Sample records for year engineering physics

  1. Bio-Engineering Services to the Developmentally Disabled Adolescent. Final Report.

    ERIC Educational Resources Information Center

    Mallik, Kalisankar; Yuspeh, Sheldon

    A 1-year demonstration project involving 24 developmentally disabled students (9- to 20-years-old) with severe physical limitations was conducted to increase their educational and vocational possibilities by using cost-effective bio-engineering techniques to modify their physical environment and develop improved adaptive devices. Phase I of the…

  2. Educational Analysis of a First Year Engineering Physics Experiment on Standing Waves: Based on the ACELL Approach

    ERIC Educational Resources Information Center

    Bhathal, Ragbir; Sharma, Manjula D.; Mendez, Alberto

    2010-01-01

    This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The…

  3. Physics for Scientists and Engineers, 5th edition - Volume 1

    NASA Astrophysics Data System (ADS)

    Tipler, Paul A.; Mosca, Gene P.

    For nearly 30 years, Paul Tipler's Physics for Scientists and Engineers has set the standard in the introductory calculus-based physics course for clarity, accuracy, and precision. In this fifth edition, Paul has recruited Gene Mosca to bring his years of teaching experience to bear on the text, to scrutinize every explanation and example from the perspective of the freshman student. The result is a teaching tool that retains its precision and rigor, but offers struggling students the support they need to solve problems strategically and to gain real understanding of physical concepts.

  4. NRL Fact Book

    DTIC Science & Technology

    2004-12-31

    and engineers work together with industry , academia, state or local governments, or other Federal agencies to develop NRL technologies for government...http://www.nrl.navy.mil) annually. It is printed every other year. NRL has a continuing need for physical scientists, mathematicians, engineers , and...listed for each activity. NRL has a continuing need for physical scientists, mathematicians, engineers , and support personnel. Vacancies are filled

  5. Right tail increasing dependence between scores

    NASA Astrophysics Data System (ADS)

    Fernández, M.; García, Jesús E.; González-López, V. A.; Romano, N.

    2017-07-01

    In this paper we investigate the behavior of the conditional probability Prob(U > u|V > v) of two records coming from students of an undergraduate course, where U is the score of calculus I, scaled in [0, 1] and V is the score of physics scaled in [0, 1], the physics subject is part of the admission test of the university. For purposes of comparison, we consider two different undergraduate courses, electrical engineering and mechanical engineering, during nine years, from 2003 to 2011. Through a Bayesian perspective we estimate Prob(U > u|V > v) year by year and course by course. We conclude that U is right tail increasing in V, in both courses and for all the years. Moreover, over these nine years, we observe different ranges of variability for the estimated probabilities of electrical engineering when compared to the estimated probabilities of mechanical engineering.

  6. Linus Pauling Memorial Lectures

    Science.gov Websites

    Institute for Science, Engineering and Public Policy Home About The Institute Format/Policy Pauling Memorial Lectures Science, Engineering and Public Policy 2017-2018 Sabbatical Year Taking a Year Physics to the New Philosophy Terry Bristol Institute for Science, Engineering and Public Policy 7:00pm

  7. Concepts of Mathematics for Students of Physics and Engineering: A Dictionary

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.

    2003-01-01

    A physicist with an engineering background, the author presents a mathematical dictionary containing material encountered over many years of study and professional work at NASA. This work is a compilation of the author's experience and progress in the field of study represented and consists of personal notes and observations that can be used by students in physics and engineering.

  8. An appraisal of an online tutorial system for the teaching and learning of engineering physics in conjunction with contextual physics and mathematics, and relevant mathematics

    NASA Astrophysics Data System (ADS)

    Bhathal, Ragbir

    2016-09-01

    The number of students entering engineering schools in Australian universities has increased tremendously over the last few years because of the Australian Federal Government's policy of increasing the participation rates of Higher School Certificate students and students from low social economic status backgrounds in the tertiary sector. They now come with a diverse background of skills, motivations and prior knowledge. It is imperative that new methods of teaching and learning be developed. This paper describes an online tutorial system used in conjunction with contextual physics and mathematics, and the revision of the relevant mathematical knowledge at the appropriate time before a new topic is introduced in the teaching and learning of engineering physics. Taken as a whole, this study shows that students not only improved their final examination results but there was also an increase in the retention rate of first-year engineering students which has financial implications for the university.

  9. Use of the "Moodle" Platform to Promote an Ongoing Learning When Lecturing General Physics in the Physics, Mathematics and Electronic Engineering Programmes at the University of the Basque Country UPV/EHU

    ERIC Educational Resources Information Center

    López, Gabriel A.; Sáenz, Jon; Leonardo, Aritz; Gurtubay, Idoia G.

    2016-01-01

    The "Moodle" platform has been used to put into practice an ongoing evaluation of the students' Physics learning process. The evaluation has been done on the frame of the course General Physics, which is lectured during the first year of the Physics, Mathematics and Electronic Engineering Programmes at the Faculty of Science and…

  10. Engineering and physical sciences in oncology: challenges and opportunities.

    PubMed

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  11. Preliminary engineering cost trends for highway projects.

    DOT National Transportation Integrated Search

    2011-10-21

    Preliminary engineering (PE) for a highway project encompasses two efforts: planning to minimize the physical, social, and human environmental impacts of projects and engineering design to deliver the best alternative. PE efforts begin years in advan...

  12. Women of Science, Technology, Engineering, and Mathematics: A Qualitative Exploration into Factors of Success

    ERIC Educational Resources Information Center

    Olund, Jeanine K.

    2012-01-01

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…

  13. Freshman year computer engineering students' experiences for flipped physics lab class: An action research

    NASA Astrophysics Data System (ADS)

    Akı, Fatma Nur; Gürel, Zeynep

    2017-02-01

    The purpose of this research is to determine the university students' learning experiences about flipped-physics laboratory class. The research has been completed during the fall semester of 2015 at Computer Engineering Department of Istanbul Commerce University. In this research, also known as a teacher qualitative research design, action research method is preferred to use. The participants are ten people, including seven freshman and three junior year students of Computer Engineering Department. The research data was collected at the end of the semester with the focus group interview which includes structured and open-ended questions. And data was evaluated with categorical content analysis. According to the results, students have some similar and different learning experiences to flipped education method for physics laboratory class.

  14. Restructuring Graduate Engineering Education: The M.Eng. Program at Cornell.

    ERIC Educational Resources Information Center

    Cady, K. Bingham; And Others

    1988-01-01

    Discusses the restructuring of the graduate program to accommodate emerging fields in engineering. Notes half of the graduate degrees Cornell grants each year are M.Eng. degrees. Offers 12 specialties: aerospace, agriculture, chemical, civil, electrical, mechanical and nuclear engineering; computer science, engineering physics; geological…

  15. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  16. Engineering and physical sciences in oncology: challenges and opportunities

    PubMed Central

    Mitchell, Michael J.; Jain, Rakesh K.; Langer, Robert

    2017-01-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas. PMID:29026204

  17. Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University

    NASA Astrophysics Data System (ADS)

    Perry, Jonathan; Bassichis, William

    Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.

  18. Research and technology: Fiscal year 1984 report

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics covered include extraterrestrial physics, high energy astrophysics, astronomy, solar physics, atmospheres, oceans, terrestrial physics, space technology, sensors, techniques, user space data systems, space communications and navigation, and system and software engineering.

  19. Integrating Engineering into an Urban Science Classroom

    ERIC Educational Resources Information Center

    Meyer, Helen

    2017-01-01

    This article presents a single case study of an experienced physical science teacher (Janet) integrating engineering practices into her urban science classroom over a two-year time frame. The article traces how Janet's understanding of the role engineering in her teaching expanded beyond engineering as an application of science and mathematics to…

  20. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  1. The Effectiveness of Contextual Learning on Physics Achievement in Career Technical Education

    NASA Astrophysics Data System (ADS)

    Arcand, Scott Andrew

    The purpose of this casual-comparative study was to determine if students being taught the Minnesota Science Physics Standards via contextual learning methods in Project Lead the Way (PLTW) Principles of Engineering or the PLTW Aerospace Engineering courses, taught by a Career Technical Education (CTE) teacher, achieve at the same rate as students in a physics course taught by a science teacher. The PLTW courses only cover the standards taught in the first trimester of physics. The PLTW courses are two periods long for one trimester. Students who successfully pass the PLTW Principles of Engineering course or the PLTW Engineering Aerospace course earn one-half credit in physics and one-half elective credit. The instrument used to measure student achievement was the district common summative assessment for physics. The Common Summative Assessment scores were pulled from the data warehouse from the first trimester of the 2013-2014 school year. Implications of the research address concepts of contextual learning especially in the Career Technical Education space. The mean score for Physics students (30.916) and PLTW Principles of Engineering students (32.333) was not statistically significantly different. Students in PLTW Principles of Engineering achieved at the same rate as students in physics. Due to the low rate of students participating in the Common Summative Assessment in PTLW Aerospace (four out of seven students), there is not enough data to determine if there is a significant difference in the Physics A scores and PLTW Aerospace Engineering scores.

  2. Persistence of physics and engineering students via peer mentoring, active learning, and intentional advising

    NASA Astrophysics Data System (ADS)

    McCavit, K.; Zellner, N. E. B.

    2016-11-01

    Albion College, a private, undergraduate-only, liberal arts college in Michigan, USA, has developed and implemented a low-cost peer-mentoring programme that blends personal and academic support to help students achieve academic success in the introductory courses required for the Physics Major or the Dual-Degree Program in Engineering. This enhanced mentoring programme provides much-needed assistance for undergraduate students to master introductory physics and mathematics coursework, to normalise the struggle of learning hard material, and to accept their identity as physics or engineering students (among other goals). Importantly, this programme has increased retention among entering science, technology, engineering and mathematics students at Albion College as they move through the introductory classes, as shown by a 20% increase in retention from first-semester to third-semester physics courses compared to years when this programme was not in place.

  3. Teaching Bioprocess Engineering to Undergraduates: Multidisciplinary Hands-On Training in a One-Week Practical Course

    ERIC Educational Resources Information Center

    Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related…

  4. A Paradox in Physics Education in France

    ERIC Educational Resources Information Center

    Smigiel, Eddie; Sonntag, Michel

    2013-01-01

    This paper deals with the nature and the level of difficulty of teaching and learning physics in the first year of undergraduate engineering schools in France. Our case study is based on a survey regarding a classic and basic question in applied physics, and which was conducted with a group of second-year students in a post-baccalaureate 1…

  5. A 2009 survey of the Australasian clinical medical physics and biomedical engineering workforce.

    PubMed

    Round, W Howell

    2010-06-01

    A survey of the Australasian clinical medical physics and biomedical engineering workforce was carried out in 2009 following on from a similar survey in 2006. 621 positions (equivalent to 575 equivalent full time (EFT) positions) were captured by the survey. Of these 330 EFT were in radiation oncology physics, 45 EFT were in radiology physics, 42 EFT were in nuclear medicine physics, 159 EFT were in biomedical engineering and 29 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data shows the changes to the workforce over the preceding 3 years and identifies shortfalls in the workforce.

  6. Graduate Training Program in Ocean Engineering. Final Report.

    ERIC Educational Resources Information Center

    Frey, Henry R.

    Activities during the first three years of New York University's Ocean Engineering Program are described including the development of new courses and summaries of graduate research projects. This interdepartmental program at the master's level includes aeronautics, chemical engineering, metallurgy, and physical oceanography. Eleven courses were…

  7. Physics Group Work in a Phenomenographic Perspective--Learning Dynamics as the Experience of Variation and Relevance

    ERIC Educational Resources Information Center

    Ingerman, Ake; Berge, Maria; Booth, Shirley

    2009-01-01

    In this paper, we analyse learning dynamics in the context of physics group work of the kind increasingly found in engineering education. We apply a phenomenographic perspective on learning, seeing the notion of variation as the basic mechanism of learning. Empirically, we base our analysis on data from first year engineering students discussing…

  8. Proceedings of the World Congress on Medical Physics and Biomedical Engineering (San Antonio, Texas, August 6-12, 1988).

    ERIC Educational Resources Information Center

    Clark, John W., Ed.; And Others

    1988-01-01

    This document contains the proceedings of a joint meeting of the International Federation for Medical and Biological Engineering and the International Organization for Medical Physics. Participants from over 50 countries were in attendance. The theme of the program, "Challenges for the Year 2000," was a reminder of the challenges which confront…

  9. Analysis of Arguments Constructed by First-Year Engineering Students Addressing Electromagnetic Induction Problems

    ERIC Educational Resources Information Center

    Almudi, Jose Manuel; Ceberio, Mikel

    2015-01-01

    This study explored the quality of arguments used by first-year engineering university students enrolled in a traditional physics course dealing with electromagnetic induction and related problem solving where they had to assess whether the electromagnetic induction phenomenon would occur. Their conclusions were analyzed for the relevance of the…

  10. Design of a Professional Practice Simulator for Educating and Motivating First-Year Engineering Students

    ERIC Educational Resources Information Center

    Chesler, Naomi C.; Arastoopour, Golnaz; D'Angelo, Cynthia M.; Bagley, Elizabeth A.; Shaffer, David Williamson

    2013-01-01

    Increasingly, first-year engineering curricula incorporate design projects. However, the faculty and staff effort and physical resources required for the number of students enrolled can be daunting and affect the quality of instruction. To reduce these costs, ensure a high quality educational experience, and reduce variability in student outcomes…

  11. 10 CFR 35.51 - Training for an authorized medical physicist.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... all candidates for certification to: (1) Hold a master's or doctor's degree in physics, medical physics, other physical science, engineering, or applied mathematics from an accredited college or university; (2) Have 2 years of full-time practical training and/or supervised experience in medical physics...

  12. 10 CFR 35.51 - Training for an authorized medical physicist.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... all candidates for certification to: (1) Hold a master's or doctor's degree in physics, medical physics, other physical science, engineering, or applied mathematics from an accredited college or university; (2) Have 2 years of full-time practical training and/or supervised experience in medical physics...

  13. 10 CFR 35.51 - Training for an authorized medical physicist.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... all candidates for certification to: (1) Hold a master's or doctor's degree in physics, medical physics, other physical science, engineering, or applied mathematics from an accredited college or university; (2) Have 2 years of full-time practical training and/or supervised experience in medical physics...

  14. 10 CFR 35.51 - Training for an authorized medical physicist.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... all candidates for certification to: (1) Hold a master's or doctor's degree in physics, medical physics, other physical science, engineering, or applied mathematics from an accredited college or university; (2) Have 2 years of full-time practical training and/or supervised experience in medical physics...

  15. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design projects contained components of the indicators central to engineering education, although with varied degrees of success. In addition, each design project contained aspects important to the development of students' understanding of engineering and that promote important professional skills used by engineers. The implications of this work are discussed at the teacher, school, professional development, and policy levels.

  16. A 2012 survey of the Australasian clinical medical physics and biomedical engineering workforce.

    PubMed

    Round, W H

    2013-06-01

    A survey of the medical physics and biomedical engineering workforce in Australia and New Zealand was carried out in 2012 following on from similar surveys in 2009 and 2006. 761 positions (equivalent to 736 equivalent full time (EFT) positions) were captured by the survey. Of these, 428 EFT were in radiation oncology physics, 63 EFT were in radiology physics, 49 EFT were in nuclear medicine physics, 150 EFT were in biomedical engineering and 46 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data shows the changes to the workforce over the preceding 6 years and identifies shortfalls in the workforce.

  17. An Appraisal of an Online Tutorial System for the Teaching and Learning of Engineering Physics in Conjunction with Contextual Physics and Mathematics, and Relevant Mathematics

    ERIC Educational Resources Information Center

    Bhathal, Ragbir

    2016-01-01

    The number of students entering engineering schools in Australian universities has increased tremendously over the last few years because of the Australian Federal Government's policy of increasing the participation rates of Higher School Certificate students and students from low social economic status backgrounds in the tertiary sector. They now…

  18. PR[superscript 2]EPS: Preparation, Recruitment, Retention and Excellence in the Physical Sciences, Including Engineering. A Report on the 2004, 2005 and 2006 Science Summer Camps

    ERIC Educational Resources Information Center

    Bachman, Nancy J.; Bischoff, Paul J.; Gallagher, Hugh; Labroo, Sunil; Schaumloffel, John C.

    2008-01-01

    Now in its fourth year, PR[superscript 2]EPS is a National Science Foundation funded initiative designed to recruit high school students to attend college majoring in the physical sciences, including engineering and secondary science education, and to help ensure their retention within the program until graduation. A central feature of the…

  19. Conception and development of the Second Life® Embryo Physics Course.

    PubMed

    Gordon, Richard

    2013-06-01

    The study of embryos with the tools and mindset of physics, started by Wilhelm His in the 1880s, has resumed after a hiatus of a century. The Embryo Physics Course convenes online allowing interested researchers and students, who are scattered around the world, to gather weekly in one place, the virtual world of Second Life®. It attracts people from a wide variety of disciplines and walks of life: applied mathematics, artificial life, bioengineering, biophysics, cancer biology, cellular automata, civil engineering, computer science, embryology, electrical engineering, evolution, finite element methods, history of biology, human genetics, mathematics, molecular developmental biology, molecular biology, nanotechnology, philosophy of biology, phycology, physics, self-reproducing systems, stem cells, tensegrity structures, theoretical biology, and tissue engineering. Now in its fifth year, the Embryo Physics Course provides a focus for research on the central question of how an embryo builds itself.

  20. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    ERIC Educational Resources Information Center

    Kersten, Jennifer Anna

    2013-01-01

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student…

  1. Student Self-Efficacy in Introductory Project-Based Learning Courses

    NASA Astrophysics Data System (ADS)

    Pleiss, Geoffrey; Zastavker, Yevgeniya V.

    2012-02-01

    This study investigates first-year engineering students' self-efficacy in two introductory Project-Based Learning (PjBL) courses -- Physics (Mechanics) Laboratory and Engineering Design -- taught at a small technical institution. Twelve students participated in semi-structured open-ended interviews about their experiences in both courses. Analysis was performed using grounded theory. Results indicate that students had lower self-efficacy in Physics Lab than in Engineering Design. In Physics Lab, students reported high levels of faculty-supported scaffolding related to final project deliverables, which in turn established perceptions of an outcome-based course emphasis. Conversely, in Engineering Design, students observed high levels of scaffolding related to the intermediate project deliverables, highlighting process-centered aspects of the course. Our analyses indicate that this difference in student perceptions of course emphases -- resulting from the differences in scaffolding -- is a primary factor for the discrepancy in self-efficacy between Physics Lab and Engineering Design. Future work will examine how other variables (e.g., academic background, perception of community, gender) affect students' self-efficacy and perception of scaffolding in these PjBL courses.

  2. Let Students Discover an Important Physical Property of a Slinky

    ERIC Educational Resources Information Center

    Gash, Philip

    2016-01-01

    This paper describes a simple experiment that lets first-year physics and engineering students discover an important physical property of a Slinky. The restoring force for the fundamental oscillation frequency is provided only by those coils between the support and the Slinky center of mass.

  3. The Science Training Program for Young Italian Physicists and Engineers at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barzi, Emanuela; Bellettini, Giorgio; Donati, Simone

    2015-03-12

    Since 1984 Fermilab has been hosting a two-month summer training program for selected undergraduate and graduate Italian students in physics and engineering. Building on the traditional close collaboration between the Italian National Institute of Nuclear Physics (INFN) and Fermilab, the program is supported by INFN, by the DOE and by the Scuola Superiore di Sant`Anna of Pisa (SSSA), and is run by the Cultural Association of Italians at Fermilab (CAIF). This year the University of Pisa has qualified it as a “University of Pisa Summer School”, and will grant successful students with European Supplementary Credits. Physics students join the Fermilabmore » HEP research groups, while engineers join the Particle Physics, Accelerator, Technical, and Computing Divisions. Some students have also been sent to other U.S. laboratories and universities for special trainings. The programs cover topics of great interest for science and for social applications in general, like advanced computing, distributed data analysis, nanoelectronics, particle detectors for earth and space experiments, high precision mechanics, applied superconductivity. In the years, over 350 students have been trained and are now employed in the most diverse fields in Italy, Europe, and the U.S. In addition, the existing Laurea Program in Fermilab Technical Division was extended to the whole laboratory, with presently two students in Master’s thesis programs on neutrino physics and detectors in the Neutrino Division. And finally, a joint venture with the Italian Scientists and Scholars North-America Foundation (ISSNAF) provided this year 4 professional engineers free of charge for Fermilab. More details on all of the above can be found below.« less

  4. A case study of non-traditional students re-entry into college physics and engineering

    NASA Astrophysics Data System (ADS)

    Langton, Stewart Gordon

    Two groups of students in introductory physics courses of an Access Program for engineering technologies were the subjects of this study. Students with a wide range of academic histories and abilities were enrolled in the program; many of the students were re-entry and academically unprepared for post-secondary education. Five years of historical data were evaluated to use as a benchmark for revised instruction. Data were gathered to describe the pre-course academic state of the students and their academic progress during two physics courses. Additional information was used to search for factors that might constrain academic success and as feedback for the instructional methods. The data were interpreted to regulate constructivist design features for the physics courses. The Engineering Technology Access Program was introduced to meet the demand from non-traditional students for admission to two-year engineering' technology programs, but who did not meet normal academic requirements. The duration of the Access Program was two terms for electronic and computer engineering students and three terms for civil and mechanical engineering students. The sequence of mathematics and physics courses was different for the two groups. The Civil/Mechanical students enrolled in their first mathematics course before undertaking their first physics course. The first mathematics and physics courses for the Electronics students were concurrent. Academic success in the two groups was affected by this difference. Over a five-year period the success rate of students graduating with a technology diploma was approximately twenty-five percent. Results from this study indicate that it was possible to reduce the very high attrition in the combined Access/Technology Programs. While the success rate for the Electronics students increased to 38% the rate for the Civil/Mechanical students increased dramatically to 77%. It is likely that several factors, related to the extra term in the Access Program for the Civil/Mechanical students, contributed to this high retention rate. Additional time, with less academic pressure in the first term of the Access Program, provided the Civil/Mechanical students with the opportunity to develop academic skills and maturity resulting in improved self-concept and academic identity. These students may have been better equipped to take advantage of the alternate instructional setting of the revised physics courses. Results from a wide range of studies in Physics Education Research provide ideas and opportunities to improve instruction and students conceptual understanding in introductory physics courses. Most studies focus on traditional students and curriculum. The development and implementation of alternate curriculum and instruction may improve outcomes for different groups of students, particularly for students in disciplines indirectly related to the sciences.

  5. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  6. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  7. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  8. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  9. Effects of a Problem-Based Learning Program on Engineering Students' Academic Achievements, Skills Development and Attitudes in a Mexican University.

    ERIC Educational Resources Information Center

    Polanco, Rodrigo; Calderon, Patricia; Delgado, Franciso

    A 3-year follow-up evaluation was conducted of an experimental problem-based learning (PBL) integrated curriculum directed to students of the first 2 years of engineering. The PBL curriculum brought together the contents of physics, mathematics, and computer science courses in a single course in which students worked on real-life problems. In…

  10. Career Opportunities for Physicists in the Micro Electronics Industry

    NASA Astrophysics Data System (ADS)

    Bourianoff, George

    1997-10-01

    The US micro electronics industry anticipates growth of 20 to 30 percent per year for the next five years. The need for engineers and scientists poses a critical problem for the industry but conversely presents great opportunities for those in closely related fields such as physics where career opportunities may be more limited. There is no shortage of important and challenging problems on the Semiconductor Institute of America (SIA) roadmap which will require solution in the next 10 years and which require expertise in the physical sciences. However, significant cultural differences exist between the physics community and the engineering oriented semiconductor community which must be understood and addressed in order for a physicist to successfully contribute in this environment. This talk will identify some of those cultural differences and describe some of the critical physics related problems which must be solved. Critical roadblocks include lithographic patterning below 0.18m. and design of Very Large Scale Integrated (VLSI) circuits in the deep submicron regime. The former will require developing radiation sources and optical elements for the EUV or XRAY part of the spectrum. The latter will require incorporating electromagnetic field equations with traditional lumped element circuit design methods. The cultural barriers alluded to earlier involve the manner in which engineering detail is approached. A physicist's basic instinct is to strip off the detail in order to make a problem mathematically tractable. This enables understanding of the underlying physical relationships but does not yield the quantitative detail necessary in semiconductor production.

  11. Applied aerodynamics experience for secondary science teachers and students

    NASA Technical Reports Server (NTRS)

    Abbitt, John D., III; Carroll, Bruce F.

    1992-01-01

    The Department of Aerospace Engineering, Mechanics & Engineering Science at the University of Florida in conjunction with the Alachua County, Florida School Board has embarked on a four-year project of university-secondary school collaboration designed to enhance mathematics and science instruction in secondary school classrooms. The goals are to provide teachers with a fundamental knowledge of flight sciences, and to stimulate interest among students, particularly women and minorities, toward careers in engineering, mathematics, and science. In the first year of the project, all thirteen of the eighth grade physical science teachers and all 1200 of the eighth grade physical science students in the county participated. The activities consisted of a three-day seminar taught at the college level for the teachers, several weeks of classroom instruction for all the students, and an airport field trip for a subgroup of about 430 students that included an orientation flight in a Cessna 172 aircraft. The project brought together large numbers of middle school students, teachers, undergraduate and graduate engineering students, school board administrators, and university engineering faculty.

  12. Women, Men, and Academic Performance in Science and Engineering: The Gender Difference in Undergraduate Grade Point Averages

    ERIC Educational Resources Information Center

    Sonnert, Gerhard; Fox, Mary Frank

    2012-01-01

    Using longitudinal and multi-institutional data, this article takes an innovative approach in its analyses of gender differences in grade point averages (GPA) among undergraduate students in biology, the physical sciences, and engineering over a 16-year period. Assessed are hypotheses about (a) the gender ecology of science/engineering and (b) the…

  13. Women in physics in the UK: Update 2008-2011

    NASA Astrophysics Data System (ADS)

    Thompson, Carol; Marks, Ann; Wilkin, Nicola; Leslie, Dawn; D'Amico, Irene; Dyer, Jennifer

    2013-03-01

    Positive progress has continued in the past three years for women in physics in the UK. The Institute of Physics has aggressively advocated and organized initiatives for women in science through its Diversity Programme and its Women in Physics Group. Surveys are routinely carried out and acted upon, most recently on postdoctoral researchers and childcare issues. The Institute's Juno Award program encourages higher education institutes to address the underrepresentation of women in physics. The UK Resource Centre for Women in SET (science, engineering, and technology) provides resources and support for women working in physics and other science and engineering disciplines. The Equality Act of 2010 provides renewed focus on equality and a framework within which women physicists can continue to push for progress. The recent achievements of women physicists are noted.

  14. Morehouse Physics & Dual Degree Engineering Program: We C . A . R . E . Approach

    NASA Astrophysics Data System (ADS)

    Rockward, Willie S.

    2015-03-01

    Growing the physics major at any undergraduate institution, especially Morehouse College - a private, all-male, liberal arts HBCU, can be very challenging. To address this challenge at Morehouse, the faculty and staff in the Department of Physics and Dual Degree Engineering Program (Physics & DDEP) are applying a methodology and pedagogical approach called ``We C . A . R . E '' which stands for Curriculum,Advisement,Recruitment/Retention/Research, andExtras. This approach utilizes an integrated strategy of cultural (family-orientated), collaborative (shared-governance), and career (personalized-pathways) modalities to provide the momentum of growing the physics major at Morehouse from 10-12 students to over 100 students in less than 5 years. Physics & DDEP at Morehouse, creatively, altered faculty course assignments, curriculum offerings, and departmental policies while expanding research projects, student organizations, and external collaborations. This method supplies a variety of meaningful, academic and research experiences for undergraduates at Morehouse and thoroughly prepares students for graduate studies or professional careers in STEM disciplines. Thus, a detailed overview of the ``We C . A . R . E . '' approach will be presented along with the Physics & DDEP vision, alterations and expansions in growing the physics major at Morehouse College. Department of Physics and Dual Degree Engineering Program, Atlanta, Georgia 30314.

  15. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.

    The world’s first master’s degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5½ year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, includedmore » students who started the program in their third year of studies, as the first 2½ years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program’s specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training.« less

  16. Training to Use the Scientific Method in a First-Year Physics Laboratory: A Case Study

    ERIC Educational Resources Information Center

    Sarasola, Ane; Rojas, Jose Félix; Okariz, Ana

    2015-01-01

    In this work, a specific implementation of a so-called experimental or open-ended laboratory is proposed and evaluated. Keeping in mind the scheduling limitations imposed by the context, first-year engineering physics laboratory practices have been revised in order to facilitate acquisition of the skills that are required in the experimental work.…

  17. A Seven-Year Longitudinal Study of the Research Outcomes for the CASPER Physics Circus

    NASA Astrophysics Data System (ADS)

    Carmona-Reyes, Jorge; Land-Zandstra, Anna; Stark, Gary; Tarman, Lisa; Menefee, Matt; Wang, Li; Cook, Mike; Schmoke, Jimmy; Matthews, Lorin; Hyde, Truell

    2014-10-01

    The CASPER Physics Circus was specifically designed to increase student interest in science, technology, engineering and mathematics (STEM) careers where the current generation of scientists and engineers is rapidly approaching retirement age. The Physics Circus followed Waco and LaVega ISD students starting in the sixth grade and ending in the twelfth grade with this cohort group attending the Physics Circus event on the Baylor University campus, interacting with CASPER graduate students and participating in hands-on instructional activities. The event was designed as an informal learning environment intervention and operated under the discovery, project and guided-inquiry base framework wrapped in a learner-center ideology. Participating students were allowed to experiment with hands-on manipulatives while interacting with physicists, science educators and graduate students in both STEM and science education fields. Professional Development was also a part of the Physics Circus for all science teachers within the cohort. This paper presents the results of a seven-year longitudinal study on the Physics Circus and presents future plans to expand the program's effectiveness and impact.

  18. 29 CFR 519.12 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or university, a junior college, or a professional school of engineering, law, library science... credit toward such a degree or offers a two-year program in engineering, mathematics, or the physical or biological sciences which is designed to prepare the student to work as a technician and at a semi...

  19. Recent activities in science and technology and the progress of women in physics in the last three years in Iran

    NASA Astrophysics Data System (ADS)

    Izadi, Dina; Azad, Masoud Torabi; Mahmoudi, Nafiseh; Izadipanah, Nona; Eshghi, Najmeh

    2013-03-01

    For the 4th IUPAP International Conference of Women in Physics, we report on activities in science and engineering in Iran, and conditions for women in physics, in the three years since the 3rd IUPAP International Conference of Women in Physics was held in 2008. Iran has made prominent advancements and astonishing progress in laser technology, biotechnology, nanotechnology, genetics, computer software and hardware, and robotics. Iranian scientists have been very productive in several experimental fields, such as pharmaceutical, organic, and polymer chemistry. Conditions for women in physics have improved greatly in recent years. A project to improve the environment for learning physics, and science in general, by focusing on real-life applications, and the creation of new student competitions in Iran, have increased the numbers of both women and men in physics and all sciences in recent years.

  20. Countermeasures to Improve the Driving Performance of Older Drivers.

    ERIC Educational Resources Information Center

    Ashman, Richard D.; And Others

    1994-01-01

    In a 2-year project, 105 older drivers were given physical therapy (flexibility exercises), perceptual therapy (to improve visual discrimination), and driver education; traffic engineering modifications were also made. All four interventions improved performance an average of 7.9%. Engineering was most cost effective on high-volume roads, the…

  1. Perspectives on Gender and Science.

    ERIC Educational Resources Information Center

    Harding, Jan, Ed.

    Faced with a shortage of skilled personnel in certain branches of engineering towards the end of the seventies, the Engineering Industry Training Board (United Kingdom) launched initiatives to recruit 16-year-old girls into technician training and to interest girls following "A" level courses in physics and mathematics in a career of…

  2. Effective Assessments of Integrated Animations--Exploring Dynamic Physics Instruction for College Students' Learning and Attitudes

    ERIC Educational Resources Information Center

    Su, King-Dow; Yeh, Shih-Chuan

    2014-01-01

    The purpose of this study was to give effective assessments of three major physics animations to upgrade college students' learning achievements and attitudes. All college participants were taken from mechanical and civil engineering departments who joined this physics course during the 2011 academic year. Three prime objectives of physics…

  3. A community-based, interdisciplinary rehabilitation engineering course.

    PubMed

    Lundy, Mary; Aceros, Juan

    2016-08-01

    A novel, community-based course was created through collaboration between the School of Engineering and the Physical Therapy program at the University of North Florida. This course offers a hands-on, interdisciplinary training experience for undergraduate engineering students through team-based design projects where engineering students are partnered with physical therapy students. Students learn the process of design, fabrication and testing of low-tech and high-tech rehabilitation technology for children with disabilities, and are exposed to a clinical experience under the guidance of licensed therapists. This course was taught in two consecutive years and pre-test/post-test data evaluating the impact of this interprofessional education experience on the students is presented using the Public Service Motivation Scale, Civic Actions Scale, Civic Attitudes Scale, and the Interprofessional Socialization and Valuing Scale.

  4. A review on chitosan centred scaffolds and their applications in tissue engineering.

    PubMed

    Ahmed, Shakeel; Annu; Sheikh, Javed; Ali, Akbar

    2018-05-03

    The diversity and availability of biopolymer and increased clinical demand for safe scaffolds lead to an increased interest in fabricating scaffolds in order to achieve fruitful progress in tissue engineering. Due to biocompatibility, biodegradability, inherent antimicrobial character, chitosan has drawn ample consideration in recent years. Chitosan is a biopolymer obtained by de-acetylation of chitin extracted from shells of crustaceans and fungi. Due to the presence of reactive functionality in the molecular chain chitosan can be modified either chemically or physically to fabricate the tailor-made scaffolds having desired properties for tissue engineering centered applications. In this review chitosan, its properties and role either virgin, chemically or physically modified, 2D or 3D scaffolds for tissue engineering application have been highlighted. Copyright © 2017. Published by Elsevier B.V.

  5. Outbrief - Long Life Rocket Engine Panel

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2004-01-01

    This white paper is an overview of the JANNAF Long Life Rocket Engine (LLRE) Panel results from the last several years of activity. The LLRE Panel has met over the last several years in order to develop an approach for the development of long life rocket engines. Membership for this panel was drawn from a diverse set of the groups currently working on rocket engines (Le. government labs, both large and small companies and university members). The LLRE Panel was formed in order to determine the best way to enable the design of rocket engine systems that have life capability greater than 500 cycles while meeting or exceeding current performance levels (Specific Impulse and Thrust/Weight) with a 1/1,OOO,OOO likelihood of vehicle loss due to rocket system failure. After several meetings and much independent work the panel reached a consensus opinion that the primary issues preventing LLRE are a lack of: physics based life prediction, combined loads prediction, understanding of material microphysics, cost effective system level testing. and the inclusion of fabrication process effects into physics based models. With the expected level of funding devoted to LLRE development, the panel recommended that fundamental research efforts focused on these five areas be emphasized.

  6. Turbulence

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel

    1996-01-01

    Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

  7. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  8. Publications of LASL research, 1972--1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, L.

    1977-04-01

    This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energymore » (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)« less

  9. Throw Away Your Mathematical Handbook! Undergraduate Physics with Wolfram|Alpha, a FREE(!) Internet-Based Mathematical Engine

    NASA Astrophysics Data System (ADS)

    Looney, Craig W.

    2009-10-01

    Wolfram|Alpha (http://www.wolframalpha.com/), a free internet-based mathematical engine released earlier this year, represents an orders-of magnitude advance in mathematical power freely available - without money, passwords, or downloads - on the web. Wolfram|Alpha is based on Mathematica, so it can plot functions, take derivatives, solve systems of equations, perform symbolic and numerical integration, and more. These capabilities (especially plotting and integration) will be explored in the context of topics covered in upper level undergraduate physics courses.

  10. The Trouble with Trig

    ERIC Educational Resources Information Center

    Galle, Gillian; Meredith, Dawn

    2014-01-01

    A few years ago we began to revamp our introductory physics course for life science students. We knew that this cohort would be less prepared and less adventurous mathematically than engineering, physical science, or mathematics majors. Moreover, from our own experience and the mathematics education literature, we knew that trigonometry would be…

  11. Utility of predicting group membership and the role of spatial visualization in becoming an engineer, physical scientist, or artist.

    PubMed

    Humphreys, L G; Lubinski, D; Yao, G

    1993-04-01

    This article has two themes: First, we explicate how the prediction of group membership can augment test validation designs restricted to prediction of individual differences in criterion performance. Second, we illustrate the utility of this methodology by documenting the importance of spatial visualization for becoming an engineer, physical scientist, or artist. This involved various longitudinal analyses on a sample of 400,000 high school students tracked after 11 years following their high school graduation. The predictive validities of Spatial-Math and Verbal-Math ability composites were established by successfully differentiating a variety of educational and occupational groups. One implication of our findings is that physical science and engineering disciplines appear to be losing many talented persons by restricting assessment to conventional mathematical and verbal abilities, such as those of the Scholastic Aptitude Test (SAT) and the Graduate Record Examination (GRE).

  12. Testing foreign language impact on engineering students' scientific problem-solving performance

    NASA Astrophysics Data System (ADS)

    Tatzl, Dietmar; Messnarz, Bernd

    2013-12-01

    This article investigates the influence of English as the examination language on the solution of physics and science problems by non-native speakers in tertiary engineering education. For that purpose, a statistically significant total number of 96 students in four year groups from freshman to senior level participated in a testing experiment in the Degree Programme of Aviation at the FH JOANNEUM University of Applied Sciences, Graz, Austria. Half of each test group were given a set of 12 physics problems described in German, the other half received the same set of problems described in English. It was the goal to test linguistic reading comprehension necessary for scientific problem solving instead of physics knowledge as such. The results imply that written undergraduate English-medium engineering tests and examinations may not require additional examination time or language-specific aids for students who have reached university-entrance proficiency in English as a foreign language.

  13. Photonics Applications and Web Engineering: WILGA 2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2017-08-01

    XLth Wilga Summer 2017 Symposium on Photonics Applications and Web Engineering was held on 28 May-4 June 2017. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, modern optics, mechatronics, applied physics, electronics technologies and applications. There were presented around 300 oral and poster papers in a few main topical tracks, which are traditional for Wilga, including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Things, measurement systems for astronomy, high energy physics experiments, and other. The paper is a traditional introduction to the 2017 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations. This year Symposium was divided to the following topical sessions/conferences: Optics, Optoelectronics and Photonics, Computational and Artificial Intelligence, Biomedical Applications, Astronomical and High Energy Physics Experiments Applications, Material Research and Engineering, and Advanced Photonics and Electronics Applications in Research and Industry.

  14. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  15. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  16. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  17. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  18. 34 CFR 691.17 - Determination of eligible majors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... majors in the physical, life, or computer sciences, mathematics, technology, engineering, critical... EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND... years of study in mathematics and three years of study in the sciences, with a laboratory component in...

  19. Testing Foreign Language Impact on Engineering Students' Scientific Problem-Solving Performance

    ERIC Educational Resources Information Center

    Tatzl, Dietmar; Messnarz, Bernd

    2013-01-01

    This article investigates the influence of English as the examination language on the solution of physics and science problems by non-native speakers in tertiary engineering education. For that purpose, a statistically significant total number of 96 students in four year groups from freshman to senior level participated in a testing experiment in…

  20. Interactive Physics Apparatus: Influence on Interest of Secondary School Students in Pursuing a Career Path in Science, Technology, Engineering and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.

    2017-01-01

    In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students' interest in…

  1. Role of physics in Saudi engineering education

    NASA Astrophysics Data System (ADS)

    Ahmed, M.

    1984-05-01

    In recent years some engineering schools in the Middle East have proposed reducing the amount of basic science courses in their curricula. A conference on engineering education in the Arabian Gulf countries held in Kuwait in 1980 suggested that the number of courses in physics and chemistry should be reduced from the present level (Jamjoom 1980). The arguments often put forward can be summarised as follows. First, engineering students are at present overburdened with too many basic science courses which puts a strain on the average student. This in turn leads to a high drop-out as is witnessed in many engineering colleges in this region. This drop-out, as high as 20% in some Saudi universities, is a cause of great concern among the university authorities. Secondly, it is argued that the number of credit hours allocated to departmental requirements is not sufficient to give a student enough breadth and depth of knowledge in his specialisation in particular engineering branches. Universities in Saudi Arabia follow the American credit-hour system in which courses are given certain credit hours, ranging from two to four, depending on the number of lectures per week as well as laboratory and tutorial requirements. Engineering students have to complete about 150 credit hours to graduate, which they normally do in four to five years. Out of these credit hours, about two-thirds are allocated to core courses (including physics) common to all branches of engineering. The remaining one-third are reserved for departmental specialisation. Since there is no possibility of increasing the overall credit hours necessary for graduation, it is suggested that the extra credit hours demanded for increasing the number of departmental courses should be obtained by correspondingly curtailing those for the basic sciences. When carefully scrutinised the arguments do not appear to be well founded. The reasons for high drop-out can be traced to more deep-rooted factors.

  2. Geoscience salaries up by 10.8%

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    According to a recent salary survey of over 4000 scientists in all fields by Research and Development (March 1984) geoscientists ranked fourth place for 1984. Mathematics, aeronautical engineering, and metallurgy had higher median salaries, but the discipline of geoscience had a higher median salary than that of physics, chemical engineering, mechanical engineering, electrical engineering, ceramics, chemistry, industrial engineering, biology, and other fields of research and development. The 1984 median salary for geoscientists was $40,950, up from the median value by 10.8%. In 1983, geoscience was ranked in ninth place.The geoscientist profile for 1984 was not unusual. The median age was 47.5 years, and the median years of experience was 18. Geoscientists are the best educated. Eighty-two percent of the geoscientists polled had advanced degrees beyond the bachelor's degree. Fifty-six percent of the geoscientists had the Ph.D. degree.

  3. Studying Gender Bias in Physics Grading: The Role of Teaching Experience and Country

    ERIC Educational Resources Information Center

    Hofer, Sarah I.

    2015-01-01

    The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2?×?2 between-subjects design, with years of teaching experience included as…

  4. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  5. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  6. First-Year Mathematics and Its Application to Science: Evidence of Transfer of Learning to Physics and Engineering

    ERIC Educational Resources Information Center

    Nakakoji, Yoshitaka; Wilson, Rachel

    2018-01-01

    Transfer of mathematical learning to science is seen as critical to the development of education and industrial societies, yet it is rarely interrogated in applied research. We present here research looking for evidence of transfer from university mathematics learning in semester one to second semester sciences/engineering courses (n = 1125). A…

  7. Laboratory Directed Research and Development Annual Report for 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    2012-04-09

    This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.

  8. ITER-FEAT operation

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V. A.; Huguet, M.; Matsumoto, H.; Mizoguchi, T.; Murakami, Y.; Polevoi, A. R.; Shimada, M.; ITER Joint Central Team; ITER Home Teams

    2001-03-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties.

  9. Wavelength Independent Optical Lithography and Microscopy

    DTIC Science & Technology

    1990-10-30

    Engineering Physics H. Barshatzky (1985 - present) Cornell, School of Applied & Engineering Physics I. Walton (1987 - 1988) National Semiconductor...Santa Clara, California R. Chen (1989 - 1990) Digital Equipment Corporation S. Boedecker (1990 - present) Cornell, School of Applied & Engineering Physics...H. Chen (1990 - present) Cornell, Department of Materials Science and Engineering M. Park (1987) Cornell, School of Applied & Engineering Physics M. Tornai (1988) UCLA, Dept. Medical Physics,

  10. University Students' Strategies for Constructing Hypothesis When Tackling Paper-and-Pencil Tasks in Physics

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Ceberio, Mikel; Zubimendi, Jose Luis

    2006-01-01

    The study we present tries to explore how first year engineering students formulate hypotheses in order to construct their own problem solving structure when confronted with problems in physics. Under the constructivistic perspective of the teaching-learning process, the formulation of hypotheses plays a key role in contrasting the coherence of…

  11. Students' Use of the Interactive Whiteboard during Physics Group Work

    ERIC Educational Resources Information Center

    Mellingsaeter, Magnus Strøm; Bungum, Berit

    2015-01-01

    This paper presents a case study of how the interactive whiteboard (IWB) may facilitate collective meaning-making processes in group work in engineering education. In the case, first-year students attended group-work sessions as an organised part of a basic physics course at a Norwegian university college. Each student group was equipped with an…

  12. Long Term Stability of Learning Outcomes in Undergraduates after an Open-Inquiry Instruction on Thermal Science

    ERIC Educational Resources Information Center

    Adorno, Dominique Persano; Pizzolato, Nicola; Fazio, Claudio

    2018-01-01

    This paper investigates the efficacy of an open-inquiry approach to achieve a long term stability of physics instruction. This study represents the natural continuation of a research project started four years ago when a sample of thirty engineering undergraduates, having already attended traditional university physics instruction, were involved…

  13. Thirty year celebration of journal publications on radiation oncology medical physics.

    PubMed

    Oliver, L D

    2007-03-01

    The Australasian Physical & Engineering Sciences in Medicine Journal (APESM) is an avenue for the profession to report scientific work in medicine; provide a facility for the publication of current work, new research and new techniques developed or reviewed; report on professional news from elsewhere and; publish the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) policies and protocols. The journal is a vital instrument within the ACPSEM organisation with a worldwide circulation. This review of APESM on medical physics in radiation oncology is meant to be a progress summary of work in that specialty. Even so, it has become a lengthy appraisal due to the many years involved. In considering publications related to medical physics in radiation oncology, this review has shown the progression of the College journal to an international journal. There is an increase in the number of papers contributed from Asia and other countries world wide for this discipline. Growth in the number of contributions should continue to rise. In order to provide some appreciation of where the present medical physics activity arose from, this article commences its discussion in 1959 and progresses towards the present, describing along the way, from radiation oncology papers published in APESM, the use of linear accelerators, brachytherapy, the medical physics workforce, the formation of the ACPSEM, and the more modern developments in radiotherapy such as 3-D treatment planning and IMRT.

  14. National Science Foundation Grants and Awards for Fiscal Year 1982.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    Provided is a listing of all National Science Foundation (NSF) program grants and contracts awarded in Fiscal Year 1982. The listing is organized by specific NSF programs within these areas: (1) mathematical and physical sciences; (2) engineering; (3) biological, behavioral, and social sciences; (4) astronomical, earth, and ocean sciences…

  15. National Science Foundation. Grants and Awards for Fiscal Year 1981.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    Provided is a listing of all National Science Foundation (NSF) program grants and contracts awarded in Fiscal Year 1981. The listing is organized by specific NSF programs within these areas: (1) mathematical and physical sciences; (2) engineering; (3) biological, behavioral, and social sciences; (4) astronomical, atmospheric, earth, and ocean…

  16. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  17. Project Super Heart--Year One.

    ERIC Educational Resources Information Center

    Bellardini, Harry; And Others

    1980-01-01

    A model cardiovascular disease prevention program for young children is described. Components include physical examinations, health education (anatomy and physiology of the cardiovascular system), nutrition instruction, first aid techniques, role modeling, and environmental engineering. (JN)

  18. Math Machines: Using Actuators in Physics Classes

    NASA Astrophysics Data System (ADS)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.

  19. Fan Cart: The Next Generation

    NASA Astrophysics Data System (ADS)

    Lamore, Brian

    2016-10-01

    For years the fan cart has provided physics students with an excellent resource for exploring fundamental mechanics concepts such as acceleration, Newton's laws, impulse, momentum, work-energy, and energy conversions. The Physics Teacher has even seen some excellent do-it-yourself (DIY) fan carts and activities. If you are interested in developing the `E' portion of your and your students' STEM (science, technology, engineering, and math) skills, one way to accomplish this is to revisit the DIY fan cart. In this article I share a design of a new edition of the DIY fan cart and some ideas for incorporating the engineering design process into your high school curriculum.

  20. Evaluation of an Integrated Curriculum in Physics, Mathematics, Engineering, and Chemistry

    NASA Astrophysics Data System (ADS)

    Beichner, Robert

    1997-04-01

    An experimental, student centered, introductory curriculum called IMPEC (for Integrated Mathematics, Physics, Engineering, and Chemistry curriculum) is in its third year of pilot-testing at NCSU. The curriculum is taught by a multidisciplinary team of professors using a combination of traditional lecturing and alternative instructional methods including cooperative learning, activity-based class sessions, and extensive use of computer modeling, simulations, and the world wide web. This talk will discuss the research basis for our design and implementation of the curriculum, the qualitative and quantitative methods we have been using to assess its effectiveness, and the educational outcomes we have noted so far.

  1. The Important Role of Physics in Industry and Economic Development

    NASA Astrophysics Data System (ADS)

    Alvarado, Igor

    2012-10-01

    Good Physics requires good education. Good education translates into good Physics professionals. The process starts early with Science, Technology, Engineering and Mathematics (STEM) education programs for Middle and High-School students. Then it continues with competitive higher education programs (2 years and 4 years) at colleges and universities designed to satisfy the needs of industry and academia. The research work conducted by graduate students in Physics (and Engineering Physics) frequently translates into new discoveries and innovations that have direct impact in society (e.g. Proton Cancer Therapy). Some of the major and largest scientific experiments in the world today are physics-centered (e.g. Large Hadron Collider-LHC) that generate employment and business opportunities for thousands of scientists, academic research groups and companies from around the world. New superconducting magnets and advanced materials that have resulted from previous research in physics are commonly used in these extreme experiments. But not all physicists will end up working at these large high-energy physics experiments, universities or National Laboratories (e.g. Fermilab); industry requires new generations of (industrial) physicists in such sectors as semiconductor, energy, space, life sciences, defense and advanced manufacturing. This work presents an industry perspective about the role of Physics in economic development and the need for a collaborative Academic-Industry approach for a more effective translational research. A series of examples will be presented with emphasis in the measurement, control, diagnostics and computing capabilities needed to translate the science (physics) into innovations and practical solutions that can benefit society as a whole.

  2. Race to improve student understanding of uncertainty: Using LEGO race cars in the physics lab

    NASA Astrophysics Data System (ADS)

    Parappilly, Maria; Hassam, Christopher; Woodman, Richard J.

    2018-01-01

    Laboratories using LEGO race cars were developed for students in an introductory physics topic with a high early drop-out rate. In a 2014 pilot study, the labs were offered to improve students' confidence with experiments and laboratory skills, especially uncertainty propagation. This intervention was extended into the intro level physics topic the next year, for comparison and evaluation. Considering the pilot study, we subsequently adapted the delivery of the LEGO labs for a large Engineering Mechanics cohort. A qualitative survey of the students was taken to gain insight into their perception of the incorporation of LEGO race cars into physics labs. For Engineering, the findings show that LEGO physics was instrumental in teaching students the measurement and uncertainty, improving their lab reporting skills, and was a key factor in reducing the early attrition rate. This paper briefly recalls the results of the pilot study, and how variations in the delivery yielded better learning outcomes. A novel method is proposed for how LEGO race cars in a physics lab can help students increase their understanding of uncertainty and motivate them towards physics practicals.

  3. A Model for Reform. Two-Year Colleges in the Twenty-First Century: Breaking Down Barriers (TYC21).

    ERIC Educational Resources Information Center

    Palmer, James C., Ed.

    This book describes the TYC21 project (Two-Year Colleges in the Twenty-First Century: Breaking Down Barriers), which provided a framework to implement reform in science, engineering, and physics education at two-year colleges via the cooperative efforts of faculty in cross-educational activities. The project sought to increase the quality of…

  4. NASA Applications and Lessons Learned in Reliability Engineering

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  5. Acoustics: A branch of engineering at the Universidad Austral de Chile (UACh)

    NASA Astrophysics Data System (ADS)

    Poblete, Victor; Arenas, Jorge P.; Sommerhoff, Jorge

    2002-11-01

    At the end of the 1960s, the first acousticians graduating at UACh had acquired an education in applied physics and musical arts, since there was no College of Engineering at that time. Initially, they had a (rather modest) four-year undergraduate program, and most of the faculty were not specialized teachers. The graduates from such a program received a sound engineering degree and they were skilled for jobs in the musical industry and sound reinforcement companies. In addition, they worked as sound engineers and producers. Later, because of the scientific, industrial and educational changes in Chile during the 1980s, the higher education system had massive changes that affected all of the undergraduate and graduate programs of the 61 universities in Chile. The UACh College of Engineering was officially founded in 1989. Then, acoustics as an area of expertise was included, widened and developed as an interdisciplinary subject. Currently, the undergraduate program in acoustics at UACh offers a degree in engineering sciences and a 6-year professional studies in Civil Engineering (Acoustics), having two main fields: Sound and Image, and Environment and Industry.

  6. Hydroentangled High Quality (HQ) Cotton Developments: Cosmetic Pads and Greige Cotton Bed Sheets

    USDA-ARS?s Scientific Manuscript database

    The hydroentagled development work (at a plant-scale) was carried out in year 2004 in collaboration with Hollingsworth on Wheels, Greenville, SC, and Fleissener, Germany. This work was published as two papers in Journal of Engineered Fibers and Fabrics in 2006 and 2007. Early this year physical test...

  7. Biomaterials for Bone Regenerative Engineering.

    PubMed

    Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T

    2015-06-24

    Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CloudSat system engineering: techniques that point to a future success

    NASA Technical Reports Server (NTRS)

    Basilio, R. R.; Boain, R. J.; Lam, T.

    2002-01-01

    Over the past three years the CloutSat Project, a NASA Earth System Science Pathfinder mission to provide from space the first global survey of cloud profiles and cloud physical properties, has implemented a successful project system engineering approach. Techniques learned through heuristic reasoning of past project events and professional experience were applied along with select methods recently touted to increase effectiveness without compromising effiency.

  9. Multi-functional Extreme Environment Surfaces: Nanotribology for Air and Space

    DTIC Science & Technology

    2010-09-14

    SPANNING THE PHYSICAL SCALES OF MODERN TRIBOLOGY ( QCM ) (STM) Fundamental Challenges and Unsolved Issues How do adsorbed and tribo-generated films impact...Space Applications Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Thrust II: Cryotribology and...Nanocrystalline Diamond for Space Applications Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Five Years ago: Three

  10. The Year in Science.

    ERIC Educational Resources Information Center

    Discover, 1982

    1982-01-01

    Highlights scientific accomplishments in 1981. Focuses on space sciences, medicine, geology, chemistry, physics, zoology, paleontology, environmental problems, and genetics including such topics as the Space Shuttle, Mount St. Helen's endangered species, genetic engineering, and the scientists associated with these accomplishments. (JN)

  11. Functional groups of ecosystem engineers: a proposed classification with comments on current issues.

    PubMed

    Berke, Sarah K

    2010-08-01

    Ecologists have long known that certain organisms fundamentally modify, create, or define habitats by altering the habitat's physical properties. In the past 15 years, these processes have been formally defined as "ecosystem engineering", reflecting a growing consensus that environmental structuring by organisms represents a fundamental class of ecological interactions occurring in most, if not all, ecosystems. Yet, the precise definition and scope of ecosystem engineering remains debated, as one should expect given the complexity, enormity, and variability of ecological systems. Here I briefly comment on a few specific current points of contention in the ecosystem engineering concept. I then suggest that ecosystem engineering can be profitably subdivided into four narrower functional categories reflecting four broad mechanisms by which ecosystem engineering occurs: structural engineers, bioturbators, chemical engineers, and light engineers. Finally, I suggest some conceptual model frameworks that could apply broadly within these functional groups.

  12. Swiss Atlas of PHYsical properties of Rocks (SAPHYR)

    NASA Astrophysics Data System (ADS)

    Zappone, Alba; Kissling, Eduard

    2015-04-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR), is a multi-year project, funded entirely by Swiss Commission for Geophysics (SGPK), with the aim to compile a comprehensive data set in digital form on physical properties of rocks exposed in Switzerland and surrounding regions. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public including industrial, engineering, land and resource planning companies, as well as academic institutions, or simply people interested in geology. Since the early sixties worldwide many scientists, i.e. geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. Particularly in the years in which seismic reflection and refraction crustal scale projects were investigating the deep structures of the Alps, laboratories capable to reproduce the pressure and temperature ranges of the continental crust were collecting measurements of various rock parameters on a wide variety of lithologies, developing in the meantime more and more sophisticated experimental methodologies. In recent years, the increasing interest of European Countries on non-traditional energy supply, (i.e. Deep Geothermal Energy and shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. SAPHYR aims to organize all those laboratory data into a geographically referenced database (GIS). The data refer to density, porosity, permeability, and seismic, magnetic, thermal and electric properties. In the past years, effort has been placed on collecting samples and measuring the physical properties of lithologies that were poorly documented in literature. The phase of laboratory measurements is still in progress. Recently, SAPHYR project focused towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology and data from boreholes and seismic surveys, combined with empirically determined pressure and temperature derivatives. The product is now almost ready for publication and an early version is presented here.

  13. Physics education of Japanese national colleges of technology in local community of Hokkaido

    NASA Astrophysics Data System (ADS)

    Kushino, Akihiro; Matsui, Hidenori

    2014-03-01

    The national colleges of technology in Japan, called KOSEN, were established about 50 years ago aiming to educate 15 to 20 years old students to become engineers who were necessary in period of high economic growth of Japan. In present, environment surrounding us has changed. Examples are low birth rate in Japan and the great earthquake in Tohoku area. There are 4 KOSENs in Hokkaido and we jointly make many efforts to contribute to local community in science. We present our efforts in physics education.

  14. Emulytics for Cyber-Enabled Physical Attack Scenarios: Interim LDRD Report of Year One Results.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John; Urias, Vincent; Atkins, William Dee

    Sandia National Laboratories has funded the research and development of a new capability to interactively explore the effects of cyber exploits on the performance of physical protection systems. This informal, interim report of progress summarizes the project’s basis and year one (of two) accomplishments. It includes descriptions of confirmed cyber exploits against a representative testbed protection system and details the development of an emulytics capability to support live, virtual, and constructive experiments. This work will support stakeholders to better engineer, operate, and maintain reliable protection systems.

  15. Having Students Create Short Video Clips to Help Transition from Naïve Conceptions about Mechanics to True Newtonian Physics

    ERIC Educational Resources Information Center

    Corten-Gualtieri, Pascale; Ritter, Christian; Plumat, Jim; Keunings, Roland; Lebrun, Marcel; Raucent, Benoit

    2016-01-01

    Most students enter their first university physics course with a system of beliefs and intuitions which are often inconsistent with the Newtonian frame of reference. This article presents an experiment of collaborative learning aiming at helping first-year students in an engineering programme to transition from their naïve intuition about dynamics…

  16. A Science Summer Camp as an Effective Way to Recruit High School Students to Major in the Physical Sciences and Science Education

    ERIC Educational Resources Information Center

    Bischoff, Paul J.; Castendyk, Devin; Gallagher, Hugh; Schaumloffel, John; Labroo, Sunil

    2008-01-01

    Now in its fifth year, PR[superscript 2]EPS is a National Science Foundation funded initiative designed to recruit high school students to attend college majoring in the physical sciences, including engineering and secondary science education, and to help ensure their retention within these programs until graduation. A central feature of the…

  17. a Study of Women Engineering Students and Time to Completion of First-Year Required Courses at Texas A&M University

    NASA Astrophysics Data System (ADS)

    Kimball, Jorja; Cole, Bryan; Hobson, Margaret; Watson, Karan; Stanley, Christine

    This paper reports findings on gender that were part of a larger study reviewing time to completion of course work that includes the first two semesters of calculus, chemistry, and physics, which are often considered the stumbling points or "barrier courses" to an engineering baccalaureate degree. Texas A&M University terms these courses core body of knowledge (CBK), and statistical analysis was conducted on two cohorts of first-year enrolling engineering students at the institution. Findings indicate that gender is statistically significantly related to completion of CBK with female engineering students completing required courses faster than males at the .01 level (p = 0.008). Statistical significance for gender and ethnicity was found between white male and white female students at the .01 level (p = 0.008). Descriptive analysis indicated that of the five majors studied (chemical, civil, computer, electrical, and mechanical engineering), women completed CBK faster than men, and African American and Hispanic women completed CBK faster than males of the same ethnicity.

  18. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillich, Don; Kovanen, Andrew; Anderson, Tom

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of {approx}100 keV. Within the next year, cadets and faculty atmore » USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.« less

  19. Systems engineering at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  20. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  1. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system energy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modeling, System Robustness, and Value Modeling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  2. Retrospective Perceptions and Views of Engineering Students about Physics and Engineering Practicals

    ERIC Educational Resources Information Center

    Bhathal, R.

    2011-01-01

    Hands-on practical work in physics and engineering has a long and well-established tradition in Australian universities. Recently, however, the question of whether hands-on physics and engineering practicals are useful for engineering students and whether they could be deleted or whether these could be replaced with computer simulations has been…

  3. Microcomputers in an Undergraduate Optics Laboratory.

    ERIC Educational Resources Information Center

    Tomaselli, V. P.; And Others

    1990-01-01

    Describes a junior-level, one-year optics laboratory course for physics and engineering students. The course offers a range of experiments from conventional geometric optics to contemporary spatial filtering and fiber optics. Presents an example of an experiment with pictures. (Author/YP)

  4. 2006 JSOU/NDIA SO/LIC Chapter Essays

    DTIC Science & Technology

    2006-06-01

    Sloan Ph.D., Comparative Politics University of Central Florida Robert G. Spulak, Jr. Ph.D., Physics /Nuclear Engineering Sandia National...each other. However, a virtual approach that leverages technology widens and enriches the opportunity for contact and is not limited by physical ...www.iep.utm.edu/j/justwar.htm [accessed 17 May 2004]. In Strategy and War Academic Year 2006 Coursebook , edited by Sharon McBride et al. (Maxwell AFB, AL: Air

  5. Convert Ten Foot Environmental Test Chamber into an Ion Engine Test Chamber

    NASA Technical Reports Server (NTRS)

    VanVelzer, Paul

    2006-01-01

    The 10 Foot Space Simulator at the Jet Propulsion Laboratory has been used for the last 40 years to test numerous spacecraft, including the Ranger series, several Mariner class, among many others and finally, the Spirit and Opportunity Mars Rovers. The request was made to convert this facility to an Ion Engine test facility, with a possible long term life test. The Ion engine was to propel the Prometheus spacecraft to Jupiter's moons. This paper discusses the challenges that were met, both from a procedural and physical standpoint. The converted facility must operate unattended, support a 30 Kw Ion Engine, operate economically, and be easily converted back to former operation as a spacecraft test facility.

  6. An intermediate-level course on Biological Physics

    NASA Astrophysics Data System (ADS)

    Nelson, Phil

    2004-03-01

    I describe both undergraduate and graduate 1-semester courses designed to give a survey of Biological Physics. The courses cover classical as well as recent topics. The undergraduate version requires calculus-based first-year physics as its prerequisite. With this level of assumed background, we can arrive at topics such as molecular motors, manipulation of single molecules, and the propagation of nerve impulses. Students majoring in physics, chemistry, biochemistry, and every engineering major (as well as a few in biology), end up taking this course. The graduate course covers the same material but includes exercises with symbolic mathematics packages and data modeling.

  7. Engineering physics and mathematics division

    NASA Astrophysics Data System (ADS)

    Sincovec, R. F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period 1 Jan. 1993 - 31 Dec. 1994. This report is the final archival record of the EPM Division. On 1 Oct. 1994, ORELA was transferred to Physics Division and on 1 Jan. 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  8. Connecting Physics Bachelors to Their Dream Jobs

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shouvik

    2013-01-01

    People who earn bachelor’s degrees in physics are highly employable. Employers value the skills that physics bachelor’s recipients acquire and develop over their four years of a college education, such as complex problem solving, advanced mathematics, teamwork and programming. The Career Pathways Project of the American Institute of Physics (AIP) aims to better prepare physics undergraduates for the science, technology, engineering, and math (STEM) workforce. This presentation will include a discussion of common features among departments visited by the AIP’s Career Pathways team, ideas for a career workshop for physics undergraduates, and advice on how to make the most out of a job fair and how to start effective online professional networking.

  9. Pharmaceutical Cocrystals and Their Physicochemical Properties

    PubMed Central

    2009-01-01

    Over the last 20 years, the number of publications outlining the advances in design strategies, growing techniques, and characterization of cocrystals has continued to increase significantly within the crystal engineering field. However, only within the last decade have cocrystals found their place in pharmaceuticals, primarily due to their ability to alter physicochemical properties without compromising the structural integrity of the active pharmaceutical ingredient (API) and thus, possibly, the bioactivity. This review article will highlight and discuss the advances made over the last 10 years pertaining to physical and chemical property improvements through pharmaceutical cocrystalline materials and, hopefully, draw closer the fields of crystal engineering and pharmaceutical sciences. PMID:19503732

  10. Hydrology

    NASA Astrophysics Data System (ADS)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  11. An undergraduate course, and new textbook, on ``Physical Models of Living Systems''

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.

  12. Twenty Years of Symbiosis Between Art and Science

    ERIC Educational Resources Information Center

    Reichardt, Jasia

    1974-01-01

    During the past two decades advances in biology, nuclear physics, computer and material sciences, and audiovisual engineering have brought a radically new dimension to most art forms and have stimulated the artist and his innovations to breath-taking levels of achievement. (Editor/JR)

  13. 34 CFR 691.1 - Scope and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...

  14. 34 CFR 691.1 - Scope and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...

  15. 34 CFR 691.1 - Scope and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...

  16. 34 CFR 691.1 - Scope and purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF EDUCATION (CONTINUED) ACADEMIC COMPETITIVENESS GRANT (ACG) AND NATIONAL SCIENCE AND MATHEMATICS..., fifth-year undergraduate students who are pursuing eligible majors in the physical, life, or computer sciences, mathematics, technology, or engineering or a critical foreign language meet the cost of their...

  17. Engineering Design Modules as Physics Teaching Tools

    ERIC Educational Resources Information Center

    Oliver, Douglas L.; Kane, Jackie

    2011-01-01

    Pre-engineering is increasingly being taught as a high school subject. This development presents challenges as well as opportunities for the physics education community. If pre-engineering is taught as a separate class, it may divert resources and students from traditional physics classes. However, design modules can be used as physics teaching…

  18. A new and compact system at the AMS laboratory in Bucharest

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Enachescu, M.; Petre, A. R.; Simion, C. A.; Calinescu, C. I.; Ghita, D. G.

    2015-10-01

    AMS research started more than 15 years ago at our National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest. A first facility was constructed based on our multipurpose 9 MV tandem accelerator and was upgraded several times. In May 2012 a new Cockcroft Walton type 1 MV HVEE tandetron AMS system, was commissioned. Two chemistry laboratories were constructed and are routinely performing the target preparation for carbon dating and for other isotope applications such as for geology, environment physics, medicine and forensic physics. Performance parameters of the new system are shown.

  19. Graduate Student Program in Materials and Engineering Research and Development for Future Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Linda

    The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approachmore » that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.« less

  20. New course in bioengineering and bioinspired design.

    PubMed

    Erickson, Jonathan C

    2012-01-01

    The past two years, a new interdisciplinary course has been offered at Washington and Lee University (Lexington, VA, USA), which seeks to surmount barriers that have traditionally existed between the physical and life sciences. The course explores the physiology leading to the physical mechanisms and engineering principles that endow the astonishing navigation abilities and sensory mechanisms of animal systems. The course also emphasizes how biological systems are inspiring novel engineering designs. Two (among many) examples are how the adhesion of the gecko foot inspired a new class of adhesives based on Van der Waals forces; and how the iridophore protein plates found in mimic octopus and squid act as tunable ¼ wave stacks, thus inspiring the engineering of optically tunable block copolymer gels for sensing temperature, pressure, or chemical gradients. A major component of this course is the integration of a 6-8 week long research project. To date, projects have included engineering: a soft-body robot whose motion mimics the inchworm; an electrical circuit to sense minute electric fields in aqueous environments based on the shark electrosensory system; and cyborg grasshoppers whose jump motion is controlled via an electronic-neural interface. Initial feedback has indicated that this course has served to increase student interaction and “cross-pollination” of ideas between the physical and life sciences. Student feedback also indicated a marked increase in desire and confidence to continue to pursue problems at the boundary of biology and engineering—bioengineering.

  1. The role of recognition and interest in physics identity development

    NASA Astrophysics Data System (ADS)

    Lock, Robynne

    2016-03-01

    While the number of students earning bachelor's degrees in physics has increased in recent years, this number has only recently surpassed the peak value of the 1960s. Additionally, the percentage of women earning bachelor's degrees in physics has stagnated for the past 10 years and may even be declining. We use a physics identity framework consisting of three dimensions to understand how students make their initial career decisions at the end of high school and the beginning of college. The three dimensions consist of recognition (perception that teachers, parents, and peers see the student as a ``physics person''), interest (desire to learn more about physics), and performance/competence (perception of abilities to complete physics related tasks and to understand physics). Using data from the Sustainability and Gender in Engineering survey administered to a nationally representative sample of college students, we built a regression model to determine which identity dimensions have the largest effect on physics career choice and a structural equation model to understand how the identity dimensions are related. Additionally, we used regression models to identify teaching strategies that predict each identity dimension.

  2. Biological Effects of Electromagnetic Radiation. Volume II, Number 4.

    DTIC Science & Technology

    1975-12-01

    Physics Group and professor of electrical engineering, is investigating the limiting of such lines or im— began the two year study after serving on an...Agric. For., Tokyo, Japan), and disturbances in erection , ejaculation , and/or T. Kobaymshi , 0. Mamiya, H. Tamiya , K. Sasaki , and orgasm ...life and physical sciences. The Current state of ORAL VARIATION OF EXTREMELY LOW FREQUENCY 11 -~ ~~ H Biological Ef f e c ts Electromagnet ic

  3. Interactive Physics: the role of interactive learning objects in teaching Physics in Engineering

    NASA Astrophysics Data System (ADS)

    Benito, R. M.; Cámara, M. E.; Arranz, F. J.

    2009-04-01

    In this work we present the results of a Project in educational innovation entitled "Interactive Physics". We have developed resources for teaching Physics for students of Engineering, with an emphasis in conceptual reinforcement and addressing the shortcomings of students entering the University. The resources developed include hypertext, graphics, equations, quizzes and more elaborated problems that cover the customary syllabus in first-year Physics: kinematics and dynamics, Newton laws, electricity and magnetism, elementary circuits… The role of vector quantities is stressed and we also provide help for the most usual mathematical tools (calculus and trigonometric formulas). The structure and level of detail of the resources are fitted to the conceptual difficulties that most of the students find. Some of the most advanced resources we have developed are interactive simulations. These are real simulations of key physical situations, not only animations. They serve as learning objects, in the well known sense of small reusable digital objects that are self-contained and tagged with metadata. In this sense, we use them to link concepts and content through interaction with active engagement of the student. The development of an interactive simulation involves several steps. First, we identify common pitfalls in the conceptual framework of the students and the points in which they stumble frequently. Then we think of a way to make clear the physical concepts using a simulation. After that, we program the simulation (using Flash or Java) and finally the simulation is tested with the students, and we reelaborate some parts of it in terms of usability. In our communication, we discuss the usefulness of these interactive simulations in teaching Physics for engineers, and their integration in a more comprehensive b-learning system.

  4. Mind Games: Game Engines as an Architecture for Intuitive Physics.

    PubMed

    Ullman, Tomer D; Spelke, Elizabeth; Battaglia, Peter; Tenenbaum, Joshua B

    2017-09-01

    We explore the hypothesis that many intuitive physical inferences are based on a mental physics engine that is analogous in many ways to the machine physics engines used in building interactive video games. We describe the key features of game physics engines and their parallels in human mental representation, focusing especially on the intuitive physics of young infants where the hypothesis helps to unify many classic and otherwise puzzling phenomena, and may provide the basis for a computational account of how the physical knowledge of infants develops. This hypothesis also explains several 'physics illusions', and helps to inform the development of artificial intelligence (AI) systems with more human-like common sense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Usability of a Commercial Game Physics Engine to Develop Physics Educational Materials: An Investigation

    ERIC Educational Resources Information Center

    Price, Colin B.

    2008-01-01

    Commercial computer games contain "physics engine" components, responsible for providing realistic interactions among game objects. The question naturally arises of whether these engines can be used to develop educational materials for high school and university physics education. To answer this question, the author's group recently conducted a…

  6. Local Heroes Live!

    NASA Astrophysics Data System (ADS)

    1999-09-01

    Physics teacher Andrew Morrison from High Pavement College in Nottingham has recently been appointed as Schools' officer for particle physics by the Particle Physics and Astronomy Research Council, as part of the Council's Public Understanding of Science programme. As well as his role as an experienced physics teacher, Andrew has acted as marketing manager for his college and chair of the Nottinghamshire section of the Association for Science Education. He will now be working two days each week in his new role with PPARC, acting as a link between the science education and research communities, helping researchers develop ideas for promoting particle physics and leading some specific new projects for the production of schools materials. Andrew can be contacted at High Pavement Sixth Form College, Gainsford Crescent, Nottingham NG5 5HT (tel: 0115 916 6165 or e-mail: morrison@innotts.co.uk). On the other side of the Atlantic, an 18 year-old student at Atlee High School in Mechanicsville, Virginia, USA was the recipient of the `1999 Young Scientist of the Year' award. Jakob Harmon submitted a project on magnetic levitation (maglev) in this extracurricular competition organized by PhysLINK.com, a leading Internet authority on physics and engineering education. The prize was a summer placement at Virginia Polytechnic Institute, Blacksburg, where Jakob continued his education in one of the most active maglev research and development groups in the USA. He also received science books and software as part of the award. The PhysLINK.com award was established to recognize, encourage and foster talented high school students in physics and engineering, with the prize being designed to fit the specific needs and aspirations of each individual winner. Details of next year's competition, along with Jakob's project and more about magnetic levitation can be viewed at www.physlink.com or by contacting Anton Skorucak of PhysLINK.com at 11271 Ventura Blvd #299, Studio City, CA 91606, USA (fax: (1) 818 985 2466, e-mail: info@physlink.com).

  7. Jochem Weber | NREL

    Science.gov Websites

    mechanical engineering (design) and physical engineering (fluid and system dynamics), and a Ph.D. in modeling Ph.D. in Engineering, University College Cork (Ireland); M.S. and B.S. in Physical Engineering

  8. Revitalizing Support for the Physical Sciences: The American Competitiveness Initiative

    NASA Astrophysics Data System (ADS)

    Rooney, Peter

    2006-11-01

    In January 2006, during his State of the Union Address, President Bush announced a renewed commitment on the part of his Administration to funding math and science education, and science and engineering research. Two weeks later, in February 2006, the President submitted his budget request to Congress, including The American Competitiveness Initiative (ACI), a budget initiative that proposes to double federal investments in fundamental research in the physical sciences at three civilian science agencies---the Office of Science in the Department of Energy, the National Science Foundation (NSF), and the National Institute of Standards and Technology (NIST)---over ten years. To date, ACI has fared well in Congress. The House of Representatives has already approved the increases for the Office of Science (up 14 percent), NSF (up 8 percent), and NIST (core laboratory research and infrastructure up 24 percent). Key Senate Subcommittees have approved similar increases. Of equal significance to the budget proposal, the President's pronouncements represent an effort to change the public perception of the value of science. This is the capstone of a fifteen-year effort on the part of the scientific community, including the American Physical Society, to develop a new rationale for funding physical science research in the post-Cold War era. 30 years of economic research suggests there is a strong correlation between the government investments in education and research, particularly physical science and engineering research, and future economic performance. The President made this connection explicit for the public in his State of the Union Address and in subsequent speeches and town hall meetings. The author will discuss these trends and the outlook for ACI going forward.

  9. "They [The Lecturers] Have to Get through a Certain Amount in an Hour": First Year Students' Problems with Service Mathematics Lectures

    ERIC Educational Resources Information Center

    Harris, Diane; Pampaka, Maria

    2016-01-01

    Drawing on large-scale survey data and interviews with students during their first year at university, and case studies in their institutions, we explore the problems faced by students taking mathematically demanding courses, e.g. physics and engineering. These students are often taught mathematics as a service subject by lecturers of mathematics.…

  10. Women and Science in El Salvador

    NASA Astrophysics Data System (ADS)

    de Maria Mendez Martınez, Luz; Portillo, Mercy; Elías, José Héctor

    2009-04-01

    Physics is rarely pursued by El Salvadoran students. As in most Latin-American countries, there exists the false idea in El Salvador that some careers should be exclusively for men, such as engineering and hard sciences like physics. Because El Salvador is a natural laboratory for geophysical phenomena, due to the existence of more than 20 volcanoes, prevalent seismic activity, and large production of geothermic energy, geophysics is the most common branch of physics studied in El Salvador. The numbers and gender breakdown of physics and geophysics students at the University of El Salvador in the years since the last IUPAP Women in Physics Conference in 2005 are presented, and the numbers are encouraging.

  11. The engineering design of the Tokamak Physics Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, J.A.

    A mission and supporting physics objectives have been developed, which establishes an important role for the Tokamak Physics Experiment (TPX) in developing the physic basis for a future fusion reactor. The design of TPX include advanced physics features, such as shaping and profile control, along with the capability of operating for very long pulses. The development of the superconducting magnets, actively cooled internal hardware, and remote maintenance will be an important technology contribution to future fusion projects, such as ITER. The Conceptual Design and Management Systems for TPX have been developed and reviewed, and the project is beginning Preliminary Design.more » If adequately funded the construction project should be completed in the year 2000.« less

  12. Women in Physics in the UK: Update 2005-2008

    NASA Astrophysics Data System (ADS)

    Butcher, Gillian; Marks, Ann; Ahmed, Saher; Hollinshead, Katharine

    2009-04-01

    The United Kingdom continues to address gender equality and diversity in all aspects of society. The Institute of Physics (IOP) is regarded as a leading proponent of these issues, not only in physics, but in disseminating its practices to other learned societies in science, engineering, and technology. Within IOP, both the Women in Physics Group, a membership organization with 2,700 members, including students, and a dedicated Diversity Programme, that reports to a high-level strategic Diversity Committee, are very active. In this paper we highlight some of the many initiatives that have taken place in the last few years, as well as present statistics on women in physics in the UK, demonstrating that progress has been made.

  13. Professor Igor Yevseyev: In Memoriam Professor Igor Yevseyev: In Memoriam

    NASA Astrophysics Data System (ADS)

    2012-06-01

    Dear readers and authors, June 3, 2012 will mark five months since Professor Igor Yevseyev, Deputy Editor-in-Chief of both journals Laser Physics and Laser Physics Letters passed away, suddenly and unexpectedly. He was 67. Born in Moscow, he entered one of the world's best schools of physics, Moscow Engineering Physics Institute (MEPhI). With this renowned educational and research institution he bonded an alliance for his entire life, starting as an undergraduate student in the Department of Theoretical Physics and later continued as graduate student, assistant professor, associated professor, and full professor in the same department, a rare accomplishment of a person. All those years he retained the love of his life—the love for physics. He worked tirelessly as a teacher and scholar in this captivating field of knowledge. Professor Yevseyev was one of the founders of the international journal of Laser Physics in 1990, the first academic English language journal published in the former USSR. Later, in 2004, the second journal, Laser Physics Letters was brought to the forum of global laser physics community. The idea behind this new title was Professor Yevseyev's initiative to reach the readers and participants with new pioneering and break-through research results more rapidly. His leadership and indefatigable dedication to the quality of published materials made it possible that this journal reached international recognition in a few short years. Still, in order to attract even more attention of potential contributors and readers, Professor Yevseyev originally proposed to conduct the International Laser Physics Workshop (LPHYS) on the annual basis. Since 1992 the Workshop has been conducted every year, each year in a different country. As in all previous years, Professor Yevseyev was the key organizer of this year's workshop in Calgary, Canada. Sadly, this workshop will take place without him. Editorial Board

  14. Use of the Moodle Platform to Promote an Ongoing Learning When Lecturing General Physics in the Physics, Mathematics and Electronic Engineering Programmes at the University of the Basque Country UPV/EHU

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Sáenz, Jon; Leonardo, Aritz; Gurtubay, Idoia G.

    2016-08-01

    The Moodle platform has been used to put into practice an ongoing evaluation of the students' Physics learning process. The evaluation has been done on the frame of the course General Physics, which is lectured during the first year of the Physics, Mathematics and Electronic Engineering Programmes at the Faculty of Science and Technology of the University of the Basque Country (UPV/EHU). A test bank with more than 1000 multiple-choice questions, including conceptual and numerical problems, has been prepared. Throughout the course, the students have to answer a 10-question multiple-choice test for every one of the blocks the course is divided in and which were previously treated and worked in the theoretical lectures and problem-solving sessions. The tests are automatically corrected by Moodle, and under certain criteria, the corresponding mark is taken into account for the final mark of the course. According to the results obtained from a statistical study of the data on the student performances during the last four academic years, it has been observed that there exists an actual correlation between the marks obtained in the Moodle tests and the final mark of the course. In addition, it could be deduced that students who have passed the Moodle tests increase their possibilities of passing the course by an odds ratio close to 3.

  15. Lincoln Advanced Science and Engineering Reinforcement

    DTIC Science & Technology

    1989-01-01

    Chamblee Physics Lincoln University Kelvin Clark Physics Lincoln University Dwayne Cole Mechanical Engineering Howard University Francis Countiss Physics...Mathematics Lincoln University Spencer Lane Mechanical Engineering Howard University Edward Lawerence Physics Lincoln University Cyd Hall Actuarial Science...Pittsburgh Lloyd Hammond Ph.D., Bio-Chemistry Purdue University Timothy Moore M.S., Psychology Howard University * completedI During 1988, three (3

  16. Optics in engineering education: stimulating the interest of first-year students

    NASA Astrophysics Data System (ADS)

    Blanco-García, Jesús; Vazquez-Dorrío, Benito

    2014-07-01

    The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.

  17. [Eutrophication control in local area by physic-ecological engineering].

    PubMed

    Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan

    2012-07-01

    An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.

  18. SAPHYR: the Swiss Atlas of PHYsical properties of Rocks

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Zappone, A. S.; Kissling, E.

    2015-12-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.

  19. Case study of a problem-based learning course of physics in a telecommunications engineering degree

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, Erica; Jesús Elejalde-García, Maria

    2013-08-01

    Active learning methods can be appropriate in engineering, as their methodology promotes meta-cognition, independent learning and problem-solving skills. Problem-based learning is the educational process by which problem-solving activities and instructor's guidance facilitate learning. Its key characteristic involves posing a 'concrete problem' to initiate the learning process, generally implemented by small groups of students. Many universities have developed and used active methodologies successfully in the teaching-learning process. During the past few years, the University of the Basque Country has promoted the use of active methodologies through several teacher training programmes. In this paper, we describe and analyse the results of the educational experience using the problem-based learning (PBL) method in a physics course for undergraduates enrolled in the technical telecommunications engineering degree programme. From an instructors' perspective, PBL strengths include better student attitude in class and increased instructor-student and student-student interactions. The students emphasised developing teamwork and communication skills in a good learning atmosphere as positive aspects.

  20. Future fundamental combustion research for aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1985-01-01

    Physical fluid mechanics, heat transfer, and chemical kinetic processes which occur in the combustion chamber of aeropropulsion systems were investigated. With the component requirements becoming more severe for future engines, the current design methodology needs the new tools to obtain the optimum configuration in a reasonable design and development cycle. Research efforts in the last few years were encouraging but to achieve these benefits research is required into the fundamental aerothermodynamic processes of combustion. It is recommended that research continues in the areas of flame stabilization, combustor aerodynamics, heat transfer, multiphase flow and atomization, turbulent reacting flows, and chemical kinetics. Associated with each of these engineering sciences is the need for research into computational methods to accurately describe and predict these complex physical processes. Research needs in each of these areas are highlighted.

  1. Interactive physics apparatus: influence on interest of secondary school students in pursuing a career path in science, technology, engineering and mathematics (STEM)

    NASA Astrophysics Data System (ADS)

    Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.

    2017-01-01

    In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students’ interest in pursuing a career in science, technology, engineering and mathematics (STEM). This assertion stems from self-reports of students who gave their views immediately after their exposure to interactive apparatus in their own school, outside of their usual lessons. Participants claimed that their interest in following a STEM career path was ‘greatly increased’ due to their exposure to these apparatus. This was true even for students who were intending to take a non-STEM career path. Thus, we recommend that, in settings that have constraints involving access to practical equipment, ways to introduce school level interactive physics apparatus to secondary school students be conducted in order to attract more students towards STEM courses. Possibly, policies encouraging this type of exposure should also be formulated.

  2. Physical modeling in geomorphology: are boundary conditions necessary?

    NASA Astrophysics Data System (ADS)

    Cantelli, A.

    2012-12-01

    Referring to the physical experimental design in geomorphology, boundary conditions are key elements that determine the quality of the results and therefore the study development. For years engineers have modeled structures, such as dams and bridges, with high precision and excellent results. Until the last decade, a great part of the physical experimental work in geomorphology has been developed with an engineer-like approach, requiring an accurate scaling analysis to determine inflow parameters and initial geometrical conditions. However, during the last decade, the way we have been approaching physical experiments has significantly changed. In particular, boundary conditions and initial conditions are considered unknown factors that need to be discovered during the experiment. This new philosophy leads to a more demanding data acquisition process but relaxes the obligation to a priori know the appropriate input and initial conditions and provides the flexibility to discover those data. Here I am going to present some practical examples of this experimental approach in deepwater geomorphology; some questions about scaling of turbidity currents and a new large experimental facility built at the Universidade Federal do Rio Grande do Sul, Brasil.

  3. A Hurricane for Physics Students.

    ERIC Educational Resources Information Center

    Mayo, Ned

    1994-01-01

    Describes how the study of a hurricane can be used to provide integrated basic mechanics in a first-year college course in engineering mechanics. Presents models that predict wind speed given surface eye pressure and several radial dimensions of the storm and calculate total kinetic energy once the wind speed is determined. (ZWH)

  4. National Science Foundation - Annual Report 1985. Thirty-Fifth Annual Report for Fiscal Year 1985.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    The 35th Annual Report of the National Science Foundation (NSF) describes recent achievements of NSF sponsored research in viral structure, semiconductors, genetic engineering, Mayan culture, astronomy, physiology, paleontology, robotics, physics, material science and pollution. Major 1985 initiatives included: (1) establishing six university…

  5. 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014)

    NASA Astrophysics Data System (ADS)

    2014-04-01

    2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014), was held at the Media Hotel, Jakarta, Indonesia, on 13-14 January 2014. The ScieTech 2014 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. ScieTech 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Mathematics, Chemistry and Physics. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 187 papers and after rigorous review, 50 papers were accepted. The participants come from 16 countries. There are 5 (Five) Paralell Sessions and Four Keynote Speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2014. The Editors of the Scietech 2014 Proceedings: Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. P.N. Gajjar

  6. Three new bachelors of photonics in Ontario

    NASA Astrophysics Data System (ADS)

    Nantel, Marc; Beda, Johann; Grevatt, Treena; Chebbi, Brahim; Jessop, Paul; Song, Shaowen

    2004-10-01

    After the introduction in 2001 of community college programs at the Photonics Technician/Technologist levels, the need to cover the photonics educational space at the undergraduate level was addressed. In the last year, three very different new undergraduate degrees in photonics have started to develop in Ontario. These programs are presented in this paper. The Honours B.Sc. in Photonics at Wilfrid Laurier University (Waterloo) will develop a strong understanding of the theory and application of photonics, with practical hands-on exposure to optics, fibre optics, and lasers. This program benefits from the particularity that the department offering it combines both Physics and Computer Science. At McMaster University, the Engineering Physics program will provide students with a broad background in basic Engineering, Mathematics, Electronics, and Semiconductors, as well as an opportunity to pursue Photonics in greater depth and to have that fact recognized in the program designation. The Niagara and Algonquin College Bachelor of Applied Technology in Photonics program is co-op and joint between the two institutions. Emphasis is placed on the applied aspects of the field, with the more hands-on experimental learning taking precedence in the first years and the more advanced theoretical subjects following in the latter years.

  7. Virtual experiments in electronics: beyond logistics, budgets, and the art of the possible

    NASA Astrophysics Data System (ADS)

    Chapman, Brian

    1999-09-01

    It is common and correct to suppose that computers support flexible delivery of educational resources by offering virtual experiments that replicate and substitute for experiments traditionally offered in conventional teaching laboratories. However, traditional methods are limited by logistics, costs, and what is physically possible to accomplish on a laboratory bench. Virtual experiments allow experimental approaches to teaching and learning to transcend these limits. This paper analyses recent and current developments in educational software for 1st- year physics, 2nd-year electronics engineering and 3rd-year communication engineering, based on three criteria: (1)Is the virtual experiment possible in a real laboratory? (2)How direct is the link between the experimental manipulation and the reinforcement of theoretical learning? (3) What impact might the virtual experiment have on the learner's acquisition of practical measurement skills? Virtual experiments allow more flexibility in the directness of the link between experimental manipulation and the theoretical message. However, increasing the directness of this link may reduce or even abolish the measurement processes associated with traditional experiments. Virtual experiments thus pose educational challenges: (a) expanding the design of experimentally based curricula beyond traditional boundaries and (b) ensuring that the learner acquires sufficient experience in making practical measurements.

  8. An examination of variables which influence high school students to enroll in an undergraduate engineering or physical science major

    NASA Astrophysics Data System (ADS)

    Porter, Christopher H.

    The purpose of this study was to examine the variables which influence a high school student to enroll in an engineering discipline versus a physical science discipline. Data was collected utilizing the High School Activities, Characteristics, and Influences Survey, which was administered to students who were freshmen in an engineering or physical science major at an institution in the Southeastern United States. A total of 413 students participated in the survey. Collected data were analyzed using descriptive statistics, two-sample Wilcoxon tests, and binomial logistic regression techniques. A total of 29 variables were deemed significant between the general engineering and physical science students. The 29 significant variables were further analyzed to see which have an independent impact on a student to enroll in an undergraduate engineering program, as opposed to an undergraduate physical science program. Four statistically significant variables were found to have an impact on a student's decision to enroll in a engineering undergraduate program versus a physical science program: father's influence, participation in Project Lead the Way, and the subjects of mathematics and physics. Recommendations for theory, policy, and practice were discussed based on the results of the study. This study presented suggestions for developing ways to attract, educate, and move future engineers into the workforce.

  9. Success in introductory college physics: The role of gender, high school preparation, and student learning perceptions

    NASA Astrophysics Data System (ADS)

    Chen, Jean Chi-Jen

    Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were positively related to performance. No significant performance differences were found between male and female students. However, there were significant gender differences in physics learning perceptions. Female participants tended to try to understand physics materials and relate the physics problems to real world situations while their male counterparts tended to rely on rote learning and equation application. This study found that participants performed better by trying to understand the physics material and relate physics problems to real world situations. Participants who relied on rote learning did not perform well.

  10. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  11. Student Blogging about Physics

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.

    2010-09-01

    In traditional introductory physics classes, there is often limited opportunity for students to contribute their own ideas, interests, and experiences as they engage with the subject matter. This situation is exacerbated in university lecture-format classes, where students may not feel comfortable speaking during class. In the last few years, Internet blogs have become a decentralized format for diarists, independent journalists, and opinion makers to both post entries and allow commentary from their readers. Below, I will describe some techniques for using student blogging about physics to engage students from two different classroom environments: a calculus-based introductory mechanics class for scientists and engineers, and an honors seminar for first-year students. These assignments required them to make their own connections between classroom knowledge and situations where it might find applications. A second goal of including blogging in the introductory physics course was to induce students to write about the physics content of the class in a more substantive way than was previously part of the class.

  12. The Teach for America RockCorps, Year 1: Turning Authentic Research Experiences in Geophysics for STEM Teachers into Modeling Instruction™ in High School Classrooms

    NASA Astrophysics Data System (ADS)

    Garrison, D. R., Jr.; Neubauer, H.; Barber, T. J.; Griffith, W. A.

    2015-12-01

    National reform efforts such as the Next Generation Science Standards, Modeling Instruction™, and Project Lead the Way (PLTW) seek to more closely align K-12 students' STEM learning experiences with the practices of scientific and engineering inquiry. These reform efforts aim to lead students toward deeper understandings constructed through authentic scientific and engineering inquiry in classrooms, particularly via model building and testing, more closely mirroring the professional practice of scientists and engineers, whereas traditional instructional approaches have typically been lecture-driven. In this vein, we describe the approach taken in the first year of the Teach for America (TFA) RockCorps, a five-year, NSF-sponsored project designed to provide authentic research experiences for secondary teachers and foster the development of Geophysics-themed teaching materials through cooperative lesson plan development and purchase of scientific equipment. Initially, two teachers were selected from the local Dallas-Fort Worth Region of TFA to participate in original research studying the failure of rocks under impulsive loads using a Split-Hopkinson-Pressure Bar (SHPB). For the teachers, this work provides a context from which to derive Geophysics-themed lesson plans for their courses, Physics/Pre-AP and Principles of Engineering (POE), offered at two large public high schools in Dallas ISD. The Physics course will incorporate principles of seismic wave propagation to allow students to develop a model of wave behavior, including velocity, refraction, and resonance, and apply the model to predict propagation properties of a variety of waves through multiple media. For the PLTW POE course, tension and compression testing of a variety of rock samples will be incorporated into materials properties and testing units. Also, a project will give a group of seniors in the PLTW Engineering Design and Development course at this certified NAF Academy of Engineering the opportunity to collaborate with UT Arlington scientists to design and prototype a fixturing solution for material testing. These course adaptations address learning objectives specified by the Texas Essential Knowledge and Skills, using geoscience examples to make abstract concepts more concrete.

  13. Integrating Research and Extension for the Nsf-Reu Program in Water Resources

    NASA Astrophysics Data System (ADS)

    Judge, J.; Migliaccio, K.; Gao, B.; Shukla, S.; Ehsani, R.; McLamore, E.

    2011-12-01

    Providing positive and meaningful research experiences to students in their undergraduate years is critical for motivating them to pursue advanced degrees or research careers in science and engineering. Such experiences not only offer training for the students in problem solving and critical thinking via hands-on projects, but also offer excellent mentoring and recruiting opportunities for the faculty advisors. The goal of the Research Experience for Undergraduates (REU) Program in the Agricultural and Biological Engineering Department (ABE) at the University of Florida (UF) is to provide eight undergraduate students a unique opportunity to conduct research in water resources using interdisciplinary approaches, integrating research and extension. The students are selected from diverse cultural and educational backgrounds. The eight-week REU Program utilizes the extensive infrastructure of UF - Institute of Food and Agricultural Sciences (IFAS) through the Research and Education Centers (RECs). Two students are paired to participate in their own project under the direct supervision of one of the four research mentors. Four of the eight students are located at the main campus, in Gainesville, Fl, and four remaining students are located off-campus, at the RECs, where some of the ABE faculty are located. The students achieve an enriching cohort experience through social networking, daily blogs, and weekly video conferences to share their research and other REU experiences. The students are co-located during the Orientation week and also during the 5-day Florida Waters Tour. Weekly group meetings and guest lectures are conducted via synchronously through video conferencing. The integration of research and extension is naturally achieved through the projects at the RECs, the guest lectures, Extension workshops, and visits to the Water Management Districts in Florida. In the last two years of the Program, we have received over 80 applicants, from four-year and advanced degree offering institutions and a variety of majors such as Geology, Meteorology, Environmental Sciences & Engineering, Civil Engineering, Water Resources, Agricultural Engineering, Physics, Geography, Chemical Engineering, to name a few. This model of providing integrated research and extension opportunities in hydrology where not all the REU participants are physically co-located, is unique and can be extended to other disciplines.

  14. Large Eddy Simulation of Engineering Flows: A Bill Reynolds Legacy.

    NASA Astrophysics Data System (ADS)

    Moin, Parviz

    2004-11-01

    The term, Large eddy simulation, LES, was coined by Bill Reynolds, thirty years ago when he and his colleagues pioneered the introduction of LES in the engineering community. Bill's legacy in LES features his insistence on having a proper mathematical definition of the large scale field independent of the numerical method used, and his vision for using numerical simulation output as data for research in turbulence physics and modeling, just as one would think of using experimental data. However, as an engineer, Bill was pre-dominantly interested in the predictive capability of computational fluid dynamics and in particular LES. In this talk I will present the state of the art in large eddy simulation of complex engineering flows. Most of this technology has been developed in the Department of Energy's ASCI Program at Stanford which was led by Bill in the last years of his distinguished career. At the core of this technology is a fully implicit non-dissipative LES code which uses unstructured grids with arbitrary elements. A hybrid Eulerian/ Largangian approach is used for multi-phase flows, and chemical reactions are introduced through dynamic equations for mixture fraction and reaction progress variable in conjunction with flamelet tables. The predictive capability of LES is demonstrated in several validation studies in flows with complex physics and complex geometry including flow in the combustor of a modern aircraft engine. LES in such a complex application is only possible through efficient utilization of modern parallel super-computers which was recognized and emphasized by Bill from the beginning. The presentation will include a brief mention of computer science efforts for efficient implementation of LES.

  15. Photonics education development for electrical engineering students

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Luo, Yuan; Liu, Yu; Hu, ZhangFang; Cai, Xuemei

    2017-08-01

    We describe the contents of an advanced undergraduate course on photonics at School of Electrical Engineering, Chongqing University of Posts and Telecommunications. The main goal of the course is to equip the student with the necessary theoretical and practical knowledge to participate in photonics-related industry and further graduate level study and research if they choose. The prerequisites include college-level physics and higher mathematics which a general engineering student has already had in his/her first and second year college study. Although applications of photonics are ubiquitous such as telecommunications, photonic computing, spectroscopy, military technology, and biophotonics etc. Telecommunication information system application is more emphasized in our course considering about the potential job chances for our students.

  16. What Attracts High-Achieving Socioeconomically Disadvantaged Students to the Physical Sciences and Engineering?

    ERIC Educational Resources Information Center

    Conrad, Sarah; Canetto, Silvia Sara; MacPhee, David; Farro, Samantha

    2009-01-01

    Socioeconomically disadvantaged (SED) students are less likely to major in physical sciences or engineering. To guide recruitment and retention of a diversity of talent, this study examined what attracts high-achieving SED students to these fields. Participants were 50 undergraduates majoring in physical sciences or engineering enrolled in the…

  17. Thrust and Propulsive Efficiency from an Instructive Viewpoint

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2010-01-01

    In a typical engineering or physics curriculum, the momentum equation is used for the determination of jet engine thrust. Even a simple thrust analysis requires a heavy emphasis on mathematics that can cause students and engineers to lose a physical perspective on thrust. This article provides for this physical understanding using only static…

  18. The environment for women in physics in Ireland

    NASA Astrophysics Data System (ADS)

    McLoughlin, Eilish; Fee, Sandra; McCabe, Eithne

    2015-12-01

    Physics is contributing strongly to the national Irish economy, with 4.5% of the Irish workforce employed in physics-based or other science, technology, engineering, and math (STEM) sectors. However, a recent national report reveals that the proportion of women working in jobs that utilize STEM skills is less than 25% of the workforce. We present data collected from the views of 1,000 female secondary school students, young women (age 18-23), secondary-school teachers and parents on what influences secondary school students' choices of subjects and in particular STEM-related subjects. In addition, benchmarking data on female student and staff ratios for the past five years is presented from all seven Irish university physics departments.

  19. Comparison of Physics Frameworks for WebGL-Based Game Engine

    NASA Astrophysics Data System (ADS)

    Yogya, Resa; Kosala, Raymond

    2014-03-01

    Recently, a new technology called WebGL shows a lot of potentials for developing games. However since this technology is still new, there are still many potentials in the game development area that are not explored yet. This paper tries to uncover the potential of integrating physics frameworks with WebGL technology in a game engine for developing 2D or 3D games. Specifically we integrated three open source physics frameworks: Bullet, Cannon, and JigLib into a WebGL-based game engine. Using experiment, we assessed these frameworks in terms of their correctness or accuracy, performance, completeness and compatibility. The results show that it is possible to integrate open source physics frameworks into a WebGLbased game engine, and Bullet is the best physics framework to be integrated into the WebGL-based game engine.

  20. A self-assessment of the propensity to obtain future employment: a case of final-year engineering students at the University of Botswana

    NASA Astrophysics Data System (ADS)

    Ssegawa, Joseph K.; Kasule, Daniel

    2017-09-01

    The article provides a self-assessment by final-year engineering students at the University of Botswana regarding the propensity to get employment. Students rated which employability attributes are important, the level of attainment and the sources that have facilitated the development of the attributes. Results indicated that students identified the most important attributes as management of time; possessing a high level of technical skills, meeting deadlines and creating viable solutions for solving a problem. They also indicated that they have weaknesses in managing time, meeting deadlines and creating viable solutions (attributes critical to the engineering profession). Students reported that their strengths were in having a positive attitude, orderly physical presentation, adaptation to new environments and willingness to learn new ideas. Students further noted that they developed the attributes from the university academic system followed by their own private activities. The study concludes that students lacked some of the critical attributes of engineering. They therefore, need to be explicitly and holistically sensitised as to how the attributes relate to their profession, employment and career development. As part of the review of the engineering programmes, sensitisation could be included in the induction process at enrolment.

  1. Retention and promotion of women and underrepresented minority faculty in science and engineering at four large land grant institutions.

    PubMed

    Gumpertz, Marcia; Durodoye, Raifu; Griffith, Emily; Wilson, Alyson

    2017-01-01

    In the most recent cohort, 2002-2015, the experiences of men and women differed substantially among STEM disciplines. Female assistant professors were more likely than men to leave the institution and to leave without tenure in engineering, but not in the agricultural, biological and biomedical sciences and natural resources or physical and mathematical sciences. In contrast, the median times to promotion from associate to full professor were similar for women and men in engineering and the physical and mathematical sciences, but one to two years longer for women than men in the agricultural, biological and biomedical sciences and natural resources. URM faculty hiring is increasing, but is well below the proportions earning doctoral degrees in STEM disciplines. The results are variable and because of the small numbers of URM faculty, the precision and power for comparing URM faculty to other faculty were low. In three of the four institutions, lower fractions of URM faculty than other faculty hired in the 2002-2006 time frame left without tenure. Also, in the biological and biomedical and physical and mathematical sciences no URM faculty left without tenure. On the other hand, at two of the institutions, significantly more URM faculty left before their tenth anniversary than other faculty and in engineering significantly more URM faculty than other faculty left before their tenth anniversary. We did not find significant differences in promotion patterns between URM and other faculty.

  2. A Calculus-Level Introductory Physics Course with an Astronomy Theme

    NASA Astrophysics Data System (ADS)

    Amato, Joseph

    2011-05-01

    Physics from Planet Earth (PPE) is a one-semester, calculus-based introductory course in classical mechanics intended for first year students of physics, chemistry, astronomy and engineering. Most of the core topics in mechanics are included, but many of the examples and applications are drawn from astronomy, space science, and astrophysics. The laws of physics are assigned the task of exploring the heavens - the same task addressed by Newton over 300 years ago at the birth of classical mechanics. How do we know the distance to the Moon, Sun, or other galaxies? How do we know the masses of the Earth, Sun, and other planets and stars, and why do we believe in "missing” mass? As a physics course, PPE concentrates on how we know rather than what we know. Examples and applications include those of historical importance (the Earth-Moon distance, the Earth-Sun distance, Ptolemaic vs. Copernican models, weighing the Earth) as well as those of contemporary interest (Hubble's Law, rocket propulsion, spacecraft gravity boosts, the Roche limit, search for extrasolar planets, orbital mechanics, pulsars, galactic rotation curves). The course has been taught successfully at Colgate for over a decade, using materials that have been developed and refined during the past 15 years. Developers of PPE are eager to enrich the course by identifying other topics in contemporary astronomy that can be adapted for the first year physics audience.

  3. Starting Life Over--Working with the Head Injured: The Case of Randall.

    ERIC Educational Resources Information Center

    Bostwick, Tracy

    1993-01-01

    Presents case of engineering college student who, after automobile accident, three months in coma, and four years of rehabilitation therapy, is seeking career counseling due to his frustrations with obtaining full-time professional employment. Notes that client had difficulty remembering new information; was physically slow; was mentally slower…

  4. Authentic Assessment in Performance­ Based Subjects

    ERIC Educational Resources Information Center

    Williams, P. John; Penney, Dawn

    2011-01-01

    This paper reports on a three-year study conducted in Western Australia, which commenced in January 2008, and was completed by December 2010. It concerns the potential to use digital technologies to represent the output from assessment tasks in two senior secondary courses: Engineering Studies and Physical Education Studies. The general aim of…

  5. Yes! We Are Rocket Scientists!

    ERIC Educational Resources Information Center

    Macduff, J. Trevor

    2006-01-01

    This article is an outline of what the author did in his classroom to incorporate the help of two volunteer engineers to create a powerful learning unit and cumulative review for his eighth-grade physical science students. This unit reviews what students have learned during the school year regarding force, motion, Newton's laws, gas laws, and…

  6. Also a Centennial Year for Ernest Orlando Lawrence

    Science.gov Websites

    research with multidisciplinary teams of scientists and engineers-the team-based approach to modern science should be remembered as the inventor of the modern way of doing science," said Lawrence team member Revolutionary Idea that Changed Modern Physics A Few Important Events in Lawrence's Life E.O. Lawrence

  7. FísicActiva: Applying Active Learning Strategies to a Large Engineering Lecture

    ERIC Educational Resources Information Center

    Auyuanet, Adriana; Modzelewski, Helena; Loureiro, Silvia; Alessandrini, Daniel; Míguez, Marina

    2018-01-01

    This paper presents and analyses the results obtained by applying Active Learning techniques in overcrowded Physics lectures at the University of the Republic, Uruguay. The course referred to is Physics 1, the first Physics course that all students of the Faculty of Engineering take in their first semester for all the Engineering-related careers.…

  8. 76 FR 21628 - Implementation of Additional Changes From the Annual Review of the Entity List; Removal of Person...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... Engineering Physics.'' The changes included revising the entry to add additional aliases for that entry. The... listing the aliases as separate aliases for the Chinese Academy of Engineering Physics. China (1) Chinese Academy of Engineering Physics, a.k.a., the following nineteen aliases: --Ninth Academy; --Southwest...

  9. The Influence of Protege-Mentor Relationships and Social Networks on Women Doctoral Students' Academic Career Aspirations in Physical Sciences and Engineering

    ERIC Educational Resources Information Center

    Gu, Yu

    2012-01-01

    Physical sciences and engineering doctoral programs serve as the most important conduit through which future academics are trained and prepared in these disciplines. This study examined women doctoral students' protege-mentor relationships in Physical sciences and engineering programs. Particularly, the study examined the influence of such…

  10. Teaching the Fundamentals of Cell Phones and Wireless Communications

    NASA Astrophysics Data System (ADS)

    Davids, Mark; Forrest, Rick; Pata, Don

    2010-04-01

    Wireless communications are ubiquitous. Students and teachers use iPhones®, BlackBerrys®, and other smart phones at home and at work. More than 275 million Americans had cell phones in June of 2009 and expanded access to broadband is predicted this year.2 Despite the plethora of users, most students and teachers do not understand "how they work." Over the past several years, three high school teachers have collaborated with engineers at Cingular, Motorola, and the University of Michigan to explore the underlying science and design a three-week, student-centered unit with a constructivist pedagogy consistent with the "Modeling in Physics" philosophy.3 This unique pilot program reinforces traditional physics topics including vibrations and waves, sound, light, electricity and magnetism, and also introduces key concepts in communications and information theory. This article will describe the motivation for our work, outline a few key concepts with the corresponding student activities, and provide a summary of the program that has been developed to engage and inspire the next generation of scientists, engineers, and citizens.

  11. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  12. Applying results from Physics Education Research in a large first-year service course

    NASA Astrophysics Data System (ADS)

    Ahrensmeier, Daria

    2012-10-01

    First-year service courses are among the most challenging teaching appointments, due to factors such as lack of motivation, lack of academic preparation, and huge class size. I will describe how the Labatorial Project at the University of Calgary strives to apply results from Physics Education research on inquiry-based learning, addressing misconceptions, peer instruction etc. to the small group sections of these courses. After a brief overview of the design and implementation of the labatorials for a first-year course for engineering students, I will focus on the aspects of change management and sustainability: how one initial change led to a sequence of related modifications, from the lectures to the exams and TA training, accompanied by a natural process of faculty professional development.

  13. Usage and User Acceptance of Applied Physics Letters Online

    NASA Astrophysics Data System (ADS)

    Ingoldsby, Timothy C.

    1996-03-01

    Applied Physics Letters Online became the first established physics print journal to appear online in full-text, hyperlinked form effective with January 1996 issues. In partnership with the Online Computer Library Center (OCLC), APL Online at the same time became the first established scientific or engineering journal to appear on the World Wide Web, in addition to being available through OCLC's proprietary Guidon user interface. AIP has now accumulated usage data for more than one year of operation, and has recently completed a survey of its full subscriber base. Usage has steadily increased throughout the year, with subscribers showing a clear preference for the Web version, even though it provides an interface in many ways inferior to OCLC's Guidon. Usage data and subscriber survey results will be presented, and directions for future research in online information delivery will be presented.

  14. VII International Congress of Engineering Physics

    NASA Astrophysics Data System (ADS)

    2015-01-01

    In the frame of the fortieth anniversary celebration of the Universidad Autónoma Metropolitana and the Physics Engineering career, the Division of Basic Science and Engineering and its Departments organized the "VII International Congress of Physics Engineering". The Congress was held from 24 to 28 November 2014 in Mexico City, Mexico. This congress is the first of its type in Latin America, and because of its international character, it gathers experts on physics engineering from Mexico and all over the globe. Since 1999, this event has shown research, articles, projects, technological developments and vanguard scientists. These activities aim to spread, promote, and share the knowledge of Physics Engineering. The topics of the Congress were: • Renewable energies engineering • Materials technology • Nanotechnology • Medical physics • Educational physics engineering • Nuclear engineering • High precision instrumentation • Atmospheric physics • Optical engineering • Physics history • Acoustics This event integrates lectures on top trending topics with pre-congress workshops, which are given by recognized scientists with an outstanding academic record. The lectures and workshops allow the exchange of experiences, and create and strengthen research networks. The Congress also encourages professional mobility among all universities and research centres from all countries. CIIF2014 Organizing and Editorial Committee Dr. Ernesto Rodrigo Vázquez Cerón Universidad Autónoma Metropolitana - Azcapotzalco ervc@correo.azc.uam.mx Dr. Luis Enrique Noreña Franco Universidad Autónoma Metropolitana - Azcapotzalco lnf@correo.azc.uam.mx Dr. Alberto Rubio Ponce Universidad Autónoma Metropolitana - Azcapotzalco arp@correo.azc.uam.mx Dr. Óscar Olvera Neria Universidad Autónoma Metropolitana - Azcapotzalco oon@correo.azc.uam.mx Professor Jaime Granados Samaniego Universidad Autónoma Metropolitana - Azcapotzalco jgs@correo.azc.uam.mx Dr. Roberto Tito Hernández López Universidad Autónoma Metropolitana - Azcapotzalco hlrt@correo.azc.uam.mx Dr. Anatolio Martínez Jiménez Universidad Autónoma Metropolitana - Azcapotzalco amartinez@correo.azc.uam.mx Dr. Eusebio Guzmán Serrano Universidad Autónoma Metropolitana - Azcapotzalco gse@correo.azc.uam.mx

  15. Young Engineers and Scientists: a Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Wuest, Martin; Marilyn, Koch B.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world research experiences in physical sciences and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college several have worked for SwRI and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  16. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    ScienceCinema

    Arnold, Jeffrey

    2018-05-14

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided. About the speaker: Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  17. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  18. Survey of Alternative Fuels for Corps of Engineers Diesel Engine Powered Dredges.

    DTIC Science & Technology

    1984-04-01

    due to its physical and chemical properties ; as a result, the extent of engine and fuel system modifications must be considered. Engine performance...17,200 17,629 18,884 Cetane Number 54 24 * 16 21 50 • Not available / 00 -30- H-Coal The physical properties shown in Table 4 would strongly...have the desirable physical and chemical properties been defined to make them totally acceptable as a fuel source. The 1973 oil embargo signaled the

  19. The role of gender on academic performance in STEM-related disciplines: Data from a tertiary institution.

    PubMed

    John, Temitope M; Badejo, Joke A; Popoola, Segun I; Omole, David O; Odukoya, Jonathan A; Ajayi, Priscilla O; Aboyade, Mary; Atayero, Aderemi A

    2018-06-01

    This data article presents data of academic performances of undergraduate students in Science, Technology, Engineering and Mathematics (STEM) disciplines in Covenant University, Nigeria. The data shows academic performances of Male and Female students who graduated from 2010 to 2014. The total population of samples in the observation is 3046 undergraduates mined from Biochemistry (BCH), Building technology (BLD), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Computer Science (CIS), Civil Engineering (CVE), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mathematics (MAT), Microbiology (MCB), Mechanical Engineering (MCE), Management and Information System (MIS), Petroleum Engineering (PET), Industrial Physics-Electronics and IT Applications (PHYE), Industrial Physics-Applied Geophysics (PHYG) and Industrial Physics-Renewable Energy (PHYR). The detailed dataset is made available in form of a Microsoft Excel spreadsheet in the supplementary material of this article.

  20. Native American Participation among Bachelors in Physical Sciences and Engineering: Results from 2003-13 Data of the National Center for Education Statistics. Focus On

    ERIC Educational Resources Information Center

    Merner, Laura; Tyler, John

    2017-01-01

    Using the National Center of Education Statistics' Integrated Postsecondary Education Data System (IPEDS), this report analyzes data on Native American recipients of bachelor's degrees among 16 physical science and engineering fields. Overall, Native Americans are earning physical science and engineering bachelor's degrees at lower rates than the…

  1. The IMPELA TM 10 MeV, 50 kW electron linac: launching an industrial accelerator product

    NASA Astrophysics Data System (ADS)

    Stirling, Andrew J.

    1991-05-01

    In the previous conferences there has been no shortage of ideas, experiments and prototypes for industrial accelerators. Indeed, physicists propose new ideas at a rate faster than industry can get irradiators to the market. Certainly, the basic physics design must be sound, but this is a far from sufficient condition for an accelerator to succeed. Good physics design is needed to provide a good combination of electrical efficiency and useable power within the scan width. It may, however, be counterproductive if high performance compromises inherent reliability. From the engineering discipline is required an engineered control interface, an engineered product control and dosimetry system and traceable quality assurance. Just as important, the industrial client seeks an irradiator that is built quickly, and will be supported over a long service life (10-20 years). It is also necessary to assist the client in facility design, licencing and process verification. Providing these additional functions is a challenge for the business champions which equals what the technical champions face in obtaining full beam power.

  2. Career preference theory: A grounded theory describing the effects of undergraduate career preferences on student persistence in engineering

    NASA Astrophysics Data System (ADS)

    Dettinger, Karen Marie

    This study used grounded theory in a case study at a large public research university to develop a theory about how the culture in engineering education affects students with varying interests and backgrounds. According to Career Preference Theory, the engineering education system has evolved to meet the needs of one type of student, the Physical Scientist. While this educational process serves to develop the next generation of engineering faculty members, the majority of engineering undergraduates go on to work as practicing engineers, and are far removed from working as physical scientists. According to Career Preference Theory, students with a history of success in mathematics and sciences, and a focus on career, enter engineering. These students, who actually have a wide range of interests and values, each begin seeking an identity as a practicing engineer. Career Preference Theory is developed around a concept, Career Identity Type, that describes five different types of engineering students: Pragmatic, Physical Scientist, "Social" Scientist, Designer, and Educator. According to the theory, each student must develop an identity within the engineering education system if they are to persist in engineering. However, the current undergraduate engineering education system has evolved in such a way that it meets only the needs of the Physical Scientist. Pragmatic students are also likely to succeed because they tend to be extremely goal-focused and maintain a focus on the rewards they will receive once they graduate with an engineering degree. However, "Social" Scientists, who value interpersonal relationships and giving back to society; Designers, who value integrating ideas across disciplines to create aesthetically pleasing and useful products; and Educators, who have a strong desire to give back to society by working with young people, must make some connection between these values and a future engineering career if they are to persist in engineering. According to Career Preference Theory, "Social" Scientists, Designers, and Educators are likely to leave engineering, while Pragmatics and Physical Scientists are likely to persist.

  3. Final Report “Electrical and mechanical characterization of rocks at the sub-millimeter scale” DE-SC0000757

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scales, John

    The broad purpose of CSM's 6-year (3 years plus renewal) DOE project was to develop and apply new experimental physics technology to the material characterization of rocks at the grain scale or smaller. This is motivated by a knowledge that the bulk chemistry and physics of rocks are strongly influenced by processes occurring at the grain scale: the flow of fluids, cation exchange, the state of cementation of grains, and many more. It may also be possible in some cases to ``upscale'' or homogenize the mesoscopic properties of rocks in order to directly infer the large-scale properties of formations, butmore » that is not our central goal. Understanding the physics and chemistry at the small scale is. During the first 3 years, most effort was devoted to developing and validating the near-field scanning technology. During the 3 year renewal phase, most effort was focused on applying the technology in the labs Professors Batzle (now deceased) in Geophysics and Prasad in Petroleum engineering.« less

  4. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    NASA Astrophysics Data System (ADS)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  5. Learning physical biology via modeling and simulation: A new course and textbook for science and engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  6. XXIV International Conference on Integrable Systems and Quantum symmetries (ISQS-24)

    NASA Astrophysics Data System (ADS)

    Burdík, Čestmír; Navrátil, Ondřej; Posta, Severin

    2017-01-01

    The XXIV International Conference on Integrable Systems and Quantum Symmetries (ISQS-24), organized by the Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Prague and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, belongs to the successful series of conferences held at the Czech Technical University which began in 1992 and is devoted to problems of mathematical physics related to the theory of integrable systems, quantum groups and quantum symmetries. During the last 5 years, each of the conferences gathered around 110 scientists from all over the world. 43 papers of plenary lectures and contributions presented at ISQS-24 are published in the present issue of Journal of Physics: Conference Series.

  7. The next generation rocket engines

    NASA Astrophysics Data System (ADS)

    Beichel, Rudi; O'Brien, Charles J.; Taylor, James P.

    This paper examines propulsion system technologies for earth-to-orbit vehicles, and describes several propulsion system concepts which could support the recommendations of the Commission for Space Development for the year 2000. The hallmark of that system must and will be reliability. Reliability will be obtained through a very structured design approach, coupled with a rational, cost effective, development and qualification program. To improve the next generation space transportation propulsion systems we need to select the very best of alternative power and performance cycles and engine physical concepts with a rigid requirement to achieve a robust, dependable, affordable propulsion system. For example, engine concepts using either propellants or non-propellant fluids for cooling and/or power drive offer the potential to provide smooth, controlled engine starts, low turbine temperatures, etc. as required for long life turbomachinery. Concepts examined are LOX/LH 2, |LOX/LH 2 + hydrocarbon, and LOX/LH 2 + hydrocarbon + Al dual expander engines, separate LOX/LH 2 and LOX/hydrocarbon engines, and variable mixture ratio engines. A fully reusable propulsion system that is perceived to be very low risk and low in operation cost is described.

  8. Hispanic Participation among Bachelor's in Physical Sciences and Engineering: Results from 2002-2012 Data of the National Center for Education Statistics. Focus On

    ERIC Educational Resources Information Center

    Merner, Laura

    2014-01-01

    This report examines the representation of Hispanics among bachelor's degree recipients in the physical sciences and engineering in the US. Hispanics have been increasing their representation across the physical sciences and engineering at an outstanding rate. More broadly, from 2002-2012 there has been a significant increase in…

  9. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    ERIC Educational Resources Information Center

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-01-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…

  10. Enhancing Force Concept Inventory Diagnostics to Identify Dominant Misconceptions in First-Year Engineering Physics

    ERIC Educational Resources Information Center

    Martin-Blas, Teresa; Seidel, Luis; Serrano-Fernandez, Ana

    2010-01-01

    This work presents the results of a study whose aim is to detect systematic errors about the concept of force among freshmen students. The researchers analysed the results of the Force Concept Inventory test, which was administered to two different groups of students. The results show that, although there were significant performance variations…

  11. Attitudes about High School Physics in Relationship to Gender and Ethnicity: A Mixed Method Analysis

    ERIC Educational Resources Information Center

    Hafza, Rabieh Jamal

    2012-01-01

    There is an achievement gap and lack of participation in science, technology, engineering, and math (STEM) by minority females. The number of minority females majoring in STEM related fields and earning advanced degrees in these fields has not significantly increased over the past 40 years. Previous research has evaluated the relationship between…

  12. The Dimension of the Pore Space in Sponges

    ERIC Educational Resources Information Center

    Silva, L. H. F.; Yamashita, M. T.

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm[superscript -3] was 2.948 [plus or minus] 0.008. (Contains 2 figures.)

  13. Using the Continuum of Design Modelling Techniques to Aid the Development of CAD Modeling Skills in First Year Industrial Design Students

    ERIC Educational Resources Information Center

    Storer, I. J.; Campbell, R. I.

    2012-01-01

    Industrial Designers need to understand and command a number of modelling techniques to communicate their ideas to themselves and others. Verbal explanations, sketches, engineering drawings, computer aided design (CAD) models and physical prototypes are the most commonly used communication techniques. Within design, unlike some disciplines,…

  14. The Physics Force of the College of Science and Engineering at the University of Minnesota

    NASA Astrophysics Data System (ADS)

    Dahlberg, E. Dan

    2017-08-01

    This article is about outreach to students and the general public. The evolution of a thirty year old program at the UM is described. The goal of this paper is to stimulate others in the research community in their quest to educate, motivate, and entertain in the name of science.

  15. The Graduate Experience in Engineering and the Physical Sciences: Gender and Ethnic Differences in Initial Expectations and Departmental Incorporation.

    ERIC Educational Resources Information Center

    Santiago, Anna M.; Einarson, Marne K.

    This study examined the relative impact of both student-driven and institutional factors on anticipated academic and career outcomes among first-year graduate students. The study addressed two primary questions: (1) whether significant gender and ethnic differences exist in the academic credentials, expectations, and degree of incorporation within…

  16. The Catalyst Scholarship Program at Hunter College. A Partnership among Earth Science, Physics, Computer Science and Mathematics

    ERIC Educational Resources Information Center

    Salmun, Haydee; Buonaiuto, Frank

    2016-01-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…

  17. Introducing Gyroscopes Quantitatively without Putting Students into a Spin

    ERIC Educational Resources Information Center

    McGlynn, Enda

    2007-01-01

    The uniform precession of a simple form of gyroscope is analysed via a direct application of Newton's laws, using only concepts generally taught to physics and engineering students in the first two years of an undergraduate programme, with an emphasis on understanding the forces and torques acting on the system. This type of approach, in the…

  18. Multi-physics CFD simulations in engineering

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto

    2013-08-01

    Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been sufficiently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in developing machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and efficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.

  19. Early Career Summer Interdisciplinary Team Experiences and Student Persistence in STEM Fields

    NASA Astrophysics Data System (ADS)

    Cadavid, A. C.; Pedone, V. A.; Horn, W.; Rich, H.

    2015-12-01

    STEPS (Students Targeting Engineering and Physical Science) is an NSF-funded program designed to increase the number of California State University Northridge students getting bachelor's degrees in the natural sciences, mathematics, engineering and computer science. The greatest loss of STEM majors occurs between sophomore and junior- years, so we designed Summer Interdisciplinary Team Experience (SITE) as an early career program for these students. Students work closely with a faculty mentor in teams of ten to investigate regionally relevant problems, many of which relate to sustainability efforts on campus or the community. The projects emphasize hands-on activities and team-based learning and decision making. We report data for five years of projects, qualitative assessment through entrance and exit surveys and student interviews, and in initial impact on retention of the participants.

  20. The effects of experience and attrition for novice high-school science and mathematics teachers.

    PubMed

    Henry, Gary T; Fortner, C Kevin; Bastian, Kevin C

    2012-03-02

    Because of the current high proportion of novice high-school teachers, many students' mastery of science and mathematics depends on the effectiveness of early-career teachers. In this study, which used value-added models to analyze high-school teachers' effectiveness in raising test scores on 1.05 million end-of-course exams, we found that the effectiveness of high-school science and mathematics teachers increased substantially with experience but exhibited diminishing rates of return by their fourth year; that teachers of algebra 1, algebra 2, biology, and physical science who continued to teach for at least 5 years were more effective as novice teachers than those who left the profession earlier; and that novice teachers of physics, chemistry, physical science, geometry, and biology exhibited steeper growth in effectiveness than did novice non-science, technology, engineering, and mathematics teachers.

  1. Learning by doing at the Colorado School of Mines

    NASA Astrophysics Data System (ADS)

    Furtak, Thomas E.; Ruskell, Todd G.

    2013-03-01

    With over 260 majors, the undergraduate physics program at CSM is among the largest in the country. An underlying theme in this success is experiential learning, starting with a studio teaching method in the introductory calculus-based physics courses. After their second year students complete a 6-week full-time summer course devoted to hands-on practical knowledge and skills, including machine shop techniques, high-vacuum technology, applied optics, electronic control systems, and computational tools. This precedes a two-semester laboratory sequence that can be taught at an advanced level because of the students' experience. The required capstone senior course is a year-long open-ended challenge in which students partner with members of the faculty to work on authentic research projects, teaming with grad students or post-docs as contributing members to the department's externally funded scholarship. All of these features are important components of our B.S. degree, Engineering Physics, which is officially accredited by ABET.

  2. Physical-scale models of engineered log jams in rivers

    USDA-ARS?s Scientific Manuscript database

    Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...

  3. Optical circulator analysis and optimization: a mini-project for physical optics

    NASA Astrophysics Data System (ADS)

    Wan, Zhujun

    2017-08-01

    One of the mini-projects for the course of physical optics is reported. The project is designed to increase comprehension on the basics and applications of polarized light and birefringent crystal. Firstly, the students are required to analyze the basic principle of an optical circulator based on birefringent crystal. Then, they need to consider the engineering optimization problems. The key tasks include analyzing the polarization transforming unit (composed of a half-waveplate and a Faraday rotator) based on Jones matrix, maximizing the walk-off angle between e-ray and o-ray in birefringent crystal, separating e-ray and o-ray symmetrically, employment of a transformed Wollaston prism for input/output coupling of optical beams to fibers. Three years' practice shows that the project is of moderate difficulty, while it covers most of the related knowledge required for the course and helps to train the engineering thinking.

  4. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  5. Introducing the Institute of Physics in Engineering and Medicine (IPEM)

    NASA Astrophysics Data System (ADS)

    Keevil, Stephen F.

    2014-04-01

    Physics in Medicine and Biology is one of three journals owned by the UK based Institute of Physics and Engineering in Medicine (IPEM), along with Physiological Measurement and Medical Engineering and Physics. IPEM is a charity and journal revenues are a vital part of our income stream. By subscribing to our journals, you are helping to support the work of IPEM, so you may be interested to learn more about who we are and what we do. IPEM aims to advance physics and engineering applied to medicine and biology for the public good. Our membership comprises over 4000 physicists, engineers and technologists working in healthcare, academia and industry. Most of our work depends on these members generously volunteering their expert knowledge and extensive experience to work in the following areas. Promoting research and innovation Along with the scientific journals mentioned above, we also regularly produce scientific reports. There are currently 40 IPEM reports in print, as well as reference books such as The Gamma Camera—A Comprehensive Guide and the recently published Physicists and Physicians: A History of Medical Physics from the Renaissance to Röntgen. Publishing is just one way in which we encourage R&D and increase the uptake of new knowledge and innovations. We also support scientific conferences, such as the International Conference on Medical Physics 50th anniversary meeting, which we hosted in 2013 on behalf of the International Organization for Medical Physics (IOMP). This four-day event explored the contribution that physics and engineering can make to healthcare and showcased the latest developments via 312 international speakers, 212 posters and an exhibition. Our awards, travel bursaries and grants enable us to facilitate, recognize and reward the work of our members. In 2012 we awarded almost #95 000 (around 155 000) this way. Championing the sector IPEM provides a unified voice with which to represent the views of our membership and raise the profile of the medical physics and bioengineering sectors. We seek to influence science and healthcare policy-makers through responses to consultations, high-level committee representation and policy statements. By providing expert spokespeople, we help to ensure accurate media coverage of IPEM-related issues. For example, in 2012 we contributed to the development of new European Commission regulations on medical implants and diagnostic devices. We also worked with the Science Media Centre to provide a press briefing on the subject that led to informed coverage by national media outlets, including BBC Radio 4's Today programme, The Times and the British Medical Journal. Enhancing science and technology in healthcare IPEM works to uphold the quality, safety and effectiveness of science and technology in healthcare. We do this by influencing healthcare policy and practice, helping to set international standards and guidelines and conducting surveys and audits. Our special interest groups (SIGs) provide specialized expertise on a range of topics (see table 1). For example, the Radiotherapy SIG was recently consulted on the distribution of the UK Department of Health's #23m Radiotherapy Innovation Fund. Table 1. IPEM special interest groups (SIGs). Clinical engineering Diagnostic radiology Informatics and computing Nuclear medicine Radiotherapy Magnetic resonance Radiation protection Physiological measurement Rehabilitation and biomechanics Ultrasound and non-ionizing radiation High-quality education and training We aim to maintain high standards of professional development for healthcare scientists, engineers and technicians. In the UK, we are an important source of accreditation for training centres. We also offer training and other support for trainees, such as the trainee network which enables early career healthcare scientists and engineers to collaborate and support each other. Through IPEM, members can seek professional registration on the Science Council and Engineering Council schemes, or on the Voluntary Register of Clinical Technologists. We also provide opportunities for continuing professional development in the form of one-day meetings. In 2012, we held 17 such events on subjects such as optical radiation, IMRT verification and bespoke software in medical physics and clinical engineering. Supporting the workforce Earlier this year, we created our Workforce Intelligence Unit, which is providing authoritative data on the UK workforce in our sectors to inform stakeholders and influence decision-makers. This is part of our wider work to ensure that the right medical physics and biomedical engineering workforce is in place and provided with the support it needs. We keep our members up to date with the latest developments via our website, social media, a monthly newsletter and the quarterly magazine, Scope. Engaging with the public An important part of our charitable objectives is to inform and educate the public. The vast majority of our outreach activity is delivered by volunteer members, often in their own time at events such as careers fairs, classroom demonstrations and hospital open days. Most members find the experience hugely rewarding and a great way to improve their communication skills. Around 120 members were involved in outreach events in 2012. International work IPEM works closely with the international medical physics and bioengineering communities and our International Advisory Group has links to Europe, India and the rest of the world. We represent the UK in the IOMP and the European Federation of Organizations for Medical Physics (EFOMP). IPEM is also a member of the European Alliance for Medical and Biological Engineering and Science (EAMBES) and the International Federation for Medical and Biological Engineering (IFMBE). Why join us? Membership of IPEM is open to healthcare physicists, engineers or technologists working in hospitals, academia or industry anywhere in the world. If you are based outside the UK, our international membership is designed to complement your existing national professional body membership and offers substantial discounts on our journals (including Physics in Medicine and Biology ) and publications, along with international networking opportunities and other member benefits. You can find out more about us at www.ipem.ac.uk or follow us on Twitter @ipemnews.

  6. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  7. Gelatin-Based Materials in Ocular Tissue Engineering.

    PubMed

    Rose, James B; Pacelli, Settimio; Haj, Alicia J El; Dua, Harminder S; Hopkinson, Andrew; White, Lisa J; Rose, Felicity R A J

    2014-04-17

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.

  8. Stationary engineering handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrocelly, K.L.

    Years ago, the only qualifications you needed to become to become an operating engineer were the ability to shovel large chunks of coal through small furnace doors and the fortitude to sweat profusely for hours without fainting. As a consequence of technological evolution, the engineer's coal shovels have been replaced with computers and now perspiration is more the result of job stress than exposure to high temperatures. The domain of the operator has been extended far beyond the smoke-filled caverns that once encased him, out into the physical plant, and his responsibilities have been expanded accordingly. Unlike his less sophisticatedmore » predecessor, today's technician must be well versed in all aspects of the operation. The field of power plant operations has become a full-fledged profession and its principals are called Stationary Engineers. This book addresses the areas of responsibility and the education and skills needed for successful operation of building services equipment.« less

  9. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  10. Gelatin-Based Materials in Ocular Tissue Engineering

    PubMed Central

    Rose, James B.; Pacelli, Settimio; El Haj, Alicia J.; Dua, Harminder S.; Hopkinson, Andrew; White, Lisa J.; Rose, Felicity R. A. J.

    2014-01-01

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology. PMID:28788609

  11. New optical engineering and instrument design programs at the University of California, Irvine Extension

    NASA Astrophysics Data System (ADS)

    Silberman, Donn M.; Doushkina, Valentina V.

    2010-08-01

    Three years ago we reported on a new optics education program established at the Irvine Center for Applied Competitive Technologies (CACT) at the Advanced Technology and Education Park (ATEP) operated by the South Orange County Community College District (SOCCCD). This paper reports on new Optical Engineering and Instrument Design Programs now being offered through the University of California, Irvine Extension. While there are some similarities between the two programs, the differences are mainly the students' level. The community college level programs were targeted primarily at technicians and junior level engineers. The university level programs are targeted at senior level engineering and physical sciences university students, graduate and post graduate students and designers in industry. This paper reviews the reasons for establishing these certificate programs and their content, the students' motivations for taking them and their employers' incentives for encouraging the students.

  12. The Effects of Local Exertion and Anticipation on the Performance of a Discrete Skill.

    DTIC Science & Technology

    1986-01-01

    295-298. Davies, B.T. & Ward, H. (1978). The effect of physical work on a subsequent fine manipulative task. Ergonomics , 21, 939-944. Dechovitz, A.B...Lt Jaeger’s next assignment was at the Occupational Measurement Cente r, Lackland AFB, Texas, where for three years he wrote and edited achievement...psychology, and human factors engineering for two years, then was selected for advanced graduate work in ergonomics under the sponsorship of the Air

  13. Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature.

    PubMed

    Compagnone, Dario; Francia, Girolamo Di; Natale, Corrado Di; Neri, Giovanni; Seeber, Renato; Tajani, Antonella

    2017-04-14

    The contributions of Italian researchers to sensor research in 2015 is reviewed. The analysis of the activities in one year allows one to obtain a snapshot of the Italian scenario capturing the main directions of the research activities. Furthermore, the distance of more than one year makes meaningful the bibliometric analysis of the reviewed papers. The review shows a research community distributed among different scientific disciplines, from chemistry, physics, engineering, and material science, with a strong interest in collaborative works.

  14. Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature

    PubMed Central

    Compagnone, Dario; Di Francia, Girolamo; Di Natale, Corrado; Neri, Giovanni; Seeber, Renato; Tajani, Antonella

    2017-01-01

    The contributions of Italian researchers to sensor research in 2015 is reviewed. The analysis of the activities in one year allows one to obtain a snapshot of the Italian scenario capturing the main directions of the research activities. Furthermore, the distance of more than one year makes meaningful the bibliometric analysis of the reviewed papers. The review shows a research community distributed among different scientific disciplines, from chemistry, physics, engineering, and material science, with a strong interest in collaborative works. PMID:28420110

  15. PVD TBC experience on GE aircraft engines

    NASA Technical Reports Server (NTRS)

    Bartz, A.; Mariocchi, A.; Wortman, D. J.

    1995-01-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of Thermal Barrier Coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the Physical Vapor Deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micrometer (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than uncoated components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however, a significant temperature reduction was realized over an airfoil without any TBC.

  16. PVD TBC experience on GE aircraft engines

    NASA Technical Reports Server (NTRS)

    Maricocchi, Antonio; Bartz, Andi; Wortman, David

    1995-01-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micron (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than non-PVD TBC components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however a significant temperature reduction was realized over an airfoil without TBC.

  17. PVD TBC experience on GE aircraft engines

    NASA Astrophysics Data System (ADS)

    Maricocchi, A.; Bartz, A.; Wortman, D.

    1997-06-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reli-ability of materials in the turbine. The increased engine temperatures required to achieve the higher per-formance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 μm (0.005 in.) PVD TBC have demonstrated component operating tem-peratures of 56 to 83 °C (100 to 150 °F) lower than non-PVD TBC components. Engine testing has also revealed that TBCs are susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area ; however, a significant temperature reduc-tion was realized over an airfoil without TBC.

  18. An investigation of the effect of instruction in physics on the formation of mental models for problem-solving in the context of simple electric circuits

    NASA Astrophysics Data System (ADS)

    Beh, Kian Lim

    2000-10-01

    This study was designed to explore the effect of a typical traditional method of instruction in physics on the formation of useful mental models among college students for problem-solving using simple electric circuits as a context. The study was also aimed at providing a comprehensive description of the understanding regarding electric circuits among novices and experts. In order to achieve these objectives, the following two research approaches were employed: (1) A students survey to collect data from 268 physics students; and (2) An interview protocol to collect data from 23 physics students and 24 experts (including 10 electrical engineering graduates, 4 practicing electrical engineers, 2 secondary school physics teachers, 8 physics lecturers, and 4 electrical engineers). Among the major findings are: (1) Most students do not possess accurate models of simple electric circuits as presented implicitly in physics textbooks; (2) Most students display good procedural understanding for solving simple problems concerning electric circuits but have no in-depth conceptual understanding in terms of practical knowledge of current, voltage, resistance, and circuit connections; (3) Most students encounter difficulty in discerning parallel connections that are drawn in a non-conventional format; (4) After a year of college physics, students show significant improvement in areas, including practical knowledge of current and voltage, ability to compute effective resistance and capacitance, ability to identify circuit connections, and ability to solve problems; however, no significance was found in practical knowledge of resistance and ability to connect circuits; and (5) The differences and similarities between the physics students and the experts include: (a) Novices perceive parallel circuits more in terms of 'branch', 'current', and 'resistors with the same resistance' while experts perceive parallel circuits more in terms of 'node', 'voltage', and 'less resistance'; and (b) Both novices and experts use phrases such as 'side-by side' and 'one on top of the other' in describing parallel circuits which emphasize the geometry of the standard circuit drawing when describing parallel resistors.

  19. Teaching Vectors Through an Interactive Game Based Laboratory

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Sirokman, Gergely

    2014-03-01

    In recent years, science and particularly physics education has been furthered by the use of project based interactive learning [1]. There is a tremendous amount of evidence [2] that use of these techniques in a college learning environment leads to a deeper appreciation and understanding of fundamental concepts. Since vectors are the basis for any advancement in physics and engineering courses the cornerstone of any physics regimen is a concrete and comprehensive introduction to vectors. Here, we introduce a new turn based vector game that we have developed to help supplement traditional vector learning practices, which allows students to be creative, work together as a team, and accomplish a goal through the understanding of basic vector concepts.

  20. Some Physics Constraints on Ultimate Achievement in Track and Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohlich, Cliff

    2009-02-06

    World records in track and field have improved remarkably throughout the last 100 years; however, in several events physics places quite strict limitations on ultimate performance. For example, analysis suggests that records in broad jump and pole vault have approached their optimum possible values. Physical constraints are more subtle for events such as javelin, high jump, and the distance races, and thus there may be opportunities for “breakthroughs” in current records. Considering that there is enormous cultural interest and economic expenditure on sports, for most events the level of scientific analysis isn’t very high. This presents a research opportunity formore » fans who are engineers or physicists.« less

  1. The Young Engineers and Scientists (YES) mentorship program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  2. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Lin, C.; Clarac, T.

    2004-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 12 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  3. Physics and Engineering

    ERIC Educational Resources Information Center

    Jackson, G.

    1972-01-01

    Describes attempts in Britain to unite physics and technical studies in the new GCE A level engineering students (college bound). (Advocates more interdisciplinary efforts and greater use of mathematics.) (TS)

  4. 5 CFR 532.313 - Private sector industries.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the physical, engineering, and life sciences (except biotechnology). 56172 Janitorial services. 62191... Research and development in the physical, engineering, and life sciences (except biotechnology). Heavy Duty...

  5. 5 CFR 532.313 - Private sector industries.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the physical, engineering, and life sciences (except biotechnology). 56172 Janitorial services. 62191... Research and development in the physical, engineering, and life sciences (except biotechnology). Heavy Duty...

  6. 5 CFR 532.313 - Private sector industries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the physical, engineering, and life sciences (except biotechnology). 56172 Janitorial services. 62191... Research and development in the physical, engineering, and life sciences (except biotechnology). Heavy Duty...

  7. 5 CFR 532.313 - Private sector industries.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the physical, engineering, and life sciences (except biotechnology). 56172 Janitorial services. 62191... Research and development in the physical, engineering, and life sciences (except biotechnology). Heavy Duty...

  8. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    NASA Astrophysics Data System (ADS)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  9. Evaluation by University Students of the Use of Applets for Learning Physics

    ERIC Educational Resources Information Center

    Bohigas, Xavier; Periago, Christina; Jaen, Xavier; Pejuan, Arcadi

    2011-01-01

    We present the results of a study carried out with students in their second year of Industrial Engineering to find out students' levels of satisfaction concerning the use of simulation tools (in this case an applet was used) as a tool for helping students learn the topic of movement by charged particles within electrical and magnetic fields. The…

  10. Forces during Tim Peake's Launch to the International Space Station

    ERIC Educational Resources Information Center

    Mobbs, Robin

    2016-01-01

    Despite the advanced technology and engineering that has gone onto the International Space Station and other space programmes, the measurement of the force experienced in the spacecraft is tested using a method that is well over 350 years old. The time of oscillation of a simple pendulum, as often investigated in school physics, provides the basis…

  11. Shock Testing the SEAWOLF Submarine, Final Environmental Impact Statement

    DTIC Science & Technology

    1998-05-01

    relevant experience. Phil Barfield. Operational requirements. B.S. Mechanical Engineering. 14 years relevant experience. James Craig . Appendix D. B.S...Atlantic Biodiversity Center Nassau, Delaware Russell DeConti Center for Coastal Studies Provincetown, Massachusetts Robert Deegan Sierra Club...either area. C-9 APPENDIX D PHYSICAL IMPACTS OF EXPLOSIONS ON MARINE MAMMALS AND TURTLES James C. Craig Christian W. Hearn Naval Surface Warfare

  12. Teaching an Aerospace Engineering Design Course via Virtual Worlds: A Comparative Assessment of Learning Outcomes

    ERIC Educational Resources Information Center

    Okutsu, Masataka; DeLaurentis, Daniel; Brophy, Sean; Lambert, Jason

    2013-01-01

    To test the concept of multiuser 3D virtual environments as media to teach semester-long courses, we developed a software prototype called Aeroquest. An aerospace design course--offered to 135 second-year students for university credits in Fall 2009--was divided into two groups: the real-world group attending lectures, physically, in a campus hall…

  13. Optoelectronics for electrical and computer engineering students

    NASA Astrophysics Data System (ADS)

    Chua, Soo-Jin; Jalil, Mansoor

    2002-05-01

    We describe the contents of an advanced undergraduate course on Optoelectronics at the Department of Electrical and Computer Engineering, National University of Singapore. The emphasis has changed over the years to keep abreast of the development in the field but the broad features remain the same. A multidisciplinary approach is taken, incorporating physics, materials science and engineering concepts to explain the operation of optoelectronic components, and their application in display, communications and consumer electronics. The course comprises of 36 hours of lectures and two experiments, and covers basic radiometry and photometry, photoemitters (LEDs and lasers), photodetectors, and liquid crystal displays. The main aim of the course is to equip the student with the requisite theoretical and practical knowledge for participation in the photonics industry and for postgraduate research for students who are so inclined.

  14. Advances in engineering nanometrology at the National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Leach, Richard K.; Claverley, James; Giusca, Claudiu; Jones, Christopher W.; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew

    2012-07-01

    The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe-surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts.

  15. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes.

    PubMed

    Skuse, Gary R; Lamkin-Kennard, Kathleen A

    2013-01-01

    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  16. 10 CFR 35.51 - Training for an authorized medical physicist.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... on the NRC's Web page.) To have its certification process recognized, a specialty board shall require... physics, other physical science, engineering, or applied mathematics from an accredited college or... physical science, engineering, or applied mathematics from an accredited college or university; and has...

  17. Space flight requirements for fiber optic components: qualification testing and lessons learned

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2006-04-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.

  18. Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2007-01-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.

  19. MicroRNAs in skin tissue engineering.

    PubMed

    Miller, Kyle J; Brown, David A; Ibrahim, Mohamed M; Ramchal, Talisha D; Levinson, Howard

    2015-07-01

    35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of temporal fluctuation in population processes of intertidal Lanice conchilega (Pallas, 1766) aggregations on its ecosystem engineering

    NASA Astrophysics Data System (ADS)

    Alves, Renata M. S.; Vanaverbeke, Jan; Bouma, Tjeerd J.; Guarini, Jean-Marc; Vincx, Magda; Van Colen, Carl

    2017-03-01

    Ecosystem engineers contribute to ecosystem functioning by regulating key environmental attributes, such as habitat availability and sediment biogeochemistry. While autogenic engineers can increase habitat complexity passively and provide physical protection to other species, allogenic engineers can regulate sediment oxygenation and biogeochemistry through bioturbation and/or bioirrigation. Their effects rely on the physical attributes of the engineer and/or its biogenic constructs, such as abundance and/or size. The present study focused on tube aggregations of a sessile, tube-building polychaete that engineers marine sediments, Lanice conchilega. Its tube aggregations modulate water flow by dissipating energy, influencing sedimentary processes and increasing particle retention. These effects can be influenced by temporal fluctuations in population demographic processes. Presently, we investigated the relationship between population processes and ecosystem engineering through an in-situ survey (1.5 years) of L. conchilega aggregations at the sandy beach of Boulogne-sur-Mer (France). We (1) evaluated temporal patterns in population structure, and (2) investigated how these are related to the ecosystem engineering of L. conchilega on marine sediments. During our survey, we assessed tube density, demographic structure, and sediment properties (surficial chl-a, EPS, TOM, median and mode grain size, sorting, and mud and water content) on a monthly basis for 12 intertidal aggregations. We found that the population was mainly composed by short-lived (6-10 months), small-medium individuals. Mass mortality severely reduced population density during winter. However the population persisted, likely due to recruits from other populations, which are associated to short- and long-term population dynamics. Two periods of recruitment were identified: spring/summer and autumn. Population density was highest during the spring recruitment and significantly affected several environmental properties (i.e. EPS, TOM, mode grain size, mud and water content), suggesting that demographic processes may be responsible for periods of pronounced ecosystem engineering with densities of approx. 30 000 ind·m-2.

  1. A model for the development of university curricula in nanoelectronics

    NASA Astrophysics Data System (ADS)

    Bruun, E.; Nielsen, I.

    2010-12-01

    Nanotechnology is having an increasing impact on university curricula in electrical engineering and in physics. Major influencers affecting developments in university programmes related to nanoelectronics are discussed and a model for university programme development is described. The model takes into account that nanotechnology affects not only physics but also electrical engineering and computer engineering because of the advent of new nanoelectronics devices. The model suggests that curriculum development tends to follow one of three major tracks: physics; electrical engineering; computer engineering. Examples of European curricula following this framework are identified and described. These examples may serve as sources of inspiration for future developments and the model presented may provide guidelines for a systematic selection of topics in the university programmes.

  2. Fourier-Mukai, 34 years on

    NASA Astrophysics Data System (ADS)

    Bruzzo, Ugo; Maciocia, Antony

    2017-12-01

    This special issue celebrates the 34 years since the discovery of the Fourier-Mukai Transform by Shigeru Mukai. It mostly contains papers presented at the conference held in the Mathematics Research Centre of the University of Warwick, 15th to 19th June 2015 as part of a year long Warwick symposium on Derived categories and applications. The conference was also the annual conference of the Vector Bundles on Algebraic Curves series led by Peter Newstead. The symposium was principally supported by the Engineering and Physical Sciences Research Council of the UK and there was further funding from the London Mathematical Society and the Foundation Compositio.

  3. Physical Analytics: An emerging field with real-world applications and impact

    NASA Astrophysics Data System (ADS)

    Hamann, Hendrik

    2015-03-01

    In the past most information on the internet has been originated by humans or computers. However with the emergence of cyber-physical systems, vast amount of data is now being created by sensors from devices, machines etc digitizing the physical world. While cyber-physical systems are subject to active research around the world, the vast amount of actual data generated from the physical world has attracted so far little attention from the engineering and physics community. In this presentation we use examples to highlight the opportunities in this new subject of ``Physical Analytics'' for highly inter-disciplinary research (including physics, engineering and computer science), which aims understanding real-world physical systems by leveraging cyber-physical technologies. More specifically, the convergence of the physical world with the digital domain allows applying physical principles to everyday problems in a much more effective and informed way than what was possible in the past. Very much like traditional applied physics and engineering has made enormous advances and changed our lives by making detailed measurements to understand the physics of an engineered device, we can now apply the same rigor and principles to understand large-scale physical systems. In the talk we first present a set of ``configurable'' enabling technologies for Physical Analytics including ultralow power sensing and communication technologies, physical big data management technologies, numerical modeling for physical systems, machine learning based physical model blending, and physical analytics based automation and control. Then we discuss in detail several concrete applications of Physical Analytics ranging from energy management in buildings and data centers, environmental sensing and controls, precision agriculture to renewable energy forecasting and management.

  4. Final priorities; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priorities.

    PubMed

    2013-06-11

    The Assistant Secretary for Special Education and Rehabilitative Services announces priorities under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce priorities for a Rehabilitation Engineering Research Center (RERC) on Rehabilitation Strategies, Techniques, and Interventions (Priority 1), Information and Communication Technologies Access (Priority 2), Individual Mobility and Manipulation (Priority 3), and Physical Access and Transportation (Priority 4). The Assistant Secretary may use one or more of these priorities for competitions in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend these priorities to improve community living and participation, health and function, and employment outcomes of individuals with disabilities.

  5. AIAA Aerospace America Magazine - Year in Review Article, 2010

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2010-01-01

    NASA Stennis Space Center has implemented a pilot operational Integrated System Health Management (ISHM) capability. The implementation was done for the E-2 Rocket Engine Test Stand and a Chemical Steam Generator (CSG) test article; and validated during operational testing. The CSG test program is a risk mitigation activity to support building of the new A-3 Test Stand, which will be a highly complex facility for testing of engines in high altitude conditions. The foundation of the ISHM capability are knowledge-based integrated domain models for the test stand and CSG, with physical and model-based elements represented by objects the domain models enable modular and evolutionary ISHM functionality.

  6. Investigation of Hygro-Thermal Aging on Carbon/Epoxy Materials for Jet Engine Fan Sections

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael

    2011-01-01

    This poster summarizes 2 years of aging on E862 epoxy and E862 epoxy with triaxial braided T700s carbon fiber composite. Several test methods were used to characterize chemical, physical, and mechanical properties of both the resin and composite materials. The aging cycle that was used included varying temperature and humidity exposure. The goal was to evaluate the environmental effects on a potential jet engine fan section material. Some changes were noted in the resin which resulted in increased brittleness, though this did not significantly affect the tensile and impact test results. A potential decrease in compression strength requires additional investigation.

  7. Expanding girls' horizons in physics and other sciences: A successful strategy since 1976

    NASA Astrophysics Data System (ADS)

    Spencer, Cherrill M.

    2015-12-01

    To start on the path to a career in science, technology, engineering, or mathematics (STEM), girls must take appropriate prerequisite-to-college mathematics and science courses when they are 15 to 18 years old. The Expanding Your Horizons in Science, Engineering, and Mathematics (EYH) conferences are one-day conferences for girls aged 12 to 18, designed to encourage girls towards a STEM career. These conferences engage schoolgirls in enjoyable hands-on STEM activities, created and led by women STEM professionals. This paper describes the history of EYH conferences, what happens at one, the impact of an EYH conference on the girls, and how to start one.

  8. Changing the Teaching/Learning Procedures in Physics for Agricultural Engineering. A Case Study

    ERIC Educational Resources Information Center

    Mulero, Angel; Parra, M. Isabel; Cachadina, Isidro

    2012-01-01

    The subject "Physical Fundamentals of Engineering" for agricultural engineers in the University of Extremadura has long had high rates of students not attending classes, not presenting for examinations and, finally, failing the subject. During the 2007 and 2008 courses, the teaching/learning procedures were strongly modified. Analysis of the…

  9. Women in mathematics, science, and engineering college majors: A model predicting career aspirations based on ability, self-efficacy, role model influence, and role conflict

    NASA Astrophysics Data System (ADS)

    Nauta, Margaret Mary

    1997-09-01

    This study investigated a model of predictors of career aspirations among two groups of women: students in mathematics, physical science, and engineering majors and students in biological science majors. Based on theories of women's career development and social-cognitive theories, it was hypothesized that ability, self-efficacy, positivity of role model influence, and role conflict would influence the career aspirations of these women. It was further hypothesized that the students' year in school would contribute to this model as a predictor variable. Five hundred forty-six students (representing a 71% response rate) from Iowa State University were surveyed by mail to evaluate the fit of this model. The structural equation modeling procedure revealed that the career aspirations of the two groups of women were directly predicted by self-efficacy and role conflict and indirectly predicted by year in school, academic ability, and positivity of role model influence. The model for this combined group of students represented a good overall fit, explaining 94% of the covariation among the measured variables. When the two groups of students were compared, identical models for women in the two groups revealed different relationships among the variables. In contrast to the women in math, physical science, and engineering majors, the relationships between ability and self-efficacy and between positivity of role model influence and self-efficacy were significantly lower in magnitude for women in the biological sciences group. In addition to providing a parsimonious model for conceptualizing the experiences of women in traditionally male fields, this study's findings have implications for increasing the number of women who aspire to advanced careers in these occupations. Primarily, this study suggests that interventions designed to increase the degree to which students are influenced positively by role models may increase their self-efficacy expectations and may decrease the amount of conflict they perceive between the roles of worker and spouse or parent. In turn, increasing self-efficacy and decreasing role conflict may increase the degree to which students aspire to leadership and top-level careers within mathematics, the physical sciences, and engineering.

  10. 49 CFR 240.231 - Requirements for locomotive engineers unfamiliar with physical characteristics in other than...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with physical characteristics in other than joint operations. 240.231 Section 240.231 Transportation... Process § 240.231 Requirements for locomotive engineers unfamiliar with physical characteristics in other... characteristics of the territory pursuant to the railroad's certification program. (b) Except as provided in...

  11. 49 CFR 240.231 - Requirements for locomotive engineers unfamiliar with physical characteristics in other than...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with physical characteristics in other than joint operations. 240.231 Section 240.231 Transportation... Process § 240.231 Requirements for locomotive engineers unfamiliar with physical characteristics in other... characteristics of the territory pursuant to the railroad's certification program. (b) Except as provided in...

  12. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  13. An Input and Output Analysis of the Quaternity-Dominating Energy Engineering Model from China’s Countryside

    NASA Astrophysics Data System (ADS)

    Xie, Xing Long; Xian Xue, Wei

    2017-12-01

    The aim of this study is to qualitatively and quantitatively explore an energy engineering model termed quaternity-dominating pattern emerging in North China’s countryside. This study finds methane produced in this model serves household activities such as cooking, inducing reduction of coal or biomass spending, which otherwise would provoke air pollution, water loss and land erosion, and ultimately leading to ecological environment betterment. Additionally, this project generates byproducts, biogas liquids and residuals, which can, as a category of fertilizer, can promote straightening of fertility preservation capacity and improvement in the chemical and physical quality of land as well as increasing crop output and quality. This study also finds this engineering could encourage social stability via efficiently allocating bucolic surplus labor during winter and successful running this engineering project would trigger an increase of scientific and technological qualifications for rural citizens. Moreover, cost-profit analysis indicates this pattern can allow one rural home to obtain access to a hygienic energy resource of biogas in the yearly volume of 375m3, generate annual net earnings of US3458.82 and make investment return in about 2.73 years. Especially for poverty-stricken areas, this energy engineering project enjoys high values and great significance, which can lift these impoverished areas from poverty both in economics and energy. The paper concludes with pointing out practical proposals on launching and operating this energy engineering project.

  14. Factors that affect the physical science career interest of female students: Testing five common hypotheses

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-12-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project (n=7505), we test the following five commonly held beliefs regarding what factors might impact females’ physical science career interest: (i) having a single-sex physics class, (ii) having a female physics teacher, (iii) having female scientist guest speakers in physics class, (iv) discussing the work of female scientists in physics class, and (v) discussing the underrepresentation of women in physics class. The effect of these experiences on physical science career interest is compared for female students who are matched on several factors, including prior science interests, prior mathematics interests, grades in science, grades in mathematics, and years of enrollment in high school physics. No significant effects are found for single-sex classes, female teachers, female scientist guest speakers, and discussing the work of female scientists. However, discussions about women’s underrepresentation have a significant positive effect.

  15. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2011

    DTIC Science & Technology

    2011-05-01

    Attorney 130 Foreign Affairs 633 Physical Therapist 1222 Patent Attorney 131 International Relations 644 Medical Technologist 1301 General Physical ... physical movement of people. Governments in many industrialized countries increasingly view the immigration of skilled S&E workers as an important...series and their associated increases are individuals in computer science (+77/2.6%), physics (+67/4.6%), computer engineering (+58/2.7%), general

  16. The physical work environment and end-user requirements: Investigating marine engineering officers' operational demands and ship design.

    PubMed

    Mallam, Steven C; Lundh, Monica

    2016-08-12

    Physical environments influence how individuals perceive a space and behave within it. Previous research has revealed deficiencies in ship engine department work environments, and their impact on crew productivity, health and wellbeing. Connect operational task demands to pragmatic physical design and layout solutions by implementing a user-centric perspective. Three focus groups, each consisting of three marine engineers participated in this study. Focus groups were divided into two sessions: first, to investigate the end-user's operational requirements and their relationship with ship physical design and layout. Second, criteria formulated from group discussions were applied to a ship design case study. All focus group sessions were audio recorded and transcribed verbatim. The data were analyzed using Grounded Theory. Design choices made in a ships general arrangement were described to inherently influence how individuals and teams are able to function within the system. Participants detailed logistical relationships between key areas, stressing that the work environment and physical linkages must allow for flexibility of work organization and task execution. Traditional engine control paradigms do not allow effective mitigation of traditional engine department challenges. The influence of technology and modernization of ship systems can facilitate improvement of physical environments and work organization if effectively utilized.

  17. Development of 3-Year Roadmap to Transform the Discipline of Systems Engineering

    DTIC Science & Technology

    2010-03-31

    quickly humans could physically construct them. Indeed, magnetic core memory was entirely constructed by human hands until it was superseded by...For their mainframe computers, IBM develops the applications, operating system, computer hardware and microprocessors (off the shelf standard memory ...processor developers work on potential computational and memory pipelines to support the required performance capabilities and use the available transistors

  18. The Use of Physical and Virtual Manipulatives in an Undergraduate Mechanical Engineering (Dynamics) Course

    ERIC Educational Resources Information Center

    Pan, Edward A.

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in…

  19. Integrator Element as a Promoter of Active Learning in Engineering Teaching

    ERIC Educational Resources Information Center

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-01-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator…

  20. Assessing the Value-Added by the Environmental Testing Process with the Aide of Physics/Engineering of Failure Evaluations

    NASA Technical Reports Server (NTRS)

    Cornford, S.; Gibbel, M.

    1997-01-01

    NASA's Code QT Test Effectiveness Program is funding a series of applied research activities focused on utilizing the principles of physics and engineering of failure and those of engineering economics to assess and improve the value-added by the various validation and verification activities to organizations.

  1. The Physics of Living in Space: A Physicist's Attempt to Provide Science and Engineering Education for Non-Science Students.

    ERIC Educational Resources Information Center

    Holbrow, C. H.

    1983-01-01

    A course was developed to teach physics concepts and to help students understand mathematics, the nature and role of engineers and engineering in society, and to distinguish between science/technology from pseudo-science. Includes course goals/content, mechanics, start-up, and long-term projects. (JN)

  2. Scientific and technical training in the Soviet Union

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    Specific features and observations on the Soviet educational system and areas of apparent effectiveness are presented, noting that the literacy rate is over 98 percent in 1982. Educational goals are reoriented every five years to match with other projections of five-year plans. The Soviet constitution established strong educational goals, including schools, correspondence courses, lectures in native tongues, free tuition, and vocational training. The educational pattern from pre-school through graduate school lasts over 28 yr and contains two 2-yr periods of work, confined to specialties after graduate school. Mathematics is emphasized, as are physics, Marxism, and a foreign language. Approximately 300,000 engineers were graduated in the Soviet Union in 1982, compared with the 20-yr U.S. average of 50,000/yr. About 2/3 of Soviet engineers participate in defense work, a number which is four times the total number of U.S. engineers. It is asserted that the continual indoctrination, organization, and practical work experience will guarantee that the Soviet state will remain a dominant force in the world as long as centralized state control can be carried out.

  3. ANNUAL REPORT ON PHYSICAL SCIENCES, ENGINEERING AND LIFE SCIENCES , JULY 1, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-10-31

    The research program at Brooknaven is described. Current activities in physics, high-energy accelerators, instrumentation, chemistry, nuclear engineering, applied mathematics, biology, and medical research are outlined. (D.L.C.)

  4. Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Csanady, G. T.

    2001-03-01

    In recent years air-sea interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both air and sea. Air-Sea Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.

  5. 77 FR 58006 - Addition of Certain Persons to the Entity List; Removal of Person From the Entity List Based on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ...; (5) Chinese Academy of Engineering Physics, a.k.a., the following seventeen aliases: --Ninth Academy...; --Southwest Institute of Explosives and Chemical Engineering; --Southwest Institute of Fluid Physics...; --Southwest Institute of Materials; --Southwest Institute of Nuclear Physics and Chemistry (a.k.a., China...

  6. And the Survey Says…

    ERIC Educational Resources Information Center

    White, Susan C.

    2016-01-01

    Between 2002 and 2012, the number of bachelor's degrees earned in the physical sciences grew by 47%; in engineering, the number increased by 33%. The number of Hispanics earning degrees in these disciplines grew even faster: 78% in the physical sciences and 64% in engineering. Though the growth in the physical sciences was larger, about five times…

  7. The imagination maze

    NASA Astrophysics Data System (ADS)

    Welty, Scott; Rylander, Jeff

    2001-05-01

    Working off of a 10,000 Toyota TAPESTRY grant, 80 physics students at Maine East High School in Park Ridge, Illinois, spent the 1999-2000 school year building a gaint pool ball maze in the school's stairwell. The maze sits in a 10 × 11 × 1 ft recess in the wall. It features an 11-ft screwlift operated by a crank accessible to the passing student to raise the balls to the top where they then meander down four possible trails of copper tubing, performing a variety of physics tricks along the way. The project was a great lesson in organization, engineering, building, quality control, and of course, the laws of physics. The maze is now the "property" of all future AP physics classes whose job it will be to fine-tune, repair, replace, and generally take care of the maze.

  8. The Role of Humor in Learning Physics: a Study of Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Berge, Maria

    2017-04-01

    We all know that they do it, but what do students laugh about when learning science together? Although research has shown that students do use humor when they learn science, the role of humor in science education has received little attention. In this study, undergraduate students' laughter during collaborative work in physics has been investigated. In order to do this, a framework inspired by conversation analysis has been used. Empirical data was drawn from two video-recorded sessions in which first-year engineering students solved physics problems together. The analysis revealed that the students' use of humor was almost exclusively related to physics. Five themes identified summarize the role of humor in the group discussions: Something is obvious, Something is difficult, Something said might be wrong, Something is absurd, and Something said is not within informal norms.

  9. THE ENGINES BEHIND SUPERNOVAE AND GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRYER, CHRISTOPHER LEE

    2007-01-23

    The authors review the different engines behind supernova (SNe) and gamma-ray bursts (GRBs), focusing on those engines driving explosions in massive stars: core-collapse SNe and long-duration GRBs. Convection and rotation play important roles in the engines of both these explosions. They outline the basic physics and discuss the wide variety of ways scientists have proposed that this physics can affect the supernova explosion mechanism, concluding with a review of the current status in these fields.

  10. Scientist in the Classroom: The First Year Highlights of a Plasma Outreach Program

    NASA Astrophysics Data System (ADS)

    Nagy, A.; Danielson, C. A.; Lee, R. L.; Winter, P. S.; Valentine, J. R.

    1999-11-01

    The General Atomics education program ``Scientist in the Classroom'' uses scientists, engineers, and technicians to discuss plasma physics with students in the classroom. A program goal is to make science an enjoyable experience while showing students how plasma physics plays an important role in their world. A fusion overview is presented, including topics on energy and environment. Using hands-on equipment, students manipulate plasma discharges using magnetic fields and observe their spectral properties. Students also observe physical properties of liquid nitrogen, infrared waves, and radioactive particles. The benefit of this program, relative to facility tours, is that it optimizes cost and scheduling between the scientific staff and students. This program and its equipment are receiving accolades as an adjunct teaching option available to schools at no cost. This year we have presented to over 1000 students at 11 schools. Student exit interviews reflect strong positive comments regarding their hands-on learning experience and science appreciation.

  11. High bulk modulus of ionic liquid and effects on performance of hydraulic system.

    PubMed

    Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko

    2014-01-01

    Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.

  12. Guest editorial: Special issue micro-and nanomachines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  13. Guest editorial: Special issue micro-and nanomachines.

    DOE PAGES

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    2015-04-01

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  14. Averting Denver Airports on a Chip

    NASA Technical Reports Server (NTRS)

    Sullivan, Kevin J.

    1995-01-01

    As a result of recent advances in software engineering capabilities, we are now in a more stable environment. De-facto hardware and software standards are emerging. Work on software architecture and design patterns signals a consensus on the importance of early system-level design decisions, and agreements on the uses of certain paradigmatic software structures. We now routinely build systems that would have been risky or infeasible a few years ago. Unfortunately, technological developments threaten to destabilize software design again. Systems designed around novel computing and peripheral devices will spark ambitious new projects that will stress current software design and engineering capabilities. Micro-electro-mechanical systems (MEMS) and related technologies provide the physical basis for new systems with the potential to produce this kind of destabilizing effect. One important response to anticipated software engineering and design difficulties is carefully directed engineering-scientific research. Two specific problems meriting substantial research attention are: A lack of sufficient means to build software systems by generating, extending, specializing, and integrating large-scale reusable components; and a lack of adequate computational and analytic tools to extend and aid engineers in maintaining intellectual control over complex software designs.

  15. An Examination of Variables Which Influence High School Students to Enroll in an Undergraduate Engineering or Physical Science Major

    ERIC Educational Resources Information Center

    Porter, Christopher H.

    2011-01-01

    The purpose of this study was to examine the variables which influence a high school student to enroll in an engineering discipline versus a physical science discipline. Data was collected utilizing the High School Activities, Characteristics, and Influences Survey, which was administered to students who were freshmen in an engineering or physical…

  16. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    ERIC Educational Resources Information Center

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  17. The Young Engineers and Scientists (YES) Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.; Lin, C.

    2004-11-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  18. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Jahn, J.; Hummel, P.

    2003-12-01

    The Young Engineers and Scientists (YES) Program is a ommunity partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We gratefully acknowledge partial funding for the YES Program from a NASA EPO grant.

  19. Why are some STEM fields more gender balanced than others?

    PubMed

    Cheryan, Sapna; Ziegler, Sianna A; Montoya, Amanda K; Jiang, Lily

    2017-01-01

    Women obtain more than half of U.S. undergraduate degrees in biology, chemistry, and mathematics, yet they earn less than 20% of computer science, engineering, and physics undergraduate degrees (National Science Foundation, 2014a). Gender differences in interest in computer science, engineering, and physics appear even before college. Why are women represented in some science, technology, engineering, and mathematics (STEM) fields more than others? We conduct a critical review of the most commonly cited factors explaining gender disparities in STEM participation and investigate whether these factors explain differential gender participation across STEM fields. Math performance and discrimination influence who enters STEM, but there is little evidence to date that these factors explain why women's underrepresentation is relatively worse in some STEM fields. We introduce a model with three overarching factors to explain the larger gender gaps in participation in computer science, engineering, and physics than in biology, chemistry, and mathematics: (a) masculine cultures that signal a lower sense of belonging to women than men, (b) a lack of sufficient early experience with computer science, engineering, and physics, and (c) gender gaps in self-efficacy. Efforts to increase women's participation in computer science, engineering, and physics may benefit from changing masculine cultures and providing students with early experiences that signal equally to both girls and boys that they belong and can succeed in these fields. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Development and experimental validation of computational methods to simulate abnormal thermal and structural environments

    NASA Astrophysics Data System (ADS)

    Moya, J. L.; Skocypec, R. D.; Thomas, R. K.

    1993-09-01

    Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: a purely regulatory approach, or by a probabilistic risk assessment (PRA). This paper will address the latter of the two approaches.

  1. A survey of the Australasian clinical medical physics and biomedical engineering workforce.

    PubMed

    Round, W H

    2007-03-01

    A survey of the medical physics and biomedical engineering workforce was carried out in 2006. 495 positions (equivalent to 478 equivalent full time (EFT) positions) were captured by the survey. Of these 268 EFT were in radiation oncology physics, 36 EFT were in radiology physics, 44 were in nuclear medicine physics, 101 EFT were in biomedical engineering and 29 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data identifies staffing shortfalls in the various disciplines and demonstrates the difficulties that will occur in trying to train sufficient physicists to raise staffing to an acceptable level.

  2. Simbios: an NIH national center for physics-based simulation of biological structures.

    PubMed

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A; Altman, Russ B

    2012-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations.

  3. Simbios: an NIH national center for physics-based simulation of biological structures

    PubMed Central

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A

    2011-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations. PMID:22081222

  4. System Engineering of Photonic Systems for Space Application

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  5. YES 2K6: A mentorship program for young engineers and scientists

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    The Young Engineers and Scientists 2006 YES 2K6 Program is a community partnership between Southwest Research Institute SwRI and local high schools in San Antonio Texas USA YES has been highly successful during the past 14 years and YES 2K6 continues this trend This program provides talented high school juniors and seniors a bridge between classroom instruction and real world research experiences in physical sciences including space science and astronomy and engineering YES 2K6 consists of two parts 1 an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics and select individual research projects to be completed during the academic year and 2 a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers YES 2K6 developed a website for the Magnetospheric Multiscale Mission MMS from the perspective of high school students Over the past 14 years all YES graduates have entered college several have worked for SwRI and three scientific publications have resulted Student evaluations indicate the effectiveness of YES on

  6. Finding a roadmap to achieve large neuromorphic hardware systems

    PubMed Central

    Hasler, Jennifer; Marr, Bo

    2013-01-01

    Neuromorphic systems are gaining increasing importance in an era where CMOS digital computing techniques are reaching physical limits. These silicon systems mimic extremely energy efficient neural computing structures, potentially both for solving engineering applications as well as understanding neural computation. Toward this end, the authors provide a glimpse at what the technology evolution roadmap looks like for these systems so that Neuromorphic engineers may gain the same benefit of anticipation and foresight that IC designers gained from Moore's law many years ago. Scaling of energy efficiency, performance, and size will be discussed as well as how the implementation and application space of Neuromorphic systems are expected to evolve over time. PMID:24058330

  7. Geotechnical behavior of the MSW in Tianziling landfill.

    PubMed

    Zhu, Xiang-Rong; Jin, Jian-Min; Fang, Peng-Fei

    2003-01-01

    The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.

  8. Federal Plan for High-End Computing. Report of the High-End Computing Revitalization Task Force (HECRTF)

    DTIC Science & Technology

    2004-07-01

    steadily for the past fifteen years, while memory latency and bandwidth have improved much more slowly. For example, Intel processor clock rates38 have... processor and memory performance) all greatly restrict the ability to achieve high levels of performance for science, engineering, and national...sub-nuclear distances. Guide experiments to identify transition from quantum chromodynamics to quark -gluon plasma. Accelerator Physics Accurate

  9. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  10. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    PubMed

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  12. The Impact of the Pre-Instructional Cognitive Profile on Learning Gain and Final Exam of Physics Courses: A Case Study

    ERIC Educational Resources Information Center

    Capizzo, Maria Concetta; Nuzzo, Silvana; Zarcone, Michelangelo

    2006-01-01

    The case study described in this paper investigates the relationship among some pre-instructional knowledge, the learning gain and the final physics performance of computing engineering students in the introductory physics course. The results of the entrance engineering test (EET) have been used as a measurement of reading comprehension, logic and…

  13. Promoting Convergence: The Integrated Graduate Program in Physical and Engineering Biology at Yale University, a New Model for Graduate Education

    ERIC Educational Resources Information Center

    Noble, Dorottya B.; Mochrie, Simon G. J.; O'Hern, Corey S.; Pollard, Thomas D.; Regan, Lynne

    2016-01-01

    In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to…

  14. Preparing the NDE engineers of the future: Education, training, and diversity

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.

    2017-02-01

    As quantitative NDE has matured and entered the mainstream, it has created an industry need for engineers who can select, evaluate, and qualify NDE techniques to satisfy quantitative engineering requirements. NDE as a field is cross-disciplinary with major NDE techniques relying on a broad spectrum of physics disciplines including fluid mechanics, electromagnetics, mechanical waves, and high energy physics. An NDE engineer needs broad and deep understanding of the measurement physics across modalities, a general engineering background, and familiarity with shop-floor practices and tools. While there are a wide range of certification and training programs worldwide for NDE technicians, there are few programs aimed at engineers. At the same time, substantial demographic shifts are underway with many experienced NDE engineers and technicians nearing retirement, and with new generations coming from much more diverse backgrounds. There is a need for more and better education opportunities for NDE engineers. Both teaching and learning NDE engineering are inherently challenging because of the breadth and depth of knowledge required. At the same time, sustaining the field in a more diverse era will require broadening participation of previously underrepresented groups. The QNDE 2016 conference in Atlanta, GA included a session on NDE education, training, and diversity. This paper summarizes the outcomes and discussion from this session.

  15. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Electronic, and Communications Engineering 14.11Engineering Mechanics 14.12Engineering Physics 14.13Engineering Science 14.14Environmental/Environmental Health Engineering 14.15Geological Engineering 14... Arts and Art Studies 50.09Music 51.Health Professions and Related Sciences 51.01Chiropractic (D.C., D.C...

  16. Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems

    NASA Technical Reports Server (NTRS)

    Bujorianu, Marius C.; Bujorianu, Manuela L.

    2009-01-01

    In this paper, we sketch a framework for interdisciplinary modeling of space systems, by proposing a holistic view. We consider different system dimensions and their interaction. Specifically, we study the interactions between computation, physics, communication, uncertainty and autonomy. The most comprehensive computational paradigm that supports a holistic perspective on autonomous space systems is given by cyber-physical systems. For these, the state of art consists of collaborating multi-engineering efforts that prompt for an adequate formal foundation. To achieve this, we propose a leveraging of the traditional content of formal modeling by a co-engineering process.

  17. Examining student performance in an introductory Physics for engineering course: A quantitative case study.

    NASA Astrophysics Data System (ADS)

    Valente, Diego; Savkar, Amit; Mokaya, Fridah; Wells, James

    The Force Concept Inventory (FCI) has been analyzed and studied in various ways with regards to students' understanding of basic physics concepts. We present normalized learning gains and effect size calculations of FCI scores, taken in the context of large-scale classes in a 4-year public university and course instruction that incorporates elements of Just-In-Time teaching and active learning components. In addition, we will present here a novel way of using FCI pre- and post-test as a predictor of students' performance on midterm and final exams. Utilizing a taxonomy table of physics concepts, we will look at student performance broken down by topic, while also examining possible correlations between FCI post-test scores and other course assessments. College of Liberal Arts and Sciences (CLAS), UConn.

  18. Career transitions for persons with severe physical disabilities: integrating technological and psychosocial skills and accommodations.

    PubMed

    Lash, M; Licenziato, V

    1995-01-01

    This article describes a vocational training program entitled, 'Careers in Automation for Persons with Severe Physical Disabilities', that was developed by the Department of Physical Medicine and Rehabilitation at Tufts University School of Medicine in collaboration with the Massachusetts Rehabilitation Commission. Its goal is to secure employment for individuals with severe physical impairments by using computers and technology as job related accommodations. Psychosocial, educational, and vocational profiles are presented for 24 clients over 4 years. Three case studies involving persons with traumatic, chronic and developmental disabilities illustrate the importance of matching technological accommodations with employer needs and personal preferences. Discussion of employment outcomes illustrates that the effective use of computers and technology by persons with disabilities is best measured not by the degree of sophistication and engineering of systems and devices, but by employer and employee satisfaction with job performance and productivity.

  19. Introduction of interdisciplinary teaching: two case studies : commentary on "teaching science, technology, and society to engineering students: a sixteen year journey".

    PubMed

    Spitzer, Hartwig

    2013-12-01

    Interdisciplinary courses on science, engineering and society have been successfully established in two cases, at Bilkent University, Ankara, Turkey, and at the University of Hamburg, Germany. In both cases there were institutional and perceptual barriers that had to be overcome in the primarily disciplinary departments. The ingredients of success included a clear vision of interdisciplinary themes and didactics, and the exploitation of institutional opportunities. Haldun M. Ozaktas in Ankara used the dynamics of an accreditation process to establish courses on engineering and society. At the University of Hamburg the introduction of optional courses into all curricula allowed for the establishment of a seminar series on physics and society, as well as on peace education and peace building. Both of these approaches have a weakness in common: the courses can disappear once their initiators have left, unless the interdisciplinary themes are integrated into compulsory core curricula.

  20. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    NASA Astrophysics Data System (ADS)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  1. Engineering the smart factory

    NASA Astrophysics Data System (ADS)

    Harrison, Robert; Vera, Daniel; Ahmad, Bilal

    2016-10-01

    The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.

  2. Biologically active chitosan systems for tissue engineering and regenerative medicine.

    PubMed

    Jiang, Tao; Kumbar, Sangamesh G; Nair, Lakshmi S; Laurencin, Cato T

    2008-01-01

    Biodegradable polymeric scaffolds are widely used as a temporary extracellular matrix in tissue engineering and regenerative medicine. By physical adsorption of biomolecules on scaffold surface, physical entrapment of biomolecules in polymer microspheres or hydrogels, and chemical immobilization of oligopeptides or proteins on biomaterials, biologically active biomaterials and scaffolds can be derived. These bioactive systems show great potential in tissue engineering in rendering bioactivity and/or specificity to scaffolds. This review highlights some of the biologically active chitosan systems for tissue engineering application and the associated strategies to develop such bioactive chitosan systems.

  3. Optical engineering capstone design projects with industry sponsors

    NASA Astrophysics Data System (ADS)

    Bunch, Robert M.; Leisher, Paul O.; Granieri, Sergio C.

    2014-09-01

    Capstone senior design is the culmination of a student's undergraduate engineering education that prepares them for engineering practice. In fact, any engineering degree program that pursues accreditation by the Engineering Accreditation Commission of ABET must contain "a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints." At Rose-Hulman, we offer an interdisciplinary Optical Engineering / Engineering Physics senior design curriculum that meets this requirement. Part of this curriculum is a two-course sequence where students work in teams on a design project leading to a functional prototype. The students begin work on their capstone project during the first week of their senior year. The courses are deliverable-driven and the students are held accountable for regular technical progress through weekly updates with their faculty advisor and mid-term design reviews. We have found that client-sponsored projects offer students an enriched engineering design experience as it ensures consideration of constraints and standards requirements similar to those that they will encounter as working engineers. Further, client-sponsored projects provide teams with an opportunity for regular customer interactions which help shape the product design. The process that we follow in both soliciting and helping to scope appropriate industry-related design projects will be described. In addition, an outline of the capstone course structure as well as methods used to hold teams accountable for technical milestones will be discussed. Illustrative examples of past projects will be provided.

  4. Terahertz spectroscopy properties of the selected engine oils

    NASA Astrophysics Data System (ADS)

    Zhu, Shouming; Zhao, Kun; Lu, Tian; Zhao, Songqing; Zhou, Qingli; Shi, Yulei; Zhao, Dongmei; Zhang, Cunlin

    2010-11-01

    Engine oil, most of which is extracted from petroleum, consist of complex mixtures of hydrocarbons of molecular weights in the range of 250-1000. Variable amounts of different additives are put into them to inhibit oxidation, improve the viscosity index, decrease the fluidity point and avoid foaming or settling of solid particles among others. Terahertz (THz) spectroscopy contains rich physical, chemical, and structural information of the materials. Most low-frequency vibrational and rotational spectra of many petrochemicals lie in this frequency range. In recent years, much attention has been paid to the THz spectroscopic studies of petroleum products. In this paper, the optical properties and spectroscopy of selected kinds of engine oil consisting of shell HELIX 10W-40, Mobilube GX 80W-90, GEELY ENGINE OIL SG 10W-30, SMA engine oil SG 5W-30, SMA engine oil SG 10W-30, SMA engine oil SG 75W-90 have been studied by the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.6-2.5 THz. Engine oil with different viscosities in the terahertz spectrum has certain regularity. In the THz-TDS, with the increase of viscosity, time delay is greater and with the increase of viscosity, refractive indexes also grow and their rank is extremely regular. The specific kinds of engine oil can be identified according to their different spectral features in the THz range. The THz-TDS technology has potentially significant impact on the engine oil analysis.

  5. PEOPLE IN PHYSICS: Interview with Scott Durow, Software Engineer, Oxford

    NASA Astrophysics Data System (ADS)

    Burton, Conducted by Paul

    1998-05-01

    Scott Durow was educated at Bootham School, York. He studied Physics, Mathematics and Chemistry to A-level and went on to Nottingham University to read Medical Physics. After graduating from Nottingham he embarked on his present career as a Software Engineer based in Oxford. He is a musician in his spare time, as a member of a band and playing the French horn.

  6. Methodology for Physics and Engineering of Reliable Products

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Gibbel, Mark

    1996-01-01

    Physics of failure approaches have gained wide spread acceptance within the electronic reliability community. These methodologies involve identifying root cause failure mechanisms, developing associated models, and utilizing these models to inprove time to market, lower development and build costs and higher reliability. The methodology outlined herein sets forth a process, based on integration of both physics and engineering principles, for achieving the same goals.

  7. Joint electrical engineering/physics course sequence for optics fundamentals and design

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Maldonado, Theresa A.; Black, Truman D.

    2000-06-01

    Optics is a key technology in a broad range of engineering and science applications of high national priority. Engineers and scientists with a sound background in this field are needed to preserve technical leadership and to establish new directions of research and development. To meet this educational need, a joint Electrical Engineering/Physics optics course sequence was created as PHYS 3445 Fundamentals of Optics and EE 4444 Optical Systems Design, both with a laboratory component. The objectives are to educate EE and Physics undergraduate students in the fundamentals of optics; in interdisciplinary problem solving; in design and analysis; in handling optical components; and in skills such as communications and team cooperation. Written technical reports in professional format are required, formal presentations are given, and participation in paper design contests is encouraged.

  8. Physics constraints on double-pulse LIA engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August Jr.

    2015-05-20

    The options for advanced-radiography double-pulse linear induction accelerators (LIA) under consideration naturally fall into three categories that differ by the number of cells required. Since the two major physics issues, beam breakup (BBU) and corkscrew, are also dependent on the number of cells, it may be useful for the decision process to review the engineering consequences of beam physics constraints for each class. The LIAs can be categorized three different ways, and this report compares the different categories based upon the physics of their beams.

  9. Young engineers and scientists - a mentorship program emphasizing space education

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  10. Young Engineers and Sciences (YES) - Mentoring High School Students

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  11. Tactical Application of Gaming Technologies for Improved Battlespace Management

    DTIC Science & Technology

    2007-01-01

    the Digital Scene Matching Area Correlation (DSMAC) and the Global Positioning Satellite (GPS) System are coupled to the guidance systems to...Game Engine technology is driven by a huge market of consumers and the technology continues to improve each year. Commercially available Game...has largely been due to the emergence of a new class of middleware called “physics engines”. Used in games such as Gran Turismo 4 (GT4), these

  12. Considerations on Educating Engineers in Sustainability

    ERIC Educational Resources Information Center

    Boyle, Carol

    2004-01-01

    The teaching of sustainability to engineers will follow similar paths to that of environmental engineering. There is a strong feeling that environmental engineering is a discipline unto itself, requiring knowledge of chemistry, physics, biology, hydrology, toxicology, modelling and law. However, environmental engineering can also be encompassed…

  13. Literature Review of Dredging Physical Models

    DTIC Science & Technology

    This U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, special report presents a review of dredging physical...one-third of the dredging performed by the U.S. Army Corps of Engineers is done by hopper dredges with dragheads. Identified research gaps include

  14. A Physics-Based Vibrotactile Feedback Library for Collision Events.

    PubMed

    Park, Gunhyuk; Choi, Seungmoon

    2017-01-01

    We present PhysVib: a software solution on the mobile platform extending an open-source physics engine in a multi-rate rendering architecture for automatic vibrotactile feedback upon collision events. PhysVib runs concurrently with a physics engine at a low update rate and generates vibrotactile feedback commands at a high update rate based on the simulation results of the physics engine using an exponentially-decaying sinusoidal model. We demonstrate through a user study that this vibration model is more appropriate to our purpose in terms of perceptual quality than more complex models based on sound synthesis. We also evaluated the perceptual performance of PhysVib by comparing eight vibrotactile rendering methods. Experimental results suggested that PhysVib enables more realistic vibrotactile feedback than the other methods as to perceived similarity to the visual events. PhysVib is an effective solution for providing physically plausible vibrotactile responses while reducing application development time to great extent.

  15. The effects of high energy particles on planetary missions

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1988-01-01

    Researchers review the background and motivation for the detailed study of the variability and uncertainty of the particle environment from a space systems planning perspective. The engineering concern raised by each environment is emphasized rather than the underlying physics of the magnetosphere or the sun. Missions now being planned span the short term range of one to three years to periods over ten years. Thus the engineering interest is beginning to stretch over periods of several solar cycles. Coincidentally, detailed measurements of the environment are now becoming available over that period of time. Both short term and long term environmental predictions are needed for proper mission planning. Short term predictions, perhaps based on solar indices, real time observations, or short term systematics, are very useful in near term planning -- launches, EVAs (extravehicular activities), coordinated observations, and experiments which require the magnetosphere to be in a certain state. Long term predictions of both average and extreme conditions are essential to mission design. Engineering considerations are many times driven by the worst case environment. Knowledge of the average conditions and their variability allows trade-off studies to be made, implementation of designs which degrade gracefully under multi-stress environments.

  16. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  17. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  18. Computational Pollutant Environment Assessment from Propulsion-System Testing

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; McConnaughey, Paul; Chen, Yen-Sen; Warsi, Saif

    1996-01-01

    An asymptotic plume growth method based on a time-accurate three-dimensional computational fluid dynamics formulation has been developed to assess the exhaust-plume pollutant environment from a simulated RD-170 engine hot-fire test on the F1 Test Stand at Marshall Space Flight Center. Researchers have long known that rocket-engine hot firing has the potential for forming thermal nitric oxides, as well as producing carbon monoxide when hydrocarbon fuels are used. Because of the complex physics involved, most attempts to predict the pollutant emissions from ground-based engine testing have used simplified methods, which may grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work has been to develop a computational fluid dynamics-based methodology that replicates the underlying test-stand flow physics to accurately and efficiently assess pollutant emissions from ground-based rocket-engine testing. A nominal RD-170 engine hot-fire test was computed, and pertinent test-stand flow physics was captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.

  19. Web of Science, Scopus, and Google Scholar citation rates: a case study of medical physics and biomedical engineering: what gets cited and what doesn't?

    PubMed

    Trapp, Jamie

    2016-12-01

    There are often differences in a publication's citation count, depending on the database accessed. Here, aspects of citation counts for medical physics and biomedical engineering papers are studied using papers published in the journal Australasian physical and engineering sciences in medicine. Comparison is made between the Web of Science, Scopus, and Google Scholar. Papers are categorised into subject matter, and citation trends are examined. It is shown that review papers as a group tend to receive more citations on average; however the highest cited individual papers are more likely to be research papers.

  20. Engineering Encounters: Blasting off with Engineering

    ERIC Educational Resources Information Center

    Dare, Emily A.; Childs, Gregory T.; Cannaday, E. Ashley; Roehrig, Gillian H

    2014-01-01

    What better way to engage young students in physical science concepts than to have them engineer flying toy rockets? The integration of engineering into science classrooms is advocated by the "Next Generation Science Standards" (NGSS) and researchers alike (Brophy et al. 2008), as engineering provides: (1) A "real-world…

  1. Interstellar Travel without 'Magic'

    NASA Astrophysics Data System (ADS)

    Woodcock, G.

    The possibility of interstellar space travel has become a popular subject. Distances of light years are an entirely new realm for human space travel. New means of propulsion are needed. Speculation about propulsion has included "magic", space warps, faster-than-light travel, known physics such as antimatter for which no practical implementation is known and also physics for which current research offers at least a hint of implementation, i.e. fusion. Performance estimates are presented for the latter and used to create vehicle concepts. Fusion propulsion will mean travel times of hundreds of years, so we adopt the "space colony" concepts of O'Neill as a ship design that could support a small civilization indefinitely; this provides the technical means. Economic reasoning is presented, arguing that development and production of "space colony" habitats for relief of Earth's population, with addition of fusion engines, will lead to vessels that can go interstellar. Scenarios are presented and a speculative estimate of a timetable is given.

  2. Physics for First-Graders.

    ERIC Educational Resources Information Center

    Hagerott, Steven G.

    1997-01-01

    A Lockheed flight controls engineer describes how, as an undergraduate, he taught first graders basic lessons in physics and engineering by using slides, monkey bars, and other playground equipment to demonstrate principles like gravity, friction, force, and inertia. The children learned more about lift and gravity by constructing and flying paper…

  3. Energy and the Automobile.

    ERIC Educational Resources Information Center

    Waring, Gene

    1980-01-01

    Discussed is the automobile in terms of the Otto cycle, engine heat losses, internal engine losses, drive train losses, road power, and driving habits. Each of these topics is described and calculations are shown to aid the physics teacher in the use of the automobile in the physics classroom. (Author/DS)

  4. Quantum Dot Surface Engineering: Toward Inert Fluorophores with Compact Size and Bright, Stable Emission

    PubMed Central

    Lim, Sung Jun; Ma, Liang; Schleife, André; Smith, Andrew M.

    2016-01-01

    The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research. In this article, we review the physics and chemistry of quantum dot surfaces and describe approaches to engineer optimal fluorescent probes for applications in biomolecular imaging and sensing. We describe the structure and electronic properties of crystalline facets, the chemistry of ligand coordination, and the impact of ligands on optical properties. We further describe recent advances in compact coatings that have significantly improved their properties by providing small hydrodynamic size, high stability and fluorescence efficiency, and minimal nonspecific interactions with cells and biological molecules. While major progress has been made in both basic and applied research, many questions remain in the chemistry and physics of quantum dot surfaces that have hindered key breakthroughs to fully optimize their properties. PMID:28344357

  5. Young Engineers and Scientists (YES) - A Science Education Partnership

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2007-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years and YES 2K7 continued this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  6. Engaging Students in Space Research: Young Engineers and Scientists 2008

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  7. YES 2K5: Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2005-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 13 years, and YES 2K5 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K5 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K5 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of a high school student. Over the past 13 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from the NASA MMS Mission, the NASA E/PO program, and local charitable foundations.

  8. The NanoSustain and NanoValid project--two new EU FP7 research initiatives to assess the unique physical-chemical and toxicological properties of engineered nanomaterials.

    PubMed

    Reuther, Rudolf

    2011-02-01

    In 2010, the EU FP NanoSustain project (247989) has been successfully launched with the objective to develop innovative solutions for the sustainable use, recycling and final treatment of engineered nanomaterials (ENMs). The same year, NanoValid (263147), a large-scale integrating EU FP7 project has been initiated and contract negotiations with the European Commission commenced, to develop new reference methods and materials applicable to the unique properties of ENMs. The paper presented will give an overview on the main objectives of these 2 new European research initiatives, on main tasks to achieve objectives, and on the impact on current standardization efforts and technical innovations.

  9. The Peoples Republic of China High-Frequency Gravitational Wave Research Program

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.

    2009-03-01

    For the past decade the Peoples Republic of China has been increasingly active in the pursuit of High-Frequency Gravitational Wave (HFGW) research. Much of their progress has been during 2008. An epochal achievement was the publication of the theoretical analysis of the Li-Baker HFGW detector in the European Physical Journal C (Li, et al., 2008), "Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects"). Many Chinese scientists and graduate students have participated in these HFGW studies and their contributions are briefly discussed. Some of the key scientists and their institutions are as follows: first from Chongqing University: Zhenyun Fang, Director of the Institute of Theoretical Physics, Xing gang Wu, The Institute of Theoretical Physics, Nan Yang, The Institute of Gravitational Physics; Jun Luo, Huazhong University of Science and Technology (HUST), Wuhan, China, the Head of Gravitational Laboratory, Yang Zhang, University of Science and Technology of China, Associate Dean of the College of Sciences, Biao Li, Institute of Electronic Engineering of China Academy of Engineering Physics (CAEP), Chief of Microwave Antenna Division, Chuan-Ming Zhou, Technology Committee of Institute of Electronic Engineering of the CAEP, Jie Zhou, Institute of Electronic Engineering of the CAEP, Chief of the Signal Processing Division; Weijia Wen, Department of Physics, The Hong Kong University of Science and Technology. This Chinese HFGW team includes two parts: (1) Theoretical study and (2) Experimental investigation. These two parts have closed relations, and many cross projects, including cooperation between the American GravWave and Chinese HFGW teams. Referring to financial support, The Institute of Electronic Engineering (i.e., Microwave Laboratory) has already (June 2008) provided support more than three million Yuan for the HFGW detection project and this activity is discussed.

  10. Education in applied and instrumental optics at the University of Helsinki

    NASA Astrophysics Data System (ADS)

    Stenman, Folke

    1997-12-01

    The teaching of applied and instrumental optics at the University of Helsinki Department of Physics originally grew out of the needs of the research group of molecular physics as a basis for the experimental work in the group. The training program starts with a one-year course for senior undergraduates and graduates comprising geometrical optics, eikonal theory, image forming components, matrix methods, optical instruments, the optics of laser beams, radiometry and photometry, ray tracing methods, optics of anisotropic media, diffraction theory, general image formation theory and Fourier optics. The course starts from fundamentals, but the mathematical level is kept adequate for serious work. Further applications are treated in courses on molecular spectroscopy, where ruled and holographic diffraction gratings (both plane and spherical), interferometric spectroscopy and imaging properties of spectral equipment are treated. Aspects of image analysis, information in optics, signal-to-noise ratio, etc. are treated in separate courses on Fourier method and digital spectral analysis. The applicability of optical techniques to various fields of physics and engineering and the analogies with them are especially brought out. Experimental and calculational and skills are stressed throughout. Computer programming is introduced as an indispensable tool for the optics practitioner, and the students are required to write programs of their own. The students gain practical experience, e.g., by working in the molecular physics group. Close cooperation is maintained with other research groups in laser physics, ultrasonics and physical chemistry. The training in optics has proved very useful, with students frequently ending up working in the industry on optics and spectroscopy problems. Parts of these courses have also been given at other universities and to engineers and scientists working in the industry.

  11. Physical non-viral gene delivery methods for tissue engineering.

    PubMed

    Mellott, Adam J; Forrest, M Laird; Detamore, Michael S

    2013-03-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.

  12. Physical non-viral gene delivery methods for tissue engineering

    PubMed Central

    Mellott, Adam J.; Forrest, M. Laird; Detamore, Michael S.

    2016-01-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications. PMID:23099792

  13. Engineering, Life Sciences, and Health/Medicine Synergy in Aerospace Human Systems Integration: The Rosetta Stone Project

    NASA Technical Reports Server (NTRS)

    Williams, Richard S. (Editor); Doarn, Charles R. (Editor); Shepanek, Marc A.

    2017-01-01

    In the realm of aerospace engineering and the physical sciences, we have developed laws of physics based on empirical and research evidence that reliably guide design, research, and development efforts. For instance, an engineer designs a system based on data and experience that can be consistently and repeatedly verified. This reproducibility depends on the consistency and dependability of the materials on which the engineer works and is subject to physics, geometry and convention. In life sciences and medicine, these apply as well, but individuality introduces a host of variables into the mix, resulting in characteristics and outcomes that can be quite broad within a population of individuals. This individuality ranges from differences at the genetic and cellular level to differences in an individuals personality and abilities due to sex and gender, environment, education, etc.

  14. Engineering Online and In-person Social Networks for Physical Activity: A Randomized Trial

    PubMed Central

    Rovniak, Liza S.; Kong, Lan; Hovell, Melbourne F.; Ding, Ding; Sallis, James F.; Ray, Chester A.; Kraschnewski, Jennifer L.; Matthews, Stephen A.; Kiser, Elizabeth; Chinchilli, Vernon M.; George, Daniel R.; Sciamanna, Christopher N.

    2016-01-01

    Background Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. Purpose To conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively-measured outcomes. Methods Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3% male, 83.4% overweight/obese) were randomized to 1 of 3 groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking, and prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Results Participants increased their MVPA by 21.0 mins/week, 95% CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Conclusions Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. Trial Registration Number NCT01142804 PMID:27405724

  15. Application of physics engines in virtual worlds

    NASA Astrophysics Data System (ADS)

    Norman, Mark; Taylor, Tim

    2002-03-01

    Dynamic virtual worlds potentially can provide a much richer and more enjoyable experience than static ones. To realize such worlds, three approaches are commonly used. The first of these, and still widely applied, involves importing traditional animations from a modeling system such as 3D Studio Max. This approach is therefore limited to predefined animation scripts or combinations/blends thereof. The second approach involves the integration of some specific-purpose simulation code, such as car dynamics, and is thus generally limited to one (class of) application(s). The third approach involves the use of general-purpose physics engines, which promise to enable a range of compelling dynamic virtual worlds and to considerably speed up development. By far the largest market today for real-time simulation is computer games, revenues exceeding those of the movie industry. Traditionally, the simulation is produced by game developers in-house for specific titles. However, off-the-shelf middleware physics engines are now available for use in games and related domains. In this paper, we report on our experiences of using middleware physics engines to create a virtual world as an interactive experience, and an advanced scenario where artificial life techniques generate controllers for physically modeled characters.

  16. Engineering Laboratory Instruction in Virtual Environment--"eLIVE"

    ERIC Educational Resources Information Center

    Chaturvedi, Sushil; Prabhakaran, Ramamurthy; Yoon, Jaewan; Abdel-Salam, Tarek

    2011-01-01

    A novel application of web-based virtual laboratories to prepare students for physical experiments is explored in some detail. The pedagogy of supplementing physical laboratory with web-based virtual laboratories is implemented by developing a web-based tool, designated in this work as "eLIVE", an acronym for Engineering Laboratory…

  17. A DIRECTORY OF INFORMATION RESOURCES IN THE UNITED STATES. PHYSICAL SCIENCES, BIOLOGICAL SCIENCES, ENGINEERING.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC.

    SOURCES OF INFORMATION FOR BIOLOGICAL AND PHYSICAL SCIENCE AND ENGINEERING ARE LISTED. THEY INCLUDE--(1) LIBRARIES, (2) CENTRALIZED INFORMATION CENTERS, (3) PROFESSIONAL SOCIETIES AND OTHER SPECIALIZING ORGANIZATIONS, (4) INDUSTRIAL FIRMS, (5) GOVERNMENTAL AGENCIES OR OFFICES, AND (6) OTHER INFORMATION SOURCES WHICH MAKE SCIENTIFIC AND…

  18. Physics at the International Science and Engineering Fair.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1979-01-01

    A judge for the physics projects for the 1979 International Science and Engineering Fair describes many of the more popular science projects. Projects described include the following: carbon dioxide and helium-neon lasers, reverse flame investigations, holography, construction of a magnetic bottle to confine plasma, and aerodynamic drag. (BT)

  19. Primary Events in vision - Investigation of Basic Eye Responses.

    DTIC Science & Technology

    1983-06-30

    Lewis School of Applied & Engineering Physics CORNELL UNIVERSITY Ithaca, NY 30 JUNE 1983 SEF 2 PHASE REPORT Contract No. N62269.62-M-3270 APPROVED FOR...Ph.D. N62269-82-M-3270 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK School of Applied & Engineering Physics AREA

  20. Fundamental Studies in the Molecular Basis of Laser Induced Retinal Damage

    DTIC Science & Technology

    1988-01-01

    Cornell University School of Applied & Engineering Physics Ithaca, NY 14853 DOD DISTRIBUTION STATEMENT Approved for public release; distribution unlimited...Code) 7b. ADDRESS (City, State, and ZIP Code) School of Applied & Engineering Physics Ithaca, NY 14853 8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL

  1. Fundamental Studies in the Molecular Basis of Laser Induced Retinal Damage

    DTIC Science & Technology

    1988-01-01

    Cornell University .LECT l School of Applied & Engineering PhysicsIthaca, NY 14853 0 JAN 198D DOD DISTRIBUTION STATEMENT Approved for public release...State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) School of Applied & Engineering Physics Ithaca, NY 14853 Ba. NAME OF FUNDING/ SPONSORING

  2. Assessing Conceptual Knowledge for the Physics of Semiconductors

    ERIC Educational Resources Information Center

    Ene, Emanuela

    2013-01-01

    Following the trend in science and engineering education generated by the visible impact created by the Force Concept Inventory (FCI), the investigator developed a Physics of Semiconductors Concept Inventory (PSCI). PSCI fills the need of standardized concept tests for undergraduate education in photonics and electrical engineering. The structure…

  3. Project Physics Text 3, The Triumph of Mechanics.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Mechanical theories are presented in this unit of the Project Physics text for senior high students. Collisions, Newton's laws, isolated systems, and Leibniz' concept are discussed, leading to conservation of mass and momentum. Energy conservation is analyzed in terms of mechanical energy, heat energy, steam engines, Watt's engine, Joule's…

  4. The Effectiveness of Concept Maps in Teaching Physics Concepts Applied to Engineering Education: Experimental Comparison of the Amount of Learning Achieved with and without Concept Maps

    ERIC Educational Resources Information Center

    Martinez, Guadalupe; Perez, Angel Luis; Suero, Maria Isabel; Pardo, Pedro J.

    2013-01-01

    A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a…

  5. An analysis of how electromagnetic induction and Faraday's law are presented in general physics textbooks, focusing on learning difficulties

    NASA Astrophysics Data System (ADS)

    Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel

    2013-07-01

    Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.

  6. Observations Of General Learning Patterns In An Upper-Level Thermal Physics Course

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.

    2009-11-01

    I discuss some observations from using interactive-engagement instructional methods in an upper-level thermal physics course over a two-year period. From the standpoint of the subject matter knowledge of the upper-level students, there was a striking persistence of common learning difficulties previously observed in students enrolled in the introductory course, accompanied, however, by some notable contrasts between the groups. More broadly, I comment on comparisons and contrasts regarding general pedagogical issues among different student sub-populations, for example: differences in the receptivity of lower- and upper-level students to diagrammatic representations; varying receptivity to tutorial-style instructional approach within the upper-level population; and contrasting approaches to learning among physics and engineering sub-populations in the upper-level course with regard to use of symbolic notation, mathematical equations, and readiness to employ verbal explanations.

  7. How to manage continuing education and retraining programs on optical physics and laser technology at a university: Moscow State experience

    NASA Astrophysics Data System (ADS)

    Zadkov, Victor N.; Koroteev, Nikolai I.

    1995-10-01

    An experience of managing the continuing education and retraining programs at the International Laser Center (ILC) of Moscow State University is discussed. The offered programs are in a wide range of areas, namely laser physics and technology, laser biophysics and biomedicine, laser chemistry, and computers in laser physics. The attendees who are presumably scientists, engineers, technical managers, and graduate students can join these programs through the annual ILC term (6 months), individual training and research programs (up to a year), annual ILC Laser Graduate School, graduate study, and post-docs program, which are reviewed in the paper. A curriculum that includes basic and specialized courses is described in detail. A brief description of the ILC Laser Teaching and Computer Labs that support all the educational courses is given as well.

  8. Determining the relationship between students' scores using traditional homework assignments to those who used assignments on a non-traditional interactive CD with tutor helps

    NASA Astrophysics Data System (ADS)

    Tinney, Charles Evan

    2007-12-01

    By using the book "Physics for Scientists and Engineers" by Raymond A. Serway as a guide, CD problem sets for teaching a calculus-based physics course were developed, programmed, and evaluated for homework assignments during the 2003-2004 academic year at Utah State University. These CD sets were used to replace the traditionally handwritten and submitted homework sets. They included a research-based format that guided the students through problem-solving techniques using responseactivated helps and suggestions. The CD contents were designed to help the student improve his/her physics problem-solving skills. The analyzed score results showed a direct correlation between the scores obtained on the homework and the students' time spent per problem, as well as the number of helps used per problem.

  9. College physics students' epistemological self-reflection and its relationship to conceptual learning

    NASA Astrophysics Data System (ADS)

    May, David B.; Etkina, Eugenia

    2002-12-01

    Students should develop self-reflection skills and appropriate views about knowledge and learning, both for their own sake and because these skills and views may be related to improvements in conceptual understanding. We explored the latter issue in the context of an introductory physics course for first-year engineering honors students. As part of the course, students submitted weekly reports, in which they reflected on how they learned specific physics content. The reports by 12 students were analyzed for the quality of reflection and some of the epistemological beliefs they exhibited. Students' conceptual learning gains were measured with standard survey instruments. We found that students with high conceptual gains tend to show reflection on learning that is more articulate and epistemologically sophisticated than students with lower conceptual gains. Some implications for instruction are suggested.

  10. PREFACE: First International Meeting on Applied Physics (APHYS-2003)

    NASA Astrophysics Data System (ADS)

    Méndez-Vilas, A.; Chacón, R.

    2005-01-01

    This special issue of Physica Scripta contains papers presented at the 1st International Meeting on Applied Physics (APHYS-2003), held in Badajoz (Spain), from 13th to 18th October 2003, and more specifically, selected papers presented during the conference sessions mainly on Applied Optics, Laser Physics, Ultrafast Phenomena, Optical Materials, Semiconductor Materials and Devices, Optoelectronics, Quantum Electronics and Applied Solid State Physics-Chemistry. APHYS-2003 was born as an attempt to create a new international forum on Applied Physics in Europe. Since Applied Physics is not really a branch of Physics, but the application of all the branches of Physics to the broad realms of practical problems in Science, Engineering and Industry, this conference was a truly multi and inter-disciplinary event. The organizers called for papers relating Physics with other sciences such as Biology, Chemistry, Information Science, Medicine, etc, or relating different Physics areas, and aimed at solving practical problems. In other words, the Conference was specifically interested in reports applying the techniques, the training, and the culture of Physics to research areas usually associated with other scientific and engineering disciplines. It was extremely rewarding that over 800 researchers, from over 65 countries, attended the conference, where more than 1000 research papers were presented. We feel really proud of this excellent response obtained (in number and quality), for this first edition of the conference. We are very grateful to all the members of the Organizing Committee, for the hard work done for the preparation of the Conference (which began one year before the conference start), and to the members of the International Advisory Committee, for the valuable contribution to the evaluation of submitted works. Also thank to the referees for the excellent work done in the revision of submitted papers. Finally, we would like to thank the Department of Physics of the University of Extremadura, for their support, and the Regional Government (Junta de Extremadura/Consejería de Educación, Ciencia y Tecnología), as well as INNOVA Instrumentación, for sponsoring the Conference.

  11. The Evolution of CERN EDMS

    NASA Astrophysics Data System (ADS)

    Wardzinska, Aleksandra; Petit, Stephan; Bray, Rachel; Delamare, Christophe; Garcia Arza, Griselda; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David

    2015-12-01

    Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built. This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists. Over the years, human collaborations and machines grew in size and complexity. So did EDMS: it is currently home to more than 2 million files and documents, and has over 6 thousand active users. In April 2014 we released a new major version of EDMS, featuring a complete makeover of the web interface, improved responsiveness and enhanced functionality. Following the results of user surveys and building upon feedback received from key users group, we brought what we think is a system that is more attractive and makes it easy to perform complex tasks. In this paper we will describe the main functions and the architecture of EDMS. We will discuss the available integration options, which enable further evolution and automation of engineering data management. We will also present our plans for the future development of EDMS.

  12. Young Engineers and Scientists (YES 2K6): Independent and Group Mentorship Projects

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2006-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 14 years, and YES 2K6 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences and engineering. YES 2K6 consists of two parts: 1) a three-week summer workshop and 2) a mentorship where students complete individual research projects during their academic year. The intensive workshop is held at SwRI where students experience the research environment first-hand. They also develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. YES 2K6 students developed a website for the Magnetospheric Multiscale (MMS) Mission from the perspective of a high school student. The collegial mentorship takes place during their academic year where students complete individual research projects under the guidance of their mentors and earn honors credit. At the end of the school year, students publicly present and display their work at their schools. This acknowledges their accomplishments and spreads career awareness to other students and teachers. Over the past 14 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the benefits of YES for their academic preparation and choice of college majors. We acknowledge E/PO funding from the NASA MMS Mission and local charitable foundations.

  13. The experiences of female high school students and interest in STEM: Factors leading to the selection of an engineering or computer science major

    NASA Astrophysics Data System (ADS)

    Genoways, Sharon K.

    STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough young scientists entering into the STEM professional pathways to replace all of the retiring professionals (Brown, Brown, Reardon, & Merrill, 2011; Harsh, Maltese, & Tai, 2012; Heilbronner, 2011; Scott, 2012). The problem is not necessarily due to a lack of STEM skills and concept proficiency. There also appears to be a lack of interest in these fields. Recent evidence suggests that many of the most proficient students, especially minority students and women, have been gravitating away from science and engineering toward other professions. (President's Council of Advisors on Science and Technology, 2010). The purpose of this qualitative research study was an attempt to determine how high schools can best prepare and encourage young women for a career in engineering or computer science. This was accomplished by interviewing a pool of 21 women, 5 recent high school graduates planning to major in STEM, 5 college students who had completed at least one full year of coursework in an engineering or computer science major and 11 professional women who had been employed as an engineer or computer scientist for at least one full year. These women were asked to share the high school courses, activities, and experiences that best prepared them to pursue an engineering or computer science major. Five central themes emerged from this study; coursework in physics and calculus, promotion of STEM camps and clubs, teacher encouragement of STEM capabilities and careers, problem solving, critical thinking and confidence building activities in the classroom, and allowing students the opportunity to fail and ask questions in a safe environment. These themes may be implemented by any instructor, in any course, who wishes to provide students with the means to success in their quest for a STEM career.

  14. Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak

    NASA Astrophysics Data System (ADS)

    Wong, Zi Jing; Wang, Yuan; O'Brien, Kevin; Rho, Junsuk; Yin, Xiaobo; Zhang, Shuang; Fang, Nicholas; Yen, Ta-Jen; Zhang, Xiang

    2017-08-01

    Metamaterials are artificially engineered materials that exhibit novel properties beyond natural materials. By carefully designing the subwavelength unit cell structures, unique effective properties that do not exist in nature can be attained. Our metamaterial research aims to develop new subwavelength structures with unique physics and experimentally demonstrate unprecedented properties. Here we review our research efforts in optical and acoustic metamaterials in the past 15 years which may lead to exciting applications in communications, sensing and imaging.

  15. University of Maryland MRSEC - Research: Seed 1

    Science.gov Websites

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership & Biochemistry Wolfgang Losert, Physics, IPST, IREAP Ben Shapiro, Bio-Engineering, Aerospace Engineering Edo Waks, Electrical & Computer Engineering, IREAP, JQI Creating specific functional patterns

  16. Investigation Of Student Learning In Thermodynamics And Implications For Instruction In Chemistry And Engineering

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.

    2007-01-01

    As part of an investigation into student learning of thermodynamics, we have probed the reasoning of students enrolled in introductory and advanced courses in both physics and chemistry. A particular focus of this work has been put on the learning difficulties encountered by physics, chemistry, and engineering students enrolled in an upper-level thermal physics course that included many topics also covered in physical chemistry courses. We have explored the evolution of students' understanding as they progressed from the introductory course through more advanced courses. Through this investigation we have gained insights into students' learning difficulties in thermodynamics at various levels. Our experience in addressing these learning difficulties may provide insights into analogous pedagogical issues in upper-level courses in both engineering and chemistry which focus on the theory and applications of thermodynamics.

  17. A development optical course based on optical fiber white light interference

    NASA Astrophysics Data System (ADS)

    Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo

    2017-08-01

    The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.

  18. Research and Engineering Operation, Irradiation Processing Department monthly record report, May 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, T.W.

    1965-06-04

    Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less

  19. A Summary of the Naval Postgraduate School Research Program.

    DTIC Science & Technology

    1984-06-01

    Administrative Sciences, Operations Research, National Security Affairs, Physics, Electrical Engineering , Meterology, Aeronautics, Oceanography and Mechanical ...Oceans and Major Seas -------------------------------- 290 DEPARTMENT OF MECHANICAL ENGINEERING 291 Mechanical Engineering Department Summary 293...in Buried Pipes Using Sulphur Hexaflouride as a Tracer Gas," American Society of Mechanical Engineers , The Journal of Engineering for Power

  20. Engineering Faculty Attitudes to General Chemistry Courses in Engineering Curricula

    ERIC Educational Resources Information Center

    Garip, Mehmet; Erdil, Erzat; Bilsel, Ayhan

    2006-01-01

    A survey on the attitudes of engineering faculty to chemistry, physics, and mathematics was conducted with the aim of clarifying the attitudes of engineering faculty to chemistry courses in relation to engineering education or curricula and assessing their expectations. The results confirm that on the whole chemistry is perceived as having a…

  1. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less

  2. Feasibility of biochar application on a landfill final cover-a review on balancing ecology and shallow slope stability.

    PubMed

    Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung

    2016-04-01

    Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.

  3. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Waters, Jiajia

    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  4. Institutional profile: the London Centre for Nanotechnology.

    PubMed

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  5. Gender contentedness in aspirations to become engineers or medical doctors

    NASA Astrophysics Data System (ADS)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2017-11-01

    Medical doctor and engineer are highly esteemed STEM professions. This study investigates academic and motivational characteristics of a sample of high school students in Thailand who aspire to become medical doctors or engineers. We used logistic regression to compare maths performance, gender typicality, gender contentedness, and maths and physics self-concepts among students with aspirations for these two professions. We found that high levels of felt gender contentedness in men had positive association with aspirations for engineering irrespective of the levels of maths or physics self-concept. We found that high levels of felt gender contentedness combined with high levels of maths or physics self-concept in women had positive associations with aspirations to become a medical doctor. These findings are evidence that student views of self are associated with uneven gendered patterns in career aspirations and have implications for the potential for future participation.

  6. FísicActiva: applying active learning strategies to a large engineering lecture

    NASA Astrophysics Data System (ADS)

    Auyuanet, Adriana; Modzelewski, Helena; Loureiro, Silvia; Alessandrini, Daniel; Míguez, Marina

    2018-01-01

    This paper presents and analyses the results obtained by applying Active Learning techniques in overcrowded Physics lectures at the University of the Republic, Uruguay. The course referred to is Physics 1, the first Physics course that all students of the Faculty of Engineering take in their first semester for all the Engineering-related careers. Qualitative and quantitative data corresponding to three semesters are shown and discussed, indicating that the students that attended these lectures outperformed the students that followed the course in the traditional way: the pass rates increased, whereas the failure rates decreased. The students highly valued this methodology, in particular, the interactive and relaxed dynamics, highlighting the concern of professors to answer questions by means of new questions so as to promote reasoning. The results obtained point to a work path that deserves to be deepened and extended to other Engineering courses.

  7. Second Law based definition of passivity/activity of devices

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B.

    2017-10-01

    Recently, our efforts to clarify the old question, if a memristor is a passive or active device [1], triggered debates between engineers, who have had advanced definitions of passivity/activity of devices, and physicists with significantly different views about this seemingly simple question. This debate triggered our efforts to test the well-known engineering concepts about passivity/activity in a deeper way, challenging them by statistical physics. It is shown that the advanced engineering definition of passivity/activity of devices is self-contradictory when a thermodynamical system executing Johnson-Nyquist noise is present. A new, statistical physical, self-consistent definition based on the Second Law of Thermodynamics is introduced. It is also shown that, in a system with uniform temperature distribution, any rectifier circuitry that can rectify thermal noise must contain an active circuit element, according to both the engineering and statistical physical definitions.

  8. The Physics of Winning--Engineering the World of Sport

    ERIC Educational Resources Information Center

    James, David

    2008-01-01

    Physics, engineering and technology increasingly play a critical role in many sports, enabling athletes to go the extra proverbial mile and surpass their own limits. However, it is not only the competitive elite who benefit from advances in equipment design; many sports have been made safer and more accessible through science and innovation.…

  9. A Team Taught Interdisciplinary Approach To Physics and Calculus Education.

    ERIC Educational Resources Information Center

    Johnson, David B.

    The Special Intensive Program for Scientists and Engineers (SIPSE) at Diablo Valley College in California replaces the traditional engineering calculus and physics sequences with a single sequence that combines the two subjects into an integrated whole. The project report provides an overview of SIPSE, a section that traces the project from…

  10. From Gene to Protein: A 3-Week Intensive Course in Molecular Biology for Physical Scientists

    ERIC Educational Resources Information Center

    Nadeau, Jay L.

    2009-01-01

    This article describes a 3-week intensive molecular biology methods course based upon fluorescent proteins, which is successfully taught at the McGill University to advanced undergraduates and graduates in physics, chemical engineering, biomedical engineering, and medicine. No previous knowledge of biological terminology or methods is expected, so…

  11. High School Physics: An Interactive Instructional Approach That Meets the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew

    2015-01-01

    Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…

  12. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  13. Physical properties of recycled PET non-woven fabrics for buildings

    NASA Astrophysics Data System (ADS)

    Üstün Çetin, S.; Tayyar, A. E.

    2017-10-01

    Recycled fibers have been commonly used in non-woven production technology for engineering applications such as textile engineering and civil engineering. Nonwovens including recycled fibers can be utilized in insulation, roofing and floor separation applications. In this study, physical performance properties such as drape, bending resistance, tensile strength, and breaking elongation values of non-woven fabrics consisting of v-PET (virgin) and r-PET (recycled) fibers in five different blend ratios are examined comparatively. The test results indicated that r-PET can be used in non-wovens for civil engineering applications such as insulation, roofing and floor separation fulfilling the acceptable quality level values.

  14. An investigation of the early factors which influence women's career choices in physical science and technology

    NASA Astrophysics Data System (ADS)

    Payne, Anneliese

    The composition of the workforce has begun to undergo a change. The U.S. Department of Labor estimates that women, minorities, and immigrants will constitute 80 percent of the additions to the labor force between 1987 and the year 2000 (Oakes, 1990). The National Science Foundation projects that the United States may have a shortfall of 400,000 scientists and over 250,000 engineers by the year 2006 (Argonne, 1990). Since women are among those who are significantly underrepresented among individuals preparing for a career in science, thirty women who are currently pursuing a successful career in physical science and technology were interviewed. This study determined participants' perceptions of the factors that first influenced an early interest in physical science and technology. The investigation included perceptions regarding: (1) whether certain identifiable events or experiences influenced the decision to pursue science as a career and what those events and experiences were; (2) at what age these events occurred; (3) whether an adult(s) was influential and which adult(s) it was; and (4) identification of where these events and experiences occurred. The interview technique was selected as the best research method for collecting the qualitative and demographic data needed for this study. The results represent the participants' recollections of out-of-school and in-school activities, family, friends and teacher support, self-image during the formative years, parents as the most important factor which influenced an interest in physical science, and major obstacles that had to be overcome by the participants in order to pursue successful careers in physical science and technology. Also included is participants' advice to parents and teachers who want to encourage females to pursue a career in physical science and technology.

  15. P3: a practice focused learning environment

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  16. Engineered Barrier System: Physical and Chemical Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less

  17. 14 CFR 1275.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., social sciences, statistics, and biological and physical research (ground based and microgravity...

  18. An ancient revisits cosmology.

    PubMed Central

    Greenstein, J L

    1993-01-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403

  19. An Ancient Revisits Cosmology

    NASA Astrophysics Data System (ADS)

    Greenstein, Jesse L.

    1993-06-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.

  20. Eight year experience in open ended instrumentation laboratory

    NASA Astrophysics Data System (ADS)

    Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.

    2015-10-01

    When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.

  1. Biological Physics major as a means to stimulate an undergraduate physics program

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert; Eid, Khalid; Yarrison-Rice, Jan

    2013-03-01

    In an effort to stress the cross-disciplinary nature of modern physics we added a Biological Physics major. Drawing from coursework in physics, biology, chemistry, mathematics, and related disciplines, it combines a broad curriculum with physical and mathematical rigor in preparation for careers in biophysics, medical physics, and biomedical engineering. Biological Physics offers a new path of studies to a large pool of life science students. We hope to grow our physics majors from 70-80 to more than 100 students and boost our graduation rate from the mid-teens to the mid-twenties. The new major brought about a revision of our sophomore curriculum to make room for modern topics without sidelining fundamentals. As a result, we split our 1-semester long Contemporary Physics course (4 cr hrs) into a year-long sequence Contemporary Physics Foundations and Contemporary Physics Frontiers (both 3 cr hrs). Foundations starts with relativity, then focuses on 4 quantum mechanics topics: wells, spin 1/2, oscillators, and hydrogen. Throughout the course applications are woven in whenever the opportunity arises, e.g. magnetism and NMR with spin 1/2. The following semester Frontiers explores scientific principles and technological advances that make quantum science and resulting technologies different from the large scale. Frontiers covers enabling techniques from atomic, molecular, condensed matter, and particle physics, as well as advances in nanotechnology, quantum optics, and biophysics.

  2. Teaching Planetary Sciences at the Universidad del País Vasco in Spain: The Aula Espazio Gela and its Master in Space Science and Technology

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sanchez-Lavega, A.; Pérez-Hoyos, S.

    2011-12-01

    Planetary science is a highly multidisciplinary field traditionally associated to Astronomy, Physics or Earth Sciences Departments. Spanish universities do not generally offer planetary sciences courses but some departments give courses associated to studies on Astronomy or Geology. We show a different perspective obtained at the Engeneering School at the Universidad del País Vasco in Bilbao, Spain, which offers a Master in Space Science and Technology to graduates in Engineering or Physics. Here we detail the experience acquired in two years of this master which offers several planetary science courses: Solar System Physics, Astronomy, Planetary Atmospheres & Space Weather together with more technical courses. The university also owns an urban observatory in the Engineering School which is used for practical exercises and student projects. The planetary science courses have also resulted in motivating part of the students to do their master thesis in scientific subjects in planetary sciences. Since the students have very different backgrounds their master theses have been quite different: From writing open software tools to detect bolides in video observations of Jupiter atmosphere to the photometric calibration and scientific use or their own Jupiter and Saturn images or the study of atmospheric motions of the Venus' South Polar Vortex using data from the Venus Express spacecraft. As a result of this interaction with the students some of them have been engaged to initiate Ph.D.s in planetary sciences enlarging a relative small field in Spain. Acknowledgements: The Master in Space Science and Technology is offered by the Aula Espazio Gela at the Universidad del País Vasco Engineer School in Bilbao, Spain and is funded by Diputación Foral de Bizkaia.

  3. Effects of Professional Development on Infusing Engineering Design into High School Science, Technology, Engineering, and Math (STEM) Curricula

    ERIC Educational Resources Information Center

    Avery, Zanj Kano

    2010-01-01

    The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…

  4. Climate Change: The Physical Basis and Latest Results

    ScienceCinema

    Stocker, Thomas

    2018-05-18

    The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the global climate change challenge.

  5. Two web-based laboratories of the FisL@bs network: Hooke's and Snell's laws

    NASA Astrophysics Data System (ADS)

    de la Torre, L.; Sánchez, J.; Dormido, S.; Sánchez, J. P.; Yuste, M.; Carreras, C.

    2011-03-01

    FisL@bs is a network of remote and virtual laboratories for physics university education via the Internet that offers students the possibility of performing hands-on experiments in different fields of physics in two ways: simulation and real remote operation. This paper gives a detailed account of a novel way in physics in which distance learning students can gain practical experience autonomously. FisL@bs uses the same structure as AutomatL@bs, a network of virtual and remote laboratories for learning/teaching of control engineering, which has been in operation for four years. Students can experiment with the laboratories offered using an Internet connection and a Java-compatible web browser. This paper, specially intended for university educators but easily comprehensible even for undergraduate students, explains how the portal works and the hardware and software tools used to create it. In addition, it also describes two physics experiments already available: spring elasticity and the laws of reflection and refraction.

  6. Physicists in Primary Schools (PIPS) Project: Fun Presentations for Physicists to Take into Schools Worldwide (abstract)

    NASA Astrophysics Data System (ADS)

    Marks, Ann

    2009-04-01

    The Physicists in Primary Schools (PIPS) project is a joint venture initiated by the UK Women in Physics Group. A team from the University of Sheffield, with Engineering and Physical Sciences Research Council funding, has developed fun presentations and novel class activities using everyday articles for physicists to take into primary schools. The objectives are to instill enthusiasm in young children-including girls-through the enjoyment and excitement of physics, and support primary school teachers with a curriculum which includes many abstract concepts. All PIPS material is free to download from the Institute of Physics website (www.iop.org/pips), providing PowerPoint presentations and detailed explanations, as well as videos of the activities in classrooms. The topics are suitable for children age 4 to 11 years. There is interest in translating the presentations into other languages as there are few words on the slides and the material is likely valuable for older age groups. The presentations therefore have the potential to be useful worldwide.

  7. Real Time Conference 2016 Overview

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  8. A comparison of traditional physical laboratory and computer-simulated laboratory experiences in relation to engineering undergraduate students' conceptual understandings of a communication systems topic

    NASA Astrophysics Data System (ADS)

    Javidi, Giti

    2005-07-01

    This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.

  9. A numerical investigation on the influence of engine shape and mixing processes on wave engine performance

    NASA Astrophysics Data System (ADS)

    Erickson, Robert R.

    Wave engines are a class of unsteady, air-breathing propulsion devices that use an intermittent combustion process to generate thrust. The inherently simple mechanical design of the wave engine allows for a relatively low cost per unit propulsion system, yet unsatisfactory overall performance has severely limited the development of commercially successful wave engines. The primary objective of this investigation was to develop a more detailed physical understanding of the influence of gas dynamic nonlinearities, unsteady combustion processes, and engine shape on overall wave engine performance. Within this study, several numerical models were developed and applied to wave engines and related applications. The first portion of this investigation examined the influence of duct shape on driven oscillations in acoustic compression devices, which represent a simplified physical system closely related in several ways to the wave engine. A numerical model based on an application of the Galerkin method was developed to simulate large amplitude, one-dimensional acoustic waves driven in closed ducts. Results from this portion of the investigation showed that gas-dynamic nonlinearities significantly influence the properties of driven oscillations by transferring acoustic energy from the fundamental driven mode into higher harmonic modes. The second portion of this investigation presented and analyzed results from a numerical model of wave engine dynamics based on the quasi one-dimensional conservation equations in addition to separate sub-models for mixing and heat release. This model was then used to perform parametric studies of the characteristics of mixing and engine shape. The objectives of these studies were to determine the influence of mixing characteristics and engine shape on overall wave engine performance and to develop insight into the physical processes controlling overall performance trends. Results from this model showed that wave engine performance was strongly dependent on the coupling between the unsteady heat release that drives oscillations in the engine and the characteristics that determine the acoustic properties of the engine such as engine shape and mean property gradients. Simulation results showed that average thrust generation decreased dramatically when the natural acoustic mode frequencies of the engine and the frequency content of the unsteady heat release were not aligned.

  10. In situ magnetic resonance measurement of conversion, hydrodynamics and mass transfer during single- and two-phase flow in fixed-bed reactors.

    PubMed

    Gladden, L F; Alexander, P; Britton, M M; Mantle, M D; Sederman, A J; Yuen, E H L

    2003-01-01

    In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.

  11. A bird's-eye view of cell therapy and tissue engineering for cardiac regeneration.

    PubMed

    Soler-Botija, Carolina; Bagó, Juli R; Bayes-Genis, Antoni

    2012-04-01

    Complete recovery of ischemic cardiac muscle after myocardial infarction is still an unresolved concern. In recent years, intensive research efforts have focused on mimicking the physical and biological properties of myocardium for cardiac repair. Here we show how heart regeneration approaches have evolved from cell therapy to refined tissue engineering. Despite progressive improvements, the best cell type and delivery strategy are not well established. Our group has identified a new population of cardiac adipose tissue-derived progenitor cells with inherent cardiac and angiogenic potential that is a promising candidate for cell therapy to restore ischemic myocardium. We also describe results from three strategies for cell delivery into a murine model of myocardial infarction: intramyocardial injection, implantation of a fibrin patch loaded with cells, and an engineered bioimplant (a combination of chemically designed scaffold, peptide hydrogel, and cells); dual-labeling noninvasive bioluminescence imaging enables in vivo monitoring of cardiac-specific markers and cell survival. © 2012 New York Academy of Sciences.

  12. Engineering challenges for detectors at the ILC

    DOE PAGES

    Oriunno, Marco

    2016-05-31

    Over the last years two proposals for experiments at the ILC have been developed, ILD and SID. Extensive R&D has been carried out around the world to develop the needed technologies. Furthermore a first round of engineering studies was made as part of the ILC TDR to understand the integration of these different sub-systems into coherent and integrated detector concepts. Among the key challenges for the sub detectors are the extreme low mass/low power requirements or the extreme channel densities needed in particle flow based detectors. Throughout these studies special care was taken to ensure that the engineering models andmore » the simulation models, used in studies of the physics capabilities of the detectors, stay synchronized. In the near future, the models will need to be evolved to take the special requirements of the potential ILC site in Japan into account. Furthermore, the state of the integration of the detectors, and the future directions, will be discussed.« less

  13. Coculture strategies in bone tissue engineering: the impact of culture conditions on pluripotent stem cell populations.

    PubMed

    Janardhanan, Sathyanarayana; Wang, Martha O; Fisher, John P

    2012-08-01

    The use of pluripotent stem cell populations for bone tissue regeneration provides many opportunities and challenges within the bone tissue engineering field. For example, coculture strategies have been utilized to mimic embryological development of bone tissue, and particularly the critical intercellular signaling pathways. While research in bone biology over the last 20 years has expanded our understanding of these intercellular signaling pathways, we still do not fully understand the impact of the system's physical characteristics (orientation, geometry, and morphology). This review of coculture literature delineates the various forms of coculture systems and their respective outcomes when applied to bone tissue engineering. To understand fully the key differences between the different coculture methods, we must appreciate the underlying paradigms of physiological interactions. Recent advances have enabled us to extrapolate these techniques to larger dimensions and higher geometric resolutions. Finally, the contributions of bioreactors, micropatterned biomaterials, and biomaterial interaction platforms are evaluated to give a sense of the sophistication established by a combination of these concepts with coculture systems.

  14. Phun Physics 4 Phemales: Physics Camp for High School Girls

    NASA Astrophysics Data System (ADS)

    Kwon, Chuhee; Gu, Jiyeong; Henriquez, Laura

    2014-03-01

    The department of Physics and Astronomy with the department of Science Education at California State University, Long Beach hosted summer program of ``Phun Physics 4 Phemales (PP4P)'' during summer 2012 and summer 2013 with the support from APS public outreach program. PP4P summer camp was hosted along with a two-week summer science camp, Young Scientists Camp, which has been institutionalized for the last 14 years since 1999. More than 2,500 3rd -8th grade students and 250 teachers have participated in the program. PP4P program provided the tools and support that female high school students need to pursue careers in physics and/or science, technology, engineering and math (STEM) field. This girls-only camp created connections among the girls and built confidence. In addition PP4P program introduced students to key principles in physics by a hands-on lab environment and demonstrated the real-world social impact of physics. In summer 2012, high school girls worked on physics experimental project on electronics and in summer 2013 they worked on the mechanics. I would share our experience in this program and the impact on the female high school students. This work was supported by 2012 Public Outreach and Informing the Public Grants from American Physical Society.

  15. PR2EPS: Preparation, Recruitment, Retention and Excellence in the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Gallagher, H. A.; Schaumloffel, J. C.; Bischoff, P.; Labroo, S.; Bachman, N.

    2006-05-01

    PR2EPS is a multifaceted NSF-DUE sponsored program at SUNY Oneonta that strives to enhance the number of students pursuing degrees in the physical sciences and increase the retention rate of students pursuing STEM degrees. A key focus of the project, which is beginning its third year, is drawing students from the five rural counties surrounding Oneonta, NY. Team members visit 15 to 20 local high schools each year leading discussions on academic and career opportunities in STEM disciplines and inviting students to participate in a one week summer science camp. A variety of hands-on science and engineering activities are designed to engage students and demonstrate to them that they possess the requisite skills and potential to succeed in these technically demanding disciplines. Campers who decide to study physical science at SUNY Oneonta are supported with a modest financial inducement and an evening tutoring center. As these students progress, they gain exposure to research and professional activities designed to show them opportunities and developments in their field and integrate them into the broader community of learners. A description of the program, which is a collaboration of faculty from the Departments of Physics & Astronomy, Chemistry & Biochemistry and Education, as well as an evaluation of the effectiveness of the overall program and its components will be provided.

  16. GKTC ACTIVITIES TO PROVIDE NUCLEAR MATERIAL PHYSICAL PROTECTION, CONTROL AND ACCOUNTING TRAINING FOR 2011-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr

    2011-10-01

    The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed trainingmore » needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly describes the practical efforts applied to the provision of physical protection specialists advanced training in Ukraine and real results on the way to implement such efforts in 2011-2012.« less

  17. 14 CFR § 1275.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., psychology, social sciences, statistics, and biological and physical research (ground based and microgravity...

  18. An Interactive, Physics-Based Unmanned Ground Vehicle Simulator Leveraging Open Source Gaming Technology: Progress in the Development and Application of the Virtual Autonomous Navigation Environment (VANE) Desktop

    DTIC Science & Technology

    2009-01-01

    interface, mechatronics, video games 1. INTRODUCTION Engineering methods have substantially and continuously evolved over the past 40 years. In the past...1970s, video games have pioneered interactive simulation and laid the groundwork for inexpensive computing that individuals, corporations, and...purposes. This has not gone unnoticed, and software technology and techniques evolved for video games are beginning to have extraordinary impact in

  19. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venhuizen, J.R.

    1997-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.

  20. Effects of Spacecraft Landings on the Moon

    NASA Technical Reports Server (NTRS)

    Metzger, P. T.; Lane, J. E.

    2013-01-01

    The rocket exhaust of spacecraft landing on the Moon causes a number of observable effects that need to be quantified, including: disturbance of the regolith and volatiles at the landing site; damage to surrounding hardware such as the historic Apollo sites through the impingement of high-velocity ejecta; and levitation of dust after engine cutoff through as-yet unconfirmed mechanisms. While often harmful, these effects also beneficially provide insight into lunar geology and physics. Research results from the past 10 years is summarized and reviewed here.

  1. Electro-Optics In Two Years

    NASA Astrophysics Data System (ADS)

    Simcik, John C.

    1989-04-01

    Texas State Technical Institute-Waco (TSTI-WACO) was the first school in the United States to offer an Associate of Applied Science degree in Laser Electro-Optics Technology. The program began in September 1969 and has produced 1,827 graduates since inception. These graduates are readily adaptable to any area of the laser electro-optics industry. Areas of study include Optics, Electronics, Vacuum, Physics, Mathematics, and English with emphasis on Electro-Optics. Graduate placement is centered around research and development, life sciences and manufacturing in technical and engineering areas.

  2. Ground facility for information reception, processing, dissemination and scientific instruments management setup in the CORONAS-PHOTON space project

    NASA Astrophysics Data System (ADS)

    Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.

    2011-06-01

    This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.

  3. Summer Research of Factors Influencing High School Student’s Choice of Careers in Defense Related Engineering.

    DTIC Science & Technology

    1979-05-01

    RESEARH DIVISION fLT COL JOEL BRADSHAW 1300 - 1400 HIGH EXPLOSIVE TESTING COMPU’rATIONAL DIVISION MR. (MI OMDDA 1 1400 - 1630 TOUR AND DEUNSTRATIONS OF...high schools. In sciences, Biology and Chemistry were the most common courses that had been taken. Physics was taken mainly by students again from the... biology ), and the other music. percent changed their senior year program following UNITE 󈨐. percent wanted to change their program but could not. Many

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doering, C.; Bier, M.; Christodoulou, K.

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Polymers, composites, and synthetic modern materials are replacing traditional materials in many older scientific, engineering, commercial, and military applications. This project sought to focus on the new polymeric materials, deriving and analyzing models that predict their seemingly mysterious transport properties. It sought to identify the dominant physical mechanisms and the pertinent dimensionless parameters, produce viable theoretical models, and devise asymptotic and numerical methods for use in specific problems.

  5. Brief 75 Health Physics Enrollments and Degrees Survey, 2014 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2015-03-05

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014. Enrollment information refers to the fall term 2014. Twenty-two academic programs were included in the survey universe, with all 22 programs providing data. Since 2009, data for two health physics programs located in engineering departments are also included in the nuclear engineering survey. The enrollments and degrees data includes students majoring in health physics or in an option program equivalent to a major.

  6. Young Engineers and Scientists (YES) - Engaging Students and Teachers in Research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Reiff, P.

    2012-10-01

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) for the past 20 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including astronomy), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Twenty-one YES 2012 students developed a website for the Dawn Mission (yesserver.space.swri.edu) and five high school science teachers are developing space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, SwRI, and local charitable foundations.

  7. Houston prefreshman enrichment program (Houston PREP). Final report, June 10, 1996--August 1, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The 1996 Houston Pre-freshman Enrichment Program (PREP) was conducted on the campus of the University of Houston-Downtown from June 10 to August 1, 1996. Program Participants were recruited from the Greater Houston area. All participants were identified as high achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Crockett, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein,more » North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 197 students starting the program, 170 completed, 142 students were from economically and socially disadvantage groups underrepresented in the engineering and science professions, and 121 of the 197 were female. Our First Year group for 1996 composed of 96% minority and women students. Our Second and Third Year students were 100% and 93.75% minority or women respectively. This gave an overall minority and female population of 93.75%. This year, special efforts were again made to recruit students from minority groups, which caused a significant increase in qualified applicants. However, due to space limitations, 140 applicants were rejected. Investigative and discovery learning were key elements of PREP. The academic components of the program included Algebraic Structures, Engineering, Introduction to Computer Science, Introduction to Physics, Logic and Its Application to Mathematics, Probability and Statistics, Problem Solving Seminar using computers and PLATO software, SAT Preparatory Seminars, and Technical Writing.« less

  8. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  9. Physics of Mechanical, Gaseous, and Fluid Systems. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Dixon, Peggy; And Others

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…

  10. Econo-Physics Models & Metaphors

    NASA Astrophysics Data System (ADS)

    Jackson, Peter M.

    "There is really nothing more pathetic than to have an economist or a retired engineer try to force analogies between the concepts of physics and the concepts of engineers. How many dreary papers have I had to referee in which the author is looking for something that corresponds to entropy or to one or another form of energy?" (Samuelson, 1972, p.254).

  11. Women in Physics: A Comparison to Science, Technology, Engineering, and Math Education over Four Decades

    ERIC Educational Resources Information Center

    Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria

    2016-01-01

    The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…

  12. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    NASA Astrophysics Data System (ADS)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.

    2011-09-01

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  13. A comparison study of different physical treatments on cartilage matrix derived porous scaffolds for tissue engineering applications

    PubMed Central

    Moradi, Ali; Pramanik, Sumit; Ataollahi, Forough; Abdul Khalil, Alizan; Kamarul, Tunku; Pingguan-Murphy, Belinda

    2014-01-01

    Native cartilage matrix derived (CMD) scaffolds from various animal and human sources have drawn attention in cartilage tissue engineering due to the demonstrable presence of bioactive components. Different chemical and physical treatments have been employed to enhance the micro-architecture of CMD scaffolds. In this study we have assessed the typical effects of physical cross-linking methods, namely ultraviolet (UV) light, dehydrothermal (DHT) treatment, and combinations of them on bovine articular CMD porous scaffolds with three different matrix concentrations (5%, 15% and 30%) to assess the relative strengths of each treatment. Our findings suggest that UV and UV–DHT treatments on 15% CMD scaffolds can yield architecturally optimal scaffolds for cartilage tissue engineering. PMID:27877731

  14. Atlas 1.1: An Update to the Theory of Effective Systems Engineers

    DTIC Science & Technology

    2018-01-16

    Proficiency Model ........................................................................................................... 21 5.1.1 Area 1: Math ... Math /Science/General Engineering: Foundational concepts from mathematics, physical sciences, and general engineering; 2. System’s Domain...Table 5. Atlas Proficiency Areas, Categories, and Topics Area Category Topic 1. Math / Science / General Engineering 1.1. Natural Science

  15. 41 CFR 102-80.135 - Who is a qualified fire protection engineer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property... qualified fire protection engineer? A qualified fire protection engineer is defined as an individual with a thorough knowledge and understanding of the principles of physics and chemistry governing fire growth...

  16. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    ERIC Educational Resources Information Center

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  17. 40 CFR 1065.526 - Repeating of void modes or test intervals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or test intervals in any circumstances that would be inconsistent with good engineering judgment. For... that include hybrid energy storage features or emission controls that involve physical or chemical... follows: (1) If the engine has stalled or been shut down, restart the engine. (2) Use good engineering...

  18. Program (systems) engineering

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn E.; Easter, Robert W.; Pomphrey, Richard B.

    2004-01-01

    Program Systems Engineering applies the principles of Systems Engineering at the program level. Space programs are composed of interrelated elements which can include collections of projects, advanced technologies, information systems, etc. Some program elements are outside traditional engineering's physical systems, such as education and public outreach, public relations, resource flow, and interactions within the political environments.

  19. 21 CFR 900.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... radiographic image of a phantom. (ll) Physical science means physics, chemistry, radiation science (including medical physics and health physics), and engineering. (mm) Positive mammogram means a mammogram that has... 50 percent adipose tissue. (vv) Survey means an onsite physics consultation and evaluation of a...

  20. 21 CFR 900.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... radiographic image of a phantom. (ll) Physical science means physics, chemistry, radiation science (including medical physics and health physics), and engineering. (mm) Positive mammogram means a mammogram that has... 50 percent adipose tissue. (vv) Survey means an onsite physics consultation and evaluation of a...

  1. 21 CFR 900.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... radiographic image of a phantom. (ll) Physical science means physics, chemistry, radiation science (including medical physics and health physics), and engineering. (mm) Positive mammogram means a mammogram that has... 50 percent adipose tissue. (vv) Survey means an onsite physics consultation and evaluation of a...

  2. YES 2K7: A Mentorship Program for Young Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P.

    2007-10-01

    The Young Engineers and Scientists 2007 (YES 2K7) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years, with YES 2K7 continuing this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K7 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  3. A study: Effect of Students Peer Assisted Learning on Magnetic Field Achievement

    NASA Astrophysics Data System (ADS)

    Mueanploy, Wannapa

    2016-04-01

    This study is the case study of Physic II Course for students of Pathumwan Institute of Technology. The purpose of this study is: 1) to develop cooperative learning method of peer assisted learning (PAL), 2) to compare the learning achievement before and after studied magnetic field lesson by cooperative learning method of peer assisted learning. The population was engineering students of Pathumwan Institute of Technology (PIT’s students) who registered Physic II Course during year 2014. The sample used in this study was selected from the 72 students who passed in Physic I Course. The control groups learning magnetic fields by Traditional Method (TM) and experimental groups learning magnetic field by method of peers assisted learning. The students do pretest before the lesson and do post-test after the lesson by 20 items achievement tests of magnetic field. The post-test higher than pretest achievement significantly at 0.01 level.

  4. Lightning Physics and Effects

    NASA Astrophysics Data System (ADS)

    Orville, Richard E.

    2004-03-01

    Lightning Physics and Effects is not a lightning book; it is a lightning encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of lightning, including lightning physics, lightning protection, and the interaction of lightning with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in lightning and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.

  5. The development and application of CFD technology in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  6. MO-DE-BRA-04: The CREATE Medical Physics Research Training Network: Training of New Generation Innovators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuntjens, J; Collins, L; Devic, S

    Purpose: Over the past century, physicists have played a major role in transforming scientific discovery into everyday clinical applications. However, with the increasingly stringent requirements to regulate medical physics as a health profession, the role of physicists as scientists and innovators has become at serious risk of erosion. These challenges trigger the need for a new, revolutionized training program at the graduate level that respects scientific rigor, attention for medical physics-relevant developments in basic sciences, innovation and entrepreneurship. Methods: A grant proposal was funded by the Collaborative REsearch and Training Experience program (CREATE) of the Natural Sciences and Engineering Researchmore » Council (NSERC) of Canada. This enabled the creation of the Medical Physics Research Training Network (MPRTN) around two CAMPEP-accredited medical physics programs. Members of the network consist of medical device companies, government (research and regulatory) and academia. The MPRTN/CREATE program proposes a curriculum with three main themes: (1) radiation physics, (2) imaging & image processing and (3) radiation response, outcomes and modeling. Results: The MPRTN was created mid 2013 (mprtn.com) and features (1) four new basic Ph.D. courses; (2) industry participation in research projects; (3) formal job-readiness training with involvement of guest faculty from academia, government and industry. MPRTN activities since 2013 include 22 conferences; 7 workshops and 4 exchange travels. Three patents were filed or issued, nine awards/best papers were won. Fifteen journal publications were accepted/published, 102 conference abstracts. There are now 13 industry partners. Conclusion: A medical physics research training network has been set up with the goal to harness graduate student’s job-readiness for industry, government and academia in addition to the conventional clinical role. Two years after inception, significant successes have been booked, but the true challenge will be to demonstrate that with this training philosophy CREATE scholars gain access to a much broader job market. Supported by the Natural Sciences and Engineering Research Council (NSERC) Canada.« less

  7. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    NASA Astrophysics Data System (ADS)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  8. Educational Projects in Unmanned Aerial Systems at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Dahlgren, Robert P.

    2017-01-01

    Unmanned aerial systems (UAS), autonomy and robotics technology have been fertile ground for developing a wide variety of interdisciplinary student learning opportunities. In this talk, several projects will be described that leverage small fixed-wing UAS that have been modified to carry science payloads. These aircraft provide a unique hands-on experience for a wide range of students from college juniors to graduate students pursuing degrees in electrical engineering, aeronautical engineering, mechanical engineering, applied mathematics, physics, structural engineering and other majors. By combining rapid prototyping, design reuse and open-source philosophies, a sustainable educational program has been organized structured as full-time internships during the summer, part-time internships during the school year, short details for military cadets, and paid positions. As part of this program, every summer one or more UAS is developed from concept through design, build and test phases using the tools and facilities at the NASA Ames Research Center, ultimately obtaining statements of airworthiness and flight release from the Agency before test flights are performed. In 2016 and 2017 student projects focused on the theme of 3D printed modular airframes that may be optimized for a given mission and payload. Now in its fifth year this program has served over 35 students, and has provided a rich learning experience as they learn to rapidly develop new aircraft concepts in a highly regulated environment, on systems that will support principal investigators at university, NASA, and other US federal agencies.

  9. Engineering Online and In-Person Social Networks for Physical Activity: A Randomized Trial.

    PubMed

    Rovniak, Liza S; Kong, Lan; Hovell, Melbourne F; Ding, Ding; Sallis, James F; Ray, Chester A; Kraschnewski, Jennifer L; Matthews, Stephen A; Kiser, Elizabeth; Chinchilli, Vernon M; George, Daniel R; Sciamanna, Christopher N

    2016-12-01

    Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. The purpose of this study was to conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively measured outcomes. Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3 % male, 83.4 % overweight/obese) were randomized to one of three groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking as well as prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Participants increased their MVPA by 21.0 min/week, 95 % CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. The trial was registered with the ClinicalTrials.gov (NCT01142804).

  10. Persistence of community college engineering science students: The impact of selected cognitive and noncognitive characteristics

    NASA Astrophysics Data System (ADS)

    Chatman, Lawrence M., Jr.

    If the United States is to remain technologically competitive, persistence in engineering programs must improve. This study on student persistence employed a mixed-method design to identify the cognitive and noncognitive factors which contribute to students remaining in an engineering science curriculum or switching from an engineering curriculum at a community college in the northeast United States. Records from 372 students were evaluated to determine the characteristics of two groups: those students that persisted with the engineering curriculum and those that switched from engineering; also, the dropout phenomenon was evaluated. The quantitative portion of the study used a logistic regression analyses on 22 independent variables, while the qualitative portion of the study used group interviews to investigate the noncognitive factors that influenced persisting or switching. The qualitative portion of the study added depth and credibility to the results from the quantitative portion. The study revealed that (1) high grades in first year calculus, physics and chemistry courses, (2) fewer number of semesters enrolled, (3) attendance with full time status, and (4) not participating in an English as a Second Language (ESL) program were significant variables used to predict student persistence. The group interviews confirmed several of these contributing factors. Students that dropped out of college began with (1) the lowest levels of remediation, (2) the lowest grade point averages, and (3) the fewest credits earned.

  11. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-gravemore » foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.« less

  12. Understanding performance properties of chemical engines under a trade-off optimization: Low-dissipation versus endoreversible model

    NASA Astrophysics Data System (ADS)

    Tang, F. R.; Zhang, Rong; Li, Huichao; Li, C. N.; Liu, Wei; Bai, Long

    2018-05-01

    The trade-off criterion is used to systemically investigate the performance features of two chemical engine models (the low-dissipation model and the endoreversible model). The optimal efficiencies, the dissipation ratios, and the corresponding ratios of the dissipation rates for two models are analytically determined. Furthermore, the performance properties of two kinds of chemical engines are precisely compared and analyzed, and some interesting physics is revealed. Our investigations show that the certain universal equivalence between two models is within the framework of the linear irreversible thermodynamics, and their differences are rooted in the different physical contexts. Our results can contribute to a precise understanding of the general features of chemical engines.

  13. The hard start phenomena in hypergolic engines. Volume 3: Physical and combustion characteristics of engine residuals

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    An investigation was conducted to determine the cause of starting problems in the hypergolic rocket engines of the Apollo reaction control (RCS) engines. The scope of the investigation was as follows: (1) to establish that chemical reactions occurred during the preignition and post combustion periods, (2) to identify the chemical species of the products of preignition and post combustion reaction, and (3) to determine the explosive nature of the identified species. The methods used in identifying the chemical products are described species. The infrared spectra, X-ray spectra, and other signatures of the compounds are presented. The physical and explosion characteristics of various hypergolic agents are reported.

  14. Engineering evidence for carbon monoxide toxicity cases.

    PubMed

    Galatsis, Kosmas

    2016-07-01

    Unintentional carbon monoxide poisonings and fatalities lead to many toxicity cases. Given the unusual physical properties of carbon monoxide-in that the gas is odorless and invisible-unorganized and erroneous methods in obtaining engineering evidence as required during the discovery process often occurs. Such evidence gathering spans domains that include building construction, appliance installation, industrial hygiene, mechanical engineering, combustion and physics. In this paper, we attempt to place a systematic framework that is relevant to key aspects in engineering evidence gathering for unintentional carbon monoxide poisoning cases. Such a framework aims to increase awareness of this process and relevant issues to help guide legal counsel and expert witnesses. © The Author(s) 2015.

  15. Annual Technical Report, Materials Research Laboratory, 1 July 1981-30 June 1982.

    DTIC Science & Technology

    1982-06-30

    of making source regions is best for our purposes. Principal Investizator: P.J. Stiles (Physics). Personnel: E . Crisman (Engineering) and J-I Lee...of Dislocation Substructure in Aluminum Single Crystals Following Dynamic Deformation," C.Y. Chiem and J. Duffy, MEA 79-23742/3, MRL E -137, October...Engineering), Y. Zuiki (Engineering), A. Azar (Engineering), E . Lavernia (Engineering), P. Rosakis (Engineering). Publications: "Experimental Determination of

  16. University degrees consistent with agricultural production in the European Union

    NASA Astrophysics Data System (ADS)

    Perdigones, Alicia; del Cerro, Jesus; Tarquis, Ana Maria; Benedicto, Susana; García, Jose Luis

    2013-04-01

    Degrees clearly oriented to rural and agricultural engineering are distinguished from the rest of the engineering areas by the need to involve the biological phenomena of engineering calculations. These degrees, which include subjects such as crop production, biotechnology and physics, among others, have evolved tremendously over the last ten years, implanting new curricula and introducing new specialties such as those dedicated to the environment or rural development, thereby adapting new social, economic and environmental aspects of each country. Currently being finalized to implement new titles in most Spanish universities, and in rest of Europe, following the guidelines set by Bologna. The process of elaboration of these degrees is complicated precisely because of the great variety of areas and subjects involved in these degrees. In this paper we study, for several countries of the European Union, the core subjects of the university degrees of agricultural engineering and the correlations between the core contents and the importance of the related uses of the soil in the different sectors of crop production (arable crops, horticulture, fruit growing, gardening, etc.) as well as other socio-economic criteria. The objective is to detect if the design of the core content is consistent in each country with the importance of the related socio-economic sector. Key-words: curriculum, crop production, agricultural engineer.

  17. [The physical problems in medicine].

    PubMed

    Bao, Shang-lian; Wang, Wei-dong; Fan, Tie-shuan

    2007-05-01

    According to the World Health Organization (WHO), the basic sciences to support the human health are chemistry, physics and informatics. Chemistry is the base of pharmacy. Physics is the base of medical instruments and equipments (MIE). The diagnosis and therapy of diseases are relying on informatics. Therefore, as the fusion results of physics and medicine, medical physics is the creative source science of MIE. Among all diagnosis tools, medical imaging devices are the fastest-developed and the most-complicated MIE since Roentgen discovered X-ray which was quickly used in medical diagnosis in 1895. Among all treatment tools, the radiotherapeutical devices are the most-widely used and the most effective MIE for tumor treatments since Mrs. Courier found the nature radiation isotope Radium at the end of 19th century and began to use it in tumor therapy. Although the research and development (R&D) of so-complicated MIE need many subjects of science and engineering, the kernel science is medical physics. With the results of more than 50 years' development in developed countries, medical physics has defined its own field, which is the medical imaging physics and the radiotherapeutical physics. But, the definition has been expanded to be wider and wider. Therefore, we should pay more attention to the establishment of Medical Physics in China. In order to develop medical physics in china, the bases of R&D and clinical practice should be also built.

  18. Need Assessment of Computer Science and Engineering Graduates

    NASA Astrophysics Data System (ADS)

    Surakka, Sami; Malmi, Lauri

    2005-06-01

    This case study considered the syllabus of the first and second year studies in computer science. The aim of the study was to reveal which topics covered in the syllabi were really needed during the following years of study or in working life. The program that was assessed in the study was a Masters program in computer science and engineering at a university of technology in Finland. The necessity of different subjects for the advanced studies (years 3? ?5) and for working life was assessed using four content analyses: (a) the course catalog of the institution where this study was carried out, (b) employment reports that were attached to the applications for internship credits, (c) masters theses, and (d) job advertisements in a newspaper. The results of the study imply that the necessity of physics for the advanced study and work was very low compared to the extent to which it was studied. On the other hand, the necessity for mathematics was moderate, and it had remained quite steady during the period 1989? ?2002. The most necessary computer science topic was programming. Also telecommunications and networking was needed often, whereas theoretical computer science was needed quite rarely.

  19. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  20. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  1. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  2. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  3. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  4. LMSC PUBLISHED CONTRIBUTIONS, 1966 IMPRINTS: A CITATION BIBLIOGRAPHY,

    DTIC Science & Technology

    PHYSICS, BIBLIOGRAPHIES), (*AERONAUTICS, BIBLIOGRAPHIES), (*ASTRONAUTICS, BIBLIOGRAPHIES), (* MATERIALS , BIBLIOGRAPHIES), (*ELECTRONICS...BIBLIOGRAPHIES), (*ENGINEERING, BIBLIOGRAPHIES), ASTROPHYSICS, NUCLEAR PHYSICS, MECHANICS, METALLURGY, CERAMIC MATERIALS , SOLID STATE PHYSICS, INFORMATION RETRIEVAL, PROPULSION SYSTEMS, BIONICS, REPORTS

  5. How are learning physics and student beliefs about learning physics connected? Measuring epistemological self-reflection in an introductory course and investigating its relationship to conceptual learning

    NASA Astrophysics Data System (ADS)

    May, David B.

    2002-11-01

    To explore students' epistemological beliefs in a variety of conceptual domains in physics, and in a specific and novel context of measurement, this Dissertation makes use of Weekly Reports, a class assignment in which students reflect in writing on what they learn each week and how they learn it. Reports were assigned to students in the introductory physics course for honors engineering majors at The Ohio State University in two successive years. The Weekly Reports of several students from the first year were analyzed for the kinds of epistemological beliefs exhibited therein, called epistemological self-reflection, and a coding scheme was developed for categorizing and quantifying this reflection. The connection between epistemological self-reflection and conceptual learning in physics seen in a pilot study was replicated in a larger study, in which the coded reflections from the Weekly Reports of thirty students were correlated with their conceptual learning gains. Although the total amount of epistemological self-reflection was not found to be related to conceptual gain, different kinds of epistemological self-reflection were. Describing learning physics concepts in terms of logical reasoning and making personal connections were positively correlated with gains; describing learning from authority figures or by observing phenomena without making inferences were negatively correlated. Linear regression equations were determined in order to quantify the effects on conceptual gain of specific ways of describing learning. In an experimental test of this model, the regression equations and the Weekly Report coding scheme developed from the first year's data were used to predict the conceptual gains of thirty students from the second year. The prediction was unsuccessful, possibly because these students were not given as much feedback on their reflections as were the first-year students. These results show that epistemological beliefs are important factors affecting the conceptual learning of physics students. Also, getting students to reflect meaningfully on their knowledge and learning is difficult and requires consistent feedback. Research into the epistemological beliefs of physics students in different contexts and from different populations can help us develop more complete models of epistemological beliefs, and ultimately improve the conceptual and epistemological knowledge of all students.

  6. Post-16 update

    NASA Astrophysics Data System (ADS)

    1999-11-01

    (Post-16 Initiative) Engineering Physics? Many A-level physics students do not go on to study physics. For them physics is a support subject, either just for fun or just for the grade. Where physics is a lead subject some students go on to study physics but many more go on to study engineering. So can we deliberately give some aspects of an A-level course an engineering flavour? Electromagnetism would seem a good place to start. There is a clear `physics' route into this topic, a microscopic forces and fields view of the situation. But do our students really need to look at it this way? All electromagnetic machines are linked magnetic and electric circuits. The design idea is to link these circuits as closely as possible. The electric circuits must be as good as possible, with a high conductivity. The magnetic circuits must be as good as possible, with high permeance. Conductivity depends on area/length. So does permeance. The goodness of an electromagnetic machine (how good it is at its job, which is linking electric and magnetic circuits) scales as the square of its linear dimensions. That means small electromagnetic machines are harder to make, and so the very smallest nanomotors are electrostatic. None of this is new, but many teachers are uncomfortable with it. We are thinking like physicists. Many of our students are not. They deserve us to take the trouble every now and again to encourage them to think a bit differently about a topic, to look at practical ways of discussing design and to give their course an engineering flavour. Philip Britton Coursework in A-level Physics The criteria for the new AS and A-levels have provided the teams developing the specifications with an opportunity to think creatively about how internal assessment is used within post-16 physics courses. Teachers may be concerned that allowing 30% of the marks to be internally assessed will create a burden for them. However, it is possible to look at this in a much more positive light. Provided the tasks are well defined and the marking criteria are straightforward to apply, internally assessed work provides an opportunity for real positive achievement; students are able to control the task they set themselves, and have every opportunity to maximize their marks. In the past most syllabuses used the coursework simply to assess experimental and investigative skills, through a series of experiments or a practical investigation. Two of the new specifications have taken the opportunity to broaden the scope of coursework. The Edexcel Salters - Horners Advanced Physics AS course includes a report on a visit. Students must make a visit to an establishment where physics is in action, and then report on how physics is used there. The visit may be to a local garage, supermarket or hospital, but could use any other local resource - or indeed justify that trip to CERN. The location of the visit is limited only by the imagination of teachers and students. In the AS course of OCR Advancing Physics students must make a presentation about a material they have studied. The presentation may be a talk, a poster or even a series of web pages. This gives students the opportunity to demonstrate their key skills in communication alongside collecting some marks towards their AS in Physics. In the A2 year students develop their research skills further by producing a research report on a topic of their choice. Students must show how they can draw together ideas from different aspects of physics in discussing their chosen subject. These two developments lead the way in encouraging teachers and examiners to take physics out of the school laboratory and into the world. Mary Whitehouse

  7. Do They Enter the Workforce? Career Choices after an Undergrad Research Experience

    NASA Astrophysics Data System (ADS)

    Greco, S.; Wissel, S.; Zwicker, A.; Ortiz, D.; Dominguez, A.

    2015-11-01

    Students in undergrad research internships go on to grad school at rates of 50-75% (Lopatto, 2007;Russell, 2005). NSF studied its undergrad program and found that 74% of physics interns (67% for engineering) go to grad school. PPPL undergrad interns were tracked for 10 years. Only 3% of physics PhD candidates are studying plasma physics, but 23% of our alumni that entered grad school did so in plasma. AIP reports that 60% of physics majors go to grad school (AIP, 2012), but 95% of PPPL interns have gone on to grad schools. Several programs track enrollment in grad school. AIP compiles statistics of undergrads who enter grad school and PhD students who work in the field. There has been no study of interns that follows the path from undergrad to grad school and then on to employment. Our tracking shows that most not only complete their advanced degrees but also stay in STEM fields following their academic careers. 88% of them become part of the STEM workforce, higher than the 82% of all physics PhDs employed in physics after obtaining their degree (AIP, 2014). PPPL puts more students in grad school in physics, and specifically plasma physics, and a higher percentage of those grad students stay in the STEM workforce.

  8. A Survey of Physical Sciences, Engineering and Mathematics Faculty Regarding Author Fees in Open Access Journals

    ERIC Educational Resources Information Center

    Cusker, Jeremy; Rauh, Anne E.

    2014-01-01

    Discussions of the potential of open access publishing frequently must contend with the skepticism of research authors regarding the need to pay author fees (also known as publication fees). With that in mind, the authors undertook a survey of faculty, postdocs, and graduate students in physical science, mathematics, and engineering fields at two…

  9. What Does the Literature Say about the Persistence of Women with Career Goals in Physical Science, Technology, Engineering, and Mathematics?

    ERIC Educational Resources Information Center

    Kondrick, Linda C.

    The under-representation of women in physical science, technology, engineering, and mathematics (PSTEM) career fields is a persistent problem. This paper summarizes an extensive review of the literature pertaining to the many issues that surround this problem. The review revealed a wide range of viewpoints and a broad spectrum of research…

  10. Converting STEM Doctoral Dissertations into Patent Applications: A Study of Chemistry, Physics, Mathematics, and Chemical Engineering Dissertations from CIC Institutions

    ERIC Educational Resources Information Center

    Butkovich, Nancy J.

    2015-01-01

    Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…

  11. IUPESM: the international umbrella organisation for biomedical engineering and medical physics.

    PubMed

    Nagel, Jh

    2007-07-01

    An account of the development, aims and activities of the International Union for Physical and Engineering Sciences in Medicine (IUPESM) is presented. Associations with the International Council of Science (ICSU) and the World Health Organization (WHO) are leading to exciting new projects towards improving global health, healthcare, quality of life and support of health technologies in developing countries.

  12. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    ERIC Educational Resources Information Center

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  13. Fall 2014 SEI Research Review High Confidence Cyber Physical Systems

    DTIC Science & Technology

    2014-10-28

    2014 Carnegie Mellon University Fall 2014 SEI Research Review High Confidence Cyber Physical Systems Software Engineering Institute Carnegie... Research Review de Niz Oct 28th, 2014 © 2014 Carnegie Mellon University Copyright 2014 Carnegie Mellon University This material is based upon work...Software Engineering Institute, a federally funded research and development center. Any opinions, findings and conclusions or recommendations expressed

  14. Applied Computational Electromagnetics Society Journal. Volume 7, Number 1, Summer 1992

    DTIC Science & Technology

    1992-01-01

    previously-solved computational problem in electrical engineering, physics, or related fields of study. The technical activities promoted by this...in solution technique or in data input/output; identification of new applica- tions for electromagnetics modeling codes and techniques; integration of...papers will represent the computational electromagnetics aspects of research in electrical engineering, physics, or related disciplines. However, papers

  15. Winning the Popularity Contest: Researcher Preference When Selecting Resources for Civil Engineering, Computer Science, Mathematics and Physics Dissertations

    ERIC Educational Resources Information Center

    Dotson, Daniel S.; Franks, Tina P.

    2015-01-01

    More than 53,000 citations from 609 dissertations published at The Ohio State University between 1998-2012 representing four science disciplines--civil engineering, computer science, mathematics and physics--were examined to determine what, if any, preferences or trends exist. This case study seeks to identify whether or not researcher preferences…

  16. 40 CFR 63.11950 - What emissions calculations must I use for an emission profile?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...

  17. 40 CFR 63.11950 - What emissions calculations must I use for an emission profile?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...

  18. 40 CFR 63.11950 - What emissions calculations must I use for an emission profile?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chemical engineering principles, measurable process parameters, or physical or chemical laws or properties... stream. i = Identifier for a HAP compound. (i) Engineering assessments. You must conduct an engineering... drying or empty vessel purging. An engineering assessment may also be used to support a finding that the...

  19. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 2 [Review on morphology and nanostructure characterization of nano-particle emission from internal combustion engines

    DOE PAGES

    Choi, Seungmok; Myung, C. L.; Park, S.

    2014-03-05

    This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less

  20. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.

  1. Nonlinear dynamics as an engine of computation.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2017-03-06

    Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  2. 21 CFR 900.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... radiographic image of a phantom. (ll) Physical science means physics, chemistry, radiation science (including medical physics and health physics), and engineering. (mm) Positive mammogram means a mammogram that has... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MAMMOGRAPHY QUALITY...

  3. Biomedical research, development, and engineering at the Johns Hopkins University Applied Physics Laboratory. Annual report 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less

  4. Poetry for physicists

    NASA Astrophysics Data System (ADS)

    Tobias, Sheila; Abel, Lynne S.

    1990-09-01

    In an effort to discover what makes the humanities difficult and unpopular with some science and engineering students, 14 Cornell faculty from the disciplines of chemistry, physics, applied mathematics, geology, materials science, and engineering were invited to become ``surrogate learners'' in a junior/senior level poetry seminar designed expressly for them. Their encounter with humanistic pedagogy and scholarship was meant to be an extension of ``Peer Perspectives on Science'' [see S. Tobias and R. R. Hake, ``Professors as physics students: What can they teach us?'' Am. J. Phys. 56, 786 (1988)]. The results challenge certain assumptions about differences between scholarship and pedagogy in the humanities and science (as regards ``certainty'' and models). But the experiment uncovered other problems that affect ``marketing'' the humanities to science and engineering students. Results are some additional insights into what makes science ``hard'' for humanities students and why physical science and engineering students have difficulty with and tend to avoid courses in literature, as well as into what can make humanities courses valuable for science students.

  5. Minority Contributions to Science, Engineering, and Medicine.

    ERIC Educational Resources Information Center

    Funches, Peggy; And Others

    Offering an historical perspective on the development of science, engineering, medicine, and technology and providing current role models for minority students, the bulletin lists the outstanding contributions made by: (1) Blacks - medicine, chemistry, architecture, engineering, physics, biology, and exploration; (2) Hispanos - biomedical…

  6. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  7. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  8. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  9. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  10. 40 CFR 65.85 - Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...

  11. 10 CFR Appendix A to Part 725 - Categories of Restricted Data Available

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and radiation studies. b. Chemistry, chemical engineering and radiochemistry of all the elements and their compounds. Included are techniques and processes of chemical separations, radioactive waste..., including chemical engineering, processes and techniques. Reactor physics, engineering and criticality...

  12. Rehabilitation robotics: an academic engineer perspective.

    PubMed

    Krebs, Hermano I

    2011-01-01

    In this paper, we present a retrospective review of our efforts to revolutionize the way physical medicine is practiced by developing and deploying rehabilitation robots. We present a sample of our clinical results with well over 600 stroke patients, both inpatients and outpatients. We discuss the different robots developed at our laboratory over the past 20 years and their unique characteristics. All are configured both to deliver reproducible interactive therapy and also to measure outcomes with minimal encumbrance, thus providing critical measurement tools to help unravel the key remaining question: what constitutes "best practice"? While success to date indicates that this therapeutic application of robots has opened an emerging new frontier in physical medicine and rehabilitation, the barrier to further progress lies not in developing new hardware but rather in finding the most effective way to enhance neuro-recovery. We close this manuscript discussing some of the tools required for advancing the effort beyond the present state to what we believe will be the central feature of research during the next 10 years.

  13. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    NASA Astrophysics Data System (ADS)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-08-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.

  14. A Multivariate Model of Physics Problem Solving

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  15. Experimental Investigation on Thermal Physical Properties of an Advanced Polyester Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Shujie, Yuan; Ruiyuan, Huang; Yongchi, Li

    Polyester materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced polyester material, a series of experiments for thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  16. Utilizing the Scientist as Teacher Through the Initiating New Science Partnerships in Rural Education (INSPIRE) Program

    NASA Astrophysics Data System (ADS)

    Pierce, D.; McNeal, K. S.; Radencic, S.

    2011-12-01

    The presence of a scientist or other STEM expert in secondary school science classroom can provide fresh new ideas for student learning. Through the Initiating New Science Partnerships in Rural Education (INSPIRE) program sponsored by NSF Graduate STEM Fellows in K-12 Education (GK-12), scientists and engineers at Mississippi State University work together with graduate students and area teachers to provide hands-on inquiry-based learning to middle school and high school students. Competitively selected graduate fellows from geosciences, physics, chemistry, and engineering spend ten hours per week in participating classrooms for an entire school year, working as a team with their assigned teacher to provide outstanding instruction in science and mathematics and to serve as positive role models for the students. We are currently in the second year of our five-year program, and we have already made significant achievements in science and mathematics instruction. We successfully hosted GIS Day on the Mississippi State University campus, allowing participating students to design an emergency response to a simulated flooding of the Mississippi Delta. We have also developed new laboratory exercises for high school physics classrooms, including a 3-D electric field mapping exercise, and the complete development of a robotics design course. Many of the activities developed by the fellows and teachers are written into formal lesson plans that are made publicly available as free downloads through our project website. All participants in this program channel aspects of their research interests and methods into classroom learning, thus providing students with the real-world applications of STEM principles. In return, participants enhance their own communication and scientific inquiry skills by employing lesson design techniques that are similar to defining their own research questions.

  17. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A

    2011-09-01

    Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health effects studies of pre-2007 DE likely have little relevance in assessing the potential health risks of NTDE exposures.

  18. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.

  19. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  20. 76 FR 37158 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Presidential Awards for Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM) program. In 2003... representative scientific or engineering organization.'' On the basis of these recommendations, the Committee was... individual's work on the current state of physical, biological, mathematical, engineering or social and...

Top