being cool, the descending flow is readily able to extract the heat that accumulates beneath the spot," Gough says. "It then spreads the heat away from the sunspot and eventually brings it to the surface of the Sun far from the spot, from where it is radiated into space." Note to editors The SOHO project is an international cooperation between ESA and NASA. The spacecraft was built in Europe for ESA and equipped with instruments by teams of scientists in Europe and the USA. NASA launched SOHO in December 1995, and in 1998 ESA and NASA decided to extend its highly successful operations until 2003.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SoPh..279..427K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SoPh..279..427K"><span>Propagating Disturbances in Coronal Loops: A Detailed Analysis of Propagation Speeds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiddie, G.; De Moortel, I.; Del Zanna, G.; McIntosh, S. W.; Whittaker, I.</p> <p>2012-08-01</p> <p>Quasi-periodic disturbances have been observed in the outer solar atmosphere for many years. Although first interpreted as upflows (Schrijver et al., Solar Phys. 187, 261, 1999), they have been widely regarded as slow magneto-acoustic waves, due to their observed velocities and periods. However, recent observations have questioned this interpretation, as periodic disturbances in Doppler velocity, line width, and profile asymmetry were found to be in phase with the intensity oscillations (De Pontieu and McIntosh, Astrophys. J. 722, 1013, 2010; Tian, McIntosh, and De Pontieu, Astrophys. J. Lett. 727, L37, 2011), suggesting that the disturbances could be quasi-periodic upflows. Here we conduct a detailed analysis of the velocities of these disturbances across several wavelengths using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We analysed 41 examples, including both sunspot and non-sunspot regions of the Sun. We found that the velocities of propagating disturbances (PDs) located at sunspots are more likely to be temperature dependent, whereas the velocities of PDs at non-sunspot locations do not show a clear temperature dependence. This suggests an interpretation in terms of slow magneto-acoustic waves in sunspots but the nature of PDs in non-sunspot (plage) regions remains unclear. We also considered on what scale the underlying driver is affecting the properties of the PDs. Finally, we found that removing the contribution due to the cooler ions in the 193 Å wavelength suggests that a substantial part of the 193 Å emission of sunspot PDs can be attributed to the cool component of 193 Å.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NewA...38....1W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NewA...38....1W"><span>Multifractal properties of solar filaments and sunspots numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Nan; Li, Qi-Xiu; Zou, Peng</p> <p>2015-07-01</p> <p>We analyze multifractal properties of low (LLSFNs; < 50 °), high (HLSFNs; ⩾ 50 °), full-disk (FDSFNs; 0 ° ˜ 90 °) solar filament numbers (SFNs) and international sunspot numbers (ISNs) by estimating characteristic parameters (α0, Δα , spectrum skewness) of f (α) singularity spectrum. We find that the SFNs and ISNs have multifractal nature. The obtained α0 and Δα indicate that long-term behaviour of the solar filaments is more complex than that of the sunspots and the high-latitude filaments is the most complex in long-term behaviour. The spectrum skewnesses manifest that the ISNs display well symmetrical distribution in singularity strengths, whereas the SFNs are dominated by low singularity strengths, which means that the long-term behaviour of sunspots has homogenous structures and the filaments display averagely small fluctuations in amplitude. To detect the origin of their multifractality, we decompose the raw data of ISNs and SFNs: smoothed data represent ˜11-year cyclic activities and detrended data represent accidental activities. We also calculate their f (α) spectra, respectively. We find that the ˜11-year cyclic activities of filaments and sunspots tend to be a monofractal and display a bit predominance of low singularity strengths. Their accidental activities have the most complex behaviour than the raw and smoothed data. The accidental activities are dominated by high singularity strengths showing averagely large fluctuations in amplitude. Furthermore, multifractal properties from α0 and Δα of the accidental activities have the same features as that of raw data. We think that the ˜11-year periodic activity determines global fluctuations, while the accidental activities rule local complexity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996SoPh..165..181H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996SoPh..165..181H"><span>How Well Was the Sun Observed during the Maunder Minimum?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoyt, Douglas V.; Schatten, Kenneth H.</p> <p>1996-04-01</p> <p>In this paper we examine how well the Sun and sunspots were observed during the Maunder Minimum from 1645 to 1715. Recent research has given us the dates of observations by Hevelius, Picard, La Hire, Flamsteed, and about 70 other observers. These specific observations allow a ‘lower estimate’ of the fraction of the time the Sun was observed to be deduced. It is found that 52.7% of the days have recorded observations. There are additional 12 observers who provide general statements that no sunspots were observed during specific years or intervals despite diligent efforts. Taking these statements to mean, unrealistically, that every day during these intervals was observed, gives an ‘upper estimate’ of 98% of the days. If the general statements are relaxed by assuming that 100 ± 50 days per year were actually observed by these diligent observers, than our ‘best estimate’ is that 68%±7% of the days during the Maunder Minimum were observed. In short, this supports the view that the Maunder Minimum existed and was not an artifact of few observations. Some sunspots are probably still missed in modern compilations, but the existence of a prolonged sunspot minimum would not be threatened by their discovery in future research. Additional support for intense scrutiny of the Sun comes from a report of a white-light flare in 1705 and from the numerous reports of new sunspots entering the disk of the Sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SunGe...4...50D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SunGe...4...50D"><span>Cyclicity of Suicides May Be Modulated by Internal or External - 11-Year Cycles: An Example of Suicide Rates in Finland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dimitrov, B. D.; Atanassova, P. A.; Rachkova, M. I.</p> <p>2009-12-01</p> <p>Multicomponent cyclicity in monthly suicides (periods T = 18, 46 and 198 months) was found and close similarity with heliogeophysical activity (HGA) suggested by Dimitrov in 1999. The current report aimed at scrutinizing the results on suicide annual cyclicity (seasonality) in Slovenia as reported by Oravecz et al in 2007 as well as at analyzing suicide data from Finland in this regard. We postulated that: (i) trans-year (12-24 months) or far-trans-year long-term cycles of suicides might interfere with their seasonality; and (ii) associations to environmental factors with alike cyclicity (e.g. HGA, temperature) could exist. Annual suicide incidence from Oulu, Finland over years 1987-1999 was analyzed. Annual data on solar activity (sunspot index Rz or Wolf number), planetary geomagnetic activity (aa-index) and local daily mean temperatures were used. The exploration of underlying chronomes (time structures) was done by periodogram regression analysis with trigonometric approximation. We analyzed temporal dynamics, revealed cyclicity, decomposed and reconstructed significant cycles and correlated the time series data. Suicide seasonality in Slovenia during the years 1971-2002 (n=384 months, peak May-June) was considered and, although some discrepancies and methodological weaknesses were suspected, we further hypothesized about trans-year and/or longer (far-transyear) cyclic components. Suicide incidence data from Finland indicated that the 12.5-year cyclic component (or trend) was almost parallel (coherent) to the cyclic heliogeophysical parameters and similar to local decreasing temperature dynamics. Also, 8-year and 24.5-year cycles were revealed. A correlation between the 12.5-year suicide cycle and 11-year solar cycle was found (R=0.919, p=0.000009). Above findings on cyclicity and temporal correlations of suicides with cyclic environmental factors, even being still preliminary, might not only allow for further more specific analyses. They might also corroborate to improved forecasting and prevention and confer a better understanding of suicide dynamics and aetiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5518764','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5518764"><span>Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.</p> <p>2017-01-01</p> <p>Abstract Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25. PMID:28781930</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28781930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28781930"><span>Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lockwood, Mike; Owens, Mathew J; Imber, Suzanne M; James, Matthew K; Bunce, Emma J; Yeoman, Timothy K</p> <p>2017-06-01</p> <p>Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870043722&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmagnetic%2Bcooling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870043722&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmagnetic%2Bcooling"><span>The cooling time scales of growing sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Dean-Yi</p> <p>1987-01-01</p> <p>The evolution of brightness and magnetic fields of growing sunspots is studied. Growing sunspots are found to be brighter (or less dark) than stable sunspots with the same magnetic field strength. From comparison of brightness and magnetic fields of a growing sunspot with those of stable sunspots, a dynamical parameter, the cooling time, of the growing sunspot is obtained. Ten growing sunspots are studied, and cooling times of 0.5 to 9 hr are found. Two models, the inhibition model and the Alfven wave model, give cooling times of about 0.05 hr, based on linear theory. The discrepancy between theory and observation may be due to the fact that the observed sunspots are in the nonlinear regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030011400&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Bradiation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030011400&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Bradiation"><span>Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven</p> <p>2002-01-01</p> <p>Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that the background on which the sunspots occur becomes brighter during high solar activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35..602R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35..602R"><span>Solar and Climate Variation Relationships Analyzed from Chile Tree Ring Width Time Series (1587 - 1994 A.D.)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rigozo, Nr; Nordemann, Djr; Faria, Hh; Echer, E.; Vieira, Lea; Prestes, A.</p> <p></p> <p>This work presents a study of the relations between solar and climate variations during the last four centuries by spectral analysis of tree ring index and sunspot number time series. Trees used for this study were Pilgerodendron cupressoides from Glaciar Pio XI, in Chile. The spectral analysis of tree ring index shows that 11, 22 and 80 year periodicities of the solar cycle were present in this tree ring data with 0.95 confidence level. This result suggests a solar modulation of climate variations, as recorded by the tree ring growth. Short-term variations, between 2 - 7 years, are also present in tree ring data. Therefore spectral analysis clearly shows that both, solar and climate factors, are recorded in the tree ring data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860025684&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dradiation%2BSolar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860025684&hterms=radiation+Solar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dradiation%2BSolar"><span>Solar UV radiation variations and their stratospheric and climatic effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Donnelly, R. F.; Heath, D. F.</p> <p>1985-01-01</p> <p>Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PASJ...68...79K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PASJ...68...79K"><span>Aurora candidates from the chronicle of Qíng dynasty in several degrees of relevance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawamura, Akito D.; Hayakawa, Hisashi; Tamazawa, Harufumi; Miyahara, Hiroko; Isobe, Hiroaki</p> <p>2016-10-01</p> <p>We present the result of a survey of sunspots and auroras in Qíngshǐgǎo (清史稿), a draft chronicle of Qíng dynasty, for the period of 1559-1912 CE. This is a sequel to a series of works surveying historical sunspot and aurora records, and providing online data to the scientific community regarding the attained results. In total of this Qíngshǐgǎo survey, we found 111 records of night-sky luminous events with such keywords as vapor (氣, qì), cloud (雲, yún), and light (光, guāng), which may indicate auroras as well as some other phenomena. Similarly, a keyword survey for sunspots was conducted, but no sunspot record was found. In comparison with the aurora records in the western world, we found that 14 of the 111 records have a corresponding record of simultaneous observation in the western world, and hence are very likely to be aurora. In order to investigate the likeliness of the remainder of the record being aurora, we calculated the lunar age and the phase of a solar cycle for each record. After these calculations, a notable fraction of these records clustered near the full moon were to be found statistically doubtful in considerations with atmospheric optics; meanwhile, a few records of observations near the new moon could be more likely interpreted as being auroras, including three records during the Maunder minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070034012&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddynamo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070034012&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddynamo"><span>Solar Cycle 24 and the Solar Dynamo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pesnell, W. D.; Schatten, K.</p> <p>2007-01-01</p> <p>We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000922.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000922.html"><span>Giant Sunspot Erupts with 4th Substantial Flare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>The sun emitted a significant solar flare, peaking at 5:40 p.m. EDT on Oct. 24, 2014. The flare erupted from a particularly large active region -- labeled AR 12192 -- on the sun that is the largest in 24 years. This is the fourth substantial flare from this active region since Oct. 19. Read more: www.nasa.gov/content/goddard/giant-sunspot-erupts-with-4t...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48034','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48034"><span>Manage habitat, monitor species [Chapter 10</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Michael K. Schwartz; Jamie S. Sanderlin; William M. Block</p> <p>2015-01-01</p> <p>Monitoring is the collection of data over time. We monitor many things: temperatures at local weather stations, daily changes in sea level along the coastline, annual prevalence of specific diseases, sunspot cycles, unemployment rates, inflation, commodity futures-the list is virtually endless. In wildlife biology, we also conduct a lot of monitoring, most commonly...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080012635','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080012635"><span>Solar Cycle #24 and the Solar Dynamo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schatten, Kenneth; Pesnell, W. Dean</p> <p>2007-01-01</p> <p>We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears consistent with a weakening polar field, but coronal hole data must be scrutinized carefully as observing techniques have changed. We also discuss new solar dynamo ideas, and the SODA (SOlar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, dynamo magnetic fields throughout the various stages of the Sun's cycle. Our solar dynamo ideas are a modernization and rejuvenation of the Babcock-Leighton original idea of a shallow solar dynamo, using modern observations that appear to support their shallow dynamo viewpoint. We are in awe of being able to see an object the size of the Sun undergoing as dramatic a change as our model provides in a few short years. The Sun, however, has undergone changes as rapid as this before! The weather on the Sun is at least as fickle as the weather on the Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070032658','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070032658"><span>Solar Cycle #24 and the Solar Dynamo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pesnell, W. Dean; Schatten, Kenneth</p> <p>2007-01-01</p> <p>We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun s polar field plays a major role in forecasting the next cycle s activity based upon the Babcock- Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130+ 30 (2 4, in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (-7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun s open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears consistent with a weakening polar field, but coronal hole data must be scrutinized carefully as observing techniques have changed. We also discuss new solar dynamo ideas, and the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun s hidden, dynamo magnetic fields throughout the various stages of the Sun s cycle. Our solar dynamo ideas are a modernization and rejuvenation of the Babcock-Leighton original idea of a shallow solar dynamo, using modem observations that appear to support their shallow dynamo viewpoint. We are in awe of being able to see an object the size of the Sun undergoing as dramatic a change as our model provides in a few short years. The Sun, however, has undergone changes as rapid as this before! The weather on the Sun is at least as fickle as the weather on the Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE2082V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE2082V"><span>Sunspot Umbra: Structure and Evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vázquez, M.; Murdin, P.</p> <p>2000-11-01</p> <p>Sunspots show two main structures: a central dark region, the umbra, surrounded by a brighter and filamentary zone, the SUNSPOT PENUMBRA (see figure 1 in the article on SUNSPOT EVOLUTION). Sunspots without penumbra are usually called SUNSPOT PORES. Observed with low spatial resolution, the umbra appears homogeneous. However, even by the nineteenth century astronomers were able to detect fine deta...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASS...30..241P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASS...30..241P"><span>Drought over Seoul and Its Association with Solar Cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Jong-Hyeok; Chang, Heon-Young</p> <p>2013-12-01</p> <p>We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI). We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which theses short periodicities (shorter than Hale period) may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22365035-polar-network-index-magnetic-proxy-solar-cycle-studies','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22365035-polar-network-index-magnetic-proxy-solar-cycle-studies"><span>POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.</p> <p>2014-09-20</p> <p>The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical datamore » sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15.1511G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15.1511G"><span>Solar Radio Burst Statistics and Implications for Space Weather Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giersch, O. D.; Kennewell, J.; Lynch, M.</p> <p>2017-11-01</p> <p>Solar radio bursts have the potential to affect space and terrestrial navigation, communication, and other technical systems that are sometimes overlooked. However, over the last decade a series of extreme L band solar radio bursts in December 2006 have renewed interest in these effects. In this paper we point out significant deficiencies in the solar radio data archives of the National Centers for Environmental Information (NCEI) that are used by most researchers in analyzing and producing statistics on solar radio burst phenomena. In particular, we examine the records submitted by the United States Air Force (USAF) Radio Solar Telescope Network (RSTN) and its predecessors from the period 1966 to 2010. Besides identifying substantial missing burst records we show that different observatories can have statistically different burst distributions, particularly at 245 MHz. We also point out that different solar cycles may show statistically different distributions and that it is a mistake to assume that the Sun shows similar behavior in different sunspot cycles. Large solar radio bursts are not confined to the period around sunspot maximum, and prediction of such events that utilize historical data will invariably be an underestimate due to archive data deficiencies. It is important that researchers and forecasters use historical occurrence frequency with caution in attempting to predict future cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170010267','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170010267"><span>Early Estimation of Solar Activity Cycle: Potential Capability and Limits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kitiashvili, Irina N.; Collins, Nancy S.</p> <p>2017-01-01</p> <p>The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and longterm sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950047865&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddynamo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950047865&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddynamo"><span>An early solar dynamo prediction: Cycle 23 is approximately cycle 22</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schatten, Kenneth H.; Pesnell, W. Dean</p> <p>1993-01-01</p> <p>In this paper, we briefly review the 'dynamo' and 'geomagnetic precursor' methods of long-term solar activity forecasting. These methods depend upon the most basic aspect of dynamo theory to predict future activity, future magnetic field arises directly from the magnification of pre-existing magnetic field. We then generalize the dynamo technique, allowing the method to be used at any phase of the solar cycle, through the development of the 'Solar Dynamo Amplitude' (SODA) index. This index is sensitive to the magnetic flux trapped within the Sun's convection zone but insensitive to the phase of the solar cycle. Since magnetic fields inside the Sun can become buoyant, one may think of the acronym SODA as describing the amount of buoyant flux. Using the present value of the SODA index, we estimate that the next cycle's smoothed peak activity will be about 210 +/- 30 solar flux units for the 10.7 cm radio flux and a sunspot number of 170 +/- 25. This suggests that solar cycle #23 will be large, comparable to cycle #22. The estimated peak is expected to occur near 1999.7 +/- 1 year. Since the current approach is novel (using data prior to solar minimum), these estimates may improve when the upcoming solar minimum is reached.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..493...47K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..493...47K"><span>Does solar activity affect human happiness?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kristoufek, Ladislav</p> <p>2018-03-01</p> <p>We investigate the direct influence of solar activity (represented by sunspot numbers) on human happiness (represented by the Twitter-based Happiness Index). We construct four models controlling for various statistical and dynamic effects of the analyzed series. The final model gives promising results. First, there is a statistically significant negative influence of solar activity on happiness which holds even after controlling for the other factors. Second, the final model, which is still rather simple, explains around 75% of variance of the Happiness Index. Third, our control variables contribute significantly as well: happiness is higher in no sunspots days, happiness is strongly persistent, there are strong intra-week cycles and happiness peaks during holidays. Our results strongly contribute to the topical literature and they provide evidence of unique utility of the online data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NewA...45...54Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NewA...45...54Z"><span>Sunspot drawings handwritten character recognition method based on deep learning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li</p> <p>2016-05-01</p> <p>High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910003178','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910003178"><span>Relationship Between Rainfall in the Northern Hemisphere and Impulses of the Torque in the Sun's Motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Landscheidt, T.</p> <p>1990-01-01</p> <p>The analysis of major change in the angular momentum of the sun's irregular motion about the barycenter of the solar system, represented by extrema in the running variance of impulses of the torque (IOT), discloses a connection with both extrema in the Gleissberg cycle of secular sunspot activity and maxima in the thickness of varves from Lake Saki, Crimea. This significant relationship can be traced back to the 7th century. Further inquiries link the running variance in IOT to rainfall over central Europe, England, Wales, eastern United States, and India, as well as to temperature in Europe. This significant correlation covers more than 130 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28842682','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28842682"><span>Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, G-H; Lin, C-H; Lee, L C</p> <p>2017-08-25</p> <p>Coronal holes are solar regions with low soft X-ray or low extreme ultraviolet intensities. The magnetic fields from coronal holes extend far away from the Sun, and thus they are identified as regions with open magnetic field lines. Coronal holes are concentrated in the polar regions during the sunspot minimum phase, and spread to lower latitude during the rising phase of solar activity. In this work, we identify coronal holes with outward and inward open magnetic fluxes being in the opposite poles during solar quiet period. We find that during the sunspot rising phase, the outward and inward open fluxes perform pole-to-pole trans-equatorial migrations in opposite directions. The migration of the open fluxes consists of three parts: open flux areas migrating across the equator, new open flux areas generated in the low latitude and migrating poleward, and new open flux areas locally generated in the polar region. All three components contribute to the reversal of magnetic polarity. The percentage of contribution from each component is different for different solar cycle. Our results also show that the sunspot number is positively correlated with the lower-latitude open magnetic flux area, but negatively correlated with the total open flux area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...63K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...63K"><span>Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.</p> <p>2018-04-01</p> <p>We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930063481&hterms=Sacramento+CA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSacramento%252C%2BCA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930063481&hterms=Sacramento+CA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSacramento%252C%2BCA"><span>The solar cycle; Proceedings of the National Solar Observatory/Sacramento Peak 12th Summer Workshop, Sunspot, NM, Oct. 15-18, 1991</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harvey, Karen L. (Editor)</p> <p>1992-01-01</p> <p>Attention is given to a flux-transport model, the effect of fractal distribution on the evolution of solar surface magnetic fields, active nests on the sun, magnetic flux transport in solar active regions, recent advances in stellar cycle research, magnetic intermittency on the sun, a search for existence of large-scale motions on the sun, and new solar cycle data from the NASA/NSO spectromagnetograph. Attention is also given to the solar cycle variation of coronal temperature during cycle 22, the distribution of the north-south asymmetry for the various activity cycles, solar luminosity variation, a two-parameter model of total solar irradiance variation over the solar cycle, the origin of the solar cycle, nonlinear feedbacks in the solar dynamo, and long-term dynamics of the solar cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364624-polar-magnetic-field-reversal-surface-flux-transport-during-solar-cycle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364624-polar-magnetic-field-reversal-surface-flux-transport-during-solar-cycle"><span>ON POLAR MAGNETIC FIELD REVERSAL AND SURFACE FLUX TRANSPORT DURING SOLAR CYCLE 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun, Xudong; Todd Hoeksema, J.; Liu, Yang</p> <p></p> <p>As each solar cycle progresses, remnant magnetic flux from active regions (ARs) migrates poleward to cancel the old-cycle polar field. We describe this polarity reversal process during Cycle 24 using four years (2010.33-2014.33) of line-of-sight magnetic field measurements from the Helioseismic and Magnetic Imager. The total flux associated with ARs reached maximum in the north in 2011, more than two years earlier than the south; the maximum is significantly weaker than Cycle 23. The process of polar field reversal is relatively slow, north-south asymmetric, and episodic. We estimate that the global axial dipole changed sign in 2013 October; the northernmore » and southern polar fields (mean above 60° latitude) reversed in 2012 November and 2014 March, respectively, about 16 months apart. Notably, the poleward surges of flux in each hemisphere alternated in polarity, giving rise to multiple reversals in the north. We show that the surges of the trailing sunspot polarity tend to correspond to normal mean AR tilt, higher total AR flux, or slower mid-latitude near-surface meridional flow, while exceptions occur during low magnetic activity. In particular, the AR flux and the mid-latitude poleward flow speed exhibit a clear anti-correlation. We discuss how these features can be explained in a surface flux transport process that includes a field-dependent converging flow toward the ARs, a characteristic that may contribute to solar cycle variability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016nova.pres.1070K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016nova.pres.1070K"><span>2016 SPD: Day 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, Susanna</p> <p>2016-06-01</p> <p>Editors note:This week were in Boulder, Colorado at the 47th meeting of the AAS Solar Physics Division (SPD). Follow along to catch some of the latest news from the field of solar physics!Todays press conference provided an excellent overview of some of the highlights of this weeks SPD meeting. Four speakers provided their views on some of the hottest topics in solar physics at the moment, including stealth coronal mass ejections (CMEs), sunspot formation, long-term solar-activity trends, and the largest solar telescope ever built.Stealth CMEsSolar and Heliospheric Observatory (SOHO) composite image of a coronal mass ejection. [ESA/NASA/SOHO]First up, Nathalia Alzate (Aberystwyth University) talked about recent success in solving the mystery of so-called stealth CMEs, massive solar storms that dont exhibit the usual clues to their origin. Most CMEs have low-coronal signatures like flares, filament eruptions, jets, etc. that reveal the origin of the CME at the Sun. But stealth CMEs appear without warning, and seem to have no evidence of low-coronal signatures.But are these signatures not there? Or could we just be missing them? Alzate and her collaborator Huw Morgan used advanced image processing techniques to search for low-coronal signatures associated with 40 CMEs that have been classified as stealth CMEs. Their techniques enhance the observed structure down to fine spatial scales, and help reveal very faint dynamic events.Sure enough, these processing techniques consistently revealed low-coronal signatures for every single supposed stealth CME they examined. This suggests that all CMEs exhibit some signatures in the low corona its only a matter of being able to process the images well enough to detect them!Spectacular Sunspot SimulationsStill image from a simulation studying sunspot formation. Compare to the cover image of sunspot observations! [Feng Chen, Matthias Rempel, Yuhong Fan]Next up, Feng Chen (High Altitude Observatory) described recent computational advances in simulating sunspot formation. He and his collaborators have used high-performance computing to build a model that successfully reproduces many of the key properties of sunspots that are observed.In particular, these simulations track the motions of the magnetic field starting within the interior of the Sun (8000 km below the surface!). The magnetic field is generated and intensified by convection deep within the solar interior. Bundles of magnetic field then rise through the convection zone, eventually breaking through the solar surface and giving rise to sunspots.This process of tracking the flow as it travels from the convective layer all the way through the solar surface has resulted in what may be some of the highest fidelity simulations of sunspots thus far. The structures produced in these simulations compares very favorably with actual observations of sunspots including the asymmetry seen in most sunspots.Counting Spots on the SunContinuing the discussion of sunspots, Leif Svalgaard (Stanford University) next took us on a historical journey from the 1600s through the present. For the last 400 years starting with Galileo people have kept records of the number of sunspots visible on the Suns disk.One of Galileos drawings of his sunspot observations from 1612. [The Galileo Project]This turns out to be a very useful practice! Total solar irradiance, a measure used as input into climate models, is reconstructed from sunspot numbers. Therefore, the historical record of sunspots over the last 400 years impacts our estimates of the long-term trends in solar activity.Based on raw sunspot counts, studies have argued that solar activity has been steadily increasing over time. But could this be a misinterpretation resulting from the fact that our technology and therefore our ability to detect sunspots has improved over time? Svalgaard believes so.By studying and reconstructing 18th century telescopes, he demonstrates that modern-day sunspot counts are able to detect three times as many sunspots as would have been possible with historical technology. When you normalize for this effect, the data shows that there has therefore not been a steady increase long-term in sunspot numbers.Worlds Largest Solar TelescopeThe final speaker of the press conference was Joe McMullen (National Solar Observatory), who updated us on the status of the Daniel K. Inouye Solar Telescope (DKIST). This 4-meter telescope will be the worlds largest solar telescope, and the first new solar facility that the US has had in several decades.The state of the DKIST telescope site as of July 2015. [NSO/AURA/NSF/Brett Simison]The technology involved in this spectacular telescope is impressive. Its thin, enormous mirror is polished to within an error of nearly 1/10,000th of a human hair! Underlying the telescope is the most complex solar adaptive optics systems ever created, with 1600 different actuators controlling the system real-time to within an error of 4 nanometers. In addition, the entire facility is designed to deal with a tremendous heat load (which can severely limit the quality of observations).DKISTs construction on Haleakala in Hawaii has been underway since 2012, and is making solid progress. The majority of the structures have now been completed, as have most of the major telescope subsystems. The primary hurdle that remains is to integrate all the of components and make sure that they can perform together no small feat!DKIST is expected to begin science operations in 2020, with ~10-20 TB of data being produced each day. This data will be freely and immediately accessible to both researchers and the public.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012Ge%26Ae..52...94V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012Ge%26Ae..52...94V"><span>Relationship between phases of quasi-decadal oscillations of total ozone and the 11-year solar cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Visheratin, K. N.</p> <p>2012-02-01</p> <p>Temporal variability of the relationship between the phases of quasi-decadal oscillations (QDOs) of total ozone (TO), measured at the Arosa station, and the Ri international sunspot number have been analyzed for the period of 1932-2009. Before the 1970s, the maximum phase of ozone QDOs lagged behind solar activity variations by about 2.5-2.8 years and later outstripped by about 1.5 years. We assumed that the TO QDOs in midlatitudes of the Northern Hemisphere were close to being in resonance with solar activity oscillations in the period from the mid-1960s to the mid-1970s and assessed the characteristic delay period of TO QDOs. The global distribution of phases and amplitudes of TO QDOs have been studied for the period from 1979 to 2008 based on satellite data. The maximum phase of TO QDOs first onsets in northern middle and high latitudes and coincides with the end of the growth phase of the 11-year solar cycle. In the tropics, the maximum oscillation phase lags behind by 0.5-1 year. The maximum phase lag near 40-50° S is about two years. The latitudinal variations of the phase of TO QDOs have been approximated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170011530','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170011530"><span>Using Data Assimilation Methods of Prediction of Solar Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kitiashvili, Irina N.; Collins, Nancy S.</p> <p>2017-01-01</p> <p>The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and long-term sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014yCat..35629010U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014yCat..35629010U"><span>VizieR Online Data Catalog: Solar activity reconstructed for 3 millennia (Usoskin+, 2014)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Usoskin, I. G.; Hulot, G.; Gallet, Y.; Roth, R.; Licht, A.; Joos, F.; Kovaltsov, G. A.; Thebault, E.; Khokhlov, A.</p> <p>2014-02-01</p> <p>Indices of solar activity reconstructed from 14C using the m used in the paper. Two indices are provided - the sunspot number and the cosmic ray modulation potential, both with the 95% confidence intervals. The data sets are provided with decadal resolution, thus the individual solar cycles are not resolved. (2 data files).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880002219','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880002219"><span>The atmospheres of M dwarfs: Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rodono, Marcello</p> <p>1987-01-01</p> <p>After presenting global properties of M dwarfs, the principal diagnostic of activity phenomena occurring in their atmosphere from the geometrical, energetic, and temporal points of view is stressed. Observations of sunspots, plages, flares, and activity cycles are presented. The major sources of activity are discussed with particular emphasis on the generation, intensification, and measurements of stellar magnetic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001ICRC....8.3359A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001ICRC....8.3359A"><span>Forecast for solar cycle 23 activity: a progress report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahluwalia, H. S.</p> <p>2001-08-01</p> <p>At the 25th International Cosmic Ray Conference (ICRC) at Durban, South Africa, I announced the discovery of a three cycle quasi-periodicity in the ion chamber data string assembled by me, for the 1937 to 1994 period (Conf. Pap., v. 2, p. 109, 1997). It corresponded in time with a similar quasi-periodicity observed in the dataset for the planetary index Ap. At the 26th ICRC at Salt Lake City, UT, I reported on our analysis of the Ap data to forecast the amplitude of solar cycle 23 activity (Conf. Pap., v. 2, pl. 260, 1999). I predicted that cycle 23 will be moderate (a la cycle 17), notwithstanding the early exuberant forecasts of some solar astronomers that cycle 23, "may be one of the greatest cycles in recent times, if not the greatest." Sunspot number data up to April 2001 indicate that our forecast appears to be right on the mark. We review the solar, interplanetary and geophysical data and describe the important lessons learned from this experience. 1. Introduction Ohl (1971) was the first to realize that Sun may be sending us a subliminal message as to its intent for its activity (Sunspot Numbers, SSN) in the next cycle. He posited that the message was embedded in the geomagnetic activity (given by sum Kp). Schatten at al (1978) suggested that Ohl hypothesis could be understood on the basis of the model proposed by Babcock (1961) who suggested that the high latitude solar poloidal fields, near a minimum, emerge as the toroidal fields on opposite sides of the solar equator. This is known as the Solar Dynamo Model. One can speculate that the precursor poloidal solar field is entrained in the high speed solar wind streams (HSSWS) from the coronal holes which are observed at Earth's orbit during the descending phase of the previous cycle. The interaction</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21452870-distribution-magnetic-bipoles-sun-over-three-solar-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21452870-distribution-magnetic-bipoles-sun-over-three-solar-cycles"><span>DISTRIBUTION OF MAGNETIC BIPOLES ON THE SUN OVER THREE SOLAR CYCLES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tlatov, Andrey G.; Vasil'eva, Valerya V.; Pevtsov, Alexei A., E-mail: tlatov@mail.r, E-mail: apevtsov@nso.ed</p> <p></p> <p>We employ synoptic full disk longitudinal magnetograms to study latitudinal distribution and orientation (tilt) of magnetic bipoles in the course of sunspot activity during cycles 21, 22, and 23. The data set includes daily observations from the National Solar Observatory at Kitt Peak (1975-2002) and Michelson Doppler Imager on board the Solar and Heliospheric Observatory (MDI/SOHO, 1996-2009). Bipole pairs were selected on the basis of proximity and flux balance of two neighboring flux elements of opposite polarity. Using the area of the bipoles, we have separated them into small quiet-Sun bipoles (QSBs), ephemeral regions (ERs), and active regions (ARs). Wemore » find that in their orientation, ERs and ARs follow Hale-Nicholson polarity rule. As expected, AR tilts follow Joy's law. ERs, however, show significantly larger tilts of opposite sign for a given hemisphere. QSBs are randomly oriented. Unlike ARs, ERs also show a preference in their orientation depending on the polarity of the large-scale magnetic field. These orientation properties may indicate that some ERs may form at or near the photosphere via the random encounter of opposite polarity elements, while others may originate in the convection zone at about the same location as ARs. The combined latitudinal distribution of ERs and ARs exhibits a clear presence of Spoerer's butterfly diagram (equatorward drift in the course of a solar cycle). ERs extend the ARs' 'wing' of the butterfly diagram to higher latitudes. This high latitude extension of ERs suggests an extended solar cycle with the first magnetic elements of the next cycle developing shortly after the maximum of the previous cycle. The polarity orientation and tilt of ERs may suggest the presence of poloidal fields of two configurations (new cycle and old cycle) in the convection zone at the declining phase of the sunspot cycle.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29670301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29670301"><span>HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Felipe, T; Braun, D C; Crouch, A D; Birch, A C</p> <p>2016-10-01</p> <p>Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5901909','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5901909"><span>HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.</p> <p>2018-01-01</p> <p>Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure. PMID:29670301</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667399-helioseismic-holography-simulated-sunspots-magnetic-thermal-contributions-travel-times','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667399-helioseismic-holography-simulated-sunspots-magnetic-thermal-contributions-travel-times"><span>HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Felipe, T.; Braun, D. C.; Crouch, A. D.</p> <p></p> <p>Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effectmore » of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920006214','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920006214"><span>Global trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Megie, G.; Chanin, M.-L.; Ehhalt, D.; Fraser, P.; Frederick, J. F.; Gille, J. C.; Mccormick, M. P.; Schoebert, M.; Bishop, L.; Bojkov, R. D.</p> <p>1990-01-01</p> <p>Measuring trends in ozone, and most other geophysical variables, requires that a small systematic change with time be determined from signals that have large periodic and aperiodic variations. Their time scales range from the day-to-day changes due to atmospheric motions through seasonal and annual variations to 11 year cycles resulting from changes in the sun UV output. Because of the magnitude of all of these variations is not well known and highly variable, it is necessary to measure over more than one period of the variations to remove their effects. This means that at least 2 or more times the 11 year sunspot cycle. Thus, the first requirement is for a long term data record. The second related requirement is that the record be consistent. A third requirement is for reasonable global sampling, to ensure that the effects are representative of the entire Earth. The various observational methods relevant to trend detection are reviewed to characterize their quality and time and space coverage. Available data are then examined for long term trends or recent changes in ozone total content and vertical distribution, as well as related parameters such as stratospheric temperature, source gases and aerosols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663824-study-solar-photospheric-temperature-gradient-variation-using-limb-darkening-measurements','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663824-study-solar-photospheric-temperature-gradient-variation-using-limb-darkening-measurements"><span>A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Criscuoli, Serena; Foukal, Peter</p> <p>2017-01-20</p> <p>The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic fluxmore » in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sciencedirect.com/science/article/pii/S027737911000199X','USGSPUBS'); return false;" href="http://www.sciencedirect.com/science/article/pii/S027737911000199X"><span>Centennial eolian cyclicity in the Great Plains, USA: A dominant pattern of wind transport over the past 4000 years?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schwalb, Antje; Dean, Walter E.; Fritz, C. Sherilyn; Geiss, Christoph E.; Kromer, Bernd</p> <p>2010-01-01</p> <p>Proxy evidence at decadal resolution from Late Holocene sediments from Pickerel Lake, northeastern South Dakota, shows distinct centennial cycles (400-700 years) in magnetic susceptibility; contents of carbonate, organic carbon, and major elements; abundance in ostracodes; and delta18O and delta13C values in calcite. Proxies indicate cyclic changes in eolian input, productivity, and temperature. Maxima in magnetic susceptibility are accompanied by maxima in aluminum and iron mass accumulation rates (MARs), and in abundances of the ostracode Fabaeformiscandona rawsoni. This indicates variable windy, and dry conditions with westerly wind dominance, including during the Medieval Climate Anomaly. Maxima in carbonates, organic carbon, phosphorous, and high delta13C values of endogenic calcite indicate moister and less windy periods with increased lake productivity, including during the Little Ice Age, and alternate with maxima of eolian transport. Times of the Maunder, Sporer and Wolf sunspot minima are characterized by maxima in delta18O values and aluminum MARs, and minima in delta13C values and organic carbon content. We interpret these lake conditions during sunspot minima to indicate decreases in lake surface water temperatures of up to 4-5 degrees C associated with decreases in epilimnetic productivity during summer. We propose that the centennial cycles are triggered by solar activity, originate in the tropical Pacific, and their onset during the Late Holocene is associated with insolation conditions driven by precession. The cyclic pattern is transmitted from the tropical Pacific into the atmosphere and transported by westerly winds into the North Atlantic realm where they strengthen the Atlantic Meridional Overturning Circulation during periods of northern Great Plains wind maxima. This consequently leads to moister climates in Central and Northern Europe. Thus, Pickerel Lake provides evidence for mechanisms of teleconnections including an atmospheric link bridging between the different climate regimes from the tropical Pacific to the North Atlantic and onto the European continent.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840019581&hterms=test+hypothesis&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtest%2Bhypothesis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840019581&hterms=test+hypothesis&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtest%2Bhypothesis"><span>The Solar Constant, Climate, and Some Tests of the Storage Hypothesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eddy, J. A.</p> <p>1984-01-01</p> <p>Activity related modulation of the solar constant can have practical consequences for climate only if storage is involved, as opposed to a detailed balance between sunspot blocking and facular reemission. Four empirical tests are considered that might distinguish between these opposing interpretations: monochromatic measurements of positive and negative flux; comparison of modelled and measured irradiance variations; the interpretation of secular trends in irradiance data; and the direct test of an anticipated signal in climate records of surface air temperature. The yet unanswered question of the role of faculae as possible reemitters of blocked radiation precludes a definitive answer, although other tests suggest their role to be minor, and that storage and an 11 year modulation is implicated. A crucial test is the behavior of the secular trend in irradiance in the declining years of the present activity cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950047089&hterms=death&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddeath','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950047089&hterms=death&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddeath"><span>The one hundredth year of Rudolf Wolf's death: Do we have the correct reconstruction of solar activity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoyt, Douglas V.; Schatten, Kenneth H.; Nesmes-Ribes, Elizabeth</p> <p>1994-01-01</p> <p>In the one hundred years since Wolf died, little effort has gone into research to see if improved reconstructions of sunspot numbers can be made. We have gathered more than 349,000 observations of daily sunspot group counts from more than 350 observers active from 1610 to 1993. Based upon group counts alone, it is possible to make an objective and homogeneous reconstruction of sunspot numbers. From our study, it appears that the Sun has steadily increased in activity since 1700 with the exception of a brief decrease in the Dalton Minimum (1795-1823). The significant results here are the greater depth of the Dalton Minimum, the generally lower activity throughout the 1700's, and the gradual rise in activity from the Maunder Minimum to the present day. This solar activity reconstruction is quite similar to those Wolf published before 1868 rather than the revised Wolf reconstructions after 1873 which used geomagnetic fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031787&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DElectric%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031787&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DElectric%2Bcurrent"><span>Electric current in a unipolar sunspot with an untwisted field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Osherovich, V. A.; Garcia, H. A.</p> <p>1990-01-01</p> <p>The return flux (RF) sunspot model is applied to a round, unipolar sunspot observed by H. Kawakami (1983). Solving the magnetohydrostatic problem using the gas pressure deficit between the umbral and quiet-sun atmospheres as a source function, a distribution of electric current density in an untwisted, unipolar sunspot as a function of height and radial distance from the sunspot center is observed. Maximum electric current density is about 32 mA/sq m at the bottom of the sunspot.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016yCat..35950104A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016yCat..35950104A"><span>VizieR Online Data Catalog: Scheiner drawing sunspot areas and tilt angles (Arlt+, 2016)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.</p> <p>2016-09-01</p> <p>Christoph Scheiner and his collaborators observed the sunspots from 1611-1631 at five different locations of Rome in Italy, Ingolstadt in Germany, Douai (Duacum in Latin) in France, Freiburg im Breisgau, Germany and Vienna, Austria. However, most of his published drawings were made in Rome. These sunspot drawings are important because they can tell us how the solar activity declined to a very low-activity phase which lasted for nearly five decades. The three sources used for the sunspot data extraction are Scheiner (1630rour.book.....S, Rosa Ursina sive solis), Scheiner (1651ppsm.book.....S, Prodromus pro sole mobili et terra stabili contra Academicum Florentinum Galilaeum a Galilaeis), and Reeves & Van Helden (2010, On sunspots. Galileo Galilei and Christoph Scheiner (University of Chicago Press)). The suspot drawings show the sunspot groups traversing the solar disk in a single full-disk drawing. The positions and areas of the sunspots were measured using 13 circular cursor shapes with different diameters. Umbral areas for 8167 sunspots and tilt angles for 697 manually selected, supposedly bipolar groups were obtained from Scheiner's sunspot drawings. The database does not contain spotless days. There is, of course, no polarity information in the sunspot drawings, so the tilt angles are actually pseudo-tilt angles. Both an updated sunspot database and a tilt angle database may be available at http://www.aip.de/Members/rarlt/sunspots for further study. (2 data files).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780016257&hterms=corruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcorruption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780016257&hterms=corruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcorruption"><span>Deep space telecommunications and the solar cycle: A reappraisal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berman, A. L.</p> <p>1978-01-01</p> <p>Observations of density enhancement in the near corona at solar cycle (sunspot) maximum have rather uncritically been interpreted to apply equally well to the extended corona, thus generating concern about the quality of outer planet navigational data at solar cycle maximum. Spacecraft have been deployed almost continuously during the recently completed solar cycle 20, providing two powerful new coronal investigatory data sources: (1) in-situ spacecraft plasma measurements at approximately 1 AU, and (2) plasma effects on monochromatic spacecraft signals at all signal closest approach points. A comprehensive review of these (solar cycle 20) data lead to the somewhat surprising conclusions that for the region of interest of navigational data, the highest levels of charged particle corruption of navigational data can be expected to occur at solar cycle minimum, rather than solar cycle maximum, as previously believed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...31V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...31V"><span>Sunspot Positions and Areas from Observations by Galileo Galilei</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vokhmyanin, M. V.; Zolotova, N. V.</p> <p>2018-02-01</p> <p>Sunspot records in the seventeenth century provide important information on the solar activity before the Maunder minimum, yielding reliable sunspot indices and the solar butterfly diagram. Galilei's letters to Cardinal Francesco Barberini and Marcus Welser contain daily solar observations on 3 - 11 May, 2 June - 8 July, and 19 - 21 August 1612. These historical archives do not provide the time of observation, which results in uncertainty in the sunspot coordinates. To obtain them, we present a method that minimizes the discrepancy between the sunspot latitudes. We provide areas and heliographic coordinates of 82 sunspot groups. In contrast to Sheiner's butterfly diagram, we found only one sunspot group near the Equator. This provides a higher reliability of Galilei's drawings. Large sunspot groups are found to emerge at the same longitude in the northern hemisphere from 3 May to 21 August, which indicates an active longitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990103162&hterms=riser&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Driser','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990103162&hterms=riser&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Driser"><span>Estimating the Size and Timing of Maximum Amplitude for Cycle 23 from Its Early Cycle Behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.</p> <p>1998-01-01</p> <p>On the basis of the lowest observed smoothed monthly mean sunspot number, cycle 23 appears to have conventionally begun in May 1996, in conjunction with the first appearance of a new cycle, high-latitude spot-group. Such behavior, however, is considered rather unusual, since, previously (based upon the data- available cycles 12-22), the first appearance of a new cycle, high-latitude spot- group has always preceded conventional onset by at least 3 months. Furthermore, accepting May 1996 as the official start for cycle 23 poses a dilemma regarding its projected size and timing of maximum amplitude. Specifically, from the max-min and amplitude-period relationships we infer that cycle 23 should be above average in size and a fast riser, with maximum amplitude occurring before May 2000 (being in agreement with projections for cycle 23 based on precursor information), yet from its initial languid rate of rise (during the first 6 months of the cycle) we infer that it should be below average in size and a slow riser, with maximum amplitude occurring after May 2000. The dilemma vanishes, however, when we use a slightly later-occurring onset. For example, using August 1996, a date associated with a local secondary minimum prior to the rapid rise that began shortly thereafter (in early 1997), we infer that cycle 23's rate of rise is above that for the mean of cycles 1-22, the mean of cycles 10-22 (the modern era cycles), the mean of the modern era'fast risers,' and the largest of the modern era 'slow risers' (i.e., cycle 20), thereby, suggesting that cycle 23 will be both fast-rising and above average in size, peaking before August 2000. Additionally, presuming cycle 23 to be a well- behaved fast-rising cycle (regardless of whichever onset date is used), we also infer that its maximum amplitude likely will measure about 144.0 q+/- 28.8 (from the general behavior found for the bulk of modern era fast risers; i.e., 5 of 7 have had their maximum amplitude to lie within 20% of the mean curve for modern era fast risers). It is apparent, then, that sunspot number growth during 1998 will prove crucial for correctly establishing the size and shape of cycle 23.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663801-tracking-magnetic-flux-around-sunspots','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663801-tracking-magnetic-flux-around-sunspots"><span>Tracking the Magnetic Flux in and Around Sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sheeley, N. R. Jr.; Stauffer, J. R.; Thomassie, J. C.</p> <p></p> <p>We have developed a procedure for tracking sunspots observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory and for making curvature-corrected space/time maps of the associated line-of-sight magnetic field and continuum intensity. We apply this procedure to 36 sunspots, each observed continuously for nine days around its central meridian passage time, and find that the proper motions separate into two distinct components depending on their speeds. Fast (∼3–5 km s{sup −1}) motions, comparable to Evershed flows, are produced by weak vertical fluctuations of the horizontal canopy field and recur on a timescale of 12–20 min. Slow (∼0.3–0.5more » km s{sup −1}) motions diverge from a sunspot-centered ring whose location depends on the size of the sunspot, occurring in the mid-penumbra for large sunspots and at the outer edge of the penumbra for small sunspots. The slow ingoing features are contracting spokes of a quasi-vertical field of umbral polarity. These inflows disappear when the sunspot loses its penumbra, and may be related to inward-moving penumbral grain. The slow outgoing features may have either polarity depending on whether they originate from quasi-vertical fields of umbral polarity or from the outer edge of the canopy. When a sunspot decays, the penumbra and canopy disappear, and the moat becomes filled with slow outflows of umbral polarity. We apply our procedure to decaying sunspots, to long-lived sunspots, and to numerical simulations of a long-lived sunspot by Rempel.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...613A..73D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...613A..73D"><span>Probing sunspots with two-skip time-distance helioseismology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duvall, Thomas L., Jr.; Cally, Paul S.; Przybylski, Damien; Nagashima, Kaori; Gizon, Laurent</p> <p>2018-06-01</p> <p>Context. Previous helioseismology of sunspots has been sensitive to both the structural and magnetic aspects of sunspot structure. Aims: We aim to develop a technique that is insensitive to the magnetic component so the two aspects can be more readily separated. Methods: We study waves reflected almost vertically from the underside of a sunspot. Time-distance helioseismology was used to measure travel times for the waves. Ray theory and a detailed sunspot model were used to calculate travel times for comparison. Results: It is shown that these large distance waves are insensitive to the magnetic field in the sunspot. The largest travel time differences for any solar phenomena are observed. Conclusions: With sufficient modeling effort, these should lead to better understanding of sunspot structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMGC31A0731M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMGC31A0731M"><span>Global Cooling the in 21 Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maruyama, S.; Genda, H.; Ikoma, M.</p> <p>2008-12-01</p> <p>[Objective] To predict the climate in the 21 Century [Methods employed] Evaluating the functions to control the surface temperature of the Earth in order of potentials from high to low, 1) albedo mainly by glacier and cloud, 2) Sun activity (relative Sunspot number), 3) greenhouse gas, and Millancovich effect, we estimate the climate change in 21 Century. [Result] Albedo is further controlled by a) Galactic cosmic ray radiation, b)Earth's geomagnetic intensity, c)aerosols derived from volcanic ash, aeorian dusts, and d)aircrafts. Albedo effect is the largest; 1% cloud corresponds to 0.6K on the surface temperature of the Earth (Genda, 2008). Activity of Sun has been observed as the relative change of sunspot number for the last 400 years. Moreover, the C14 of annual ring in the old tree such as Jo-mon redwood back to 6000 years has been measured. Periodical change of Sun activity in the past is extrapolated to the future, indicating the Sun activity has just passed the maximum ca. 2 years ago. Greenhouse gas is evaluated independently for each species. Predominant role is H2O which occupies about 90-95% among greenhouse gas. CO2 has increased 1-2 ppm every year for the last 100 years. 1 ppm corresponds to only 0.004K, which is negligibly small, compared to the potential of cloud effect. The Earth is in the stage of near the end of 20,000 years cycle of Millancovich. Although the 100,000 years cycle is clearly regular for the last 400,000 years, the 20,000 years cycle does not seem to be clear, and we are now hanging on the abrupt drop from inter-glacial to glacial period. Moreover, the role of volcanic eruption would force to cool the climate, if erupted as such a case of Pinatuvo in Philippine in 1992 when 0.5K dropped during 2 years. The rapidly decreasing the Earth's geomagnetism promotes the formation of cloud, to raise the amount of cloud in this Century. More active industrial activity in Asia particularly China and India would increase the amounts of aerosols to be nucleus of clouds, as well as the increased flight of aircrafts in 21 the Century. Thus, all of key functions do work to cool the Earth, except the minor role of increasing CO2 in atmosphere, though negligible. Thus, the Earth will be cooled down in this Century, and 0.5K will be down by 2020 year. The cooling will start from the top, particularly in the continental interior such as Asia and North America. On the other hand, the oceans have stored heats by the global warming for the last 140 years. About 0.1K higher at depth range of -700m than before is measured. By this reason, the oceanic islands or nearby oceans would be less cold than within continents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016usc..confE..51B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016usc..confE..51B"><span>Towards the automatic detection and analysis of sunspot rotation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Daniel S.; Walker, Andrew P.</p> <p>2016-10-01</p> <p>Torsional rotation of sunspots have been noted by many authors over the past century. Sunspots have been observed to rotate up to the order of 200 degrees over 8-10 days, and these have often been linked with eruptive behaviour such as solar flares and coronal mass ejections. However, most studies in the literature are case studies or small-number studies which suffer from selection bias. In order to better understand sunspot rotation and its impact on the corona, unbiased large-sample statistical studies are required (including both rotating and non-rotating sunspots). While this can be done manually, a better approach is to automate the detection and analysis of rotating sunspots using robust methods with well characterised uncertainties. The SDO/HMI instrument provide long-duration, high-resolution and high-cadence continuum observations suitable for extracting a large number of examples of rotating sunspots. This presentation will outline the analysis of SDI/HMI data to determine the rotation (and non-rotation) profiles of sunspots for the complete duration of their transit across the solar disk, along with how this can be extended to automatically identify sunspots and initiate their analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSWSC...7A..15D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSWSC...7A..15D"><span>Sunspots sketches during the solar eclipses of 9th January and 29th December of 1777 in Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Domínguez-Castro, Fernando; Gallego, María Cruz; Vaquero, José Manuel</p> <p>2017-06-01</p> <p>Two sunspot observations recorded by the Mexican Felipe de Zúñiga y Ontiveros have been revealed from a manuscript. One sunspot group was recorded on 9th January 1777 and four sunspot groups on 29th December 1777. Both records were taken during the observation of solar eclipses from Mexico City and their description also included sketches of the solar disk with sunspots. The sunspot group corresponding to 9th January was also observed by Erasmus Lievog. The observation on 29th December 1777 is the only record corresponding to this date.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC21C0564Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC21C0564Z"><span>Periodic Analysis Between Solar Variability and the Earth's Temperature From Centuries to Ten Thousand Years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, X.; Feng, X. S.</p> <p>2014-12-01</p> <p>The global warming is one of the hottest topics for both scientists and the public at present. Strong evidences have shown that the global warming is related to the man-made increasing greenhouse gas levels. Besides the artificial factors, natural forces also contribute to the Earth's climate change. Among them, solar activity is an important ingredient of the natural driving forces of the Earth's climate. In this study, two data sets are adopted to investigate the periodicities of both solar activity and the variation of the Earth temperature as well as their correlations based on the wavelet analysis and cross correlation method. The first one is a directly measured data set covering centuries, while the second one is the reconstructed data during the past 11,000 years. The obtained results demonstrate that solar activity and the Earth's temperature have significant resonance cycles, and the Earth's temperature has periodic variations similar to those of solar activity. For centuries, these common periodicities include the 22-year cycle and the 50-year cycle. While for 11,000 years, they are the 200-year, 500-year, 1000-year, and 2000-year cycles. Correlation analysis reveals that the correlations between solar variability and the Earth's temperature are statistically significant. The correlation coefficient (C.C.) between the 11-year running averaged Total Solar Irradiance (TSI) and the ocean temperature is 0.88 during the past 133 years of global warming. While for 11,000 years, the C.C. between the 500-year running averages of sunspot number (SSN) and the Earth temperature (r=0.51, p=1%) is stronger than that between the temperature and the atmospheric CO2 concentration (r=0.35, p=10%). All these support that solar activity should have non-ignorable effects on the Earth's climate change, especially before the modern industrial time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005024','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005024"><span>Solar wind variations in the 60-100 year period range: A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Feynman, J.</p> <p>1983-01-01</p> <p>The evidence for and against the reality of a solar wind variation in the period range of 60-100 years is reexamined. Six data sets are reviewed; sunspot numbers, geomagnetic variations, two auroral data sets and two (14)C data sets. These data are proxies for several different aspects of the solar wind and the presence or absence of 60-100 year cyclic behavior in a particular data set does not necessarily imply the presence or absence of this variation in other sets. It was concluded that two different analyses of proxy data for a particular characteristic of the heliospheric solar wind yielded conflicting results. This conflict can be resolved only by future research. It is also definitely confirmed that proxy data for the solar wind in the ecliptic at 1 A.U. undergo a periodic variation with a period of approximately 87 years. The average amplitude and phase of this variation as seen in eleven cycles of proxy data are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH31B2546K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH31B2546K"><span>Solar Flare Activities before Carrington event based on Low-Latitude-Aurora Survey with Historical Documents from Eastern Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawamura, A. D.; Hayakawa, H.; Iwahashi, K.; Tamazawa, H.; Miyahara, H.; Mitsuma, Y.; Takei, M.; Fujiwara, Y.; Kataoka, R.; Isobe, H.</p> <p>2016-12-01</p> <p>For discussions of solar activities in terms of long time period or rare occurrence, our scientific observations of about 400-year history for sunspots and about 150-year history for flares are sometimes not sufficient simply because of the shortness on temporal scale. To complement our scientific records, historical records of aurora observations in traditional manner could be helpful. Especially, the records of low-latitude auroras as results of huge Coronal Mass Ejections (CMEs) hitting the Earth magnetosphere could be a good indicator of extreme solar activities beyond our scientific observation history. In this reason, we focus on Eastern Asia where magnetic latitude is relatively low and there exits a rich tradition of text-based records for thousands of years. In this presentation, we discuss the solar activities of 17th to 19th centuries when sunspot observations are available but no solar flare observation had been done yet. Our discussion is mainly based on the official history of Qīng dynasty on China, and some historical documents from Japan with sunspot numbers and western aurora observations as references. We also briefly introduce our project of aurora survey based on historical documents beyond Qīng dynasty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.759a2069M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.759a2069M"><span>Evaluation of long term solar activity effects on GPS derived TEC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mansoori, Azad A.; Khan, Parvaiz A.; Ahmad, Rafi; Atulkar, Roshni; M, Aslam A.; Bhardwaj, Shivangi; Malvi, Bhupendra; Purohit, P. K.; Gwal, A. K.</p> <p>2016-10-01</p> <p>The solar activity hence the solar radiance follows a long term periodic variability with eleven years periodicity, known as solar cycle. This drives the long term variability of the ionosphere. In the present problem we investigate the long term behaviour of the ionosphere with the eleven year cyclic solar activity. Under the present study we characterize the ionospheric variability by Total Electron Content (TEC) using measurements made by Global Positioning System (GPS) and solar cycle variability by various solar activity indices. We make use of five solar activity indices viz. sunspot number (Rz), solar radio Flux (F10.7 cm), EUV Flux (26-34 nm), flare index and CME occurrences. The long term variability of these solar activity indices were then compared and correlated with the variability of ionospheric TEC, at a mid latitude station, Usuda (36.13N, 138.36E), of Japan, during the solar cycle 23 and ascending phase of cycle 24. From our study, we found that long term changes in the ionospheric TEC vary synchronously with corresponding changes in the solar activity indices. The correlation analysis shows that all the solar activity indices exhibit a very strong correlation with TEC (R =0.76 -0.99). Moreover the correlation between the two is stronger in the descending phase of the solar cycle. The correlation is found to be remarkably strongest during the deep minimum of the solar cycle 24 i.e. between 2007- 2009. Also we noticed a hysteresis effect exists with solar radio flux (F10.7 cm) and solar EUV flux (26-34 nm). This effect is absent with other parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUSMSP31B..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUSMSP31B..05S"><span>a Solar Magnetic Flux Emergence Signature in Geomagnetic Storm Sudden Commencements and aa Index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, A. M.</p> <p>2008-05-01</p> <p>In this work is studied a signal near 158 days in sunspots areas direcly linked with the emergence of magnetic flux, from historical records between solar cycles 17 to 23, by means of wavelet analysis. Is showed that this periodicity present excitation of subharmonics in certain time intervals, and I found support that the lifetime of larger complex of new sunspots created is the cause of these signature. The result can be important for improve the knowledge of the subphotosferic phenomenon related to the conversion of magnetic toroidal field in poloidal ones. In adition, the wavelet analysis shown evidence of this signal in the geomagnetic storm sudden commencements SSC and in the geomagnetic aa index, synchronically with events de solar flux emergence. Since the SSC are a powerfull mechanism of energy injection in the upper ionosphere that affect several climate variables, it is discussed the relevance of results presented for climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810061616&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmagnetic%2Bcooling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810061616&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmagnetic%2Bcooling"><span>Sunspot dynamics - Gravitational draining - A cooling mechanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schatten, K. H.</p> <p>1981-01-01</p> <p>The inward and downward flow of cooled material below sunspots is considered as a possible explanation of the stability, temperature and heat flow characteristics of sunspots. It is suggested that the flow of material inwards towards the center of the sunspot and then downwards towards the center of the sun through magnetic field conduits plays a role in the cooling of sunspots as it does in pores and magnetic knots, although due to the larger size of a sunspot the downflow takes place below the photosphere. In this view, the inflow and cooling of sunspots are sustained by the release of energy by the convecting gas, which then becomes cooler and denser as it returns to the heat source. The lack of a bright ring around sunspots is explained by the entrainment of upward moving heat flux by the downward moving gases. The temperature and density distributions predicted by the present model are shown to be satisfactory agreement with the empirical model of Van't Veer (Tandberg-Hansen, 1966).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522438-looking-granulation-periodicityimprints-sunspot-time-series','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522438-looking-granulation-periodicityimprints-sunspot-time-series"><span>LOOKING FOR GRANULATION AND PERIODICITY IMPRINTS IN THE SUNSPOT TIME SERIES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lopes, Ilídio; Silva, Hugo G., E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: hgsilva@uevora.pt</p> <p>2015-05-10</p> <p>The sunspot activity is the end result of the cyclic destruction and regeneration of magnetic fields by the dynamo action. We propose a new method to analyze the daily sunspot areas data recorded since 1874. By computing the power spectral density of daily data series using the Mexican hat wavelet, we found a power spectrum with a well-defined shape, characterized by three features. The first term is the 22 yr solar magnetic cycle, estimated in our work to be 18.43 yr. The second term is related to the daily volatility of sunspots. This term is most likely produced by themore » turbulent motions linked to the solar granulation. The last term corresponds to a periodic source associated with the solar magnetic activity, for which the maximum power spectral density occurs at 22.67 days. This value is part of the 22–27 day periodicity region that shows an above-average intensity in the power spectra. The origin of this 22.67 day periodic process is not clearly identified, and there is a possibility that it can be produced by convective flows inside the star. The study clearly shows a north–south asymmetry. The 18.43 yr periodical source is correlated between the two hemispheres, but the 22.67 day one is not correlated. It is shown that toward the large timescales an excess occurs in the northern hemisphere, especially near the previous two periodic sources. To further investigate the 22.67 day periodicity, we made a Lomb–Scargle spectral analysis. The study suggests that this periodicity is distinct from others found nearby.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NewA...23...73E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NewA...23...73E"><span>Observations and analysis of NOAA AR 11429 at KSU-Astronomical Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elmhamdi, Abouazza; Kordi, A. S.; Al-Trabulsy, H. A.; El-Nawawy, M.; Ibrahim, A. A.; Ben Nessib, N.; Abdel-Sabour, M. A.; Al-Mostafa, Z. A.</p> <p>2013-10-01</p> <p>We study the evolution of the sunspots in the recent super active region NOAA 11429, which spawned a powerful X5.4/3B flare on March 07, 2012 (2nd on record occurred since 2010), associated with a wide and fast Coronal Mass Ejection (CME; Halo/070036) and a large proton flux event (6530 p.f.u). The sunspot group consists a rare example of "Island Delta" in βγδ- magnetic configuration. This active region dominated the Solar activities on the northern hemisphere during the period March 03-15, 2012, of the present Solar Cycle 24, erupting 2 X-class flares, 13 M-class flares, and about 32 C-class flares. We analyze white-light images, wavelengths around 540 nm, observed at the Astronomical Observatory of King Saud University (AOKSU). The observations are part of a campaign conducted locally since early 2012, for monitoring Solar activities on a daily basis. The observations and data reduction are presented and discussed. We examine the main properties of AR 11429 (i.e. structure, growth and decay) by computing its daily "area" and "tilt- & trend-" angles, and infer information about its development and dynamics. The area curve is found to show three distinguishable phases, nicely fitted adopting double-Gaussian distribution. A close relation between sunspot group area and tilt-angle with the major March 07 powerful flare can be noticed from the current results, that certainly necessitates deep and careful inspections through studying large sample of events. The follow-up of the sunspot group the period it inhabits the Solar photosphere, permits exploiting the proper motion of four long-lived individual spots, as well as tracing the local surface differential rotation, found to be consistent with empirical results.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740055176&hterms=heat+solution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dheat%2Bsolution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740055176&hterms=heat+solution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dheat%2Bsolution"><span>The nature of the sunspot phenomenon. I - Solutions of the heat transport equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parker, E. N.</p> <p>1974-01-01</p> <p>It is pointed out that sunspots represent a disruption in the uniform flow of heat through the convective zone. The basic sunspot structure is, therefore, determined by the energy transport equation. The solutions of this equation for the case of stochastic heat transport are examined. It is concluded that a sunspot is basically a region of enhanced, rather than inhibited, energy transport and emissivity. The heat flow equations are discussed and attention is given to the shallow depth of the sunspot phenomenon. The sunspot is seen as a heat engine of high efficiency which converts most of the heat flux into hydromagnetic waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990004377','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990004377"><span>A Search for r-Modes from 1825 to the Present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wolff, Charles L.</p> <p>1998-01-01</p> <p>Global oscillations (r-modes) of the Sun's outer convective envelope with periods approximately 1 month and longer have been detected in several short data strings of several years duration. To test whether r-modes might persist beyond one 11 year cycle, the daily sunspot numbers from 1825 to the present were analyzed. Good evidence, but confidence level less than 3sigma, was found for most of the 14 r-modes with spherical harmonic index lambda less than or equal to 5 that can exist in the presence of solar differential rotation. The characteristic rotation rate of almost every such r-mode was detected, displaced systematically from its expected value by only 0.15%. If this probable detection is real, then most low harmonic r-modes have lifetimes exceeding one century and the rotation of the Sun's outer layers varies by less than 0.05%, except possibly at solar minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950037083&hterms=mass+fraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bfraction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950037083&hterms=mass+fraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bfraction"><span>The solar cycle variation of coronal mass ejections and the solar wind mass flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Webb, David F.; Howard, Russell A.</p> <p>1994-01-01</p> <p>Coronal mass ejections (CMEs) are an important aspect of coronal physics and a potentially significant contributor to perturbations of the solar wind, such as its mass flux. Sufficient data on CMEs are now available to permit study of their longer-term occurrency patterns. Here we present the results of a study of CME occurrence rates over more than a complete 11-year solar sunspot cycle and a comparison of these rates with those of other activity related to CMEs and with the solar wind particle flux at 1 AU. The study includes an evaluation of correlations to the CME rates, which include instrument duty cycles, visibility functions, mass detection thresholds, and geometrical considerations. The main results are as follows: (1) The frequency of occurrence of CMEs tends to track the solar activity cycle in both amplitude and phase; (2) the CME rates from different instruments, when corrected for both duty cycles and visibility functions, are reasonably consistent; (3) considering only longer-term averages, no one class of solar activity is better correlated with CME rate than any other; (4) the ratio of the annualized CME to solar wind mass flux tends to track the solar cycle; and (5) near solar maximum, CMEs can provide a significant fraction (i.e., approximately equals 15%) of the average mass flux to the near-ecliptic solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364305-observations-modeling-north-south-asymmetries-using-flux-transport-dynamo','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364305-observations-modeling-north-south-asymmetries-using-flux-transport-dynamo"><span>OBSERVATIONS AND MODELING OF NORTH-SOUTH ASYMMETRIES USING A FLUX TRANSPORT DYNAMO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shetye, Juie; Tripathi, Durgesh; Dikpati, Mausumi</p> <p>2015-02-01</p> <p>The peculiar behavior of solar cycle 23 and its prolonged minima has been one of the most studied problems over the past few years. In the present paper, we study the asymmetries in active region magnetic flux in the northern and southern hemispheres during the complete solar cycle 23 and the rising phase of solar cycle 24. During the declining phase of solar cycle 23, we find that the magnetic flux in the southern hemisphere is about 10 times stronger than that in the northern hemisphere; however, during the rising phase of cycle 24, this trend is reversed. The magnetic fluxmore » becomes about a factor of four stronger in the northern hemisphere than in the southern hemisphere. Additionally, we find that there was a significant delay (about five months) in change of the polarity in the southern hemisphere in comparison with the northern hemisphere. These results provide us with hints of how the toroidal fluxes have contributed to the solar dynamo during the prolonged minima in solar cycle 23 and in the rising phase of solar cycle 24. Using a solar flux-transport dynamo model, we demonstrate that persistently stronger sunspot cycles in one hemisphere could be caused by the effect of greater inflows into active region belts in that hemisphere. Observations indicate that greater inflows are associated with stronger activity. Some other change or difference in meridional circulation between hemispheres could cause the weaker hemisphere to become the stronger one.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.U43A0742P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.U43A0742P"><span>Long-Term Sun Climate Connections, Revealed by the Analyses of Historical and Other Proxy Records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pang, K. D.; Yau, K.</p> <p>2004-12-01</p> <p>The Sun, once considered constant, actually goes through 11-year, decadal, centennial, and even longer cycles. Our analysis of historical sunspot and aurora records, carbon-14 and beryllium-10 abundances from long-lived trees and deep polar ice cores, respectively, shows that it has gone through nine long cycles in the past 1800 years. Although these changes amounted to <1% of the total irradiance there is clear evidence they produced corresponding changes in the climate [Pang and Yau, Eos, 83, No. 43, 481, 2002]. For example during the Maunder Minimum (1645-1715) sunspots were rarely seen (about once in ten years from Europe or China). Total solar irradiances, reconstructed from historical sunspot records, were 0.25% lower then. This correlates nicely with an estimated 0.5-degree drop in Northern Hemisphere summer surface temperatures during the Little Ice Age [Lean, GRL 22, 3195, 1995]. We have also analyzed Chinese historical weather records for comparison. Reports of unseasonable cold are classified by the degree of severity: (1) Late (April-June) or early (July-September) killing frosts; (2) Bitter cold/heavy snowfall; and (3) Heavy sustained snowfall, bitter cold with frozen wells, rivers and icebound seas. The latter cases were often widespread and multi-year. All categories occurred most frequently during the coldest part of the Little Ice Age. The Category 3 episodes were in 1652-54, 1656, 1664, 1670-72, 1676-77, 1683, 1688-91, 1716, and 1718-19. For example the Yangtze River and its lakes froze up to 3-4 times in 1650-1700. The coldest period thus coincides with the Maunder Minimum, and is consistent with general circulation model hindcast winter conditions for China [Shindell, Science, 294, 2149, 2001]. There was only one Category 3 episode between the Maunder and Dalton Minima--in 1761 (due to a large volcanic eruption); and two in the Dalton Minimum (1795-1825)--in 1796 and 1814-17. The Sun has gradually brightened since the Dalton Minimum. But the climate of China remained cold through the 19th century, as in the rest of the world, probably due to increased volcanic aerosol loading of the atmosphere [Sato, JGR 98, 22987, 1993]. The climate of China seems to have been warm during the Late 14th-Century Maximum (1350-1410). We have found only one Category 1 episode--in 1393. It then turned cold during the Sporer Minimum (1410-1590). Category 3 episodes occurred in 1453-54, 1493, 1513, 1569, and 1577-78. Lesser ones were also common. Some scientists suggest that the Little Ice Age actually began in the 13th Century, and is comprised of the Wolf (1280-1350), Sporer, Maunder, and Dalton Minima. It and the Little Climate Optimum make up a millennium-long cycle [Broecker, Natural History 101, 6, 4/1992]. The warm Classical Age and cool Dark Ages, the cold Iron Age (1st millennium BC), and warm Bronze Age (2nd and 3rd millennia BC) could be considered still earlier millennial cycles. These trends are generally consistent with carbon-14 deviations from its long-term variations. There is also some historical and archaeological evidence for the early trends, as rhinoceros and elephant herds were abundant along the Yellow River during the Shang dynasty (1600-1100 BC). The tropical fauna and flora have since disappeared, as North China gradually turned cold and arid. We conclude that the climate of China generally follows world trend. The major forcing seems to have been changing solar luminosity on a decadal to millennial timescale. Volcanic eruptions and changing ocean currents also frequently perturbed the climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940022818','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940022818"><span>High resolution studies of sunspots and flux tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Title, Alan</p> <p>1994-01-01</p> <p>This contract is for a three-year research study of sunspots and magnetic flux tubes in the solar atmosphere, using tunable filter images collected with a CCD camera during observing runs at the Canary Islands observatories in Spain. The best observations are analyzed and compared with theoretical models, to study the structure and dynamics of sunspots, their connections with surrounding magnetic fields, and the properties and evolution of smaller flux tubes in plage and quiet sun. Scientific results are reported at conferences and published in the appropriate journals. The contract is being performed by the Solar and Astrophysics Laboratory, part of the Lockheed Palo Alto Research Laboratory (LPARL) of the Research and Development Division (RDD) of Lockheed Missiles and Space Co., Inc. (LMSC). The principal investigator is Dr. Alan Title, and the research is done by him and other scientific staff at LPARL and Solar Physics Research Corporation (SPRC), often in collaboration with visiting scientists and students from other institutions. Highlights during this reporting period include completing the final version of a paper on the Evershed effect, writing a paper on magnetic diffusion, continuing work on contrast of small flux tubes, and work on the development of new models to interpret our sunspots observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMPP14A..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMPP14A..06G"><span>A Holocene Record of Monsoon Intensity From Speleothems in Flores, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffiths, M. L.; Drysdale, R.; Gagan, M.; Ayliffe, L.; Zhao, J.; St. Pierre, E.; Hantoro, W.; Suwargadi, B.</p> <p>2007-12-01</p> <p>The Australasian monsoon is among the largest monsoon systems on Earth. The affected region experiences a marked seasonal cycle in winds and precipitation, similar to its Northern Hemisphere counterparts (e.g., Asian monsoons). The Australasian monsoon is the life blood of the millions of people of the Indonesian archipelago. Since the climate is the dominating factor controlling food production, it is of great significance and urgency that we gain a firmer grasp on the parameters that control variations in monsoon intensity. Precise uranium series dating of two actively growing speleothems measuring ~1.25 (LR06-B1) and ~1.61 (LR06-B3) meters in length from Liang Luar cave (Flores, eastern Indonesia), reveal basal ages of ~12,846±103 and 23,605±171 years respectively. In previous studies, stable isotope ratios (δ18O and δ13C) and trace element concentrations in speleothems have revealed past environmental change (e.g., Burns et al., 2001; Wang et al., 2001; Fleitmann et al., 2004; Drysdale et al., 2004).In monsoon-affected regions, the δ18O signal recorded in stalagmites seems to be dominated by the amount of precipitation (so-called `amount effect'), whereby more negative (positive) δ18O values indicate enhanced (diminished) precipitation. Preliminary results from LR06-B1 indicate that δ18O values show a general increase in monsoon intensity from the beginning of the record to ~2000 years BP: this more or less follows insolation changes over the Australian continent.Comparison of our record with D4 from Dongge Cave reveals an anticorrelation during the Holocene, further supporting the hypothesis that tropical monsoon intensity is largely controlled by changes in insolation in both the Northern and Southern Hemisphere. Examination of our δ13C record demonstrates a high-frequency signal superimposed on low- frequency variability which correlates with the reconstructed sunspot cycle: higher (lower) sunspot numbers, and hence increased solar activity, correspond with higher (lower) δ13C values. An exception to this correlation is the abrupt shift towards higher δ13C values at approximately 1500 years BP, which does not correspond with the sunspot trend. This result may be indicative of a major volcanic eruption or the clearing of vegetation by modern humans; metal tools were introduced into the area just prior to this change. Given the lack of accurately dated palaeoclimate time series from the Australasian region, there is an urgent need for high-resolution records covering periods of known environmental change. Results from our study will contribute to a better understanding of tropical palaeoclimates and help scientists gain a clearer understanding of the mechanisms driving the changes in the Australasian monsoon system during the Holocene. Lastly, following the recent discovery of the `Hobbit' in a cave just a short distance from Liang Luar, there is scope for studying climatic conditions for the region around the time of the Hobbit's demise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679576-relationship-between-sunspot-structure-magnetic-field-changes-associated-solar-flares','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679576-relationship-between-sunspot-structure-magnetic-field-changes-associated-solar-flares"><span>ON THE RELATIONSHIP BETWEEN SUNSPOT STRUCTURE AND MAGNETIC FIELD CHANGES ASSOCIATED WITH SOLAR FLARES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Song, Y. L.; Zhang, M., E-mail: ylsong@bao.ac.cn</p> <p></p> <p>Many previous studies have shown that magnetic fields and sunspot structures present rapid and irreversible changes associated with solar flares. In this paper, we first use five X-class flares observed by Solar Dynamics Observatory /Helioseismic and Magnetic Imager to show that not only do magnetic fields and sunspot structures show rapid, irreversible changes, but also that these changes are closely related both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of the horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96.more » Then, using four active regions during quiescent periods, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength in addition to the well-known correlation between sunspot intensity and the normal magnetic field strength. By connecting these two observational phenomena, we show that the sunspot structure change and magnetic field change are two facets of the same phenomena of solar flares; one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33744','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33744"><span>Possible forcing of global temperature by the oceanic tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Keeling, Charles D.; Whorf, Timothy P.</p> <p>1997-01-01</p> <p>An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer. PMID:11607740</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSH13D4142L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSH13D4142L"><span>The Sunspot Number and beyond : reconstructing detailed solar information over centuries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lefevre, L.</p> <p>2014-12-01</p> <p>With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. Because of its importance, this unique time-series must be closely monitored for any possible biases and drifts. Here, we report about recent disagreements between solar indices, for example the sunspot sumber and the 10.7cm radio flux. Recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the TOSCA (www.cost-tosca.eu/) and SOLID (projects.pmodwrc.ch/solid/) projects, we produced a survey of all existing catalogs providing detailed sunspot information (Lefevre & Clette, 2014:10.1007/s11207-012-0184-5) and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs. These are first steps towards the construction of a multi-parametric time series of multiple sunspot and sunspot group properties over more than a century, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The preliminary version catalog now extends over the last 150 years. It makes use of data from DPD (http://fenyi.solarobs.unideb.hu/DPD/index.html), from the Uccle Solar Equatorial Table (USET:http://sidc.oma.be/uset/) operated by the Royal Obeservatory of Belgium, the Greenwich Catalog (RGO:http://www.ngdc.noaa.gov/) as well as the Kodaikanal white light data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590916-properties-suprathermal-heavy-ion-population-near-au-during-solar-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590916-properties-suprathermal-heavy-ion-population-near-au-during-solar-cycles"><span>Properties of the suprathermal heavy ion population near 1 AU during solar cycles 23 and 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dayeh, Maher A., E-mail: maldayeh@swri.edu; Ebert, Robert W.; Desai, Mihir I.</p> <p>2016-03-25</p> <p>Using measurements from the Advanced Composition Explorer/Ultra-Low Energy Isotope Spectrometer (ACE/ULEIS) near 1 AU, we surveyed the composition and spectra of heavy ions (He-through-Fe) during interplanetary quiet times from 1998 January 1 to 2014 December 31 at suprathermal energies between ∼0.11 and ∼1.28 MeV nucleon{sup −1}. The selected time period covers the maxima of solar cycles 23 and 24 and the extended solar minimum in between. We find the following: (1) The number of quiet-hours in each year correlates well with the sunspot number, year 2009 was the quietest for about 90% of the time; (2) The composition of the quiet-timemore » suprathermal heavy ion population ({sup 3}He, C-through-O, and Fe) correlates well with the level of solar activity, exhibiting SEP-like composition signatures during solar maximum, and CIR- or solar wind-like composition during solar minimum; (3) The heavy ion spectra at ∼0.11-0.32 MeV nucleon{sup −1} exhibit suprathermal tails with power-law spectral indices ranging from 1.4 to 2.7. (4) Fe spectral indices get softer (steeper) from solar minimum of cycle 23 to solar cycle 24 maximum. These results imply that during IP quiet times and at energies above ∼0.1 MeV nucleon{sup −1}, the IP medium is dominated by material from prior solar and interplanetary events.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830053425&hterms=deming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddeming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830053425&hterms=deming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddeming"><span>Diode laser heterodyne observations of silicon monoxide in sunspots - A test of three sunspot models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glenar, D. A.; Deming, D.; Jennings, D. E.; Kostiuk, T.; Mumma, M. J.</p> <p>1983-01-01</p> <p>Absorption features from the 8 micron SiO fundamental (upsilon = 1-0) and hot bands (upsilon = 2-1) have been observed in sunspots at sub-Doppler resolution using a ground-based tunable diode laser heterodyne spectrometer. The observed line widths suggest an upper limit of 0.5 km/s for the microturbulent velocity in sunspot umbrae. Since the silicon monoxide abundance is very sensitive to sunspot temperature, the measured equivalent widths permit an unambiguous determination of the temperature-pressure relation in the upper layers of the umbral atmosphere. In the region of SiO line formation (log P sub g = 3.0-4.5), the results support the sunspot model suggested by Stellmacher and Wiehr (1970).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21474498-importance-meridional-circulation-flux-transport-dynamo-possibility-maunder-like-grand-minimum','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21474498-importance-meridional-circulation-flux-transport-dynamo-possibility-maunder-like-grand-minimum"><span>IMPORTANCE OF MERIDIONAL CIRCULATION IN FLUX TRANSPORT DYNAMO: THE POSSIBILITY OF A MAUNDER-LIKE GRAND MINIMUM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Karak, Bidya Binay, E-mail: bidya_karak@physics.iisc.ernet.i</p> <p>2010-12-01</p> <p>Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to amore » low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GPC...145....1P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GPC...145....1P"><span>Evidence of solar activity and El Niño signals in tree rings of Araucaria araucana and A. angustifolia in South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perone, A.; Lombardi, F.; Marchetti, M.; Tognetti, R.; Lasserre, B.</p> <p>2016-10-01</p> <p>Tree rings reveal climatic variations through years, but also the effect of solar activity in influencing the climate on a large scale. In order to investigate the role of solar cycles on climatic variability and to analyse their influences on tree growth, we focused on tree-ring chronologies of Araucaria angustifolia and Araucaria araucana in four study areas: Irati and Curitiba in Brazil, Caviahue in Chile, and Tolhuaca in Argentina. We obtained an average tree-ring chronology of 218, 117, 439, and 849 years for these areas, respectively. Particularly, the older chronologies also included the period of the Maunder and Dalton minima. To identify periodicities and trends observable in tree growth, the time series were analysed using spectral, wavelet and cross-wavelet techniques. Analysis based on the Multitaper method of annual growth rates identified 2 cycles with periodicities of 11 (Schwebe cycle) and 5.5 years (second harmonic of Schwebe cycle). In the Chilean and Argentinian sites, significant agreement between the time series of tree rings and the 11-year solar cycle was found during the periods of maximum solar activity. Results also showed oscillation with periods of 2-7 years, probably induced by local environmental variations, and possibly also related to the El-Niño events. Moreover, the Morlet complex wavelet analysis was applied to study the most relevant variability factors affecting tree-ring time series. Finally, we applied the cross-wavelet spectral analysis to evaluate the time lags between tree-ring and sunspot-number time series, as well as for the interaction between tree rings, the Southern Oscillation Index (SOI) and temperature and precipitation. Trees sampled in Chile and Argentina showed more evident responses of fluctuations in tree-ring time series to the variations of short and long periodicities in comparison with the Brazilian ones. These results provided new evidence on the solar activity-climate pattern-tree ring connections over centuries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JASTP..70.2222G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JASTP..70.2222G"><span>Geomagnetic and sunspot activity associations and ionospheric effects of lightning phenomena at Trivandrum near dip equator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Girish, T. E.; Eapen, P. E.</p> <p>2008-12-01</p> <p>From a study of thunder/lightning observations in Trivandrum (near dip equator) for selected years between 1853 and 2005, we could find an inverse relation of the same with sunspot activity and associations with enhancements in diurnal range of local geomagnetic declination. The results seem to suggest lightning-associated modulation of E-region dynamo currents in the equatorial ionosphere and the thunderstorm activity near dip equator probably acts as a moderator to regulate electric potential gradient changes in the global electric circuit due to solar activity changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890054776&hterms=geomagnetism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeomagnetism','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890054776&hterms=geomagnetism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeomagnetism"><span>A brief history of magnetospheric physics before the spaceflight era</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stern, David P.</p> <p>1989-01-01</p> <p>Early research on the earth's magnetic environment is reviewed, with attention given to the period when only ground-based observations were possible. Early work on geomagnetism is discussed as well as the sunspot cycle, solar fares, the possibility of electron beams from the sun, and the Chapman-Ferraro cavity. Consideration is also given to the ring current, Alfvens theory and electric fields, interplanetary plasma, and polar magnetic storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760007441','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760007441"><span>Relationships between solar activity and climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, W. O.</p> <p>1975-01-01</p> <p>The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EOSTr..94..329L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EOSTr..94..329L"><span>The Inner Heliosphere at Fifty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luhmann, Janet G.</p> <p>2013-09-01</p> <p>Recent observations show that the Sun's magnetic field is flipping, marking one of the weakest sunspot cycle maxima in recent history. Many consequences have been observed and are under study, from a significant diminishing of the upper atmosphere's density [Solomon et al., 2010] to record low levels of geomagnetic activity [Richardson, 2013] to the large increase of local galactic cosmic ray fluxes starting in the preceding solar minimum [Mewaldt et al., 2010].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810018470','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810018470"><span>The Sun as a star</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jordan, S. D. (Editor)</p> <p>1981-01-01</p> <p>Solar physics was reviewed in the context of the solar atmoshere. The understanding of the solar atmosphere is linked to stellar atmospheric research. Topics covered include: the existence of the chromosphere, the corona, and the solar wind; the interactive complex of convection, differential rotation, magnetic field generation and concentration, and the activity cycle; phenomena such as granulation, supergranulation, the 5 minute oscillation, filigree, faculae, sunspots, spicules, prominences, surges, and the spectacular flares.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950046596&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtemperature%2Bvariability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950046596&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtemperature%2Bvariability"><span>Latitudinal variability of large-scale coronal temperature and its association with the density and the global magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guhathakurta, M.; Fisher, R. R.</p> <p>1994-01-01</p> <p>In this paper we utilize the latitiude distribution of the coronal temperature during the period 1984-1992 that was derived in a paper by Guhathakurta et al, 1993, utilizing ground-based intensity observations of the green (5303 A Fe XIV) and red (6374 A Fe X) coronal forbidden lines from the National Solar Observatory at Sacramento Peak, and establish it association with the global magnetic field and the density distributions in the corona. A determination of plasma temperature, T, was estimated from the intensity ratio Fe X/Fe XIV (where T is inversely proportional to the ratio), since both emission lines come from ionized states of Fe, and the ratio is only weakly dependent on density. We observe that there is a large-scale organization of the inferred coronal temperature distribution that is associated with the large-scale, weak magnetic field structures and bright coronal features; this organization tends to persist through most of the magnetic activity cycle. These high-temperature structures exhibit time-space characteristics which are similar to those of the polar crown filaments. This distribution differs in spatial and temporal characterization from the traditional picture of sunspot and active region evolution over the range of the sunspot cycle, which are manifestations of the small-scale, strong magnetic field regions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SerAJ.195...59G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SerAJ.195...59G"><span>Temporal Variations of Different Solar Activity Indices Through the Solar Cycles 21-23</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Göker, Ü. D.; Singh, J.; Nutku, F.; Priyal, M.</p> <p>2017-12-01</p> <p>Here, we compare the sunspot counts and the number of sunspot groups (SGs) with variations of total solar irradiance (TSI), magnetic activity, Ca II K-flux, faculae and plage areas. We applied a time series method for extracting the data over the descending phases of solar activity cycles (SACs) 21, 22 and 23, and the ascending phases 22 and 23. Our results suggest that there is a strong correlation between solar activity indices and the changes in small (A, B, C and H-modified Zurich Classification) and large (D, E and F) SGs. This somewhat unexpected finding suggests that plage regions substantially decreased in spite of the higher number of large SGs in SAC 23 while the Ca II K-flux did not decrease by a large amount nor was it comparable with SAC 22 and relates with C and DEF type SGs. In addition to this, the increase of facular areas which are influenced by large SGs, caused a small percentage decrease in TSI while the decrement of plage areas triggered a higher decrease in the magnetic field flux. Our results thus reveal the potential of such a detailed comparison of the SG analysis with solar activity indices for better understanding and predicting future trends in the SACs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017InJPh..91..595S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017InJPh..91..595S"><span>Study of seismic activity during the ascending and descending phases of solar activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sukma, Indriani; Abidin, Zamri Zainal</p> <p>2017-06-01</p> <p>The study of the solar cycle and geomagnetic index associated with the seismic activity from the year 1901 to the end of 2015 has been done for an area that covers the majority of China and its bordering countries. Data of sunspot number, solar wind speed, daily storm time index and earthquake number are collected from NOAA, NASA, WDC, OMNI and USGS databases and websites. The earthquakes are classified into small (M < 5) and large (M ≥ 5) magnitudes (in Richter scale). We investigated the variation of earthquake activities with the geomagnetic storm index due to the solar wind. We focused on their variation in the ascending and descending phases of solar cycle. From our study, we conclude that there is a correlation between the phases' geomagnetic index and solar wind speed. We have also suggested that there is a certain degree of correlation between solar activity and seismicity in these phases. For every solar cycle, we find that there is a trend for earthquakes to occur in greater numbers during the descending phase. This can be explained by the increment in the solar wind speed and geomagnetic storm index during this phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18638221','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18638221"><span>Knowledge and perceptions about sunburn and solar keratoses in Australia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raasch, Beverly A; Buettner, Petra G</p> <p>2008-08-01</p> <p>An omnibus telephone survey of 1200 adult Australians determined self-reported prevalence of and attitudes to sunburn and sunspots, knowledge of the term solar keratosis and prevalence of skin checks. Half reported they had been sunburnt in the previous year. Seventy-eight per cent considered sunburn to be extremely or very serious, while 73% considered sunspots as serious or very serious. While 29% reported currently having sunspots, 69% had never heard of the term solar keratosis, 30% had never had a skin check and 28% had their last skin check more than 12 months ago. Respondents 18-29 years old (odds ration [OR] = 2.6; P = 0.002) and men (OR = 2.4; P < 0.001) were most likely to experience multiple sunburn. Persons living in capital cities (OR = 0.63; P = 0.006) and having a university degree (OR = 0.52; P = 0.001) had reduced OR for multiple sunburns. Men (OR = 0.45; P < 0.001) were less likely to consider sunburn serious or extremely serious than women. Compared with respondents 18-29 years old, those 55 years or older were 7.4-fold more likely to have had a skin check (P < 0.001). Sun-protection campaigns need to continue using evidence-based interventions targeting younger people and men to reduce sunburn. The terms used in health promotion need to be understood by the target audience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663083-measurements-absorption-scattering-cross-sections-interaction-solar-acoustic-waves-sunspots','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663083-measurements-absorption-scattering-cross-sections-interaction-solar-acoustic-waves-sunspots"><span>MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Hui; Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw</p> <p></p> <p>The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. Inmore » the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eaa..bookE2056M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eaa..bookE2056M"><span>Sunspots: Wilson Effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maltby, P.; Murdin, P.</p> <p>2000-11-01</p> <p>The Wilson effect refers to the depressed appearance of SUNSPOTS when positioned close to the solar limb. The impression is that sunspots are cavities in the SOLAR PHOTOSPHERE. The reason is that the radiation we observe is coming from deeper layers in the sunspot than in the surrounding photosphere. The detection of this depression by Alexander Wilson dates back to 1769. The phenomenon is exp...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661035-proposed-paradigm-solar-cycle-dynamics-mediated-via-turbulent-pumping-magnetic-flux-babcockleighton-type-solar-dynamos','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661035-proposed-paradigm-solar-cycle-dynamics-mediated-via-turbulent-pumping-magnetic-flux-babcockleighton-type-solar-dynamos"><span>A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hazra, Soumitra; Nandy, Dibyendu</p> <p></p> <p>At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting formore » the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AAS...204.3603B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AAS...204.3603B"><span>Stellar magnetic cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baliunas, S. L.</p> <p>2004-05-01</p> <p>Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23231714A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23231714A"><span>Chandra X-ray Time-Domain Study of Alpha Centauri AB, Procyon, and their Environs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayres, Thomas R.</p> <p>2018-06-01</p> <p>For more than a decade, Chandra X-ray Observatory has been monitoring the central AB binary (G2V+K1V) of the α Centauri triple system with semi-annual pointings, using the High-Resolution Camera. This study has been extended in recent years to the mid-F subgiant, Procyon. The main objective is to follow the coronal (T~1MK) activity variations of the three stars, analogous to the Sun's 11-year sunspot cycle. Tentative periods of 20 yr and 8 yr have been deduced for α Cen A and B, respectively; but so far Procyon has shown only a slow, very modest decline in count rate, which could well reflect a slight instrumental degradation rather than intrinsic behavior. The negligible high-energy variability of Procyon sits in stark contrast to the dramatic factor of several to ten changes in the X-ray luminosities of α Cen AB and the Sun over their respective cycles. Further, although sunlike α Cen A has been observed by successive generations of X-ray observatories for nearly four decades, albeit sporadically, there are key gaps in the coverage that affect the determination of the cycle period. In fact, the most recent pointings suggest a downturn in A's count rate that might be signaling a shorter, more solar-like cycle following a delayed minimum in the 2005--2010 time frame (perhaps an exaggerated version of the extended solar minimum between recent Cycles 23 and 24). Beyond the coronal cycles of the three stars, the sequence of periodic X-ray images represents a unique time-domain history concerning steady as well as variable sources in the two 30'x30' fields. The most conspicuous of the variable objects -- in the α Cen field -- will be described here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900016244','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900016244"><span>Sunspot prediction using neural networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Villarreal, James; Baffes, Paul</p> <p>1990-01-01</p> <p>The earliest systematic observance of sunspot activity is known to have been discovered by the Chinese in 1382 during the Ming Dynasty (1368 to 1644) when spots on the sun were noticed by looking at the sun through thick, forest fire smoke. Not until after the 18th century did sunspot levels become more than a source of wonderment and curiosity. Since 1834 reliable sunspot data has been collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Naval Observatory. Recently, considerable effort has been placed upon the study of the effects of sunspots on the ecosystem and the space environment. The efforts of the Artificial Intelligence Section of the Mission Planning and Analysis Division of the Johnson Space Center involving the prediction of sunspot activity using neural network technologies are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160005860&hterms=cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcycles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160005860&hterms=cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcycles"><span>The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, N.; Xie, H.; Akiyama, S.; Makela, P.; Yashiro, S.; Michalek, G.</p> <p>2015-01-01</p> <p>We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by approx. 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance greater than or equal to 60deg twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...859..158S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...859..158S"><span>Statistical Investigation of Supersonic Downflows in the Transition Region above Sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samanta, Tanmoy; Tian, Hui; Prasad Choudhary, Debi</p> <p>2018-06-01</p> <p>Downflows at supersonic speeds have been observed in the transition region (TR) above sunspots for more than three decades. These downflows are often seen in different TR spectral lines above sunspots. We have performed a statistical investigation of these downflows using a large sample that was missing previously. The Interface Region Imaging Spectrograph (IRIS) has provided a wealth of observational data of sunspots at high spatial and spectral resolutions in the past few years. We have identified 60 data sets obtained with IRIS raster scans. Using an automated code, we identified the locations of strong downflows within these sunspots. We found that around 80% of our sample shows supersonic downflows in the Si IV 1403 Å line. These downflows mostly appear in the penumbral regions, though some of them are found in the umbrae. We also found that almost half of these downflows show signatures in chromospheric lines. Furthermore, a detailed spectral analysis was performed by selecting a small spectral window containing the O IV 1400/1401 Å and Si IV 1403 Å lines. Six Gaussian functions were simultaneously fitted to these three spectral lines and their satellite lines associated with the supersonic downflows. We calculated the intensity, Doppler velocity, and line width for these lines. Using the O IV 1400/1401 Å line ratio, we find that the downflow components are around one order of magnitude less dense than the regular components. Results from our statistical analysis suggest that these downflows may originate from the corona and that they are independent of the background TR plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915982L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915982L"><span>Study of Heliospheric Particle Populations far from Thermal Equilibrium during Three Solar Cycles, Periodicities and q-index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liolios, Konstantinos; Bergman, Jan; Moussas, Xenophon</p> <p>2017-04-01</p> <p>Heliospheric energetic particle populations of energies higher than 1 MeV are studied using a 33 year long data record composed of hourly measurements, as extracted from the NASA Goddard Space Flight Center's OMNI data set. Their periodicities are examined by means least-squares spectral analysis and wavelet analysis and found to be in good agreement with periodicities seen in sunspot numbers, which are well-known indicators of variations in solar activity. Hence, the source of this energetic and positively charged gas is mainly the Sun but part of it should be cosmic rays. As derived from the analyses of suprathermal "heavy" tails of the probability distribution, we assume that the gas kinetics is described by a deformed Maxwell-Boltzmann distribution, namely, the kappa distribution. The q-index analogue to the κ-index is computed for every hour in the data record and used to investigate how far away the gas is from being in classical thermal equilibrium (q = 1). We compare the q-index time series with that of sunspot numbers and conclude that the gas is in continously variable states away (q > 1) from the almost always assumed thermal equilibrium. During the first ˜15 years, the q-indices somewhat exceed the theoretically predicted limit but follow a pattern which is very homogeneous. However, just before 1990, the q-indices begin to fluctuate in a periodic manner, creating maxima and minima, as they continuously increase until they peak about 1996-1997, while after these years, they decrease following a similar pattern. As a result, we assume that after 1990, for a period that lasted at least 10 years, something changed in the Sun's behaviour. A higher number of solar bursts could easily affect the gas but further research, for instance an analysis of solar flare timeseries from the same period, is required to draw a more robust conclusion of what may have caused the observed anomaly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003SoPh..216...79B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003SoPh..216...79B"><span>Observations of Rotating Sunspots from TRACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, D. S.; Nightingale, R. W.; Alexander, D.; Schrijver, C. J.; Metcalf, T. R.; Shine, R. A.; Title, A. M.; Wolfson, C. J.</p> <p>2003-09-01</p> <p>Recent observations from TRACE in the photospheric white-light channel have shown sunspots that rotate up to 200° about their umbral centre over a period of 3 5 days. The corresponding loops in the coronal fan are often seen to twist and can erupt as flares. In an ongoing study, seven cases of rotating sunspots have been identified, two of which can be associated with sigmoid structures appearing in Yohkoh/SXT and six with events seen by GOES. This paper analyzes the rotation rates of the sunspots using TRACE white-light data. Observations from AR 9114 are presented in detail in the main text and a summary of the results for the remaining six sunspots is presented in Appendixes A F. Discussion of the key results, particularly common features, are presented, as well as possible mechanisms for sunspot rotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ESPM...12.2.68T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ESPM...12.2.68T"><span>The First Light on Butterfly Diagram Internal Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ternullo, M.</p> <p>2008-09-01</p> <p>Butterfly diagrams drawn as the prototype created by Maunder are used to constrain dynamo models of the solar cycle, despite the fact they register the mere presence of sunspot groups, disregarding the different physical relevance that groups should be given because of their extension and, accordingly, their magnetic flux. Using sunspot data obtained at INAF -- Osservatorio Astrofisico di Catania in the cycles 20 through 23 (1964-2005), I have obtained a new version of butterfly diagram (BD) in the form of a numerical array, whose elements are the average spotted areas registered for any Carrington rotation at any latitude. A graphic representation of this array by a set of contour lines connecting equally spotted points will be shown. The outest contour lines reveal frequent interruptions of the spot zone equatorward drift, and even repeated episodes of poleward drift. Higher and higher-level contour lines are characterized by concave arcs which more and more deeply penetrate the ''butterfly wings'', and eventually split into close lines, embracing small portions of the time-latitude diagram, for time intervals not longer than one or two years. The BD reveals, therefore, a markedly discrete structure, since the solar activity splits into pulses of activity, involving different photospheric regions at different epochs, throughout the whole cycle. The BD is, therefore, but a cluster of ''knots'' and the ''spot zone'' is the latitude range inside which knots form. Spots are not scattered about one latitude continuously drifting equatorward (as the so-called ''spot average latitude'' is commonly believed to do), but about as many latitudes as the knots are, at as many epochs in the cycle. Each knot is a special population of spots, whose latitude remains unchanged during its short lifetime. Rarely two knots are simultaneously active in the same hemisphere. The cycle history is but the history of a sequence of knots activations and extinctions. As a knot forms, the role of the spot zone ''centroid'' passes from a latitude to another one, in a way which could be named a ''latitudinal flip-flop''. That accounts for the alternance of poleward/equatorward drifts of the spot zone, described by the present author for the cycles 20 through 22 (Ternullo; 1997, Solar Phys., 172, 37; 2007, Solar Phys., 240, 153 and 2007, Astron. Nachr., 328, 1023). Looking for some kind of regularity governing the knots activation throughout the cycle is the new challenge this work presents to the attention of the scientific comunity. Some hints for a connection with the oscillation detected in the tachocline rotation rate by Howe et al. (2001, IAU Symposium, 203, 41) are suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5508059-brief-history-magnetospheric-physics-before-spaceflight-era','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5508059-brief-history-magnetospheric-physics-before-spaceflight-era"><span>A brief history of magnetospheric physics before the spaceflight era</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stern, D.P.</p> <p>1989-02-01</p> <p>Early research on the earth's magnetic environment is reviewed, with attention given to the period when only ground-based observations were possible. Early work on geomagnetism is discussed as well as the sunspot cycle, solar fares, the possibility of electron beams from the sun, and the Chapman-Ferraro cavity. Consideration is also given to the ring current, Alfvens theory and electric fields, interplanetary plasma, and polar magnetic storms. 134 refs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820042467&hterms=attention+deficit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dattention%2Bdeficit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820042467&hterms=attention+deficit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dattention%2Bdeficit"><span>The effects of sunspots on solar irradiance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hudson, H. S.; Silva, S.; Woodard, M.; Willson, R. C.</p> <p>1982-01-01</p> <p>It is pointed out that the darkness of a sunspot on the visible hemisphere of the sun will reduce the solar irradiance on the earth. Approaches are discussed for obtaining a crude estimate of the irradiance deficit produced by sunspots and of the total luminosity reduction for the whole global population of sunspots. Attention is given to a photometric sunspot index, a global measure of spot flux deficit, and models for the compensating flux excess. A model is shown for extrapolating visible-hemisphere spot areas to the invisible hemisphere. As an illustration, this extrapolation is used to calculate a very simple model for the reradiation necessary to balance the flux deficit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018nova.pres.3396K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018nova.pres.3396K"><span>Featured Image: Bright Dots in a Sunspot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, Susanna</p> <p>2018-03-01</p> <p>This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Ap%26SS.362..106P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Ap%26SS.362..106P"><span>Latitude character and evolution of Gnevyshev gap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pandey, K. K.; Hiremath, K. M.; Yellaiah, G.</p> <p>2017-06-01</p> <p>The time interval, between two highest peaks of the sunspot maximum, during which activity energy substantially absorbed is called Gnevyshev gap. In this study we focus on mysterious evolution of the Gnevyshev gap by analyzing and comparing the integrated (over the whole Sun) characteristics of magnetic field strength of sunspot groups, soft x-ray flares, filaments or prominences and polar faculae. The time latitude distribution of these solar activities from photosphere to coronal height, for the low (≤50°) and high (≥50°) latitudes, shows the way Gnevyshev gap is evolved. The presence of double peak structure is noticed in high latitude (≥50°) activity. During activity maximum the depression (or valley) appearing, in different activity processes, probably due to shifting, spreading, and transfer of energy from higher to lower latitudes with the progress of solar cycle. The morphology of successive lower latitude zones, considering it as a wave pulse, appears to be modified/scattered, by certain degree due to shifting of magnetic energy to empower higher or lower latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22348122-drift-effects-galactic-cosmic-ray-modulation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22348122-drift-effects-galactic-cosmic-ray-modulation"><span>Drift effects on the galactic cosmic ray modulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Laurenza, M.; Storini, M.; Vecchio, A.</p> <p>2014-02-01</p> <p>Cosmic ray (CR) modulation is driven by both solar activity and drift effects in the heliosphere, although their role is only qualitatively understood as it is difficult to connect the CR variations to their sources. In order to address this problem, the Empirical Mode Decomposition technique has been applied to the CR intensity, recorded by three neutron monitors at different rigidities (Climax, Rome, and Huancayo-Haleakala (HH)), the sunspot area, as a proxy for solar activity, the heliospheric magnetic field magnitude, directly related to CR propagation, and the tilt angle (TA) of the heliospheric current sheet (HCS), which characterizes drift effectsmore » on CRs. A prominent periodicity at ∼six years is detected in all the analyzed CR data sets and it is found to be highly correlated with changes in the HCS inclination at the same timescale. In addition, this variation is found to be responsible for the main features of the CR modulation during periods of low solar activity, such as the flat (peaked) maximum in even (odd) solar cycles. The contribution of the drift effects to the global Galactic CR modulation has been estimated to be between 30% and 35%, depending on the CR particle energy. Nevertheless, the importance of the drift contribution is generally reduced in periods nearing the sunspot maximum. Finally, threshold values of ∼40°, ∼45°, and >55° have been derived for the TA, critical for the CR modulation at the Climax, Rome, and HH rigidity thresholds, respectively.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...610A..28M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...610A..28M"><span>Long-term evolution of the heliospheric magnetic field inferred from cosmogenic 44Ti activity in meteorites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mancuso, S.; Taricco, C.; Colombetti, P.; Rubinetti, S.; Sinha, N.; Bhandari, N.</p> <p>2018-02-01</p> <p>Typical reconstructions of historic heliospheric magnetic field (HMF) BHMF are based on the analysis of the sunspot activity, geomagnetic data or on measurement of cosmogenic isotopes stored in terrestrial reservoirs like trees (14C) and ice cores (10Be). The various reconstructions of BHMF are however discordant both in strength and trend. Cosmogenic isotopes, which are produced by galactic cosmic rays impacting on meteoroids and whose production rate is modulated by the varying HMF convected outward by the solar wind, may offer an alternative tool for the investigation of the HMF in the past centuries. In this work, we aim to evaluate the long-term evolution of BHMF over a period covering the past twenty-two solar cycles by using measurements of the cosmogenic 44Ti activity (τ1/2 = 59.2 ± 0.6 yr) measured in 20 meteorites which fell between 1766 and 2001. Within the given uncertainties, our result is compatible with a HMF increase from 4.87-0.30+0.24 nT in 1766 to 6.83-0.11+0.13 nT in 2001, thus implying an overall average increment of 1.96-0.35+0.43 nT over 235 years since 1766 reflecting the modern Grand maximum. The BHMF trend thus obtained is then compared with the most recent reconstructions of the near-Earth HMF strength based on geomagnetic, sunspot number, and cosmogenic isotope data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSH34A..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSH34A..01H"><span>Hemispherical and Longitudinal Asymmetries in the Heliospheric Magnetic Field: Flip-flops of a Bashful Ballerina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hiltula, T.; Mursula, K.</p> <p>2004-12-01</p> <p>Several studies during many decennia have studied possible longitudinal and hemispherical asymmetries in various forms of solar activity. E.g., there are well known periods when one of the solar hemispheres has dominated the other in sunspot numbers, flare occurrence or some other form of solar activity. However, the solar asymmetries have not been found to be very conclusive, or to form any clear systematical patterns (e.g., relation to solar cycle). On the contrary, recent studies of similar longitudinal and hemispherical asymmetries in the heliospheric magnetic field have shown a very clear and systematic behaviour. E.g., it was found recently that the dominance of the two HMF sectors experiences an oscillation with a period of about 3.2 years. This new flip-flop periodicity in the heliospheric magnetic field is most likely related to a similar periodicity recently found in sunspots. Also, it has recently been found that the HMF sector coming from the northern solar hemisphere systematically dominates at 1AU during solar minimum times. This leads to a persistent southward shift or coning of the heliospheric current sheet at these times that can be picturesquely described by the concept of a Bashful Ballerina. This result also implies that the Sun has a large-scale quadrupole magnetic moment. Here we review these recent developments concerning the longitudinal and hemispherical asymmetries in the heliospheric magnetic field and study their inter-connection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SoPh..280..347K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SoPh..280..347K"><span>Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kallunki, J.; Riehokainen, A.</p> <p>2012-10-01</p> <p>In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010268','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010268"><span>Helioseismology of a Realistic Magnetoconvective Sunspot Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Braun, D. C.; Birch, A. C.; Rempel, M.; Duvall, T. L., Jr.</p> <p>2012-01-01</p> <p>We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time-distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...607L...2I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...607L...2I"><span>Improvement of solar-cycle prediction: Plateau of solar axial dipole moment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iijima, H.; Hotta, H.; Imada, S.; Kusano, K.; Shiota, D.</p> <p>2017-11-01</p> <p>Aims: We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods: We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results: We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60-80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions: The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH11A2220G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH11A2220G"><span>The McIntosh Archive: A solar feature database spanning four solar cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gibson, S. E.; Malanushenko, A. V.; Hewins, I.; McFadden, R.; Emery, B.; Webb, D. F.; Denig, W. F.</p> <p>2016-12-01</p> <p>The McIntosh Archive consists of a set of hand-drawn solar Carrington maps created by Patrick McIntosh from 1964 to 2009. McIntosh used mainly H-alpha, He-1 10830 and photospheric magnetic measurements from both ground-based and NASA satellite observations. With these he traced coronal holes, polarity inversion lines, filaments, sunspots and plage, yielding a unique 45-year record of the features associated with the large-scale solar magnetic field. We will present the results of recent efforts to preserve and digitize this archive. Most of the original hand-drawn maps have been scanned, a method for processing these scans into digital, searchable format has been developed and streamlined, and an archival repository at NOAA's National Centers for Environmental Information (NCEI) has been created. We will demonstrate how Solar Cycle 23 data may now be accessed and how it may be utilized for scientific applications. In addition, we will discuss how this database of human-recognized features, which overlaps with the onset of high-resolution, continuous modern solar data, may act as a training set for computer feature recognition algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900018891','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900018891"><span>Ionospheric effects of the extreme solar activity of February 1986</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boska, J.; Pancheva, D.</p> <p>1989-01-01</p> <p>During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006389','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006389"><span>On the Relationship Between Global Land-Ocean Temperature and Various Descriptors of Solar-Geomagnetic Activity and Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.</p> <p>2014-01-01</p> <p>Examined are sunspot cycle- (SC-) length averages of the annual January-December values of the Global Land-Ocean Temperature Index (<GLOTI>) in relation to SC-length averages of annual values of various descriptors of solar-geomagnetic activity and climate, incorporating lags of 0-5 yr. For the overall interval SC12-SC23, the <GLOTI> is inferred to correlate best against the parameter <aa(I:SSN)> incorporating lag = 5 yr, where the parameter <aa(I:SSN)> refers to the resultant aa value having removed that portion of the annual aa average value due to the yearly variation of sunspot number (SSN). The inferred correlation between the <GLOTI> and <aa(I:SSN)> is statistically important at confidence level cl > 99.9%, having a coefficient of linear correlation r = 0.865 and standard error of estimate se = 0.149 degC. Excluding the most recent cycles SC22 and SC23, the inferred correlation is stronger, having r = 0.969 and se = 0.048 degC. With respect to the overall trend in the <GLOTI>, which has been upwards towards warmer temperatures since SC12 (1878-1888), solar-geomagnetic activity parameters are now trending downwards (since SC19). For SC20-SC23, in contrast, comparison of the <GLOTI> against SC-length averages of the annual value of the Mauna Loa carbon dioxide (<MLCO2>) index is found to be highly statistically important (cl >> 99.9%), having r = 0.9994 and se = 0.012 degC for lag = 2 yr. On the basis of the inferred preferential linear correlation between the <GLOTI> and <MLCO2>, the current ongoing SC24 is inferred to have <GLOTI> warmer than was seen in SC23 (i.e., >0.526 degC), probably in excess of 0.68 degC (relative to the 1951-1980 base period).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760041682&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dmagnetic%2Bcooling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760041682&hterms=magnetic+cooling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dmagnetic%2Bcooling"><span>Overstability and cooling in sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, B.</p> <p>1976-01-01</p> <p>The role played by overstable Alfven modes in magnetic structures such as sunspots is considered in detail for a column of magnetic field. It is demonstrated explicitly that overstable Alfven waves cool the interior of the magnetic column. It is suggested that these waves account for the cooling in sunspot umbrae, and therefore, in concurrence with Parker, we conclude that a sunspot is a region of enhanced heat transport. The calculations indicate that sunspots have small regions at normal photospheric brightness, and we tentatively suggest that these regions are umbral dots. We also suggest that cooling by overstable Alfven waves may explain the existence of the intense small magnetic flux tubes that constitute the general solar magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1955d0152P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1955d0152P"><span>Prediction on sunspot activity based on fuzzy information granulation and support vector machine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peng, Lingling; Yan, Haisheng; Yang, Zhigang</p> <p>2018-04-01</p> <p>In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...853..197D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...853..197D"><span>Response of Solar Irradiance to Sunspot-area Variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.</p> <p>2018-02-01</p> <p>One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SoPh..292..179R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SoPh..292..179R"><span>A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana</p> <p>2017-12-01</p> <p>The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ap%26SS.363...61E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ap%26SS.363...61E"><span>Long-term oscillations of sunspots and a special class of artifacts in SOHO/MDI and SDO/HMI data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Efremov, V. I.; Solov'ev, A. A.; Parfinenko, L. D.; Riehokainen, A.; Kirichek, E.; Smirnova, V. V.; Varun, Y. N.; Bakunina, I.; Zhivanovich, I.</p> <p>2018-03-01</p> <p>A specific type of artifacts (named as " p2p"), that originate due to displacement of the image of a moving object along the digital (pixel) matrix of receiver are analyzed in detail. The criteria of appearance and the influence of these artifacts on the study of long-term oscillations of sunspots are deduced. The obtained criteria suggest us methods for reduction or even elimination of these artifacts. It is shown that the use of integral parameters can be very effective against the " p2p" artifact distortions. The simultaneous observations of sunspot magnetic field and ultraviolet intensity of the umbra have given the same periods for the long-term oscillations. In this way the real physical nature of the oscillatory process, which is independent of the artifacts have been confirmed again. A number of examples considered here confirm the dependence between the periods of main mode of the sunspot magnetic field long-term oscillations and its strength. The dependence was derived earlier from both the observations and the theoretical model of the shallow sunspot. The anti-phase behavior of time variations of sunspot umbra area and magnetic field of the sunspot demonstrates that the umbra of sunspot moves in long-term oscillations as a whole: all its points oscillate with the same phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525392-statistical-comparison-between-pores-sunspots-using-sdo-hmi','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525392-statistical-comparison-between-pores-sunspots-using-sdo-hmi"><span>STATISTICAL COMPARISON BETWEEN PORES AND SUNSPOTS BY USING SDO/HMI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cho, I.-H.; Cho, K.-S.; Bong, S.-C.</p> <p>2015-09-20</p> <p>We carried out an extensive statistical study of the properties of pores and sunspots, and investigated the relationship among their physical parameters such as size, intensity, magnetic field, and the line-of-sight (LOS) velocity in the umbrae. For this, we classified 9881 samples into three groups of pores, transitional sunspots, and mature sunspots. As a result, (1) we find that the total magnetic flux inside the umbra of pores, transitional sunspots, and mature sunspots increases proportionally to the powers of the area and the power indices in the three groups significantly differ from each other. (2) The umbral area distribution ofmore » each group shows a Gaussian distribution and they are clearly separated, displaying three distinct peak values. All of the quantities significantly overlap among the three groups. (3) The umbral intensity shows a rapid decrease with increasing area, and their magnetic field strength shows a rapid increase with decreasing intensity. (4) The LOS velocity in pores is predominantly redshifted and its magnitude decreases with increasing magnetic field strength. The decreasing trend becomes nearly constant with marginal blueshift in the case of mature sunspots. The dispersion of LOS velocities in mature sunspots is significantly suppressed compared to pores. From our results, we conclude that the three groups have different characteristics in their area, intensity, magnetic field, and LOS velocity as well in their relationships.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAVSO..43..107H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAVSO..43..107H"><span>Parallel Group and Sunspot Counts from SDO/HMI and AAVSO Visual Observers (Abstract)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howe, R.; Alvestad, J.</p> <p>2015-06-01</p> <p>(Abstract only) Creating group and sunspot counts from the SDO/HMI detector on the Solar Dynamics Observatory (SDO) satellite requires software that calculates sunspots from a “white light” intensity-gram (CCD image) and group counts from a filtered CCD magneto-gram. Images from the satellite come from here http://jsoc.stanford.edu/data/hmi/images/latest/ Together these two sets of images can be used to estimate the Wolf number as W = (10g + s), which is used to calculate the American Relative index. AAVSO now has approximately two years of group and sunspot counts in the SunEntry database as SDOH observer Jan Alvestad. It is important that we compare these satellite CCD image data with our visual observer daily submissions to determine if the SDO/HMI data should be included in calculating the American Relative index. These satellite data are continuous observations with excellent seeing. This contrasts with “snapshot” earth-based observations with mixed seeing. The SDO/HIM group and sunspot counts could be considered unbiased, except that they show a not normal statistical distribution when compared to the overall visual observations, which show a Poisson distribution. One challenge that should be addressed by AAVSO using these SDO/HMI data is the splitting of groups and deriving group properties from the magneto-grams. The filtered CCD detector that creates the magento-grams is not something our visual observers can relate too, unless they were to take CCD images in H-alpha and/or the Calcium spectrum line. So, questions remain as to how these satellite CCD image counts can be integrated into the overall American Relative index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999BAAA...43...23P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999BAAA...43...23P"><span>Actividad solar del ciclo 23. Predicción del máximo y fase decreciente utilizando redes neuronales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parodi, M. A.; Ceccatto, H. A.; Piacentini, R. D.; García, P. J.</p> <p></p> <p>Different methods have been proposed in order to predict the maximum amplitude of solar cycles, either as a consequence of the intrinsic importance of this event and because of its relation with solar storms and possible effects upon satellites, communication systems, etc. In this work, a neural network solar activity prediction is presented, measured through the sunspot number (SSN). The 16-units neural network, with a 12:3:1 architecture, was trained in a ``feed-forward" propagation way and learning by the so called ``back propagation rule". The annual mean SSN data in the 1700-1975 and 1987-1998 periods were used as the training set. The solar cycle 21 (1976-1986) was taken as the cross-validation data set. After performing the network training we obtained a prediction of the maximum annual mean for the current solar cycle 23, SSNmax= 135 ±17 at the year 2000, which is 13% smaller than the International Consensus Commitee's mean maximum prediction obtained through ``precursor techniques". On the other hand, our prediction is only about 4% smaller than the Consensus's neural network mean prediction. A ``multiple step" prediction technique was also performed and SSN annual mean predicted values for the near-maximum (from the present year 1999 to beyond the maximum) and the declining activity of solar cycle 23 are presented in this work. The sensibility of predictions is also tested. To do so, we changed the interval width and comparated our results with those of a previous neural network prediction and those of others authors using differents methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApJ...755...10Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApJ...755...10Y"><span>Phenomenological Study of Interaction between Solar Acoustic Waves and Sunspots from Measured Scattered Wavefunctions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao</p> <p>2012-08-01</p> <p>The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their sizes is 0.75.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...833L..21W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...833L..21W"><span>Role of the Coronal Alfvén Speed in Modulating the Solar-wind Helium Abundance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.-M.</p> <p>2016-12-01</p> <p>The helium abundance He/H in the solar wind is relatively constant at ˜0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ˜0.01 at solar minimum to ˜0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995-2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v A in the outer corona, while being only weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v A near the source surface; resonance with Alfvén waves, with v A and the relative speed of α-particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApJ...758...88C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApJ...758...88C"><span>Interference Fringes of Solar Acoustic Waves around Sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chou, Dean-Yi; Zhao, Hui; Yang, Ming-Hsu; Liang, Zhi-Chao</p> <p>2012-10-01</p> <p>Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SoPh..229..181L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SoPh..229..181L"><span>The Schwabe and Gleissberg Periods in the Wolf Sunspot Numbers and the Group Sunspot Numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, K. J.; Gao, P. X.; Su, T. W.</p> <p>2005-06-01</p> <p>Three wavelet functions: the Morlet wavelet, the Paul wavelet, and the DOG wavelet have been respectively performed on both the monthly Wolf sunspot numbers (Rz) from January 1749 to May 2004 and the monthly group sunspot numbers (Rg) from June 1795 to December 1995 to study the evolution of the Gleissberg and Schwabe periods of solar activity. The main results obtained are (1) the two most obvious periods in both the Rz and Rg are the Schwabe and Gleissberg periods. The Schwabe period oscillated during the second half of the eighteenth century and was steady from the 1850s onward. No obvious drifting trend of the Schwabe period exists. (2) The Gleissberg period obviously drifts to longer periods the whole consideration time, and the drifting speed of the Gleissberg period is larger for Rz than for Rg. (3) Although the Schwabe-period values for Rz and Rg are about 10.7 years, the value for Rz seems slightly larger than that for Rg. The Schwabe period of Rz is highly significant after the 1820s, and the Schwabe period of Rg is highly significant over almost the whole consideration time except for about 20 years around the 1800s. The evolution of the Schwabe period for both Rz and Rg in time is similar to each other. (4) The Gleissberg period in Rz and Rg is highly significant during the whole consideration time, but this result is unreliable at the two ends of each of the time series of the data. The evolution of the Gleissberg period in Rz is similar to that in Rg.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890059304&hterms=attention+deficit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dattention%2Bdeficit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890059304&hterms=attention+deficit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dattention%2Bdeficit"><span>Photometric measurements of solar irradiance variations due to sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chapman, G. A.; Herzog, A. D.; Laico, D. E.; Lawrence, J. K.; Templer, M. S.</p> <p>1989-01-01</p> <p>A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667420-sunspot-rotation-driver-major-solar-eruptions-noaa-active-region','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667420-sunspot-rotation-driver-major-solar-eruptions-noaa-active-region"><span>SUNSPOT ROTATION AS A DRIVER OF MAJOR SOLAR ERUPTIONS IN THE NOAA ACTIVE REGION 12158</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vemareddy, P.; Ravindra, B.; Cheng, X., E-mail: vemareddy@iiap.res.in</p> <p></p> <p>We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h{sup −1} with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the ARmore » magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26246410','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26246410"><span>Climate changes and solar cycles recorded at the Holocene Paraná Delta, and their impact on human population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Milana, Juan Pablo; Kröhling, Daniela</p> <p>2015-08-06</p> <p>The Paraná delta, growing at a rate of c. 2 km(2) yr(-1) since 6,000 yrs, is one of the most complete records of the Late Holocene in southern South America. The evolution of this 17,400 km(2) delta enclosed in Plata estuary, can be tracked by a series of 343 successive coastal-ridges showing a c.11 years period, in coincidence with sunspot cycle, also found in some North Hemisphere coastal-ridge successions. The Paraná delta shifted from fluvial, to wave-dominated, and back to the present fluvial-dominated delta, in response to climate changes associated with wind activity correlating with South American glacial cycles. The wave-dominated windy period coincides with the activation of the Pampean Sand Sea, suggesting desert conditions prevailed on the Pampas between 5,300 and 1,700 yrs, in coincidence with scarce or absent pre-historic aborigine remains ("archeological silence"). Further warmer and less windy conditions allowed human repopulation. Results suggest that aside the solar forcing, both short and medium term climate changes controlled delta evolution. An important learning is that a slight cooling would turn the highly productive pampas, into that unproductive desert and, given the lack of artificial irrigation systems, changing present-day warmhouse into a cooling cycle might be economically catastrophic for the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...512851M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...512851M"><span>Climate changes and solar cycles recorded at the Holocene Paraná Delta, and their impact on human population</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milana, Juan Pablo; Kröhling, Daniela</p> <p>2015-08-01</p> <p>The Paraná delta, growing at a rate of c. 2 km2 yr-1 since 6,000 yrs, is one of the most complete records of the Late Holocene in southern South America. The evolution of this 17,400 km2 delta enclosed in Plata estuary, can be tracked by a series of 343 successive coastal-ridges showing a c.11 years period, in coincidence with sunspot cycle, also found in some North Hemisphere coastal-ridge successions. The Paraná delta shifted from fluvial, to wave-dominated, and back to the present fluvial-dominated delta, in response to climate changes associated with wind activity correlating with South American glacial cycles. The wave-dominated windy period coincides with the activation of the Pampean Sand Sea, suggesting desert conditions prevailed on the Pampas between 5,300 and 1,700 yrs, in coincidence with scarce or absent pre-historic aborigine remains (“archeological silence”). Further warmer and less windy conditions allowed human repopulation. Results suggest that aside the solar forcing, both short and medium term climate changes controlled delta evolution. An important learning is that a slight cooling would turn the highly productive pampas, into that unproductive desert and, given the lack of artificial irrigation systems, changing present-day warmhouse into a cooling cycle might be economically catastrophic for the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4526942','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4526942"><span>Climate changes and solar cycles recorded at the Holocene Paraná Delta, and their impact on human population</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Milana, Juan Pablo; Kröhling, Daniela</p> <p>2015-01-01</p> <p>The Paraná delta, growing at a rate of c. 2 km2 yr−1 since 6,000 yrs, is one of the most complete records of the Late Holocene in southern South America. The evolution of this 17,400 km2 delta enclosed in Plata estuary, can be tracked by a series of 343 successive coastal-ridges showing a c.11 years period, in coincidence with sunspot cycle, also found in some North Hemisphere coastal-ridge successions. The Paraná delta shifted from fluvial, to wave-dominated, and back to the present fluvial-dominated delta, in response to climate changes associated with wind activity correlating with South American glacial cycles. The wave-dominated windy period coincides with the activation of the Pampean Sand Sea, suggesting desert conditions prevailed on the Pampas between 5,300 and 1,700 yrs, in coincidence with scarce or absent pre-historic aborigine remains (“archeological silence”). Further warmer and less windy conditions allowed human repopulation. Results suggest that aside the solar forcing, both short and medium term climate changes controlled delta evolution. An important learning is that a slight cooling would turn the highly productive pampas, into that unproductive desert and, given the lack of artificial irrigation systems, changing present-day warmhouse into a cooling cycle might be economically catastrophic for the region. PMID:26246410</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830036906&hterms=divided+attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddivided%2Battention','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830036906&hterms=divided+attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddivided%2Battention"><span>Theories of dynamical phenomena in sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, J. H.</p> <p>1981-01-01</p> <p>Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820009159','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820009159"><span>On the seat of the solar cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gough, D.</p> <p>1981-01-01</p> <p>A discussion of some of the issues raised in connection with the seat of the solar cycle are presented. Is the cycle controlled by a strictly periodic oscillator that operates in the core, or is it a turbulent dynamo confined to the convection zone and possibly a thin boundary layer beneath it? Sunspot statistics are discussed, with a view to ascertaining the length of the memory of the cycle, without drawing a definitive conclusion. Also discussed are some of the processes that might bring about variations delta L and delta R in the luminosity and the radius of the photosphere. It appears that the ratio W = delta lnR/delta lnL increases with the depth of the disturbance that produces the variations, so that imminent observations might determine whether or not the principal dynamical processes are confined to only the outer layers of the Sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525274-enhanced-coronal-mass-ejection-detection-rate-since-solar-cycle-polar-field-reversal','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525274-enhanced-coronal-mass-ejection-detection-rate-since-solar-cycle-polar-field-reversal"><span>ON THE ENHANCED CORONAL MASS EJECTION DETECTION RATE SINCE THE SOLAR CYCLE 23 POLAR FIELD REVERSAL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Petrie, G. J. D.</p> <p>2015-10-10</p> <p>Compared to cycle 23, coronal mass ejections (CMEs) with angular widths >30° have been observed to occur at a higher rate during solar cycle 24, per sunspot number. This result is supported by data from three independent databases constructed using Large Angle and Spectrometric Coronagraph Experiment coronagraph images, two employing automated detection techniques and one compiled manually by human observers. According to the two databases that cover a larger field of view, the enhanced CME rate actually began shortly after the cycle 23 polar field reversal, in 2004, when the polar fields returned with a 40% reduction in strength andmore » the interplanetary radial magnetic field became ≈30% weaker. This result is consistent with the link between anomalous CME expansion and the heliospheric total pressure decrease recently reported by Gopalswamy et al.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...855....8Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...855....8Y"><span>Investigating the Relation between Sunspots and Umbral Dots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yadav, Rahul; Louis, Rohan E.; Mathew, Shibu K.</p> <p>2018-03-01</p> <p>Umbral dots (UDs) are transient, bright features observed in the umbral region of a sunspot. We study the physical properties of UDs observed in sunspots of different sizes. The aim of our study is to relate the physical properties of UDs with the large-scale properties of sunspots. For this purpose, we analyze high-resolution G-band images of 42 sunspots observed by Hinode/SOT, located close to disk center. The images were corrected for instrumental stray light and restored with the modeled point-spread function. An automated multilevel tracking algorithm was employed to identify the UDs located in selected G-band images. Furthermore, we employed Solar Dynamics Observatory/HMI, limb-darkening-corrected, full-disk continuum images to estimate the sunspot phase and epoch for the selected sunspots. The number of UDs identified in different umbrae exhibits a linear relation to the umbral size. The observed filling factor ranges from 3% to 7% and increases with the mean umbral intensity. Moreover, the filling factor shows a decreasing trend with the umbral size. We also found that the observed mean and maximum intensities of UDs are correlated with the mean umbral intensity. However, we do not find any significant relationship between the mean (and maximum) intensity and effective diameter of UDs and the sunspot area, epoch, and decay rate. We suggest that this lack of relation could be due to either the distinct transition of spatial scales associated with overturning convection in the umbra or the shallow depth associated with UDs, or both.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070001986&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DVantage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070001986&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DVantage"><span>The Heliosphere Through the Solar Activity Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Balogh, A.; Lanzerotti, L. J.; Suess, S. T.</p> <p>2006-01-01</p> <p>Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar ESA and NASA have now unamiously agreed a third extension to operate the highly successful Ulysses spacecraft until March 2008 and, in 2007 and 2008, the European-built space probe will fly over the poles of the Sun for a third time. This will enable Ulysses to add an important chapter to its survey of the high-latitude heliosphere and this additional material would be included in a 2nd edition of this book.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006EOSTr..87Q.248S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006EOSTr..87Q.248S"><span>On ``Carrington, Schwabe, and the Gold Medal''</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schröder, Wilfried</p> <p>2006-06-01</p> <p>I note with interest the article by Cliver [2005] about the early solar investigations of Heinrich Schwabe and Richard Carrington and offer some further insights into Schwabe's work and its reception at the time. Schwabe commenced his observations in 1826 with a small telescope he had bought some years earlier. For more than 40 years, he observed the Sun and made meteorological notes. In his 1843 essay, he noted a sunspot cycle of about 10 years, but his result aroused little interest with contemporary astronomers. Research at the time was focused on the physics of the planets, the Moon, and other topics. Schwabe had published data in the well-known Astronomische Nachrichten, but not until Alexander von Humboldt republished it in his Kosmos, volume 3 (1851), did the data begin to be recognized and accepted by Schwabe's fellow scientists. Humboldt's Kosmos was a publication of considerable prestige, and it had a wide circulation among scientists and the educated public. Scwabe's work became familiar to other scientists including Carrington, Angelo Secchi, and Gustav Spörer and, as noted by Cliver, earned him the gold medal of the Royal Astronomical Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080022945','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080022945"><span>On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2008-01-01</p> <p>The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090019098','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090019098"><span>Activity Cycles in Stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hathaway, David H.</p> <p>2009-01-01</p> <p>Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2257669B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2257669B"><span>The sunspot databases of the Debrecen Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baranyi, Tünde; Gyori, Lajos; Ludmány, András</p> <p>2015-08-01</p> <p>We present the sunspot data bases and online tools available in the Debrecen Heliophysical Observatory: the DPD (Debrecen Photoheliographic Data, 1974 -), the SDD (SOHO/MDI-Debrecen Data, 1996-2010), the HMIDD (SDO/HMI-Debrecen Data, HMIDD, 2010-), the revised version of Greenwich Photoheliographic Data (GPR, 1874-1976) presented together with the Hungarian Historical Solar Drawings (HHSD, 1872-1919). These are the most detailed and reliable documentations of the sunspot activity in the relevant time intervals. They are very useful for studying sunspot group evolution on various time scales from hours to weeks. Time-dependent differences between the available long-term sunspot databases are investigated and cross-calibration factors are determined between them. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28636751','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28636751"><span>Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krebs, Charles J; Boonstra, Rudy; Boutin, Stan</p> <p>2018-01-01</p> <p>Population cycles have long fascinated ecologists from the time of Charles Elton in the 1920s. The discovery of large population fluctuations in undisturbed ecosystems challenged the idea that pristine nature was in a state of balance. The 10-year cycle of snowshoe hares (Lepus americanus Erxleben) across the boreal forests of Canada and Alaska is a classic cycle, recognized by fur traders for more than 300 years. Since the 1930s, ecologists have investigated the mechanisms that might cause these cycles. Proposed causal mechanisms have varied from sunspots to food supplies, parasites, diseases, predation and social behaviour. Both the birth rate and the death rate change dramatically over the cycle. Social behaviour was eliminated as a possible cause because snowshoe hares are not territorial and do not commit infanticide. Since the 1960s, large-scale manipulative experiments have been used to discover the major limiting factors. Food supply and predation quickly became recognized as potential key factors causing the cycle. Experiments adding food and restricting predator access to field populations have been decisive in pinpointing predation as the key mechanism causing these fluctuations. The immediate cause of death of most snowshoe hares is predation by a variety of predators, including the Canada lynx (Lynx canadensis Kerr). The collapse in the reproductive rate is not due to food shortage as was originally thought, but is a result of chronic stress from predator chases. Five major issues remain unresolved. First, what is the nature of the predator-induced memory that results in the prolonged low phase of the cycle? Second, why do hare cycles form a travelling wave, starting in the centre of the boreal forest in Saskatchewan and travelling across western Canada and Alaska? Third, why does the amplitude of the cycle vary greatly from one cycle to the next in the same area? Fourth, do the same mechanisms of population limitation apply to snowshoe hares in eastern North American or in similar ecosystems across Siberia? Finally, what effect will climatic warming have on all the above issues? The answers to these questions remain for future generations of biologists to determine. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSH33A2035S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSH33A2035S"><span>Radio Imaging Observations of Solar Activity Cycle and Its Anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shibasaki, K.</p> <p>2011-12-01</p> <p>The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005021','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005021"><span>Solar cycle variations of the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crooker, N. U.</p> <p>1983-01-01</p> <p>Throughout the course of the past one and a half solar cycles, solar wind parameters measured near the ecliptic plane at 1 AU varied in the following way: speed and proton temperature have maxima during the declining phase and minima at solar minimum and are approximately anti-correlated with number density and electron temperature, while magnetic field magnitude and relative abundance of helium roughly follow the sunspot cycle. These variations are described in terms of the solar cycle variations of coronal holes, streamers, and transients. The solar wind signatures of the three features are discussed in turn, with special emphasis on the signature of transients, which is still in the process of being defined. It is proposed that magnetic clouds be identified with helium abundance enhancements and that they form the head of a transient surrounded by streamer like plasma, with an optional shock front. It is stressed that relative values of a parameter through a solar cycle should be compared beginning with the declining phase, especially in the case of magnetic field magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAVSO..42..239H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAVSO..42..239H"><span>AAVSO Visual Sunspot Observations vs. SDO HMI Sunspot Catalog</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howe, R.</p> <p>2014-06-01</p> <p>(Abstract only) The most important issue with regard to using the SDO HMI data from the National Solar Observatory (NSO, http://www.nso.edu/staff/fwatson/STARA) is that their current model for creating sunspot counts does not split in groups and consequently does not provide a corresponding group count and Wolf number. As it is a different quantity, it cannot be mixed with the data from our sunspot networks. For the AAVSO with about seventy stations contributing each day, adding HMI sunspot data would anyway hardly change the resulting index. Perhaps, the best use of HMI data is for an external validation, by exploiting the fact that HMI provides a series that is rather close to the sunspot number and is acquired completely independently. So, it is unlikely to suffer from the same problems (jumps, biases) at the same time. This validation only works for rather short durations, as the lifetime of space instruments is limited and aging effects are often affecting the data over the mission. In addition, successive instruments have different properties: for example, the NSO model has not managed yet to reconcile the series from MDI and HMI. There is a ~10-15% jump. The first challenge that should be addressed by AAVSO using HMI data is the splitting in groups and deriving group properties. Then, together with the sunspot counts and areas per group, a lot more analyses and diagnostics can be derived (like the selective disappearance of the smallest sunspots?), that can help interpreting trends in the ratio SSN/other solar indices and many other solar effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...856...79Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...856...79Y"><span>Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.</p> <p>2018-03-01</p> <p>We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21457099-seismic-discrimination-thermal-magnetic-anomalies-sunspot-umbrae','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21457099-seismic-discrimination-thermal-magnetic-anomalies-sunspot-umbrae"><span>SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lindsey, C.; Cally, P. S.; Rempel, M.</p> <p>2010-08-20</p> <p>Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to themore » thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950042601&hterms=polar+bear&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dpolar%2Bbear','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950042601&hterms=polar+bear&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dpolar%2Bbear"><span>High-resolution observations of the polar magnetic fields of the sun</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, H.; Varsik, J.; Zirin, H.</p> <p>1994-01-01</p> <p>High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor (the ratio of the area occupied by the magnetic elements to the total area) of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993. We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle. We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70-80 deg) and low (60-70 deg) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoPh..291.2269D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoPh..291.2269D"><span>The Solar Rotation in the 1930s from the Sunspot and Flocculi Catalogs of the Ebro Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Paula, V.; Curto, J. J.; Casas, R.</p> <p>2016-10-01</p> <p>The tables of sunspot and flocculi heliographic positions included in the catalogs published by the Ebro Observatory in the 1930s have recently been recovered and converted into digital format by using optical character recognition (OCR) technology. We here analyzed these data by computing the angular velocity of several sunspot and flocculi groups. A difference was found in the rotational velocity for sunspots and flocculi groups at high latitudes, and we also detected an asymmetry between the northern and southern hemispheres, which is especially marked for the flocculi groups. The results were then fitted with a differential-rotation law [ω=a+b sin2 B] to compare the data obtained with the results published by other authors. A dependence on the latitude that is consistent with former studies was found. Finally, we studied the possible relationship between the sunspot/flocculi group areas and their corresponding angular velocity. There are strong indications that the rotational velocity of a sunspot/flocculi group is reduced (in relation to the differential rotation law) when its maximum area is larger.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PASJ...69...86H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PASJ...69...86H"><span>Records of auroral candidates and sunspots in Rikkokushi, chronicles of ancient Japan from early 7th century to 887</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Ebihara, Yusuke; Kawamura, Akito Davis; Isobe, Hiroaki; Namiki, Katsuko; Shibata, Kazunari</p> <p>2017-12-01</p> <p>We present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese official histories from the early 7th century to 887, to review the solar and auroral activities. In total, we found one sunspot record and 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate their reliability, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of the auroral oval. These discussions suggest a major gap in auroral candidates from the late 7th to early 9th centuries, which includes the candidate of the grand minimum reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude of observational sites with a higher potential for observing aurorae more frequently than at present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140003180','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140003180"><span>On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.</p> <p>2013-01-01</p> <p>Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000xmm..pres....5.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000xmm..pres....5."><span>SOHO sees right through the Sun, and finds sunspots on the far side</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2000-03-01</p> <p>The story is told today in the journal Science by Charles Lindsey of Tucson, Arizona, and Doug Braun of Boulder, Colorado. They realised that the analytical witchcraft called helioseismic holography might open a window right through the Sun. And the technique worked when they used it to decode waves seen on the visible surface by one of SOHO's instruments, the Michelson Doppler Imager, or MDI. "We've known for ten years that in theory we could make the Sun transparent all the way to the far side," said Charles Lindsey. "But we needed observations of exceptional quality. In the end we got them, from MDI on SOHO." For more than 100 years scientists have been aware that groups of dark sunspots on the Sun's visible face are often the scene of flares and other eruptions. Nowadays they watch the Sun more closely than ever, because modern systems are much more vulnerable to solar disturbances than old-style technology was. The experts can still be taken by surprise, because the Sun turns on its axis. A large group of previously hidden sunspots can suddenly swing into view on the eastern (left-hand) edge of the Sun. It may already be blazing away with menacing eruptions. With a far-side preview of sunspots, nasty shocks for the space weather forecasters may now be avoidable. Last year, French and Finnish scientists used SWAN, another instrument on SOHO, to detect activity on the far side. They saw an ultraviolet glow lighting up gas in the Solar System beyond the Sun, and moving across the sky like a lighthouse beam as the Sun rotated. The method used by Lindsey and Braun with MDI data is completely different, and it pinpoints the source of the activity on the far side. Solar seismology chalks up another success Detection of sound waves reverberating through the Sun opened its gassy interior for investigation, in much the same way as seismologists learned to explore the Earth's rocky interior with earthquake waves. Using special telescopes on the ground and in space, helioseismologists detect many different modes of vibration appearing at the Sun's surface, all with tales to tell about how the interior is structured and how the gas moves about. The SOHO spacecraft is an ideal platform for helioseismology because its station 1.5 million kilometres out in space allows it to watch the Sun for 24 hours a day. Its own motions are very gentle -- an important consideration when scientists are looking for subtle motions on the Sun's surface. Developed and operated by a Californian team, the MDI instrument is the most elaborate of three helioseismic instruments on SOHO. It measures rhythmic motions at a million points across the Sun's visible surface. Computers can interpret the motions in terms of sound waves travelling through the Sun. The waves are affected by the various layers and movements of gas that they encounter. MDI has already revealed many unknown features of the interior, including layers where the speed of the gas changes abruptly and hidden jet streams circling the Sun's poles. The team is also discovering what goes on underneath sunspots on the near side of the Sun. Philip Scherrer of Stanford University, California, leads the MDI team. He is gratified but not surprised that his instrument has chalked up another success, with the detection of sunspots on the far side. "Up till now we've explored the Sun's interior quite thoroughly from the near surface down to the core," Scherrer commented. "Charlie Lindsey and Doug Braun told me many years ago how they hoped to use MDI on SOHO to see all the way to the far side. I was always sure they could do it." The technique of helioseismic holography used by Lindsey and Braun examines a wide ring of sound waves that emanate from a small region on the far side, and reach the near side by rebounding internally from the solar surface. A sunspot group reveals itself because the Sun's surface is depressed and very strong magnetic fields speed up the sound waves. As a result the sound waves arrive at the front side about 6 seconds earlier than equivalent waves from sunspot-free regions, in a total travel time of about 3 hours. The change in speed becomes evident when sound waves shuttling back and forth get out of step with one another. MDI data for 28-29 March 1998 revealed, on the far side, a sunspot group that was not plainly visible on the near side until ten days later. Observations for 24 hours were more than sufficient to detect the sunspots, which means that routine monitoring is a realistic possibility. "The far-side sunspots are a good example of why this spacecraft is so exciting to work with," said Bernhard Fleck, ESA's project scientist for SOHO. "We can make a completely new discovery in fundamental solar physics, and immediately think of applying it to the practical task of monitoring the daily activity of the Sun and predicting its effects on the Earth." The SOHO project is an international cooperation between the European Space Agency (ESA) and NASA. The spacecraft was built in Europe for ESA and equipped with instruments by teams of scientists in Europe and the USA. NASA launched SOHO in December 1995, and in 1998 ESA and NASA decided to extend its highly successful operations until 2003.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AAS...21011104L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AAS...21011104L"><span>A Solar Cycle Prediction Puzzle's PossibleExplanation?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luhmann, Janet</p> <p>2007-05-01</p> <p>A long-standing and intriguing puzzle of the last few decades has been Joan Feynman's (1982) discovery that the solar cycle (sunspot number) maximum trends follow the level of geomagnetic activity during the prior minimum phase. Recently Hathaway (GRL 33, 2006) used this relationship to make a prediction of the size of the next solar maximum. But the physical reason why this should work at all remains a matter of speculation. Although it has been suggested that geomagnetic activity around solar minimum is determined by the terrestrial magnetosphere's response to high speed solar wind streams which seem to often characterize the declining phase of the cycle, why should the occurrence of these streams portend the new solar maximum? Our improving understanding of solar wind sources may hold the key, and also tell us something useful about the solar dynamo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........15L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........15L"><span>Wave phenomena in sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löhner-Böttcher, Johannes</p> <p>2016-03-01</p> <p>Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the magnetic field lines. Signatures of umbral flashes and running penumbral waves are found already in the middle to upper photosphere. The signal and velocity increases toward the chromosphere. The shock wave behavior of the umbral flashes is confirmed by the evolving saw-tooth pattern in velocity and the strong downward motion of the plasma right after the passage of the shock front. The power spectra and peak periods of sunspot waves vary significantly with atmospheric altitude and position within the sunspot. In the vertical field of the umbra, the mixture of wave periods in the lower photosphere transforms into a domination of the 2.5min range in the upper photosphere and chromosphere. In the differentially inclined penumbra, the dominating wave periods increase with radial distance. The acoustic cut-off frequency which blocks the propagation of long-period waves is considered to increase with the field inclination and the ambient sound speed. The reconstruction of the sunspot's magnetic field inclination based on the peak period distribution yields consistent results with the inferred photospheric and extrapolated coronal magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1664K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1664K"><span>Reconstructions of solar irradiance on centennial time scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo</p> <p></p> <p>Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1016B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1016B"><span>Study of Sun-Earth interactions using equatorial VHF scintillation in the Indian region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banola, Sridhar</p> <p></p> <p>Plasma density irregularities in the ionosphere (associated with ESF, plasma bubbles and Spo-radic E layers) cause scintillations in various frequency ranges. VHF radio wave scintillation technique is extensively used to study plasma density irregularities of sub-kilometre size . Ef-fects of magnetic and solar activity on ionospheric irregularities are studied so as to ascertain their role in the space weather of the near earth environment in space. Indian Institute of Ge-omagnetism operated a ground network of 13 stations monitoring amplitude scintillations on 244/251 MHz (FLEETSAT 73° E) signals in placecountry-regionIndia for more than a decade under AICPITS. At present VHF scintillation is being recorded at Mumbai by monitoring 251 MHz signal transmitted by geostationary satellite UFO2(71.2 E). sampling at 20 Hz. During CAWSES campaign (March-April 2006, low sunspot period) occurrence of daytime scintilla-tions was observed higher than the nighttime scintillations. This could be due to the fact that during low sunspot years occurrence of spread-F is limited to a narrow latitude region near the dip equator. To study solar cycle association of scintillations, long series of simultaneous amplitude scintillation data for period Jan 1989 to Dec 2000 at Indian low-latitude stations Tirunelveli/Trivandrum, close to dip equator, Pondicherry/Karur, located at the fringe of elec-trojet, Mumbai (dip lat. 13.5o N), a temperate station and Ujjain (dip lat. 18.6o N), close to anomaly crest region are utilized. Nighttime scintillation occurrence is solar activity dependent. Equatorial scintillations are inhibited with increase in geomagnetic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364623-variation-solar-radius-rotation-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364623-variation-solar-radius-rotation-cycles"><span>ON THE VARIATION OF SOLAR RADIUS IN ROTATION CYCLES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qu, Z. N.; Kong, D. F.; Xiang, N. B.</p> <p>2015-01-10</p> <p>The Date Compensated Discrete Fourier Transform and CLEANest algorithm are used to study the temporal variations of the solar radius observed at Rio de Janeiro Observatory from 1998 March 2 to 2009 November 6. The CLEANest spectra show several significant periodicities around 400, 312, 93.5, 86.2, 79.4, 70.9, 53.2, and 26.3 days. Then, combining the data on the daily solar radius measured at Calern Observatory and Rio de Janeiro Observatory and the corresponding daily sunspot areas, we study the short-term periodicity of the solar radius and the role of magnetic field in the variation of the solar radius. The rotation periodmore » of the daily solar radius is determined to be statistically significant. Moreover, its temporal evolution is anti-phase with that of sunspot activity, and it is found anti-phase with solar activity. Generally, the stronger solar activity is, the more obvious is the anti-phase relation of radius with solar activity. This indicates that strong magnetic fields have a greater inhibitive effect than weak magnetic fields on the variation of the radius.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E.618D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E.618D"><span>Long-term irradiance observation and short-term flare prediction with LYRA on PROBA2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dammasch, Ingolf; Dominique, Marie; West, Matthew; Katsiyannis, Thanassis; Ryan, Daniel; Wauters, Laurence</p> <p></p> <p>The solar radiometer LYRA on board the ESA micro-satellite PROBA2 has observed the Sun continuously since January 2010 in various spectral band passes, and has gained a considerable data base. Two of the LYRA channels cover the irradiance between soft X-ray and extreme ultraviolet. The variation of the sunspot number appears to show a strong similarity with the variation of these channels, when their long-range development is taken into account. The same holds for SXR levels observed by the GOES satellites. Due to LYRA's bandwidth and coverage of various active-region temperatures, its relatively smooth development may yield some information on the structure of the current solar cycle. On its websites, LYRA presents not only EUV and SXR time series in near real-time, but also information on flare parameters and long-term irradiance and sunspot levels. It will be demonstrated whether it is possible to aid space weather forecast with these statistical data, especially for the prediction of expected flare strength on a daily basis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654136-role-coronal-alfven-speed-modulating-solar-wind-helium-abundance','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654136-role-coronal-alfven-speed-modulating-solar-wind-helium-abundance"><span>ROLE OF THE CORONAL ALFVÉN SPEED IN MODULATING THE SOLAR-WIND HELIUM ABUNDANCE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil</p> <p></p> <p>The helium abundance He/H in the solar wind is relatively constant at ∼0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ∼0.01 at solar minimum to ∼0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995–2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v {sub A} in the outer corona, while being onlymore » weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v {sub A} near the source surface; resonance with Alfvén waves, with v {sub A} and the relative speed of α -particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2646N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2646N"><span>Study the gradient characteristics of the ionosphere at equatorial latitude during the latest cycle of solar activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen Thai, Chinh; Temitope Seun, Oluwadare; Le Thi, Nhung; Schuh, Harald</p> <p>2017-04-01</p> <p>The sun has its own seasons with an average duration of about 11 years. In this time, the sun enters a period of increased activity called the solar maximum and a period of decreased activity called the solar minimum. Cycles span from one minimum to the next. The current solar cycle is 24, which began on January 4, 2008 and is expected to be ended in 2019. During this period, the ionosphere changes its thickness and its characteristics as well. The change is most complicated and unpredictable at the equatorial latitudes in a band around 150 northward and 150 southward from the equator. Thailand is located in these regions is known as one of the countries most affected by the ionosphere change. Ionospheric information such as the vertical total electron content (VTEC) and scintillation indices can be extracted from the measurements of GNSS dual-frequency receivers. In this study, a Matlab tool is programmed to calculate some ionosphere parameters from the normal RINEX observation file including VTEC value, amplitude scintillation S4 index and others. The value of VTEC at one IGS station in Thailand (13.740N, 100.530E) is computed for almost one full solar cycle, that is 8 years, from 2009 to 2016. From these results, we are able to derive the rules of TEC variation over time and its dependence on solar activity in the equatorial regions. The change of VTEC is estimated in diurnal, seasonal and annual variation for the latest solar cycle. The solar cycle can be represented in several ways, in this paper we use the sunspot number and the F10.7 cm radio flux to describe the solar activity. The correlation coefficients between these solar indices and the monthly maximum of VTEC value are around 0.87, this indicates a high dependence of the ionosphere on solar activity. Besides, a scintillation map derived from GNSS data is displayed to indicate the intensity of scintillation activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...856...32Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...856...32Z"><span>Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaqarashvili, Teimuraz</p> <p>2018-03-01</p> <p>The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22356588-evaluation-capability-local-helioseismology-discern-between-monolithic-spaghetti-sunspot-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22356588-evaluation-capability-local-helioseismology-discern-between-monolithic-spaghetti-sunspot-models"><span>Evaluation of the capability of local helioseismology to discern between monolithic and spaghetti sunspot models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Felipe, T.; Crouch, A. D.; Birch, A. C., E-mail: tobias@nwra.com</p> <p>2014-06-20</p> <p>The helioseismic properties of the wave scattering generated by monolithic and spaghetti sunspots are analyzed by means of numerical simulations. In these computations, an incident f- or p {sub 1}-mode travels through the sunspot model, which produces absorption and phase shift of the waves. The scattering is studied by inspecting the wavefield, computing travel-time shifts, and performing Fourier-Hankel analysis. The comparison between the results obtained for both sunspot models reveals that the differences in the absorption coefficient can be detected above noise level. The spaghetti model produces a steep increase of the phase shift with the degree of the modemore » at short wavelengths, while mode mixing is more efficient for the monolithic model. These results provide a clue for what to look for in solar observations to discern the constitution of sunspots between the proposed monolithic and spaghetti models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750045065&hterms=energy+consumption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Denergy%2Bconsumption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750045065&hterms=energy+consumption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Denergy%2Bconsumption"><span>The nature of the sunspot phenomenon. III - Energy consumption and energy transport. IV - The intrinsic instability of the magnetic configuration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parker, E. N.</p> <p>1975-01-01</p> <p>The basic relation is described between conversion of thermal energy into convective fluid motion and convective transport of thermal energy, and the equilibrium configuration of a sunspot's magnetic field is shown to be unstable to the hydromagnetic exchange instability. It is determined that heat transport necessarily accompanies convective driving of fluid motion and that the formation of cool sunspots requires convection extending coherently over several scale heights, a distance of at least 500 km. Several theoretical possibilities for sunspot stabilization are reviewed, and it is suggested that a suitable redistribution of cooling in the umbra may be the stabilization mechanism. It is believed that if cooling extends to a great depth in an elongated portion of a sunspot, the magnetic pressure on the boundary will be reduced, tending to reduce the elongation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E.155A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E.155A"><span>Novel approaches to mid-long term weather and climate forecast based on the solar-geomagnetic signal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Avakyan, Sergey; Baranova, Lubov</p> <p></p> <p>Two possibilities are discussed concerning the use of data on solar-geomagnetic activity for meteorological forecasting (cloudiness, temperature and precipitation). The first possibility is consideration of quasicyclic recurrence of large solar flares and geomagnetic storms with periods of 2 - 5 years. For the periods shorter than one year the second possibility is taking into account: the negative correlation of total global cloud cover with the number of solar spots and positive correlation with the total solar irradiance (TSI) - the contribution of short wave radiation of faculae fields. To justify the mechanism of solar-tropospheric links, it is obviously necessary to provide explanation for the observed dependence of weather and climate on usual cyclic activity of the Sun. Meteorologists and even geophysicists have found no significant correlation between atmospheric parameters and either number of solar spots or variations of solar constant. It was found that temperature did not display any variability with the 11-year period (the basic solar cycle). Instead stable quasi-periodic variations of temperature of air within 2 - 5.5 years and also for the precipitation periods in the interval 2 to 6 years were observed. Each 11-year cycle displays two maxima for the probability of solar X-ray and extreme UV flares and for probability of medium and strong geomagnetic storms (2 to 4 years for the flares and 2 to 6 years for significant magnetic storms), and those induced by solar flares, the latter, as a rule, between the maximum points of the number of geomagnetic storms. On a timescale of about a year or shorter, a correlation is revealed between the occurrence of the total cloudiness and the sunspot and faculae activity (number of solar spots and the value of the solar constant - TSI). From the number of sunspots and the data concerning faculae fields, on the basis of the known statistics for the lifetime of these formation in the solar photosphere, it is possible to forecasting the variation in the area of cloud and consequently the thermal radiative balance of the Earth (the temperature anomalies) for several months ahead. The physics of these manifestations of the effect of the "solar signal" on the troposphere is also related with our radio-optical three-stage trigger mechanism. The microwave radiation generated by ionosphere under the influence of the enhanced solar and geomagnetic activity (increased fluxes of the ionizing solar radiation during solar flares and of electrons precipitated from radiation belts during magnetic storms) affects the cluster condensation process of origination and further evolution of optically thin cloudiness, including the formation of precipitation in the course of «sowing» by crystals from upper-layer clouds. These clouds cause a net warming due to their relative transparence at short wavelengths but opacity in the infrared region (where there is flux of the thermal radiation coming out from the underlying surface).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9026C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9026C"><span>The new climate data record of total and spectral solar irradiance: Current progress and future steps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coddington, Odele; Lean, Judith; Rottman, Gary; Pilewskie, Peter; Snow, Martin; Lindholm, Doug</p> <p>2016-04-01</p> <p>We present a climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. TSI and SSI are constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM), Spectral Irradiance Monitor (SIM), and SOlar Stellar Irradiance Comparison Experiment (SOLSTICE). We show that TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales and we assume that SSI measurements are reliable on solar rotational time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled TSI and SSI with the measurement record and with other solar irradiance models. We also discuss ongoing work to assess the sensitivity of the modeled irradiances to model assumptions, namely, the scaling of solar variability from rotational-to-cycle time scales and the representation of the sunspot darkening index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMPP21B1983E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMPP21B1983E"><span>High frequency solar influence revealed in sclerosponge-derived Caribbean SST record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Estrella, J.; Winter, A.; Sherman, C.; Mangini, A.</p> <p>2012-12-01</p> <p>We present a high-resolution (annual) record of the Caribbean mixed layer temperature at different depths derived from oxygen isotopic ratios obtained from the sclerosponge Ceratoporella nicholsoni. Sclerosponges precipitate their calcium carbonate skeleton in equilibrium with their surrounding environment and are capable of living at depths down to 200 m. The sponges for this project were collected off the coasts of Puerto Rico and the US Virgin Islands in northeastern Caribbean Sea. The records obtained extend from the early 1500's to the present and suggest that the Northeastern Caribbean was 1 - 2 °C cooler during the Little Ice Age than present conditions and that sea surface temperature (SST) has been rising at an average linear rate of 0.009 °C yr-1 since the mid 1800's, three times faster than the World Ocean. Wavelet time series analysis of our records suggests that Caribbean SST variability is regulated by the sunspot cycle, especially when the total solar irradiance is high, at what time the SSTs and the sunspot cycle are highly coupled. Our findings suggest a SST response to solar influence of 0.40 °C (W/m2)-1, almost twice that of the World Ocean. Deceleration of the Caribbean Current is proposed as a possible reason for this disparity. Further work is currently being done on other sponges and other calcium carbonate proxies to examine the extension of this forcing in other climate phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21582858-mean-field-solar-dynamo-models-strong-meridional-flow-bottom-convection-zone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21582858-mean-field-solar-dynamo-models-strong-meridional-flow-bottom-convection-zone"><span>MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pipin, V. V.; Kosovichev, A. G.</p> <p>2011-09-01</p> <p>This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottommore » of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...51C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...51C"><span>Could a Hexagonal Sunspot Have Been Observed During the Maunder Minimum?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrasco, V. M. S.; Vaquero, J. M.; Gallego, M. C.</p> <p>2018-03-01</p> <p>The Maunder Minimum is the period between 1645 and 1715. Its main characteristic is abnormally low and prolonged solar activity. However, some authors have doubted the low level of solar activity during that period by questioning the accuracy and objectivity of the observers. This work presents a particular case of a sunspot observed during the Maunder Minimum with an unusual shape of its umbra and penumbra: a hexagon. This sunspot was observed by Cassini in November 1676, just at the core of the Maunder Minimum. This historical observation is compared with a twin case that occurred recently in May 2016. The conclusion reached is that Cassini's record is another example of the good quality of the observations that were made during the Maunder Minimum, showing the meticulousness of the astronomers of that epoch. This sunspot observation made by Cassini does not support the conclusions of Zolotova and Ponyavin ( Astrophys. J. 800, 42, 2015) that professional astronomers in the seventeenth century only registered round sunspots. Finally, a discussion is given of the importance of this kind of unusual sunspot record for a better assessment of the true level of solar activity in the Maunder Minimum.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654394-observational-evidence-flux-rope-within-sunspot-umbra','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654394-observational-evidence-flux-rope-within-sunspot-umbra"><span>Observational Evidence of a Flux Rope within a Sunspot Umbra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Guglielmino, Salvo L.; Zuccarello, Francesca; Romano, Paolo, E-mail: salvo.guglielmino@oact.inaf.it</p> <p></p> <p>We observed an elongated filamentary bright structure inside the umbra of the big sunspot in active region NOAA 12529, which differs from the light bridges usually observed in sunspots for its morphology, magnetic configuration, and velocity field. We used observations taken with the Solar Dynamic Observatory satellite to characterize this feature. Its lifetime is 5 days, during which it reaches a maximum length of about 30″. In the maps of the vertical component of the photospheric magnetic field, a portion of the feature has a polarity opposite to that of the hosting sunspot. At the same time, in the entiremore » feature the horizontal component of the magnetic field is about 2000 G, substantially stronger than in the surrounding penumbral filaments. Doppler velocity maps reveal the presence of both upward and downward plasma motions along the structure at the photospheric level. Moreover, looking at the chromospheric level, we noted that it is located in a region corresponding to the edge of a small filament that seems rooted in the sunspot umbra. Therefore, we interpreted the bright structure as the photospheric counterpart of a flux rope touching the sunspot and giving rise to penumbral-like filaments in the umbra.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21582.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21582.html"><span>Spotless Sun</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-03-20</p> <p>NASA Solar Dynamics Observatory sees the sun has been virtually spotless, as in no sunspots, a 11-day spotless stretch not seen since the last solar minimum many years ago. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21582</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000HEAD....5.4224C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000HEAD....5.4224C"><span>Sunspots Resource--From Ancient Cultures to Modern Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Craig, N.</p> <p>2000-10-01</p> <p>Sunspots is a web-based lesson that was developed by the Science Education Gateway (SEGway) program with participants from the Exploratorium, a well known science Museum in San Francisco, UC Berkeley Space Sciences Laboratory, and teachers from several California schools. This space science resource allows 8-12 grade students to explore the nature of sunspots and the history of solar physics in its effort to understand their nature. Interviews with solar physicists and archeo-astronomers, historic images, cutting-edge NASA images, movies, and research results, as well as a student-centered sunspot research activity using NASA space science data defines this lesson. The sunspot resource is aligned with the NCTM and National Science Education Standards. It emphasizes inquiry-based methods and mathematical exercises through measurement, graphic data representation, analysis of NASA data, lastly, interpreting results and drawing conclusions. These resources have been successfully classroom tested in 4 middle schools in the San Francisco Unified School District as part of the 3-week Summer School Science curricula. Lessons learned from the Summer School 1999 will be explained. This resource includes teacher-friendly lesson plans, space science background material and student worksheets. There will be Sunspots lesson CD-ROM and printed version of the relevant classroom-ready materials and a teacher resource booklet available. Sunspot resource is brought to you by, The Science Education Gateway - SEGway - Project, and the HESSI satellite and NASA's Office of Space Science Sun-Earth Connection Education Forum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14572673','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14572673"><span>Chronomics of tree rings for chronoastrobiology and beyond.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nintcheu-Fata, Sylvain; Katinas, George; Halberg, Franz; Cornélissen, Germaine; Tolstykh, Victor; Michael, Henry N; Otsuka, Kuniaki; Schwartzkopff, Othild; Bakken, Earl</p> <p>2003-10-01</p> <p>Gliding spectral windows illustrate the changes as a function of time in the relative prominence of signals in a given frequency range, viewed in 3D or as surface charts. As an example, the method is applied to a 2,189-year series of averages of ring measurements on 11 sequoia trees published by Douglass. Analyses of the original data and after filtering reveal, among others, components with periods of about 10.5 and 21 years similar to the Schwabe and Hale solar activity cycles. An alignment of gliding spectra with a global spectrum serves to define, by minima, the ranges of variability around the anticipated Schwabe and Hale cycles. This procedure may have more general applicability when dealing with ranges of only transiently synchronized, wobbly, and perhaps sometimes free-running periodicities. Solar activity is known to affect climate and changes in climate are reflected to some extent in tree growth. The spectral structure in tree rings could serve not only to check any relations of climate with sunspots, auroras and more modern measures of solar activity, but also to check any purely mathematical extrapolations from the much shorter available actual data on solar activity. With such extrapolated series and the data analyzed herein, the task remains to align physical and physiological variables to further study the influence of natural environmental factors near and far on biota, including international battles, which cover an even longer span of 2,556 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007BAAS...39.1072K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007BAAS...39.1072K"><span>Obituary: Per E. Maltby, 1933-2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kjeldseth-Moe, Olav</p> <p>2007-12-01</p> <p>Professor Per Maltby, prominent Norwegian Solar Physicist at the Institute of Theoretical Astrophysics, University of Oslo, Norway, died on 24 May 2006. Lung cancer was diagnosed in February, but he was expected to improve. Until the end of March he came to his office every day, got recent papers off the web, and followed his field closely as he had always done. Per Maltby was born in Oslo, Norway, on 3 November 1933. He started his studies at the University of Oslo in 1952 and took his candidate degree in 1957. Between 1955 and 1958 he was a research assistant at the Institute of Theoretical Astrophysics in Oslo. In 1960 Maltby became an assistant professor (amanuensis) at the University of Bergen and from January 1963 he held a corresponding position at the University of Oslo. He became an associate professor in 1967, and from 1983 until he retired in 2003 he was a full Professor at the Institute of Theoretical Astrophysics, University of Oslo. Per Maltby is survived by his wife Elisabet (née Ruud), whom he married in 1956. They had two children. The daughter, Bente, is a medical doctor and gynecologist serving as a section head at the district hospital in Kristiansand in southern Norway. Their son, Lars, holds a doctoral degree in engineering, specializing in the properties of powders. He is currently managing director in the Norwegian division of the French multinational company Saint Gobain. As a father Per Maltby expressed pride in his children and was pleased with their progress in life. He also enjoyed his five grandchildren. As a scientist, Per Maltby was versatile and productive. In the early 1960s he visited the California Institute of Technology where he did pioneering studies of the distribution and time variation of the radio emission from active galaxies, using the Owens Valley Radio Observatory. His work with Alan Moffet contributed to revealing the secrets of these remote objects. Their results drew attention and were indeed mentioned in the pages of Time magazine. However, Maltby's lifelong interest was in our Sun, and most of his more than 200 published articles and presentations are within the field of solar physics. Throughout his career, and into his years as an emeritus professor, he obtained significant results, results to which colleagues all over the world will continue to refer. In 1964 Maltby took his doctoral degree (Doctor Philosopiae) on a study of the Evershed effect. He elegantly demonstrated that the flow was predominantly radial with only minor vertical and azimuthal components and that flow speeds increased all the way to the edge of the penumbra where the flow seemed to abruptly disappear. This disagreed with conventional knowledge at the time. His results are, however, confirmed in all later investigations. Per Maltby highly valued his work with colleague Gunnar Eriksen. They studied the effect of progressive sonic and Alfvén waves on the profiles of spectral lines. The results demonstrated the characteristic spectral signatures of such waves and laid the foundation for a proper use of line profiles as a diagnostic tool for waves in solar and stellar atmospheres. Sunspots continued to be a main interest. For twenty years Per Maltby and his students measured the relative intensity of sunspots at a number of wavelengths from blue and into the infrared. The infrared measurements represented entirely new knowledge, giving access to the deepest layers in the sunspot photospheres. This refined series of spectral sunspot measurements stretched over two eleven-year activity cycles and resulted in his models of the umbra and penumbra of spots, models that have served as standard reference models until this day. Already before the start of the SOHO era in solar physics, Per Maltby had shifted his attention to the conditions in the transition region and coronal layers above sunspots. Together with his collaborators he studied rapid down flows, often at supersonic speeds, from the corona into sunspot umbrae. He rediscovered sunspot plumes, the dense, cold pillars of gas rising above sunspot umbrae and penumbrae into the corona, and mapped their properties. In his last works Maltby unambiguously showed that the transition region over sunspot umbrae were filled with upward propagating sound waves that penetrate into the corona under certain conditions. This result deserves special attention since many have believed that such penetrations must take place, but nobody was earlier able to demonstrate it observationally in a convincing manner. Per Maltby was always looking forward and always aware of new possibilities. He was an influential member on the Norwegian government committee that recommended Norwegian membership in the European Space Agency (ESA), and was the force behind securing sufficient domestic government funds to allow Norwegian scientists to participate in SOHO and Cluster. He took part in SOHO from the earliest planning stages and later played a prominent role in the Norwegian SOHO project. Through his activities, Norwegian space research came to life, introducing new and rich possibilities for research in astronomy and geophysics in Norway. Maltby played important roles in many national and international advisory groups and committees. For a number of years he was a member of several of ESA's advisory groups. He served as leader of the Institute of Theoretical Astrophysics in Oslo in 1976-1977, and in 1976-1981 he was a member, and later the chairman, of the project selection committee for natural sciences for the Norwegian Foundation of Science and the Humanities. Finally, Maltby was instrumental in securing a Norwegian role in the Japanese solar space observatory Hinode, which will be a rich source for Norwegian solar physics in the years to come. Per Maltby had a remarkably wide scientific orientation. His papers most frequently describe observations and their interpretation. He had an enormous respect for what is "real," the solid and measurable. But he combined this with deep theoretical insights that he demonstrated in his interpretations and theoretical papers. Per taught his students a rational, scientific way of thinking and encouraged their curiosity. He was open and always dedicated to develop the best scientific cooperation. And he was generous, which was always important to his young collaborators. He might appear quiet and reserved, but showed his warm heart and appreciation when you got close to him. His death is a sad loss for his colleagues and for our discipline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27445419','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27445419"><span>A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela</p> <p></p> <p>A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CEAB...36....9G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CEAB...36....9G"><span>Distribution of activity at the solar active longitudes between 1979 - 2011 in the northern hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gyenge, N.; Baranyi, T.; Ludmány, A.</p> <p></p> <p>The solar active longitudes were studied in the northern hemisphere in cycles 22 and 23 by using data of DPD sunspot catalogue. The active longitudes are not fixed in the Carrington system, they have a well recognizable migration path between the descending phase of cycle 21 (from about 1984) and ascending phase of cycle 23 (until about 1996), out of this interval the migration path is ambiguous. The longitudinal distribution on both sides of the path has been computed and averaged for the length of the path. The so-called flip-flop phenomenon, when the activity temporarily gets to the opposite longitude, can also be recognized. The widths of the active domains are fairly narrow in the increasing and decaying phases of cycle 22, their half widths are about 20°-30° for both the main and secondary active belts but it is more flat and stretched around the maximum with a half width of about 60°.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4044623','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4044623"><span>Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Duan, Fucai; Wang, Yongjin; Shen, Chuan-Chou; Wang, Yi; Cheng, Hai; Wu, Chung-Che; Hu, Hsun-Ming; Kong, Xinggong; Liu, Dianbing; Zhao, Kan</p> <p>2014-01-01</p> <p>The association between solar activity and Asian monsoon (AM) remains unclear. Here we evaluate the possible connection between them based on a precisely-dated, high-resolution speleothem oxygen isotope record from Dongge Cave, southwest China during the past 4.2 thousand years (ka). Without being adjusted chronologically to the solar signal, our record shows a distinct peak-to-peak correlation with cosmogenic nuclide 14C, total solar irradiance (TSI), and sunspot number (SN) at multi-decadal to centennial timescales. Further cross-wavelet analyses between our calcite δ18O and atmospheric 14C show statistically strong coherence at three typical periodicities of ~80, 200 and 340 years, suggesting important roles of solar activities in modulating AM changes at those timescales. Our result has further indicated a better correlation between our calcite δ18O record and atmospheric 14C than between our record and TSI. This better correlation may imply that the Sun–monsoon connection is dominated most likely by cosmic rays and oceanic circulation (both associated to atmospheric 14C), instead of the direct solar heating (TSI). PMID:24894978</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH51C2496O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH51C2496O"><span>The Strongest Magnetic Field in Sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Okamoto, J.; Sakurai, T.</p> <p>2017-12-01</p> <p>Sunspots are concentrations of magnetic fields on the solar surface. Generally, the strongest magnetic field in each sunspot is located in the dark umbra in most cases. A typical field strength in sunspots is around 3,000 G. On the other hand, some exceptions also have been found in complex sunspots with bright regions such as light bridges that separate opposite polarity umbrae, for instance with a strength of 4,300 G. However, the formation mechanism of such strong fields outside umbrae is still puzzling. Here we report an extremely strong magnetic field in a sunspot, which was located in a bright region sandwiched by two opposite-polarity umbrae. The strength is 6,250 G, which is the largest ever observed since the discovery of magnetic field on the Sun in 1908 by Hale. We obtained 31 scanned maps of the active region observed by Hinode/SOT/SP with a cadence of 3 hours over 5 days (February 1-6, 2014). Considering the spatial and temporal evolution of the vector magnetic field and the Doppler velocity in the bright region, we suggested that this strong field region was generated as a result of compression of one umbra pushed by the outward flow from the other umbra (Evershed flow), like the subduction of the Earth's crust in plate tectonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..835Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..835Z"><span>Some Features of the Variation of the Magnetic Field Characteristics in the Umbra of Sunspots During Flares and Coronal Mass Ejections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zagainova, Yu. S.; Fainshtein, V. G.; Rudenko, G. V.; Obridko, V. N.</p> <p>2017-12-01</p> <p>The observed variations of the magnetic properties of sunspots during eruptive events (solar flares and coronal mass ejections (CMEs)) are discussed. Variations of the magnetic field characteristics in the umbra of the sunspots of active regions (ARs) recorded during eruptive events on August 2, 2011, March 9, 2012, April 11, 2013, January 7, 2014, and June 18, 2015, are studied. The behavior of the maximum of the total field strength B max, the minimum inclination angle of the field lines to the radial direction from the center of the Sun αmin (i.e., the inclination angle of the axis of the magnetic tube from the sunspot umbra), and values of these parameters B mean and αmean mean within the umbra are analyzed. The main results of our investigation are discussed by the example of the event on August 2, 2011, but, in general, the observed features of the variation of magnetic field properties in AR sunspots are similar for all of the considered eruptive events. It is shown that, after the flare onset in six AR sunspots on August 2, 2011, the behavior of the specified magnetic field parameters changes in comparison with that observed before the flare onset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663294-midterm-periodicity-analysis-mount-wilson-magnetic-indices-using-synchrosqueezing-transform','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663294-midterm-periodicity-analysis-mount-wilson-magnetic-indices-using-synchrosqueezing-transform"><span>Midterm Periodicity Analysis of the Mount Wilson Magnetic Indices Using the Synchrosqueezing Transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Feng, Song; Wang, Feng; Deng, Hui</p> <p>2017-08-10</p> <p>A novel time–frequency technique, called the synchrosqueezing transform (SST), is used to investigate the midterm periodic variations of magnetic fields on the solar surface. The Magnetic Plage Strength Index (MPSI) and the Mount Wilson Sunspot Index (MWSI), measured daily by the Mount Wilson Observatory between 1970 January 19 and 2012 January 22, are selected. Short-, mid, and longer-term periodicities are represented and decomposed by the SST with hardly any mode mixing. This demonstrates that the SST is a useful time–frequency analysis technique to characterize the periodic modes of helioseismic data. Apart from the fundamental modes of the annual periodicity, ∼27more » day rotational cycle and ∼11 year solar cycle, the SST reveals several midterm periodicities in the two magnetic activity indices, specifically, ∼157 days (i.e., Rieger-type periodicity), and ∼1.3 and 1.7 years. The periodic modes, with 116.4 and 276.2 day periodicity in the MPSI, 108.5 and 251.6 day periodicity in the MWSI, and 157.7 day periodicity in the two indices, are in better accord with those significant periodicities derived from the Rossby waves theoretical model. This study suggests that the modes are caused by Rossby waves. For the 1.30 and 1.71 year periodicity of the MPSI, and the 1.33 and 1.67 year periodicity of the MWSI, our analysis infers that they are related to those periodicities with the same timescale in the interior of the Sun and in the high atmospheric layers.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016usc..confE..38W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016usc..confE..38W"><span>High resolution He I 10830 angstrom narrow-band imaging of an M-class flare.I-analysis of sunspot dynamics during flaring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Ya; Su, Yingna; Hong, Zhenxiang; Zeng, Zhicheng; Ji, Kaifan; Goode, Philip R.; Cao, Wenda; Ji, Haisheng</p> <p>2016-10-01</p> <p>We report our first-step results of high resolution He I 1083 nm narrow-band imaging of an M 1.8 class two-ribbon flare on July 5,2012. The flare was observed with the 1.6 meter aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extention of umbral flashes, both take the form of absorption in our 1083 nm narrow-band images. From a space-time image made of a slit cutting across the ribbon and the sunspot, we find that dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside one ribbon of the flare when it sweeps into sunspot's penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a returning of the absorption strip with similar speed. We tentatively explain the phenomenon as the result of a sudden increase in the density of ortho-Helium atoms in the area of the sunspot area being excited by the flare's EUV illumination. This explanation is based on the obsevation that 1083 nm absorption in the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22357233-solar-eruption-driven-rapid-sunspot-rotation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22357233-solar-eruption-driven-rapid-sunspot-rotation"><span>A solar eruption driven by rapid sunspot rotation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ruan, Guiping; Chen, Yao; Du, Guohui</p> <p></p> <p>We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some overlying arcades were partially rooted in a sunspot. The sunspot rotated at ∼10° hr{sup –1} during a period of 6 hr prior to the eruption. In this period, the filament was found to rise gradually along with the sunspot rotation. Based on the Helioseismic and Magnetic Imager observation, for an area along the polarity inversion line underneath the filament,more » we found gradual pre-eruption decreases of both the mean strength of the photospheric horizontal field (B{sub h} ) and the mean inclination angle between the vector magnetic field and the local radial (or vertical) direction. These observations are consistent with the pre-eruption gradual rising of the filament-associated magnetic structure. In addition, according to the nonlinear force-free field reconstruction of the coronal magnetic field, a pre-eruption magnetic flux rope structure is found to be in alignment with the filament, and a considerable amount of magnetic energy was transported to the corona during the period of sunspot rotation. Our study provides evidence that in this event sunspot rotation plays an important role in twisting, energizing, and destabilizing the coronal filament-flux rope system, and led to the eruption. We also propose that the pre-event evolution of B{sub h} may be used to discern the driving mechanism of eruptions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679839-emergence-magnetic-flux-generated-solar-convective-dynamo-formation-sunspots-active-regions-origin-asymmetries','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679839-emergence-magnetic-flux-generated-solar-convective-dynamo-formation-sunspots-active-regions-origin-asymmetries"><span>Emergence of Magnetic Flux Generated in a Solar Convective Dynamo. I. The Formation of Sunspots and Active Regions, and The Origin of Their Asymmetries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu</p> <p></p> <p>We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed throughmore » the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...850...35L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...850...35L"><span>Solar ALMA Observations: Constraining the Chromosphere above Sunspots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loukitcheva, Maria A.; Iwai, Kazumasa; Solanki, Sami K.; White, Stephen M.; Shimojo, Masumi</p> <p>2017-11-01</p> <p>We present the first high-resolution Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a sunspot at wavelengths of 1.3 and 3 mm, obtained during the solar ALMA Science Verification campaign in 2015, and compare them with the predictions of semi-empirical sunspot umbral/penumbral atmosphere models. For the first time, millimeter observations of sunspots have resolved umbral/penumbral brightness structure at the chromospheric heights, where the emission at these wavelengths is formed. We find that the sunspot umbra exhibits a radically different appearance at 1.3 and 3 mm, whereas the penumbral brightness structure is similar at the two wavelengths. The inner part of the umbra is ˜600 K brighter than the surrounding quiet Sun (QS) at 3 mm and is ˜700 K cooler than the QS at 1.3 mm, being the coolest part of sunspot at this wavelength. On average, the brightness of the penumbra at 3 mm is comparable to the QS brightness, while at 1.3 mm it is ˜1000 K brighter than the QS. Penumbral brightness increases toward the outer boundary in both ALMA bands. Among the tested umbral models, that of Severino et al. provides the best fit to the observational data, including both the ALMA data analyzed in this study and data from earlier works. No penumbral model among those considered here gives a satisfactory fit to the currently available measurements. ALMA observations at multiple millimeter wavelengths can be used for testing existing sunspot models, and serve as an important input to constrain new empirical models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IAUS..327...46L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IAUS..327...46L"><span>A new look at sunspot formation using theory and observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.</p> <p>2017-10-01</p> <p>Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21579962-study-poynting-flux-active-region-using-data-driven-magnetohydrodynamic-simulation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21579962-study-poynting-flux-active-region-using-data-driven-magnetohydrodynamic-simulation"><span>STUDY OF THE POYNTING FLUX IN ACTIVE REGION 10930 USING DATA-DRIVEN MAGNETOHYDRODYNAMIC SIMULATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fan, Y. L.; Wang, H. N.; He, H.</p> <p>2011-08-10</p> <p>Powerful solar flares are closely related to the evolution of magnetic field configuration on the photosphere. We choose the Poynting flux as a parameter in the study of magnetic field changes. We use time-dependent multidimensional MHD simulations around a flare occurrence to generate the results, with the temporal variation of the bottom boundary conditions being deduced from the projected normal characteristic method. By this method, the photospheric magnetogram could be incorporated self-consistently as the bottom condition of data-driven simulations. The model is first applied to a simulation datum produced by an emerging magnetic flux rope as a test case. Then,more » the model is used to study NOAA AR 10930, which has an X3.4 flare, the data of which has been obtained by the Hinode/Solar Optical Telescope on 2006 December 13. We compute the magnitude of Poynting flux (S{sub total}), radial Poynting flux (S{sub z} ), a proxy for ideal radial Poynting flux (S{sub proxy}), Poynting flux due to plasma surface motion (S{sub sur}), and Poynting flux due to plasma emergence (S{sub emg}) and analyze their extensive properties in four selected areas: the whole sunspot, the positive sunspot, the negative sunspot, and the strong-field polarity inversion line (SPIL) area. It is found that (1) the S{sub total}, S{sub z} , and S{sub proxy} parameters show similar behaviors in the whole sunspot area and in the negative sunspot area. The evolutions of these three parameters in the positive area and the SPIL area are more volatile because of the effect of sunspot rotation and flux emergence. (2) The evolution of S{sub sur} is largely influenced by the process of sunspot rotation, especially in the positive sunspot. The evolution of S{sub emg} is greatly affected by flux emergence, especially in the SPIL area.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...792...41Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...792...41Y"><span>Oscillations in a Sunspot with Light Bridges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Ding; Nakariakov, Valery M.; Huang, Zhenghua; Li, Bo; Su, Jiangtao; Yan, Yihua; Tan, Baolin</p> <p>2014-09-01</p> <p>The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minute oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22365204-oscillations-sunspot-light-bridges','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22365204-oscillations-sunspot-light-bridges"><span>Oscillations in a sunspot with light bridges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yuan, Ding; Su, Jiangtao; Yan, Yihua</p> <p>2014-09-01</p> <p>The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minutemore » oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH13A2462K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH13A2462K"><span>The Emergence of Kinked Flux Tubes as the Source of Delta-Spots on the Photosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knizhnik, K. J.; Linton, M.; Norton, A. A.; DeVore, C. R.</p> <p>2017-12-01</p> <p>It has been observationally well established that the magnetic configurations most favorable to producing energetic flaring events reside in so called delta-spots. These delta-spots are a subclass of sunspots, and are classified as sunspots which have umbrae (dark regions in the interior of sunspots) with opposite magnetic polarities that share a common penumbra. They are characterized by strong rotation and an extremely compact magnetic configuration, and are observed to follow an inverse-Hale law. They are also observed to have strong twist. It has been shown that over 90% of X-class flares that occurred during solar cycles 22 and 23 originated in delta-spots (Guo, Lin & Deng, 2014). Understanding the origin of delta-spots, therefore, is a crucial step towards the ultimate goal of space weather forecasting. In this work, we argue that delta-spots arise during the emergence of kinked flux tubes into the corona, and that their unique properties are due to the emergence of knots present in the kink mode of twisted flux tubes. We present numerical simulations that study the emergence of both kink-stable and unstable flux tubes into the solar corona, and demonstrate quantitatively that their photospheric signatures are drastically different, with the latter flux tubes demonstrating strong coherent rotation and a very tight flux distribution on the photosphere. We show that the coronal magnetic field resulting from the emergence of a kinked flux tube contains more free energy than the unkinked case, potentially leading to more energetic flares. We discuss the implications of our simulations for observations. This work was supported by the Chief of Naval Research through the National Research Council.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>