Sample records for year rotation period

  1. THE COLOR-PERIOD DIAGRAM AND STELLAR ROTATIONAL EVOLUTION-NEW ROTATION PERIOD MEASUREMENTS IN THE OPEN CLUSTER M34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meibom, Soeren; Saar, Steven H.; Mathieu, Robert D.

    2011-06-01

    We present the results of a 5 month photometric time-series survey for stellar rotation periods combined with a 4 year radial-velocity survey for membership and binarity in the 220 Myr open cluster M34. We report surface rotation periods for 120 stars, 83 of which are kinematic and photometric late-type cluster members. A comparison to previous work serves to illustrate the importance of high-cadence long baseline photometric observations and membership information. The new M34 periods are less biased against slow rotation and cleaned for non-members. The rotation periods of the cluster members span over more than an order of magnitude frommore » 0.5 days up to 11.5 days, and trace two distinct rotational sequences-fast (C) and moderate-to-slow (I)-in the color-period diagram. The sequences represent two different states (fast and slow) in the rotational evolution of the late-type cluster members. We use the color-period diagrams for M34 and for younger and older clusters to estimate the timescale for the transition from the C to the I sequence and find {approx}<150 Myr, {approx}150-300 Myr, and {approx}300-600 Myr for G, early-mid K, and late K dwarfs, respectively. The small number of stars in the gap between C and I suggests a quick transition. We estimate a lower limit on the maximum spin-down rate (dP/dt) during this transition to be {approx}0.06 days Myr{sup -1} and {approx}0.08 days Myr{sup -1} for early and late K dwarfs, respectively. We compare the I sequence rotation periods in M34 and the Hyades for G and K dwarfs and find that K dwarfs spin down slower than the Skumanich {radical}t rate. We determine a gyrochronology age of 240 Myr for M34. The gyro-age has a small formal uncertainty of 2% which reflects the tight I sequence in the M34 color-period diagram. We measure the effect of cluster age uncertainties on the gyrochronology age for M34 and find the resulting error on the gyro-age to be consistent with the {approx}15% error estimate for the

  2. Rotation periods and photometric variability of rapidly rotating ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Miles-Páez, P. A.; Pallé, E.; Zapatero Osorio, M. R.

    2017-12-01

    We used the optical and near-infrared imagers located on the Liverpool, the IAC80, and the William Herschel telescopes to monitor 18 M7-L9.5 dwarfs with the objective of measuring their rotation periods. We achieved accuracies typically in the range ±1.5-28 mmag by means of differential photometry, which allowed us to detect photometric variability at the 2σ level in the 50 per cent of the sample. We also detected periodic modulation with periods in the interval 1.5-4.4 h in 9 out of 18 dwarfs that we attribute to rotation. Our variability detections were combined with data from the literature; we found that 65 ± 18 per cent of M7-L3.5 dwarfs with v sin i ≥ 30 km s-1 exhibit photometric variability with typical amplitudes ≤20 mmag in the I band. For those targets and field ultracool dwarfs with measurements of v sin i and rotation period we derived the expected inclination angle of their rotation axis, and found that those with v sin i ≥ 30 km s-1 are more likely to have inclinations ≳40 deg. In addition, we used these rotation periods and others from the literature to study the likely relationship between rotation and linear polarization in dusty ultracool dwarfs. We found a correlation between short rotation periods and large values of linear polarization at optical and near-infrared wavelengths.

  3. Rotation Periods of Open Cluster Stars. IV.

    NASA Astrophysics Data System (ADS)

    Prosser, Charles F.; Grankin, Konstantin N.

    We present the results from a photometric monitoring program of primarily solar-type open cluster stars obtained during 1994 and 1995. Several members of the α Persei cluster have been monitored and the corresponding relation between coronal x-ray activity and rotation period derived. The relation among mid-G/K type members illustrates both the previously noticed downturn in L_X/L_bol at high rotation rates and the sharp decrease in coronal activity at long rotation periods as seen among Pleiades stars. Intensive observation of one slowly rotating G-type member of IC 4665 has enabled a period determination of 8-10 days to be made and illustrates the need for (and limitations of) high quality observations.

  4. On the Stability of Periodic Mercury-type Rotations

    NASA Astrophysics Data System (ADS)

    Churkina, Tatyana E.; Stepanov, Sergey Y.

    2017-12-01

    We consider the stability of planar periodic Mercury-type rotations of a rigid body around its center of mass in an elliptical orbit in a central Newtonian field of forces. Mercurytype rotations mean that the body makes 3 turns around its center of mass during 2 revolutions of the center of mass in its orbit (resonance 3:2). These rotations can be 1) symmetrical 2π- periodic, 2) symmetrical 4π-periodic and 3) asymmetrical 4π-periodic. The stability of rotations of type 1) was investigated by A.P.Markeev. In our paper we present a nonlinear stability analysis for some rotations of types 2) and 3) in 3rd- and 4th-order resonant cases, in the nonresonant case and at the boundaries of regions of linear stability.

  5. Inferring probabilistic stellar rotation periods using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh

    2018-02-01

    Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.

  6. Magnetic cycles and rotation periods of late-type stars from photometric time series

    NASA Astrophysics Data System (ADS)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  7. Rotation periods of open-cluster stars, 3

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Shetrone, Matthew D.; Dasgupta, Amil; Backman, Dana E.; Laaksonen, Bentley D.; Baker, Shawn W.; Marschall, Laurence A.; Whitney, Barbara A.; Kuijken, Konrad; Stauffer, John R.

    1995-01-01

    We present the results from a photometric monitoring program of 15 open cluster stars and one weak-lined T Tauri star during late 1993/early 1994. Several show rotators which are members of the Alpha Persei, Pleiades, and Hyades open clusters have been monitored and period estimates derived. Using all available Pleiades stars with photometric periods together with current X-ray flux measurements, we illustrate the X-ray activity/rotation relation among Pleiades late-G/K dwarfs. The data show a clear break in the rotation-activity relation around P approximately 6-7 days -- in general accordance with previous results using more heterogeneous samples of G/K stars.

  8. Rotation periods of open-cluster stars, 2

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Shetrone, Matthew D.; Marilli, Ettore; Catalano, Santo; Williams, Scott D.; Backman, Dana E.; Laaksonen, Bentley D.; Adige, Vikram; Marschall, Laurence A.; Stauffer, John R.

    1993-01-01

    We present the results from a photometric monitoring program of 21 stars observed during 1992 in the Pleiades and Alpha Persei open clusters. Period determinations for 16 stars are given, 13 of which are the first periods reported for these stars. Brightness variations for an additional five cluster stars are also given. One K dwarf member of the alpha Per cluster is observed to have a period of rotation of only 4.39 hr. perhaps the shortest period currently known among BY Draconis variables. The individual photometric measurements have been deposited with the NSSDC. Combining current X-ray flux determinations with known photometric periods, we illustrate the X-ray activity/rotation relation among Pleiades K dwarfs based on available data.

  9. Periodic motion near non-principal-axis rotation asteroids

    NASA Astrophysics Data System (ADS)

    Shang, Haibin; Wu, Xiaoyu; Qin, Xiao; Qiao, Dong

    2017-11-01

    The periodic motion near non-principal-axis (NPA) rotation asteroids is proved to be markedly different from that near uniformly rotating bodies due to the complex spin state with precession, raising challenges in terms of the theoretical implications of dynamical systems. This paper investigates the various periodic motions near the typical NPA asteroid 4179 Toutatis, which will contribute to the understanding of the dynamical environments near the widespread asteroids in the Solar system. A novel method with the incorporation of the ellipsoid-mascon gravitational field model and global optimization is developed to efficiently locate periodic solutions in the system. The numerical results indicate that abundant periodic orbits appear near the NPA asteroids. These various orbits are theoretically classified into five topological types with special attention paid to the cycle stability. Although the concept of classical family disappears in our results, some orbits with the same topological structure constitute various generalized `families' as the period increases. Among these `families' a total of 4 kinds of relationships between orbits, including rotation, evolution, distortion and quasi-symmetry, are found to construct the global mapping of these types. To cover the rotation statuses of various NPA asteroids, this paper also discusses the variation of periodic orbits with diverse asteroid spin rates, showing that the scales of some orbits expand, shrink or almost annihilate as the system period changes; meanwhile, their morphology and topology remain unchanged.

  10. Rotational periods and other parameters of magnetars

    NASA Astrophysics Data System (ADS)

    Malov, I. F.

    2006-05-01

    The rotational periods P, period derivatives dP/dt, and magnetic fields B in the region where the emission of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) is generated are calculated using a model that associates the emission of these objects with the existence of drift waves at the periphery of the magnetosphere of a neutron star. The values obtained for these parameters are P = 11-737 ms, dP/dt = 3.7 × 10-16-5.5 × 10-12, and log B (G) = 2.63-6.25. We find a dependence between the X-ray luminosity of AXPs and SGRs, L x, and the rate at which they lose rotational energy, dE/dt, which is similar to the L x(dE/dt) dependence for radio pulsars with detected X-ray emission. Within the errors, AXPs/SGRs and radio pulsars with short periods (P < 0.1 s) display the same slopes for their log(dP/dt)-log P relations and for the dependence of the efficiency of their transformation of rotational energy into radiation on their periods. A dipole model is used to calculate the surface magnetic fields of the neutron stars in AXPs and SGRs, which turn out to be, on average, comparable to the surface fields of normal radio pulsars ( = 11.90).

  11. Limiting rotational period of neutron stars

    NASA Astrophysics Data System (ADS)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  12. Rotation Periods and Photometric Amplitudes for Cool Stars with TESS

    NASA Astrophysics Data System (ADS)

    Andrews, Hannah; Dominguez, Zechariah; Johnson, Sara; Buzasi, Derek L.

    2018-06-01

    The original Kepler mission observed 200000 stars in the same field nearly continuously for over four years, generating an unparalleled set of stellar rotation curves and new insights into the correlation between rotation periods and photometric variability on the lower main sequence. The continuation of Kepler in the guise of K2 has allowed us to examine a stellar sample comparable in size to that observed with Kepler, but drawn from new stellar populations. However, K2 observed each field for at most three months, limiting the inferences that can be drawn, particularly for older, slower-rotating stars. The upcoming TESS spacecraft will provide light curves for perhaps two orders of magnitude more stars, but with time windows as short as 27 days. In this work, we resample Kepler light curves using the TESS observing window, and study what can be learned from high-precision light curves of such short lengths, and how to compare those results to what we have learned from Kepler.

  13. Monitoring of rotational period variations in magnetic chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.

    2016-12-01

    A majority part of magnetic chemically peculiar (mCP) stars of the upper main sequence exhibits strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by the model of a rigidly rotating main-sequence star with persistent surface structures and stable global magnetic field frozen into the body of the star. Nevertheless, there is an inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades, while the shapes of their phase curves remain nearly unchanged. Alternations in the rotational period variations, proven in the case of some of them, offer new insight on this theoretically unpredicted phenomenon. We present a novel and generally applicable method of period analysis based on the simultaneous exploitation of all available observational data containing phase information. This phenomenological method can monitor gradual changes in the observed instantaneous period very efficiently and reliably. We present up to date results of the period monitoring of V901 Ori, CU Vir, σ Ori E, and BS Cir, known to be mCP stars changing their observed periods and discuss the physics of this unusual behaviour. To compare the period behavior of those stars, we treated their data with an orthogonal polynomial model, which was specifically developed for this purpose. We confirmed period variations in all stars and showed that they reflect real changes in the angular velocity of outer layers of the stars, fastened by their global magnetic fields. However, the nature of the observed rotational instabilities has remained elusive up to now. The discussed group of mCP stars is inhomogeneous to such extent that each of the stars may experience a different cause for its period variations.

  14. THE ROTATION PERIOD OF C/2014 Q2 (LOVEJOY)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra-Ricart, Miquel; Licandro, Javier, E-mail: mserra@iac.es, E-mail: jlicandr@iac.es

    2015-11-20

    C/2014 Q2 (Lovejoy) was observed around perihelion (2015 January 30) on 15 nights between 2015 January 21 and February 11 using the TADer 0.3-m astrograph telescope at Teide Observatory (IAC, Tenerife, Spain). Two large spiral jet structures were observed over several cometary rotations. A new method of searching for periodicities in the PA of spiral jets in the coma region at a fixed distance (20,624 km) from the cometary optocenter is presented and used to determine a nuclear rotation period of 17.89 ± 0.17 hr.

  15. The importance of planetary rotation period for ocean heat transport.

    PubMed

    Cullum, J; Stevens, D; Joshi, M

    2014-08-01

    The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.

  16. Periodicity Signatures of Lightcurves of Active Comets in Non-Principal-Axis Rotational States

    NASA Astrophysics Data System (ADS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Barrera, Jose G.

    2016-10-01

    There are two comets (1P/Halley, 103P/Hartley 2) that are unambiguously in non-principal-axis (NPA) rotational states in addition to a few more comets that are candidates for NPA rotation. Considering this fact, and the ambiguities associated with how to accurately interpret the periodicity signatures seen in lightcurves of active comets, we have started an investigation to identify and characterize the periodicity signatures present in simulated lightcurves of active comets. We carried out aperture photometry of simulated cometary comae to generate model lightcurves and analyzed them with Fourier techniques to identify their periodicity signatures. These signatures were then compared with the input component periods of the respective NPA rotational states facilitating the identification of how these periodicity signatures are related to different component periods of the NPA rotation. Ultimately, we also expect this study to shed light on why only a small fraction of periodic comets is in NPA rotational states, whereas theory indicates a large fraction of them should be in NPA states (e.g., Jewitt 1999, EMP, 79, 35). We explore the parameter space with respect to different rotational states, different orientations for the total rotational angular momentum vector, and different locations on the nucleus for the source region(s). As for special cases, we also investigate potential NPA rotational states representative of comet 103P/Hartley2, the cometary target of the EPOXI mission. The initial results from our investigation will be presented at the meeting. The NASA DDAP Program supports this work through grant NNX15AL66G.

  17. The Importance of Planetary Rotation Period for Ocean Heat Transport

    PubMed Central

    Stevens, D.; Joshi, M.

    2014-01-01

    Abstract The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier—the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability. Key Words: Exoplanet—Oceans—Rotation—Climate—Habitability. Astrobiology 14, 645–650. PMID:25041658

  18. On fast X-ray rotators with long-term periodicities

    NASA Technical Reports Server (NTRS)

    Naranan, S.; Elsner, R. F.; Darbro, W.; Ramsey, B. D.; Leahy, D. A.; Weisskopf, M. C.; Williams, A. C.; Hardee, P. E.; Sutherland, P. G.; Grindlay, J. E.

    1985-01-01

    The support of previous SAS 3 spacecraft observations by new data gathered by the Monitor Proportional Counter aboard the HEAO 2 spacecraft indicates that the pulse period history of the 13.5 sec-pulsing X-ray source LMC X-4 is consistent with standard accretion and torque models only if LMC X-4 is a fast rotator for which the accretion torques nearly cancel. This result leads to a neutron star magnetic field strength estimate of about 1.2 x 10 to the 13th G. Strong evidence is noted for Her X-1's status as a fast rotator, while SMC X-1 is probably an intermediate-to-fast rotator. In the context of slaved disk models for these objects, it is noted that the precession periods expected for the companion stars are significantly longer than the observed 1-2 month time scales; slaved disk models are thereby undermined.

  19. Rotation Period Determination for 5143 Heracles

    NASA Astrophysics Data System (ADS)

    Pilcher, Frederick; Briggs, John W.; Franco, Lorenzo; Inasaridze, Raguli Ya.; Krugly, Yurij N.; Molotiv, Igor E.; Klinglesmith, Daniel A., III; Pollock, Joe; Pravec, Petr

    2012-07-01

    The Earth crossing minor planet 5143 Heracles made in late 2011 its closest approach to Earth since discovery. A consortium of observers found a synodic rotation period near 2.706 hours and amplitude increasing from 0.08 ±0.02 magnitudes at phase angle 20 degrees to 0.18 ±0.03 magnitudes at phase angle 87 degrees, with 3 unequal maxima and minima per cycle. Magnitude parameters H = 14.10 ±0.04 and G = 0.08 ±0.02 are found, and the color index V-R = 0.42 ±0.07. For an asteroid of taxonomic class Q, a suggested albedo pv = 0.20 ±0.05 yields estimated diameter D = 4.5 ±0.7 km. Three possible binary events were recorded, but these are insufficient for binary detection to be secure. Retrograde rotation is suggested.

  20. Rotational Period Determination for 12 Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Monteiro, Filipe; Arcoverde, Plicida; Medeiros, Hissa; Rondon, Eduardo; Souza, Roberto; Rodrigues, Tersinha; Lazzaro, Daniela

    2018-07-01

    Rotational periods for 12 near-Earth asteroids (NEAs) were determined from lightcurves acquired at the Observatório Astronômico do Sertão de Itaparica (MPC Y28, OASI) between May 2016 and 2017 August.

  1. Rotation periods for nearby, mid-to-late M dwarfs estimated from the MEarth Project

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berta-Thompson, Zachory K.; Dittmann, Jason

    2015-01-01

    Knowledge of M dwarfs' rotation is essential to understanding the generation of their magnetic fields and the mechanism by which they lose angular momentum. It is also important for characterizing the environment of planets that might orbit them. The most direct way to infer rotation periods is from variations in stars' brightnesses as dark spots rotate in and out of view. Most rotation periods estimated prior to this decade are the result of dedicated photometric studies. If care is taken to preserve astrophysical variability and limit systematics, transiting planet surveys generate the high-cadence monitoring required to estimate stellar rotation periods. While targeted surveys of clusters have provided data at young ages, observations of field M dwarfs are required to constrain their late-term evolution. Rotation periods of the smallest stars are also needed: the Kepler mission produced exquisite light curves of several thousand cool dwarfs, but field stars below 0.3 solar masses are not well-represented in the sample. The MEarth Project is a transiting planet survey targeting mid-to-late M dwarfs within 33 parsecs; it provides a unique data set for exploring rotation in a large sample of fully convective stars. We present a catalog of rotation periods for these stars. Our measurements are particularly useful because many of the MEarth targets have parallaxes, multi-wavelength photometry, and optical and near-infrared spectra. We present our methods for estimating rotation periods and quantifying our uncertainties, and discuss our results in the context of other surveys.The MEarth project gratefully acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grants AST-0807690, AST-1109468, and AST-1004488, and the John Templeton Foundation

  2. Rotation Period Determination for 2079 Jacchia and 3394 Banno

    NASA Astrophysics Data System (ADS)

    Marchini, Alessndro; Bucalo, Edoardo; Cocchiarella, Denise; Nardi, Bianca; Papini, Riccardo; Salvaggio, Fabio

    2018-07-01

    Photometric observations of two main-belt asteroids were conducted from the Astronomical Observatory of the University of Siena (Italy) in order to determine their synodic rotation periods. For 2079 Jacchia we found a period of 5.941 ± 0.001 h with an amplitude of 0.64 ± 0.02 mag, for 3394 Banno we found a period of 7.324 ± 0.001 h with an amplitude of 0.22 ± 0.02 mag.

  3. 313 new asteroid rotation periods from Palomar Transient Factory observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chan-Kao; Ip, Wing-Huen; Lin, Hsing-Wen

    2014-06-10

    A new asteroid rotation period survey has been carried out by using the Palomar Transient Factory (PTF). Twelve consecutive PTF fields, which covered an area of 87 deg{sup 2} in the ecliptic plane, were observed in the R band with a cadence of ∼20 minutes during 2013 February 15-18. We detected 2500 known asteroids with a diameter range of 0.5 km ≤D ≤ 200 km. Of these, 313 objects had highly reliable rotation periods and exhibited the 'spin barrier' at ∼2 hr. In contrast to the flat spin-rate distribution of the asteroids with 3 km ≤D ≤ 15 km shownmore » by Pravec et al., our results deviated somewhat from a Maxwellian distribution and showed a decrease at the spin rate greater than 5 rev day{sup –1}. One superfast rotator candidate and two possible binary asteroids were also found in this work.« less

  4. ROTATION PERIODS OF YOUNG BROWN DWARFS: K2 SURVEY IN UPPER SCORPIUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, Alexander; Kostov, Veselin; Jayawardhana, Ray

    2015-08-20

    We report rotational periods for 16 young brown dwarfs in the nearby Upper Scorpius association, based on 72 days of high-cadence, high-precision photometry from the Keplerspace telescope’s K2 mission. The periods range from a few hours to two days (plus one outlier at five days), with a median just above one day, confirming that brown dwarfs, except at the very youngest ages, are fast rotators. Interestingly, four of the slowest rotators in our sample exhibit mid-infrared excess emission from disks; at least two also show signs of disk eclipses and accretion in the light curves. Comparing these new periods withmore » those for two other young clusters and simple angular momentum evolution tracks, we find little or no rotational braking in brown dwarfs between 1–10 Myr, in contrast to low-mass stars. Our findings show that disk braking, while still at work, is inefficient in the substellar regime, thus providing an important constraint on the mass dependence of the braking mechanism.« less

  5. The Rotation Period and Magnetic Field of the T Dwarf 2MASSI J1047539+212423 Measured from Periodic Radio Bursts

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Berger, E.

    2015-08-01

    Periodic radio bursts from very low mass stars and brown dwarfs simultaneously probe their magnetic and rotational properties. The brown dwarf 2MASSI J1047539+212423 (2M 1047+21) is currently the only T dwarf (T6.5) detected at radio wavelengths. Previous observations of this source with the Arecibo observatory revealed intermittent, 100%-polarized radio pulses similar to those detected from other brown dwarfs, but were unable to constrain a pulse periodicity; previous Very Large Array (VLA) observations detected quiescent emission a factor of ∼100 times fainter than the Arecibo pulses but no additional events. Here we present 14 hr of VLA observations of this object that reveal a series of pulses at ∼6 GHz with highly variable profiles, showing that the pulsing behavior evolves on time scales that are both long and short compared to the rotation period. We measure a periodicity of ∼1.77 hr and identify it with the rotation period. This is just the sixth rotation period measurement in a late T dwarf, and the first obtained in the radio. We detect a pulse at 10 GHz as well, suggesting that the magnetic field strength of 2 M 1047+21 reaches at least 3.6 kG. Although this object is the coolest and most rapidly rotating radio-detected brown dwarf to date, its properties appear continuous with those of other such objects, suggesting that the generation of strong magnetic fields and radio emission may continue to even cooler objects. Further studies of this kind will help to clarify the relationships between mass, age, rotation, and magnetic activity at and beyond the end of the main sequence, where both theories and observational data are currently scarce.

  6. Stellar rotation periods determined from simultaneously measured Ca II H&K and Ca II IRT lines

    NASA Astrophysics Data System (ADS)

    Mittag, M.; Hempelmann, A.; Schmitt, J. H. M. M.; Fuhrmeister, B.; González-Pérez, J. N.; Schröder, K.-P.

    2017-11-01

    Aims: Previous studies have shown that, for late-type stars, activity indicators derived from the Ca II infrared-triplet (IRT) lines are correlated with the indicators derived from the Ca II H&K lines. Therefore, the Ca II IRT lines are in principle usable for activity studies, but they may be less sensitive when measuring the rotation period. Our goal is to determine whether the Ca II IRT lines are sufficiently sensitive to measure rotation periods and how any Ca II IRT derived rotation periods compare with periods derived from the "classical" Mount Wilson S-index. Methods: To analyse the Ca II IRT lines' sensitivity and to measure rotation periods, we define an activity index for each of the Ca II IRT lines similar to the Mount Wilson S-index and perform a period analysis for the lines separately and jointly. Results: For eleven late-type stars we can measure the rotation periods using the Ca II IRT indices similar to those found in the Mount Wilson S-index time series and find that a period derived from all four indices gives the most probable rotation period; we find good agreement for stars with already existing literature values. In a few cases the computed periodograms show a complicated structure with multiple peaks, meaning that formally different periods are derived in different indices. We show that in one case, this is due to data sampling effects and argue that denser cadence sampling is necessary to provide credible evidence for differential rotation. However, our TIGRE data for HD 101501 shows good evidence for the presence of differential rotation.

  7. Rotation Period of Blanco 1 Members from KELT Light Curves: Comparing Rotation-Ages to Various Stellar Chronometers at 100 Myr

    NASA Astrophysics Data System (ADS)

    Cargile, Phillip; James, D. J.; Pepper, J.; Kuhn, R.; Siverd, R. J.; Stassun, K. G.

    2012-01-01

    The age of a star is one of its most fundamental properties, and yet tragically it is also the one property that is not directly measurable in observations. We must therefore rely on age estimates based on mostly model-dependent or empirical methods. Moreover, there remains a critical need for direct comparison of different age-dating techniques using the same stars analyzed in a consistent fashion. One chronometer commonly being employed is using stellar rotation rates to measure stellar ages, i.e., gyrochronology. Although this technique is one of the better-understood chronometers, its calibration relies heavily on the solar datum, as well as benchmark open clusters with reliable ages, and also lacks a comprehensive comparative analysis to other stellar chronometers. The age of the nearby (? pc) open cluster Blanco 1 has been estimated using various techniques, including being one of only 7 clusters with an LDB age measurement, making it a unique and powerful comparative laboratory for stellar chronometry, including gyrochronology. Here, we present preliminary results from our light-curve analysis of solar-type stars in Blanco 1 in order to identify and measure rotation periods of cluster members. The light-curve data were obtained during the engineering and calibration phase of the KELT-South survey. The large area on the sky and low number of contaminating field stars makes Blanco 1 an ideal target for the extremely wide field and large pixel scale of the KELT telescope. We apply a period-finding technique using the Lomb-Scargle periodogram and FAP statistics to measure significant rotation periods in the KELT-South light curves for confirmed Blanco 1 members. These new rotation periods allow us to test and inform rotation evolution models for stellar ages at ? Myr, determining a rotation-age for Blanco 1 using gyrochronology, and compare this rotation-age to other age measurements for this cluster.

  8. Lightcurve Analysis and Rotation Period Determination for Asteroids 1491 Balduinus and 2603 Taylor

    NASA Astrophysics Data System (ADS)

    Odden, Caroline E.; Cohen, Adam J.; Davis, Spencer; Eldracher, Emelie A.; Fitzgerald, Zachary T.; Jiang, Derek C.; Kozol, Eliana L.; Laurencin, Victoria L.; Meyer-Idzik, Benjamin D.; Pennington, Oliver; Philip, Reuben C.; Sanchez, Emily J.; Warren, Natalie J.; Klinglesmith, Daniel A.; Briggs, John W.

    2018-07-01

    Photometric observations of asteroids 1491 Balduinus and 2603 Taylor were made from 2017 December to 2018 February. 1491 Balduinus was found to have a rotational period 15.315 ± 0.003 h with amplitude 0.40 mag; 2603 Taylor was found to have rotational period 3.905 ± 0.001 h with amplitude 0.27 mag.

  9. Interaction of Saturn's dual rotation periods

    NASA Astrophysics Data System (ADS)

    Smith, C. G. A.

    2018-03-01

    We develop models of the interaction of Rossby wave disturbances in the northern and southern ionospheres of Saturn. We show that interhemispheric field-aligned currents allow the exchange of vorticity, modifying the background Rossby wave propagation speed. This leads to interaction of the northern and southern Rossby wave periods. In a very simple symmetric model without a plasma disk the periods merge when the overall conductivity is sufficiently high. A more complex model taking account of the inertia of the plasma disk and the asymmetry of the two hemispheres predicts a rich variety of possible wave modes. We find that merging of the northern and southern periods can only occur when (i) the conductivities of both hemispheres are sufficiently low (a criterion that is fulfilled for realistic parameters) and (ii) the background Rossby wave periods in the two hemispheres are identical. We reconcile the second criterion with the observations of a merged period that also drifts by noting that ranges of Rossby wave propagation speeds are possible in each hemisphere. We suggest that a merged disturbance in the plasma disk may act as an 'anchor' and drive Rossby waves in each hemisphere within the range of possible propagation speeds. This suggestion predicts behaviour that qualitatively matches the observed merging and splitting of the northern and southern rotation periods that occurred in 2013 and 2014. Low conductivity modes also show long damping timescales that are consistent with the persistence of the periodic signals.

  10. Lightcurve and Rotation Period for Minor Planet 2504 Gaviola

    NASA Astrophysics Data System (ADS)

    Hayes-Gehrke, Melissa; Linko, David; Bhasin, Raghav; Johnson, James; Bermudez, Brian; Fedorenko, Iryna; Tillis, Katie; Vilar, Nicole

    2017-10-01

    CCD photometric observations using iTelescope T21 of asteroid 2504 Gaviola were made in April 2017. A rotation period of 8.751 ± 0.003 h and lightcurve amplitude of 0.31 mag was determined from two nights of observations.

  11. A Quick Test on Rotation Period Clustering for the Small Members of the Koronis Family

    NASA Astrophysics Data System (ADS)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen

    2016-01-01

    Rotation period clustering in prograde/retrograde rotators might be the preliminary indication of the Slivan state in the Koronis family as a result of the Yarkovsky-O’Keefe-Radzievskii-Paddack effect. We follow the general scenario of dispersion in the semimajor axis of the asteroid family members to separate prograde and retrograde rotators in the Koronis family. From the available rotation periods obtained from PTF/iPTF, we were unable to find the rotation period clustering of objects with H ≳ 12 mag in the Koronis family. This could be the result of the intermittent collisional process of small asteroids (D ≲ 20 km) which leads to astray Yarkovsky drifting. Measurement of the pole orientations of our sample will verify our preliminary result and validate our method.

  12. Using Machine Learning To Predict Which Light Curves Will Yield Stellar Rotation Periods

    NASA Astrophysics Data System (ADS)

    Agüeros, Marcel; Teachey, Alexander

    2018-01-01

    Using time-domain photometry to reliably measure a solar-type star's rotation period requires that its light curve have a number of favorable characteristics. The probability of recovering a period will be a non-linear function of these light curve features, which are either astrophysical in nature or set by the observations. We employ standard machine learning algorithms (artificial neural networks and random forests) to predict whether a given light curve will produce a robust rotation period measurement from its Lomb-Scargle periodogram. The algorithms are trained and validated using salient statistics extracted from both simulated light curves and their corresponding periodograms, and we apply these classifiers to the most recent Intermediate Palomar Transient Factory (iPTF) data release. With this pipeline, we anticipate measuring rotation periods for a significant fraction of the ∼4x108 stars in the iPTF footprint.

  13. Minimum Period of Rotation of Millisecond Pulsars and Pulsar Matter Equations of State

    NASA Astrophysics Data System (ADS)

    Mikheev, Sergey; Tsvetkov, Victor

    2018-02-01

    Based on the findings of our previous studies of fast-rotating Newtonian polytropes, we found the relation between the minimum pulsar rotation period, the value of pulsar central density, and the polytropic index. From this relation we come to the conclusion that the value of minimum central density of a pulsar with a peak period is 2.5088 • 1014 g/cm3.

  14. Retear rate in the late postoperative period after arthroscopic rotator cuff repair.

    PubMed

    Kim, Jae Hwa; Hong, In Tae; Ryu, Keun Jung; Bong, Sun Tae; Lee, Yoon Seok; Kim, Jang Hwan

    2014-11-01

    Few clinical studies have evaluated the integrity of repaired tendons and identified the timing of retears through the use of serial imaging. Retears after arthroscopic rotator cuff repair are uncommon in the late postoperative period (after 3 months). Case series; Level of evidence, 4. Among 221 arthroscopic rotator cuff repairs that were performed at a single hospital between May 2010 and February 2012, 61 were involved in this study. Rotator cuff tears consisted of 12 small, 31 medium, 8 large, and 6 massive rotator cuff tears. Additionally, 4 isolated subscapularis tears were included. For clinical evaluation, all patients were assessed both preoperatively and postoperatively by use of the University of California-Los Angeles Shoulder Rating Scale, absolute and relative Constant scores, and American Shoulder and Elbow Surgeons score; active range of motion was assessed as well. For radiological evaluation, all 61 patients had a magnetic resonance imaging (MRI) evaluation at 3 months postoperatively. Among them, 23 patients were evaluated for repaired tendon integrity on postoperative MRI at a minimum of 1 year after surgery (mean, 14.1 months; range, 12-19 months), and results were classified according to the Sugaya classification: type I, sufficient thickness with homogeneously low intensity on each image; type II, sufficient thickness, partial high-intensity area; type III, less than half the thickness without discontinuity; type IV, minor discontinuity; and type V, major discontinuity. The remaining 38 patients, who refused to undergo MRI again for financial reasons, were evaluated through ultrasound. Statistically significant clinical improvements were observed after surgery. The MRI conducted at 3 months postoperatively identified 9 patients with Sugaya type I, 28 patients with type II, and 24 patients with type III repairs. No patients showed Sugaya type IV or V repairs at postoperative 3 months. Thirty-seven patients who had shown Sugaya type I or II

  15. Budgets of divergent and rotational kinetic energy during two periods of intense convection

    NASA Technical Reports Server (NTRS)

    Buechler, D. E.; Fuelberg, H. E.

    1986-01-01

    The derivations of the energy budget equations for divergent and rotational components of kinetic energy are provided. The intense convection periods studied are: (1) synoptic scale data of 3 or 6 hour intervals and (2) mesoalphascale data every 3 hours. Composite energies and averaged budgets for the periods are presented; the effects of random data errors on derived energy parameters is investigated. The divergent kinetic energy and rotational kinetic energy budgets are compared; good correlation of the data is observed. The kinetic energies and budget terms increase with convective development; however, the conversion of the divergent and rotational energies are opposite.

  16. K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S. T.; Agüeros, M. A.; Covey, K. R.

    2016-05-01

    As the closest open cluster to the Sun, the Hyades is an important benchmark for many stellar properties, but its members are also scattered widely over the sky. Previous studies of stellar rotation in the Hyades relied on targeted observations of single stars or data from shallower all-sky variability surveys. The re-purposed Kepler mission, K2 , is the first opportunity to measure rotation periods ( P {sub rot}) for many Hyads simultaneously while also being sensitive to fully convective M dwarf members. We analyze K2 data for 65 Hyads and present P {sub rot} values for 48. Thirty-seven of thesemore » are new measurements, including the first P {sub rot} measurements for fully convective Hyads. For 9 of the 11 stars with P {sub rot} in the literature and this work, the measurements are consistent; we attribute the two discrepant cases to spot evolution. Nearly all stars with masses ≲0.3 M {sub ⊙} are rapidly rotating, indicating a change in rotation properties at the boundary to full convection. When confirmed and candidate binaries are removed from the mass–period plane, only three rapid rotators with masses ≳0.3 M {sub ⊙} remain. This is in contrast to previous results showing that the single-valued mass–period sequence for ≈600 Myr old stars ends at ≈0.65 M {sub ⊙} when binaries are included. We also find that models of rotational evolution predict faster rotation than is actually observed at ≈600 Myr for stars ≲0.9 M {sub ⊙}. The dearth of single rapid rotators more massive than ≈0.3 M {sub ⊙} indicates that magnetic braking is more efficient than previously thought, and that age–rotation studies must account for multiplicity.« less

  17. The β Pictoris association low-mass members: Membership assessment, rotation period distribution, and dependence on multiplicity

    NASA Astrophysics Data System (ADS)

    Messina, S.; Lanzafame, A. C.; Malo, L.; Desidera, S.; Buccino, A.; Zhang, L.; Artemenko, S.; Millward, M.; Hambsch, F.-J.

    2017-10-01

    Context. Low-mass members of young loose stellar associations and open clusters exhibit a wide spread of rotation periods. Such a spread originates from the distributions of masses and initial rotation periods. However, multiplicity can also play a significant role. Aims: We aim to investigate the role played by physical companions in multiple systems in shortening the primordial disk lifetime, anticipating the rotation spin up with respect to single stars. Methods: We have compiled the most extensive list to date of low-mass bona fide and candidate members of the young 25-Myr β Pictoris association. We have measured from our own photometric time series or from archival time series the rotation periods of almost all members. In a few cases the rotation periods were retrieved from the literature. We used updated UVWXYZ components to assess the membership of the whole stellar sample. Thanks to the known basic properties of most members we built the rotation period distribution distinguishing between bona fide members and candidate members and according to their multiplicity status. Results: We find that single stars and components of multiple systems in wide orbits (>80 AU) have rotation periods that exhibit a well defined sequence arising from mass distribution with some level of spread likely arising from initial rotation period distribution. All components of multiple systems in close orbits (<80 AU) have rotation periods that are significantly shorter than their equal-mass single counterparts. For these close components of multiple systems a linear dependence of rotation rate on separation is only barely detected. A comparison with the younger 13 Myr h Per cluster and with the older 40-Myr open clusters and stellar associations NGC 2547, IC 2391, Argus, and IC 2602 and the 130-Myr Pleiades shows that whereas the evolution of F-G stars is well reproduced by angular momentum evolution models, this is not the case for the slow K and early-M stars. Finally, we find

  18. Photometric Variability of the mCP Star CS Vir: Evolution of the Rotation Period

    NASA Astrophysics Data System (ADS)

    Ozuyar, D.; Sener, H. T.; Stevens, I. R.

    2018-01-01

    The aim of this study is to accurately calculate the rotational period of CS Vir by using STEREO observations and investigate a possible period variation of the star with the help of all accessible data. The STEREO data that cover 5-yr time interval between 2007 and 2011 are analysed by means of the Lomb-Scargle and Phase Dispersion Minimization methods. In order to obtain a reliable rotation period and its error value, computational algorithms such as the Levenberg-Marquardt and Monte Carlo simulation algorithms are applied to the data sets. Thus, the rotation period of CS Vir is improved to be 9.29572(12) d by using the 5-yr of combined data set. Also, the light elements are calculated as HJD max = 2454715.975(11) + 9d . 29572(12) × E + 9d . 78(1.13) × 10 - 8 × E 2 by means of the extremum times derived from the STEREO light curves and archives. Moreover, with this study, a period variation is revealed for the first time, and it is found that the period has lengthened by 0.66(8) s y-1, equivalent to 66 s per century. Additionally, a time-scale for a possible spin-down is calculated around τSD 106 yr. The differential rotation and magnetic braking are thought to be responsible of the mentioned rotational deceleration. It is deduced that the spin-down time-scale of the star is nearly three orders of magnitude shorter than its main-sequence lifetime (τMS 109 yr). It is, in return, suggested that the process of increase in the period might be reversible.

  19. Solar differential rotation in the period 1964-2016 determined by the Kanzelhöhe data set

    NASA Astrophysics Data System (ADS)

    Poljančić Beljan, I.; Jurdana-Šepić, R.; Brajša, R.; Sudar, D.; Ruždjak, D.; Hržina, D.; Pötzi, W.; Hanslmeier, A.; Veronig, A.; Skokić, I.; Wöhl, H.

    2017-10-01

    Context. Kanzelhöhe Observatory for Solar and Environmental Research (KSO) provides daily multispectral synoptic observations of the Sun using several telescopes. In this work we made use of sunspot drawings and full disk white light CCD images. Aims: The main aim of this work is to determine the solar differential rotation by tracing sunspot groups during the period 1964-2016, using the KSO sunspot drawings and white light images. We also compare the differential rotation parameters derived in this paper from the KSO with those collected fromf other data sets and present an investigation of the north - south rotational asymmetry. Methods: Two procedures for the determination of the heliographic positions were applied: an interactive procedure on the KSO sunspot drawings (1964-2008, solar cycles Nos. 20-23) and an automatic procedure on the KSO white light images (2009-2016, solar cycle No. 24). For the determination of the synodic angular rotation velocities two different methods have been used: a daily shift (DS) method and a robust linear least-squares fit (rLSQ) method. Afterwards, the rotation velocities had to be converted from synodic to sidereal, which were then used in the least-squares fitting for the solar differential rotation law. A comparison of the interactive and automatic procedures was performed for the year 2014. Results: The interactive procedure of position determination is fairly accurate but time consuming. In the case of the much faster automatic procedure for position determination, we found the rLSQ method for calculating rotational velocities to be more reliable than the DS method. For the test data from 2014, the rLSQ method gives a relative standard error for the differential rotation parameter B that is three times smaller than the corresponding relative standard error derived for the DS method. The best fit solar differential rotation profile for the whole time period is ω(b) = (14.47 ± 0.01)-(2.66 ± 0.10)sin2b (deg/day) for the

  20. The Olsen Rotating Dipole, Revisited

    NASA Astrophysics Data System (ADS)

    Svalgaard, L.; Gough, D. O.; Scherrer, P. H.

    2016-12-01

    Olsen (1948) and Wilcox & Gonzales (1971) reported evidence of a solar equatorial magnetic dipole with a stable (synodic) rotation period of 26 7/8 days maintaining its phase over 15 years (1926-1941, Olsen) and possibly to 1968 as well (1963-1968, Wilcox & Gonzales). Using a composite series of Interplanetary Magnetic Sector Polarities covering the interval 1844-2016 (derived from geomagnetic data before the space age and direct measurements during 1963-2016) we find that 1) the response of geomagnetic activity to passage (at Earth) of a sector boundary has been consistently the same in every solar cycle from 9 through 24, thus validating the inferred times of sector boudary passages over the past 173 years, and 2) the 'Olsen' dipole can be traced back the 16 cycles to the year 1844, albeit with a slightly different synodic rotation period of 26.86 days (431 nHz). Olsen ended his paper with "The persistence of a fixed period during 15 years points to the possibility that the origin of the effect is to be found in a layer on the Sun with a fixed rotation-period during a long time" and Wilcox & Gonzales noted that "A rotating magnetic dipole may be lurking within the sun". We compare the Olsen-period with other evidence for rotation periods in the deep interior and for the existence of a relic magnetic field.

  1. Saturn's periodicities: New results from an MHD simulation of magnetospheric response to rotating ionospheric vortices

    NASA Astrophysics Data System (ADS)

    Kivelson, M.; Jia, X.

    2013-12-01

    In previous work we demonstrated that a magnetohydrodynamic (MHD) simulation of Saturn's magnetosphere in which periodicity is imposed by rotating vortical flows in the ionosphere reproduces many reported periodically varying properties of the system. Here we shall show that previously unreported features of the MHD simulation of Saturn's magnetosphere illuminate additional measured properties of the system. By averaging over a rotation period, we identify a global electric field whose magnitude is a few tenths of a mV/m (see Figure 1). The electric field intensity decreases with radial distance in the middle magnetosphere, consistent with drift speeds v=E/B of a few km/s towards the morning side and relatively independent of radial distance. The electric field within 10 RS in the equatorial plane is oriented from post-noon to post-midnight, in excellent agreement with observations [e.g., Thomsen et al., 2012; Andriopoulou et al., 2012, 2013; Wilson et al., 2013]. By following the electric field over a full rotation phase we identify oscillatory behavior whose magnitude is consistent with the reported fluctuations of measured electric fields. Of particular interest is the nature of the fast mode perturbations that produce periodic displacement of the magnetopause and flapping of the current sheet. Figure (2) shows the total perturbation pressure (the sum of magnetic and thermal pressure) in the equatorial plane at a rotation phase for which the ionospheric flow near noon is equatorward. By following the perturbations over a full rotation period, we demonstrate properties of the fast mode wave launched by the rotating flow structures and thereby characterize the 'cam' signal originally proposed by Espinosa et al. [2003].

  2. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    NASA Technical Reports Server (NTRS)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  3. Genealogy and stability of periodic orbit families around uniformly rotating asteroids

    NASA Astrophysics Data System (ADS)

    Hou, Xiyun; Xin, Xiaosheng; Feng, Jinglang

    2018-03-01

    Resonance orbits around a uniformly rotating asteroid are studied from the approach of periodic orbits in this work. Three periodic families (denoted as I, II, and III in the paper) are fundamental in organizing the resonance families. For the planar case: (1) Genealogy and stability of Families I, II and the prograde resonance families are studied. For extremely irregular asteroids, family genealogy close to the asteroid is greatly distorted from that of the two body-problem (2BP), indicating that it is inappropriate to treat the orbital motions as perturbed Keplerian orbits. (2) Genealogy and stability of Family III are also studied. Stability of this family may be destroyed by the secular resonance between the orbital ascending node's precession and the asteroid's rotation. For the spatial case: (1) Genealogy of the near circular three-dimensional periodic families are studied. The genealogy may be broken apart by families of eccentric frozen orbits whose argument of perigee is ;frozen; in space. (2) The joint effects between the secular resonance and the orbital resonances may cause instability to three-dimensional orbital motion with orbit inclinations close to the critical values. Applying the general methodology to a case study - the asteroid Eros and also considering higher order non-spherical terms, some extraordinary orbits are found, such as the ones with orbital plane co-rotating with the asteroid, and the stable frozen orbits with argument of perigee librating around values different from 0°, 90°, 180°, 270°.

  4. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    most reliable. Explaining the bimodality in the age distribution is challenging, and limits accurate stellar age predictions. The relation between activity and age is interesting, and requires further investigation. The existence of cool stars with almost constant rotation period over more than three years of observation might be explained by synchronization with stellar companions, or a dynamo mechanism keeping the spot configurations extremely stable. Full Tables 2 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A65

  5. The Rotation Periods of 845 Naema, 1607 Mavis, and (30105) 2000 FO3

    NASA Astrophysics Data System (ADS)

    Bembrick, Collin; Allen, Bill; Bolt, Greg

    2008-06-01

    The synodic rotation period of minor planet 845 Naëma was found to be 20.892 ± 0.019 h. Similarly, the period of 1607 Mavis was 6.1339 ± 0.0004 h, and (30105) 2000 FO3 has a period of 7.272 ± 0.004 h. 845 Naëma has a complex lightcurve.

  6. Effects of dynamic long-period ocean tides on changes in Earth's rotation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Y.S.; Dickman, S.R.

    1990-05-10

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the authors define the zonal response function k of the solid earth-ocean system as the ratio, in the frequency domain, of the tidal change in Earth's rotation rate to the tide-generating potential. Amplitudes and phases of k for the monthly, fortnightly, and 9-day lunar tides are estimated from 2 1/2 years of very long baseline interferometry UTI observations (both 5-day and daily time series), corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988a,more » 1989a), the authors predict amplitudes and phases of k for an elastic earth-ocean system. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of k by about 1%. However, agreement with the observed k is best achieved for all three tides if the predicted tide amplitudes are combined with the much larger satellite-observed ocean tide phases; in these cases the dynamic tidal effects reduce k by up to 8%. Finally, comparison between the observed and predicted amplitudes of k implies that anelastic effects on Earth's rotation at periods less than fortnightly cannot exceed 2%.« less

  7. A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures

    NASA Astrophysics Data System (ADS)

    Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.

    2018-05-01

    The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.

  8. Periodic perturbations with rotational symmetry of planar systems driven by a central force

    NASA Astrophysics Data System (ADS)

    Fonda, Alessandro; Gallo, Anna Chiara

    2018-06-01

    We consider periodic perturbations of a central force field having a rotational symmetry, and prove the existence of nearly circular periodic orbits. We thus generalize, in the planar case, some previous bifurcation results obtained by Ambrosetti and Coti Zelati in [1]. Our results apply, in particular, to the classical Kepler problem.

  9. A Model Job Rotation Plan: A 10-Year Follow-up.

    ERIC Educational Resources Information Center

    Robinson, Daniel C.; Delbridge-Parker, Linda

    1991-01-01

    Describes model job rotation plan in a college student affairs division in which a staff member (intern) rotates among departments as a staff development opportunity. A 10-year follow-up evaluation underscored the success of the program. Concludes job rotation is not just learning experience, but it is also sharing experience. (Author/ABL)

  10. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cargile, P. A.; Pepper, J.; Siverd, R.

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age ofmore » 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.« less

  11. Theory of Rotation for the Planet Mercury.

    PubMed

    Liu, H S; O'keefe, J A

    1965-12-24

    The theory of the rotation of the planet Mercury is developed in terms of the motion of a rigid system in an inverse-square field. It is possible for Mercury to rotate with a period exactly two-thirds of the period of revolution; there is a libration with a period of 25 years.

  12. Effects of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.

    1996-01-01

    The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.

  13. ROTATION PERIODS OF WIDE BINARIES IN THE KEPLER FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janes, K. A.

    In a search of proper motion catalogs for common proper motion stars in the field of the Kepler spacecraft I identified 93 likely binary systems. A comparison of their rotation periods is a test of the gyrochronology concept. To find their periods I calculated the autocorrelation function (ACF) of the Kepler mission photometry for each star. In most systems for which good periods can be found, the cooler star has a longer period than the hotter component, in general agreement with models. However, there is a wide range in the gradients of lines connecting binary pairs in a period–color diagram.more » Furthermore, near the solar color, only a few stars have longer periods than the Sun, suggesting that they, and their cooler companions, are not much older than the Sun. In addition, there is an apparent gap at intermediate periods in the period distribution of the late K and early M stars. Either star formation in this direction has been variable, or stars evolve in period at a non-uniform rate, or some stars evolve more rapidly than others at the same mass. Finally, using the ACF as a measure of the activity level, I found that while the F, G, and early K stars become less active as their periods increase, there is no correlation between period and activity for the mid K to early M stars.« less

  14. Venus - Atmospheric rotation.

    NASA Technical Reports Server (NTRS)

    Scott, A. H.; Reese, E. J.

    1972-01-01

    Photographs of Venus taken in ultraviolet light from Sept. 29, 1963, to May 29, 1971, indicate a general planet-wide circulation in the upper atmosphere of that planet having velocities which varied with time from -87 to -127m/sec at the equator. Positional measurements on 67 pairs of photographs which show the recurrence of similar patterns after intervals of one to three rotations suggest an asymmetric bimodal distribution of these velocities. The ultraviolet markings appear to be randomly distributed and quite ephemeral in nature, rarely enduring in a recognizable pattern for more than 20 days and usually much less. Attention is directed to an apparent but fictitious mean sidereal rotation period of approximately 4.06 days derived from observations which are made at a single station and span many months or years. Under such conditions this fictitious value for the rotation period is produced by the commensurability of the one-day period of earth and the assumed four-day period of the atmosphere of Venus.

  15. The variable rotation period of the inner region of Saturn's plasma disk.

    PubMed

    Gurnett, D A; Persoon, A M; Kurth, W S; Groene, J B; Averkamp, T F; Dougherty, M K; Southwood, D J

    2007-04-20

    We show that the plasma and magnetic fields in the inner region of Saturn's plasma disk rotate in synchronism with the time-variable modulation period of Saturn's kilometric radio emission. This relation suggests that the radio modulation has its origins in the inner region of the plasma disk, most likely from a centrifugally driven convective instability and an associated plasma outflow that slowly slips in phase relative to Saturn's internal rotation. The slippage rate is determined by the electrodynamic coupling of the plasma disk to Saturn and by the drag force exerted by its interaction with the Enceladus neutral gas torus.

  16. Determine the Sun's Rotation Period using D.I.Y Sunspotter and Smartphone

    NASA Astrophysics Data System (ADS)

    Lim, JongHo; Lim, Jihey; Sohn, Jungjoo; Jo, Hoon

    2016-04-01

    This is an astronomy education program for rotation period of the Sun using a sunspotter of one's own making made by the easy manageable materials and generic smart phone as a detector. Students had immediate chances to understand the principle of the telescope and optical system. Tries to make better product appears during making it. For example, they reduced the number of reflectors to decrease loss of light and changed outer shape of it to make easy for storage. D.I.Y. sunspotter is free to adjust to altazimuth mount and marked the azimuth and altitude to determine viewing direction. The images taken with smartphones were processed by using Pixlr/editor(free web-based image processing program). Rotation period of sun was calculated by using the basic formula. In addition, its accuracy was confirmed by comparison result from the SOHO satellite data. Learning by manufacturing the sunspotter is increased to understanding the principles of solar observation and to concentrate on the project following the scientist's practical study.

  17. Nonradial and radial period changes of the δ Scuti star 4 CVn. II. Systematic behavior over 40 years

    NASA Astrophysics Data System (ADS)

    Breger, M.; Montgomery, M. H.; Lenz, P.; Pamyatnykh, A. A.

    2017-03-01

    Aims: Radial and nonradial pulsators on and near the main sequence show period and amplitude changes that are too large to be the product of stellar evolution. The multiperiodic δ Sct stars are well suited to study this, as the period changes of different modes excited in the same star can be compared. This requires a very large amount of photometric data covering years and decades as well as mode identifications. Methods: We have examined over 800 nights of high-precision photometry of the multiperiodic pulsator 4 CVn obtained from 1966 through 2012. Because most of the data were obtained in adjacent observing seasons, it is possible to derive very accurate period values for a number of the excited pulsation modes and to study their systematic changes from 1974 to 2012. Results: Most pulsation modes show systematic significant period and amplitude changes on a timescale of decades. For the well-studied modes, around 1986 a general reversal of the directions of both the positive and negative period changes occurred. Furthermore, the period changes between the different modes are strongly correlated, although they differ in size and sign. For the modes with known values of the spherical degree and azimuthal order, we find a correlation between the direction of the period changes and the identified azimuthal order, m. The associated amplitude changes generally have similar timescales of years or decades, but show little systematic or correlated behavior from mode to mode. Conclusions: A natural explanation for the opposite behavior of the prograde and retrograde modes is that their period changes are driven by a changing rotation profile. The changes in the rotation profile could in turn be driven by processes, perhaps the pulsations themselves, that redistribute angular momentum within the star. In general, different modes have different rotation kernels, so this will produce period shifts of varying magnitude for different modes.

  18. THE ROTATION PERIOD AND LIGHT-CURVE AMPLITUDE OF KUIPER BELT DWARF PLANET 136472 MAKEMAKE (2005 FY9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinze, A. N.; DeLahunta, Daniel

    Kuiper Belt dwarf planet 136472 Makemake, formerly known as 2005 FY9, is currently the third-largest known object in the Kuiper Belt, after the dwarf planets Pluto and Eris. It is currently second only to Pluto in apparent brightness, due to Eris' much larger heliocentric distance. Makemake shows very little photometric variability, which has prevented confident determination of its rotation period until now. Using extremely precise time-series photometry, we find that the rotation period of Makemake is 7.7710 {+-} 0.0030 hr, where the uncertainty is a 90% confidence interval. An alias period is detected at 11.41 hr, but is determined withmore » approximately 95% confidence not to be the true period. Makemake's 7.77 hr rotation period is in the typical range for Kuiper Belt objects, consistent with Makemake's apparent lack of a substantial satellite to alter its rotation through tides. The amplitude of Makemake's photometric light curve is 0.0286 {+-} 0.0016 mag in V. This amplitude is about 10 times less than Pluto's, which is surprising given the two objects' similar sizes and spectral characteristics. Makemake's photometric variability is instead similar to that of Eris, which is so small that no confident rotation period has yet been determined. It has been suggested that dwarf planets such as Makemake and Eris, both farther from the Sun and colder than Pluto, exhibit lower photometric variability because they are covered with a uniform layer of frost. Such a frost is probably the correct explanation for Eris. However, it may be inconsistent with the spectrum of Makemake, which resembles reddish Pluto more than neutrally colored Eris. Makemake may instead be a more Pluto-like object that we observe at present with a nearly pole-on viewing geometry-a possibility that can be tested with continuing observations over the coming decades.« less

  19. Determining the Rotation Periods of an Inactive LEO Satellite and the First Korean Space Debris on GEO, KOREASAT 1

    NASA Astrophysics Data System (ADS)

    Choi, Jin; Jo, Jung Hyun; Kim, Myung-Jin; Roh, Dong-Goo; Park, Sun-Youp; Lee, Hee-Jae; Park, Maru; Choi, Young-Jun; Yim, Hong-Suh; Bae, Young-Ho; Park, Young-Sik; Cho, Sungki; Moon, Hong-Kyu; Choi, Eun-Jung; Jang, Hyun-Jung; Park, Jang-Hyun

    2016-06-01

    Inactive space objects are usually rotating and tumbling as a result of internal or external forces. KOREASAT 1 has been inactive since 2005, and its drift trajectory has been monitored with the optical wide-field patrol network (OWL-Net). However, a quantitative analysis of KOREASAT 1 in regard to the attitude evolution has never been performed. Here, two optical tracking systems were used to acquire raw measurements to analyze the rotation period of two inactive satellites. During the optical campaign in 2013, KOREASAT 1 was observed by a 0.6 m class optical telescope operated by the Korea Astronomy and Space Science Institute (KASI). The rotation period of KOREASAT 1 was analyzed with the light curves from the photometry results. The rotation periods of the low Earth orbit (LEO) satellite ASTRO-H after break-up were detected by OWL-Net on April 7, 2016. We analyzed the magnitude variation of each satellite by differential photometry and made comparisons with the star catalog. The illumination effect caused by the phase angle between the Sun and the target satellite was corrected with the system tool kit (STK) and two line element (TLE) technique. Finally, we determined the rotation period of two inactive satellites on LEO and geostationary Earth orbit (GEO) with light curves from the photometry. The main rotation periods were determined to be 5.2 sec for ASTRO-H and 74 sec for KOREASAT 1.

  20. Rotational Periods of Asteroids 184 Dejopeja, 435 Ella and 5049 Sherlock

    NASA Astrophysics Data System (ADS)

    Lang, Kim; Jacobsen, Jens; Kristensen, Leif Hugo; Larsen, Frank R.

    2018-04-01

    We report on photometric observations of three mainbelt asteroids, 184 Dejopeja, 435 Ella and 5049 Sherlock, made in Nov. and Dec. 2017. We find synodic rotation periods and amplitudes of 6.4416 ± 0.0004 h and 0.22 mag (184 Dejopeja), 4.621 ± 0.009 h and 0.38 mag (435 Ella) and 5.4914 ± 0.0005 h and 0.75 mag (5049 Sherlock).

  1. WHY ARE RAPIDLY ROTATING M DWARFS IN THE PLEIADES SO (INFRA)RED? NEW PERIOD MEASUREMENTS CONFIRM ROTATION-DEPENDENT COLOR OFFSETS FROM THE CLUSTER SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, Kevin R.; Agüeros, Marcel A.; Liu, Jiyu

    2016-05-10

    Stellar rotation periods ( P {sub rot}) measured in open clusters have proved to be extremely useful for studying stars’ angular momentum content and rotationally driven magnetic activity, which are both age- and mass-dependent processes. While P {sub rot} measurements have been obtained for hundreds of solar-mass members of the Pleiades, measurements exist for only a few low-mass (<0.5 M {sub ⊙}) members of this key laboratory for stellar evolution theory. To fill this gap, we report P {sub rot} for 132 low-mass Pleiades members (including nearly 100 with M ≤ 0.45 M {sub ⊙}), measured from photometric monitoring ofmore » the cluster conducted by the Palomar Transient Factory in late 2011 and early 2012. These periods extend the portrait of stellar rotation at 125 Myr to the lowest-mass stars and re-establish the Pleiades as a key benchmark for models of the transport and evolution of stellar angular momentum. Combining our new P {sub rot} with precise BVIJHK photometry reported by Stauffer et al. and Kamai et al., we investigate known anomalies in the photometric properties of K and M Pleiades members. We confirm the correlation detected by Kamai et al. between a star's P {sub rot} and position relative to the main sequence in the cluster's color–magnitude diagram. We find that rapid rotators have redder ( V − K ) colors than slower rotators at the same V , indicating that rapid and slow rotators have different binary frequencies and/or photospheric properties. We find no difference in the photometric amplitudes of rapid and slow rotators, indicating that asymmetries in the longitudinal distribution of starspots do not scale grossly with rotation rate.« less

  2. Stellar Rubella: Starspots on F, G and K Stars of Different Ages and Rotation Periods

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.; Dewarf, L. E.; Messina, S.; McCook, G. P.

    1995-05-01

    We present high precision photoelectric photometry of a sample of bright, single F, G, and K- type main-sequence and subgiant stars. Several of the stars are members of clusters or moving groups and thus have well determined ages. The majority of the stars are main-sequence to subgiant G-types stars that range in age from 70 Myr to 10 Gyr with directly measured rotation periods from 2.7 days up to 40-50 days. The observations have been carried out with Automatic Photometric Telescopes (APTs) located on Mt Hopkins, Arizona beginning in 1988; standard UBVRI \\ or uvby \\ filters were used. As expected, the youngest, fastest rotating stars in the sample typically have the largest, rotationally modulated starspot light variations. Some of the stars show relatively rapid changes in their light curves that are explained by differential rotation of the starspot groups. In addition, some of the stars that have been observed over several years show long-term, seasonal trends in their mean brightness levels that most likely arise from starspot cycles. The starspot properties (areal coverage, distribution, and temperature) are determined from the modelling of the multiwavelength light curves. For certain stars, comparisons of these photospheric starspots properties to their corresponding chromospheric, transition region, and coronal activity indicators obtained in the UV, EUV \\ and X-ray are presented and discussed. Analogies are also made to the magnetic properties of the Sun. This research is supported by NSF AST 86-16362, NASA NAG5-2160, and NAG5-2494.

  3. VizieR Online Data Catalog: Photometric rotation periods of stars in α Per (Prosser+ 1997)

    NASA Astrophysics Data System (ADS)

    Prosser, C. F.; Grankin, K. N.

    2013-07-01

    Members of the Alpha Perseus open cluster were monitored and their rotation periods and amplitudes were derived. These are combined with their physical characteristics to estimate rotational velocities. V-band observations of α Per stars were obtained by both C.P. and K.G. Observations by C.P. were obtained with the Whipple Observatory 48-in. telescope on Mt. Hopkins. Observations by K.G. were obtained during photometric conditions at Mt. Maidanak (Tashkent) Observatory, Uzbekistan using a 0.48m telescope. K.G. obtained absolute V (Johnson) photometric magnitudes by observing five standard stars several times each night. All together, rotational period information was obtained for 35 members of the α Per cluster in Aug-Dec 1994 and Oct, Dec 1995. This work was never published in a refereed journal because Charles Prosser was killed in an auto accident in 1998. See http://aas.org/obituaries/charles-franklin-prosser-jr-1963-1998 (1 data file).

  4. Effects of dynamic long-period ocean tides on changes in earth's rotation rate

    NASA Technical Reports Server (NTRS)

    Nam, Young; Dickman, S. R.

    1990-01-01

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the tide-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar tides are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of kappa by about 1 percent.

  5. M Dwarf Activity in the Pan-STARRS1 Medium-Deep Survey: First Catalog and Rotation Periods

    NASA Astrophysics Data System (ADS)

    Kado-Fong, E.; Williams, P. K. G.; Mann, A. W.; Berger, E.; Burgett, W. S.; Chambers, K. C.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Rest, A.; Wainscoat, R. J.; Waters, C.

    2016-12-01

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ˜4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, and bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of ≲1-130 days in stars with estimated effective temperatures of ˜2700-4000 K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler-based searches have not been sensitive to very slowly rotating stars (P rot ≳ 70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10-40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.

  6. A redetermination of the Uranus rotation period

    NASA Technical Reports Server (NTRS)

    Trauger, J. T.; Roesler, F. L.; Muench, G.

    1978-01-01

    The rotation velocity of Uranus has been measured by a comparison of spectroscopic profiles for the 5281.8 A Fraunhofer line reflected from Uranus and the moon. This method yields a rotation velocity which is insensitive to atmospheric seeing conditions. Our value for the equatorial velocity is 3.5 + or - 0.4 km/sec.

  7. Detection of faults in rotating machinery using periodic time-frequency sparsity

    NASA Astrophysics Data System (ADS)

    Ding, Yin; He, Wangpeng; Chen, Binqiang; Zi, Yanyang; Selesnick, Ivan W.

    2016-11-01

    This paper addresses the problem of extracting periodic oscillatory features in vibration signals for detecting faults in rotating machinery. To extract the feature, we propose an approach in the short-time Fourier transform (STFT) domain where the periodic oscillatory feature manifests itself as a relatively sparse grid. To estimate the sparse grid, we formulate an optimization problem using customized binary weights in the regularizer, where the weights are formulated to promote periodicity. In order to solve the proposed optimization problem, we develop an algorithm called augmented Lagrangian majorization-minimization algorithm, which combines the split augmented Lagrangian shrinkage algorithm (SALSA) with majorization-minimization (MM), and is guaranteed to converge for both convex and non-convex formulation. As examples, the proposed approach is applied to simulated data, and used as a tool for diagnosing faults in bearings and gearboxes for real data, and compared to some state-of-the-art methods. The results show that the proposed approach can effectively detect and extract the periodical oscillatory features.

  8. Shoulder-specific outcomes 1 year after nontraumatic full-thickness rotator cuff repair: a systematic literature review and meta-analysis.

    PubMed

    Gurnani, Navin; van Deurzen, Derek F P; van den Bekerom, Michel P J

    2017-10-01

    Nontraumatic full-thickness rotator cuff tears are commonly initially treated conservatively. If conservative treatment fails, rotator cuff repair is a viable subsequent option. The objective of the present meta-analysis is to evaluate the shoulder-specific outcomes one year after arthroscopic or mini-open rotator cuff repair of nontraumatic rotator cuff tears. A literature search was conducted in PubMed and EMBASE within the period January 2000 to January 2017. All studies measuring the clinical outcome at 12 months after nontraumatic rotator cuff repair of full-thickness rotator cuff tears were listed. We included 16 randomized controlled trials that met our inclusion criteria with a total of 1.221 shoulders. At 12 months after rotator cuff repair, the mean Constant score had increased 29.5 points; the mean American Shoulder and Elbow Score score increased by 38.6 points; mean Simple Shoulder Test score was 5.6 points; mean University of California Los Angeles score improved by 13.0 points; and finally, mean Visual Analogue Scale score decreased by 4.1 points. Based on this meta-analysis, significant improvements in the shoulder-specific indices are observed 12 months after nontraumatic arthroscopic or mini-open rotator cuff repair.

  9. Development of a new model for short period ocean tidal variations of Earth rotation

    NASA Astrophysics Data System (ADS)

    Schuh, Harald

    2015-08-01

    Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.

  10. Rotational Periods and Starspot Activity of Young Solar-Type Dwarfs in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Allain, S.; Bouvier, J.; Prosser, C.; Marschall, L. A.; Laaksonen, B. D.

    1995-01-01

    We present the results of a V-band photometric monitoring survey of 15 late-type dwarfs in the young open cluster IC 4665. Low-amplitude periodic light variations are found for 8 stars and ascribed to the modulation by starspots that cover typically a few percent of the stellar disk. Periods range from 0.6 to 3.7 d, translating to equatorial velocities between 13 and 93 km/s. That no period longer than 4 d was detected suggests a relative paucity of extremely slow rotators (V(sub eq) much less than 10 km/s) among late-type dwarfs in IC 4665. The fractional number of slow rotators in IC 4665 is similar to that of Alpha Per cluster, suggesting that IC 4665 is close in age to Alpha Per (approx. 50 Myr).

  11. Discovery of Rotational Modulations in the Planetary-mass Companion 2M1207b: Intermediate Rotation Period and Heterogeneous Clouds in a Low Gravity Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn H.; Marley, Mark S.; Showman, Adam P.

    2016-02-01

    Rotational modulations of brown dwarfs have recently provided powerful constraints on the properties of ultra-cool atmospheres, including longitudinal and vertical cloud structures and cloud evolution. Furthermore, periodic light curves directly probe the rotational periods of ultra-cool objects. We present here, for the first time, time-resolved high-precision photometric measurements of a planetary-mass companion, 2M1207b. We observed the binary system with Hubble Space Telescope/Wide Field Camera 3 in two bands and with two spacecraft roll angles. Using point-spread function-based photometry, we reach a nearly photon-noise limited accuracy for both the primary and the secondary. While the primary is consistent with a flat light curve, the secondary shows modulations that are clearly detected in the combined light curve as well as in different subsets of the data. The amplitudes are 1.36% in the F125W and 0.78% in the F160W filters, respectively. By fitting sine waves to the light curves, we find a consistent period of {10.7}-0.6+1.2 hr and similar phases in both bands. The J- and H-band amplitude ratio of 2M1207b is very similar to a field brown dwarf that has identical spectral type but different J-H color. Importantly, our study also measures, for the first time, the rotation period for a directly imaged extra-solar planetary-mass companion.

  12. ROTATION PERIODS AND AGES OF SOLAR ANALOGS AND SOLAR TWINS REVEALED BY THE KEPLER MISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do Nascimento Jr, J.-D.; Meibom, S.; García, R. A.

    2014-08-01

    A new sample of solar analogs and twin candidates has been constructed and studied, paying particular attention to their light curves from NASA's Kepler mission. This Letter aims to assess their evolutionary status, derive their rotation and ages, and identify those which are solar analogs or solar twin candidates. We separate out the subgiants that compose a large fraction of the asteroseismic sample, and which show an increase in the average rotation period as the stars ascend the subgiant branch. The rotation periods of the dwarfs, ranging from 6 to 30 days and averaging 19 days, allow us to assess their individualmore » evolutionary states on the main sequence and to derive their ages using gyrochronology. These ages are found to be in agreement with a correlation coefficient of r = 0.79 with independent asteroseismic ages, where available. As a result of this investigation, we are able to identify 34 stars as solar analogs and 22 of them as solar twin candidates.« less

  13. DEPENDENCE OF STELLAR MAGNETIC ACTIVITY CYCLES ON ROTATIONAL PERIOD IN A NONLINEAR SOLAR-TYPE DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2016-06-01

    We study the turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account nonlinear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation from either magnetic buoyancy or magnetic helicity. Wemore » discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.« less

  14. M DWARF ACTIVITY IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY: FIRST CATALOG AND ROTATION PERIODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kado-Fong, E.; Williams, P. K. G.; Berger, E.

    2016-12-20

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ∼4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, andmore » bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of ≲1–130 days in stars with estimated effective temperatures of ∼2700–4000 K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler -based searches have not been sensitive to very slowly rotating stars ( P {sub rot} ≳ 70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10–40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.« less

  15. Constraints on Titan's rotation from Cassini mission radar data

    NASA Astrophysics Data System (ADS)

    Bills, Bruce; Stiles, Bryan W.; Hayes, Alexander

    2015-05-01

    We present results of a new analysis of the rotational kinematics of Titan, as constrained by Cassini radar data, extending over the entire currently available set of flyby encounters. Our analysis provides a good constraint on the current orientation of the spin pole, but does not have sufficient accuracy and duration to clearly see the expected spin pole precession. In contrast, we do clearly see temporal variations in the spin rate, which are driven by gravitational torques which attempt to keep the prime meridian oriented toward Saturn.Titan is a synchronous rotator. At lowest order, that means that the rotational and orbital motions are synchronized. At the level of accuracy required to fit the Cassini radar data, we can see that synchronous rotation and uniform rotation are not quite the same thing. Our best fitting model has a fixed pole, and a rotation rate which varies with time, so as to keep Titan's prime meridian oriented towards Saturn, as the orbit varies.A gravitational torque on the tri-axial figure of Titan attempts to keep the axis of least inertia oriented toward Saturn. The main effect is to synchronize the orbit and rotation periods, as seen in inertial space. The response of the rotation angle, to periodic changes in orbital mean longitude, is modeled as a damped, forced harmonic oscillator. This acts as a low-pass filter. The rotation angle accurately tracks orbital variations at periods longer than the free libration period, but is unable to follow higher frequency variations.The mean longitude of Titan's orbit varies on a wide range of time scales. The largest variations are at Saturn's orbital period (29.46 years), and are due to solar torques. There are also variations at periods of 640 and 5800 days, due to resonant interaction with Hyperion.For a rigid body, with moments of inertia estimated from observed gravity, the free libration period for Titan would be 850 days. The best fit to the radar data is obtained with a libration period of

  16. ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waszczak, Adam; Chang, Chan-Kao; Cheng, Yu-Chi

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ∼53,000 fitted periods. By this method we findmore » that 9033 of our light curves (of ∼8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ∼2 g cm{sup −3}, while C types have a lower limit of between 1 and 2 g cm{sup −3}. These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric

  17. Titan's rotation reveals an internal ocean and changing zonal winds

    USGS Publications Warehouse

    Lorenz, R.D.; Stiles, B.W.; Kirk, R.L.; Allison, M.D.; Del Marmo, P.P.; Iess, L.; Lunine, J.I.; Ostro, S.J.; Hensley, S.

    2008-01-01

    Cassini radar observations of Saturn's moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of ???0.36?? per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan's dense superrotating atmosphere, but only if Titan's crust is decoupled from the core by an internal water ocean like that on Europa.

  18. Impact of a required fourth-year medical student rotation in physical medicine and rehabilitation.

    PubMed

    Faulk, Clinton E; Mali, Jimmy; Mendoza, Paola Maria; Musick, David; Sembrano, Roderick

    2012-05-01

    This study evaluated the impact of a 2-wk required rotation in Physical Medicine and Rehabilitation (PM&R) on fourth-year medical students' knowledge of PM&R and attitude toward teamwork in patient care. Survey results on attitudes toward a team approach to patient care and knowledge in PM&R were compared prerotation and postrotation. One hundred thirty-eight fourth-year medical students participated in this 2-yr study. The combined response rates for the attitude and knowledge surveys were 62% and 56%, respectively. As measured by a pretest and posttest self-reported knowledge assessment, the rotation increased knowledge of PM&R (P ≤ 0.05). Four aspects of the rotation that were rated higher by students from the second year of the rotation were role and responsibility definition, incorporation of current literature, enhancement of clinical skills, and general rotation satisfaction. The rotation provides an experience for medical students to increase their knowledge of PM&R.

  19. Gyrochronology relating star age to rotational period is derived from first principles through a novel time dual for thermodynamics, named lingerdynamics

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2017-10-01

    Gyrochronology estimates the age of a low-mass star from its rotational period, which is found from changes in brightness caused by dark star spots. First revealed as an insight in (Skumanich, A. 1972, The Astrophysical Journal. 171: 565) it allows astronomers to find true sun-like stars that may harbor life in its planets (Meibom, S. et. al., Nature. 517: 589-591). Here a simple expression for the age of a star is derived through a novel linger thermo theory (LTT) integrating thermodynamics with its revealed time-dual, named lingerdynamics. This expression relates the star age to the ratio of past and present rotational period metrics (RPM) of lingerdynamics. LTT has been used earlier to derive a simple expression for the finding of the entropy of spherical-homogeneous mediums (Feria, E. H. Nov. 19, 2016, Linger Thermo Theory, IEEE Int’l Conf. on Smart Cloud, 18 pages, DOI 10.1109/SmartCloud.2016.57, Colombia Univ., N.Y., N.Y. and Feria, E. H. June 7th 2017, AAS 340th Meeting). In LTT the lifespan of system operation τ is given by: τ = (2Π /3v3)G2M2 x RPM where G is the gravitational constant, Π is the pace of mass-energy retention in s/m3 units (e.g., for our current sun it is given by 5 billion ‘future’ years over its volume), and v is the perpetual radial speed about the point-mass M. Since in LTT a star is modeled as a point mass at the center of its spherical volume, its RPM is not the same as the measured rotational period of an actual star. For instance, for our sun its equator rotational period is approximately 25.34 days, while in lingerdynamics it is a fraction of a day, i.e., 0.116 days, where this value is derived from the RPM expression 2πrsun/(GMsun / rsun)1/2 where 2πrsun is the circumference of the sun, (GMsun/rsun)1/2 is the perpetual radial speed v for our point-mass modeled sun, and rsun and Msun are the sun radius and point-mass, respectively. However, using conservation of angular momentum arguments it is assumed that the ratio of

  20. Interior rotation of a sample of γ Doradus stars from ensemble modelling of their gravity-mode period spacings

    NASA Astrophysics Data System (ADS)

    Van Reeth, T.; Tkachenko, A.; Aerts, C.

    2016-10-01

    Context. Gamma Doradus stars (hereafter γ Dor stars) are known to exhibit gravity- and/or gravito-intertial modes that probe the inner stellar region near the convective core boundary. The non-equidistant spacing of the pulsation periods is an observational signature of the stellar evolutions and current internal structure and is heavily influenced by rotation. Aims: We aim to constrain the near-core rotation rates for a sample of γ Dor stars for which we have detected period spacing patterns. Methods: We combined the asymptotic period spacing with the traditional approximation of stellar pulsation to fit the observed period spacing patterns using χ2-optimisation. The method was applied to the observed period spacing patterns of a sample of stars and used for ensemble modelling. Results: For the majority of stars with an observed period spacing pattern we successfully determined the rotation rates and the asymptotic period spacing values, although the uncertainty margins on the latter were typically large. This also resulted directly in the identification of the modes that correspond to the detected pulsation frequencies, which for most stars were prograde dipole gravity and gravito-inertial modes. The majority of the observed retrograde modes were found to be Rossby modes. We also discuss the limitations of the method that are due to the neglect of the centrifugal force and the incomplete treatment of the Coriolis force. Conclusions: Despite its current limitations, the proposed method was successful to derive the rotation rates and to identify the modes from the observed period spacing patterns. It forms the first step towards detailed seismic modelling based on observed period spacing patterns of moderately to rapidly rotating γDor stars. Based on data gathered with the NASA Discovery mission Kepler and the HERMES spectrograph, which is installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community at the Spanish

  1. Lightcurve and Rotational Period Determination for 5813 Eizaburo and (11745) 1999 NH3

    NASA Astrophysics Data System (ADS)

    Salvaggio, Fabio; Banfi, Massimo; Marchini, Alessandro; Papini, Riccardo

    2018-01-01

    Photometric observations of the main-belt asteroids 5813 Eizaburo and (11745) 1999 NH3 performed made in 2017 August revealed a bimodal lightcurve phased to 2.876 ± 0.002 h for 5813 Eizaburo and 3.280 ± 0.001 h for (11745) 1999 NH3 as the most likely synodic rotational periods for these asteroids.

  2. Strong evidences for a nonextensive behavior of the rotation period in open clusters

    NASA Astrophysics Data System (ADS)

    de Freitas, D. B.; Nepomuceno, M. M. F.; Soares, B. B.; Silva, J. R. P.

    2014-11-01

    Time-dependent nonextensivity in a stellar astrophysical scenario combines nonextensive entropic indices qK derived from the modified Kawaler's parametrization, and q, obtained from rotational velocity distribution. These q's are related through a heuristic single relation given by q≈ q0(1-Δ t/qK) , where t is the cluster age. In a nonextensive scenario, these indices are quantities that measure the degree of nonextensivity present in the system. Recent studies reveal that the index q is correlated to the formation rate of high-energy tails present in the distribution of rotation velocity. On the other hand, the index qK is determined by the stellar rotation-age relationship. This depends on the magnetic-field configuration through the expression qK=1+4aN/3 , where a and N denote the saturation level of the star magnetic field and its topology, respectively. In the present study, we show that the connection q-qK is also consistent with 548 rotation period data for single main-sequence stars in 11 open clusters aged less than 1 Gyr. The value of qK ˜ 2.5 from our unsaturated model shows that the mean magnetic-field topology of these stars is slightly more complex than a purely radial field. Our results also suggest that stellar rotational braking behavior affects the degree of anti-correlation between q and cluster age t. Finally, we suggest that stellar magnetic braking can be scaled by the entropic index q.

  3. Measuring the rotation periods of 4-10 Myr T-Tauri stars in the Orion OB1 association

    NASA Astrophysics Data System (ADS)

    Karim, Md Tanveer; Stassun, Keivan; Briceno, Cesar; Vivas, Kathy; Raetz, Stefanie; Calvet, Nuria; Mateu, Cecilia; Downes, Juan Jose; Hernandez, Jesus; Neuhäuser, Ralph; Mugrauer, Markus; Takahashi, Hidenori; Tachihara, Kengo; Chini, Rolf; YETI

    2016-01-01

    Most existing studies of young stellar populations have focused on the youngest (< 2-3 Myr) T-Tauri stars, which are usually associated with their natal gas and hence easier to identify. In contrast, older T-Tauri stars (~ 4-10 Myr), being more difficult to find, have been less studied, even though they hold key insight to understanding evolution of lower-mass (0.1-2 M⊙) stars and of protoplanetary discs. We present a study of photometric variability of 1974 confirmed 4-10 Myr old T-Tauri stars in the Orion OB1 association using optical time-series from three different surveys: the Centro de Investigaciones de Astronomía-Quest Equatorial Survey Team (CIDA-QUEST), the Young Exoplanet Transit Initiative (YETI) and from a Kitt Peak National Observatory (KPNO) campaign. We investigated stellar rotation periods according to the type of stars (Classical or Weak-lined T-Tauri stars) and their locations, to look for population-wide trends. We detected 563 periodic variables and 1411 non-periodic variables by investigating the light curves of these stars. We find that ~ 30% of Weak-line T-Tauri stars (WTTS) and ~ 20% of Classical T-Tauri stars (CTTS) are periodic. Though we did not find any noticeable difference in rotation period between CTTS and WTTS, our study does show a change in the overall rotation periods of stars 4-10 Myr old, consistent with predictions of angular momentum evolution models, an important constraint for theoretical models for an age range for which no similar data existed.

  4. Spatially periodic patterns in rotating fluids: a new spin on the old "soup-can race"

    NASA Astrophysics Data System (ADS)

    Carnevali, Antonino; Carnevali, Dora; Christ, Jessica

    2000-11-01

    A student's investigation of the old "soup-can race" experiment revealed spatially periodic structures at the surface of the rotating fluid. To better observe this effect, the experiment was transferred to a test bench, where an electric motor was used to spin a cylindrical bottle, partially filled with fluids of varied densities, about its longitudinal axis. A photogate and event-counter software provided real-time measurements of the rotational frequency. Various cell-formation patterns were observed. Experimental results will be presented, and connections with the theory will be explored.

  5. Rotation Period Determination for 8994 Kashkashian, (25980) 2001 FK53 and (29128) 1985 RA1

    NASA Astrophysics Data System (ADS)

    Papini, Riccardo; Franco, Lorenzo; Marchini, Alessandro; Cicali, Cristina; Poggialini, Anna; Salvaggio, Fabio

    2018-01-01

    Photometric observations of three main-belt asteroids were made from the Astronomical Observatory of the University of Siena (Italy) in order to determine their rotation periods. For 8994 Kashkashian, we found a period of 11.761 ± 0.001 h with an amplitude of 0.24 ± 0.01 mag. For (25980) 2001 FK53 the period was 2.762 ± 0.002 h with an amplitude of 0.10 ± 0.02 mag. For (29128) 1985 RA1 we found a period of 5.056 ± 0.004 h with an amplitude of 0.18 ± 0.04 mag.

  6. Revision versus primary arthroscopic rotator cuff repair: a 2-year analysis of outcomes in 360 patients.

    PubMed

    Shamsudin, Aminudin; Lam, Patrick H; Peters, Karin; Rubenis, Imants; Hackett, Lisa; Murrell, George A C

    2015-03-01

    Symptomatic rotator cuff tears are often treated surgically. However, there is a paucity of information regarding the outcomes of revision arthroscopic rotator cuff repairs. To evaluate the outcome of revision arthroscopic rotator cuff surgery when compared with primary arthroscopic rotator cuff surgery in a large cohort of patients. Cohort study; Level of evidence, 3. A consecutive series of 50 revision arthroscopic rotator cuff repairs performed by a single surgeon, with minimum 2-year follow-up, were retrospectively reviewed using prospectively collected data. As a comparison, 3 primary arthroscopic rotator cuff repair cases (primary group; n = 310) were chosen immediately before each revision case, and 3 were chosen after. Standardized patient-ranked outcomes, examiner-determined assessments, and ultrasound-determined rotator cuff integrity were assessed preoperatively at 6 months and at a minimum of 2 years after surgery. The revision group was older (mean age, 63 years; range, 43-80 years) compared with the primary group (mean age, 60 years; range, 18-88 years) (P < .05) and had larger tear size (mean ± SEM) (4.1 ± 0.5 cm(2)) compared with the primary group (3.0 ± 0.2 cm(2)) (P < .05). Two years after surgery, the primary group reported less pain at rest (P < .02), during sleep (P < .05), and with overhead activity (P < .01) compared with the revision group. The primary group had better passive forward flexion (+13°; P < .05), abduction (+18°; P < .01), internal rotation (+2 vertebral levels; P < .001) and also significantly greater supraspinatus strength (+15 N; P < .001), lift-off strength (+9.3 N; P < .05), and adduction strength (+20 N; P < .01) compared with the revision group at 2 years. When compared with the primary group, the revision group was more satisfied with the overall shoulder function before surgery but was less satisfied with their shoulder function than the primary group at 2 years (P < .005). The retear rate for primary rotator cuff

  7. Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otake, Yuji; Araya, Akito; Hidano, Kazuo

    We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet.more » Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10{sup -4} owing to this compensation. The thermal dependence of a magnetic field strength of about 10{sup -3}/K was also compensated by as much as 9x10{sup -5}/K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8 s, and was able to be changed from 5 to 8 s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were

  8. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year.

    PubMed

    Rashid, Mustafa S; Cooper, Cushla; Cook, Jonathan; Cooper, David; Dakin, Stephanie G; Snelling, Sarah; Carr, Andrew J

    2017-12-01

    Background and purpose - There is a need to understand the reasons why a high proportion of rotator cuff repairs fail to heal. Using data from a large randomized clinical trial, we evaluated age and tear size as risk factors for failure of rotator cuff repair. Patients and methods - Between 2007 and 2014, 65 surgeons from 47 hospitals in the National Health Service (NHS) recruited 447 patients with atraumatic rotator cuff tendon tears to the United Kingdom Rotator Cuff Trial (UKUFF) and 256 underwent rotator cuff repair. Cuff integrity was assessed by imaging in 217 patients, at 12 months post-operation. Logistic regression analysis was used to determine the influence of age and intra-operative tear size on healing. Hand dominance, sex, and previous steroid injections were controlled for. Results - The overall healing rate was 122/217 (56%) at 12 months. Healing rate decreased with increasing tear size (small tears 66%, medium tears 68%, large tears 47%, and massive tears 27% healed). The mean age of patients with a healed repair was 61 years compared with 64 years for those with a non-healed repair. Mean age increased with larger tear sizes (small tears 59 years, medium tears 62 years, large tears 64 years, and massive tears 66 years). Increasing age was an independent factor that negatively influenced healing, even after controlling for tear size. Only massive tears were an independent predictor of non-healing, after controlling for age. Interpretation - Although increasing age and larger tear size are both risks for failure of rotator cuff repair healing, age is the dominant risk factor.

  9. An 11-year history of crop rotation into new perennial ryegrass and tall fescue

    USDA-ARS?s Scientific Manuscript database

    Converting multi-year remote sensing classification data into crop rotations is beneficial by defining the length of crop rotation cycles and the specific sequences of intervening crops grown between the final year of a grass seed stand and establishment of new perennial ryegrass and tall fescue see...

  10. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it hasmore » an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence.« less

  11. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year

    PubMed Central

    Rashid, Mustafa S; Cooper, Cushla; Cook, Jonathan; Cooper, David; Dakin, Stephanie G; Snelling, Sarah; Carr, Andrew J

    2017-01-01

    Background and purpose — There is a need to understand the reasons why a high proportion of rotator cuff repairs fail to heal. Using data from a large randomized clinical trial, we evaluated age and tear size as risk factors for failure of rotator cuff repair. Patients and methods — Between 2007 and 2014, 65 surgeons from 47 hospitals in the National Health Service (NHS) recruited 447 patients with atraumatic rotator cuff tendon tears to the United Kingdom Rotator Cuff Trial (UKUFF) and 256 underwent rotator cuff repair. Cuff integrity was assessed by imaging in 217 patients, at 12 months post-operation. Logistic regression analysis was used to determine the influence of age and intra-operative tear size on healing. Hand dominance, sex, and previous steroid injections were controlled for. Results — The overall healing rate was 122/217 (56%) at 12 months. Healing rate decreased with increasing tear size (small tears 66%, medium tears 68%, large tears 47%, and massive tears 27% healed). The mean age of patients with a healed repair was 61 years compared with 64 years for those with a non-healed repair. Mean age increased with larger tear sizes (small tears 59 years, medium tears 62 years, large tears 64 years, and massive tears 66 years). Increasing age was an independent factor that negatively influenced healing, even after controlling for tear size. Only massive tears were an independent predictor of non-healing, after controlling for age. Interpretation — Although increasing age and larger tear size are both risks for failure of rotator cuff repair healing, age is the dominant risk factor. PMID:28880113

  12. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    ERIC Educational Resources Information Center

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  13. (abstract) Effect of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, R. S.; Chao, B. F.; Desai, S.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and extensively examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported.

  14. A fourth-year medical school rotation in quality, patient safety, and population medicine.

    PubMed

    Dysinger, Wayne S; Pappas, James M

    2011-10-01

    Quality improvement and population medicine are skills that are increasingly important for physicians to possess. Methods to achieve foundational acquisition of these skills in medical school have not been well described in the past. The primary goal of this project is to provide hands-on, experiential learning in full-cycle population-based care. A description is given of a 4-week, team-based, rapid-cycle quality improvement project embedded in a required fourth-year medical school rotation. Over the course of 4 years a nonspecialty generic Ambulatory Care rotation was converted to a population-based learning rotation. For the last 3 years this rotation has required students to participate in teams of three to four students to assess, plan, implement, and evaluate a quality improvement project. Between 2008 and 2010 a total of 510 students completed the rotation. During this time the project component of the rotation received a 53% average rating of "excellent" or "above average." Qualitative evaluation indicates the project to be an acceptable and worthwhile educational experience for medical students, adding new insights and occasionally career-changing perspectives. Although experiential team-based quality improvement projects are a new format for learning in the medical school environment, it can be implemented in a format that is acceptable and beneficial to future physicians and healthcare systems. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Detecting a rotation in the ɛ Eridani debris disc

    NASA Astrophysics Data System (ADS)

    Poulton, C. J.; Greaves, J. S.; Collier Cameron, A.

    2006-10-01

    The evidence for a rotation of the ɛ Eridani debris disc is examined. Data at 850-μm wavelength were previously obtained using the Submillimetre Common User Bolometer Array (SCUBA) over periods of 1997-1998 and 2000-2002. By χ2 fitting after shift and rotation operations, images from these two epochs were compared to recover proper motion and orbital motion of the disc. The same procedures were then performed on simulated images to estimate the accuracy of the results. Minima in the χ2 plots indicate a motion of the disc of approximately 0.6 arcsec per year in the direction of the star's proper motion. This underestimates the true value of 1 arcsec per year, implying that some of the structure in the disc region is not associated with ɛ Eridani, originating instead from background galaxies. From the χ2 fitting for orbital motion, a counterclockwise rotation rate of per year is deduced. Comparisons with simulated data in which the disc is not rotating show that noise and background galaxies result in approximately Gaussian fluctuations with a standard deviation of per year. Thus, counterclockwise rotation of disc features is supported at approximately a 2σ level, after a 4-yr time difference. This rate is faster than the Keplerian rate of per year for features at ~65 au from the star, suggesting their motion is tracking a planet inside the dust ring. Future observations with SCUBA-2 can rule out no rotation of the ɛ Eridani dust clumps with ~4σ confidence. Assuming a rate of about per year, the rotation of the features after a 10-yr period could be shown to be >=1° per year at the 3σ level.

  16. Constraints on Titan rotation from Cassini radar

    NASA Astrophysics Data System (ADS)

    Bills, B. G.; Stiles, B. W.; Kirk, R. L.

    2014-12-01

    We give an update on efforts to model the rotation of Titan, subject to constraints from Cassini radar observations. The data we are currently using includes 670 tie-points, each of which is a pair of inertial positions of a single surface point, relative to the center of mass of Titan, and the corresponding pair of observation times. The positional accuracy is of order 1 km, in each Cartesian component. A reasonably good fit to the observations is obtained with a simple model which has a fixed spin pole and a rotation rate which is a sum of a constant value and a single sinusoidal oscillation. A better fit is obtained if we insist that Titan should behave as a synchronous rotator, in the dynamical sense of keeping its axis of least inertia oriented toward Saturn. At the level of accuracy required to fit the Cassini radar data, synchronous rotation is notably different than having a uniform rate of rotation. In this case, we need to model time variations in the orbital mean longitude, which is the longitude of periapse, plus the mean anomaly. That angle varies on a wide range of times scales, including Titan's periapse precession period (703 years), Saturn's heliocentric orbital period (29.47 years), perturbations from relatively large satellites Iapetus (79.3 days), and a 4:3 mean motion resonant interaction with Hyperion (640 and 6850 days), and a linear increase at Titan's mean orbital period (15.9455 day). Our rotation model for Titan has 4 free parameters. Two of them specify the orientation of the fixed spin pole, and the other two are the effective free libration period and viscous damping time. Our dynamical model includes a damped forced longitudinal libration, in which gravitational torques attempt to align the axis of least inertia with the instantaneous direction to Saturn. For a rigid tri-axial body, with Titan's moments of inertia, the free oscillation period for longitudinal librations would be 850 days. For a decoupled elastic shell, the effective

  17. Lightcurve and Rotation Period Determinations for 1599 Giomus and 1888 Zu Chong-Zhi

    NASA Astrophysics Data System (ADS)

    Foylan, Mike; Rowe, Basil; Smith, Kevin Stephen

    2018-04-01

    Collaborative CCD photometric observations of mainbelt asteroids 1599 Giomus (1950 WA) and 1888 Zu Chong-Zhi (1964 VO1) were acquired during 2017 November and December. A rotation period of 9.53 ± 0.03 h and amplitude of A = 0.06 ± 0.05 mag were determined for 1599 Giomus and 11.053 ± 0.003 h and amplitude of A = 0.56 ± 0.05 mag were determined for 1888 Zu Chong-Zhi.

  18. Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Asadollah

    2010-06-01

    The interface behaviour between infinite extended narrow granular layer and bounding structure is numerically investigated using finite element method. The micro-polar (Cosserat) continuum approach within the framework of elasto-plasticity is employed to remove the numerical difficulties caused by strain-softening of materials in classical continuum mechanics. Mechanical properties of cohesionless granular soil are described with Lade's model enhanced with polar terms including Cosserat rotations, curvatures and couple stresses via mean grain diameter as the internal length. The main attention of paper is laid on the influence of spatial periodic fluctuation of rotation resistance of soil particles interlocked with the surface of bounding structure on evolution and location of shear band developed inside granular body. The finite element results demonstrate that the location and evolution of shear localization in granular body is strongly affected by prescribed non-uniform micro-polar kinematic boundary conditions along the interface.

  19. Rotation Period Determinations for 27 Euterpe, 296 Phaetusa and 672 Astarte, and a Note on 65 Cybele

    NASA Astrophysics Data System (ADS)

    Pilcher, Frederick

    2011-01-01

    Synodic rotation periods and amplitudes have been found for 27 Euterpe 10.407 ± 0.001 h, 0.16 ± 0.02 mag; 65 Cybele no period found, 0.01 ± 0.01 mag; 296 Phaetusa 4.5385 ± 0.0001 h, maximum 0.51 ± 0.03 mag; 672 Astarte 22.572 ± 0.002 h, 0.15 ± 0.02 mag.

  20. Refined Rotational Period, Pole Solution, and Shape Model for (3200) Phaethon

    NASA Astrophysics Data System (ADS)

    Ansdell, Megan; Meech, Karen J.; Hainaut, Olivier; Buie, Marc W.; Kaluna, Heather; Bauer, James; Dundon, Luke

    2014-09-01

    (3200) Phaethon exhibits both comet- and asteroid-like properties, suggesting it could be a rare transitional object such as a dormant comet or previously volatile-rich asteroid. This justifies detailed study of (3200) Phaethon's physical properties as a better understanding of asteroid-comet transition objects can provide insight into minor body evolution. We therefore acquired time series photometry of (3200) Phaethon over 15 nights from 1994 to 2013, primarily using the Tektronix 2048 × 2048 pixel CCD on the University of Hawaii 2.2 m telescope. We utilized light curve inversion to (1) refine (3200) Phaethon's rotational period to P = 3.6032 ± 0.0008 hr; (2) estimate a rotational pole orientation of λ = +85° ± 13° and β = -20° ± 10° and (3) derive a shape model. We also used our extensive light curve data set to estimate the slope parameter of (3200) Phaethon's phase curve as G ~ 0.06, consistent with C-type asteroids. We discuss how this highly oblique pole orientation with a negative ecliptic latitude supports previous evidence for (3200) Phaethon's origin in the inner main asteroid belt as well as the potential for deeply buried volatiles fueling impulsive yet rare cometary outbursts.

  1. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  2. Analysis of the rotation period of asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger - search for the YORP effect

    NASA Astrophysics Data System (ADS)

    Ďurech, J.; Vokrouhlický, D.; Baransky, A. R.; Breiter, S.; Burkhonov, O. A.; Cooney, W.; Fuller, V.; Gaftonyuk, N. M.; Gross, J.; Inasaridze, R. Ya.; Kaasalainen, M.; Krugly, Yu. N.; Kvaratshelia, O. I.; Litvinenko, E. A.; Macomber, B.; Marchis, F.; Molotov, I. E.; Oey, J.; Polishook, D.; Pollock, J.; Pravec, P.; Sárneczky, K.; Shevchenko, V. G.; Slyusarev, I.; Stephens, R.; Szabó, Gy.; Terrell, D.; Vachier, F.; Vanderplate, Z.; Viikinkoski, M.; Warner, B. D.

    2012-11-01

    Context. The spin state of small asteroids can change on a long timescale by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, the net torque that arises from anisotropically scattered sunlight and proper thermal radiation from an irregularly-shaped asteroid. The secular change in the rotation period caused by the YORP effect can be detected by analysis of asteroid photometric lightcurves. Aims: We analyzed photometric lightcurves of near-Earth asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger with the aim to detect possible deviations from the constant rotation caused by the YORP effect. Methods: We carried out new photometric observations of the three asteroids, combined the new lightcurves with archived data, and used the lightcurve inversion method to model the asteroid shape, pole direction, and rotation rate. The YORP effect was modeled as a linear change in the rotation rate in time dω/dt. Values of dω/dt derived from observations were compared with the values predicted by theory. Results: We derived physical models for all three asteroids. We had to model Eger as a nonconvex body because the convex model failed to fit the lightcurves observed at high phase angles. We probably detected the acceleration of the rotation rate of Eger dω/dt = (1.4 ± 0.6) × 10-8 rad d-2 (3σ error), which corresponds to a decrease in the rotation period by 4.2 ms yr-1. The photometry of Cerberus and Ra-Shalom was consistent with a constant-period model, and no secular change in the spin rate was detected. We could only constrain maximum values of |dω/dt| < 8 × 10-9 rad d-2 for Cerberus, and |dω/dt| < 3 × 10-8 rad d-2 for Ra-Shalom. Tables 1-3 are available in electronic form at http://www.aanda.org

  3. Soil microbial biomass and function are altered by 12 years of crop rotation

    NASA Astrophysics Data System (ADS)

    McDaniel, Marshall D.; Grandy, A. Stuart

    2016-11-01

    Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems

  4. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main

  5. Modified L'Episcopo tendon transfers for irreparable rotator cuff tears: 5-year follow-up.

    PubMed

    Gerhardt, Christian; Lehmann, Lars; Lichtenberg, Sven; Magosch, Peter; Habermeyer, Peter

    2010-06-01

    Patients with posterosuperior cuff tears lose functional external rotation of the shoulder. Latissimus dorsi and teres major transfer is performed to restore external rotation. Twenty patients with a mean age was 55.8 +/- 6 years underwent this procedure and were examined at averages of 24.7 (n = 17) and 70.6 (n = 13) months. Two patients did not improve presumably because of failure of the transfer. The Constant and Murley score increased from 55.6 to 90.4 after 2 years and to 87.9 after 5 years. The mean active flexion increased from 119.4 degrees to 169.3 degrees and reached 170 degrees after 5 years, and mean external rotation increased from 12 degrees to 35 degrees , finally reaching 23 degrees . The grade of cuff arthritis progressed from initially Grade 1 in 17% and Grade 2 in 28% to Grade 2 in 8%, Grade 3 in 69%, and Grade 4 in 15% at final followup. The acromiohumeral distance increased from 4.5 mm to 6 mm and decreased to 3.8 mm after 5 years. Electromyographic analysis showed activity during isometric internal and external rotation in the transferred muscle in all patients. The L'Episcopo procedure can restore shoulder function, but cuff arthropathy may progress. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  6. Surgical Treatment of Rotator Cuff Tears After 65 Years of Age: A Systematic Review.

    PubMed

    Silva, Bruno Mota; Cartucho, António; Sarmento, Marco; Moura, Nuno

    2017-04-28

    The objective of this study was to analyze current evidence regarding surgical management of rotator cuff tears in patients of 65 years of age and above. Our hypothesis was that surgical repair of rotator cuff tears, in patients older than 65 years, conveys good outcome scores. We have not found a similar systematic review in current literature. Medline®, PubMed, Scopus, and the Cochrane Register of Controlled Trials were searched from January 1999 unto December 2015 for studies, regardless of language, including the words 'rotator cuff' and '65 years' or '70 years'. Inclusion criteria were studies (level I to IV) that reported clinical outcomes in patients older than 65 years, having undertaken surgical repair of a symptomatic rotator cuff tears. Arthroscopic, mini open and open techniques were included. Exclusion criteria were: studies with patients younger than 65 years, studies that did not use validated outcome evaluation scores as primary assessment tools and those with follow up under one year. This work followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines. Data abstracted included patient demographics, tear pattern, surgical procedures, clinical and repair results. Outcome scores were converted to percentages, allowing comparison of data between studies. After deep analysis, 14 studies met the inclusion criteria: 11 level IV studies, 1 level III study and 2 level II studies. Seven studies found statistically significant outcome improvements between pre and postoperative evaluations. All studies reported good or excellent surgical outcomes. Better results would probably be achieved if all studies had rigorous and homogeneous patient selection criteria, but the fact is, that even though this was not the case, the clinical scores remained favorable, and with statistically significant outcome improvement in all studies with prospectively collected data. Based on current literature, rotator cuff repair

  7. Temporal Variation of the Rotation of the Solar Mean Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xie, J. L.; Shi, X. J.; Xu, J. C.

    2017-04-01

    Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.

  8. Climate-Rotation Feedback on Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1999-01-01

    A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.

  9. CN Jet Morphology and the Very Rapidly Changing Rotation Period of Comet 41P/Tuttle-Giacobini-Kresak

    NASA Astrophysics Data System (ADS)

    Schleicher, David G.; Eisner, Nora; Knight, Matthew M.; Thirouin, Audrey

    2017-10-01

    In the first half of 2017, Comet 41P/Tuttle-Giacobini-Kresak had its best apparition since its first discovery in 1858, remaining within 0.15 AU of Earth for three weeks and within 0.20 AU over a two month interval. These circumstances allowed us to study its coma morphology in search of possible jets, whose appearance and motion as a function of time would yield the rotation period and, with appropriate modeling, the pole orientation of the nucleus and source location(s). Imaging was obtained on a total of 45 nights between February 16 and July 2, using Lowell Observatory's 4.3-m Discovery Channel Telescope, the Hall 1.1-m telescope, and the robotic 0.8-m telescope. All narrowband CN images exhibit either one or two gas jets, and on most nights both jets appear as partial spirals with a clockwise rotation. Only a slow evolution of the jet morphology took place from mid-March to early June, presumably due to viewing geometry changes coupled with seasonal changes. Our coverage in late March was sufficient to rule out aliases of the rotation period, and further revealed a rapidly increasing period from about 24 hr to about 27 hr at the end of the month (Knight et al. 2017, CBET 4377). This rate of increase is roughly consistent with the solution of 19.9 hr found by Farnham et al. (2017, CBET 4375) in early March. Images from April 15 to May 4 yield an accelerating change in periods, passing 48 hr approximately on April 28. This is the fastest rate of change ever measured for a comet nucleus. These and other results, including those from Monte Carlo jet modeling just begun by us, will be presented.These studies were supported by NASA Planetary Astronomy grant NNX14AG81G and the Marcus Cometary Research Fund.

  10. Measurement of the Earth's rotation: 720 BC to AD 2015

    NASA Astrophysics Data System (ADS)

    Stephenson, F. R.; Morrison, L. V.; Hohenkerk, C. Y.

    2016-12-01

    New compilations of records of ancient and medieval eclipses in the period 720 BC to AD 1600, and of lunar occultations of stars in AD 1600-2015, are analysed to investigate variations in the Earth's rate of rotation. It is found that the rate of rotation departs from uniformity, such that the change in the length of the mean solar day (lod) increases at an average rate of +1.8 ms per century. This is significantly less than the rate predicted on the basis of tidal friction, which is +2.3 ms per century. Besides this linear change in the lod, there are fluctuations about this trend on time scales of decades to centuries. A power spectral density analysis of fluctuations in the range 2-30 years follows a power law with exponent -1.3, and there is evidence of increased power at a period of 6 years. There is some indication of an oscillation in the lod with a period of roughly 1500 years. Our measurements of the Earth's rotation for the period 720 BC to AD 2015 set firm boundaries for future work on post-glacial rebound and core-mantle coupling which are invoked to explain the departures from tidal friction.

  11. Postoperative stiff shoulder after open rotator cuff repair: a 3- to 20-year follow-up study.

    PubMed

    Vastamäki, H; Vastamäki, M

    2014-12-01

    Stiffness after a rotator cuff tear is common. So is stiffness after an arthroscopic rotator cuff repair. In the literature, however, postoperative restriction of passive range of motion after open rotator cuff repair in shoulders with free passive range of motion at surgery has seldom been recognized. We hypothesize that this postoperative stiffness is more frequent than recognized and slows the primary postoperative healing after a rotator cuff reconstruction. We wondered how common is postoperative restriction of both active and passive range of motion after open rotator cuff repair in shoulders with free passive preoperative range of motion, how it recovers, and whether this condition influences short- and long-term results of surgery. We also explored factors predicting postoperative shoulder stiffness. We retrospectively identified 103 postoperative stiff shoulders among 416 consecutive open rotator cuff repairs, evaluating incidence and duration of stiffness, short-term clinical results and long-term range of motion, pain relief, shoulder strength, and functional results 3-20 (mean 8.7) years after surgery in 56 patients. The incidence of postoperative shoulder stiffness was 20%. It delayed primary postoperative healing by 3-6 months and resolved during a mean 6.3 months postoperatively. External rotation resolved first, corresponding to that of the controls at 3 months; flexion and abduction took less than 1 year after surgery. The mean summarized range of motion (flexion + abduction + external rotation) increased as high as 93% of the controls' range of motion by 6 months and 100% by 1 year. Flexion, abduction, and internal rotation improved to the level of the contralateral shoulders as did pain, strength, and function. Age at surgery and condition of the biceps tendon were related to postoperative stiffness. Postoperative stiff shoulder after open rotator cuff repair is a common complication resolving in 6-12 months with good long-term results. © The

  12. Effects of the Tongue-in-Groove Maneuver on Nasal Tip Rotation.

    PubMed

    Antunes, Marcelo B; Quatela, Vito C

    2018-03-27

    Changes in nasal tip rotation is a very common maneuver performed during rhinoplasty. Among the many techniques used to achieve this goal is the tongue-in-groove (TIG). This study addresses the long-term effect of the TIG on the nasal tip rotation 1 year after rhinoplasty. The authors prospectively identified patients who were submitted to a rhinoplasty with a TIG maneuver over a period of 1 year. The angle of rotation was measured along the nostril axis angle. The data was analyzed using the t-test and a linear regression model. Seventeen patients were included. The average preoperative tip rotation was 93.95° (SD, 3.12°). Immediate postoperative tip rotation averaged 114.47° (SD, 3.79°). At the 1-year follow-up appointment, the tip rotation averaged 106.55° (SD, 3.54°). There was a significant loss of rotation at the 1-year postoperative visit (p<0.0001), with an average loss of 7.9° (SD, 3.25°), which amounted to 6.8%. The preoperative rotation didn't affect the amount of loss of rotation (p=0.04). It can be estimated that, for every degree of rotation that is changed at surgery it can be expected to lose 0.35 degrees over the first year. TIG is a more dependable technique than the ones that rely on healing and contraction to obtain rotation. Our data demonstrated a significant loss of rotation during the first year. This suggests that the surgeon needs to slightly overcorrect the tip rotation to account for this loss.

  13. [What do pediatricians and pediatric residents think of the rotation into Primary Health Care].

    PubMed

    García Puga, J M; Villazán Pérez, C; Domínguez Aurrecoechea, B; Ugarte Líbano, R

    2009-05-01

    Since 2007, on a mandatory, pediatric residents (PR) have been obliged to rotate into primary health care centers for 3 months. On disagreeing with the type of rotation proposed, the teaching group of the Spanish Primary Care Pediatrics Association (AEPap) was raised to find out the views of Hospital Pediatricians (PH), Pediatrics Health Care (PHC) and PR in terms of need, length, year in which it should take place and rotation expectations. Cross-sectional study using a 13 question validated questionnaire, which was distributed to the various AEPap associations, and completed via the website. The data was processed with SPSS 12.0 and analysed using the Chi(2) test. A total of 323 surveys from 13 Autonomous Regions were analysed, of which 56% were answered by PHC, 38.7% by PR and 5.3% by PH, 67.5% of which were women, with two age groups; one under 30 years old and the other between 41-50 years. Of the participants, 99% believed it was necessary to rotate, with a duration of 6 months proposed by the PHC (73.3%) while PR considered 1 or 2 months (56.9%), (P<0001), preferably performed in two periods (65.1% of PHC). Of the PHC, 75.5% believed that the PR who were going to work in Primary Care should work 6 months more in their last year of residency (P<0001). Of the PR, 63,9% hoped to improve their training in the rotation into Primary Health Care. The need to rotate into Primary Health Care was almost unanimous and three months are insufficient for the majority of respondents and PHC believe it should be 6 months. There appears to be two preferences for rotation: in a period in any year of residence or in two periods. Those PR who are thinking of working in a Primary Health Care should rotate 6 months during the fourth year of residency. The PR expect rotation to improve their training.

  14. VizieR Online Data Catalog: Rotation periods of asteroids using iPTF (Chang+, 2016)

    NASA Astrophysics Data System (ADS)

    Chang, C.-K.; Lin, H.-W.; Ip, W.-H.; Prince, T. A.; Kulkarni, S. R.; Levitan, D.; Laher, R.; Surace, J.

    2017-01-01

    To explore the transient and variable sky synoptically, the PTF/iPTF employs the Palomar 48-inch Oschin Schmidt Telescope to create a field of view of ~7.26deg2 and a pixel scale of 1.01". The available filters include the Mould-R band, with which most exposures were taken, Gunn-g', and two different Hα-bands. The exposure time is fixed at 60 seconds, which can reach a median limiting magnitude of R~21mag at the 5σ level. In order to look for large super-fast rotators, we conducted five asteroid rotation-period surveys during 2014 October 29-31 and November 10-13, and 2015 January 18-19, February 20-21 and 25-26. Each survey continuously scanned six consecutive PTF fields over the ecliptic plane in the R-band, with a cadence of 10min. We ended up with a total sky coverage of ~188deg2. (3 data files).

  15. GJ 1214: Rotation period, starspots, and uncertainty on the optical slope of the transmission spectrum

    NASA Astrophysics Data System (ADS)

    Mallonn, M.; Herrero, E.; Juvan, I. G.; Essen, C. von; Rosich, A.; Ribas, I.; Granzer, T.; Alexoudi, X.; Strassmeier, K. G.

    2018-06-01

    Aims: Brightness inhomogeneities in the stellar photosphere (dark spots or bright regions) affect the measurements of the planetary transmission spectrum. To investigate the star spots of the M dwarf GJ 1214, we conducted a multicolor photometric monitoring from 2012 to 2016. Methods: The time-series photometry was analyzed with the light curve inversion tool StarSim. Using the derived stellar surface properties from the light curve inversion, we modeled the impact of the star spots when unocculted by the transiting planet. We compared the photometric variability of GJ 1214 to published results of mid- to late M dwarfs from the MEarth sample. Results: The measured variability shows a periodicity of 125 ± 5 days, which we interpret as the signature of the stellar rotation period. This value overrules previous suggestions of a significantly shorter stellar rotation period. A light curve inversion of the monitoring data yields an estimation of the flux dimming of a permanent spot filling factor not contributing to the photometric variability, a temperature contrast of the spots of 370 K and persistent active longitudes. The derived surface maps over all five seasons were used to estimate the influence of the star spots on the transmission spectrum of the planet from 400 to 2000 nm. The monitoring data presented here do not support a recent interpretation of a measured transmission spectrum of GJ 1214b as to be caused by bright regions in the stellar photosphere. Instead, we list arguments as to why the effect of dark spots likely dominated over bright regions in the period of our monitoring. Furthermore, our photometry proves an increase in variability over at least four years, indicative for a cyclic activity behavior. The age of GJ 1214 is likely between 6 and 10 Gyr. Conclusions: The long-term photometry allows for a correction of unocculted spots. For an active star such as GJ 1214, there remains a degeneracy between occulted spots and the transit parameters used

  16. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Sterl, Sebastian; Li, Hui-Min; Zhong, Jin-Qiang

    2016-12-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ ˙(t ) and thermal amplitude δ (t ) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of θ ˙(t ) . We also focus on the influence of modulated rotation rates on the frequency of occurrence η of stochastic cessation or reorientation events, and on the interplay between such events and the periodically modulated response of θ ˙(t ) . Here we identify a mechanism by which η can be amplified by the modulated response, and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and we extend this approach to make predictions for the occurrence of cessation events and the probability distributions of θ ˙(t ) and δ (t ) during different phases of a modulation cycle, based on an adiabatic approach that treats each phase separately. Last, we show that such periodic forcing has consequences beyond influencing LSC dynamics, by investigating how it can modify the heat transport even under conditions where the Ekman pumping effect is predominant and strong enhancement of heat transport occurs. We identify phase and amplitude responses of the heat transport, and we show how increased modulations influence the average Nusselt number.

  17. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leibowitz, Elia M.; Formiggini, Liliana, E-mail: elia@astro.tau.ac.il

    2015-08-15

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers ofmore » the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems.« less

  18. Efect of organic barley-based crop rotations on soil nutrient balance in a semiarid environment for a 16-year experiment

    NASA Astrophysics Data System (ADS)

    Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen

    2013-04-01

    In natural ecosystems with no percolating moisture regime, the biogeochemical cycle can be considered a closed system because the nutrients extracted by the roots will be returned to the soil after a certain time. In organic farming, a cycle model as close as possible is taken as a guideline, but we have to consider that unlike natural ecosystems, where most of the nutrients remain in the cycle, the agrosystems are open cycles. To achieve a sustainable fertility of the soil, the soil nutrient levels, the extractions according to the expected crop yields and the export refunds in the form of crop residues, biological nitrogen fixation, green manure or compost will have to be determined. Nutrient balance should be closed with external inputs, always avoiding to be a source of negative impacts on the environment. In organic farming without exogenous inputs, the effect of the crop rotations is much more noticeable in the nutrient balance than in the conventional farming fields which every year receive inputs of nutrients (nitrogen, phosphorus and potassium) in the form of chemical fertilizers. The most extractive crop rotations are those that produce a greater decrease in soil reserves, and in these cases exogenous inputs to maintain sustainability should be considered; however, in less extractive crop rotations, extractions can be restored by the edaphogenesis processes. In this work, soil organic matter, phosphorus and potassium balances were analyzed in different organic barley-based crop rotations (barley monoculture [b-b] and in rotation with vetch for hay production [B-Vh], vetch as green manure [B-Vm], sunflower [B-S], chickpea [B-C] and fallow [B-F]) in clay soils under a semiarid environment ("La Higueruela" Experimental Farm, Santa Olalla, Toledo, central Spain) over a 16 year period. Additionally, barley monoculture in conventional farming [B-B] was included. In the organic system, the fertilization involved the barley straw in all rotations, the sunflower

  19. Chaotic rotation of Hyperion?

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  20. Well-behaved dynamics in a dissipative nonideal periodically kicked rotator.

    PubMed

    Chacón, R; Martínez García-Hoz, A

    2003-12-01

    Well-behaved dynamical properties are found in a dissipative kicked rotator subjected to a periodic string of asymmetric pulses of finite amplitude and width. The stability boundaries of the equilibrium are determined to arbitrary approximation for trigonometric pulses by means of circular harmonic balance, and to first approximation for general elliptic pulses by means of an elliptic harmonic balance method. The bifurcation behavior at the stability boundaries is determined numerically. We show how the extension of the instability region of the equilibrium in pulse parameter space reaches a maximum as the pulse width is varied. We also characterize the dependence of the mean duration of the transients to the equilibrium on the pulse width. The evolution of the basins of attraction of chaotic attractors when solely the pulse width is varied is characterized numerically. Finally, we show that the order-chaos route when solely the width of the pulses is altered appears to be especially rich, including different types of crises. The mechanism underlying these reshaping-induced crises is discussed with the aid of a two-dimensional map.

  1. Hydrodynamic interactions between a self-rotation rotator and passive particles

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenyu; Lin, Jian-Zhong; Ku, Xiaoke

    2017-10-01

    In this paper, we numerically investigate the hydrodynamic interaction between a self-rotation rotator and passive particles in a two-dimensional confined cavity at two typical Reynolds numbers according to the different flow features. Both the fluid-particle interaction and particle-particle interaction through fluid media are taken into consideration. The results show that from the case of a rotator and one passive particle to the case of a rotator and two passive particles, the system becomes much more complex because the relative displacement between the rotator and the passive particles and the velocity of passive particles are strongly dependent on the Reynolds number and the initial position of passive particles. For the system of two particles, the passive particle gradually departs from the rotator although its relative displacement to the rotator exhibits a periodic oscillation at the lower Reynolds number. Furthermore, the relative distance between the two particles and the rotator's rotational frequency are responsible for the oscillation amplitude and frequency of the passive particle's velocity. For the system of three particles, the passive particle's velocities exhibit a superposition of a large amplitude oscillation and a small amplitude oscillation at the lower Reynolds number, and the large amplitude oscillation will disappear at the higher Reynolds number. The change of the included angle of the two passive particles is dependent on the initial positions of the passive particles at the lower Reynolds number, whereas the included angle of the two passive particles finally approaches a fixed value at the higher Reynolds number. It is interesting that the two passive particles periodically approach and depart from each other when the included angle is not equal to π, while all the three particles (including the rotator) keep the positions in a straight line when the included angle is equal to π because the interference between two passive

  2. The value of a core clinical rotation in urology for medical students.

    PubMed

    Patel, Premal; Nayak, Jasmir G; McGregor, Thomas B

    2015-01-01

    In 2013, our institution underwent a change to the undergraduate medical curriculum whereby a clinical urology rotation became mandatory. In this paper, we evaluated the perceived utility and value of this change in the core curriculum. Third year medical students, required to complete a mandatory 1-week clinical urology rotation, were asked to complete a survey before and after their rotation. Fourth year medical students, not required to complete this rotation, were also asked to complete a questionnaire. Chi-squared and Fisher's exact test were used for data analysis. In total, 108 third year students rotated through urology during the study period. Of these, 66 (61%) completed the pre-rotation survey and 54 (50%) completed the post-rotation survey. In total, there were 110 fourth year students. Of these, 44 (40%) completed the questionnaire. After completing their mandatory rotations, students felt more comfortable managing and investigating common urological problems, such as hematuria and renal colic. Students felt they had a better understanding of how to insert a Foley catheter and felt comfortable independently inserting a Foley catheter. Importantly, students felt they knew when to consult urology and were also more likely to consider a career in urology. Compared to fourth year students, third year students felt urology was an important component to a family medicine practice and felt they had a better understanding of when to consult urology. The introduction of a mandatory urology rotation for undergraduate medical students leads to a perceived improvement in fundamental urological knowledge and skill set of rotating students. This mandatory rotation provides a valuable experience that validates its inclusion.

  3. The K2 M67 Study: Establishing the Limits of Stellar Rotation Period Measurements in M67 with K2 Campaign 5 Data

    NASA Astrophysics Data System (ADS)

    Esselstein, Rebecca; Aigrain, Suzanne; Vanderburg, Andrew; Smith, Jeffrey C.; Meibom, Soren; Van Saders, Jennifer; Mathieu, Robert

    2018-06-01

    The open cluster M67 offers a unique opportunity to measure rotation periods for solar-age stars across a range of masses, potentially filling a critical gap in the understanding of angular momentum loss in older main sequence stars. The observation of M67 by NASA K2 Campaign 5 provided light curves with high enough precision to make this task possible, albeit challenging, as the pointing instability, 75 day observation window, crowded field, and typically low-amplitude signals mean that determining accurate rotation periods on the order of 25–30 days is inherently difficult. Lingering, non-astrophysical signals with power at ≥25 days found in a set of Campaign 5 A and F stars compounds the problem. To achieve a quantitative understanding of the best-case scenario limits for reliable period detection imposed by these inconveniences, we embarked on a comprehensive set of injection tests, injecting 120,000 sinusoidal signals with periods ranging from 5 to 35 days and amplitudes from 0.05% to 3.0% into real Campaign 5 M67 light curves processed using two different pipelines. We attempted to recover the signals using a normalized version of the Lomb–Scargle periodogram and setting a detection threshold. We find that, while the reliability of detected periods is high, the completeness (sensitivity) drops rapidly with increasing period and decreasing amplitude, maxing at a 15% recovery rate for the solar case (i.e., 25 day period, 0.1% amplitude). This study highlights the need for caution in determining M67 rotation periods from Campaign 5 data, but this can be extended to other clusters observed by K2 (and soon, TESS).

  4. Outcomes of Arthroscopic Rotator Cuff Repair in Patients Who Are 70 Years of Age or Older Versus Under 70 Years of Age: A Sex- and Tear Size-Matched Case-Control Study.

    PubMed

    Gwark, Ji-Yong; Sung, Chang-Meen; Na, Jae-Boem; Park, Hyung Bin

    2018-05-19

    To compare the structural and clinical outcomes after arthroscopic rotator cuff repair (ARCR) of a case group aged 70 and above with those of a control group younger than 70, with the 2 groups matched for sex and tear size. The case group, comprising 53 patients 70 or older, and the control group, comprising 159 patients younger than 70, all received ARCR to 1 shoulder with symptomatic full-thickness rotator cuff tear. The case and the control subjects, who were matched for sex and tear size to minimize bias related to tendon healing, received ARCR during the same period. The mean age was 71.8 ± 2.6 years in the case group and 59.3 ± 7.1 years in the control group. The minimum follow-up period was 1 year in both groups. Cuff integrity was evaluated using ultrasonography. Structural and clinical outcomes of the 2 groups were compared. Regarding structural outcomes, the complete healing, partial-thickness retear, and full-thickness retear rates were 66% (35/53), 15% (8/53), and 19% (10/53) in the case group, and 68% (108/159), 19% (30/159), and 13% (21/159), respectively, in the control group. The 2 groups had no significantly different retear rates (P = .52). Regarding clinical outcomes, the mean improvements in range of motion, pain, muscle strength, and age- and sex-matched Constant scores were not significantly different between the 2 groups (P > .37). The preoperative tear size was significantly associated with retear in both studied groups (P = .02). The clinical and structural outcomes of ARCR in patients 70 or older with symptomatic full-thickness rotator cuff tear are comparable with those in patients younger than 70 with at least 1-year follow-up. Preoperative tear size, a biological factor, is a strong predictor for retear. Level III, a retrospective comparative (case-control) study. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. KEPLER RAPIDLY ROTATING GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surfacemore » rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.« less

  6. Dynamics of molecular rotors confined in two dimensions: transition from a 2D rotational glass to a 2D rotational fluid in a periodic mesoporous organosilica.

    PubMed

    Vogelsberg, Cortnie S; Bracco, Silvia; Beretta, Mario; Comotti, Angiolina; Sozzani, Piero; Garcia-Garibay, Miguel A

    2012-02-09

    The motional behavior of p-phenylene-d(4) rotators confined within the 2D layers of a hierarchically ordered periodic mesoporous p-divinylbenzenesilica has been elucidated to evaluate the effects of reduced dimensionality on the engineered dynamics of artificial molecular machines. The hybrid mesoporous material, characterized by a honeycomb lattice structure, has arrays of alternating p-divinylbenzene rotors and siloxane layers forming the molecularly ordered walls of the mesoscopic channels. The p-divinylbenzene rotors are strongly anchored between two adjacent siloxane sheets, so that the p-phenylene rotators are unable to experience translational diffusion and are allowed to rotate about only one fixed axis. Variable-temperature (2)H NMR experiments revealed that the p-phenylene rotators undergo an exchange process between sites related by 180° and a non-Arrhenius temperature dependence of the dynamics, with reorientational rates ranging from 10(3) to 10(8) Hz between 215 to 305 K. The regime of motion changes rapidly at about 280 K indicating the occurrence of a dynamical transition. The transition was also recognized by a steep change in the heat capacity at constant pressure. As a result of the robust lamellar architecture comprising the pore walls, the orientational dynamic disorder related to the phase transition is only realized in two dimensions within the layers, that is in the plane perpendicular to the channel axis. Thus, the aligned rotors that form the organic layers exhibit unique anisotropic dynamical properties as a result of the architecture's reduced dimensionality. The dynamical disorder restricted to two dimensions constitutes a highly mobile fluidlike rotational phase at room temperature, which upon cooling undergoes a transition to a more rigid glasslike phase. Activation energies of 5.9 and 9.5 kcal/mol respectively have been measured for the two dynamical regimes of rotation. Collectively, our investigation has led to the discovery of an

  7. A Required Rotation in Clinical Laboratory Management for Pathology Residents: Five-Year Experience at Hofstra Northwell School of Medicine.

    PubMed

    Rishi, Arvind; Hoda, Syed T; Crawford, James M

    2016-01-01

    Leadership and management training during pathology residency have been identified repeatedly by employers as insufficient. A 1-month rotation in clinical laboratory management (CLM) was created for third-year pathology residents. We report on our experience and assess the value of this rotation. The rotation was one-half observational and one-half active. The observational component involved being a member of department and laboratory service line leadership, both at the departmental and institutional level. Observational participation enabled learning of both the content and principles of leadership and management activities. The active half of the rotation was performance of a project intended to advance the strategic trajectory of the department and laboratory service line. In our program that matriculates 4 residents per year, 20 residents participated from April 2010 through December 2015. Their projects either activated a new priority area or helped propel an existing strategic priority forward. Of the 16 resident graduates who had obtained their first employment or a fellowship position, 9 responded to an assessment survey. The majority of respondents (5/9) felt that the rotation significantly contributed to their ability to compete for a fellowship or their first employment position. The top reported benefits of the rotation included people management; communication with staff, departmental, and institutional leadership; and involvement in department and institutional meetings and task groups. Our 5-year experience demonstrates both the successful principles by which the CLM rotation can be established and the high value of this rotation to residency graduates.

  8. Motion correction in periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and turboprop MRI.

    PubMed

    Tamhane, Ashish A; Arfanakis, Konstantinos

    2009-07-01

    Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.

  9. Earth's rotation variations and earthquakes 2010-2011

    NASA Astrophysics Data System (ADS)

    Ostřihanský, L.

    2012-01-01

    In contrast to unsuccessful searching (lasting over 150 years) for correlation of earthquakes with biweekly tides, the author found correlation of earthquakes with sidereal 13.66 days Earth's rotation variations expressed as length of a day (LOD) measured daily by International Earth's Rotation Service. After short mention about earthquakes M 8.8 Denali Fault Alaska 3 November 2002 triggered on LOD maximum and M 9.1 Great Sumatra earthquake 26 December 2004 triggered on LOD minimum and the full Moon, the main object of this paper are earthquakes of period 2010-June 2011: M 7.0 Haiti (12 January 2010 on LOD minimum, M 8.8 Maule Chile 12 February 2010 on LOD maximum, map constructed on the Indian plate revealing 6 earthquakes from 7 on LOD minimum in Sumatra and Andaman Sea region, M 7.1 New Zealand Christchurch 9 September 2010 on LOD minimum and M 6.3 Christchurch 21 February 2011 on LOD maximum, and M 9.1 Japan near coast of Honshu 11 March 2011 on LOD minimum. It was found that LOD minimums coincide with full or new Moon only twice in a year in solstices. To prove that determined coincidences of earthquakes and LOD extremes stated above are not accidental events, histograms were constructed of earthquake occurrences and their position on LOD graph deeply in the past, in some cases from the time the IERS (International Earth's Rotation Service) started to measure the Earth's rotation variations in 1962. Evaluations of histograms and the Schuster's test have proven that majority of earthquakes are triggered in both Earth's rotation deceleration and acceleration. Because during these coincidences evident movements of lithosphere occur, among others measured by GPS, it is concluded that Earth's rotation variations effectively contribute to the lithospheric plates movement. Retrospective overview of past earthquakes revealed that the Great Sumatra earthquake 26 December 2004 had its equivalent in the shape of LOD graph, full Moon position, and character of aftershocks

  10. What happens to patients when we do not repair their cuff tears? Five-year rotator cuff quality-of-life index outcomes following nonoperative treatment of patients with full-thickness rotator cuff tears.

    PubMed

    Boorman, Richard S; More, Kristie D; Hollinshead, Robert M; Wiley, James P; Mohtadi, Nicholas G; Lo, Ian K Y; Brett, Kelly R

    2018-03-01

    The purpose of this study was to examine 5-year outcomes in a prospective cohort of patients previously enrolled in a nonoperative rotator cuff tear treatment program. Patients with chronic (>3 months), full-thickness rotator cuff tears (demonstrated on imaging) who were referred to 1 of 2 senior shoulder surgeons were enrolled in the study between October 2008 and September 2010. They participated in a comprehensive, nonoperative, home-based treatment program. After 3 months, the outcome in these patients was defined as "successful" or "failed." Patients in the successful group were essentially asymptomatic and did not require surgery. Patients in the failed group were symptomatic and consented to undergo surgical repair. All patients were followed up at 1 year, 2 years, and 5 or more years. At 5 or more years, all patients were contacted for follow-up; the response rate was 84%. Approximately 75% of patients remained successfully treated with nonoperative treatment at 5 years and reported a mean rotator cuff quality-of-life index score of 83 of 100 (SD, 16). Furthermore, between 2 and 5 years, only 3 patients who had previously been defined as having a successful outcome became more symptomatic and underwent surgical rotator cuff repair. Those in whom nonoperative treatment had failed and who underwent surgical repair had a mean rotator cuff quality-of-life index score of 89 (SD, 11) at 5-year follow-up. The operative and nonoperative groups at 5-year follow-up were not significantly different (P = .11). Nonoperative treatment is an effective and lasting option for many patients with a chronic, full-thickness rotator cuff tear. While some clinicians may argue that nonoperative treatment delays inevitable surgical repair, our study shows that patients can do very well over time. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, Courtney R.; Pinsonneault, Marc H., E-mail: epstein@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with amore » range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.« less

  12. Characteristics of Nitrogen and Phosphorus Effluent Load from a Paddy-field District Implementing Crop Rotation

    NASA Astrophysics Data System (ADS)

    Hama, Takehide; Aoki, Takeru; Osuga, Katsuyuki; Nakamura, Kimihito; Sugiyama, Sho; Kawashima, Shigeto

    Implementation of collective crop rotation in a paddy-field district may increase nutrients effluent load. We have investigated a paddy-field district implementing collective crop rotation of wheat and soybeans, measured temporal variations in nutrients concentration of drainage water and the amount of discharged water for consecutive three years, and estimated nutrients effluent load from the district during the irrigation and non-irrigation periods. As a result, the highest concentration of nutrients was observed during the non-irrigation period in every investigation year. It was shown that high nutrients concentration of drainage water during the non-irrigation period was caused by runoff of fertilizer applied to wheat because the peaks of nutrients concentration of drainage water were seen in rainy days after fertilizer application in the crop-rotation field. The effluent load during the non-irrigation periods was 16.9-22.1 kgN ha-1 (nitrogen) and 0.84-1.42 kgP ha-1 (phosphorus), which respectively accounted for 46-66% and 27-54% of annual nutrients effluent load.

  13. The rotation-activity relation in M dwarfs

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry L.; Calkins, Michael L.; Mink, Jessica D.

    2017-01-01

    Main sequence stars with masses below approximately 0.35 solar masses are fully-convective, and are expected to have a different type of magnetic dynamo than solar-type stars. Observationally, the dynamo mechanism can be probed through the relationship between rotation and magnetic activity, and the evolution of these properties. Though M dwarfs are the most common type of star in the galaxy, a lack of observational constraints at ages beyond 1 Gyr has hampered studies of the rotation-activity relation. To address this, we have made new measurements of rotation and magnetic activity in nearby, field-age M dwarfs. Combining our 386 rotation period measurements and 247 new optical spectra with data from the literature, we are able to probe the rotation-activity in M dwarfs with masses from 0.1 to 0.6 solar masses. We observe a threshold in the mass--period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. We confirm that the activity of rapidly rotating M dwarfs maintains a saturated value. We have measured rotation periods as long as 140 days, allowing us to probe the unsaturated regime in detail. Our data show a clear power-law decay in relative H-alpha luminosity as a function Rossby number. We discuss implications for the magnetic dynamo mechanism.We acknowledge funding from the National Science Foundation, the David and Lucile Packard Foundation Fellowship for Science and Engineering, and the John Templeton Foundation. E.R.N. acknowledges support from the NSF through a Graduate Research Fellowship and an Astronomy and Astrophysics Postdoctoral Fellowship.

  14. Rotator cuff problems

    MedlinePlus

    ... smooth layer) lining these tendons. A rotator cuff tear occurs when one of the tendons is torn ... Poor posture over many years Aging Rotator cuff tears TEARS Rotator cuff tears may occur in two ...

  15. Differential rotation in magnetic chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Krtička, J.; Paunzen, E.; Švanda, M.; Hummerich, S.; Bernhard, K.; Jagelka, M.; Janík, J.; Henry, G. W.; Shultz, M. E.

    2018-01-01

    Magnetic chemically peculiar (mCP) stars constitute about 10% of upper-main-sequence stars and are characterized by strong magnetic fields and abnormal photospheric abundances of some chemical elements. Most of them exhibit strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by a rigidly rotating main-sequence star with persistent surface structures and a stable global magnetic field. Long-term observations of the phase curves of these variations enable us to investigate possible surface differential rotation with unprecedented accuracy and reliability. The analysis of the phase curves in the best-observed mCP stars indicates that the location and the contrast of photometric and spectroscopic spots as well as the geometry of the magnetic field remain constant for at least many decades. The strict periodicity of mCP variables supports the concept that the outer layers of upper-main-sequence stars do not rotate differentially. However, there is a small, inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades. The period oscillations may reflect real changes in the angular velocity of outer layers of the stars which are anchored by their global magnetic fields. In CU Vir, V901 Ori, and perhaps BS Cir, the rotational period variation indicates the presence of vertical differential rotation; however, its exact nature has remained elusive until now. The incidence of mCP stars with variable rotational periods is currently investigated using a sample of fifty newly identified Kepler mCP stars.

  16. Partial rotator cuff repair and biceps tenotomy for the treatment of patients with massive cuff tears and retained overhead elevation: midterm outcomes with a minimum 5 years of follow-up.

    PubMed

    Cuff, Derek J; Pupello, Derek R; Santoni, Brandon G

    2016-11-01

    A subset of patients with massive irreparable rotator cuff tears present with retained overhead elevation and pain as their primary complaint. Our aim was to evaluate the outcomes of partial arthroscopic rotator cuff repair with biceps tenotomy and to report the failure rate of this procedure for patients with >5 years of follow-up. Thirty-four patients underwent partial rotator cuff repair and biceps tenotomy for treatment of a massive rotator cuff tear. Patients had preoperative active forward elevation >120° and no radiographic evidence of glenohumeral arthritis. Patients were followed up clinically and radiographically, and 28 patients had a minimum of 5 years of follow-up. Failure was defined as an American Shoulder and Elbow Surgeons score of <70, loss of active elevation >90°, or revision to reverse shoulder arthroplasty during the study period. Patients demonstrated improvements in average preoperative to postoperative American Shoulder and Elbow Surgeons scores (46.6 to 79.3 [P < .001]) and Simple Shoulder Test scores (5.7 to 9.1 [P < .001]) along with decrease in visual analog scale for pain scores (6.9 to 1.9 [P < .001]). No significant change in forward elevation (168° to 154° [P = .07]), external rotation (38° to 39° [P = 1.0]), or internal rotation (84% to 80% [P = 1.0]) was identified; 36% of patients had progression of the Hamada stage. The failure rate was 29%; 75% of patients were satisfied with their index procedure. Partial rotator cuff repair and biceps tenotomy for patients with massive irreparable rotator cuff tears with retained overhead elevation and pain as the primary complaint produced reasonable outcomes at midterm follow-up of at least 5 years. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. An acute care surgery rotation contributes significant general surgical operative volume to residency training compared with other rotations.

    PubMed

    Stanley, Matthew D; Davenport, Daniel L; Procter, Levi D; Perry, Jacob E; Kearney, Paul A; Bernard, Andrew C

    2011-03-01

    Surgical resident rotations on trauma services are criticized for little operative experience and heavy workloads. This has resulted in diminished interest in trauma surgery among surgical residents. Acute care surgery (ACS) combines trauma and emergency/elective general surgery, enhancing operative volume and balancing operative and nonoperative effort. We hypothesize that a mature ACS service provides significant operative experience. A retrospective review was performed of ACGME case logs of 14 graduates from a major, academic, Level I trauma center program during a 3-year period. Residency Review Committee index case volumes during the fourth and fifth years of postgraduate training (PGY-4 and PGY-5) ACS rotations were compared with other service rotations: in total and per resident week on service. Ten thousand six hundred fifty-four cases were analyzed for 14 graduates. Mean cases per resident was 432 ± 57 in PGY-4, 330 ± 40 in PGY-5, and 761 ± 67 for both years combined. Mean case volume on ACS for both years was 273 ± 44, which represented 35.8% (273 of 761) of the total experience and exceeded all other services. Residents averaged 8.9 cases per week on the ACS service, which exceeded all other services except private general surgery, gastrointestinal/minimally invasive surgery, and pediatric surgery rotations. Disproportionately more head/neck, small and large intestine, gastric, spleen, laparotomy, and hernia cases occurred on ACS than on other services. Residents gain a large operative experience on ACS. An ACS model is viable in training, provides valuable operative experience, and should not be considered a drain on resident effort. Valuable ACS rotation experiences as a resident may encourage graduates to pursue ACS as a career. Copyright © 2011 by Lippincott Williams & Wilkins

  18. VizieR Online Data Catalog: Rotational periods in Cygnus OB2 (Roquette+, 2017)

    NASA Astrophysics Data System (ADS)

    Roquette, J.; Bouvier, J.; Alencar, S. H. P.; Vaz, L. P. R.; Guarcello, M. G.

    2017-05-01

    Our observational dataset was obtained with the 3.8m United Kingdom Infra-Red Telescope (UKIRT), at Manua Kea, Hawaii, equipped with the Wide Field Camera (WFCAM); the programs were U/07A/H16 and U/07B/H60. Our complete dataset is composed of up to 115 nights observed using the J, H, and K filters (Hewett et al., 2006MNRAS.367..454H). The observations were carried during 2007 in two seasons: The first season comprises 43 observed nights between April 1 and May 21; the second season comprises 73 observed nights between August 4 and November 3. The two observational seasons span a total of 217 days. The exposures were short, 2 seconds in each filter. Rotational periods for 894 Cygnus OB2 candidate members. For each star, an internal ID, IDs in Guarcello et al. (2013, Cat. J/ApJ/773/135) and Guarcello et al. (2015, arXiv:1501.03761), coordinates, Stetson variability index, period, estimated mass and reddening, median JHK magnitudes, median JHK photometric errors, peak-to- peak JHK amplitudes, and Disk class according to Guarcello et al. (2013, Cat. J/ApJ/773/135) ate presented. (1 data file).

  19. Stratified rotating Boussinesq equations in geophysical fluid dynamics: Dynamic bifurcation and periodic solutions

    NASA Astrophysics Data System (ADS)

    Hsia, Chun-Hsiung; Ma, Tian; Wang, Shouhong

    2007-06-01

    The main objective of this article is to study the dynamics of the stratified rotating Boussinesq equations, which are a basic model in geophysical fluid dynamics. First, for the case where the Prandtl number is greater than 1, a complete stability and bifurcation analysis near the first critical Rayleigh number is carried out. Second, for the case where the Prandtl number is smaller than 1, the onset of the Hopf bifurcation near the first critical Rayleigh number is established, leading to the existence of nontrivial periodic solutions. The analysis is based on a newly developed bifurcation and stability theory for nonlinear dynamical systems (both finite and infinite dimensional) by two of the authors [T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Sciences Vol. 53 (World Scientific, Singapore, 2005)].

  20. Update to the conventional model for rotational deformation

    NASA Astrophysics Data System (ADS)

    Ries, J. C.; Desai, S.

    2017-12-01

    Rotational deformation (also called the "pole tide") is the deformation resulting from the centrifugal effect of polar motion on the solid earth and ocean, which manifests itself as variations in ocean heights, in the gravity field and in surface displacements. The model for rotational deformation assumes a primarily elastic response of the Earth to the centrifugal potential at the annual and Chandler periods and applies body tide Love numbers to the polar motion after removing the mean pole. The original model was conceived when the mean pole was moving (more or less) linearly, largely in response to glacial isostatic adjustment. In light of the significant variations in the mean pole due to present-day ice mass losses, an `appropriately' filtered mean pole was adopted for the conventional model, so that the longer period variations in the mean pole were not included in the rotational deformation model. However, the elastic Love numbers should be applicable to longer period variations as well, and only the secular (i.e. linear) mean pole should be removed. A model for the linear mean pole is recommended based on a linear fit to the IERS C01 time series spanning 1900 to 2015: in milliarcsec, Xp = 55.0+1.677*dt and Yp = 320.5+3.460*dt where dt=(t-t0), t0=2000.0 and assuming a year=365.25 days. The consequences of an updated model for rotational deformation for site motion and the gravity field are illustrated.

  1. Short-rotation plantations

    Treesearch

    Philip E. Pope; Jeffery O. Dawson

    1989-01-01

    Short-rotation plantations offer several advantages over longer, more traditional rotations. They enhance the natural productivity of better sites and of tree species with rapid juvenile growth. Returns on investment are realized in a shorter period and the risk of loss is reduced compared with long term investments. Production of wood and fiber can be maximized by...

  2. Analogue Mental Transformations in 3-Year-Olds: Introducing a New Mental Rotation Paradigm Suitable for Young Children

    ERIC Educational Resources Information Center

    Krüger, Markus; Kaiser, Marlen; Mahler, Kristin; Bartels, Wolfgang; Krist, Horst

    2014-01-01

    Until now, a successful application of the mental rotation paradigm was restricted to children 5?years or older. By contrast, recent findings suggest that even infants can perform mental rotation. Unlike the methods used in infant studies (looking time), our new research paradigm allows for the measurement and interpretation of reaction times.…

  3. Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam P.

    2017-10-01

    Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.

  4. QUASI-PERIODICITIES AT YEAR-LIKE TIMESCALES IN BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandrinelli, A.; Treves, A.; Covino, S.

    2016-03-15

    We searched for quasi-periodicities on year-like timescales in the light curves of six blazars in the optical—near-infrared bands and we made a comparison with the high energy emission. We obtained optical/NIR light curves from Rapid Eye Mounting photometry plus archival Small and Moderate Aperture Research Telescope System data and we accessed the Fermi light curves for the γ-ray data. The periodograms often show strong peaks in the optical and γ-ray bands, which in some cases may be inter-related. The significance of the revealed peaks is then discussed, taking into account that the noise is frequency dependent. Quasi-periodicities on a year-likemore » timescale appear to occur often in blazars. No straightforward model describing these possible periodicities is yet available, but some plausible interpretations for the physical mechanisms causing periodic variabilities of these sources are examined.« less

  5. Rotational Modulation and Activity Cycles at Rotational Extremes: 25 yrs of NURO Photometry for HII 1883

    NASA Astrophysics Data System (ADS)

    Milingo, Jackie; Saar, Steven; Marschall, Laurence

    2018-01-01

    We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period of ~ 0.24 d and displays significant rotational modulation due to non-uniform surface brightness or "starspots". Preliminary work yields a cycle period of ~ 9 yrs and rotational shear (ΔP_rot/) considerably less than solar. HII 1883 is one of the fastest rotating single stars with a known cycle. With additional data available we compare newly determined P_cyc and ΔP_rot/ values with those of other stars, putting HII 1883 into the broader context of dynamo properties in single cool dwarfs.

  6. Periodical climate variations and their impact on Earth rotation for the last 800Kyr

    NASA Astrophysics Data System (ADS)

    Chapanov, Yavor; Gambis, Daniel

    2010-05-01

    The Earth rotation variations are highly affected by climatic variations associated with the glacial cycles in the late Pleistocene. The processes of glaciation, followed by ice melting, are connected with significant changes of the mean sea level. These processes redistribute great amount of water masses between oceans and ice sheets, which lead to changes of the axial moment of inertia and corresponding variations of the Universal Time UT1 and Length of Day LOD, according to the law of angular momentum conservation. The climatic variations for the last 800Kyr are analyzed by means of time series of temperature changes, determined by deuterium data from Antarctica ice core. Reconstructed glacial sea level variations for the last 380Kyr, determined by the sediments from the Red sea, are used, too. Common periodicities of the temperature and mean sea level variations are determined. Time series of the long-periodical UT1 and LOD oscillations for the last 380Kyr and 800Kyr are reconstructed by means of empirical hydrological model of global water redistribution between the ocean and ice sheets during the last glacial events.

  7. Intern underperformance is detected more frequently in emergency medicine rotations.

    PubMed

    Aram, Narelle; Brazil, Victoria; Davin, Lorna; Greenslade, Jaimi

    2013-02-01

    To determine the frequency and nature of intern underperformance as documented on in-training assessment forms. A retrospective review of intern assessment forms from a 2 year period (2009-2010) was conducted at a tertiary referral hospital in Brisbane, Queensland. The frequency of interns assessed as 'requiring substantial assistance' and/or 'requires further development' on mid- or end-of-term assessment forms was determined. Forms were analysed by the clinical rotation, time of year and domain(s) of clinical practice in which underperformance was documented. During 2009 and 2010 the overall documented incidence of intern underperformance was 2.4% (95% CI 1.5-3.9%). Clinical rotation in emergency medicine detected significantly more underperformance compared with other rotations (P < 0.01). Interns predominantly had difficulty with 'clinical judgment and decision-making skills', 'time management skills' and 'teamwork and colleagues' (62.5%, 55% and 32.5% of underperforming assessments, respectively). Time of the year did not affect frequency of underperformance. A proportion of 13.4% (95% CI 9.2-19.0%) of interns working at the institution over the study period received at least one assessment in which underperformance was documented. Seventy-six per cent of those interns who had underperformance identified by mid-term assessment successfully completed the term following remediation. The prevalence of underperformance among interns is low, although higher than previously suggested. Emergency medicine detects relatively more interns in difficulty than other rotations. © 2012 The Authors. EMA © 2012 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  8. Rotator Cuff Calcific Tendinitis: Ultrasound-Guided Needling and Lavage Versus Subacromial Corticosteroids: Five-Year Outcomes of a Randomized Controlled Trial.

    PubMed

    de Witte, Pieter Bas; Kolk, Arjen; Overes, Ferdinand; Nelissen, Rob G H H; Reijnierse, Monique

    2017-12-01

    Barbotage (needling and lavage) is often applied in the treatment of calcific tendinitis of the rotator cuff (RCCT). In a previously published randomized controlled trial, we reported superior clinical and radiological 1-year outcomes for barbotage combined with a corticosteroid injection in the subacromial bursa (SAIC) compared with an isolated SAIC. There are no trials with a midterm or long-term follow-up of barbotage available. To compare the 5-year results of 2 regularly applied treatments of RCCT: ultrasound (US)-guided barbotage combined with a SAIC (group 1) versus an isolated US-guided SAIC (group 2). Randomized controlled trial; Level of evidence, 1. Patients were randomly assigned to group 1 or 2 and evaluated before and after treatment at regular time points until 12 months and also at 5 years using the Constant score (CS), the Western Ontario Rotator Cuff Index (WORC), and the Disabilities of the Arm, Shoulder and Hand (DASH). The calcification location and size and Gärtner classification were assessed on radiographs. The rotator cuff condition was evaluated with US. Results were analyzed using t tests, linear regression, and a mixed model for repeated measures. Forty-eight patients were included (mean age, 52.0 ± 7.3 years; 25 [52%] female) with a mean baseline CS of 68.7 ± 11.9. After a mean follow-up of 5.1 ± 0.5 years, the mean CS was 90 (95% CI, 83.0-95.9) in group 1 versus 87 (95% CI, 80.5-93.5) in group 2 ( P = .58). The mean improvement in the CS in group 1 was 18 (95% CI, 12.3-23.0) versus 21 (95% CI, 16.2-26.2) in group 2 ( P = .32). There was total resorption in 62% of group 1 and 73% of group 2 ( P = .45). The US evaluation of the rotator cuff condition showed no significant differences between the groups. With the mixed model for repeated measures, taking into account the baseline CS and Gärtner classification, the mean treatment effect for barbotage was 6 (95% CI, -8.9 to 21.5), but without statistical significance. Follow-up scores

  9. Periodical oscillation of zonal wind velocities at the cloud top of Venus

    NASA Astrophysics Data System (ADS)

    Kouyama, T.; Imamura, T.; Nakamura, M.; Satoh, T.; Futaana, Y.

    2010-12-01

    Zonal wind velocity of Venus increases with height and reaches about 100 m s-1 at the cloud top level (~70km). The speed is approximately 60 times faster than the rotation speed of the solid body of Venus (~1.6 m s-1, at the equator) and this phenomenon is called a "super-rotation". From previous observations, it is known that the super-rotation changes on a long timescale. At the cloud top level, it was suggested that the super-rotation has a few years period oscillation based on observations made by Pioneer Venus orbiter of USA from 1979 to 1985 (Del Genio et al.,1990). However, the period, the amplitude, the spatial structure and the mechanism of the long period oscillation have not been understood well. Venus Express (VEX) of European Space Agency has been observing Venus since its orbital insertion in April 2006. Venus Monitoring Camera (VMC) onboard VEX has an ultra violet (UV) filter (365 nm), and VMC has taken day-side cloud images at the cloud top level with this filter. Such images exhibit various cloud features made by unknown UV absorber in the atmosphere. For investigating the characteristics of long-timescale variations of the super-rotation, we analyzed zonal velocity fields derived from UV cloud images from May 2006 to January 2010 using a cloud tracking method. UV imaging of VMC is done when the spacecraft is in the ascending portion of its elongated polar orbit. Since the orbital plane is nearly fixed in the inertial space, the local time of VMC/UV observation changes with a periodicity of one Venus year. As a result, periods when VMC observation covered day-side areas of Venus, large enough for cloud trackings, are not continuous. For deriving wind velocities we were able to use cloud images taken in 280 orbits during this period. The derived zonal wind velocity from 10°S to 40°S latitude shows a prominent year-to-year variation, and the variation is well fitted by a periodical oscillation with a period of about 260 Earth days, although not all

  10. Lomb-Scargle periodogram analysis of the periods around 5.5 year and 11 year in the international sunspot numbers

    NASA Astrophysics Data System (ADS)

    Zhu, F. R.; Jia, H. Y.

    2018-07-01

    The New International Sunspot Numbers (NISNs) have been successfully compiled and can be downloaded from the World Data Center-Sunspot index and Long-term Solar Observations, Royal Observatory of Belgium, Brussels. The periods in these NISNs have been studied by using the Lomb-Scargle periodogram. The results show that the international sunspot numbers have a lot of periods. Of the various periods, the most outstanding period around 11 year is 10.108 year after removing the 10.862 year signal from the time series of sunspot numbers, while the periods of 11.988 year, 7.990 year, 9.612 year, 5.445 year, 8.915 year, 5.792 year are also found with the period of 5.445 year being stronger than those of 5.792 year and 8.915 year. However, the period of 5.445 year is still much weaker than the period of 10.862 year. It is evident that the periods around 11 year and 5.5 year in the revised international sunspot numbers obtained by using the Lomb-Scargle periodogram method is somewhat different from the ones in previous studies.

  11. Rotation of dwarf star chromospheres in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Wolff, C. L.

    1981-01-01

    Periodic variations in the ultraviolet fluxes of chromospheric emission line multiplets are investigated for F, G and K stars as evidence of rotational modulation. Vacuum ultraviolet spectra were obtained with the IUE spacecraft for six stars as many as 11 times over the period April 23 to December 3, 1980. Variations in the emission fluxes of the hydrogen Lyman-alpha, Si II and Mg II lines are observed with periods up to 47 days. The periodicity, which is identified with rotational modulation, is found to persist over many rotational cycles, although the periods and time dependences of the fluxes from the different ionic species are not identical, probably due to differential rotation and global distributions. The spread of the UV periods is observed to be within 10%, with one or two peaks per cycle and a ratio of modulated to umodulated flux ranging from 1.1 to 3.0, analogous to solar behavior.

  12. Solitary Waves, Periodic Peakons and Pseudo-Peakons of the Nonlinear Acoustic Wave Model in Rotating Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Li, Jibin

    The dynamical model of the nonlinear acoustic wave in rotating magnetized plasma is governed by a partial differential equation system. Its traveling system is a singular traveling wave system of first class depending on two parameters. By using the bifurcation theory and method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as different solitary wave solutions.

  13. The tumbling rotational state of 1I/`Oumuamua

    NASA Astrophysics Data System (ADS)

    Fraser, Wesley C.; Pravec, Petr; Fitzsimmons, Alan; Lacerda, Pedro; Bannister, Michele T.; Snodgrass, Colin; Smolić, Igor

    2018-05-01

    The discovery1 of 1I/2017 U1 (1I/`Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour within a range that is broadly consistent with local small bodies, such as the P- and D-type asteroids, Jupiter Trojans and dynamically excited Kuiper belt objects2-7. 1I/`Oumuamua appears unusually elongated in shape, with an axial ratio exceeding 5:1 (refs 1,4,5,8). Rotation period estimates are inconsistent and varied, with reported values between 6.9 and 8.3 h (refs 4-6,9). Here, we analyse all the available optical photometry data reported to date. No single rotation period can explain the exhibited brightness variations. Rather, 1I/`Oumuamua appears to be in an excited rotational state undergoing non-principal axis rotation, or tumbling. A satisfactory solution has apparent lightcurve frequencies of 0.135 and 0.126 h-1 and implies a longest-to-shortest axis ratio of ≳5:1, although the available data are insufficient to uniquely constrain the true frequencies and shape. Assuming a body that responds to non-principal axis rotation in a similar manner to Solar System asteroids and comets, the timescale to damp 1I/`Oumuamua's tumbling is at least one billion years. 1I/`Oumuamua was probably set tumbling within its parent planetary system and will remain tumbling well after it has left ours.

  14. Variability of OH rotational temperatures on time scales from hours to 15 years by kinetic temperature variations, emission layer changes, and non-LTE effects

    NASA Astrophysics Data System (ADS)

    Noll, Stefan

    2016-07-01

    Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.

  15. Rotation of a Moonless Earth

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  16. Integrated biological and cultural practices can reduce crop rotation period of organic strawberries

    USDA-ARS?s Scientific Manuscript database

    Approached by an organic grower and the land owner, a team of researchers conducted a replicated on-farm experiment with the break period between strawberry crops (continuous strawberries with broccoli residue incorporation, one year break, two year break, three year break, and seven year break) as ...

  17. Solar rotational cycle in lightning activity in Japan during the 18-19th centuries

    NASA Astrophysics Data System (ADS)

    Miyahara, Hiroko; Kataoka, Ryuho; Mikami, Takehiko; Zaiki, Masumi; Hirano, Junpei; Yoshimura, Minoru; Aono, Yasuyuki; Iwahashi, Kiyomi

    2018-04-01

    Thunderstorm and cloud activities sometimes show a 27-day period, and this has long been studied to uncover a possible important link to solar rotation. Because the 27-day variations in the solar forcing parameters such as solar ultraviolet and galactic cosmic rays become more prominent when the solar activity is high, it is expected that the signal of the 27-day period in meteorological phenomena may wax and wane according to the changes in the solar activity level. In this study, we examine in detail the intensity variations in the signal of the 27-day solar rotational period in thunder and lightning activity from the 18th to the 19th centuries based on 150-year-long records found in old diaries kept in Japan and discuss their relation with the solar activity levels. Such long records enable us to examine the signals of solar rotation at both high and low solar activity levels. We found that the signal of the solar rotational period in the thunder and lightning activity increases as the solar activity increases. In this study, we also discuss the possibility of the impact of the long-term climatological conditions on the signals of the 27-day period in thunder/lightning activities.

  18. The Rotation of the Solar Photospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Gao, P. X.

    2016-12-01

    The rotational characteristics of the solar photospheric magnetic field at four flux ranges are investigated together with the total flux of active regions (MFar) and quiet regions (MFqr). The first four ranges (MF1-4) are (1.5-2.9) × 1018, (2.9-32.0) × 1018, (3.20-4.27) × 1019, and (4.27-38.01) × 1019, respectively (the unit is Mx per element). Daily values of the flux data are extracted from magnetograms of the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Lomb-Scargle periodograms show that only MF2, MF4, MFqr, and MFar exhibit rotational periods. The periods of the first three types of flux are very similar, I.e., 26.20, 26.23, and 26.24 days, respectively, while that of MFar is longer, 26.66 days. This indicates that active regions rotate more slowly than quiet regions on average, and strong magnetic fields tend to repress the surface rotation. Sinusoidal function fittings and cross-correlation analyses reveal that MFar leads MF2 and MF4 by 5 and 1 days, respectively. This is speculated to be related with the decaying of active regions. MF2 and MFar are negatively correlated, while both MF4 and MFqr are positively correlated with MFar. At the timescale of the solar activity cycle, MFar leads (negatively) MF2 by around one year (350 days), and leads MF4 by about 3 rotation periods (82 days). The relation between MF2 and MFar may be explained by the possibility that the former mainly comes from a higher latitude, or emerges from the subsurface shear layer. We conjecture that MF4 may partly come from the magnetic flux of active regions; this verifies previous results that were obtained with indirect solar magnetic indices.

  19. Self-Calibration of BICEP1 Three-Year Data and Constraints on Astrophysical Polarization Rotation

    NASA Technical Reports Server (NTRS)

    Kaufman, J. P.; Miller, N. J.; Shimon, M.; Barkats, D.; Bischoff, C.; Buder, I.; Keating, B. G.; Kovac, J. M.; Ade, P. A. R.; Aikin, R.; hide

    2014-01-01

    Cosmic microwave background (CMB) polarimeters aspire to measure the faint B-mode signature predicted to arise from inflationary gravitational waves. They also have the potential to constrain cosmic birefringence, rotation of the polarization of the CMB arising from parity-violating physics, which would produce nonzero expectation values for the CMB's temperature to B-mode correlation (TB) and E-mode to B-mode correlation (EB) spectra. However, instrumental systematic effects can also cause these TB and EB correlations to be nonzero. In particular, an overall miscalibration of the polarization orientation of the detectors produces TB and EB spectra which are degenerate with isotropic cosmological birefringence, while also introducing a small but predictable bias on the BB spectrum. We find that BICEP1 three-year spectra, which use our standard calibration of detector polarization angles from a dielectric sheet, are consistent with a polarization rotation of alpha = -2.77deg +/- 0.86deg (statistical) +/- 1.3deg (systematic). We have revised the estimate of systematic error on the polarization rotation angle from the two-year analysis by comparing multiple calibration methods. We also account for the (negligible) impact of measured beam systematic effects. We investigate the polarization rotation for the BICEP1 100 GHz and 150 GHz bands separately to investigate theoretical models that produce frequency-dependent cosmic birefringence. We find no evidence in the data supporting either of these models or Faraday rotation of the CMB polarization by the Milky Way galaxy's magnetic field. If we assume that there is no cosmic birefringence, we can use the TB and EB spectra to calibrate detector polarization orientations, thus reducing bias of the cosmological B-mode spectrum from leaked E-modes due to possible polarization orientation miscalibration. After applying this "self-calibration" process, we find that the upper limit on the tensor-to-scalar ratio decreases

  20. 47 CFR 22.947 - Five year build-out period.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MOBILE SERVICES Cellular Radiotelephone Service § 22.947 Five year build-out period. Except for systems...-out period, the licensee of the first cellular system on each channel block in each market may enter...-out period begins on the date the initial authorization for the first cellular system is granted, and...

  1. Meteorological and management factors influencing weed abundance during 18 years of organic crop rotations

    USDA-ARS?s Scientific Manuscript database

    Organic crop production is often limited by the inability to control weeds. An 18-year dataset of weed cover in organic crop rotations at the long-term Farming Systems Project at Beltsville, Maryland, provided the opportunity to identify meteorological and management factors influencing weed abundan...

  2. Laterality-Specific Training Improves Mental Rotation Performance in Young Soccer Players.

    PubMed

    Pietsch, Stefanie; Jansen, Petra

    2018-01-01

    This study investigates the influence of specific soccer training with the non-dominant leg on mental rotation performance of 20 adolescent soccer players between 10 and 11 years of age. While the experimental group performed soccer specific tasks only with the non-dominant foot once a week for 10 weeks, the control group absolved the same exercises with the dominant foot for the same period of time. Both groups performed a mental rotation task and shot, dribbling and ball control tests before and after the 10 week intervention. The most relevant result was that the experimental group showed a significantly larger increase in mental rotation ability than the control group.

  3. Rotator cuff tendon connections with the rotator cable.

    PubMed

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  4. Rotations

    Treesearch

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  5. Dynamic ocean-tide effects on Earth's rotation

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  6. The full GHG balance of croplands under seven-year rotation scheme and conventional tillage practices in Poland

    NASA Astrophysics Data System (ADS)

    Juszczak, Radoslaw; Sakowska, Karolina; Ziemblinska, Klaudia; Uzdzicka, Bogna; Strozecki, Marcin; Polmanska, Daria; Chojnicki, Bogdan; Urbaniak, Marek; Augustin, Juergen; Necki, Jarek; Olejnik, Janusz

    2014-05-01

    Greenhouse gases fluxes were measured with chambers on the selected plots of the experimental arable station of Poznan University of Life Sciences in Brody (52o26'N, 16o18'E), Poland. This is a long term experiment, where the same crops are cultivated under the same fertilization treatment schemes (eleven combinations) since 1957. At the blocks of the full 7-year rotation, there are cultivated in permanent rotation: winter wheat ->winter rye -> potato ->spring barley -> triticale and alfalfa (till the second year). GHG fluxes have been measured on plots with the same fertilization level (Nmin-90kg, K2O-120 kg/ha, P2O5-60 kg/ha and Ca), which is very close to the average amount of mineral fertilization applied in western Poland. No catch crops were cultivated between the main crops. The soil was classified as Albic Luviosols according to FAO 2006 classification. CO2 fluxes have been measured monthly since March 2011, while N2O and CH4 fluxes since March 2012 (weekly) and measurements were continued till October 2013. CO2 fluxes were measured with dynamic chambers, while N2O and CH4 fluxes were measured with both static and dynamic chambers approaches (using LOSGATOS gas analyser). Carbon net ecosystem exchange (NEE) and ecosystem respiration (Reco) have been modelled for the entire period based on the measured fluxes (different management treatments were included in the model), while N2O and CH4 fluxes were linearly interpolated between campaigns. Taking into account the accumulation periods between 15th of October and 14th of October of the next year the cumulated NEE was negative only in case of alfalfa, winter rye and winter wheat, reaching in average -3.5 tCO2-C ha-1 for alfalfa and winter rye fields and around -0.4 tCO2-C ha-1 for winter wheat in seasons 2011-2012 and 2012-2013. While, cumulated NEE for spring crops (potato and spring barley) was positive for the same periods and reached in average 1.1 tCO2-C ha-1 and 2.5 tCO2-C ha-1 for spring barley and

  7. Variability of young stars: Determination of rotational periods of weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region

    NASA Astrophysics Data System (ADS)

    Koeltzsch, A.; Mugrauer, M.; Raetz, St.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Vaňko, M.; Ginski, Ch.; Marka, C.; Moualla, M.; Schreyer, K.; Broeg, Ch.; Neuhäuser, R.

    2009-05-01

    We report on observation and determination of rotational periods of ten weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region. Observations were carried out with the Cassegrain-Teleskop-Kamera (CTK) at University Observatory Jena between 2007 June and 2008 May. The periods obtained range between 0.49 d and 5.7 d, typical for weak-line and post T Tauri stars. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  8. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  9. Laterality-Specific Training Improves Mental Rotation Performance in Young Soccer Players

    PubMed Central

    Pietsch, Stefanie; Jansen, Petra

    2018-01-01

    This study investigates the influence of specific soccer training with the non-dominant leg on mental rotation performance of 20 adolescent soccer players between 10 and 11 years of age. While the experimental group performed soccer specific tasks only with the non-dominant foot once a week for 10 weeks, the control group absolved the same exercises with the dominant foot for the same period of time. Both groups performed a mental rotation task and shot, dribbling and ball control tests before and after the 10 week intervention. The most relevant result was that the experimental group showed a significantly larger increase in mental rotation ability than the control group. PMID:29535665

  10. Rotation State Evolution of Retired Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Benson, C.; Scheeres, D. J.; Ryan, W. H.; Ryan, E. V.; Moskovitz, N.

    Non-periodic light curve rotation state analysis is conducted for the retired geosynchronous satellite GOES 8. This particular satellite has been observed periodically at the Maui Research and Technology Center as well as Magdalena Ridge and Lowell Observatories since 2013. To extract tumbling periods from the light curves, twodimensional Fourier series fits were used. Torque-free dynamics and the satellite’s known mass properties were then leveraged to constrain the candidate periods. Finally, simulated light curves were generated using a representative shape model for further validation. Analysis of the light curves suggests that GOES 8 transitioned from uniform rotation in 2014 to continually evolving tumbling motion by 2016. These findings are consistent with previous dynamical simulations and support the hypothesis that the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect drives rotation state evolution of retired geosynchronous satellites.

  11. Variations in Rotation Rate and Polar Motion of a Non-hydrostatic Titan

    NASA Astrophysics Data System (ADS)

    Van Hoolst, T.; Coyette, A.; Baland, R. M.

    2017-12-01

    Observations of the rotation of large synchronously rotating satellites such as Titan can help to probe their interior. Previous studies (Van Hoolst et al. 2013, Richard et al. 2014, Coyette et al. 2016) mostly assume that Titan is in hydrostatic equilibrium, although several measurements indicate that it deviates from such a state. Here we investigate the effect of non-hydrostatic equilibrium and of flow in the subsurface ocean on the rotation of Titan. We consider (1) the periodic changes in Titan's rotation rate with a period equal to Titan's orbital period (diurnal librations) as a result of the gravitational torque exerted by Saturn, (2) the periodic changes in Titan's rotation rate with a main period equal to half the orbital period of Saturn (seasonal librations) and due to the dynamic variations in the atmosphere of Titan and (3) the periodic changes of the axis of rotation with respect to the figure axis of Titan (polar motion) with a main period equal to the orbital period of Saturn and due to the dynamic variations in the atmosphere of Titan. The non-hydrostatic mass distribution significantly influences the amplitude of the diurnal and seasonal librations. It is less important for polar motion, which is sensitive to flow in the subsurface ocean. The smaller than synchronous rotation rate measured by Cassini (Meriggiola 2016) can be explained by the atmospheric forcing.

  12. Effects of Earth's rotation on the early differentiation of a terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Hansen, Ulrich

    2015-11-01

    Similar to other terrestrial planets like Moon and Mars, Earth experienced a magma ocean period about 4.5 billion years ago. On Earth differentiation processes in the magma ocean set the initial conditions for core formation and mantle evolution. During the magma ocean period Earth was rotating significantly faster than today. Further, the viscosity of the magma was low, thus that planetary rotation potentially played an important role for differentiation. However, nearly all previous studies neglect rotational effects. All in all, our results suggest that planetary rotation plays an important role for magma ocean crystallization. We employ a 3-D numerical model to study crystal settling in a rotating and vigorously convecting early magma ocean. We show that crystal settling in a terrestrial magma ocean is crucially affected by latitude as well as by rotational strength and crystal density. Due to rotation an inhomogeneous accumulation of crystals during magma ocean solidification with a distinct crystal settling between pole and equator could occur. One could speculate that this may have potentially strong effects on the magma ocean solidification time and the early mantle composition. It could support the development of a basal magma ocean and the formation of anomalies at the core-mantle boundary in the equatorial region, reaching back to the time of magma ocean solidification.

  13. ROTATING STARS FROM KEPLER OBSERVED WITH GAIA DR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, James R. A.

    2017-01-20

    Astrometric data from the recent Gaia Data Release 1 have been matched against the sample of stars from Kepler with known rotation periods. A total of 1299 bright rotating stars were recovered from the subset of Gaia sources with good astrometric solutions, most with temperatures above 5000 K. From these sources, 894 were selected as lying near the main sequence using their absolute G -band magnitudes. These main-sequence stars show a bimodality in their rotation period distribution, centered roughly around a 600 Myr rotation isochrone. This feature matches the bimodal period distribution found in cooler stars with Kepler , butmore » was previously undetected for solar-type stars due to sample contamination by subgiants. A tenuous connection between the rotation period and total proper motion is found, suggesting that the period bimodality is due to the age distribution of stars within ∼300 pc of the Sun, rather than a phase of rapid angular momentum loss. This work emphasizes the unique power for understanding stellar populations that is created by combining temporal monitoring from Kepler with astrometric data from Gaia .« less

  14. 10-year evaluation of the cementless low-contact- stress rotating-platform total knee arthroplasty.

    PubMed

    Efstathopoulos, Nikolaos; Mavrogenis, Andreas F; Lallos, Stergios; Nikolaou, Vassilios; Papagelopoulos, Panayiotis J; Savvidou, Olga D; Korres, Demetrios S

    2009-01-01

    We present the clinical and radiographic outcomes of the cementless low-contact-stress (LCS) rotating-platform total knee arthroplasty. Overall, 423 prostheses were implanted in 393 consecutive patients (30 patients had bilateral total knee replacement) for primary varus gonarthrosis (381 patients) and rheumatoid arthritis (12 patients). There were 81 men and 312 women with a mean age of 73 years (range, 58-85 years). Patella replacement was not performed in any case. Clinical and radiographic evaluation was performed using the Knee Society Score (KSS) and the Knee Society Assessment Form, respectively. The mean follow-up was 10 years (range, 5-15 years). Three patients were lost to follow-up. Survival of the prostheses was 98% at 10 years; three prostheses required revision for deep infection, bearing dislocation, and periprosthetic fracture. The mean KSS improved significantly, from 42 and 44 points preoperatively to 90 and 79 points, respectively, at the latest evaluation (P < 0.001); results were excellent in 278 cases, good in 106, fair in 27, and poor in nine. Radiolucent lines were observed in 80 cases; revision arthroplasty was not performed in any of these cases. Complications included deep infection in one patient, bearing dislocation in one, skin necrosis in four, and a supracondylar fracture in one. The cementless LCS rotating-platform total knee arthroplasty is associated with excellent mid- and long-term results for patients with osteoarthritis and rheumatoid arthritis of the knee.

  15. Period, Place and Mental Space: Using Historical Scholarship to Develop Year 7 Pupils' Sense of Period

    ERIC Educational Resources Information Center

    Smith, Dan

    2014-01-01

    What is a sense of period? And how can pupils' sense of period be developed? Questions such as these have troubled history teachers for many years, often revolving around debates over the role played by empathy and imagination in coming to know a period on its own terms. Rather than adopt a comparative approach, Dan Smiths decided in his teaching…

  16. Arthroscopic undersurface rotator cuff repair versus conventional arthroscopic double-row rotator cuff repair - Comparable results at 2-year follow-up.

    PubMed

    Ang, Benjamin Fu Hong; Chen, Jerry Yongqiang; Yeo, William; Lie, Denny Tijauw Tjoen; Chang, Paul Chee Cheng

    2018-01-01

    The aim of our study is to compare the improvement in clinical outcomes after conventional arthroscopic double-row rotator cuff repair and arthroscopic undersurface rotator cuff repair. A consecutive series of 120 patients who underwent arthroscopic rotator cuff repair was analysed. Sixty-one patients underwent conventional double-row rotator cuff repair and 59 patients underwent undersurface rotator cuff repair. Several clinical outcomes, including numerical pain rating scale (NPRS), constant shoulder score (CSS), Oxford shoulder score (OSS) and University of California Los Angeles shoulder score (UCLASS), were prospectively recorded by a trained healthcare professional preoperatively and at 3, 6, 12 and 24 months after surgery. Comparing both groups, there were no differences in age, gender and preoperative NPRS, CSS, OSS and UCLASS. However, the tear size was 0.7 ± 0.2 (95% confidence interval (CI) 0.3-1.1) cm larger in the conventional group ( p = 0.002). There was no difference in the improvement of NPRS, CSS, OSS and UCLASS at all time points of follow-up, that is, at 3, 6, 12 and 24 months after surgery. The duration of operation was shorter by 35 ± 3 (95% CI 28-42) min in the undersurface group ( p < 0.001). Both arthroscopic undersurface rotator cuff repair and conventional arthroscopic double-row rotator cuff repair showed marked improvements in clinical scores when compared preoperatively, and there was no difference in improvements between both groups. Arthroscopic undersurface rotator cuff repair is a faster technique compared to the conventional arthroscopic double-row rotator cuff repair.

  17. Can Good Infection Control Be Obtained in One-stage Exchange of the Infected TKA to a Rotating Hinge Design? 10-year Results.

    PubMed

    Zahar, Akos; Kendoff, Daniel O; Klatte, Till O; Gehrke, Thorsten A

    2016-01-01

    Prosthetic joint infection (PJI) occurs in 1% to 2% of total knee arthroplasties (TKAs). Although two-stage exchange is the preferred management method of patients with chronic PJI in TKA in North America, one-stage exchange is an alternative treatment method, but long-term studies of this approach have not been conducted. We reviewed our minimum 9-year results of 70 patients who underwent one-stage exchange arthroplasty with a rotating hinge design to determine: (1) What was the proportion of patients free of infection? (2) What was the patient rate of survival free of any reoperation? (3) What were the clinical outcomes as measured by Hospital for Special Surgery scores? (4) What proportion of patients developed radiographic evidence of loosening? All one-stage revision TKAs for infection between January 1 and December 31, 2002, with a minimum 9-year followup (mean, 10 years; range, 9-11 years), in which patients had been seen within the last 1 year, were included in this retrospective review. During that period, 11 patients with infected TKAs were treated with other approaches (including two-stage approaches in eight); the general indication for one-stage revision was the diagnosis of PJI with a known causative organism. Exclusion criteria were culture-negative preoperative aspiration, known allergy to local antibiotics or bone cement, or cases in which radical débridement was impossible as a result of the involvement of important anatomical structures. Eighty-one patients with PJI were seen during this period; 70 underwent one-stage exchange using our strict protocol and were reimplanted with a rotating hinge TKA. Eleven patients (15.7%) were lost to followup. Hospital for Special Surgery scores were recorded and all radiographs were evaluated for prosthetic loosening. Failure was defined as revision surgery for infection or any other cause. Our 10-year infection-free survival was 93% (mean, 4.1; 95% confidence interval [CI], 89%-96%; p < 0.007); and the

  18. Two-Year Clinical Outcomes of Newer-Generation Drug-Eluting Stent Implantation Following Rotational Atherectomy for Heavily Calcified Lesions.

    PubMed

    Jinnouchi, Hiroyuki; Kuramitsu, Shoichi; Shinozaki, Tomohiro; Kobayashi, Yohei; Hiromasa, Takashi; Morinaga, Takashi; Mazaki, Toru; Sakakura, Kenichi; Soga, Yoshimitsu; Hyodo, Makoto; Shirai, Shinichi; Ando, Kenji

    2015-01-01

    Clinical outcomes of implantation of the newer-generation drug-eluting stent (DES) following rotational atherectomy for heavily calcified lesions remain unclear in the real-world setting. We enrolled 252 consecutive patients (273 lesions) treated with newer-generation DES following rotational atherectomy. The primary endpoint was the cumulative 2-year incidence of major adverse cardiovascular events (MACE), defined as cardiac death, myocardial infarction, clinically-driven target lesion revascularization, and definite stent thrombosis. Complete clinical follow-up information at 2-year was obtained for all patients. The mean age was 73.2±9.0 years and 155 patients (61.5%) were male. Cumulative 2-year incidence of MACE (cardiac death, myocardial infarction, clinically-driven target lesion revascularization and definite stent thrombosis) was 20.3% (7.0%, 2.1%, 18.1% and 2.1%, respectively). Predictors of MACE were presenting with acute coronary syndrome (hazard ratio [HR]: 3.80, 95% confidence interval [CI]: 1.29-11.2, P=0.02), hemodialysis (HR: 1.93, 95% CI: 1.04-3.56, P=0.04) and previous coronary artery bypass graft (HR: 2.26, 95% CI: 1.02-5.00, P=0.045). PCI for calcified lesions requiring rotational atherectomy is still challenging even in the era of newer-generation DES.

  19. New Techniques for Investigating the Morphology and Rotation of Component C of the Periodic Comet 73P/Schwassmann-Wachmann 3

    NASA Astrophysics Data System (ADS)

    Dykhuis, Melissa J.; Samarasinha, N. H.; Mueller, B. E. A.; Storm, S. P.

    2012-10-01

    Observations of temporal variations in the dust and gas morphology of comet nuclei can be used to infer the rotation states of the nuclei. The rotation of component C of Comet 73P/Schwassmann-Wachmann 3 is of particular interest, as it could place constraints on the damping timescale for non-principal axis rotation following the comet's breakup event of 1995 (Crovisier et al. 1995, IAU Circ., 6227). We obtained narrowband H-B and broadband R images of component C from May 3-10, 2006 UT, near the comet's perigee passage, using the 4-meter Mayall telescope on Kitt Peak. We identified the morphological features in the images using the enhancement method of division by azimuthal average. In addition, we binned the data to alleviate issues related to poor guiding and to increase the signal-to-noise. A new method for quantifying measurements of the features allowed for the development of a more robust statistic to evaluate the results, which yielded different period constraints than those found previously in Storm et al. (2007). Analysis of the dust morphology suggests a minimum periodicity of repeatability of the features of about 15 hours. This value is consistent with the lower limit of 10 hours determined from radar data (Nolan et al. 2006, BAAS 38, 504); however, it does not agree with the values around 3-4 hours determined using HST lightcurves and HCN morphology (Toth et al. 2006, BAAS 38, 489; Drahus et al. 2010, A&A 510, respectively). MJD's work was supported by a National Science Foundation Graduate Research Fellowship. NHS and BEAM were supported by the NASA Planetary Atmospheres Program.

  20. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  1. Lightcurve and Rotation Period Determination for 2578 Saint- Exupery, 4297 Eichhorn, 10132 Lummelunda and (21766) 1999 RW208.

    NASA Astrophysics Data System (ADS)

    Salvaggio, Fabio; Banfi, Massimo; Marchini, Alessandro; Papini, Riccardo

    2018-04-01

    Photometric observations of the main-belt asteroids 2578 Saint-Exupery, 4297 Eichhorn, 10132 Lummelunda and (21766) 1999 RW208 performed by the authors from June to December 2017, revealed the bimodal light curves phased to 8.146 ± 0.001 h for 2578 Saint-Exupery, 4.105 ± 0.003 h for 4297 Eichhorn, 2.51 ± 0.03 h for 10132 Lummellunda and 5.841 ± 0.001 h for (21766) 1999 RW208 as the most likely solutions representing the synodic rotation periods for these asteroids.

  2. Normal modes of synchronous rotation

    NASA Astrophysics Data System (ADS)

    Varadi, Ferenc; Musotto, Susanna; Moore, William; Schubert, Gerald

    2005-07-01

    The dynamics of synchronous rotation and physical librations are revisited in order to establish a conceptually simple and general theoretical framework applicable to a variety of problems. Our motivation comes from disagreements between the results of numerical simulations and those of previous theoretical studies, and also because different theoretical studies disagree on basic features of the dynamics. We approach the problem by decomposing the orientation matrix of the body into perfectly synchronous rotation and deviation from the equilibrium state. The normal modes of the linearized equations are computed in the case of a circular satellite orbit, yielding both the periods and the eigenspaces of three librations. Libration in longitude decouples from the other two, vertical modes. There is a fast vertical mode with a period very close to the average rotational period. It corresponds to tilting the body around a horizontal axis while retaining nearly principal-axis rotation. In the inertial frame, this mode appears as nutation and free precession. The other vertical mode, a slow one, is the free wobble. The effects of the nodal precession of the orbit are investigated from the point of view of Cassini states. We test our theory using numerical simulations of the full equations of the dynamics and discuss the disagreements among our study and previous ones. The numerical simulations also reveal that in the case of eccentric orbits large departures from principal-axis rotation are possible due to a resonance between free precession and wobble. We also revisit the history of the Moon's rotational state and show that it switched from one Cassini state to another when it was at 46.2 Earth radii. This number disagrees with the value 34.2 derived in a previous study.

  3. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    PubMed Central

    Qiu, Gongzhe

    2017-01-01

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790

  4. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    PubMed

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  5. Binary asteroid population. 3. Secondary rotations and elongations

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Kušnirák, P.; Hornoch, K.; Galád, A.; Naidu, S. P.; Pray, D. P.; Világi, J.; Gajdoš, Š.; Kornoš, L.; Krugly, Yu. N.; Cooney, W. R.; Gross, J.; Terrell, D.; Gaftonyuk, N.; Pollock, J.; Husárik, M.; Chiorny, V.; Stephens, R. D.; Durkee, R.; Reddy, V.; Dyvig, R.; Vraštil, J.; Žižka, J.; Mottola, S.; Hellmich, S.; Oey, J.; Benishek, V.; Kryszczyńska, A.; Higgins, D.; Ries, J.; Marchis, F.; Baek, M.; Macomber, B.; Inasaridze, R.; Kvaratskhelia, O.; Ayvazian, V.; Rumyantsev, V.; Masi, G.; Colas, F.; Lecacheux, J.; Montaigut, R.; Leroy, A.; Brown, P.; Krzeminski, Z.; Molotov, I.; Reichart, D.; Haislip, J.; LaCluyze, A.

    2016-03-01

    We collected data on rotations and elongations of 46 secondaries of binary and triple systems among near-Earth, Mars-crossing and small main belt asteroids. 24 were found or are strongly suspected to be synchronous (in 1:1 spin-orbit resonance), and the other 22, generally on more distant and/or eccentric orbits, were found or are suggested to have asynchronous rotations. For 18 of the synchronous secondaries, we constrained their librational angles, finding that their long axes pointed to within 20° of the primary on most epochs. The observed anti-correlation of secondary synchroneity with orbital eccentricity and the limited librational angles agree with the theories by Ćuk and Nesvorný (Ćuk, M., Nesvorný, D. [2010]. Icarus 207, 732-743) and Naidu and Margot (Naidu, S.P., Margot, J.-L. [2015]. Astron. J. 149, 80). A reason for the asynchronous secondaries being on wider orbits than synchronous ones may be longer tidal circularization time scales at larger semi-major axes. The asynchronous secondaries show relatively fast spins; their rotation periods are typically < 10 h. An intriguing observation is a paucity of chaotic secondary rotations; with an exception of (35107) 1991 VH, the secondary rotations are single-periodic with no signs of chaotic rotation and their periods are constant on timescales from weeks to years. The secondary equatorial elongations show an upper limit of a2 /b2 ∼ 1.5 . The lack of synchronous secondaries with greater elongations appears consistent, considering uncertainties of the axis ratio estimates, with the theory by Ćuk and Nesvorný that predicts large regions of chaotic rotation in the phase space for a2 /b2 ≳√{ 2 } . Alternatively, secondaries may not form or stay very elongated in gravitational (tidal) field of the primary. It could be due to the secondary fission mechanism suggested by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D.J. [2011]. Icarus 214, 161-178), as its efficiency is correlated with the

  6. [Temporal rotation skin flap combined with cartilage plasty for correcting cryptotia].

    PubMed

    Li, Gaofeng; Luo, Tao; Ding, Wei; Ouyang, Huawei; Liu, Wanli; Tan, Jun

    2014-01-01

    To explore the therapeutic effect of the temporal rotation flap combined with cartilage plasty for cryptotia correction. From January 2009 to June 2012, 8 cases with cryptotia (10 ears) were treated. After complete dissection of the cartilage adhesion, the cartilage was reshaped by suture to restore its appearance. Then the temporal triangular rotation flap was transferred to cover the wound. No hematoma, infection or flap necrosis happened. The follow-up period ranged from 3 months to 1 year, with an average of (6.88 +/- 2.85) months. The ear appearance kept stable with no recurrence and inconspicuous scar. Satisfactory result was achieved. Temporal rotation flap combined with cartilage plasty is a good option for correction of mild or moderate cryptotia.

  7. Automated medical resident rotation and shift scheduling to ensure quality resident education and patient care.

    PubMed

    Smalley, Hannah K; Keskinocak, Pinar

    2016-03-01

    At academic teaching hospitals around the country, the majority of clinical care is provided by resident physicians. During their training, medical residents often rotate through various hospitals and/or medical services to maximize their education. Depending on the size of the training program, manually constructing such a rotation schedule can be cumbersome and time consuming. Further, rules governing allowable duty hours for residents have grown more restrictive in recent years (ACGME 2011), making day-to-day shift scheduling of residents more difficult (Connors et al., J Thorac Cardiovasc Surg 137:710-713, 2009; McCoy et al., May Clin Proc 86(3):192, 2011; Willis et al., J Surg Edu 66(4):216-221, 2009). These rules limit lengths of duty periods, allowable duty hours in a week, and rest periods, to name a few. In this paper, we present two integer programming models (IPs) with the goals of (1) creating feasible assignments of residents to rotations over a one-year period, and (2) constructing night and weekend call-shift schedules for the individual rotations. These models capture various duty-hour rules and constraints, provide the ability to test multiple what-if scenarios, and largely automate the process of schedule generation, solving these scheduling problems more effectively and efficiently compared to manual methods. Applying our models on data from a surgical residency program, we highlight the infeasibilities created by increased duty-hour restrictions placed on residents in conjunction with current scheduling paradigms.

  8. North–South Asymmetry of the Rotation of the Solar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xie, Jinglan; Shi, Xiangjun; Qu, Zhining

    2018-03-01

    Using the rotation rates of the solar magnetic field during solar cycles 21 to 23 obtained by Chu et al. by analyzing the synoptic magnetic maps produced by the NSO/Kitt Peak and SOHO/MDI during the years 1975 to 2008, the temporal variation of the equatorial rotation rate (A) and the latitude gradient of rotation (B) in the northern and southern hemispheres are studied separately. The results indicate that the rotation is more differential (about 4.3%) in the southern hemisphere in the considered time frame. It is found that the north–south asymmetry of A and the asymmetry of B show increasing trends in the considered time frame, while the north–south asymmetry of the solar activity shows a decreasing trend. There exists a significant negative correlation (at 95% confidence level) between the asymmetry of B and the asymmetry of the solar activity, and this may be due to stronger magnetic activity in a certain hemisphere that may suppress the differential rotation to some extent. The periodicities in the variation of A and B are also studied, and periods of about 5.0 and 10.5 yr (5.5 and 10.4 yr) can be found for the variation of the northern (southern) hemisphere B. Moreover, the north–south asymmetry of A and the asymmetry of B have similar periods of about 2.6–2.7 and 5.2–5.3 yr. Further, cross-correlation analysis indicates that there exists a phase difference (about eight months) between the northern and southern hemisphere B, and this means that the northern hemisphere B generally leads by about eight months.

  9. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster.

    PubMed

    Meibom, Søren; Barnes, Sydney A; Platais, Imants; Gilliland, Ronald L; Latham, David W; Mathieu, Robert D

    2015-01-29

    The ages of the most common stars--low-mass (cool) stars like the Sun, and smaller--are difficult to derive because traditional dating methods use stellar properties that either change little as the stars age or are hard to measure. The rotation rates of all cool stars decrease substantially with time as the stars steadily lose their angular momenta. If properly calibrated, rotation therefore can act as a reliable determinant of their ages based on the method of gyrochronology. To calibrate gyrochronology, the relationship between rotation period and age must be determined for cool stars of different masses, which is best accomplished with rotation period measurements for stars in clusters with well-known ages. Hitherto, such measurements have been possible only in clusters with ages of less than about one billion years, and gyrochronology ages for older stars have been inferred from model predictions. Here we report rotation period measurements for 30 cool stars in the 2.5-billion-year-old cluster NGC 6819. The periods reveal a well-defined relationship between rotation period and stellar mass at the cluster age, suggesting that ages with a precision of order 10 per cent can be derived for large numbers of cool Galactic field stars.

  10. Rapid Rotation of a Heavy White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    New Kepler observations of a pulsating white dwarf have revealed clues about the rotation of intermediate-mass stars.Learning About ProgenitorsStars weighing in at under 8 solar masses generally end their lives as slowly cooling white dwarfs. By studying the rotation of white dwarfs, therefore, we are able to learn about the final stages of angular momentum evolution in these progenitor stars.Most isolated field white dwarfs cluster in mass around 0.62 solar masses, which corresponds to a progenitor mass of around 2.2 solar masses. This abundance means that weve already learned a good deal about the final rotation of low-mass (13 solar-mass) stars. Our knowledge about the angular momentum of intermediate-mass (38 solar-mass) stars, on the other hand, remains fairly limited.Fourier transform of the pulsations from SDSSJ0837+1856. The six frequencies of stellar variability, marked with red dots, reveal a rotation period of 1.13 hours. [Hermes et al. 2017]Record-Breaking FindA newly discovered white dwarf, SDSSJ0837+1856, is now helping to shed light on this mass range. SDSSJ0837+1856 appears to be unusually massive: its measured at 0.87 solar masses, which corresponds to a progenitor mass of roughly 4.0 solar masses. Determining the rotation of this white dwarf would therefore tell us about the final stages of angular momentum in an intermediate-mass star.In a new study led by J.J. Hermes (Hubble Fellow at University of North Carolina, Chapel Hill), a team of scientists presents a series of measurements of SDSSJ0837+1856 that suggest its the highest-mass and fastest-rotating isolated pulsating white dwarf known.Histogram of rotation rates determined from the asteroseismology of pulsating white dwarfs (marked in red). SDSSJ0837+1856 (indicated in black) is more massive and rotates faster than any other known pulsating white dwarf. [Hermes et al. 2017]Rotation from PulsationsWhy pulsating? In the absence of measurable spots and other surface features, the way we

  11. A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana

    2017-12-01

    The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.

  12. The temporal outcomes of open versus arthroscopic knotted and knotless rotator cuff repair over 5 years

    PubMed Central

    Lucena, Thomas R; Lam, Patrick H; Millar, Neal L

    2015-01-01

    Background The present study aimed to determine how repair technique influenced structural and clinical outcomes at 5 years post-surgery. Methods Three cohorts of patients had repair of a symptomatic rotator cuff tear using (i) an open double-row mattress repair technique (n = 25); (ii) arthroscopic single-row simple suture knotted technique (n = 25); or (iii) arthroscopic single-row inverted mattress knotless technique (n = 36) by one surgeon. Standardized patient- and examiner-determined outcomes were obtained pre-operatively and postoperatively with a validated protocol, ultrasound were also performed at the same time. Results Retear occurred more often after open repair (48%) at 5 years than after arthroscopic knotted (33%) and arthroscopic knotless (26%) repair. Retear was associated with increasing age, pre-operative tear size and weaker pre-operative and 5 years postoperative cuff strength. Between 2 years and 5 years, the open repair group experienced an increase in the frequency of pain during activity, as well as in the difficulty experienced and the severity of pain during overhead activities (p < 0.05) and, at 5 years, also experienced more difficulty with overhead activities, compared to the arthroscopic knotless repair group. Conclusions At 5-year follow-up, arthroscopic rotator cuff repair techniques resulted in fewer retears and better outcomes compared to an open double-row technique. PMID:27582985

  13. The rotation of very low mass objects

    NASA Astrophysics Data System (ADS)

    Scholz, Alexander

    2004-10-01

    This dissertation contains an investigation of the rotation of very low mass objects, i.e. Brown Dwarfs and stars with masses <0.4 MS. Today, it is well-established that there are large populations of such VLM objects in open clusters and in the field, but our knowledge about their physical properties and evolution is still very limited. Contrary to their solar-mass siblings, VLM objects are fully convective throughout their evolution. Thus, they are not able to form a large-scale magnetic field like for example the sun. The magnetic field, in turn, is crucial for the regulation of rotation: Magnetic interaction between star and circumstellar disk ("disk-locking") and angular momentum losses through stellar winds have dominant influence on the rotational evolution. Thus, we can expect major differences in the rotational behaviour of VLM objects and solar-mass stars. The best method to investigate stellar rotation is to measure rotation periods. If a star exhibits surface features which are asymmetrically distributed, its brightness may be modulated with the rotation period. Thus, this dissertation is based on the analysis of photometric time series. Open clusters are an ideal environment for such a project, since they enable one to follow many objects at the same time. Additionally, they allow one to investigate the age and mass dependence of rotation, because distance and age of the clusters are known in good approximation. For this thesis, five open clusters were observed, which span an age range from 3 to 750 Myr. In three of them (SigmaOri, EpsilonOri, IC4665), VLM objects were identified by means of colour magnitude diagrams. The candidate lists for these three regions comprise at least 100 objects, for which photometry in at least three wavelength bands is available. About a fifth to a third of these candidates could be contaminating field stars in the fore- or background of the clusters. For the remaining two clusters (Pleiades and Praesepe), objects from

  14. Femoral component rotation in patellofemoral joint replacement.

    PubMed

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A model for origin of self-rotation in a protoplanetary cloud under action of exterior periodic force

    NASA Astrophysics Data System (ADS)

    Tkachova, P. P.; Krot, A. M.

    2009-04-01

    This work investigates condition for origin of increasing rotational disturbance in a gas-liquid protoplanetary cloud under action of a periodic force. The model (based on Reynolds equations [1]) describing self-organization of rotational disturbance of viscous gas-liquid substance into a protoplanetary cloud is proposed. The Reynolds equations as well as continuity equation in cylindrical frame of reference (r, e, z) as basis relations for this analytical model are used. The mean velocity is supposed to be equal to zero from the beginning action of an exterior periodic force. The Reynolds' tensor of turbulent strain of velocity disturbances in a becoming fluid flow is sought for (besides, z-component of velocity disturbance is supposed to be equal to zero). In assumption that z-components of turbulent strains are equal to zero, the (r, e)-turbulent strain components are found. After all considerations the Reynolds equations and continuity one (in the cylindrical coordinate system) are reduced to the system of two differential equations in partial derivatives relatively to (r, e)-cylindrical components of turbulent strain of velocity disturbance. A common solution of these two equations permits us to reduce this task to solution of one differential equation relatively to (r, e)-turbulent strain. This homogeneous differential equation is solved with usage of the variables separation method. As a result, a superposition of two cosine's and sine's waves gives us (r, e)-turbulent strain wave with an elliptic (or circular) polarization. Moreover, this paper shows that amplitude of cosine-wave as well as sine-wave is an increasing function as r**(n**2-2). This paper finds that oscillations are intensified with growing a frequency of becoming oscillations. The computational experiments based on STAR-CD package [2] confirm the main analytical statements of the proposed model for becoming self-rotation in a gas-liquid protoplanetary cloud. This work develops also the

  16. Enhanced Stellar Activity for Slow Antisolar Differential Rotation?

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Giampapa, Mark S.

    2018-03-01

    High-precision photometry of solar-like members of the open cluster M67 with Kepler/K2 data has recently revealed enhanced activity for stars with a large Rossby number, which is the ratio of rotation period to the convective turnover time. Contrary to the well established behavior for shorter rotation periods and smaller Rossby numbers, the chromospheric activity of the more slowly rotating stars of M67 was found to increase with increasing Rossby number. Such behavior has never been reported before, although it was theoretically predicted to emerge as a consequence of antisolar differential rotation (DR) for stars with Rossby numbers larger than that of the Sun, because in those models the absolute value of the DR was found to exceed that for solar-like DR. Using gyrochronological relations and an approximate age of 4 Gyr for the members of M67, we compare with computed rotation rates using just the B ‑ V color. The resulting rotation–activity relation is found to be compatible with that obtained by employing the measured rotation rate. This provides additional support for the unconventional enhancement of activity at comparatively low rotation rates and the possible presence of antisolar differential rotation.

  17. Exposure and attitudes toward interprofessional teams: a three-year prospective study of longitudinal integrated clerkship versus rotation-based clerkship students.

    PubMed

    Myhre, Douglas L; Woloschuk, Wayne; Pedersen, Jeanette Somlak

    2014-05-01

    This study explored exposure to, and attitudes toward, interprofessional (IP) teams between third-year longitudinal integrated clerkship (LIC) and traditional rotation-based clerkship (RBC) students at the University of Calgary medical school. Students completed a survey pre-post 32-week LIC or 6-week rural, regional or urban RBC family medicine rotations. Pre and post rotation surveys were completed by 213 (48%) students (LIC = 33/34; rural = 76/152; regional = 24/46; urban = 80/208). More LIC students (76%) reported participating on six or more IP teams than RBC students (rural = 38%; regional = 25%; urban = 21%). At pre rotation, the mean attitude to IP teams score of LIC and rural RBC students was high and did not differ. At post rotation, the mean attitude score of LIC students was significantly greater than the mean reported by rural RBC students. Only LIC students reported a significant pre-post rotation increase in attitude. Exposure to IP teams, possibly facilitated by a longer duration of rotation, appears to be an important factor in affecting attitude to IP teams.

  18. The role of rotational hand movements and general motor ability in children's mental rotation performance.

    PubMed

    Jansen, Petra; Kellner, Jan

    2015-01-01

    Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0-8.3 and 9.0-10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.

  19. On the Rotation Period and Shape of the Hyperbolic Asteroid 1I/‘Oumuamua (2017 U1) from Its Lightcurve

    NASA Astrophysics Data System (ADS)

    Knight, Matthew M.; Protopapa, Silvia; Kelley, Michael S. P.; Farnham, Tony L.; Bauer, James M.; Bodewits, Dennis; Feaga, Lori M.; Sunshine, Jessica M.

    2017-12-01

    We observed the newly discovered hyperbolic minor planet 1I/‘Oumuamua (2017 U1) on 2017 October 30 with Lowell Observatory’s 4.3 m Discovery Channel Telescope. From these observations, we derived a partial lightcurve with a peak-to-trough amplitude of at least 1.2 mag. This lightcurve segment rules out rotation periods less than 3 hr and suggests that the period is at least 5 hr. On the assumption that the variability is due to a changing cross-section, the axial ratio is at least 3:1. We saw no evidence for a coma or tail in either individual images or in a stacked image having an equivalent exposure time of 9000 s.

  20. Nonuniformity of the Earth's rotation and the motion of the poles

    NASA Technical Reports Server (NTRS)

    Sidorenkov, N. S.

    1983-01-01

    The study of the nonuniformity of the Earth's rotation and the motion of the poles has great practical and theoretical significance. This study makes it possible to determine the coordinates of celestial and terrestrial objects, and to gain information in many domains of earth science. This paper reviews studies of rotation nonuniformity and polar motion, giving attention to astronomical data; the nature of periodic oscillations of the Earth's rotation; the nature of long-period variations of the Earth's rotation rate; and the use of Earth-rotation data in hydrometeorology.

  1. Effect of a 5-Year Multi-Crop Rotation on Mineral N and Hard Red Spring Wheat Yield, Protein, Test Weight and Economics in Western North Dakota, USA

    NASA Astrophysics Data System (ADS)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2016-04-01

    The objectives of this non-irrigated cropping study was to employ the principles of soil health and determine the effect of rotation on seasonal mineral N, HRSW production, protein, test weight, and economics. Prior to the initiation of this research, the cropping study area had been previously seeded to hard red spring wheat (HRSW). The cropping systems consisted of a continuous HRSW control (C) compared to HRSW grown in a multi-crop 5-year rotation (R). The 5-yr rotation consisted of HRSW, cover crop (dual crop winter triticale-hairy vetch harvested for hay in June and immediately reseeded to a 7-species cover crop mix grazed by cows after weaning from mid-November to mid-December), forage corn, field pea-forage barley, and sunflower. The cereal grains, cover crops, and pea-barley intercrop were seeded using a JD 1590 no-till drill, 19 cm row spacing, and seed depth of 2.54 cm Cereal grain plant population was 3,088,750 plants/ha. The row crops were planted using a JD 7000 no-till planter, 76.2 cm row spacing, and seed depth of 5.08 cm. Plant population for the row crops was 46,947 plants/ha. Weeds were controlled using a pre-plant burn down and post-emergence control except for cover crops and pea-barley where a pre-plant burn down was the only chemical applied. Fertilizer application was based on soil test results and recommendations from the North Dakota State University Soil Testing Laboratory. During the 1st three years of the study 31.8 kg of N was applied to the C HRSW and then none the last two years of the 5-year period. The R HRSW was fertilized with 13.6 kg of N the 1st two years of the study and none the remaining three years of the 5-year period. However, chloride was low; therefore, 40.7-56.1 kg/ha were applied each year to both the C and R treatments. Based on 2014 and 2015 seasonal mineral N values, the data suggests that N levels were adequate to meet the 2690 kg/ha yield goal. In 2015, however, the R yield goal was exceeded by 673 kg/ha whereas

  2. Rotational properties of the Maria asteroid family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.-J.; Byun, Y.-I.; Choi, Y.-J.

    2014-03-01

    The Maria family is regarded as an old-type (∼3 ± 1 Gyr) asteroid family that has experienced substantial collisional and dynamical evolution in the main belt. It is located near the 3:1 Jupiter mean-motion resonance area that supplies near-Earth asteroids to the inner solar system. We carried out observations of Maria family asteroids during 134 nights from 2008 July to 2013 May and derived synodic rotational periods for 51 objects, including newly obtained periods of 34 asteroids. We found that there is a significant excess of fast and slow rotators in the observed rotation rate distribution. The one-sample Kolmogorov-Smirnov testmore » confirms that the spin rate distribution is not consistent with a Maxwellian at a 92% confidence level. From correlations among rotational periods, amplitudes of light curves, and sizes, we conclude that the rotational properties of Maria family asteroids have been changed considerably by non-gravitational forces such as the YORP effect. Using a light-curve inversion method, we successfully determined the pole orientations for 13 Maria members and found an excess of prograde versus retrograde spins with a ratio (N{sub p} /N{sub r} ) of 3. This implies that the retrograde rotators could have been ejected by the 3:1 resonance into the inner solar system since the formation of the Maria family. We estimate that approximately 37-75 Maria family asteroids larger than 1 km have entered near-Earth space every 100 Myr.« less

  3. Variations in the Solar Coronal Rotation with Altitude - Revisited

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Trivedi, Rupal; Sharma, Som Kumar; Vats, Hari Om

    2017-04-01

    Here we report an in-depth reanalysis of an article by Vats et al. ( Astrophys. J. 548, L87, 2001) that was based on measurements of differential rotation with altitude as a function of observing frequencies (as lower and higher frequencies indicate higher and lower heights, respectively) in the solar corona. The radial differential rotation of the solar corona is estimated from daily measurements of the disc-integrated solar radio flux at 11 frequencies: 275, 405, 670, 810, 925, 1080, 1215, 1350, 1620, 1755, and 2800 MHz. We use the same data as were used in Vats et al. (2001), but instead of the twelfth maxima of autocorrelograms used there, we use the first secondary maximum to derive the synodic rotation period. We estimate synodic rotation by Gaussian fit of the first secondary maximum. Vats et al. (2001) reported that the sidereal rotation period increases with increasing frequency. The variation found by them was from 23.6 to 24.15 days in this frequency range, with a difference of only 0.55 days. The present study finds that the sidereal rotation period increases with decreasing frequency. The variation range is from 24.4 to 22.5 days, and the difference is about three times larger (1.9 days). However, both studies give a similar rotation period at 925 MHz. In Vats et al. (2001) the Pearson's factor with trend line was 0.86, whereas present analysis obtained a {˜} 0.97 Pearson's factor with the trend line. Our study shows that the solar corona rotates more slowly at higher altitudes, which contradicts the findings reported in Vats et al. (2001).

  4. Intra- and inter-observer agreement in MRI assessment of rotator cuff healing using the Sugaya classification 10years after surgery.

    PubMed

    Niglis, L; Collin, P; Dosch, J-C; Meyer, N; Kempf, J-F

    2017-10-01

    The long-term outcomes of rotator cuff repair are unclear. Recurrent tears are common, although their reported frequency varies depending on the type and interpretation challenges of the imaging method used. The primary objective of this study was to assess the intra- and inter-observer reproducibility of the MRI assessment of rotator cuff repair using the Sugaya classification 10years after surgery. The secondary objective was to determine whether poor reproducibility, if found, could be improved by using a simplified yet clinically relevant classification. Our hypothesis was that reproducibility was limited but could be improved by simplifying the classification. In a retrospective study, we assessed intra- and inter-observer agreement in interpreting 49 magnetic resonance imaging (MRI) scans performed 10years after rotator cuff repair. These 49 scans were taken at random among 609 cases that underwent re-evaluation, with imaging, for the 2015 SoFCOT symposium on 10-year and 20-year clinical and anatomical outcomes of rotator cuff repair for full-thickness tears. Each of three observers read each of the 49 scans on two separate occasions. At each reading, they assessed the supra-spinatus tendon according to the Sugaya classification in five types. Intra-observer agreement for the Sugaya type was substantial (κ=0.64) but inter-observer agreement was only fair (κ=0.39). Agreement improved when the five Sugaya types were collapsed into two categories (1-2-3 and 4-5) (intra-observer κ=0.74 and inter-observer κ=0.68). Using the Sugaya classification to assess post-operative rotator cuff healing was associated with substantial intra-observer and fair inter-observer agreement. A simpler classification into two categories improved agreement while remaining clinically relevant. II, prospective randomised low-power study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Nitrogen and phosphorus effluent loads from a paddy-field district adopting collective crop rotation.

    PubMed

    Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D

    2012-01-01

    Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.

  6. Retro- and prospection for mental time travel: Emergence of episodic remembering and mental rotation in 5- to 8-year old children☆

    PubMed Central

    Perner, Josef; Kloo, Daniela; Rohwer, Michael

    2010-01-01

    We investigate the common development of children’s ability to “look back in time” (retrospection, episodic remembering) and to “look into the future” (prospection). Experiment 1 with 59 children 5 to 8.5 years old showed mental rotation, as a measure of prospection, explaining specific variance of free recall, as a measure of episodic remembering (retrospection) when controlled for cued recall. Experiment 2 with 31 children from 5 to 6.5 years measured episodic remembering with recall of visually experienced events (seeing which picture was placed inside a box) when controlling for recall of indirectly conveyed events (being informed about the pictures placed inside the box by showing the pictures on a monitor). Quite unexpectedly rotators were markedly worse on indirect items than non-rotators. We speculate that with the ability to rotate children switch from knowledge retrieval to episodic remembering, which maintains success for experienced events but has detrimental effects for indirect information. PMID:20650660

  7. Equatorial symmetry of Boussinesq convective solutions in a rotating spherical shell allowing rotation of the inner and outer spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio

    2014-08-15

    We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outermore » spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.« less

  8. Period determiantions for 265 Anna and 1584 Fuji

    NASA Astrophysics Data System (ADS)

    Bembrick, C. S.; Bolt, G.

    2005-03-01

    Minor planets 265 Anna and 1584 Fuji were observed from two sites widely separated in longitude. The former was observed over 12 nights (22 rotations) and the latter over 15 nights (23 rotations). Unfiltered CCD photometry yielded a synodic rotation period of 11.681±0.006 hours for Anna and a period of 14.880±0.013 hours for Fuji. The amplitudes are 0.48 and 0.17, respectively.

  9. Period Determination for (69315) 1992 UR2

    NASA Astrophysics Data System (ADS)

    Franco, Lorenzo; Marchini, Alessandro; Papini, Riccardo; Salvaggio, Fabio; Banfi, Massimo; Ago, Pasquale; Bacci, Paolo; Maestripieri, Martina; Baj, Giorgio; Bachini, Mauro; Foylan, Mike; Noschese, Alfonso; Zambelli, Roberto

    2018-04-01

    Photometric observations of the main-belt asteroid (69315) 1992 UR2 were conducted from a group of observers in order to determine its synodic rotation period. This asteroid turned out to be a slow rotator with a period of 106.25h ± 0.01 and an amplitude of 1.50 mag.

  10. Descriptive Study of Occupational Accidents and their Causes among Electricity Distribution Company Workers at an Eight-year Period in Iran

    PubMed Central

    Rahmani, Abdolrasoul; Khadem, Monireh; Madreseh, Elham; Aghaei, Habib-Allah; Raei, Mehdi; Karchani, Mohsen

    2013-01-01

    Background Occupational accidents are unplanned events that cause damage. The socio-economic impacts and human costs of accidents are tremendous around the world. Many fatalities happen every year in workplaces such as electricity distribution companies. Some electrical injuries are electrocution, electric shock, and burns. This study was conducted in an electricity distribution company (with rotational 12-hour shift work) in Iran during an 8-year period to survey descriptive factors of injuries. Methods Variables collected included accident time, age of injured worker, employment type, work experience, injury cause, educational background, and other information about accidents. Results Results indicated that most of the accidents occurred in summer, and 51.3% were during shift work. Worker negligence (malpractice) was the cause of 75% of deaths. Type of employment had a significant relationship with type of injuries (p < 0.05). Most injuries were electrical burns. Conclusion High rate of accidents in summer may be due to the warm weather or insufficient professional skills in seasonal workers. Shift workers are at risk of sleep complaints leading to a high rate of work injuries. Acquiring knowledge about safety was related to job experiences. Temporary workers have no chance to work all year like permanent workers, therefore impressive experiences may be less in them. Because the lack of protective equipment and negligence are main causes of accidents, periodical inspections in workshops are necessary. PMID:24106647

  11. Rotational properties of planetary satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1991-01-01

    Properties of satellite rotation that are observable in principle, include the rotation period, the orientation of the spin axis relative to the orbit plane, precession of the spin axis due to gravitational torques, nonprincipal axis rotation or wobble, and deviations from uniform principle axis rotation or libration. Considerable order is observed in current satellite rotation states, and it is of interest to ascertain how this order came about and why some satellites do not conform to the dominant norm. There is a strong coupling between the spin and orbital motions that is primarily responsible for maintaining the ordered rotation states in most cases, but this coupling is equally responsible for destroying any chance of orderly rotation for Saturn's satellite Hyperion. Understanding the processes which constrain current rotation states as well as those of an evolutionary nature which could have brought the individual satellites to their observed rotation and orbit states allows us to sometimes infer interior properties of some satellite or even of its primary planet, although, attempts to deduce primordial rotation states are usually frustrated. The observed rotational properties of the planetary satellites are summarized, and the understanding of the processes maintaining and those leading to the observed states are outlined. Some of the inferences that can be drawn about intrinsic properties of the bodies themselves are indicated.

  12. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period.

    PubMed

    Lantto, I; Heikkinen, J; Flinkkilä, T; Ohtonen, P; Leppilahti, J

    2015-02-01

    We investigated the epidemiology of total Achilles tendon ruptures and complication rates after operative and nonoperative treatments over a 33-year period in Oulu, Finland. Patients with Achilles tendon ruptures from 1979 to 2011 in Oulu were identified from hospital patient records. Demographic data, treatment method, and complications were collected retrospectively from medical records. Overall and sex- and age-specific incidence rates were calculated with 95% confidence intervals (CIs). The overall incidence per 100,000 person-years increased from 2.1 (95% CI 0.3-7.7) in 1979 to 21.5 (95% CI 14.6-30.6) in 2011. The incidence increased in all age groups. The mean annual increase in incidence was 2.4% (95% CI 1.3-4.7) higher for non-sports-related ruptures than for sports-related ruptures (P = 0.036). The incidence of sports-related ruptures increased during the second 11-year period whereas the incidence of non-sports-related ruptures increased steadily over the entire study period. Infection was four times more common after operative treatment compared with nonoperative treatment, re-rupture rates were similar. The incidence of Achilles tendon ruptures increased in all age groups over a 33-year period. Increases were mainly due to sports-related injuries in the second 11-year period and non-sports-related injuries in the last 11-year period. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. 319 Leona and 341 California - Two Very Slowly Rotating Asteroids

    NASA Astrophysics Data System (ADS)

    Pilcher, Frederick; Franco, Lorenzo; Pravec, Petr

    2017-04-01

    An observing strategy for asteroids suspected of being very slowly rotating is described and recommended to all observers. For 319 Leona the synodic rotation period is 430 ± 2 hours, amplitude 0.7 magnitudes, a second tumbling period is 1084 ± 10 hours, color index V-R = 0.43, H=10.46 ± 0.08 and G=0.11 ± 0.09 at mean light. For 341 California the synodic rotation period is 318 ± 2 hours, amplitude 0.9 magnitudes, a second tumbling period is 250 ± 2 hours, color index V-R = 0.53, H=11.53 ± 0.06 and G=0.18 ± 0.05 at mean light.

  14. Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors.

    PubMed

    Varley, Mark C; Markaki, Athina E; Brooks, Roger A

    2017-06-01

    Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s -1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05).

  15. Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors

    PubMed Central

    Varley, Mark C.; Markaki, Athina E.

    2017-01-01

    Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s−1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05). PMID:28125920

  16. The role of rotational hand movements and general motor ability in children’s mental rotation performance

    PubMed Central

    Jansen, Petra; Kellner, Jan

    2015-01-01

    Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0–8.3 and 9.0–10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability. PMID:26236262

  17. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    PubMed

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Solar wind oscillations with a 1.3 year period

    NASA Technical Reports Server (NTRS)

    Richardson, John D.; Paularena, Karolen I.; Belcher, John W.; Lazarus, Alan J.

    1994-01-01

    The Interplanetary Monitoring Platform 8 (IMP-8) and Voyager 2 spacecraft have recently detected a very strong modulation in the solar wind speed with an approximately 1.3 year period. Combined with evidence from long-term auroral and magnetometer studies, this suggests that fundamental changes in the Sun occur on a roughly 1.3 year time scale.

  19. The Hα Emission of Nearby M Dwarfs and its Relation to Stellar Rotation

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry; Calkins, Michael L.; Mink, Jessica

    2017-01-01

    The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of Hα emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M⊙ are well-represented in our sample, with fast and slow rotators of all masses. We observe a threshold in the mass-period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that Hα activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between LHα/Lbol and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of LHα/Lbol. Our data also show a clear power-law decay in LHα/Lbol with Rossby number for slow rotators, with an index of -1.7 ± 0.1.

  20. THE ROTATION OF THE SOLAR PHOTOSPHERIC MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J. C.; Gao, P. X., E-mail: jcxu@ynao.ac.cn

    2016-12-20

    The rotational characteristics of the solar photospheric magnetic field at four flux ranges are investigated together with the total flux of active regions (MF{sub ar}) and quiet regions (MF{sub qr}). The first four ranges (MF{sub 1–4}) are (1.5–2.9) × 10{sup 18}, (2.9–32.0) × 10{sup 18}, (3.20–4.27) × 10{sup 19}, and (4.27–38.01) × 10{sup 19}, respectively (the unit is Mx per element). Daily values of the flux data are extracted from magnetograms of the Michelson Doppler Imager on board the Solar and Heliospheric Observatory . Lomb–Scargle periodograms show that only MF{sub 2}, MF{sub 4}, MF{sub qr}, and MF{sub ar} exhibit rotational periods. The periods of the first three typesmore » of flux are very similar, i.e., 26.20, 26.23, and 26.24 days, respectively, while that of MF{sub ar} is longer, 26.66 days. This indicates that active regions rotate more slowly than quiet regions on average, and strong magnetic fields tend to repress the surface rotation. Sinusoidal function fittings and cross-correlation analyses reveal that MF{sub ar} leads MF{sub 2} and MF{sub 4} by 5 and 1 days, respectively. This is speculated to be related with the decaying of active regions. MF{sub 2} and MF{sub ar} are negatively correlated, while both MF{sub 4} and MF{sub qr} are positively correlated with MF{sub ar}. At the timescale of the solar activity cycle, MF{sub ar} leads (negatively) MF{sub 2} by around one year (350 days), and leads MF{sub 4} by about 3 rotation periods (82 days). The relation between MF{sub 2} and MF{sub ar} may be explained by the possibility that the former mainly comes from a higher latitude, or emerges from the subsurface shear layer. We conjecture that MF{sub 4} may partly come from the magnetic flux of active regions; this verifies previous results that were obtained with indirect solar magnetic indices.« less

  1. Variations in VLT/UVES-based OH rotational temperatures for time scales from hours to 15 years

    NASA Astrophysics Data System (ADS)

    Noll, Stefan; Kimeswenger, Stefan; Proxauf, Bastian; Kausch, Wolfgang; Unterguggenberger, Stefanie; Jones, Amy M.

    2017-04-01

    Hydroxyl (OH) emission is an important tracer of the climate, chemistry, and dynamics of the Earth's mesopause region. However, the relation of intensity variations in different OH lines is not well understood yet. This is critical for the most popular use of OH lines: the estimate of ambient temperatures based on transitions at low rotational levels of the same band. It is possible that the measured variability of the derived rotational temperature does not coincide with changes in the ambient temperature. Such differences can be caused by varying deviations from the local thermodynamic equilibrium (LTE) for the population distribution over the considered rotational levels. The non-LTE effects depend on the ratio of the thermalising collisions (mostly related to molecular oxygen) and competing radiative transitions or collisions without thermalisation of the rotational level distribution. Therefore, significant changes in the vertical structure of excited OH and its main quenchers can affect the temperature measurements. We have investigated the variability of OH rotational temperatures and the corresponding contributions of non-LTE effects for different OH bands and time scales up to 15 years based on data of the high-resolution echelle spectrograph UVES at the Very Large Telescope at Cerro Paranal in Chile. In order to link the measured rotational temperatures with the structure of the OH emission layer, we have also studied OH emission and kinetic temperature profiles from the multi-channel radiometer SABER on the TIMED satellite taken between 2002 and 2015. The results show that non-LTE contributions can significantly affect the OH rotational temperatures. Their variations can be especially strong during the night and for high upper vibrational levels of the transitions, where amplitudes of several Kelvins can be measured. They appear to be weak if long-term variations such as those caused by the solar cycle are investigated. These differences in the response

  2. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  3. Prolotherapy for Refractory Rotator Cuff Disease: Retrospective Case-Control Study of 1-Year Follow-Up.

    PubMed

    Lee, Doo-Hyung; Kwack, Kyu-Sung; Rah, Ueon Woo; Yoon, Seung-Hyun

    2015-11-01

    To determine the efficacy of prolotherapy for refractory rotator cuff disease. Retrospective case-control study. University-affiliated tertiary care hospital. Patients with nontraumatic refractory rotator cuff disease (N=151) who were unresponsive to 3 months of aggressive conservative treatment. Of the patients, 63 received prolotherapies with 16.5% dextrose 10-ml solution (treatment group), and 63 continued conservative treatment (control group). Not applicable. Visual analog scale (VAS) score of the average shoulder pain level for the past 1 week, Shoulder Pain and Disability Index (SPADI) score, isometric strength of the shoulder abductor, active range of motion (AROM) of the shoulder, maximal tear size on ultrasonography, and number of analgesic ingestions per day. Over 1-year follow-up, 57 patients in the treatment group and 53 in the control group were analyzed. There was no significant difference between the 2 groups in age, sex, shoulder dominance, duration of symptoms, and ultrasonographic findings at pretreatment. The average number of injections in the treatment group is 4.8±1.3. Compared with the control group, VAS score, SPADI score, isometric strength of shoulder abductor, and shoulder AROM of flexion, abduction, and external rotation showed significant improvement in the treatment group. There were no adverse events. To our knowledge, this is the first study to assess the efficacy of prolotherapy in rotator cuff disease. Prolotherapy showed improvement in pain, disability, isometric strength, and shoulder AROM in patients with refractory chronic rotator cuff disease. The results suggest positive outcomes, but one should still take caution in directly interpreting it as an effective treatment option, considering the limitations of this nonrandomized retrospective study. To show the efficacy of prolotherapy, further studies on prospective randomized controlled trials will be required. Copyright © 2015 American Congress of Rehabilitation Medicine

  4. Ego-rotation and object-rotation in major depressive disorder.

    PubMed

    Chen, Jiu; Yang, Laiqi; Ma, Wentao; Wu, Xingqu; Zhang, Yan; Wei, Dunhong; Liu, Guangxiong; Deng, Zihe; Hua, Zhen; Jia, Ting

    2013-08-30

    Mental rotation (MR) performance provides a direct insight into a prototypical higher-level visuo-spatial cognitive operation. Previous studies suggest that progressive slowing with an increasing angle of orientation indicates a specific wing of object-based mental transformations in the psychomotor retardation that occurs in major depressive disorder (MDD). It is still not known, however, whether the ability of object-rotation is associated with the ability of ego-rotation in MDD. The present study was designed to investigate the level of impairment of mental transformation abilities in MDD. For this purpose we tested 33 MDD (aged 18-52 years, 16 women) and 30 healthy control subjects (15 women, age and education matched) by evaluating the performance of MDD subjects with regard to ego-rotation and object-rotation tasks. First, MDD subjects were significantly slower and made more errors than controls in mentally rotating hands and letters. Second, MDD and control subjects displayed the same pattern of response times to stimuli at various orientations in the letter task but not the hand task. Third, in particular, MDD subjects were significantly slower and made more errors during the mental transformation of hands than letters relative to control subjects and were significantly slower and made more errors in physiologically impossible angles than physiologically possible angles in the mental rotation hand task. In conclusion, MDD subjects present with more serious mental rotation deficits specific to the hand than the letter task. Importantly, deficits were more present during the mental transformation in outward rotation angles, thus suggesting that the mental imagery for hands and letters relies on different processing mechanisms which suggest a module that is more complex for the processing of human hands than for letters during mental rotation tasks. Our study emphasises the necessity of distinguishing different levels of impairment of action in MDD subjects

  5. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  6. Clinical Track Program Expansion Increases Rotation Capacity for Experiential Program.

    PubMed

    Tofade, Toyin S; Brueckl, Mark; Ross, Patricia A

    2017-10-01

    Objective. To evaluate the rotation capacity at the University of Maryland School of Pharmacy and see if the implementation of clinical track programs across the state correlates to an increase in rotation capacity for the school. Methods. The following information was collected: number of preceptors over the years in the school's experiential learning program, number of clinical track programs from 2012 to 2015, rotation type, availability submissions per rotation type per year, and availability submissions per hospital participant in the clinical track program per year. The rotation capacity and rotation types from 2012 to 2015 academic years were assessed and compared to see if there was any impact on the clinical track programs implemented. Results. There was no statistically significant difference in the frequency distribution of rotation types among all sites from 2012 through 2015 academic years. However, there was a statistically significant difference in the total number/capacity of rotations from 2012 to 2015 academic years. There were also statistically significant differences in the rotation capacity in all sites except for three sites. Conclusion. Adding clinical track programs can help increase the capacity of a school's clinical rotations.

  7. The rotation of the sun - Observations at Stanford

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.; Svalgaard, L.

    1980-01-01

    Daily observations of the photospheric rotation rate using the Doppler effect have been made at the Stanford Solar Observatory since May 1976. These observations show no daily or long-period variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is the same as that of the sunspots and the large-scale magnetic field structures.

  8. Rotating elephant trunks

    NASA Astrophysics Data System (ADS)

    Gahm, G. F.; Carlqvist, P.; Johansson, L. E. B.; Nikolić, S.

    2006-07-01

    Aims.We investigate the structure and velocity of cold molecular pillars, "elephant trunks", in expanding H II regions. Methods: .The trunks are seen in silhouette against the bright background in our Hα images. All trunks are filamentary, and show signs of being twisted. Four such trunks in NGC 7822, IC 1805, the Rosette Nebula, and DWB 44 were selected, and then mapped mainly in 12CO and 13CO. We determine the mass and density of the trunks. Most of the mass is concentrated in a head facing the central cluster, and in sub-filaments forming the body of the trunk that is connected to V-shaped filaments to the outer expanding shell. Results: .We discovered that all four trunks rotate as rigid bodies (to a first approximation) about their major axes, and that at least two trunks are stretching along their major axes, meaning that the massive heads are lagging behind in the general expansion of the H II regions. The rotational periods are of the order of a few million years - similar to the age of the clusters. Rotation, then, is responsible for the twisted appearance of many elephant trunks, since they are rooted in the outer shells. The trunks carry surprisingly large amounts of angular momentum, 3× 1048{-}2× 1050 kg m2 s-1, with corresponding rotational energies of up to 1037 J. However, we estimate the total magnetic energies to be even larger. The trunks continuously reshape, and the formation of twined, and in many cases helical, sub-filaments can be understood as a consequence of electromagnetic and inertia forces inside the trunks. A theory based on the concept of magnetically twisted trunks is developed further, where the initial angular momentum is a consequence of the twisting of parent filaments containing mass condensations. Our results also suggest a new process of removing angular momentum from parent molecular clouds.

  9. Stability of Stellar Periods in the Hyades and Taurus

    NASA Astrophysics Data System (ADS)

    Rebull, Luisa M.; Stauffer, John R.; K2 Clusters Team

    2018-06-01

    K2 has opened to us the study of high-precision light curves from which we can derive stellar rotation periods. We have presented period distributions for the Pleiades, Praesepe, Upper Sco and Rho Oph. But, how stable are the periods we are deriving from them? Early ground-based work in Orion (Rebull 2001) suggested that, for the youngest stars, about half the stars had sufficiently different spot distributions in two consecutive years such that periods could not be recovered in the second year. However, now that we have K2, precision and diurnal windowing functions are no longer really much of a concern. For a handful of stars in Hyades and Taurus, the K2 spacecraft monitored them for two non-consecutive 70d windows (campaigns 4, 2015 Feb and 13, 2017 Mar). In this poster, we examine whether or not the light curves are similar in the two epochs, and how accurately the same period can be recovered.

  10. Earthquake triggering, Earth's rotation variations, Meton's cycle and torques acting on the Earth.

    NASA Astrophysics Data System (ADS)

    Ostrihansky, L.

    2012-04-01

    In contrast to unsuccessful searching (lasting over 150 years) of correlation of earthquakes with biweekly tides the author found correlation of earthquakes with sidereal 13.66 days Earth's rotation variations expressed as the length of a day (LOD) measured daily by the International Earth's Rotation Service. After short mention about earthquakes Denali Fault Alaska 3rd November 2002, M 7.9, triggered on LOD maximum and Great Sumatra earthquake 26th December 2004 triggered on LOD minimum and the full Moon, the main object of this paper are earthquakes of period 2010-VI. 2011: Haiti M 7.0 Jan. 12, 2010 on LOD minimum, Maule Chile M 8.8 Feb. 12, 2010 on LOD maximum, Sumatra and Andaman Sea region 6 earthquakes revealed from 7 on LOD minimum, New Zealand, Christchurch M 7.1 Sep. 9, 2010 on LOD minimum and Christchurch M 6.3 Feb. 21, 2011 on LOD maximum and Japan Near coast of Honshu M 9.1 March 11, 2011 on LOD minimum. I found that LOD minimums coincide with full or new Moon only twice in a year in solstices and also twice in the year with LOD maximums in equinoxes. To prove that determined coincidences of earthquakes and LOD extremes stated above are not accidental events, histograms were constructed of earthquake occurrence and their position on LOD graph deeply in the past, in some cases from the time the IERS started to measure the Earth's rotation variations in 1962. Evaluation of histograms and the Schuster's test has proven that maxima of earthquakes are triggered always in both Earth's rotation deceleration and acceleration. Backward overview of the past earthquakes revealed that the Great Sumatra earthquake Dec. 26, 2004 had its equivalent in the shape of LOD graph, full Moon position, character of aftershocks, 19 years ago in difference only one day of Dec. 27, 1985 M 6.6, proving that not only sidereal 13.66 days variations but also the 19 years Meton's cycle is the period of the earthquakes occurrence.

  11. ROTATIONAL AND CYCLICAL VARIABILITY IN {gamma} CASSIOPEIAE. II. FIFTEEN SEASONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Gregory W.; Smith, Myron A., E-mail: gregory.w.henry@gmail.com, E-mail: msmith@stsci.edu

    The B0.5 IVe star {gamma} Cas is of great interest because it is the prototype of a small group of classical Be stars having hard X-ray emission of unknown origin. We discuss results from ongoing B and V observations of the {gamma} Cas star-disk system acquired with an Automated Photometric Telescope during the observing seasons 1997-2011. In an earlier study, Smith, Henry, and Vishniac showed that light variations in {gamma} Cas are dominated by a series of comparatively prominent cycles with amplitudes of 0.02-0.03 mag and lengths of 2-3 months, superimposed on a 1.21 day periodic signal some five timesmore » smaller, which they attributed to rotation. The cycle lengths clustered around 70 days, with a total range of 50-91 days. Changes in both cycle length and amplitude were observed from year to year. These authors also found the V-band cycles to be 30%-40% larger than the B-band cycles. In the present study, we find continued evidence for these variability patterns and for the bimodal distribution of the {Delta}B/{Delta}V amplitude ratios in the long cycles. During the 2010 observing season, {gamma} Cas underwent a mass-loss event ({sup o}utburst{sup )}, as evidenced by the brightening and reddening seen in our new photometry. This episode coincided with a waning of the amplitude in the ongoing cycle. The Be outburst ended the following year, and the light-curve amplitude returned to pre-outburst levels. This behavior reinforces the interpretation that cycles arise from a global disk instability. We have determined a more precise value of the rotation period, 1.215811 {+-} 0.000030 days, using the longer 15-season data set and combining solutions from the V and B light curves. Remarkably, we also find that both the amplitude and the asymmetry of the rotational waveform changed over the years. We review arguments for this modulation arising from transits of a surface magnetic disturbance. Finally, to a limit of 5 mmag, we find no evidence for any photometric

  12. Analysis of Petal Rotation Trajectory Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Buffington, Brent B.

    2014-01-01

    In this study, the characteristics of petal rotation trajectories are explored in both the two-body and circular restricted three-body problem (CRTBP) models. Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of apsides. They are typically computed using the patched conic model, and they are used in a number of different missions and mission concepts including Cassini, JUICE, and Europa mission concepts. Petal rotation trajectories are first analyzed here using the patched conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When they are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study.

  13. [Evolution of the technique of arthroscopic reinsertion of the rotator cuff. Our experience from the years 1998 to 2008].

    PubMed

    Holibka, R; Neoral, P; Kalina, R; Radová, L; Gallo, J

    2012-01-01

    A rotator cuff tear is a relatively frequent cause of pain and restricted motion of the shoulder. Some orthopaedists believe that any attempt at rotator cuff reconstruction will fail. The aim of this paper is to present our experience with arthroscopic reconstruction of rotator cuff tears. Between January 1998 and December 2008, 319 patients with an early diagnosis of rotator cuff rupture were treated. The group included 67 women and 252 men, with an average age of 37 years (range, 24 to 71 years) at the time of surgery. The patients indicated for arthroscopic reconstruction had to show free motion of the shoulder, had a full thickness tear up to 3 cm in size in the sagittal plane and a Patte stage 2 tear in the frontal plane at the maximum. The outcome of surgery was evaluated at one year of follow-up and included the patient's self-assessment, modified UCLA score and incidence of complications. The probability of failure was calculated as an odds ratio of an implant failure to failure of the other implants and the probability of repeat surgery in a given implant was calculated as a relative risk in relation to the other implants. The average operative time was 52 minutes (range, 25 to 85); the average UCLA score increased from 10 to 31 points (p<0.00001). An excellent or a good result was achieved in 80% of the patients. Rotator cuff reconstruction failed in 32 patients (11%), of whom 22 (7.6%) underwent revision surgery. The failure was due to migration of rotator cuff anchors or thread failure in 14 patients (14/32; 44%). The GII anchors showed the highest risk of failure, with the odds ratio of 5.55 (95 % CI, 2.22 to 13.84) for mechanical failure of the method and a relative risk of revision surgery of 7.62 (95% CI, 2.86 to 20.27). For comparison, the RC anchors had the odds ratio for mechanical failure equal to 0.55 (95 % CI, 0.25 to 1.24) and the relative risk of repeat surgery equal to 0.41 (95% CI, 0.12 to 1.43). In addition, 18 complications were recorded

  14. Evapotranspiration response to multi-year dry periods in the semi-arid western United States

    NASA Astrophysics Data System (ADS)

    Rungee, J. P., II; Bales, R. C.

    2017-12-01

    Analysis of measured evapotranspiration shows multi-year regolith water storage can support evapotranspiration for years into a multi-year dry period. Measurements at 25 flux-tower sites in the semi-arid western United States, distributed across five primary land-cover types, show both resilience and vulnerability to multi-year dry periods. Average evapotranspiration ranged from about 700+200 mm per water year (October-September) in evergreen needleleaf forests to 350+150 mm per water year in grasslands and open shrublands. On average, in California's Mediterranean climate almost half of the water-year evapotranspiration is supported by seasonal and/or multi-year regolith water storage, compared to a characteristic 20 to 30 percent value of energy-limited and inland sites. Below 35oN latitude, water-year evapotranspiration exceeded estimated precipitation in over half of the years on record. For non-energy-limited sites, water-year evapotranspiration increased with precipitation up to a maximum water-year evapotranspiration value of about 900, 750, 600, 425 and 300 mm per water year for evergreen needleleaf forests, mixed forests, woody savannas, grasslands and open shrublands, respectively. There were 15 multi-year dry periods on record that exhibited either an attenuation in evapotranspiration, defined as an annual value below 80% of the wet-year average, or withdrawal from multi-year storage. A multi-year dry period was defined as three or more consecutive water years in which all water-year precipitation values and the mean period value were in the lower 50 and 35 percent of the historical record, respectively. For sites exhibiting evapotranspiration attenuation, resistance to multi-year dry periods ranged from 9 to 49 months, drafting as much as 444 mm of regolith storage. At some mountain sites regolith storage provided up to 678 mm, almost the equivalent of the average water-year evapotranspiration for these sites, over the extent of the multi-year dry

  15. Comparison of functional gains after arthroscopic rotator cuff repair in patients over 70 years of age versus patients under 50 years of age: a prospective multicenter study.

    PubMed

    Moraiti, Constantina; Valle, Pablo; Maqdes, Ali; Boughebri, Omar; Dib, Chourky; Giakas, Giannis; Kany, Jean; Elkholti, Kamil; Garret, Jérôme; Katz, Denis; Leclère, Franck Marie; Valenti, Philippe

    2015-02-01

    To assess rotator cuff rupture characteristics and evaluate healing and the functional outcome after arthroscopic repair in patients older than 70 years versus patients younger than 50 years. We conducted a multicenter, prospective, comparative study of 40 patients younger than 50 years (group A) and 40 patients older than 70 years (group B) treated with arthroscopic rotator cuff repair. Patients older than 70 years were operated on only if symptoms persisted after 6 months of conservative treatment, whereas patients younger than 50 years were operated on regardless of any persistent symptoms. Imaging consisted of preoperative magnetic resonance imaging and postoperative ultrasound. Preoperative and postoperative function was evaluated with Constant and modified Constant scores. Patient satisfaction was also assessed. The evaluations were performed at least 1 year postoperatively. No patient was lost to follow-up. The incidence of both supraspinatus and infraspinatus tears was greater in group B. Greater retraction in the frontal plane and greater fatty infiltration were observed in group B. The Constant score was significantly improved in both groups (51 ± 12.32 preoperatively v 77.18 ± 11.02 postoperatively in group A and 48.8 ± 10.97 preoperatively v 74.6 ± 12.02 postoperatively in group B, P < .05). The improvement was similar in both groups. The modified Constant score was also significantly improved in both groups (57.48 ± 18.23 preoperatively v 81.35 ± 19.75 postoperatively in group A and 63.09 ± 14.96 preoperatively v 95.62 ± 17.61 postoperatively in group B, P < .05). The improvement was greater for group B (P < .05). Partial rerupture of the rotator cuff occurred in 2 cases in group A and 5 cases in group B. Complete rerupture was observed in 2 patients in group B. In group A, 29 patients (72.5%) were very satisfied, 8 (20%) were satisfied, and 3 (7.5%) were less satisfied. In group B, 33 patients (82.5%) were very satisfied, 6 (15%) were

  16. Periodic Bursts of Jovian Non-Io Decametric Radio Emission

    NASA Technical Reports Server (NTRS)

    Panchenko, M.; Rucker, H O.; Farrell, W. M.

    2013-01-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  17. Periodic bursts of Jovian non-Io decametric radio emission

    PubMed Central

    Panchenko, M.; Rucker, H.O.; Farrell, W.M.

    2013-01-01

    During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  18. Asymptotic g modes: Evidence for a rapid rotation of the solar core

    NASA Astrophysics Data System (ADS)

    Fossat, E.; Boumier, P.; Corbard, T.; Provost, J.; Salabert, D.; Schmider, F. X.; Gabriel, A. H.; Grec, G.; Renaud, C.; Robillot, J. M.; Roca-Cortés, T.; Turck-Chièze, S.; Ulrich, R. K.; Lazrek, M.

    2017-08-01

    Context. Over the past 40 years, helioseismology has been enormously successful in the study of the solar interior. A shortcoming has been the lack of a convincing detection of the solar g modes, which are oscillations driven by gravity and are hidden in the deepest part of the solar body - its hydrogen-burning core. The detection of g modes is expected to dramatically improve our ability to model this core, the rotational characteristics of which have, until now, remained unknown. Aims: We present the identification of very low frequency g modes in the asymptotic regime and two important parameters that have long been waited for: the core rotation rate, and the asymptotic equidistant period spacing of these g modes. Methods: The GOLF instrument on board the SOHO space observatory has provided two decades of full-disk helioseismic data. The search for g modes in GOLF measurements has been extremely difficult because of solar and instrumental noise. In the present study, the p modes of the GOLF signal are analyzed differently: we search for possible collective frequency modulations that are produced by periodic changes in the deep solar structure. Such modulations provide access to only very low frequency g modes, thus allowing statistical methods to take advantage of their asymptotic properties. Results: For oscillatory periods in the range between 9 and nearly 48 h, almost 100 g modes of spherical harmonic degree 1 and more than 100 g modes of degree 2 are predicted. They are not observed individually, but when combined, they unambiguously provide their asymptotic period equidistance and rotational splittings, in excellent agreement with the requirements of the asymptotic approximations. When the period equidistance has been measured, all of the individual frequencies of each mode can be determined. Previously, p-mode helioseismology allowed the g-mode period equidistance parameter P0 to be bracketed inside a narrow range, between approximately 34 and 35 min. Here

  19. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young <300 Myr), early-M dwarfs within 25 parsecs were measured using photometric data collected with telescopes at Lowell Observatory during 2012 and 2013. An additional 25 rotation periods for members of the same sample were found in the literature. Ages were derived from Hα and X-ray emission, lithium absorption, surface gravity, and kinematic association of members of known young moving groups (YMGs). We compared rotation periods with the estimated ages as well as indicators of magnetic activity, with the intention of strengthening age-rotation-activity relations and assessing the possible use of gyrochronology in young, low-mass stars. We compared ages and rotation periods of our target stars to cluster members spanning 1-600 Myr. Rotation periods at every age exhibit a large scatter, with values typically ranging from 0.2 to 15 days. This suggests that gyrochronology for individual field stars will not be possible without a better understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  20. Practising Mental Rotation Using Interactive Desktop Mental Rotation Trainer (iDeMRT)

    ERIC Educational Resources Information Center

    Rafi, Ahmad; Samsudin, Khairulanuar

    2009-01-01

    An experimental study involving 30 undergraduates (mean age = 20.5 years) in mental rotation (MR) training was conducted in an interactive Desktop Mental Rotation Trainer (iDeMRT). Stratified random sampling assigned students into one experimental group and one control group. The former trained in iDeMRT and the latter trained in conventional…

  1. Annual incidences of visual impairment during 10-year period in Mie prefecture, Japan.

    PubMed

    Ikesugi, Kengo; Ichio, Takako; Tsukitome, Hideyuki; Kondo, Mineo

    2017-07-01

    To determine the annual incidence of visual impairment in a Japanese population during a 10-year period. We examined the physical disability certificates issued yearly between 2004 and 2013 in Mie prefecture, Japan. During this period 2468 visually impaired people were registered under the newly defined Act on Welfare of the Physically Disabled Persons' criteria. The age, sex distribution, and causes of visual impairment were determined from the certificates. The major causes of visual impairment during the ten-year period were glaucoma (23.3%), diabetic retinopathy (17.3%), retinitis pigmentosa (12.2%), macular degeneration (9.0%), chorioretinal degeneration or high myopia (7.4%), optic atrophy (5.8%), stroke or brain tumor (5.4%) and cataracts (3.7%). The incidence of glaucoma was significantly higher throughout the period (2004-2013), and that of diabetic retinopathy was lower between 2007 and 2013. The incidence of retinitis pigmentosa did not change significantly during the 10-year period. The incidence of macular degeneration tended to increase between 2004 and 2007, but it decreased significantly between 2007 and 2013. The results indicate that in Japan, the rates of the major causes of visual impairment altered in the most recent 10-year period reflecting the recent changes in the social background and advances in ocular and systemic treatment.

  2. Developing an Asteroid Rotational Theory

    NASA Astrophysics Data System (ADS)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald

    2018-01-01

    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  3. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ojakangas, G.; Anz-Meador, P.; Cowardin, H.

    2012-09-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies (RBs). However, rotational dynamics is non-intuitive and misconceptions are common. Determinations of rotation and precession rates from light curves have been published that are inconsistent with the theory presented here. In a state of free precession, the total angular momentum of the object is constant, while kinetic energy decreases due to internal friction, approaching rotation about the axis of maximum inertia. For solid internal friction the timescale is hundreds to thousands of years for quality factors of ~100 and assuming metallic rigidities, but for friction in partially-filled liquid fuel tanks we predict that the preferred rotational state is approached rapidly, within days to months. However, history has shown that theoretical predictions of the timescale have been notoriously inaccurate. In free precession, the 3-1-3 Euler angle rates dphi/dt (precession rate of long axis about fixed angular momentum with cone angle theta) and dpsi/dt (roll rate around long axis) have comparable magnitudes until very close to theta=pi/2, so that otherwise the true rotation period is not simply twice the primary light curve period. Furthermore dtheta/dt, nonzero due to friction, becomes asymptotically smaller as theta=pi/2 is approached, so that theta can linger within several degrees of flat spin for a relatively long time. Such a condition is likely common, and cannot be distinguished from the wobble of a cylinder with a skewed inertia tensor unless the RB has non-axisymmetric reflectivity characteristics. For an RB of known dimensions, a given value of theta fixes the relative values of dpsi/dt and dphi/dt. In forced precession, the angular momentum precesses about a symmetry axis defined by the relevant torque. However, in LEO, only gravity gradient and magnetic eddy current torques are dominant, and these

  4. [Shoulder instability and rotator cuff tear].

    PubMed

    Voigt, C; Lill, H

    2009-01-01

    A rotator cuff tear as a complication of anterior shoulder dislocation is well known in patients over 40 years old. The incidence of this accompanying injury correlates with the patient's age and the number of redislocations. The tear localization and dimension depend on the patient's age. To what extent these tears are a complication of shoulder dislocation is often unclear, as rotator cuff tears and glenohumeral instability interact. Reports on this combined injury pattern are rare, but based on the patient's age, activity level, and functional demand, therapeutic concepts have been devised. In active patients younger than 60 years and in cases of redislocation, both the rotator cuff tear and the capsule-labrum-ligament lesion should be reconstructed arthroscopically. In lesser active patients age 60 years or older, an isolated rotator cuff reconstruction is often sufficient to stabilize the glenohumeral joint. This treatment concept shows a predominantly good outcome.As a special form of anterior shoulder dislocation, a rotator cuff tear and a plexus brachialis lesion--the"terrible triad of the shoulder"--is described here.

  5. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  6. Rotating stars in relativity.

    PubMed

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  7. Rotational vertebral artery occlusion: mechanisms and long-term outcome.

    PubMed

    Choi, Kwang-Dong; Choi, Jae-Hwan; Kim, Ji-Soo; Kim, Hyo Jung; Kim, Min-Ji; Lee, Tae-Hong; Lee, Hyung; Moon, In Soo; Oh, Hui Jong; Kim, Jae-Il

    2013-07-01

    To elucidate the mechanisms and prognosis of rotational vertebral artery occlusion (RVAO). We analyzed clinical and radiological characteristics, patterns of induced nystagmus, and outcome in 21 patients (13 men, aged 29-77 years) with RVAO documented by dynamic cerebral angiography during an 8-year period at 3 University Hospitals in Korea. The follow-up periods ranged from 5 to 91 months (median, 37.5 months). Most patients (n=19; 90.5%) received conservative treatments. All the patients developed vertigo accompanied by tinnitus (38%), fainting (24%), or blurred vision (19%). Only 12 (57.1%) patients showed the typical pattern of RVAO during dynamic cerebral angiography, a compression of the dominant vertebral artery at the C1-2 level during contralateral head rotation. The induced nystagmus was mostly downbeat with horizontal and torsional components beating toward the compressed vertebral artery side. None of the patients with conservative treatments developed posterior circulation stroke, and 4 of them (21.1%) showed resolution of symptoms during the follow-ups. RVAO has various patterns of vertebral artery compression, and favorable long-term outcome with conservative treatments. In most patients with RVAO, the symptoms may be ascribed to asymmetrical excitation of the bilateral labyrinth induced by transient ischemia or by disinhibition from inferior cerebellar hypoperfusion. Conservative management might be considered as the first-line treatment of RVAO.

  8. Arthroscopic Repair of Full-Thickness Rotator Cuff Tears With and Without Acromioplasty: Randomized Prospective Trial With 2-Year Follow-up.

    PubMed

    Abrams, Geoffrey D; Gupta, Anil K; Hussey, Kristen E; Tetteh, Elizabeth S; Karas, Vasili; Bach, Bernard R; Cole, Brian J; Romeo, Anthony A; Verma, Nikhil N

    2014-06-01

    Acromioplasty is commonly performed during arthroscopic rotator cuff repair, but its effect on short-term outcomes is debated. To report the short-term clinical outcomes of patients undergoing arthroscopic repair of full-thickness rotator cuff tears with and without acromioplasty. Randomized controlled trial; Level of evidence, 2. Patients undergoing arthroscopic repair of full-thickness rotator cuff tears were randomized into acromioplasty or nonacromioplasty groups. The Simple Shoulder Test (SST), American Shoulder and Elbow Surgeons (ASES) score, Constant score, University of California-Los Angeles (UCLA) score, and Short Form-12 (SF-12) health assessment were collected along with physical examination including range of motion and dynamometer strength testing. Intraoperative data including tear size, repair configuration, and concomitant procedures were recorded. Follow-up examination was performed at regular intervals up to 2 years. Preoperative imaging was reviewed to classify the acromial morphologic type, acromial angle, and lateral acromial angulation. A total of 114 patients were initially enrolled in the study, and 95 (83%; 43 nonacromioplasty, 52 acromioplasty) were available for a minimum 2-year follow-up. There were no significant differences in baseline characteristics, including number of tendons torn, repair configuration, concomitant procedures, and acromion type and angles. Within groups, there was a significant (P < .001) improvement in all functional outcome scores from preoperatively to all follow-up time points, including 2 years, for the nonacromioplasty and acromioplasty groups (ASES score: 55.1-91.5, 48.8-89.0; Constant score: 48.3-75.0, 51.9-78.7, respectively). There were no significant differences in functional outcomes between nonacromioplasty and acromioplasty groups or between subjects with different acromial features at any time point. The results of this study demonstrate no difference in clinical outcomes after rotator cuff repair

  9. On LAM's and SAM's for Halley's rotation

    NASA Technical Reports Server (NTRS)

    Peale, Stanton J.

    1992-01-01

    Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.

  10. Incidence and treatment of postoperative stiffness following arthroscopic rotator cuff repair.

    PubMed

    Huberty, David P; Schoolfield, John D; Brady, Paul C; Vadala, Antonio P; Arrigoni, Paolo; Burkhart, Stephen S

    2009-08-01

    The purpose of this study was to determine the incidence of clinically significant postoperative stiffness following arthroscopic rotator cuff repair. This study also sought to determine the clinical and surgical factors that were associated with higher rates of postoperative stiffness. Finally, we analyzed the result of arthroscopic lysis of adhesions and capsular release for treatment of patients who developed refractory postoperative stiffness 4 to 19 months (median, 8 months) following arthroscopic rotator cuff repair. A retrospective review of a consecutive series of arthroscopic rotator cuff repairs was conducted. During a 3-year time period, the senior author (S.S.B.) performed 489 arthroscopic rotator cuff repairs. The operative indications, technique of the rotator cuff repair, and the rehabilitation protocol were essentially unchanged during this time period. Demographic data, comorbid medical conditions, rotator cuff tear description, technique of repair, and concomitant surgical procedures were evaluated for their effect on stiffness. All office evaluations were reviewed to determine the pre- and postoperative motion, pain scores, functional strength, and patient satisfaction. Patients who were dissatisfied because of the development of postoperative stiffness underwent secondary arthroscopic lysis of adhesions. The final result of the secondary lysis of adhesions and capsular release were analyzed. In total, 24 patients (4.9%) were dissatisfied with the result of their procedure because of the development of postoperative stiffness, which was more likely (P < .05) to develop in patients with Workers' Compensation insurance (8.6%), patients younger than 50 years of age (8.6%), those with a coexisting diagnosis of calcific tendonitis (16.7%) or adhesive capsulitis (15.0%) requiring additional postoperative therapy, partial articular-sided tendon avulsion (PASTA) type rotator cuff tear (13.5%), or concomitant labral repair (11.0%). Patients with

  11. AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Andrew A.; Weisenburger, Kolby L.; Irwin, Jonathan

    Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one tomore » longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.« less

  12. Differential rotation of stars with multiple transiting planets

    NASA Astrophysics Data System (ADS)

    Netto, Yuri; Valio, Adriana

    2017-10-01

    If a star hosts a planet in an orbit such that it eclipses the star periodically, can be estimated the rotation profile of this star. If planets in multiplanetary system occult different stellar areas, spots in more than one latitude of the stellar disc can be detected. The monitored study of theses starspots in different latitudes allow us to infer the rotation profile of the star. We use the model described in Silva (2003) to characterize the starspots of Kepler-210, an active star with two planets. Kepler-210 is a late K star with an estimated age of 350 +/- 50 Myrs, average rotation period of 12.33 days, mass of 0.63 M⊙ and radius of 0.69 R⊙. The planets that eclipses this star have radii of 0.0498 R s and 0.0635 R s with orbital periods of 2.4532 +/- 0.0007 days and 7.9725 +/- 0.0014 days, respectively, where R s is the star radius.

  13. Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Lurie, John C.; Vyhmeister, Karl; Hawley, Suzanne L.; Adilia, Jamel; Chen, Andrea; Davenport, James R. A.; Jurić, Mario; Puig-Holzman, Michael; Weisenburger, Kolby L.

    2017-12-01

    Few observational constraints exist for the tidal synchronization rate of late-type stars, despite its fundamental role in binary evolution. We visually inspected the light curves of 2278 eclipsing binaries (EBs) from the Kepler Eclipsing Binary Catalog to identify those with starspot modulations, as well as other types of out-of-eclipse variability. We report rotation periods for 816 EBs with starspot modulations, and find that 79% of EBs with orbital periods of less than 10 days are synchronized. However, a population of short-period EBs exists, with rotation periods typically 13% slower than synchronous, which we attribute to the differential rotation of high-latitude starspots. At 10 days, there is a transition from predominantly circular, synchronized EBs to predominantly eccentric, pseudosynchronized EBs. This transition period is in good agreement with the predicted and observed circularization period for Milky Way field binaries. At orbital periods greater than about 30 days, the amount of tidal synchronization decreases. We also report 12 previously unidentified candidate δ Scuti and γ Doradus pulsators, as well as a candidate RS CVn system with an evolved primary that exhibits starspot occultations. For short-period contact binaries, we observe a period-color relation and compare it to previous studies. As a whole, these results represent the largest homogeneous study of tidal synchronization of late-type stars.

  14. Intra- and interrater reliability of the 'lumbar-locked thoracic rotation test' in competitive swimmers ages 10 through 18 years.

    PubMed

    Feijen, Stef; Kuppens, Kevin; Tate, Angela; Baert, Isabel; Struyf, Thomas; Struyf, Filip

    2018-04-17

    Measuring thoracic spine mobility can be of interest to competitive swimmers as it has been associated with shoulder girdle function and scapular position in subjects with and without shoulder pain. At present, no reliability data of thoracic spine mobility measurements are available in the swimming population. This study aims to evaluate the within-session intra- and interrater reliability of the "lumbar-locked rotation test" for thoracic spine rotation in competitive swimmers aged 10 to 18 years. This reliability study is part of a larger prospective cohort study investigating potential risk factors for the development of shoulder pain in competitive swimmers. Within-session, intra- and inter-rater reliability. Competitive swimming clubs in Belgium. 21 competitive swimmers. Intra- and inter-rater reliability of the lumbar-locked thoracic rotation test. Intraclass correlation coefficients (ICCs) ranged from 0.91 (95% CI 0.78 to 0.96) to 0.96 (0.89-0.98) for intra-rater reliability. Results for inter-rater reliability ranged from 0.89 (0.72-0.95) to 0.86 (0.65-0.94) respectively for right and left thoracic rotation. Results suggest good to excellent reliability of the lumbar-locked thoracic rotation test, indicating this test can be used reliably in clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Evolution of starspots in the long-period RS CVN binary V1817 Cygni = HR 7428

    NASA Technical Reports Server (NTRS)

    Hall, Douglas S.; Gessner, Susan E.; Lines, Helen C.; Lines, Richard D.

    1990-01-01

    Photometry between 1982 and 1989, published and unpublished, is analyzed. The ellipticity effect produces variability with a full amplitude of 0.033 m in V. A recent time of light minimum (JD 2445988.0 + or - 0.3 d) combined with an old spectroscopic time of conjunction from the 1920's yields a much improved orbital period (108.854 + or - 0.003). Removal of the ellipticity effect reveals starspot variability. Four different spots were observed at various times, two of them present simultaneously in the light curve during 1985. Mean spot lifetimes were around 2 years and the largest amplitude attributed to starspots was 0.04 m in V during 1986. Derived rotation periods for two spots were 5.3 + or - 1.2 percent slower than synchronous and 3.0 + or - 0.4 percent faster. The differential rotation coefficient for the K2 giant is k = 0.25 + or - 0.04, compared to k = 0.186 for the sun. V1817 Cygni has the longest orbital period of any binary known to execute synchronous rotation.

  16. Motor Processes in Children's Mental Rotation

    ERIC Educational Resources Information Center

    Frick, Andrea; Daum, Moritz M.; Walser, Simone; Mast, Fred W.

    2009-01-01

    Previous studies with adult human participants revealed that motor activities can influence mental rotation of body parts and abstract shapes. In this study, we investigated the influence of a rotational hand movement on mental rotation performance from a developmental perspective. Children at the age of 5, 8, and 11 years and adults performed a…

  17. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990-2007 in the US alone [1]. As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a non-rotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various nonrotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the pre-stress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in a

  18. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in

  19. Rotation, activity, and stellar obliquities in a large uniform sample of Kepler solar analogs

    NASA Astrophysics Data System (ADS)

    Buzasi, Derek; Lezcano, Andy; Preston, Heather L.

    2016-10-01

    In this study, we undertook a deep photometric examination of a narrowly-defined sample of solar analogs in the Kepler field, with the goals of producing a uniform and statistically meaningful sample of such stars, comparing the properties of planet hosts to those of the general stellar population, and examining the behavior of rotation and photometric activity among stars with similar overall physical parameters. We successfully derived photometric activity indicators and rotation periods for 95 planet hosts (Kepler objects of interest [KOIs]) and 954 solar analogs without detected planets; 573 of these rotation periods are reported here for the first time. Rotation periods average roughly 20 d, but the distribution has a wide dispersion, with a tail extending to P > 35 d which appears to be inconsistent with published gyrochronological relations. We observed a weak rotation-activity relation for stars with rotation periods less than about 12 d; for slower rotators, the relation is dominated by scatter. However, we are able to state that the solar activity level derived from Virgo data is consistent with the majority of stars with similar rotation periods in our sample. Finally, our KOI sample is consistently approximately 0.3 dex more variable than our non-KOIs; we ascribe the difference to a selection effect due to low orbital obliquity in the planet-hosting stars and derive a mean obliquity for our sample of χ = 6+5°-6, similar to that seen in the solar system.

  20. 7 CFR 1210.310 - Fiscal period and marketing year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Fiscal period and marketing year. 1210.310 Section 1210.310 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND PROMOTION PLAN Watermelon...

  1. 7 CFR 1219.10 - Fiscal period or marketing year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Fiscal period or marketing year. 1219.10 Section 1219.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass...

  2. [Effects of different crop rotations on growth of continuous cropping sorghum and its rhizosphere soil micro-environment.

    PubMed

    Wang, Jin Song; Fan, Fang Fang; Guo, Jun; Wu, Ai Lian; Dong, Er Wei; Bai, Wen Bin; Jiao, Xiao Yan

    2016-07-01

    The effects of crop rotation on sorghum [Sorghum biocolor (L) Moench] growth, rhizosphere microbial community and the activity of soil enzymes for successive crops of sorghum were evaluated. Five years of continuous monoculture sorghum as the control (CK) was compared to alfalfa and scallion planted in the fourth year. The results showed that incorporation of alfalfa and scallion into the rotation significantly improved sorghum shoot growth. Specifically, sorghum grain yield increased by 16.5% in the alfalfa rotation plots compared to the CK. The rotations also increased sorghum root system growth, with alfalfa or scallion rotation increasing sorghum total root length by 0.3 and 0.4 times, total root surface area by 0.6 and 0.5 times, root volume by 1.2 and 0.6 times, and root biomass by 1.0 and 0.3 times, respectively. Alfalfa rotation also expanded sorghum root distribution below the 10 cm soil depth. A Biolog analysis on biome functions in the sorghum flowering period indicated significantly higher microbial activity in the rotation plots. The alfalfa and scallion rotation increased the Shannon index by 0.2 and 0.1 times compared to the CK, and improved the sucrose activity in the rhizosphere soil. It was concluded that including alfalfa in rotation with sorghum improved sorghum rhizosphere soil environment, enhanced soil microbial enzyme activity, alleviated the obstacle of continuous cropping and thus increased the sorghum yield.

  3. Rotational Period Determination of Two Mars-crossing, a Main Belt Asteroid and a PHA: (14309) Defoy, (56116) 1999 CZ7, (5813) Eizaburo and (3122) Florence.

    NASA Astrophysics Data System (ADS)

    Tomassini, Angelo; Scardella, Maurizio; Franceschini, Francesco; Pierri, Fernando

    2018-01-01

    The main-belt asteroids (5813) Eizaburo and two Mars crossing minor bodies, (14309) Defoy and (56116) 1999 CZ7, have been observed over several nights throughout 2017 March-September in order to determine their synodic rotational period. We also took the opportunity of the (3122) Florence close passage with the Earth in September-October to find its lightcurve.

  4. THE H α EMISSION OF NEARBY M DWARFS AND ITS RELATION TO STELLAR ROTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David

    The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of H α emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M {sub ⊙} are well-represented in our sample,more » with fast and slow rotators of all masses. We observe a threshold in the mass–period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that H α activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between L{sub Hα} / L{sub bol} and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of L{sub Hα} / L {sub bol}. Our data also show a clear power-law decay in L{sub Hα} / L{sub bol} with Rossby number for slow rotators, with an index of −1.7 ± 0.1.« less

  5. Global Scale Periodic Responses in Saturn’s Magnetosphere

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.

    2017-10-01

    Despite having an axisymmetric internal magnetic field, Saturn’s magnetosphere exhibits periodic modulations in a variety of properties at periods close to the planetary rotation period. While the source of the periodicity remains unidentified, it is evident from Cassini observations that much of Saturn’s magnetospheric structure and dynamics is dominated by global-scale responses to the driving source of the periodicity. We have developed a global MHD model in which a rotating field-aligned current system is introduced by imposing vortical flows in the high-latitude ionosphere in order to simulate the magnetospheric periodicities. The model has been utilized to quantitatively characterize various periodic responses in the magnetosphere, such as the displacement of the magnetopause and bow shock and flapping of the tail plasma sheet, all of which show quantitative agreement with Cassini observations. One of our model predictions is periodic release of plasmoids in the tail that occurs preferentially in the midnight-to-dawn local time sector during each rotation cycle. Here we present detailed analysis of the periodic responses seen in our simulations focusing on the properties of plasmoids predicted by the model, including their spatial distribution, occurrence frequency, and mass loss rate. We will compare these modeled parameters with published Cassini observations, and discuss their implications for interpreting in-situ measurements.

  6. Long-Period Tidal Variations in the Length of Day

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Erofeeva, Svetlana Y.

    2014-01-01

    A new model of long-period tidal variations in length of day is developed. The model comprises 80 spectral lines with periods between 18.6 years and 4.7 days, and it consistently includes effects of mantle anelasticity and dynamic ocean tides for all lines. The anelastic properties followWahr and Bergen; experimental confirmation for their results now exists at the fortnightly period, but there remains uncertainty when extrapolating to the longest periods. The ocean modeling builds on recent work with the fortnightly constituent, which suggests that oceanic tidal angular momentum can be reliably predicted at these periods without data assimilation. This is a critical property when modeling most long-period tides, for which little observational data exist. Dynamic ocean effects are quite pronounced at shortest periods as out-of-phase rotation components become nearly as large as in-phase components. The model is tested against a 20 year time series of space geodetic measurements of length of day. The current international standard model is shown to leave significant residual tidal energy, and the new model is found to mostly eliminate that energy, with especially large variance reduction for constituents Sa, Ssa, Mf, and Mt.

  7. Rotational Properties of the Haumea Family Members and Candidates: Short-Term Variability

    NASA Technical Reports Server (NTRS)

    Thirouin, Audrey; Sheppard, Scott S.; Noll, Keith S.; Moskovitz, Nicholas A.; Oritiz, Jose Luis; Doressoundiram, Alain

    2016-01-01

    Haumea is one of the most interesting and intriguing trans-Neptunian objects (TNOs). It is a large, bright, fast rotator, and its spectrum indicates nearly pure water ice on the surface. It has at least two satellites and a dynamically related family of more than 10 TNOs with very similar proper orbital parameters and similar surface properties. The Haumean family is the only one currently known in the trans-Neptunian belt. Various models have been proposed, but the formation of the family remains poorly understood. In this work, we have investigated the rotational properties of the family members and unconfirmed family candidates with short-term variability studies, and report the most complete review to date. We present results based on five years of observations and report the short-term variability of five family members, and seven candidates. The mean rotational periods, from Maxwellian fits to the frequency distributions, are 6.27 +/- 1.19 hr for the confirmed family members, 6.44 +/- 1.16 hr for the candidates, and 7.65 +/- 0.54 hr for other TNOs (without relation to the family). According to our study, there is a possibility that Haumea family members rotate faster than other TNOs, however, the sample of family member is still too limited for a secure conclusion. We also highlight the fast rotation of 2002 GH(sub 32). This object has a 0.36 +/- 0.02 mag amplitude lightcurve and a rotational period of about 3.98 hr. Assuming 2002 GH(sub 32) is a triaxial object in hydrostatic equilibrium, we derive a lower limit to the density of 2.56 g cm(exp -3). This density is similar to Haumea's and much more dense than other small TNO densities.

  8. Ten-year clinical and anatomic follow-up after repair of anterosuperior rotator cuff tears: influence of the subscapularis.

    PubMed

    Nové-Josserand, Laurent; Collin, Philippe; Godenèche, Arnaud; Walch, Gilles; Meyer, Nicolas; Kempf, Jean-Francois

    2017-10-01

    Anterosuperior rotator cuff tears are more frequent than expected. We report the results of a 10-year follow-up study after repair. Our hypothesis was that the extent of the subscapularis tear influenced the prognosis. The study population consisted of all 138 patients who underwent surgery in 14 participating centers in 2003 for full-thickness tears of the rotator cuff with lesions in the subscapularis and supraspinatus tendons. The patients were divided into 2 groups, depending on whether the subscapularis lesion affected only the superior half of the tendon (group A) or extended into the lower half (group B). Ninety-two patients (56 ± 7 years; 71 in group A and 21 in group B) were available for follow-up after 10 years (127 ± 16 months) with magnetic resonance imaging to evaluate tendon healing and muscle condition. The mean Constant scores were 59 ± 16 before surgery and 77 ± 14 at follow-up (P = 1.7 × 10 -12 ). The retear rates were 25% for the supraspinatus and 13.5% for the subscapularis tendon. The clinical results for group A patients were better than those for group B. Severe fatty infiltration was observed more frequently in the subscapularis than in the supraspinatus muscle (27% vs. 12% of cases). Supraspinatus healing influenced subscapularis healing and fatty infiltration. Repair of anterosuperior rotator cuff tears is satisfactory at 10 years, particularly if the subscapularis tear is not extensive. An extensive subscapularis tear is a negative prognosis factor. Postoperatively, fatty infiltration of the subscapularis muscle was frequently observed despite tendon healing. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Diabetes mellitus increases the risk of rotator cuff tear repair surgery: A population-based cohort study.

    PubMed

    Huang, Shih-Wei; Wang, Wei-Te; Chou, Lin-Chuan; Liou, Tsan-Hon; Chen, Yi-Wen; Lin, Hui-Wen

    Rotator cuff tears are the most common cause of shoulder disability in people older than 50years, and surgical intervention is usually required for restoring functioning. However, in patients undergoing rotator cuff repair surgery, patients with DM had poorer functional outcomes than those without DM, and hence, DM is one of the possible risks factor for rotator cut off tear. The aim of this population-based study was to investigate the relationship between DM and the risk of rotator cuff tear in patients receiving rotator cuff repair surgery. In this retrospective longitudinal population-based 7-year cohort study, we investigated the risk of rotator cuff repair surgery in patients with DM. We performed a case-control matched analysis by using data from the Taiwan Longitudinal Health Insurance Database 2005. Patients were enrolled on the basis of the International Classification of Diseases, Ninth Revision, Clinical Modification diagnostic codes for DM between January 1, 2004, and December 31, 2007. The prevalence and the adjusted hazard ratios (HRs) of a rotator cuff repair surgery in patients with and without DM were estimated according to the Cox proportional hazard regression analysis using the frailty model. The DM and non-DM cohorts comprised 58,652 patients with DM and 117,304 (1:2) patients without DM after matching for age and sex. The incidence of rotator cuff repair surgery was 41 per 100,000 and 26 per 100,000 person-years in the DM and non-DM cohorts, respectively. The HR of rotator cuff repair surgery during the follow-up period was 1.56 (95% confidence interval [CI] 1.25-1.93, p<0.001) for patients with DM. After adjustment for covariates, the adjusted HR of rotator cuff repair surgery was 1.33 (95% CI, 1.05-1.68, p<0.001) in the DM cohort. DM is an independent risk factor for rotator cuff tear repair surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Polarization rotation in meteor burst communication systems

    NASA Astrophysics Data System (ADS)

    Cannon, P. S.

    1986-06-01

    Theoretical modeling of several meteor burst communication (MBC) paths indicates that polarization rotation losses are significant for a linearly polarized system operating near 40 MHz. Losses for a hybrid system with physical installation problems, consisting of linearly polarized transmitting and circularly polarized receiving antennas, were found to be less. Both ionospheric Faraday rotation polarization changes, and underdense meteor trail scattering wave polarization rotation, are considered. These losses are found to cause a 15-70 percent data throughput reduction of the value predicted for the situation without polarization rotation, in the two 40-MHz linearly polarized links considered for noon summer solstice conditions during high solar sunspot number periods. Qualitative experimental confirmation is provided through a cross polarization approach.

  11. Slow Rotating Asteroids: A Long Day's Journey into Night

    NASA Astrophysics Data System (ADS)

    Warner, Brian D.

    2009-05-01

    While there is no formal definition of a "slow rotator" among asteroids, anything with a period of at least 24 hours can be considered to be at least at the fast end of the group. These objects are of particular interest to those studying the evolution and dynamics of the asteroids within the solar system for several reasons. Most important among them is to generalize theories regarding the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, which is the thermal re-radiation of sunlight that can not only affect the orientation of an asteroid's spin axis but its rate of rotation as well. In those cases where the spin rate is decreased, an asteroid can eventually be sent into a state of "tumbling" (NPAR - non-principal axis rotation) that can last for millions of years. However, not all slow rotating asteroids appear to be tumbling. This is not expected and so careful studies of these objects are needed to determine if this is really the case or if the tumbling has reached a condition where the secondary frequency - the precession of the spin axis - has been reduced to near zero. Furthermore, there appears to be an excess of slow rotators among the NEA and inner main-belt populations. Determining whether or not this is true among the broader population of asteroids is also vital to understanding the forces at work among the asteroids.

  12. Stellar Rotation: New Insight from CoRoT

    NASA Astrophysics Data System (ADS)

    Catala, C.; Goupil, M. J.; Michel, E.; Baglin, A.; de Medeiros, J. Renan; Gondoin, Ph.

    2009-02-01

    We present an overview of the new insight provided by the CoRoT satellite on stellar rotation. Thanks to its ultra-high precision, high duty cycle, long photometric monitoring of thousands of stars, CoRoT gives us a powerful tool to study stellar rotational modulation, and therefore to measure stellar rotational periods and to study active structures at the surface of stars. This paper presents preliminary results concerning this type of study. CoRoT will also provide us with an insight of internal stellar rotation via the measurement and exploitation of rotational splittings of oscillation modes. This approach to stellar rotation with CoRoT will require a careful analysis of the oscillation power spectra, which is in progress, but prospects for such measurements are presented.

  13. Anatomical knowledge retention in third-year medical students prior to obstetrics and gynecology and surgery rotations.

    PubMed

    Jurjus, Rosalyn A; Lee, Juliet; Ahle, Samantha; Brown, Kirsten M; Butera, Gisela; Goldman, Ellen F; Krapf, Jill M

    2014-01-01

    Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an anatomical knowledge deficit are lacking, as are specifics as to what content should be reinforced. This study identifies baseline areas of strength and weakness in the surgical anatomy knowledge of medical students entering surgical rotations. Third-year medical students completed a 20-25-question test at the beginning of the General Surgery and Obstetrics and Gynecology rotations. Knowledge of inguinal anatomy (45.3%), orientation in abdominal cavity (38.8%), colon (27.7%), and esophageal varices (12.8%) was poor. The numbers in parentheses are the percentage of questions answered correctly per topic. In comparing those scores to matched test items from this cohort as first-year students in the anatomy course, the drop in retention overall was very significant (P = 0.009) from 86.9 to 51.5%. Students also scored lower in questions relating to pelvic organs (46.7%), urogenital development (54.0%), pulmonary development (17.8%), and pregnancy (17.8%). These data showed that indeed, knowledge of surgical anatomy is poor for medical students entering surgical clerkships. These data collected will be utilized to create interactive learning modules, aimed at improving clinically relevant anatomical knowledge retention. These modules, which will be available to students during their inpatient surgical rotations, connect basic anatomy principles to clinical cases, with the ultimate goal of closing the anatomical knowledge gap. © 2014 American Association of Anatomists.

  14. Gout Can Increase the Risk of Receiving Rotator Cuff Tear Repair Surgery.

    PubMed

    Huang, Shih-Wei; Wu, Chin-Wen; Lin, Li-Fong; Liou, Tsan-Hon; Lin, Hui-Wen

    2017-08-01

    Gout commonly involves joint inflammation, and clinical epidemiological studies on involved tendons are scant. Rotator cuff tears are the most common cause of shoulder disability, and surgery is one of the choices often adopted to regain previous function. To investigate the risk of receiving rotator cuff repair surgery among patients with gout and to analyze possible risk factors to design an effective prevention strategy. Cohort study; Level of evidence, 3. The authors studied a 7-year longitudinal follow-up of patients from the Taiwan Longitudinal Health Insurance Database 2005 (LHID2005). This included a cohort of patients who received a diagnosis of gout during 2004-2008 (gout cohort) and a cohort matched by propensity scores (control cohort). A 2-stage approach that used the National Health Interview Survey 2005 was used to obtain missing confounding variables from the LHID2005. The crude hazard ratio (HR) and adjusted HR were estimated between the gout and control cohorts. The gout and control cohorts comprised 32,723 patients with gout and 65,446 people matched at a ratio of 1:2. The incidence of rotator cuff repair was 31 and 18 per 100,000 person-years in the gout and control cohorts, respectively. The crude HR for rotator cuff repair in the gout cohort was 1.73 (95% confidence interval [CI], 1.23-2.44; P < .01) during the 7-year follow-up period. After adjustment for covariates by use of the 2-stage approach, the propensity score calibration-adjusted HR was 1.60 (95% CI, 1.12-2.29; P < .01) in the gout cohort. Further analysis revealed that the adjusted HR was 1.73 (95% CI, 1.20-2.50; P < .001) among patients with gout who did not take hypouricemic medication and 2.70 (95% CI, 1.31-5.59; P < .01) for patients with gout aged 50 years or younger. Patients with gout, particularly those aged 50 years or younger and without hypouricemic medication control, are at a relatively higher risk of receiving rotator cuff repair surgery. Strict control of uric acid

  15. Spatial methods for deriving crop rotation history

    USDA-ARS?s Scientific Manuscript database

    Converting multi-year remote sensing classification data into crop rotations is beneficial by defining length of crop rotation cycles and the specific sequences of intervening crops grown between the final year of a grass seed stand and establishment of a new perennial ryegrass seed crop. Markov mod...

  16. Outcomes of arthroscopic revision rotator cuff repair with acellular human dermal matrix allograft augmentation.

    PubMed

    Hohn, Eric A; Gillette, Blake P; Burns, Joseph P

    2018-05-01

    The purpose was to assess the minimum 2-year patient-reported outcomes and failure rate of patients who underwent revision arthroscopic rotator cuff repair augmented with acellular human dermal matrix (AHDM) allograft for repairable retears. From 2008-2014, patients who underwent revision rotator cuff repair augmented with AHDM with greater than 2 years' follow-up by a single surgeon were retrospectively reviewed. Data regarding surgical history, demographic characteristics, and medical comorbidities were collected. Outcome data included American Shoulder and Elbow Surgeons (ASES) and Single Assessment Numeric Evaluation (SANE) scores, as well as rotator cuff healing on magnetic resonance imaging or ultrasound. Retears and subsequent surgical procedures were characterized. A total of 28 patients met our inclusion criteria, and 23 (82%) were available for follow-up at 2 years. The mean age was 60.1 ± 9.3 years (range, 43-79 years), with a mean follow-up period of 48 ± 23 months. All patients had at least 1 prior rotator cuff repair. Of the 23 patients, 13 (56%) underwent postoperative imaging, and 4 of these 13 (31%) had a retear. A reoperation was performed in 3 of 23 patients (13%). Among the 6 patients with both preoperative and postoperative outcome scores, we saw improvement in the ASES score from 56 to 85 (P = .03) and in the SANE score from 42 to 76 (P = .03). The full cohort's mean postoperative ASES and SANE scores were 77 and 69, respectively. AHDM allograft augmentation is a safe and effective treatment method for patients with full-thickness rotator cuff retears. Further research is needed with larger studies to confirm these findings from our small cohort of patients. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up.

    PubMed

    Randelli, Pietro; Arrigoni, Paolo; Ragone, Vincenza; Aliprandi, Alberto; Cabitza, Paolo

    2011-06-01

    Local application of autologous platelet rich plasma (PRP) improves tendon healing in patients undergoing arthroscopic rotator cuff repair. Prospective, randomized, controlled, double blind study; considering an alpha level of 5%, a power of 80%, 22 patients for group are needed. Fifty-three patients who underwent shoulder arthroscopy for the repair of a complete rotator cuff tear were randomly divided into 2 groups, using a block randomization procedure. A treatment group (N = 26) consisted of those who received an intraoperative application of PRP in combination with an autologous thrombin component. A control group (N = 27) consisted of those who did not receive that treatment. Patients were evaluated with validated outcome scores. A magnetic resonance image (MRI) was performed in all cases at more than 1 year post-op. All patients had the same accelerated rehabilitation protocol. The 2 groups were homogeneous. The pain score in the treatment group was lower than the control group at 3, 7, 14, and 30 days after surgery (P < .05). On the Simple Shoulder Test (SST), University of California (UCLA), and Constant scores, strength in external rotation, as measured by a dynamometer, were significantly higher in the treatment group than the control group at 3 months after surgery (strength in external rotation [SER]: 3 ± 1.6 vs 2.1 ± 1.3 kg; SST: 8.9 ± 2.2 vs 7.1 ± 2.7; UCLA: 26.9 ± 3 vs 24.2 ± 4.9; Constant: 65 ± 9 vs 57.8 ± 11; P < .05). There was no difference between the 2 groups after 6, 12, and 24 months. The follow-up MRI showed no significant difference in the healing rate of the rotator cuff tear. In the subgroup of grade 1 and 2 tears, with less retraction, SER in the PRP group was significant higher at 3, 6, 12, and 24 months postoperative (P < .05). The results of our study showed autologous PRP reduced pain in the first postoperative months. The long-term results of subgroups of grade 1 and 2 tears suggest that PRP positively affected cuff rotator

  18. On the oblateness and rotation rate of Neptune's atmosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1986-01-01

    Recent observations of a stellar occultation by Neptune give an oblateness of 0.022 + or - 0.004 for Neptune's atmosphere at the 1-microbar pressure level. This results is consistent with hydrostatic equilibrium at a uniform atmospheric rotation period of 15 hours, although the error bars on quantities used in the calculation are such that an 18-hour period is not excluded. The oblateness of a planetary atmosphere is determined from stellar occultations by measuring the times at which a specified point on immersion or emersion occultation profiles is reached. Whether this standard procedure for deriving the shape of the atmosphere is consistent with what is known about vertical and horizontal temperature gradients in Neptune's atmosphere is evaluated. The nature of the constraint placed on the interior mass distribution by an oblateness determined in this manner is consided, as is the effects of possible differential rotation. A 15-hour Neptune internal mass distribution is approximately homologous to Uranus', but an 18-hour period is not. The implications for Neptune's interior structure if its body rotation period is actually 18 hours are discussed.

  19. Rotator cuff tears in children and adolescents: experience at a large pediatric hospital.

    PubMed

    Zbojniewicz, Andrew M; Maeder, Matthew E; Emery, Kathleen H; Salisbury, Shelia R

    2014-06-01

    Prior literature, limited to small case series and case reports, suggests that rotator cuff tears are rare in adolescents. However, we have identified rotator cuff tears in numerous children and adolescents who have undergone shoulder MRI evaluation. The purpose of this study is to describe the prevalence and characteristics of rotator cuff tears in children and adolescents referred for MRI evaluation of the shoulder at a large pediatric hospital and to correlate the presence of rotator cuff tears with concurrent labral pathology, skeletal maturity and patient activity and outcomes. We reviewed reports from 455 consecutive non-contrast MRI and magnetic resonance arthrogram examinations of the shoulder performed during a 2-year period, and following exclusions we yielded 205 examinations in 201 patients (ages 8-18 years; 75 girls, 126 boys). Rotator cuff tears were classified by tendon involved, tear thickness (partial or full), surface and location of tear (when partial) and presence of delamination. We recorded concurrent labral pathology when present. Physeal patency of the proximal humerus was considered open, closing or closed. Statistical analysis was performed to evaluate for a relationship between rotator cuff tears and degree of physeal patency. We obtained patient activity at the time of injury, surgical reports and outcomes from clinical records when available. Twenty-five (12.2%) rotator cuff tears were identified in 17 boys and 7 girls (ages 10-18 years; one patient had bilateral tears). The supraspinatus tendon was most frequently involved (56%). There were 2 full-thickness and 23 partial-thickness tears with articular-side partial-thickness tears most frequent (78%). Insertional partial-thickness tears were more common (78%) than critical zone tears (22%) and 10 (43%) partial-thickness tears were delamination tears. Nine (36%) patients with rotator cuff tears had concurrent labral pathology. There was no statistically significant relationship between

  20. New clues on the interior of Titan from its rotation state

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoît; Nimmo, Francis

    2014-07-01

    The Saturnian satellite Titan is one of the main targets of the Cassini-Huygens mission, which revealed in particular Titan's shape, gravity field, and rotation state. The shape and gravity field suggest that Titan is not in hydrostatic equilibrium, that it has a global subsurface ocean, and that its ice shell is both rigid (at tidal periods) and of variable thickness. The rotational state of Titan consists of an expected synchronous rotation rate and an unexpectedly high obliquity (0.3○) explained by Baland et al. (2011) to be a resonant behavior. We here combine a realistic model of the ice shell and interior and a 6-degrees of freedom rotational model, in which the librations, obliquity and polar motion of the rigid core and of the shell are modelled, to constrain the structure of Titan from the observations. We consider the gravitational pull of Saturn on the 2 rigid layers, the gravitational coupling between them, and the pressure coupling at the liquid-solid interfaces. We confirm the influence of the resonance found by Baland et al., that affects between 10 and 13% of the possible Titans. It is due to the 29.5-year periodic annual forcing. The resonant Titans can be obtained in situations in which a mass anomaly at the shell-ocean boundary (bottom loading) is from 80 to 92% compensated. This suggests a 250 to 280 km thick ocean below a 130 to 140 km thick shell, and is consistent with the degree-3 analysis of Hemingway 26 et al. (2013).

  1. Measuring M Dwarf Rotation in the Pan-STARRS 1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Fong, Erin R.; Williams, Peter K. G.; Berger, Edo

    2016-01-01

    The rise of large-format CCDs and automated detection methods has greatly increased the tractability of large-scale studies of stellar rotation. Studies of the relationship between stellar rotation and magnetic activity show a strong correlation, supporting the concept of a rotationally-driven dynamo. However, the number of confirmed rotation periods for stars in the fully convective regime, whose magnetic dynamos are less well understood, remains low. Here we report on ongoing work to measure rotation periods for the M dwarf stellar population observed by the Pan-STARRS 1 Medium Deep Survey (PS1/MDS). We refine an initial sample of around 4.3 million sources using color cuts in each of the five Pan-STARRS 1 filters. Of these sources, we estimate there to be around 135,000 sources which are candidate M dwarfs with a spectral type of M1 or higher. We discuss the outcomes of various rotation period detection methods and present preliminary results. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.

  2. Variations in rotation rate and polar motion of a non-hydrostatic Titan

    NASA Astrophysics Data System (ADS)

    Coyette, Alexis; Baland, Rose-Marie; Van Hoolst, Tim

    2018-06-01

    Observation of the rotation of synchronously rotating satellites can help to probe their interior. Previous studies mostly assume that these large icy satellites are in hydrostatic equilibrium, although several measurements indicate that they deviate from such a state. Here we investigate the effect of non-hydrostatic equilibrium and of flow in the subsurface ocean on the rotation of Titan. We consider the variations in rotation rate and the polar motion due to (1) the gravitational force exerted by Saturn at orbital period and (2) exchanges of angular momentum between the seasonally varying atmosphere and the solid surface. The deviation of the mass distribution from hydrostaticity can significantly increase the diurnal libration and decrease the amplitude of the seasonal libration. The effect of the non-hydrostatic mass distribution is less important for polar motion, which is more sensitive to flow in the subsurface ocean. By including a large spectrum of atmospheric perturbations, the smaller than synchronous rotation rate measured by Cassini in the 2004-2009 period (Meriggiola et al., 2016) could be explained by the atmospheric forcing. If our interpretation is correct, we predict a larger than synchronous rotation rate in the 2009-2014 period.

  3. Oscillations in D-region absorption at periods of one to two months

    NASA Technical Reports Server (NTRS)

    Stanford, J. L.; Saksena, R. C.

    1989-01-01

    One to two month oscillations in D-region absorption are found in seven years of daily f-min data from low latitude stations at Singapore (1N, 104E) and Rarotonga (21S, 160W). Coherency (cross-spectral) analyses reveal that solar flux variations account for much of the f-min variance at these periods. Over the range of periods from 10 to 200 days, statistically significant linear correlation is found between the f-min time series and contemporaneous 10.7 cm solar flux mearurements at periods of 16 to 19 days, the 26 to 29 day solar rotation band, and a broad band covering 43 to 80 day periods.

  4. One hundred years of return period: Strengths and limitations

    NASA Astrophysics Data System (ADS)

    Volpi, E.; Fiori, A.; Grimaldi, S.; Lombardo, F.; Koutsoyiannis, D.

    2015-10-01

    One hundred years from its original definition by Fuller, the probabilistic concept of return period is widely used in hydrology as well as in other disciplines of geosciences to give an indication on critical event rareness. This concept gains its popularity, especially in engineering practice for design and risk assessment, due to its ease of use and understanding; however, return period relies on some basic assumptions that should be satisfied for a correct application of this statistical tool. Indeed, conventional frequency analysis in hydrology is performed by assuming as necessary conditions that extreme events arise from a stationary distribution and are independent of one another. The main objective of this paper is to investigate the properties of return period when the independence condition is omitted; hence, we explore how the different definitions of return period available in literature affect results of frequency analysis for processes correlated in time. We demonstrate that, for stationary processes, the independence condition is not necessary in order to apply the classical equation of return period (i.e., the inverse of exceedance probability). On the other hand, we show that the time-correlation structure of hydrological processes modifies the shape of the distribution function of which the return period represents the first moment. This implies that, in the context of time-dependent processes, the return period might not represent an exhaustive measure of the probability of failure, and that its blind application could lead to misleading results. To overcome this problem, we introduce the concept of Equivalent Return Period, which controls the probability of failure still preserving the virtue of effectively communicating the event rareness.

  5. [Outcome of operative treatment for supination-external rotation Lauge-Hansen stage IV ankle fractures].

    PubMed

    Kołodziej, Łukasz; Boczar, Tomasz; Bohatyrewicz, Andrzej; Zietek, Paweł

    2010-01-01

    Ankle fractures are among the most common musculoskeletal injures. These fractures occur with an overall age- and sex-adjusted incidence rate around 180 per 100 000 person-years. The most frequent mechanism is considered to be supination-external rotation (60 to 80% of all ankle fractures) consisting of pathologic external rotation of the foot initially placed in some degree of supination. According to Lauge-Hansen classification, ankle joint structures are damaged in a sequence where the final, stage IV injuries, represents transverse fracture of the medial malleolus or its equivalent-rupture of the deltoid ligament. The aim of this study is to compare the results of two subtypes of supination-external rotation stage IV fractures. 43 patients treated surgically in 2006 to 2007 at Authors institution because of stage IV supination-external rotation ankle fracture were submitted to retrospective analysis. There were 25 patients with bimalleolar fracture (type 1) and in 18 patients with lateral malleolar fracture with accompanying rupture of the deltoid ligament (type 2). The mean age was 46 years (from 20 to 82 years). Average follow up period was 37 months (from 24 to 46 months). For the evaluation of treatment AOFAS hind-foot score (American Orthopedic Foot and Ankle Society) was used. The mean AOFAS score scale for Type 1 fractures was 85 points and for type 2 was significantly higher and amounted to 91 points (p < 0.05). Supination-external rotation stage IV ankle fractures with medial malleolar fracture, requires the implementation of additional diagnostic and therapeutic strategies and procedures in order to improve the outcome of results.

  6. Observations of Rotating Sunspots from TRACE

    NASA Astrophysics Data System (ADS)

    Brown, D. S.; Nightingale, R. W.; Alexander, D.; Schrijver, C. J.; Metcalf, T. R.; Shine, R. A.; Title, A. M.; Wolfson, C. J.

    2003-09-01

    Recent observations from TRACE in the photospheric white-light channel have shown sunspots that rotate up to 200° about their umbral centre over a period of 3 5 days. The corresponding loops in the coronal fan are often seen to twist and can erupt as flares. In an ongoing study, seven cases of rotating sunspots have been identified, two of which can be associated with sigmoid structures appearing in Yohkoh/SXT and six with events seen by GOES. This paper analyzes the rotation rates of the sunspots using TRACE white-light data. Observations from AR 9114 are presented in detail in the main text and a summary of the results for the remaining six sunspots is presented in Appendixes A F. Discussion of the key results, particularly common features, are presented, as well as possible mechanisms for sunspot rotation.

  7. Osteoarthritis after rotator cuff repair: A 10-year follow-up study.

    PubMed

    Flurin, P-H; Hardy, P; Valenti, P; Meyer, N; Collin, P; Kempf, J-F

    2017-06-01

    Joint surgery is often complicated by gradual bone and cartilage deterioration that eventually leads to secondary osteoarthritis. The primary objective of this study was to identify preoperative risk factors for gleno-humeral osteoarthritis after rotator cuff repair. The secondary objectives were to assess whether the risk of gleno-humeral osteoarthritis was influenced by the operative technique, occurrence of postoperative complications, cuff healing, and muscle degeneration and to determine whether gleno-humeral osteoarthritis affected the clinical outcome. The development of gleno-humeral osteoarthritis affects the postoperative clinical outcome. A retrospective multicentre study of patients who underwent rotator cuff repair in 2003 and were re-evaluated at least 10 years later was conducted under the aegis of the Société française de chirurgie orthopédique et traumatique (SOFCOT). Osteoarthritis severity was graded according to the Samilson-Prieto classification. Four hundred and one patients were included. At last follow-up, at least 10 years after surgery, the radiological Samilson-Prieto grades were distributed as follows: 0, n=181 (45%); 1, n=142 (n=35%); 2, n=57 (14%); 3, n=14 (4%); and 4, n=7 (2%). The mean Constant score was significantly higher in the patients without than with osteoarthritis at last follow-up (79/100 vs. 73/100, P<0.001). MRI assessment of cuff healing showed that the proportion of patients with osteoarthritis was significantly higher in the group with unhealed or re-torn cuffs (Sugaya type 4 or 5) than in the group with healed cuffs (Sugaya type 1, 2, or 3) (46% vs. 25%, P=0.012). Our study showed no associations linking the risk of gleno-humeral osteoarthritis to the patient activity profile, history of shoulder injury, or preoperative symptom duration. In contrast, statistically significant associations were identified between gleno-humeral osteoarthritis and age, male gender, initial tear severity, and the pain and mobility

  8. Blended Learning Educational Format for Third-Year Pediatrics Clinical Rotation.

    PubMed

    Langenau, Erik E; Lee, Robert; Fults, Marci

    2017-04-01

    Traditional medical education is shifting to incorporate learning technologies and online educational activities with traditional face-to-face clinical instruction to engage students, especially at remote clinical training sites. To describe and evaluate the effectiveness of the blended learning format (combining online and face-to-face instruction) for third-year osteopathic medical students during their pediatric rotation. Third-year medical students who completed the 4-week clerkship in pediatrics during the 2014-2015 academic year were divided into a standard learning group and a blended learning group with online activities (discussion boards, blogs, virtual patient encounters, narrated video presentations, and online training modules). Comprehensive Osteopathic Medical Achievement Test scores and final course grades were compared between the standard learning and blended learning groups. Students in the blended learning group completed a postsurvey regarding their experiences. Of 264 third-year students who completed the 4-week clerkship in pediatrics during the 2014-2015 academic year, 78 (29.5%) participated in the blended learning supplement with online activities. Of 53 students who completed the postsurvey in the blended learning group, 44 (83.0%) agreed or strongly agreed that "The integration of e-learning and face-to-face learning helped me learn pediatrics." Open-ended comments supported this overall satisfaction with the course format; however, 26 of 100 comments reflected a desire to increase the amount of clinical exposure and face-to-face time with patients. No statistical differences were seen between the standard learning (n=186) and blended learning (n=78) groups with regard to Comprehensive Osteopathic Medical Achievement Test scores (P=.321). Compared with the standard learning group, more students in the blended learning group received a final course grade of honors (P=.015). Results of this study support the use of blended learning in a

  9. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.

    PubMed

    Dou, Chang; Marcondes, Wilian F; Djaja, Jessica E; Bura, Renata; Gustafson, Rick

    2017-01-01

    Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees. The biomass from these 2-year-old trees is very heterogeneous, and includes components of leaf, bark, branch, and wood chip. This material is quite different than the samples that have been used in most poplar bioconversion research, which come from mature trees of short rotation forestry (SRF) plantations. If the coppice management regime is to be used, it is important that feedstock growers maximize their revenue from this initial harvest, but the heterogeneous nature of the biomass may be challenging for bioconversion. This work evaluates bioconversion of 2-year-old poplar coppice and compares its performance to whitewood chips from 12-year-old poplar. The 2-year-old whole tree coppice (WTC) is comprised of 37% leaf, 9% bark, 12% branch, and 42% wood chip. As expected, the chemical compositions of each component were markedly different. The leaf has a low sugar content but is high in phenolics, ash, and extractives. By removing the leaves, the sugar content of the biomass increased significantly, while the phenolic, ash, and extractives contents decreased. Leaf removal improved monomeric sugar yield by 147 kg/tonne of biomass following steam pretreatment and enzymatic hydrolysis. Bioconversion of the no-leaf coppice (NLC) achieved a 67% overall sugar recovery, showing no significant difference to mature whitewood from forestry plantation (WWF, 71%). The overall sugar yield of NLC was 135 kg/tonne less than that of WWF, due to the low inherent sugar content in original biomass. An economic analysis shows the minimum ethanol selling price required to cover the

  10. When a Slowly Rotating Aquaplanet is Coupled to a Dynamical Ocean

    NASA Astrophysics Data System (ADS)

    Salameh, J.; Marotzke, J.

    2017-12-01

    Planets orbiting in close distance from their stars have a high probability to be detected, and are expected to be slowly rotating due to strong tidal forces. By increasing the rotation period from 1 Earth-day to 365 Earth-days, we previously found that the global-mean surface temperature of an aquaplanet with a static mixed-layer ocean decreases by up to 27 K. The cooling is attributed to an increase of the planetary albedo with the rotation period, which is associated with the different distributions of the sea ice and the deep convective clouds. However, we had there assumed a fixed mixed-layer depth and a zero oceanic heat transport in the aquaplanet configuration. The limitations of these assumptions in such exotic climates are still unclear. We therefore perform coupled atmosphere-ocean aquaplanet simulations with the general circulation model ICON for various rotation periods ranging from 1 Earth-day to 365 Earth-days. We investigate how the underlying oceanic circulation modifies the mean climate of slowly rotating aquaplanets, and whether the day-to-night oceanic heat transport reduces the surface-temperature gradients and the sea-ice extent.

  11. Analysis of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Garn, P. A.

    1988-01-01

    An analysis is made of several aspects of an advanced-technology rotating space station configuration generated under a previous study. The analysis includes examination of several modifications of the configuration, interface with proposed launch systems, effects of low-gravity environment on human subjects, and the space station assembly sequence. Consideration was given also to some aspects of space station rotational dynamics, surface charging, and the possible application of tethers.

  12. Iapetus' Geophysics: Rotation Rate, Shape, and Equatorial Ridge

    NASA Technical Reports Server (NTRS)

    Castillo-Rogez, J. C.; Matson, D. L.; Sotin, C.; Johnson, T. V.; Lunine, J. I.; Thomas, P. C.

    2007-01-01

    Iapetus has preserved evidence that constrains the modeling of its geophysical history from the time of its accretion until now. The evidence is (a) its present 79.33-day rotation or spin rate, (b) its shape that corresponds to the equilibrium figure for a hydrostatic body rotating with a period of approximately 16 h, and (c) its high, equatorial ridge, which is unique in the Solar System. This paper reports the results of an investigation into the coupling between Iapetus' thermal and orbital evolution for a wide range of conditions including the spatial distributions with time of composition, porosity, short-lived radioactive isotopes (SLRI), and temperature. The thermal model uses conductive heat transfer with temperature-dependent conductivity. Only models with a thick lithosphere and an interior viscosity in the range of about the water ice melting point can explain the observed shape. Short-lived radioactive isotopes provide the heat needed to decrease porosity in Iapetus? early history. This increases thermal conductivity and allows the development of the strong lithosphere that is required to preserve the 16-h rotational shape and the high vertical relief of the topography. Long-lived radioactive isotopes and SLRI raise internal temperatures high enough that significant tidal dissipation can start, and despin Iapetus to synchronous rotation. This occurred several hundred million years after Iapetus formed. The models also constrain the time when Iapetus formed because the successful models are critically dependent upon having just the right amount of heat added by SLRI decay in this early period. The amount of heat available from short-lived radioactivity is not a free parameter but is fixed by the time when Iapetus accreted, by the canonical concentration of Al-26, and, to a lesser extent, by the concentration of Fe-60. The needed amount of heat is available only if Iapetus accreted between 2.5 and 5.0Myr after the formation of the calcium aluminum

  13. Time-series photometric spot modeling. 2: Fifteen years of photometry of the bright RS CVn binary HR 7275

    NASA Technical Reports Server (NTRS)

    Strassmeier, K. G.; Hall, D. S.; Henry, G. W.

    1994-01-01

    We present a time-dependent spot modeling analysis of 15 consecutive years of V-band photometry of the long-period (P(sub orb) = 28.6 days) RS CVn binary HR 7275. This baseline in time is one of the longest, uninterrupted intervals a spotted star has been observed. The spot modeling analysis yields a total of 20 different spots throughout the time span of our observations. The distribution of the observed spot migration rates is consistent with solar-type differential rotation and suggests a lower limit of the differential-rotation coefficient of 0.022 +/-0.004. The observed, maximum lifetime of a single spot (or spot group) is 4.5 years, the minimum lifetime is approximately one year, but an average spot lives for 2.2 years. If we assume that the mechanical shear by differential rotation sets the upper limit to the spot lifetime, the observed maximum lifetime in turn sets an upper limit to the differential-rotation coefficient, namely 0.04 +/- 0.01. This would be differential rotation just 5 to 8 times less than the solar value and one of the strongest among active binaries. We found no conclusive evidence for the existence of a periodic phenomenon that could be attributed to a stellar magnetic cycle.

  14. Instability of a rotating liquid ring

    NASA Astrophysics Data System (ADS)

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  15. Instability of a rotating liquid ring.

    PubMed

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  16. Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Wolf, Eric. T.; Joshi, Manoj; Zhang, Xi; Kopparapu, Ravi Kumar

    2018-01-01

    We investigate the atmospheric dynamics of terrestrial planets in synchronous rotation within the habitable zone of low-mass stars using the Community Atmosphere Model. The surface temperature contrast between the day and night hemispheres decreases with an increase in incident stellar flux, which is opposite the trend seen in gas giants. We define three dynamical regimes in terms of the equatorial Rossby deformation radius and the Rhines length. The slow rotation regime has a mean zonal circulation that spans from the day to the night sides, which occurs for planets around stars with effective temperatures of 3300–4500 K (rotation period > 20 days), with both the Rossby deformation radius and the Rhines length exceeding the planetary radius. Rapid rotators have a mean zonal circulation that partially spans a hemisphere and with banded cloud formation beneath the substellar point, which occurs for planets orbiting stars with effective temperatures of less than 3000 K (rotation period < 5 days), with the Rossby deformation radius less than the planetary radius. In between is the Rhines rotation regime, which retains a thermally direct circulation from the day side to the night side but also features midlatitude turbulence-driven zonal jets. Rhines rotators occur for planets around stars in the range of 3000–3300 K (rotation period ∼5–20 days), where the Rhines length is greater than the planetary radius but the Rossby deformation radius is less than the planetary radius. The dynamical state can be observationally inferred from a comparison of the morphologies of the thermal emission phase curves of synchronously rotating planets.

  17. Comparison of Clinical and Radiological Results in the Arthroscopic Repair of Full-Thickness Rotator Cuff Tears With and Without the Anterior Attachment of the Rotator Cable.

    PubMed

    Cho, Nam Su; Moon, Seong Cheol; Hong, Se Jung; Bae, Seong Hae; Rhee, Yong Girl

    2017-09-01

    The anterior rotator cable is critical in force transmission of the rotator cuff. However, few clinical studies have examined the correlation between the integrity of the anterior supraspinatus tendon and surgical outcomes in patients with rotator cuff tears. To compare the clinical and structural outcomes of the arthroscopic repair of full-thickness rotator cuff tears with and without anterior disruption of the supraspinatus tendon. Cohort study; Level of evidence, 3. One hundred eighty-one shoulders available for magnetic resonance imaging (MRI) at least 6 months after arthroscopic rotator cuff repair, with a minimum 1-year follow-up, were enrolled. The anterior attachment of the rotator cable was disrupted in 113 shoulders (group A) and intact in 68 shoulders (group B). The mean age at the time of surgery in groups A and B was 59.6 and 59.2 years, respectively, and the mean follow-up period was 24.2 and 25.1 months, respectively. There were statistically significant differences in the preoperative tear size and pattern and muscle fatty degeneration between the 2 groups ( P = .004, P = .008, and P < .001, respectively). At final follow-up, the mean visual analog scale (VAS) for pain score during motion was 1.31 ± 0.98 and 1.24 ± 0.90 in groups A and B, respectively ( P = .587). The mean Constant score was 77.5 ± 11.2 and 78.0 ± 11.9 points in groups A and B, respectively ( P = .875). The mean University of California, Los Angeles score was 30.5 ± 4.1 and 31.0 ± 3.0 points in groups A and B, respectively ( P = .652). In assessing the repair integrity on postoperative MRI, the retear rate was 23.9% and 14.7% in groups A and B, respectively ( P = .029). Irrespective of involvement in the anterior attachment of the rotator cable, the mean 24-month follow-up demonstrated excellent pain relief and improvement in the ability to perform activities of daily living after arthroscopic rotator cuff repair. However, tears with anterior disruption of the rotator cable

  18. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  19. A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.

    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} ofmore » the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.« less

  20. Solar wind variations in the 60-100 year period range: A review

    NASA Technical Reports Server (NTRS)

    Feynman, J.

    1983-01-01

    The evidence for and against the reality of a solar wind variation in the period range of 60-100 years is reexamined. Six data sets are reviewed; sunspot numbers, geomagnetic variations, two auroral data sets and two (14)C data sets. These data are proxies for several different aspects of the solar wind and the presence or absence of 60-100 year cyclic behavior in a particular data set does not necessarily imply the presence or absence of this variation in other sets. It was concluded that two different analyses of proxy data for a particular characteristic of the heliospheric solar wind yielded conflicting results. This conflict can be resolved only by future research. It is also definitely confirmed that proxy data for the solar wind in the ecliptic at 1 A.U. undergo a periodic variation with a period of approximately 87 years. The average amplitude and phase of this variation as seen in eleven cycles of proxy data are presented.

  1. Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model.

    PubMed

    Harada, Yoshifumi; Mifune, Yutaka; Inui, Atsuyuki; Sakata, Ryosuke; Muto, Tomoyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kokubu, Takeshi; Kuroda, Ryosuke; Kurosaka, Masahiro

    2017-02-01

    To achieve biological regeneration of tendon-bone junctions, cell sheets of human rotator-cuff derived cells were used in a rat rotator cuff injury model. Human rotator-cuff derived cells were isolated, and cell sheets were made using temperature-responsive culture plates. Infraspinatus tendons in immunodeficient rats were resected bilaterally at the enthesis. In right shoulders, infraspinatus tendons were repaired by the transosseous method and covered with the cell sheet (sheet group), whereas the left infraspinatus tendons were repaired in the same way without the cell sheet (control group). Histological examinations (safranin-O and fast green staining, isolectin B4, type II collagen, and human-specific CD31) and mRNA expression (vascular endothelial growth factor; VEGF, type II collagen; Col2, and tenomodulin; TeM) were analyzed 4 weeks after surgery. Biomechanical tests were performed at 8 weeks. In the sheet group, proteoglycan at the enthesis with more type II collagen and isolectin B4 positive cells were seen compared with in the control group. Human specific CD31-positive cells were detected only in the sheet group. VEGF and Col2 gene expressions were higher and TeM gene expression was lower in the sheet group than in the control group. In mechanical testing, the sheet group showed a significantly higher ultimate failure load than the control group at 8 weeks. Our results indicated that the rotator-cuff derived cell sheet could promote cartilage regeneration and angiogenesis at the enthesis, with superior mechanical strength compared with the control. Treatment for rotator cuff injury using cell sheets could be a promising strategy for enthesis of tendon tissue engineering. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:289-296, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    NASA Astrophysics Data System (ADS)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model

  3. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, H. M.; Reed, M. D.; Telting, J. H.

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets ofmore » ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.« less

  4. An analytical theory of planetary rotation rates

    NASA Technical Reports Server (NTRS)

    Harris, A. W.

    1977-01-01

    An approximate analytical theory is derived for the rate of rotation acquired by a planet as it grows from the solar nebula. This theory was motivated by a numerical study by Giuli, and yields fair agreement with his results. The periods of planetary rotation obtained are proportional to planetesimal encounter velocity, and appear to suggest lower values of this velocity than are commonly assumed to have existed during planetary formation.

  5. Measurement of unsteady pressures in rotating systems

    NASA Technical Reports Server (NTRS)

    Kienappel, K.

    1978-01-01

    The principles of the experimental determination of unsteady periodic pressure distributions in rotating systems are reported. An indirect method is discussed, and the effects of the centrifugal force and the transmission behavior of the pressure measurement circuit were outlined. The required correction procedures are described and experimentally implemented in a test bench. Results show that the indirect method is suited to the measurement of unsteady nonharmonic pressure distributions in rotating systems.

  6. The role of sea-ice albedo in the climate of slowly rotating aquaplanets

    NASA Astrophysics Data System (ADS)

    Salameh, Josiane; Popp, Max; Marotzke, Jochem

    2018-04-01

    We investigate the influence of the rotation period (P_{rot}) on the mean climate of an aquaplanet, with a focus on the role of sea-ice albedo. We perform aquaplanet simulations with the atmospheric general circulation model ECHAM6 for various rotation periods from one Earth-day to 365 Earth-days in which case the planet is synchronously rotating. The global-mean surface temperature decreases with increasing P_{rot} and sea ice expands equatorwards. The cooling of the mean climate with increasing P_{rot} is caused partly by the high surface albedo of sea ice on the dayside and partly by the high albedo of the deep convective clouds over the substellar region. The cooling caused by these deep convective clouds is weak for non-synchronous rotations compared to synchronous rotation. Sensitivity simulations with the sea-ice model switched off show that the global-mean surface temperature is up to 27 K higher than in our main simulations with sea ice and thus highlight the large influence of sea ice on the climate. We present the first estimates of the influence of the rotation period on the transition of an Earth-like climate to global glaciation. Our results suggest that global glaciation of planets with synchronous rotation occurs at substantially lower incoming solar irradiation than for planets with slow but non-synchronous rotation.

  7. Rotation Studies of Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Wasserman, Lawrence H.; Lederer, Susan M.; Rohl, Derrick A.

    2011-08-01

    The Jovian Trojan asteroids appear to be fundamentally different from main belt asteroids. They formed further from the sun, they are of different composition, and their collisional history is different. Lightcurve studies provide information about the distribution of rotation frequencies of a group of asteroids. For main belt asteroids larger than about 40 km in diameter, the distribution of rotation frequencies is Maxwellian (Pravec et al. 2000). This suggests that collisions determine their rotation properties. Smaller main belt asteroids, however, show a predominance of both fast and slow rotators, with the observed spin distribution apparently controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect (Pravec et al. 2008). The Trojans larger than 100 km in diameter have been almost completely sampled, but lightcurves for smaller Trojans have been less well studied due to their low albedos and greater solar distances. We propose to investigate the rotation periods of 4-6 small (D < 50 km) Trojan asteroids and 6-9 Trojans in the 50-100 km size range.

  8. Pre-registration house officer rotations incorporating general practice: does the order of rotation matter?

    PubMed

    Williams, C; Cantillon, P; Cochrane, M

    2001-06-01

    In relation to pre-registration house officer (PRHO) rotations incorporating general practice, previous research has recommended that where possible, no PRHO should undertake general practice as the first placement, because of the difficulties encountered. It was recognized that logistically, this could make such schemes almost unworkable. Within the context of a larger qualitative evaluation comparing how 24 PRHOs learned in hospital and general practice settings, the issue of rotation order was explored. In-depth semistructured interviews were conducted with the 12 PRHOs who were involved in general practice rotations. They were interviewed at the beginning and end of the PRHO year, and following their return to hospital work after the general practice placement. Each rotation order had both advantages and disadvantages, with no particular rotation order being obviously better or worse for the PRHOs involved. This small qualitative evaluation has highlighted a number of advantages and disadvantages specific to each rotation order, and makes some practical recommendations to help alleviate the problems encountered. It is important that future evaluations of similar schemes consider this issue, as there are conflicting reports about the significance of the rotation order.

  9. Rotator Cuff Repair in Adolescent Athletes.

    PubMed

    Azzam, Michael G; Dugas, Jeffrey R; Andrews, James R; Goldstein, Samuel R; Emblom, Benton A; Cain, E Lyle

    2018-04-01

    Rotator cuff tears are rare injuries in adolescents but cause significant morbidity if unrecognized. Previous literature on rotator cuff repairs in adolescents is limited to small case series, with few data to guide treatment. Adolescent patients would have excellent functional outcome scores and return to the same level of sports participation after rotator cuff repair but would have some difficulty with returning to overhead sports. Case series; Level of evidence 4. A retrospective search of the practice's billing records identified all patients participating in at least 1 sport who underwent rotator cuff repair between 2006 and 2014 with an age <18 years at the time of surgery and a minimum follow-up of 2 years. Clinical records were evaluated for demographic information, and telephone follow-up was obtained regarding return to play, performance, other surgery and complications, a numeric pain rating scale (0-10) for current shoulder pain, American Shoulder and Elbow Surgeons (ASES) Shoulder Assessment Form, and the Western Ontario Rotator Cuff Index. Thirty-two consecutive adolescent athletes (28 boys and 4 girls) with a mean age of 16.1 years (range, 13.2-17.9 years) met inclusion criteria. Twenty-nine patients (91%) had a traumatic event, and 27 of these patients (93%) had no symptoms before the trauma. The most common single tendon injury was to the supraspinatus (21 patients, 66%), of which 2 were complete tendon tears, 1 was a bony avulsion of the tendon, and 18 were high-grade partial tears. Fourteen patients (56%) underwent single-row repair of their rotator cuff tear, and 11 (44%) underwent double-row repair. All subscapularis injuries were repaired in open fashion, while all other tears were repaired arthroscopically. Twenty-seven patients (84%) completed the outcome questionnaires at a mean 6.2 years after surgery (range, 2-10 years). The mean ASES score was 93 (range, 65-100; SD = 9); mean Western Ontario Rotator Cuff Index, 89% (range, 60%-100%; SD

  10. Rotator cuff crepitus: could Codman really feel a cuff tear?

    PubMed

    Ponce, Brent A; Kundukulam, Joseph A; Sheppard, Evan D; Determann, Jason R; McGwin, Gerald; Narducci, Carl A; Crowther, Marshall J

    2014-07-01

    The objective of this study was to assess the accuracy of palpating crepitus to diagnose rotator cuff tears. Seventy consecutive consenting patients who presented with shoulder pain and no previous imaging or surgery on the affected shoulder were prospectively enrolled during a 10-month period. A standardized patient history and examination, including the crepitus test, were recorded in addition to obtaining standard radiographs. Additional imaging after initial evaluation was performed with magnetic resonance imaging and interpreted by a musculoskeletal radiologist blinded to the examination findings. Statistical analysis was used to determine sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the crepitus test in the clinical diagnosis of a rotator cuff tear. Sixty-three patients had histories, examinations, and imaging studies available for analysis. The crepitus test had a sensitivity of 67%, specificity of 80%, PPV of 91%, and NPV of 43% for all types of rotator cuff tears. The sensitivity and specificity for full-thickness or high-grade partial tears was 82% and 73%, respectively; the PPV and NPV were 77% and 79%. Increasing age improved accuracy as the presence of crepitus in patients older than 55 years had a sensitivity of 76%, specificity of 100%, PPV of 100%, and NPV of 38%. The crepitus test has a favorable sensitivity, specificity, PPV, and NPV to assess the integrity of the rotator cuff and may be a useful examination in the clinical diagnosis of a rotator cuff tear. Published by Mosby, Inc.

  11. Clinical Outcomes of Conservative Treatment and Arthroscopic Repair of Rotator Cuff Tears: A Retrospective Observational Study.

    PubMed

    Lee, Woo Hyung; Do, Hyun Kyung; Lee, Joong Hoon; Kim, Bo Ram; Noh, Jee Hyun; Choi, Soo Hyun; Chung, Sun Gun; Lee, Shi-Uk; Choi, Ji Eun; Kim, Seihee; Kim, Min Jee; Lim, Jae-Young

    2016-04-01

    To compare the clinical outcomes following conservative treatment and arthroscopic repair in patients with a rotator cuff tear. In this retrospective study, patients aged >50 years with a symptomatic rotator cuff tear were reviewed. The rotator cuff tendons were evaluated using ultrasonography, shoulder magnetic resonance imaging or MR arthrography, and the patients with either a high-grade partial-thickness or small-to-medium-sized (≤3 cm) full-thickness tear were included in this study. The primary outcome measures were a pain assessment score and range of motion (ROM) at 1-year follow-up. The secondary outcomes were the rate of tear progression or retear along with the rate of symptom aggravation after the treatments. A total of 357 patients were enrolled, including 183 patients that received conservative treatment and 174 patients who received an arthroscopic repair. The pain assessment score (p<0.001) and the ROM in forward flexion (p<0.001) were significantly improved in both groups. The ROM in internal rotation did not significantly change after conservative treatment and arthroscopic repair. The pain assessment score and ROM were not significantly different between the two groups. Retear was observed in 9.6% of patients who had an arthroscopic repair and tear progression was found in 6.7% of those who underwent conservative treatment. The proportion of aggravation for pain and ROM did not significantly differ between the two groups. The effectiveness of conservative treatment is not inferior to arthroscopic repair for patients >50 years old with a less than medium-sized rotator cuff tear in a 1-year follow-up period. Further study is warranted to find the optimal combination of conservative treatment for a symptomatic rotator cuff tear.

  12. On the Long-Term "Hesitation Waltz" Between the Earth's Figure and Rotation Axes

    NASA Astrophysics Data System (ADS)

    Couhert, A.; Mercier, F.; Bizouard, C.

    2017-12-01

    The principal figure axis of the Earth refers to its axis of maximum inertia. In the absence of external torques, the latter should closely coincide with the rotation pole, when averaged over many years. However, because of tidal and non-tidal mass redistributions within the Earth system, the rotational axis executes a circular motion around the figure axis essentially at seasonal time scales. In between, it is not clear what happens at decadal time spans and how well the two axes are aligned. The long record of accurate Satellite Laser Ranging (SLR) observations to Lageos makes possible to directly measure the long time displacement of the figure axis with respect to the crust, through the determination of the degree 2 order 1 geopotential coefficients for the 34-year period 1983-2017. On the other hand, the pole coordinate time series (mainly from GNSS and VLBI data) yield the motion of the rotation pole with even a greater accuracy. This study is focused on the analysis of the long-term behavior of the two time series, as well as the derivation of possible explanations for their discrepancies.

  13. Rotation lightcurves of small jovian Trojan asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Coley, Daniel; Wasserman, Lawrence H.; Sieben, Jennifer

    2015-07-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We present new lightcurve information for 19 Trojans ≲ 30 km in diameter, more than doubling the number of objects in this size range for which some rotation information is known. The minimum densities for objects with complete lightcurves are estimated and are found to be comparable to those measured for cometary nuclei. A significant fraction (∼40%) of this observed small Trojan population rotates slowly (P > 24 h), with measured periods as long as 375 h (Warner, B.D., Stephens, R.D. [2011]. Minor Planet Bull. 38, 110-111). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size. Concerted observations of a large number of Trojans could establish the spin barrier (Warner, B.D., Harris, A.W., Pravec, P. [2009]. Icarus 202, 134-146), making it possible to estimate densities for objects near the critical period.

  14. Establishing Maximal Medical Improvement After Arthroscopic Rotator Cuff Repair.

    PubMed

    Zuke, William A; Leroux, Timothy S; Gregory, Bonnie P; Black, Austin; Forsythe, Brian; Romeo, Anthony A; Verma, Nikhil N

    2018-03-01

    As health care transitions from a pay-for-service to a pay-for-performance infrastructure, the value of orthopaedic care must be defined accurately. Significant efforts have been made in defining quality and cost in arthroplasty; however, there remains a lag in ambulatory orthopaedic care. Two-year follow-up has been a general requirement for reporting outcomes after rotator cuff repair. However, this time requirement has not been established scientifically and is of increasing importance in the era of value-based health care. Given that arthroscopic rotator cuff repair is a common ambulatory orthopaedic procedure, the purpose of this study was to establish a time frame for maximal medical improvement (the state when improvement has stabilized) after arthroscopic rotator cuff repair. Systematic review. A systematic review of the literature was conducted, identifying studies reporting sequential patient-reported outcomes up to a minimum of 2 years after arthroscopic rotator cuff repair. The primary clinical outcome was patient-reported outcomes at 3-month, 6-month, 1-year, and 2-year follow-up. Secondary clinical outcomes included range of motion, strength, retears, and complications. Clinically significant improvement was determined between various time intervals by use of the minimal clinically important difference. The review included 19 studies including 1370 patients who underwent rotator cuff repair. Clinically significant improvement in patient-reported outcomes was seen up to 1 year after rotator cuff repair, but no clinical significance was noted from 1 year to 2 years. The majority of improvement in strength and range of motion was seen up to 6 months, but no clinically meaningful improvement was seen thereafter. All reported complications and the majority of retears occurred within 6 months after rotator cuff repair. After rotator cuff repair, a clinically significant improvement in patient-reported outcomes, range of motion, and strength was seen up to 1

  15. A UV spectroscopic survey of periodic M dwarfs in the Hyades

    NASA Astrophysics Data System (ADS)

    Agueros, Marcel

    2017-08-01

    Because of its proximity, the 650-Myr-old Hyades open cluster is a unique resource for exploring the relationship between magnetic activity, rotation, and age in low-mass stars. While the cluster has been largely ignored in UV studies of the dependence of activity on rotation, we now have an extensive and growing set of complementary rotation period, Halpha, and X-ray measurements with which to examine in detail the rotation-activity relation at 650 Myr and to constrain theories of magnetic heating. We propose to measure Mg II line emission, the strongest NUV activity tracer, in COS spectra of 17 Hyads ranging in spectral type from M0 to M7 with known rotation periods and Halpha and X-ray measurements. These stars form a representative sample of M-dwarf Hyads with known periods and are a significant addition to, and expansion of, the sample of 20 mainly solar-mass rotators with existing (mostly low-resolution) International Ultravioled Explorer (IUE) NUV spectra. The Mg II measurements will contribute significantly to our goal of mapping out the rotation-activity relation star-by-star in this benchmark open cluster. This, in turn, will move us toward an improved understanding of the radiation environment and habitability of the exoplanets we continue to find around low-mass stars.

  16. A solar eruption driven by rapid sunspot rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Guiping; Chen, Yao; Du, Guohui

    We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some overlying arcades were partially rooted in a sunspot. The sunspot rotated at ∼10° hr{sup –1} during a period of 6 hr prior to the eruption. In this period, the filament was found to rise gradually along with the sunspot rotation. Based on the Helioseismic and Magnetic Imager observation, for an area along the polarity inversion line underneath the filament,more » we found gradual pre-eruption decreases of both the mean strength of the photospheric horizontal field (B{sub h} ) and the mean inclination angle between the vector magnetic field and the local radial (or vertical) direction. These observations are consistent with the pre-eruption gradual rising of the filament-associated magnetic structure. In addition, according to the nonlinear force-free field reconstruction of the coronal magnetic field, a pre-eruption magnetic flux rope structure is found to be in alignment with the filament, and a considerable amount of magnetic energy was transported to the corona during the period of sunspot rotation. Our study provides evidence that in this event sunspot rotation plays an important role in twisting, energizing, and destabilizing the coronal filament-flux rope system, and led to the eruption. We also propose that the pre-event evolution of B{sub h} may be used to discern the driving mechanism of eruptions.« less

  17. Radiographic progression of arthritic changes in shoulders with degenerative rotator cuff tears.

    PubMed

    Chalmers, Peter N; Salazar, Dane H; Steger-May, Karen; Chamberlain, Aaron M; Stobbs-Cucchi, Georgia; Yamaguchi, Ken; Keener, Jay D

    2016-11-01

    Very little longitudinal information has been available regarding the relationship of cuff tears and arthritis. The purpose of this study was to determine the midterm risk of and risk factors for rotator cuff tear arthropathy progression in a cohort of subjects with an asymptomatic rotator cuff tear. Baseline (visit 1), 5-year (visit 2), and most recent follow-up (visit 3) radiographs were reviewed in a cohort of 105 subjects enrolled for longitudinal surveillance of asymptomatic degenerative rotator cuff tears and 33 controls. The radiographs were assessed in a blinded, randomized fashion by 3 observers who graded glenohumeral arthritic changes using the Hamada scores, Samilson-Prieto (SPO) scores, and acromiohumeral interval (AHI). Osteoarthritis (SPO classification), cuff tear arthropathy (Hamada classification), and AHI progressed between visits 1 and 3 (median, 8 years; P < .001 in all cases). SPO progression was not significantly different for partial- vs. full-thickness vs. control baseline tear types (P = .19). Both full-thickness and partial-thickness tears had greater progression in Hamada scores than controls did in the first 5 years of follow-up (P = .02 and P = .03, respectively), but scores did not differ between partial- and full-thickness tears. Tears with and without enlargement did not differ in progression in SPO grade, Hamada grade, or AHI. Glenohumeral arthritic changes progress significantly but remain minimal within an 8-year period in early to moderate degenerative cuff disease. Whereas the presence of a rotator cuff tear influences progression in Hamada grade, the magnitude of radiographic progression is not influenced by tear severity or enlargement at midterm time points. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Longitudinal posturography and rotational testing in children 3-9 years of age: Normative data

    PubMed Central

    Casselbrant, Margaretha L.; Mandel, Ellen M.; Sparto, Patrick J; Perera, Subashan; Redfern, Mark S.; Fall, Patricia A.; Furman, Joseph M.

    2010-01-01

    Objective To obtain normative longitudinal vestibulo-ocular and balance test data in children from ages 3 to 9 with normal middle-ear status. Study Design Prospective, longitudinal cohort Setting Tertiary care pediatric hospital Subjects and Methods Three-year-old children were entered and tested yearly. Subjects underwent earth vertical axis rotation testing using sinusoidal and constant velocity stimuli and performed the Sensory Organization Test. Results One hundred forty-eight children were entered and usable data were collected on 127 children. A linear increase in the vestibulo-ocular reflex gain as children aged was found, without a change in the phase of the response. An age-related linear increase in Equilibrium Scores, indicating reduced postural sway, was also observed. Conclusion These normative data can be used in the evaluation of dizziness and balance disorders in children. PMID:20416461

  19. Rehabilitation after Rotator Cuff Repair.

    PubMed

    Nikolaidou, Ourania; Migkou, Stefania; Karampalis, Christos

    2017-01-01

    Rotator cuff tears are a very common condition that is often incapacitating. Whether non-surgical or surgical, successful management of rotator cuff disease is dependent on appropriate rehabilitation. If conservative management is insufficient, surgical repair is often indicated. Postsurgical outcomes for patients having had rotator cuff repair can be quite good. A successful outcome is much dependent on surgical technique as it is on rehabilitation. Numerous rehabilitation protocols for the management of rotator cuff disease are based primarily on clinical experience and expert opinion. This article describes the different rehabilitation protocols that aim to protect the repair in the immediate postoperative period, minimize postoperative stiffness and muscle atrophy. A review of currently available literature on rehabilitation after arthroscopic rotator cuff tear repair was performed to illustrate the available evidence behind various postoperative treatment modalities. There were no statistically significant differences between a conservative and an accelerated rehabilitation protocol . Early passive range of motion (ROM) following arthroscopic cuff repair is thought to decrease postoperative stiffness and improve functionality. However, early aggressive rehabilitation may compromise repair integrity. The currently available literature did not identify any significant differences in functional outcomes and relative risks of re-tears between delayed and early motion in patients undergoing arthroscopic rotator cuff repairs. A gentle rehabilitation protocol with limits in range of motion and exercise times after arthroscopic rotator cuff repair would be better for tendon healing without taking any substantial risks. A close communication between the surgeon, the patient and the physical therapy team is important and should continue throughout the whole recovery process.

  20. Rotational Modulation of M/L Dwarfs Due to Magnetic Spots

    DTIC Science & Technology

    2007-10-20

    variability in two ultracool dwarfs, TVLM 513-46546 and 2MASS J003616171821104, on either side of the M/L dwarf boundary. Both of these targets are...3 2MASS J003616171821104). We attribute the detected I-band periodicities to the periods of rotation of the dwarfs, supported by radius estimates...rotational modulation of the L3.5 dwarf 2MASS J003616171821104 appeared to vary in amplitude with time. We conclude that the most likely cause of the I

  1. [Rotator cuff tear athropathy prevalence].

    PubMed

    Guerra-Soriano, F; Encalada-Díaz, M I; Ruiz-Suárez, M; Valero-González, F S

    2017-01-01

    Glenohumeral arthritis secondary to massive rotator cuff tear presents with a superior displacement and femoralization of the humeral head with coracoacromial arch acetabularization. The purpose of this study was to establish prevalence of rotator cuff tear artropathy (CTA) at our institution. Four hundred electronic records were reviewed from which we identified 136 patients with rotator cuff tears. A second group was composed with patients with massive cuff tears that were analized and staged by the Seebauer cuff tear arthropathy classification. Thirty four patients with massive rotator cuff tears were identified, 8 male and 26 female (age 60.1 ± 10.26 years). Massive rotator cuff tear prevalence was 25%. CTA prevalence found in the rotator cuff group was 19 and 76% in the massive cuff tears group. Patients were staged according to the classification with 32% in stage 1a, 11% 1b, 32% 2a and 0% 2b. CTA prevalence in patients with rotator cuff tears and massive cuff tears is higher than the one reported in American population. We consider that a revision of the Seebauer classification to be appropriate to determine its reliability.

  2. The Societal and Economic Value of Rotator Cuff Repair

    PubMed Central

    Mather, Richard C.; Koenig, Lane; Acevedo, Daniel; Dall, Timothy M.; Gallo, Paul; Romeo, Anthony; Tongue, John; Williams, Gerald

    2013-01-01

    Background: Although rotator cuff disease is a common musculoskeletal problem in the United States, the impact of this condition on earnings, missed workdays, and disability payments is largely unknown. This study examines the value of surgical treatment for full-thickness rotator cuff tears from a societal perspective. Methods: A Markov decision model was constructed to estimate lifetime direct and indirect costs associated with surgical and continued nonoperative treatment for symptomatic full-thickness rotator cuff tears. All patients were assumed to have been unresponsive to one six-week trial of nonoperative treatment prior to entering the model. Model assumptions were obtained from the literature and data analysis. We obtained estimates of indirect costs using national survey data and patient-reported outcomes. Four indirect costs were modeled: probability of employment, household income, missed workdays, and disability payments. Direct cost estimates were based on average Medicare reimbursements with adjustments to an all-payer population. Effectiveness was expressed in quality-adjusted life years (QALYs). Results: The age-weighted mean total societal savings from rotator cuff repair compared with nonoperative treatment was $13,771 over a patient’s lifetime. Savings ranged from $77,662 for patients who are thirty to thirty-nine years old to a net cost to society of $11,997 for those who are seventy to seventy-nine years old. In addition, surgical treatment results in an average improvement of 0.62 QALY. Societal savings were highly sensitive to age, with savings being positive at the age of sixty-one years and younger. The estimated lifetime societal savings of the approximately 250,000 rotator cuff repairs performed in the U.S. each year was $3.44 billion. Conclusions: Rotator cuff repair for full-thickness tears produces net societal cost savings for patients under the age of sixty-one years and greater QALYs for all patients. Rotator cuff repair is cost

  3. Advances in Rotational Seismic Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Robert; Laughlin, Darren; Brune, Robert

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is onmore » induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.« less

  4. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Astrophysics Data System (ADS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-10-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced by NASA's Kepler observatory. Component (b) consists of variations over a range of timescales, in the manner of a "1/f" random process. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the stochastic process (b). The data can be found at the National Solar Observatory web site http://nsosp.nso.edu/data/cak_mon.html, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  5. Evidence for Periodicity in 43 year-long Monitoring of NGC 5548

    NASA Astrophysics Data System (ADS)

    Bon, E.; Zucker, S.; Netzer, H.; Marziani, P.; Bon, N.; Jovanović, P.; Shapovalova, A. I.; Komossa, S.; Gaskell, C. M.; Popović, L. Č.; Britzen, S.; Chavushyan, V. H.; Burenkov, A. N.; Sergeev, S.; La Mura, G.; Valdés, J. R.; Stalevski, M.

    2016-08-01

    We present an analysis of 43 years (1972 to 2015) of spectroscopic observations of the Seyfert 1 galaxy NGC 5548. This includes 12 years of new unpublished observations (2003 to 2015). We compiled about 1600 Hβ spectra and analyzed the long-term spectral variations of the 5100 Å continuum and the Hβ line. Our analysis is based on standard procedures, including the Lomb-Scargle method, which is known to be rather limited to such heterogeneous data sets, and a new method developed specifically for this project that is more robust and reveals a ˜5700 day periodicity in the continuum light curve, the Hβ light curve, and the radial velocity curve of the red wing of the Hβ line. The data are consistent with orbital motion inside the broad emission line region of the source. We discuss several possible mechanisms that can explain this periodicity, including orbiting dusty and dust-free clouds, a binary black hole system, tidal disruption events, and the effect of an orbiting star periodically passing through an accretion disk.

  6. Neutrino-heated winds from rotating protomagnetars

    NASA Astrophysics Data System (ADS)

    Vlasov, Andrey D.; Metzger, Brian D.; Thompson, Todd A.

    2014-11-01

    We calculate the steady-state properties of neutrino-driven winds from strongly magnetized, rotating protoneutron stars (PNSs; `protomagnetars') under the assumption that the outflow geometry is set by the force-free magnetic field of an aligned dipole. Our goal is to assess protomagnetars as sites of r-process nucleosynthesis and gamma-ray burst engines using a more realistic outflow geometry than assumed in previous works. One-dimensional solutions calculated along flux tubes corresponding to different polar field lines are stitched together to determine the global properties of the flow at a given neutrino luminosity and rotation period. Protomagnetars with rotation periods of P ˜ 2-5 ms are shown to produce outflows more favourable for the production of third-peak r-process nuclei due to their much shorter expansion times through the seed nucleus formation region, yet only moderately lower entropies, as compared to normal spherical PNS winds. Protomagnetars with moderately rapid birth periods P ˜ 3-5 ms may thus represent a promising galactic r-process site which is compatible with a variety of other observations, including the recent discovery of possible magnetar-powered supernovae in metal-poor galaxies. We also confirm previous results that the outflows from protomagnetars with P ˜ 1-2 ms can achieve maximum Lorentz factors Γmax ˜ 100-1000 in the range necessary to power gamma-ray bursts (GRBs). The implications of GRB jets with a heavy nuclei-dominated composition as sources of ultrahigh energy cosmic rays are also addressed.

  7. Use of a shoulder abduction brace after arthroscopic rotator cuff repair: A study on gait performance and falls.

    PubMed

    Sonoda, Yuma; Nishioka, Takashi; Nakajima, Ryo; Imai, Shinji; Vigers, Piers; Kawasaki, Taku

    2018-04-01

    Fall prevention is essential in patients after arthroscopic rotator cuff repair because of the high risk of re-rupture. However, there are no reports related to falls that occur during the early postoperative period, while the affected limb is immobilized. This study assessed gait performance and falls in patients using a shoulder abduction brace after arthroscopic rotator cuff repair. Prospective cohort and postoperative repeated measures. This study included 29 patients (mean age, 67.1 ± 7.4 years) who underwent arthroscopic rotator cuff repair followed by rehabilitation. The timed up and go test, Geriatric Depression Scale, and Falls Efficacy Scale were measured, and the numbers of falls were compared between those shoulder abduction brace users and patients who had undergone total hip or knee arthroplasty. In arthroscopic rotator cuff repair patients, there were significant improvements in timed up and go test and Geriatric Depression Scale, but no significant differences in Falls Efficacy Scale, between the second and fifth postoperative weeks ( p < 0.05). Additionally, arthroscopic rotator cuff repair patients fell more often than patients with total hip arthroplasty or total knee arthroplasty during the same period. The findings suggest that rehabilitation in arthroscopic rotator cuff repair patients is beneficial, but decreased gait performance due to the immobilizing shoulder abduction brace can lead to falls. Clinical relevance Although rehabilitation helps motor function and mental health after arthroscopic rotator cuff repair, shoulder abduction brace use is associated with impaired gait performance, high Falls Efficacy Scale scores, and risk of falls, so awareness of risk factors including medications and lower limb dysfunctions is especially important after arthroscopic rotator cuff repair.

  8. Semiclassical theory of the self-consistent vibration-rotation fields and its application to the bending-rotation interaction in the H{sub 2}O molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalozub, A.S.; Tsaune, A.Ya.

    1994-12-01

    A new approach for analyzing the highly excited vibration-rotation (VR) states of nonrigid molecules is suggested. It is based on the separation of the vibrational and rotational terms in the molecular VR Hamiltonian by introducing periodic auxiliary fields. These fields transfer different interactions within a molecule and are treated in terms of the mean-field approximation. As a result, the solution of the stationary Schroedinger equation with the VR Hamiltonian amounts to a quantization of the Berry phase in a problem of the molecular angular-momentum motion in a certain periodic VR field (rotational problem). The quantization procedure takes into account themore » motion of the collective vibrational variables in the appropriate VR potentials (vibrational problem). The quantization rules, the mean-field configurations of auxiliary interactions, and the solutions to the Schrodinger equations for the vibrational and rotational problems are self-consistently connected with one another. The potentialities of the theory are demonstrated by the bending-rotation interaction modeled by the Bunker-Landsberg potential function in the H{sub 2} molecule. The calculations are compared with both the results of the exact computations and those of other approximate methods. 32 refs., 4 tabs.« less

  9. LARGE SUPER-FAST ROTATOR HUNTING USING THE INTERMEDIATE PALOMAR TRANSIENT FACTORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen

    In order to look for large super-fast rotators, in late 2014 and early 2015, five dedicated surveys covering ∼188 deg{sup 2} in the ecliptic plane have been carried out in the R -band, with ∼10 minute cadence using the intermediate Palomar Transient Factory. Among 1029 reliable rotation periods obtained from the surveys, we discovered 1 new large super-fast rotator, (40511) 1999 RE88, and 18 other candidates. (40511) 1999 RE88 is an S-type inner main-belt asteroid with a diameter of D  = 1.9 ± 0.3 km, a rotation period of P  = 1.96 ± 0.01 hr, and a light curve amplitude of Δ m  ∼ 1.0 mag. To maintainmore » such fast rotation, an internal cohesive strength of ∼780 Pa is required. Combining all known large super-fast rotators, their cohesive strengths all fall in the range of 100–1000 Pa of lunar regolith. However, the number of large super-fast rotators seems to be far less than the whole asteroid population. This might indicate a peculiar asteroid group for them. Although the detection efficiency for a long rotation period is greatly reduced due to our two-day observation time span, the spin-rate distributions of this work show consistent results with Chang et al. (2015), after considering the possible observational bias in our surveys. It shows a number decrease with an increase of spin rate for asteroids with a diameter of 3 ⩽  D  ⩽ 15 km, and a number drop at a spin rate of f  = 5 rev day{sup −1} for asteroids with D  ⩽ 3 km.« less

  10. Love numbers for the long-period tides estimated by VLBI

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; Haas, Rüdiger; Schuh, Harald

    2013-04-01

    Love and Shida numbers are proportionality factors characterizing the deformation of the anelastic Earth which arises as a response to external forces from the Moon and Sun. The increasing precision and quality of the Very Long Baseline Interferometry (VLBI) measurements allow determining those parameters. In particular, the long history of the VLBI data enables the estimation of Love and Shida numbers at the low frequencies of the tidal waves including the periods from 14 days to 18.6 years. In this study we analyse 27 years of VLBI measurements (1984.0 - 2011.0) following the recent IERS Conventions 2010. In several global solutions, we estimate the complex Love and Shida numbers of the solid Earth tides for the main long-period tidal waves. Furthermore, we determine the Love and Shida numbers of the rotational deformation due to polar motion, the so-called pole tide. We also focus on station displacement where still some deficiencies in the long-period signal modelling can be seen.

  11. Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Dong, Danan

    1994-01-01

    We discuss the determination of diurnal and semidiurnal variations in the rotation rate and the direction of rotation axis of Earth from the analysis of 8 years of very long baseline interferometry (VLBI) data. This analysis clearly show that these variations are largely periodic and tidally driven; that is, the periods of the variations correspond to the periods of the largest lunar and solar tides. For rotation rate variations, expressed in terms of changes in universal time (UT), the tidal lines with the largest observed signals are O1 (amplitude 23.5 microseconds in time (microseconds), period 25.82 solar hours); KL (18.9 microseconds, 23.93 hours); M2 (17.9 microseconds, 12.54 hours); and S2 (8.6 microseconds, 12.00 hours). For variations in the direction of the rotation axis (polar motion), significant signals exist in the retrograde semidiurnal band at the M2 and S2 tides (amplitudes 265 and 119 microarc seconds (microarc seconds, respectively); the prograde diurnal band at the O1, K1, and P1 tides (amplitudes 199, 152, and 60 microarc seconds, respectively); and the prograde semidiurnal band at the M2 and K2 tides (amplitudes 58 and 39 microarc seconds, respectively). Variations in the retrograde diurnal band are represented by corrections with previous estimates except that a previously noted discrepancy in the 13.66-day nutation (corresponding to the O1 tide) is largely removed in this new analysis. We estimate that the standard deviations of these estimates are 1.0 microseconds for the UT1 variations and 14-16 microarc seconds for the polar motion terms. These uncertainties correspond to surface displacements of approximately 0.5 mm. From the analysis of atmospheric angular momentum data we conclude that variations in UT1 excited by the atmosphere with subdaily periods are small (approximately 1 microsecond). We find that the average radial tidal displacements of the VLBI sites in the diurnal band are largely consistent with known deficiencies in current

  12. MACULA: Fast Modeling of Rotational Modulations of Spotty Stars

    NASA Astrophysics Data System (ADS)

    Kipping, David

    2015-08-01

    Rotational modulations are frequently observed on stars observed by photometry surveys such as Kepler, with periodicities ranging from days to months and amplitudes of sub-parts-per-million to several percent. These variations may be studied to reveal important stellar properties such as rotational periods, inclinations and gradients of differential rotation. However, inverting the disk-integrated flux into a solution for spot number, sizes, contrasts, etc is highly degenerate and thereby necessitating an exhaustive search of the parameter space. In recognition of this, the software MACULA is designed to be a fast forward model of circular, grey spots on rotating stars, including effects such as differential rotation, spot evolution and even spot penumbra/umbra. MACULA seeks to achieve computational efficiency by using a wholly analytic description of the disk-integrated flux, which is described in Kipping (2012), leading to a computational improvement of three orders-of-magnitude over its numerical counterparts. As part of the hack day, I'll show how to simulate light curves with MACULA and provide examples with visualizations. I will also discuss the on-going development of the code, which will head towards modeling spot crossing events and radial velocity jitter and I encourage discussions amongst the participants on analytic methods to this end.

  13. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  14. Wavelet analysis of stellar differential rotation. III. The Sun in white light

    NASA Astrophysics Data System (ADS)

    Hempelmann, A.

    2003-02-01

    Future space projects like KEPLER will deliver a vast quantity of high precision light curves of stars. This paper describes a test concerning the observability of rotation and even differential rotation of slowly rotating stars from such data. Two published light curves of solar total irradiance measures are investigated: the Nimbus-7 Earth Radiation Budget (ERB) observations between 1978 and 1993 and the Active Cavity Radiometer Irradiance Monitor I (ACRIM I) measurements between 1980 and 1989. Light curve analysis show that oscillations on time-scales comparable to solar rotation but of a complex pattern are visible. Neither Fourier analysis nor time-frequency Wavelet analysis yield the true rotation period during the more active phases of the solar cycle. The true rotation period dominates only for a short time during solar minimum. In the light of this study even space-born broad band photometry may turn out an inappropriate instrument to study stellar butterfly diagrams of stars rotating as slow as the Sun. However, it was shown in Papers I and II of this series that chromospheric tracers like Lyman alpha , Mg II h+k and CaII H+K are appropriate instruments to perform this task.

  15. Development of rotation sample designs for the estimation of crop acreages

    NASA Technical Reports Server (NTRS)

    Lycthuan-Lee, T. G. (Principal Investigator)

    1981-01-01

    The idea behind the use of rotation sample designs is that the variation of the crop acreage of a particular sample unit from year to year is usually less than the variation of crop acreage between units within a particular year. The estimation theory is based on an additive mixed analysis of variance model with years as fixed effects, (a sub t), and sample units as a variable factor. The rotation patterns are decided upon according to: (1) the number of sample units in the design each year; (2) the number of units retained in the following years; and (3) the number of years to complete the rotation pattern. Different analytic formulae for the variance of (a sub t) and the variance comparisons in using a complete survey of the rotation patterns.

  16. Rotation histories of the natural satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1977-01-01

    Recent advances in the theory of rotation are combined with traditional approaches to study the rotational evolution of the 33 known natural satellites. A calculation similar to that reported by Burns and Safronov (1973) is applied to each satellite to obtain the characteristic time of decay of any wobble motion to smooth rotation about the principal axis of maximum moment of inertia. Stability criteria and capture probabilities are calculated for the 3/2 spin resonance. Results show that only the regular satellites and Iapetus, Hyperion, Triton, and the moon are tidally evolved. Of these, 13 have confirmed synchronous rotation periods; capture probabilities into the 3/2 resonance indicate that none of the remaining 10 should be captured in nonsynchronous, commensurate spin states. For the most part, the irregular satellites retain their original spins except for a relaxation to principal axis rotation. Tidal evolution of the obliquities of the satellites is evaluated in the framework of the generalization of Cassini's laws for the moon. Nearly resonant, forced librations in longitude of 4.8 and 0.5 deg are calculated on the basis of the observed shapes of Phobos and Deimos, respectively.

  17. Keeping It in Three Dimensions: Measuring the Development of Mental Rotation in Children with the Rotated Colour Cube Test (RCCT)

    ERIC Educational Resources Information Center

    Lutke, Nikolay; Lange-Kuttner, Christiane

    2015-01-01

    This study introduces the new Rotated Colour Cube Test (RCCT) as a measure of object identification and mental rotation using single 3D colour cube images in a matching-to-sample procedure. One hundred 7- to 11-year-old children were tested with aligned or rotated cube models, distracters and targets. While different orientations of distracters…

  18. Femoral sizing in total knee arthroplasty is rotation dependant.

    PubMed

    Koninckx, Angelique; Deltour, Arnaud; Thienpont, Emmanuel

    2014-12-01

    The mismatch between the medio-lateral (ML) and the antero-posterior (AP) size of femoral components in total knee arthroplasty (TKA) has been linked to gender, ethnicity, morphotype and height differences in patients. The hypothesis of this study was that the AP size measurement of a femoral component increases with more external rotation in posterior referencing TKA. During a 2-year period, 201 patients were included in this prospective study. The AP distance of the distal femur was measured with an AP sizer of the Vanguard (Biomet, Warsaw, US) knee system. This AP sizer allows to dial in external rotation by 1° increments and to determine the femoral size with an anterior boom. AP size was noted at 0°, 3° and 5° of external rotation and then compared for ML matching. Antero-posterior and corresponding ML sizes match perfectly for the Vanguard at 0° of external rotation and a central boom position on the anterior femoral surface. Then, the anterior boom was positioned on the antero-lateral cortex and the AP size increased a mean (SD) 1 (0.5) mm. With 3° of external rotation, the AP size increased a mean (SD) 2.3 (0.4) mm and for 5° a mean (SD) 3.8 (0.3) mm (P < 0.05). This increase in AP size resulted in ML overhang of 2.2 (1.2) mm for 3° and 4.8 (2.6) mm for 5° (P < 0.05). Antero-posterior size measurement of the distal femur is determined by the anatomy of the anterior surface with a higher antero-lateral cortex and the amount of external rotation that is dialled in during surgery. Since these parameters vary case per case, the availability of narrow components offers more surgical options to the surgeon and its importance extends beyond the gender aspect allowing different amounts of external rotation to be used without ML overhang. II.

  19. Absolute limit on rotation of gravitationally bound stars

    NASA Astrophysics Data System (ADS)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  20. Content analysis of 150 years of British periodicals.

    PubMed

    Lansdall-Welfare, Thomas; Sudhahar, Saatviga; Thompson, James; Lewis, Justin; Cristianini, Nello

    2017-01-24

    Previous studies have shown that it is possible to detect macroscopic patterns of cultural change over periods of centuries by analyzing large textual time series, specifically digitized books. This method promises to empower scholars with a quantitative and data-driven tool to study culture and society, but its power has been limited by the use of data from books and simple analytics based essentially on word counts. This study addresses these problems by assembling a vast corpus of regional newspapers from the United Kingdom, incorporating very fine-grained geographical and temporal information that is not available for books. The corpus spans 150 years and is formed by millions of articles, representing 14% of all British regional outlets of the period. Simple content analysis of this corpus allowed us to detect specific events, like wars, epidemics, coronations, or conclaves, with high accuracy, whereas the use of more refined techniques from artificial intelligence enabled us to move beyond counting words by detecting references to named entities. These techniques allowed us to observe both a systematic underrepresentation and a steady increase of women in the news during the 20th century and the change of geographic focus for various concepts. We also estimate the dates when electricity overtook steam and trains overtook horses as a means of transportation, both around the year 1900, along with observing other cultural transitions. We believe that these data-driven approaches can complement the traditional method of close reading in detecting trends of continuity and change in historical corpora.

  1. Content analysis of 150 years of British periodicals

    PubMed Central

    Lansdall-Welfare, Thomas; Sudhahar, Saatviga; Thompson, James; Lewis, Justin; Cristianini, Nello

    2017-01-01

    Previous studies have shown that it is possible to detect macroscopic patterns of cultural change over periods of centuries by analyzing large textual time series, specifically digitized books. This method promises to empower scholars with a quantitative and data-driven tool to study culture and society, but its power has been limited by the use of data from books and simple analytics based essentially on word counts. This study addresses these problems by assembling a vast corpus of regional newspapers from the United Kingdom, incorporating very fine-grained geographical and temporal information that is not available for books. The corpus spans 150 years and is formed by millions of articles, representing 14% of all British regional outlets of the period. Simple content analysis of this corpus allowed us to detect specific events, like wars, epidemics, coronations, or conclaves, with high accuracy, whereas the use of more refined techniques from artificial intelligence enabled us to move beyond counting words by detecting references to named entities. These techniques allowed us to observe both a systematic underrepresentation and a steady increase of women in the news during the 20th century and the change of geographic focus for various concepts. We also estimate the dates when electricity overtook steam and trains overtook horses as a means of transportation, both around the year 1900, along with observing other cultural transitions. We believe that these data-driven approaches can complement the traditional method of close reading in detecting trends of continuity and change in historical corpora. PMID:28069962

  2. Quantum measurement of a rapidly rotating spin qubit in diamond.

    PubMed

    Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M

    2018-05-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.

  3. Quantum measurement of a rapidly rotating spin qubit in diamond

    PubMed Central

    Fein, Yaakov Y.; Hollenberg, Lloyd C. L.; Scholten, Robert E.

    2018-01-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T2. We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors. PMID:29736417

  4. Immobilization in External Rotation Versus Internal Rotation After Primary Anterior Shoulder Dislocation: A Meta-analysis of Randomized Controlled Trials.

    PubMed

    Whelan, Daniel B; Kletke, Stephanie N; Schemitsch, Geoffrey; Chahal, Jaskarndip

    2016-02-01

    The recurrence rate after primary anterior shoulder dislocation is high, especially in young, active individuals. Recent studies have suggested external rotation immobilization as a method to reduce the rate of recurrent shoulder dislocation in comparison to traditional sling immobilization. To assess and summarize evidence from randomized controlled trials on the effect of internal rotation versus external rotation immobilization on the rate of recurrence after primary anterior shoulder dislocation. Meta-analysis. PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and abstracts from recent proceedings were searched for eligible studies. Two reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Six randomized controlled trials (632 patients) were included in this review. Demographic and prognostic variables measured at baseline were similar in the pooled groups. The average age was 30.1 years in the pooled external rotation group and 30.3 years in the pooled internal rotation group. Two studies found that external rotation immobilization reduced the rate of recurrence after initial anterior shoulder dislocation compared with conventional internal rotation immobilization, whereas 4 studies failed to find a significant difference between the 2 groups. This meta-analysis suggested no overall significant difference in the rate of recurrence among patients treated with internal rotation versus external rotation immobilization (risk ratio, 0.69; 95% CI, 0.42-1.14; P = .15). There was no significant difference in the rate of compliance between internal and external rotation immobilization (P = .43). The Western Ontario Shoulder Instability Index scores were pooled across 3 studies, and there was no significant difference between the 2 groups (P = .54). Immobilization in external rotation is not significantly more effective in reducing the recurrence rate after primary anterior shoulder dislocation than

  5. Non-rigid Earth rotation series

    NASA Astrophysics Data System (ADS)

    Pashkevich, V. V.

    2008-04-01

    The last years a lot of attempts to derive a high-precision theory of the non-rigid Earth rotation was carried out. For these purposes the different transfer functions are used. Usually these transfer func- tions are applied to the series representing the nutation in longitude and in obliquity of the rigid Earth rotation with respect to the ecliptic of date. The aim of this investigation is a construction of the new high- precision non-rigid Earth rotation series (SN9000), dynamically adequate to the DE404/LE404 ephemeris over 2000 years, which are expressed as a function of Euler angles ψ, θ and φ with respect to the fixed ecliptic plane and equinox J2000.0. The early stages of the previous investigation: 1. The high-precision numerical solution of the rigid Earth rotation have been constructed (V.V.Pashkevich, G.I.Eroshkin and A.Brzezinski, 2004), (V.V.Pashkevich and G.I.Eroshkin, Proceedings of Journees 2004). The initial con- ditions have been calculated from SMART97 (P.Bretagnon, G.Francou, P.Rocher, J.L.Simon,1998). The discrepancies between the numerical solution and the semi-analytical solution SMART97 were obtained in Euler angles over 2000 years with one-day spacing. 2. Investigation of the discrepancies is carried out by the least squares and by the spectral analysis algorithms (V.V.Pashkevich and G.I.Eroshkin, Proceedings of Journees 2005). The high-precision rigid Earth rotation series S9000 are determined (V.V.Pashkevich and G.I.Eroshkin, 2005 ). The next stage of this investigation: 3. The new high-precision non-rigid Earth rotation series (SN9000), which are expressed as a function of Euler angles, are constructed by using the method (P.Bretagnon, P.M.Mathews, J.-L.Simon: 1999) and the transfer function MHB2002 (Mathews, P. M., Herring, T. A., and Buffett B. A., 2002).

  6. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H.

    2017-04-01

    In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude—especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.

  7. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature.

    PubMed

    Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H

    2017-04-18

    In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude-especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.

  8. A NEW LARGE SUPER-FAST ROTATOR: (335433) 2005 UW163

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen

    2014-08-20

    Asteroids of size larger than 150 m generally do not have rotation periods smaller than 2.2 hr. This spin cutoff is believed to be due to the gravitationally bound rubble-pile structures of the asteroids. Rotation with periods exceeding this critical value will cause asteroid breakup. Up until now, only one object, 2001 OE84, has been found to be an exception to this spin cutoff. We report the discovery of a new super-fast rotator, (335433) 2005 UW163, spinning with a period of 1.290 hr and a light curve variation of r' ∼ 0.8 mag from the observations made at the P48 telescope andmore » the P200 telescope of the Palomar Observatory. Its H{sub r{sup ′}}=17.69±0.27 mag and multi-band colors (i.e., g' – r' = 0.68 ± 0.03 mag, r' – i' = 0.19 ± 0.02 mag and SDSS i – z = –0.45 mag) show it is a V-type asteroid with a diameter of 0.6 + 0.3/ – 0.2 km. This indicates (335433) 2005 UW163 is a super-fast rotator beyond the regime of the small monolithic asteroid.« less

  9. Exercise following a short immobilization period is detrimental to tendon properties and joint mechanics in a rat rotator cuff injury model.

    PubMed

    Peltz, Cathryn D; Sarver, Joseph J; Dourte, Leann M; Würgler-Hauri, Carola C; Williams, Gerald R; Soslowsky, Louis J

    2010-07-01

    Rotator cuff tears are a common clinical problem that can result in pain and disability. Previous studies in a rat model showed enhanced tendon to bone healing with postoperative immobilization. The objective of this study was to determine the effect of postimmobilization activity level on insertion site properties and joint mechanics in a rat model. Our hypothesis was that exercise following a short period of immobilization will cause detrimental changes in insertion site properties compared to cage activity following the same period of immobilization, but that passive shoulder mechanics will not be affected. We detached and repaired the supraspinatus tendon of 22 Sprague-Dawley rats, and the injured shoulder was immobilized postoperatively for 2 weeks. Following immobilization, rats were prescribed cage activity or exercise for 12 weeks. Passive shoulder mechanics were determined, and following euthanasia, tendon cross-sectional area and mechanical properties were measured. Exercise following immobilization resulted in significant decreases compared to cage activity in range of motion, tendon stiffness, modulus, percent relaxation, and several parameters from both a structurally based elastic model and a quasi-linear viscoelastic model. Therefore, we conclude that after a short period of immobilization, increased activity is detrimental to both tendon mechanical properties and shoulder joint mechanics, presumably due to increased scar production. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

  10. Improved rotation-activity-age relations in Sun-like stars

    NASA Astrophysics Data System (ADS)

    Meléndez, Jorge; dos Santos, Leonardo A.; Freitas, Fabrício C.

    2017-10-01

    The evolution of rotational velocity and magnetic activity with age follows approximately a t -1/2 relation, the famous Skumanich law. Using a large sample of about 80 solar twins with precise ages, we show departures from this law. We found a steep drop in rotational velocity and activity in the first 2-3 Gyr and afterwards there seems to be a shallow decrease. Our inferred rotational periods suggest that the Sun will continue to slow down, validating thus the use of gyrochronology beyond solar age. The Sun displays normal rotational velocity and activity when compared to solar twins of solar age. We also show that stars with exceedingly high stellar activity for their age are spectroscopic binaries that also exhibit enhanced rotational velocities and chemical signatures of mass transfer.

  11. Rotation, activity, and lithium abundance in cool binary stars

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  12. Cruise design for a 5-year period of the 50-year timber sales in Alaska.

    Treesearch

    John W. Hazard

    1985-01-01

    Sampling rules and estimation procedures are described for a new cruise design that was developed for 50-year timber sales in Alaska. An example is given of the rate redetermination cruise and analysis for the 1984-1989 period of the Ketchikan Pulp Company sale. In addition, methodology is presented for an alternative sampling technique of sampling with probability...

  13. A year in transition: a qualitative study examining the trajectory of first year residents’ well-being

    PubMed Central

    2013-01-01

    Background It is generally understood that trainees experience periods of heightened stress during first year residency, yet there is little information on variations in stress and well-being over the transition period or those factors that contribute to these variations. This qualitative study explored the trajectory of well-being described by first year residents in the context of challenges, supports and adaptations over time. Methods In-depth interviews were conducted face-to-face with 17 first year residents at the University of Toronto. Participants drew a graph of their well-being over the course of their first year and described critical periods of challenge and adaptation. Interviews were audio-taped and transcribed. Results were organized into a thematic analysis using NVivo software. Results Residents described a pattern of well-being that varied in accordance with changes in rotations. Well-being increased when residents perceived high levels of team support, felt competent and experienced valued learning opportunities. Well-being decreased with low team support, heavy work demands, few learning opportunities and poor orientations. Anxiety and excitement in the beginning of the year gave way to heightened confidence but increased fatigue and apathy towards the year’s end. Residents used a number of cognitive, behavioural and self-care strategies to cope with transitional challenges. Conclusions Residents experienced a pattern of highly fluctuating well-being that coincided with changes in rotations. Residents’ well-being varied according to levels of supervisor and colleague support, learning opportunities, and work demands. Residents’ well-being may be improved by program interventions that facilitate better team and supervisory supports, maintain optimal service to learning ratios, establish effective fatigue and risk management systems, offer wellness support services and integrate skills based resiliency training into the curriculum. PMID

  14. Rotation number of integrable symplectic mappings of the plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolkin, Timofey; Nagaitsev, Sergei; Danilov, Viatcheslav

    2017-04-11

    Symplectic mappings are discrete-time analogs of Hamiltonian systems. They appear in many areas of physics, including, for example, accelerators, plasma, and fluids. Integrable mappings, a subclass of symplectic mappings, are equivalent to a Twist map, with a rotation number, constant along the phase trajectory. In this letter, we propose a succinct expression to determine the rotation number and present two examples. Similar to the period of the bounded motion in Hamiltonian systems, the rotation number is the most fundamental property of integrable maps and it provides a way to analyze the phase-space dynamics.

  15. First-Year Chemistry in the Context of the Periodic Table.

    ERIC Educational Resources Information Center

    Woodgate, Sheila D.

    1995-01-01

    Describes the methods that have been developed to blend descriptive chemistry and principles in a first-year chemistry course. The key is active teaching of the subject using the periodic table as a template. Inorganic chemistry is taught using a group approach: developing trends that help teaching and learning become obvious if all elements of…

  16. Polygons on a rotating fluid surface.

    PubMed

    Jansson, Thomas R N; Haspang, Martin P; Jensen, Kåre H; Hersen, Pascal; Bohr, Tomas

    2006-05-05

    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.

  17. Mental Rotation, Pictured Rotation, and Tandem Rotation in Depth

    DTIC Science & Technology

    1997-01-01

    field. Such an explanation by natural geometry conflates visual comparison with physical measurement. This application of geometry is called natural in...the theory of vision parasitic on geometry: it is unclear what could be meant by a ’mental operation of rotation’, except by reference to physical ...operation, a mental analogue of the physical operation of rotation in space. Since then the story of mental rotation has become far more complicated

  18. Impact of Protected Sleep Period for Internal Medicine Interns on Overnight Call on Depression, Burnout, and Empathy

    PubMed Central

    Shea, Judy A.; Bellini, Lisa M.; Dinges, David F.; Curtis, Meredith L.; Tao, Yuanyuan; Zhu, Jingsan; Small, Dylan S.; Basner, Mathias; Norton, Laurie; Novak, Cristina; Dine, C. Jessica; Rosen, Ilene M.; Volpp, Kevin G.

    2014-01-01

    Background Patient safety and sleep experts advocate a protected sleep period for residents. Objective We examined whether interns scheduled for a protected sleep period during overnight call would have better end-of-rotation assessments of burnout, depression, and empathy scores compared with interns without protected sleep periods and whether the amount of sleep obtained during on call predicted end-of-rotation assessments. Methods We conducted a randomized, controlled trial with internal medicine interns at the Philadelphia Veterans Affairs Medical Center (PVAMC) and the Hospital of the University of Pennsylvania (HUP) in academic year 2009–2010. Four-week blocks were randomly assigned to either overnight call permitted under the 2003 duty hour standards or a protected sleep period from 12:30 am to 5:30 am. Participants wore wrist actigraphs. At the beginning and end of the rotations, they completed the Beck Depression Inventory (BDI-II), Maslach Burnout Inventory (MBI-HSS), and Interpersonal Reactivity Index (IRI). Results A total of 106 interns participated. There were no significant differences between groups in end-of-rotation BDI-II, MBI-HSS, or IRI scores at either location (P > .05). Amount of sleep while on call significantly predicted lower MBI-Emotional Exhaustion (P < .003), MBI-Depersonalization (P < .003), and IRI-Personal Distress (P < .006) at PVAMC, and higher IRI-Perspective Taking (P < .008) at HUP. Conclusions A protected sleep period produced few consistent improvements in depression, burnout, or empathy, although depression was already low at baseline. Possibly the amount of protected time was too small to affect these emotional states or sleep may not be directly related to these scores. PMID:24949128

  19. Paleomagnetic evidence for rapid vertical-axis rotation in the Peruvian Cordillera ca. 8 Ma

    NASA Astrophysics Data System (ADS)

    Rousse, Sonia; Gilder, Stuart; Farber, Daniel; McNulty, Brendan; Torres, Victor R.

    2002-01-01

    Paleomagnetic results from 31 Neogene sites in the Peruvian Andes yield primary magnetizations, as demonstrated by positive fold and reversal tests. Strata dated as 18 9 Ma record a significant counterclockwise rotation (-11° ± 5°), whereas unconformably overlying younger strata (7 6 Ma) are not rotated. The age of rotation thus is between 9 and 7 Ma, a period that coincides with the widespread Quechua 2 deformation phase. Moreover, eight independent studies on 107 9 Ma rocks from Peru between 9°S and 15°S reveal similar and significant rotations (-15° ± 6°). This suggests that the region rotated during a 2 m.y. period of deformation ca. 8 Ma, when the Andes underwent rapid uplift and important deformation commenced in the Subandean zone.

  20. The Implications of the Excited Rotation of Comet 252P/2000 G1 (LINEAR)

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnocchia, Davide; Mutchler, Max J.; Ren, Yanqiong; Lu, Xiaoping; Tholen, David J.; Lister, Tim; Micheli, Marco

    2018-01-01

    Jupiter Family comet (JFC) 252P/LINEAR had a close encounter to Earth on 2016 March 21. We imaged the comet with the Hubble Space Telescope Wide Field Camera 3 UVIS channel through the V- and r’-band filters spanning ~8 hours on 2016 April 4. The pixel scale of 2.7 km/pixel allowed us to study the structure of the cometary coma at scales of a few kilometers to a few hundred kilometers from the nucleus, a characteristic that is unique to our data. The dust coma of 252P showed a strong, well defined, narrow and nearly linear feature in the sunward direction, and its projected position angle moved about the nucleus for ~60 deg in 8 hours, consistent with an apparent periodicity of ~7.24 hours. On the other hand, the lightcurve measured in both V- and r’-band images from a 13 km radius aperture, after corrected for color term, showed a variability of >0.14 mag that is consistent with an apparent periodicity of ~5.4 hours or its multiples. We suggest that the two different periodicities derived from coma morphology and the lightcurve is a strong indication that the nucleus of 252P is in a non-principal axis (NPA) rotation, joining two other confirmed NPA rotators (1P/Halley and 103P/Hartley 2) and comets that are potentially in NPA rotational states (e.g., 2P/Encke). However, this apparition has been unusual for 252P. In the past three perihelion passages since discovery, the comet was very weakly active compared to other JFCs. Meteor evidence also exists that it probably has been very weakly active for a few hundred years. But in our data, we saw a very active comet in this 2016 apparition with an active fraction of 40% to >100%, representing an increase of 100x with respect to its recent past. Based on our observations, 252P has a small nucleus with a radius of ~0.3 km, which suggests that its rotational state could be relatively easily changed by torques caused by outgassing. Since the very weak outgassing in the past is not likely to change the rotational state

  1. Are developments in mental scanning and mental rotation related?

    PubMed Central

    Wimmer, Marina C.; Robinson, Elizabeth J.; Doherty, Martin J.

    2017-01-01

    The development and relation of mental scanning and mental rotation were examined in 4-, 6-, 8-, 10-year old children and adults (N = 102). Based on previous findings from adults and ageing populations, the key question was whether they develop as a set of related abilities and become increasingly differentiated or are unrelated abilities per se. Findings revealed that both mental scanning and rotation abilities develop between 4- and 6 years of age. Specifically, 4-year-olds showed no difference in accuracy of mental scanning and no scanning trials whereas all older children and adults made more errors in scanning trials. Additionally, the minority of 4-year-olds showed a linear increase in response time with increasing rotation angle difference of two stimuli in contrast to all older participants. Despite similar developmental trajectories, mental scanning and rotation performances were unrelated. Thus, adding to research findings from adults, mental scanning and rotation appear to develop as a set of unrelated abilities from the outset. Different underlying abilities such as visual working memory and spatial coding versus representing past and future events are discussed. PMID:28207810

  2. In-situ detection of convection and rotation striations by growth interface electromotive force spectrum

    NASA Astrophysics Data System (ADS)

    Zhu, Yunzhong; Tang, Feng; Yang, Xin; Yang, Mingming; Ma, Decai; Zhang, Xiaoyue; Liu, Yang; Lin, Shaopeng; Wang, Biao

    2018-04-01

    Nanoscale growth striations, induced by the crystal rotation and melt convection, are in-situ detected by the growth interface electromotive force (GEMF) spectrum during Czochralski (CZ) crystal growth. Specifically, the intensity and period of rotation and convection striations could be precisely revealed under different rotation rates. This is because the GEMF spectrum is affected by the combination effort of temperature difference in crystal rotation path and the melt flow in growth interface. Furthermore, the spectrum analysis (Fourier transform) reveals remarkable characteristics of periodic flow oscillation. More interestingly, in different rotation rates, the corresponding convection period and intensity show particular regularity that could barely be observed in semitransparent and high-temperature melt. Therefore, the GEMF spectrum reflects the subtle changes of a growing crystal that is far beyond the detecting precision of sensors in current CZ equipment. On the basis of this paper and our previous work, the real-time feedback of multiscale striations is established. GEMF spectrum could be a promising approach to reveal striation formation mechanism and optimize crystal quality.

  3. Recurrence of trachomatous trichiasis 17 years after bilamellar tarsal rotation procedure.

    PubMed

    Khandekar, Rajiv; Al-Hadrami, Khalfan; Sarvanan, Natarajan; Al Harby, Saleh; Mohammed, Ali Jaffer

    2006-06-01

    In 1989, World Health Organization consultant operated on trachomatous trichiasis (TT) cases in Dhakhiliya region of Oman. We evaluated their current ocular status. This was an historic cohort study. This study was conducted in an in-house setting. Ninety-one patients with TT who underwent operation by the bilamellar tarsal rotation procedure (BTR) were our study population. Their preoperative, operative, and immediate postoperative data were retrieved from the register. Staff members located and visited these patients. They examined the eyes and determined their visual, TT, and corneal status. They interviewed participants with a close-ended questionnaire to assess the quality of life and satisfaction for the TT services that were offered. Sixty-three patients could be followed. Among 72 eyes that had undergone operation 17 years earlier, the recurrence rate was 47.2% (95% CI, 35.7-58.8). In 21 unoperated eyes (55%), TT was noted. The association of TT recurrence to age, gender, type of TT, conjunctivitis, and active trachoma was tested. The BTR for minor trichiasis was the risk factor for recurrence of TT (adjusted odds ratio, 3.9; 95% CI, 1.4-10.8). The high recurrence rate of TT, 17 years after BTR surgery and high rates of TT in eyes that did not undergo surgical procedure earlier suggest that the causes of high recurrence should be identified and addressed. The ongoing pathologic condition of scarring of upper lids of both operated and unoperated eyes could be responsible for lid status after 17 years of BTR surgeries. High percentage of refusals because of long-term high recurrence could pose a challenge to reach the "elimination of blinding trachoma" by 2020.

  4. Patellofemoral pain and asymmetrical hip rotation.

    PubMed

    Cibulka, Michael T; Threlkeld-Watkins, Julie

    2005-11-01

    Patellofemoral joint problems are the most common overuse injury of the lower extremity, and altered femoral or hip rotation may play a role in patellofemoral pain. The purpose of this case report is to describe the evaluation of and intervention for a patient with asymmetrical hip rotation and patellofemoral pain. The patient was a 15-year-old girl with an 8-month history of anterior right knee pain, without known trauma or injury. Prior to intervention, her score on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was 24%. Right hip medial (internal) rotation was less than left hip medial rotation, and manual muscle testing showed weakness of the right hip internal rotator and abductor muscles. The intervention was aimed at increasing right hip medial rotation, improving right hip muscle strength (eg, the muscle force exerted by a muscle or a group of muscles to overcome a resistance), and eliminating anterior right knee pain. After 6 visits (14 days), passive left and right hip medial rotations were symmetrical, and her right hip internal rotator and abductor muscle grades were Good plus. Her WOMAC score was 0%. The patient had right patellofemoral pain and an uncommon pattern of asymmetrical hip rotation, with diminished hip medial rotation and excessive hip lateral (external) rotation on the right side. The patient's outcomes suggest that femoral or hip joint asymmetry may be related to patellofemoral joint pain.

  5. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    PubMed

    Li, Xiaoqiong; Ye, Duo; Liang, Hongwen; Zhu, Hongguang; Qin, Lin; Zhu, Yuling; Wen, Yuanguang

    2015-01-01

    Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR) and a second rotation (SR) stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC) did not significantly differ between rotations, while understory vegetation (UC) and soil organic matter (SOC) stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1) and 70.68 vs. 81.08 Mg. ha(-1), respectively) and forest floor carbon (FFC) conversely stored more (2.80 vs. 2.34 Mg. ha(-1)). The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool) of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

  6. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation

    PubMed Central

    Li, Xiaoqiong; Ye, Duo; Liang, Hongwen; Zhu, Hongguang; Qin, Lin; Zhu, Yuling; Wen, Yuanguang

    2015-01-01

    Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR) and a second rotation (SR) stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC) did not significantly differ between rotations, while understory vegetation (UC) and soil organic matter (SOC) stored less carbon in the SR (1.01 vs. 2.76 Mg.ha-1 and 70.68 vs. 81.08 Mg. ha-1, respectively) and forest floor carbon (FFC) conversely stored more (2.80 vs. 2.34 Mg. ha-1). The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool) of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential. PMID:26186367

  7. Some operational aspects of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.

    1988-01-01

    The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station.

  8. Recurring coronal holes and their rotation rates during the solar cycles 22-24

    NASA Astrophysics Data System (ADS)

    Prabhu, K.; Ravindra, B.; Hegde, Manjunath; Doddamani, Vijayakumar H.

    2018-05-01

    Coronal holes (CHs) play a significant role in making the Earth geo-magnetically active during the declining and minimum phases of the solar cycle. In this study, we analysed the evolutionary characteristics of the Recurring CHs from the year 1992 to 2016. The extended minimum of Solar Cycle 23 shows unusual characteristics in the number of persistent coronal holes in the mid- and low-latitude regions of the Sun. Carrington rotation maps of He 10830 Å and EUV 195 Å observations are used to identify the Coronal holes. The latitude distribution of the RCHs shows that most of them are appeared between ± 20° latitudes. In this period, more number of recurring coronal holes appeared in and around 100° and 200° Carrington longitudes. The large sized coronal holes lived for shorter period and they appeared close to the equator. From the area distribution over the latitude considered, it shows that more number of recurring coronal holes with area <10^{21} cm2 appeared in the southern latitude close to the equator. The rotation rates calculated from the RCHs appeared between ± 60° latitude shows rigid body characteristics. The derived rotational profiles of the coronal holes show that they have anchored to a depth well below the tachocline of the interior, and compares well with the helioseismology results.

  9. Psychological impact on house staff of an initial versus subsequent emergency medicine rotation.

    PubMed

    Alagappan, K; Grlic, N; Steinberg, M; Pollack, S

    2001-01-01

    The objective of this study was to assess the psychological impact of a 4-week emergency medicine (EM) rotation on residents undergoing their first EM experience. These findings were compared to the psychological impact the rotation had on residents with prior EM experience. Data were obtained from a post hoc analysis of a previous study. Prerotation and postrotation psychological distress levels were assessed over a 4-week EM rotation. Anxiety and depressive symptoms were evaluated by the Brief Symptom Inventory and the Dissociative Experience Scale that together comprise a total of 14 psychometric scales. All scales were given at the beginning and end of the initial EM rotation for the academic year of 1994-1995. All information was coded and confidential. Eighteen junior residents (9/18 EM [50%]) were analyzed as a group and compared to 53 residents (34/51 EM [66%]) with prior exposure to the authors' emergency department. Residents doing their first EM rotation (N = 18) showed improvement in 13 of 14 scales (P = .002). Of the 13 scales that improved, 3 improved significantly: Brief Symptom Inventory = anxiety (P = .002) and Dissociative Experience Scale = absorption (P = .001) and other (P = .001). Residents with prior EM experience (N = 53) displayed worsening in 9 of 13 scales (P = not significant) and no change in 1. Residents undergoing their first EM rotation showed a significant decrease in psychological distress over the 4-week period. Residents with prior EM experience did not show a similar change.

  10. Midterm Periodicity Analysis of the Mount Wilson Magnetic Indices Using the Synchrosqueezing Transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Song; Wang, Feng; Deng, Hui

    2017-08-10

    A novel time–frequency technique, called the synchrosqueezing transform (SST), is used to investigate the midterm periodic variations of magnetic fields on the solar surface. The Magnetic Plage Strength Index (MPSI) and the Mount Wilson Sunspot Index (MWSI), measured daily by the Mount Wilson Observatory between 1970 January 19 and 2012 January 22, are selected. Short-, mid, and longer-term periodicities are represented and decomposed by the SST with hardly any mode mixing. This demonstrates that the SST is a useful time–frequency analysis technique to characterize the periodic modes of helioseismic data. Apart from the fundamental modes of the annual periodicity, ∼27more » day rotational cycle and ∼11 year solar cycle, the SST reveals several midterm periodicities in the two magnetic activity indices, specifically, ∼157 days (i.e., Rieger-type periodicity), and ∼1.3 and 1.7 years. The periodic modes, with 116.4 and 276.2 day periodicity in the MPSI, 108.5 and 251.6 day periodicity in the MWSI, and 157.7 day periodicity in the two indices, are in better accord with those significant periodicities derived from the Rossby waves theoretical model. This study suggests that the modes are caused by Rossby waves. For the 1.30 and 1.71 year periodicity of the MPSI, and the 1.33 and 1.67 year periodicity of the MWSI, our analysis infers that they are related to those periodicities with the same timescale in the interior of the Sun and in the high atmospheric layers.« less

  11. Recovery of Muscle Strength After Intact Arthroscopic Rotator Cuff Repair According to Preoperative Rotator Cuff Tear Size.

    PubMed

    Shin, Sang-Jin; Chung, Jaeyoon; Lee, Juyeob; Ko, Young-Won

    2016-04-01

    The recovery of muscle strength after arthroscopic rotator cuff repair based on the preoperative tear size has not yet been well described. The purpose of this study was to evaluate the recovery period of muscle strength by a serial assessment of isometric strength after arthroscopic rotator cuff repair based on the preoperative tear size. The hypothesis was that muscle strength in patients with small and medium tears would recover faster than that in those with large-to-massive tears. Cohort study; Level of evidence, 3. A total of 164 patients who underwent arthroscopic rotator cuff repair were included. Isometric strength in forward flexion (FF), internal rotation (IR), and external rotation (ER) was evaluated preoperatively and at 6, 12, 18, and 24 months after surgery. Preoperative magnetic resonance imaging scans were assessed to evaluate the quality of the rotator cuff muscle, including fatty infiltration, occupation ratio, and tangent sign. Patient satisfaction as well as visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons (ASES), and Constant scores were assessed at every follow-up. Muscle strength demonstrated the slowest recovery in pain relief and the restoration of shoulder function. To reach the strength of the uninjured contralateral shoulder in all 3 planes of motion, recovery took 6 months in patients with small tears and 18 months in patients with medium tears. Patients with large-to-massive tears showed continuous improvement in strength up to 18 months; however, they did not reach the strength of the contralateral shoulder at final follow-up. At final follow-up, mean strength in FF, IR, and ER was 113.0%, 118.0%, and 112.6% of the contralateral shoulder in patients with small tears, respectively; 105.0%, 112.1%, and 102.6% in patients with medium tears, respectively; and 87.6%, 89.5%, and 85.2% in patients with large-to-massive tears, respectively. Muscle strength in any direction did not significantly correlate with

  12. Critical care staff rotation: outcomes of a survey and pilot study.

    PubMed

    Richardson, Annette; Douglas, Margaret; Shuttler, Rachel; Hagland, Martin R

    2003-01-01

    Staff rotation is defined as a reciprocal exchange of staff between two or more clinical areas for a predetermined period of time. The rationale for introducing a 'Critical Care Nurse Rotation Programme' includes important issues such as improving nurses' knowledge and skills, providing development opportunities, networking, the ability to recruit and retain nurses and the provision of a more versatile and flexible workforce. To gain the understanding of nurses' views and opinions on critical care rotation programmes, evidence was collected by means of questionnaires involving 153 critical care nurses and by undertaking semi-structured interviews with four nurses. On the basis of the responses, a pilot of three Critical Care Nurse Rotation Programmes was introduced. An evaluation of the pilot project assessed participants, supervisors and senior nurses' experience of rotation and revealed very positive experiences being reported. The benefits highlighted included improving clinical skills and experience, improving interdepartmental relationships, heightened motivation and opportunities to network. The disadvantages focused on the operational and managerial issues, such as difficulties maintaining supervision and providing an adequate supernumerary period. Evidence from the survey and pilot study suggests that in the future, providing rotational programmes for critical care nurses would be a valuable strategy for recruitment, retention and developing the workforce.

  13. Swings between rotation and accretion power in a binary millisecond pulsar.

    PubMed

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  14. Spurious One-Month and One-Year Periods in Visual Observations of Variable Stars

    NASA Astrophysics Data System (ADS)

    Percy, J. R.

    2015-12-01

    Visual observations of variable stars, when time-series analyzed with some algorithms such as DC-DFT in vstar, show spurious periods at or close to one synodic month (29.5306 days), and also at about a year, with an amplitude of typically a few hundredths of a magnitude. The one-year periods have been attributed to the Ceraski effect, which was believed to be a physiological effect of the visual observing process. This paper reports on time-series analysis, using DC-DFT in vstar, of visual observations (and in some cases, V observations) of a large number of stars in the AAVSO International Database, initially to investigate the one-month periods. The results suggest that both the one-month and one-year periods are actually due to aliasing of the stars' very low-frequency variations, though they do not rule out very low-amplitude signals (typically 0.01 to 0.02 magnitude) which may be due to a different process, such as a physiological one. Most or all of these aliasing effects may be avoided by using a different algorithm, which takes explicit account of the window function of the data, and/or by being fully aware of the possible presence of and aliasing by very low-frequency variations.

  15. [TRENDS OF PERMANENT PACEMAKER IMPLANTATION IN A SINGLE CENTER OVER A 20-YEAR PERIOD].

    PubMed

    Antonelli, Dante; Ilan, Limor Bushar; Freedberg, Nahum A; Feldman, Alexander; Turgeman, Yoav

    2015-05-01

    To review the changes in permanent pacemaker implantation indications, pacing modes and patients' demographics over a 20-year period. We retrospectively retrieved data on patients who underwent first implantation of the pacemaker between 1-1-1991 and 31-12-2010. One thousand and nine (1,009) patients underwent a first pacemaker implantation during that period; 535 were men (53%), their mean age was 74.6±19.5 years; the highest rate of implanted pacemaker was in patients ranging in age from 70-79 years, however there was an increasing number of patients aged over 80 years. The median survival time after initial pacemaker implantation was 8 years. Syncope was the most common symptom (62.5%) and atrioventricular block was the most common electrocardiographic indication (56.4%) leading to pacemaker implantation. There was increased utilization of dual chamber and rate responsive pacemakers over the years. There was no difference regarding mode selection between genders. Pacemaker implantation rates have increased over a 20-year period. Dual chamber replaced most of the single ventricular chamber pacemaker and rate responsive pacemakers became the norm. The data of a small volume center are similar to those reported in pacemaker surveys of high volume pacemaker implantation centers. They confirm adherence to the published guidelines for pacing.

  16. Reverse Shoulder Arthroplasty for the Treatment of Rotator Cuff Deficiency: A Concise Follow-up, at a Minimum of 10 Years, of Previous Reports.

    PubMed

    Cuff, Derek J; Pupello, Derek R; Santoni, Brandon G; Clark, Rachel E; Frankle, Mark A

    2017-11-15

    We previously evaluated 94 patients (96 shoulders) who underwent reverse shoulder arthroplasty using a central compressive screw with 5.0-mm peripheral locking screws for baseplate fixation and a center of rotation lateral to the glenoid as treatment for end-stage rotator cuff deficiency. The purpose of this study was to report updated results at a minimum follow-up of 10 years. Forty patients (42 shoulders) were available for clinical follow-up. In the patients available for study, implant survivorship, with the end point being revision for any reason, was 90.7%. Since our 5-year report, 2 patients underwent revision surgery; 1 patient sustained a periprosthetic fracture 7 years postoperatively and 1 patient had a dislocation because of chronic shoulder instability at 8 years postoperatively. At a minimum follow-up of 10 years, the patients continued to maintain their improved outcome scores and range of motion, which were comparable with earlier follow-up evaluations. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.

  17. Communication: Creation of molecular vibrational motions via the rotation-vibration coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Chuan-Cun; School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600; Henriksen, Niels E., E-mail: neh@kemi.dtu.dk

    2015-06-14

    Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length whereas a fast rotational excitation leads to amore » non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds to a laser-induced breakdown of the adiabatic approximation for rotation-vibration coupling.« less

  18. Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short-period and Ultra-short-period Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu

    Sub-Neptunes around FGKM dwarfs are evenly distributed in log orbital period down to ∼10 days, but dwindle in number at shorter periods. Both the break at ∼10 days and the slope of the occurrence rate down to ∼1 day can be attributed to the truncation of protoplanetary disks by their host star magnetospheres at corotation. We demonstrate this by deriving planet occurrence rate profiles from empirical distributions of pre-main-sequence stellar rotation periods. Observed profiles are better reproduced when planets are distributed randomly in disks—as might be expected if planets formed in situ—rather than piled up near disk edges, as wouldmore » be the case if they migrated in by disk torques. Planets can be brought from disk edges to ultra-short (<1 day) periods by asynchronous equilibrium tides raised on their stars. Tidal migration can account for how ultra-short-period planets are more widely spaced than their longer-period counterparts. Our picture provides a starting point for understanding why the sub-Neptune population drops at ∼10 days regardless of whether the host star is of type FGK or early M. We predict planet occurrence rates around A stars to also break at short periods, but at ∼1 day instead of ∼10 days because A stars rotate faster than stars with lower masses (this prediction presumes that the planetesimal building blocks of planets can drift inside the dust sublimation radius).« less

  19. CSI 2264: Investigating rotation and its connection with disk accretion in the young open cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Venuti, L.; Bouvier, J.; Cody, A. M.; Stauffer, J. R.; Micela, G.; Rebull, L. M.; Alencar, S. H. P.; Sousa, A. P.; Hillenbrand, L. A.; Flaccomio, E.

    2017-03-01

    Context. The low spin rates measured for solar-type stars at an age of a few Myr ( 10% of the break-up velocity) indicate that some mechanism of angular momentum regulation must be at play in the early pre-main sequence. This may be associated with magnetospheric accretion and star-disk interaction, as suggested by observations that disk-bearing objects (CTTS) are slower rotators than diskless sources (WTTS) in young star clusters. Aims: We characterize the rotation properties for members of the star-forming region NGC 2264 ( 3 Myr) as a function of mass, and investigate the accretion-rotation connection at an age where about 50% of the stars have already lost their disks. Methods: We examined a sample of 500 cluster members (40% with disks, 60% without disks), distributed in mass between 0.15 and 2 M⊙, whose photometric variations were monitored in the optical for 38 consecutive days with the CoRoT space observatory. Light curves were analyzed for periodicity using three different techniques: the Lomb-Scargle periodogram, the autocorrelation function and the string-length method. Periods were searched in the range between 0.17 days (I.e., 4 h, twice the data sampling adopted) and 19 days (half the total time span). Period detections were confirmed using a variety of statistical tools (false alarm probability, Q-statistics), as well as visual inspection of the direct and phase-folded light curves. Results: About 62% of sources in our sample were found to be periodic; the period detection rate is 70% among WTTS and 58% among CTTS. The vast majority of periodic sources exhibit rotational periods shorter than 13 d. The period distribution obtained for the cluster consists of a smooth distribution centered around P = 5.2 d with two peaks, located respectively at P = 1-2 d and at P = 3-4 d. A separate analysis of the rotation properties for CTTS and WTTS indicates that the P = 1-2 d peak is associated with the latter, while both groups contribute to the P = 3-4 d peak

  20. An estimation of Envisat's rotational state accounting for the precession of its rotational axis caused by gravity-gradient torque

    NASA Astrophysics Data System (ADS)

    Lin, Hou-Yuan; Zhao, Chang-Yin

    2018-01-01

    The rotational state of Envisat is re-estimated using the specular glint times in optical observation data obtained from 2013 to 2015. The model is simplified to a uniaxial symmetric model with the first order variation of its angular momentum subject to a gravity-gradient torque causing precession around the normal of the orbital plane. The sense of Envisat's rotation can be derived from observational data, and is found to be opposite to the sense of its orbital motion. The rotational period is estimated to be (120.674 ± 0.068) · exp((4.5095 ± 0.0096) ×10-4 · t) s , where t is measured in days from the beginning of 2013. The standard deviation is 0.760 s, making this the best fit obtained for Envisat in the literature to date. The results demonstrate that the angle between the angular momentum vector and the negative normal of the orbital plane librates around a mean value of 8.53 ° ± 0.42 ° with an amplitude from about 0.7 ° (in 2013) to 0.5 ° (in 2015), with the libration period equal to the precession period of the angular momentum, from about 4.8 days (in 2013) to 3.4 days (in 2015). The ratio of the minimum to maximum principal moments of inertia is estimated to be 0.0818 ± 0.0011 , and the initial longitude of the angular momentum in the orbital coordinate system is 40.5 ° ± 9.3 ° . The direction of the rotation axis derived from our results at September 23, 2013, UTC 20:57 is similar to the results obtained from satellite laser ranging data but about 20 ° closer to the negative normal of the orbital plane.

  1. Rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: Two-year clinical outcome of the randomized ROTAXUS trial.

    PubMed

    de Waha, Suzanne; Allali, Abdelhakim; Büttner, Heinz-Joachim; Toelg, Ralph; Geist, Volker; Neumann, Franz-Josef; Khattab, Ahmed A; Richardt, Gert; Abdel-Wahab, Mohamed

    2016-03-01

    In the randomized ROTAXUS trial, routine lesion preparation of complex calcified coronary lesions using rotational atherectomy (RA) prior to paclitaxel-eluting stent implantation did not reduce the primary endpoint of angiographic late lumen loss at 9 months compared to stenting without RA. So far, no long-term data of prospective head-to-head comparisons between both treatment strategies have been reported. ROTAXUS randomly assigned patients with complex calcified coronary lesions to RA followed by stenting (n = 120) or stenting without RA (n = 120). The primary endpoint of the current analysis was the occurrence of major adverse cardiac events (MACE) at 2-year follow-up defined as the composite of death, myocardial infarction, and target vessel revascularization (TVR). At 2 years, MACE occurred in 32 patients in the RA group and 37 patients in the standard therapy group (29.4% vs. 34.3%, P = 0.47). The rates of death (8.3% vs. 7.4%, P = 1.00), myocardial infarction (8.3% vs. 6.5%, P = 0.80), target lesion revascularization (TLR, 13.8% vs. 16.7%, P = 0.58), and TVR (19.3% vs. 22.2%, P = 0.62) were similar in both groups. Despite high rates of initial angiographic success, nearly one third of patients enrolled in ROTAXUS experienced MACE within 2-year follow-up, with no differences between patients treated with or without RA. © 2015 Wiley Periodicals, Inc.

  2. Recharge and Groundwater Use in the North China Plain for Six Irrigated Crops for an Eleven Year Period

    PubMed Central

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Zhang, Min; Sui, Peng; Steenhuis, Tammo S.

    2015-01-01

    Water tables are dropping by approximately one meter annually throughout the North China Plain mainly due to water withdrawals for irrigating winter wheat year after year. In order to examine whether the drawdown can be reduced we calculate the net water use for an 11 year field experiment from 2003 to 2013 where six irrigated crops (winter wheat, summer maize, cotton, peanuts, sweet potato, ryegrass) were grown in different crop rotations in the North China Plain. As part of this experiment moisture contents were measured each at 20 cm intervals in the top 1.8 m. Recharge and net water use were calculated based on these moisture measurement. Results showed that winter wheat and ryegrass had the least recharge with an average of 27 mm/year and 39 mm/year, respectively; cotton had the most recharge with an average of 211 mm/year) followed by peanuts with 118 mm/year, sweet potato with 76 mm/year, and summer maize with 44 mm/year. Recharge depended on the amount of irrigation water pumped from the aquifer and was therefore a poor indicator of future groundwater decline. Instead net water use (recharge minus irrigation) was found to be a good indicator for the decline of the water table. The smallest amount of net (ground water) used was cotton with an average of 14 mm/year, followed by peanut with 32 mm/year, summer maize with 71 mm/year, sweet potato with 74 mm/year. Winter wheat and ryegrass had the greatest net water use with the average of 198 mm/year and 111 mm/year, respectively. Our calculations showed that any single crop would use less water than the prevalent winter wheat summer maize rotation. This growing one crop instead of two will reduce the decline of groundwater and in some rain rich years increase the ground water level, but will result in less income for the farmers. PMID:25625765

  3. On the Terminal Rotation Rates of Giant Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2018-04-01

    Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.

  4. The Periodic Flapping and Breathing of Saturn's Magnetodisk During Equinox

    NASA Astrophysics Data System (ADS)

    Sorba, A. M.; Achilleos, N.; Guio, P.; Arridge, C. S.; Dougherty, M. K.; Sergis, N.

    2017-12-01

    Periodic variations have been observed in many field and particle properties in Saturn's magnetosphere, modulated at a period close to the planetary rotation rate. Magnetic field observations by Cassini's magnetometer instrument suggest that in the outer magnetosphere (beyond 12 Saturn radii) Saturn's current sheet is periodically displaced with respect to the rotational equator, to a first approximation acting as a rotating, tilted disk. This manifests as a `flapping' mode when observed by the spacecraft. Recent studies suggest the magnetosphere also has a `breathing' mode, expanding and contracting with a period close to the planetary rotation rate. We model these two modes in tandem by combining a global, geometrical model of a tilted and rippled current sheet with a local, force-balance model of Saturn's magnetodisk, accounting for the magnetospheric size and hot plasma content. We simulate the breathing behavior by introducing an azimuthal dependence of the system size. We fit Cassini magnetometer data acquired on equatorial orbits from 23 Oct - 17 Dec 2009 (Revs 120-122), close to Saturn equinox, in order that seasonal effects on the current sheet are minimised. We find that our model characterises well the amplitude and phase of the oscillations in the data, for those passes that show clear periodic signatures in the field. In particular, the Bθ (meridional) component can only be characterised when the breathing mode is included. This study introduces calculations for an oscillating boundary under conditions of constant solar wind dynamic pressure, which provide a good basis for understanding the complex relationship between current sheet dynamics and the periodic field perturbations.

  5. The rotation of the Sun: Observations at Stanford. [using the Doppler effect

    NASA Technical Reports Server (NTRS)

    Scherrer, J. M.; Wilcox, J. M.; Svalgaard, L.

    1980-01-01

    Daily observations of the photospheric rotation rate using the Doppler effect made at the Stanford Solar Observatory since May 1976 are analyzed. Results show that these observations show no daily or long period variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is the same as that of the sunspot and the large-scale magnetic field structures.

  6. Ophiuroid robot that self-organizes periodic and non-periodic arm movements.

    PubMed

    Kano, Takeshi; Suzuki, Shota; Watanabe, Wataru; Ishiguro, Akio

    2012-09-01

    Autonomous decentralized control is a key concept for understanding the mechanism underlying adaptive and versatile locomotion of animals. Although the design of an autonomous decentralized control system that ensures adaptability by using coupled oscillators has been proposed previously, it cannot comprehensively reproduce the versatility of animal behaviour. To tackle this problem, we focus on using ophiuroids as a simple model that exhibits versatile locomotion including periodic and non-periodic arm movements. Our existing model for ophiuroid locomotion uses an active rotator model that describes both oscillatory and excitatory properties. In this communication, we develop an ophiuroid robot to confirm the validity of this proposed model in the real world. We show that the robot travels by successfully coordinating periodic and non-periodic arm movements in response to external stimuli.

  7. Safety and efficacy of rotational atherectomy for the treatment of undilatable underexpanded stents implanted in calcific lesions.

    PubMed

    Ferri, Luca A; Jabbour, Richard J; Giannini, Francesco; Benincasa, Susanna; Ancona, Marco; Regazzoli, Damiano; Mangieri, Antonio; Montorfano, Matteo; Colombo, Antonio; Latib, Azeem

    2017-08-01

    Coronary stent underexpansion is a known risk factor for in-stent restenosis and stent thrombosis. There are limited options once noncompliant balloons have failed to achieve optimal stent expansion. Excimer Laser Coronary Angioplasty with contrast medium injection is one possibility, but not readily available. Rotational atherectomy is an alternative, and has been described in case reports, but concerns exist regarding safety. All consecutive patients undergoing rotational atherectomy for symptomatic in-stent restenosis due to stent underexpansion resistant to noncompliant balloon postdilatation between January 2005 and December 2015 were analysed. A total of 16 patients underwent treatment during the study period and the procedure was successful in 14 cases (87.5%). The mean postprocedural minimal lumen diameter increased by 2.3 ± 0.8 mm and percentage diameter stenosis decreased from 82.17% ± 17.2% to 11.9% ± 9.1%. Intraprocedural complications occurred in two patients (burr entrapment successfully managed percutaneously and periprocedural myocardial infarction). At 1-year follow-up, the incidence of target lesion revascularisation was 13.3% (2 out of 15 patients), and one patient died from noncardiac death. In this small series of underexpanded stents, rotational atherectomy was an effective treatment for resistant stent underexpansion with acceptable outcomes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Near-infrared time-series photometry in the field of Cygnus OB2 association. I. Rotational scenario for candidate members

    NASA Astrophysics Data System (ADS)

    Roquette, J.; Bouvier, J.; Alencar, S. H. P.; Vaz, L. P. R.; Guarcello, M. G.

    2017-07-01

    Context. In recent decades, the picture of early pre-main sequence stellar rotational evolution has been constrained by studies targeting different regions at a variety of ages with respect to young star formation. Observational studies suggest a dependence of rotation with mass, and for some mass ranges a connection between rotation and the presence of a circumstellar disk. The role of environmental conditions on the rotational regulation, however, has still not been fully explored. Aims: We investigate the rotational properties of candidate members of the young massive association Cygnus OB2. By evaluating their rotational properties, we address questions regarding the effect of environment properties on PMS rotational evolution. Methods: We studied JHK-band variability in 5083 candidate members (24% of them are disk-bearing stars). We selected variable stars with the Stetson variability index and performed the period search with the Lomb-Scargle periodogram for periods between 0.83-45 days. Period detections were verified using false alarm probability levels, Saunders statistics, the string and rope length method, and visual verification of folded light curves. Results: We identified 1224 periodic variable stars (24% of the candidate member sample, 8% of the disk-bearing sample, and 28% of the non-disk-bearing sample). Monte Carlo simulations were performed in order to evaluate completeness and contamination of the periodic sample, out of which 894 measured periods were considered reliable. Our study was considered reasonably complete for periods between 2 and 30 days. Conclusions: The general scenario for the rotational evolution of young stars seen in other regions is confirmed by Cygnus OB2 period distributions with disc-bearing stars rotating on average more slowly than non-disk-bearing stars. A mass-rotation dependence was also verified, but as in NGC 6530, very low mass stars (M ≤ 0.4 M⊙) are rotating on average slower than higher mass stars (0.4M

  9. Adaptation to spectrally-rotated speech.

    PubMed

    Green, Tim; Rosen, Stuart; Faulkner, Andrew; Paterson, Ruth

    2013-08-01

    Much recent interest surrounds listeners' abilities to adapt to various transformations that distort speech. An extreme example is spectral rotation, in which the spectrum of low-pass filtered speech is inverted around a center frequency (2 kHz here). Spectral shape and its dynamics are completely altered, rendering speech virtually unintelligible initially. However, intonation, rhythm, and contrasts in periodicity and aperiodicity are largely unaffected. Four normal hearing adults underwent 6 h of training with spectrally-rotated speech using Continuous Discourse Tracking. They and an untrained control group completed pre- and post-training speech perception tests, for which talkers differed from the training talker. Significantly improved recognition of spectrally-rotated sentences was observed for trained, but not untrained, participants. However, there were no significant improvements in the identification of medial vowels in /bVd/ syllables or intervocalic consonants. Additional tests were performed with speech materials manipulated so as to isolate the contribution of various speech features. These showed that preserving intonational contrasts did not contribute to the comprehension of spectrally-rotated speech after training, and suggested that improvements involved adaptation to altered spectral shape and dynamics, rather than just learning to focus on speech features relatively unaffected by the transformation.

  10. Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal.

    PubMed

    Takahashi, S; Tandaechanurat, A; Igusa, R; Ota, Y; Tatebayashi, J; Iwamoto, S; Arakawa, Y

    2013-12-02

    Optical rotation is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC) at a telecommunication wavelength. We design a rotationally-stacked woodpile PhC structure, where neighboring layers are rotated by 45° and four layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. The linearly polarized light incident on the structure undergoes optical rotation during transmission. The obtained results show good agreement with numerical simulations. The measurement demonstrates the largest optical rotation angle as large as ∼ 23° at 1.3 μm wavelength for a single helical unit.

  11. Gemini and Keck Observations of Slowly Rotating, Bilobate Active Asteroid (300163)

    NASA Astrophysics Data System (ADS)

    Waniak, Waclaw; Drahus, Michal

    2016-10-01

    One of the most puzzling questions regarding Active Asteroids is the mechanism of their activation. While some Active Asteroids show protracted and often recurrent mass loss, consistent with seasonal ice sublimation, some other eject dust impulsively as a result of a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It has been suggested that ice can be excavated from the cold near-surface interior by an impact (Hsieh & Jewitt 2006, Science 312, 561) or, for small objects susceptible to YORP torques, by near-critical spin rate (Sheppard & Trujillo 2014, AJ 149, 44). But impact and rapid spin can also cause a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It therefore becomes apparent that the different types of mass loss observed in Active Asteroids can be best classified and understood based on the nucleus spin rates (Drahus et al. 2015, ApJL 802, L8), but unfortunately the rotation periods have been measured for a very limited number of these objects. With this in mind we have initiated a survey of light curves of small Active Asteroids on the largest ground-based optical telescopes. Here we present the results for (300163), also known as 288P and 2006 VW139, which is a small 2.6-km sized asteroid that exhibited a comet-like activity over 100 days in the second half of 2011 (Hsieh et al. 2012, ApJL 748, L15; Licandro et al. 2013, A&A 550, A17; Agarwal et al. 2016, AJ 151, 12). Using Keck/DEIMOS and Gemini/GMOS-S working in tandem on UT 2015 May 21-22 we have detected an inactive nucleus and measured a complete, dense, high-S/N rotational light curve. The light curve has a double-peaked period of 16 hours, an amplitude of 0.4 mag, and moderately narrow minima suggesting a bilobate or contact-binary shape. The long rotation period clearly demonstrates a non-rotational origin of activity of this object, consistent with an impact. Furthermore, among the five small Active Asteroids with known rotation periods (300163) is only

  12. The influence of the Great White Spot on the rotation of Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Gurnett, D. A.; Ye, S.; Groene, J.; Ingersoll, A. P.; Sayanagi, K. M.; Menietti, J. D.; Kurth, W. S.

    2012-12-01

    We report about an observation which suggests that Saturn's time-variable magnetospheric rotation is driven by the upper atmosphere. Saturn kilometric radiation (SKR) is a powerful non-thermal radio emission from Saturn's aurora. Its modulation turned out to be a good tracer of magnetospheric periodicities which are also present in the magnetic field, the charged particles, and energetic neutral atoms. SKR as well as Saturn narrowband (NB) radio emission exhibit an unexplained seasonal course with changes of the order of ~1% over the years. There have been models suggesting a magnetic cam field structure or a centrifugally driven convective instability in the equatorial plasma disc of the inner magnetosphere to explain the variation in rotation. In this presentation we will show that the period of SKR as well as NB emissions has temporarily slowed down by ~1% from the end of 2010 until August 2011, disrupting the expected seasonal course of the modulation. This time period exactly coincides with the occurrence of the giant thunderstorm called Great White Spot (GWS) that emitted radio waves associated with Saturn lightning discharges from 5 December 2010 until 28 August 2011. Furthermore, the head of the GWS and the SKR from the southern hemisphere show the same period of 10.69 h over several months in the first half of 2011. This strongly suggests that magnetospheric periodicities are driven by the upper atmosphere. The GWS has evidently produced large perturbations in Saturn's stratosphere most likely caused by wave heating. On Earth, penetrative convection at the tropopause during severe thunderstorms is a well-known generation mechanism of gravity waves. A similar process might be at work at Saturn, and gravity waves could have transported additional power of the order of several terawatts from Saturn's troposphere to the thermosphere. This might have led to a temporal change in the global thermospheric circulation, which via field-aligned currents is linked to

  13. Role of Interaction between Magnetic Rossby Waves and Tachocline Differential Rotation in Producing Solar Seasons

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; McIntosh, Scott W.; Bothun, Gregory; Cally, Paul S.; Ghosh, Siddhartha S.; Gilman, Peter A.; Umurhan, Orkan M.

    2018-02-01

    We present a nonlinear magnetohydrodynamic shallow-water model for the solar tachocline (MHD-SWT) that generates quasi-periodic tachocline nonlinear oscillations (TNOs) that can be identified with the recently discovered solar “seasons.” We discuss the properties of the hydrodynamic and magnetohydrodynamic Rossby waves that interact with the differential rotation and toroidal fields to sustain these oscillations, which occur due to back-and-forth energy exchanges among potential, kinetic, and magnetic energies. We perform model simulations for a few years, for selected example cases, in both hydrodynamic and magnetohydrodynamic regimes and show that the TNOs are robust features of the MHD-SWT model, occurring with periods of 2–20 months. We find that in certain cases multiple unstable shallow-water modes govern the dynamics, and TNO periods vary with time. In hydrodynamically governed TNOs, the energy exchange mechanism is simple, occurring between the Rossby waves and differential rotation. But in MHD cases, energy exchange becomes much more complex, involving energy flow among six energy reservoirs by means of eight different energy conversion processes. For toroidal magnetic bands of 5 and 35 kG peak amplitudes, both placed at 45° latitude and oppositely directed in north and south hemispheres, we show that the energy transfers responsible for TNO, as well as westward phase propagation, are evident in synoptic maps of the flow, magnetic field, and tachocline top-surface deformations. Nonlinear mode–mode interaction is particularly dramatic in the strong-field case. We also find that the TNO period increases with a decrease in rotation rate, implying that the younger Sun had more frequent seasons.

  14. Influence of a rural family medicine rotation on residency selection: MS3 versus MS4.

    PubMed

    Geske, Jenenne A; Hartman, Teresa; Goodman, Barbara; Paulman, Paul

    2011-09-01

    Many family medicine educators feel that a required clinical rotation in family medicine has a positive influence on medical students' selection of family medicine residencies. We investigated the effect of a rural family medicine rotation on students' residency choices and examined the differences between a third-year and a fourth-year rotation. We surveyed 1,260 students before and after they participated in a required rural family medicine rotation. The rotation had a small positive effect on student interest in family medicine. Over 20 years, there was a net gain of 4.7% (93 students) from before to after the rotation. Moving the rural rotation from the MS4 to the MS3 year resulted in a significant decline in the number of students who switched their preferences toward family medicine and ultimately matched to a family medicine residency. When the rotation occurs in the third year, there is more time following the rotation for other influences to exert an impact on a student's specialty choice, resulting in a small "bleed" away from family medicine. It might be useful to develop programs that continue to pique the interest in family medicine during their fourth year.

  15. Dura mater graft-associated Creutzfeldt-Jakob disease with 30-year incubation period.

    PubMed

    Shijo, Masahiro; Honda, Hiroyuki; Koyama, Sachiko; Ishitsuka, Koji; Maeda, Koichiro; Kuroda, Junya; Tanii, Mitsugu; Kitazono, Takanari; Iwaki, Toru

    2017-06-01

    Over 60% of all patients with dura mater graft-associated Creutzfeldt-Jakob disease (dCJD) have been diagnosed in Japan. The incubation period has ranged from 1 to 30 years and the age at onset from 15 to 80 years. Here, we report a 77-year-old male Japanese autopsied dCJD case with the longest incubation period so far in Japan. He received a cadaveric dural graft at the right cranial convexity following a craniotomy for meningioma at the age of 46. At 30 years post-dural graft placement, disorientation was observed as an initial symptom of dCJD. He rapidly began to present with inconsistent speech, cognitive impairment and tremor of the left upper extremity. Occasional myoclonic jerks were predominantly observed on the left side. Brain MRI presented hyperintense signals on diffusion-weighted and T2-weighted images, at the right cerebral cortex. The most hyperintense lesion was located at the right parietal lobe, where the dura mater graft had been transplanted. Single-photon emission CT scan showed markedly decreased cerebral blood flow at the right parietal lobe. EEG revealed diffuse and slow activities with periodic sharp-wave complex discharges seen in the right parietal, temporal and occipital lobes. He died of pneumonia 9 months after onset. Brain pathology revealed non-plaque-type dCJD. Laterality of neuropathological changes, including spongiform change, neuronal loss, gliosis or PrP deposits, was not evident. Western blot analysis showed type 1 PrP CJD . Alzheimer-type pathology and PSP-like pathology were also observed. © 2016 Japanese Society of Neuropathology.

  16. The Repaired Rotator Cuff: MRI and Ultrasound Evaluation.

    PubMed

    Lee, Susan C; Williams, Danielle; Endo, Yoshimi

    2018-03-01

    The purposes of this review were to provide an overview of the current practice of evaluating the postoperative rotator cuff on imaging and to review the salient imaging findings of the normal and abnormal postoperative rotator cuff, as well as of postoperative complications. The repaired rotator cuff frequently appears abnormal on magnetic resonance imaging (MRI) and ultrasound (US). Recent studies have shown that while the tendons typically normalize, they can demonstrate clinically insignificant abnormal imaging appearances for longer than 6 months. Features of capsular thickening or subacromial-subdeltoid bursal thickening and fluid distension were found to decrease substantially in the first 6-month postoperative period. MRI and US were found to be highly comparable in the postoperative assessment of the rotator cuff, although they had a lower sensitivity for partial thickness tears. Imaging evaluation of newer techniques such as patch augmentation and superior capsular reconstruction needs to be further investigated. MRI and US are useful in the postoperative assessment of the rotator cuff, not only for evaluation of the integrity of the rotator cuff, but also for detecting hardware complications and other etiologies of shoulder pain.

  17. Defunct Satellites, Rotation Rates and the YORP Effect

    NASA Astrophysics Data System (ADS)

    Albuja, A.; Scheeres, D.

    2013-09-01

    With the increasing number of defunct satellites and associated space debris found in orbit, it is important to understand the dynamics governing the motion of these bodies. Orbit perturbations are coupled with the body's attitude dynamics; therefore it is necessary to have an understanding of attitude dynamics for accurate predictions of debris orbits. Additionally, it is important to have a clear idea of the rotational dynamics of such objects for removal and mitigation purposes. The Yarkovsky-O'Keefe-Raszvieskii-Paddack (YORP) effect has been well studied and credited for the observed secular change in angular velocity of various asteroids. The YORP effect arises due to sunlight being either absorbed and re-emitted as energy or being directly reflected, creating a net downward force on the body's surface. As a result of both of these factors, an overall torque is created on the body yielding a change in the rotational dynamics. While YORP has been extensively studied for asteroids, it has yet to be systematically applied to objects in Earth orbit such as space debris. This paper analyzes the effects of YORP on the obliquity and angular velocity of defunct satellites and other pieces of debris found in Earth orbit. The rotational dynamics are first averaged over the rotational period and next over the orbital period of the Earth, about which the debris is assumed to be orbiting. Using these averaged dynamics, long-term predictions of the evolution of both angular velocity and obliquity are made. In the analysis simulation results are compared to published observational data for defunct satellites. The observed rotation periods of the satellites are used to compute how much torque would be required to obtain such a period only due to YORP. These required torques are compared to the torques that we predict to be acting on these satellites. As an example of what we will present, consider the GEO satellite Gorizont-11. The normalized inferred coefficient for the

  18. Review of the Journal Acta Informatica Medica During Eight Year Period: 2008-2015

    PubMed Central

    Masic, Izet; Begic, Edin; Zunic, Lejla

    2016-01-01

    Introduction: Acta Informatica Medica is official journal of the Academy for Medical Sciences of Bosnia and Herzegovina (from 2014 Acta Inform Med is published bimonthly). Aim: To evaluate journal “Acta Informatica Medica” in 2015 and compare findings to previous years. Material and methods: The study has retrospective and descriptive character, and included the period 2008-2015 (included 36 issues of journal). Results: A total of 83 (average 13,8 articles per journal) articles were published in Acta Informatica Medica during 2015. Analyzing the type of articles, original articles are present in majority during 2015 (68,6%) (by analyzing last eight years, 310 (67,3%) were original). During 2015, 27,7% of articles were related to the applied of Health informatics in field of clinical medicine, 63,8% preclinical medicine and 8,5% to public health. Collaboration rate in 2015 was 0,84. Most often the time required for decision on acceptance of article in 2015 is between 50 and 60 days. Articles came from 16 countries. According to scimagojr.com for 2014, Acta Informatica Medica has SCImago Journal Rank 0,166, while Cites / Doc. (2 years) parameter (widely used as impact index) is 0,70. According to GoogleScholar, h5 index is 11 and h5 median is 19. We analyzed the Acta Informatica Medica by “Publish or Perish” software - H index was 14, g index was 19 and e-index was 10.39. Conclusion: Year after year the highest number of original articles are published. Although the period of revision of articles is acceptable, the period up to two months is certainly not long, the goal is to reduce this period. Although the magazine in mentioned field found its place, although it is indexed in numerous bases, including: PubMed, PubMed Central, SCOPUS, EMBASE, EBSCO, etc. The main goal for next year is that the magazine becomes part of the Web of Science. Imperative is further internationalization of the magazine. PMID:27147796

  19. Review of the Journal Acta Informatica Medica During Eight Year Period: 2008-2015.

    PubMed

    Masic, Izet; Begic, Edin; Zunic, Lejla

    2016-04-01

    Acta Informatica Medica is official journal of the Academy for Medical Sciences of Bosnia and Herzegovina (from 2014 Acta Inform Med is published bimonthly). To evaluate journal "Acta Informatica Medica" in 2015 and compare findings to previous years. The study has retrospective and descriptive character, and included the period 2008-2015 (included 36 issues of journal). A total of 83 (average 13,8 articles per journal) articles were published in Acta Informatica Medica during 2015. Analyzing the type of articles, original articles are present in majority during 2015 (68,6%) (by analyzing last eight years, 310 (67,3%) were original). During 2015, 27,7% of articles were related to the applied of Health informatics in field of clinical medicine, 63,8% preclinical medicine and 8,5% to public health. Collaboration rate in 2015 was 0,84. Most often the time required for decision on acceptance of article in 2015 is between 50 and 60 days. Articles came from 16 countries. According to scimagojr.com for 2014, Acta Informatica Medica has SCImago Journal Rank 0,166, while Cites / Doc. (2 years) parameter (widely used as impact index) is 0,70. According to GoogleScholar, h5 index is 11 and h5 median is 19. We analyzed the Acta Informatica Medica by "Publish or Perish" software - H index was 14, g index was 19 and e-index was 10.39. Year after year the highest number of original articles are published. Although the period of revision of articles is acceptable, the period up to two months is certainly not long, the goal is to reduce this period. Although the magazine in mentioned field found its place, although it is indexed in numerous bases, including: PubMed, PubMed Central, SCOPUS, EMBASE, EBSCO, etc. The main goal for next year is that the magazine becomes part of the Web of Science. Imperative is further internationalization of the magazine.

  20. STS-117 Rotating Service Structure move

    NASA Image and Video Library

    2007-01-30

    Workers on Launch Pad 39A get ready to begin the movement of the rotating service structure above them. The RSS has not been rotated for more than a year during the maintenance and upgrades on the pad. Some of the work included sandblasting the structure to remove rust and repainting. In addition, the RSS was jacked up and a new upper-bearing race assembly installed where the RSS pivots against the fixed service structure and a half-inch steel plate added. Pad 39A is being made ready for its first launch in four years, the upcoming STS-117 on March 15.

  1. Outcomes of rotator cuff augmentation surgery with autologous fascia lata.

    PubMed

    Rosales-Varo, A P; García-Espona, M A; Roda-Murillo, O

    To evaluate whether augmentation grafts using autologous fascia lata improve functional results for rotator cuff repairs and reduce the retear rate compared to those without augmentation. This is a prospective evaluation comprising 20 patients with a complete symptomatic rotator cuff tear. The operations were carried out from a superior approach performing a total cuff repair, for 10 patients we used a suture augmented with an autologous graft taken from their own fascia lata while unaugmented sutures were used for the other 10 patients. The follow-up period lasted for one year post-intervention. We measured variables for tear type, functionality and pain, both baseline and at 6 and 12-month follow ups. We evaluated retear incidence in each group as well as each group's pain and functionality response. The improved pain levels in the non-graft group evolved gradually over time. Conversely, in the group with the augmentation grafts, average Constant-Murley shoulder outcome scores at six months were already above 10 and were maintained at 12 months. One retear occurred in the graft group and 2 in the group without grafts, thus presenting no significant differences. There were no significant changes in pain and function values at the one year follow up in either group. Our preliminary results regarding rotator cuff augmentation surgery with autologous fascia lata showed a significant improvement in pain levels after 6 months compared to the patients with no augmentation, who required 12 months to reach the same values. After a year of follow up, there were no differences between the mean Constant and pain scores in either intervention group The number of retears in the non-graft group was greater than that in the group with grafts although the difference was not significant. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Chromospheric Variability: Analysis of 36 years of Time Series from the National Solar Observatory/Sacramento Peak Ca II K-line Monitoring Program

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.

    2014-01-01

    Analysis of more than 36 years of time series of seven parameters measured in the NSO/AFRL/Sac Peak K-line monitoring program elucidates five elucidates five components of the variation: (1) the solar cycle (period approx. 11 years), (2) quasi-periodic variations (periods approx 100 days), (3) a broad band stochastic process (wide range of periods), (4) rotational modulation, and (5) random observational errors. Correlation and power spectrum analyses elucidate periodic and aperiodic variation of the chromospheric parameters. Time-frequency analysis illuminates periodic and quasi periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (1) and (2) at time scales in the range approx 0.1 - 10 years. These results using only full-disk data further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced by NASA's Kepler observatory. Component (3) consists of variations over a range of timescales, in the manner of a 1/f random noise process. A timedependent Wilson-Bappu effect appears to be present in the solar cycle variations (1), but not in the stochastic process (3). Component (4) characterizes differential rotation of the active regions, and (5) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The recent data suggest that the current cycle is starting late and may be relatively weak. The data analyzed in this paper can be found at the National Solar Observatory web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  3. Quantitative and Qualitative Change in Children's Mental Rotation Performance

    ERIC Educational Resources Information Center

    Geiser, Christian; Lehmann, Wolfgang; Corth, Martin; Eid, Michael

    2008-01-01

    This study investigated quantitative and qualitative changes in mental rotation performance and solution strategies with a focus on sex differences. German children (N = 519) completed the Mental Rotations Test (MRT) in the 5th and 6th grades (interval: one year; age range at time 1: 10-11 years). Boys on average outperformed girls on both…

  4. Preferred 11 different job rotation types in automotive company and their effects on productivity, quality and musculoskeletal disorders: comparison between subjective and actual scores by workers' age.

    PubMed

    Jeon, In Sik; Jeong, Byung Yong; Jeong, Ji Hyun

    2016-10-01

    This study investigates workers' favoured rotation types by their age and compares means between subjective and actual scores on productivity, quality and musculoskeletal disorders (MSDs). The subjects of research were 422 assembly line units in Hyundai Motor Company. The survey of 422 units focused on the workers' preference for 11 different rotation types and subjective scores for each type's perceived benefits, both by the workers' age. Then, actual scores on production-related indices were traced over a five-year period. The results suggest that different rotation types lead to different results in productivity, product quality and MSDs. Workers tend to perceive job rotation as a helpful method to enhance satisfaction, productivity and product quality more so than the actual production data suggests. Job rotation was especially effective in preventing MSDs for workers aged under 45, while its effects were not clear for the workers aged 45 years or older. Practitioner's Summary: This research presents appropriate rotation type for different age groups. Taking workers' age into account, administrators can use the paper's outcomes to select and implement the suitable rotation type to attain specific goals such as enhancing productivity, improving product quality or reducing MSDs.

  5. Rotational seismology

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  6. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species.

    PubMed

    Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Felton, Adam; Ranius, Thomas; Lundmark, Tomas; Nordin, Annika

    2018-03-15

    We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. FOSREM - Fibre-Optic System for Rotational Events&Phenomena Monitoring

    NASA Astrophysics Data System (ADS)

    Jaroszewicz, Leszek; Krajewski, Zbigniew; Kurzych, Anna; Kowalski, Jerzy; Teisseyre, Krzysztof

    2016-04-01

    We present the construction and tests of fiber-optic rotational seismometer named FOSREM (Fibre-Optic System for Rotational Events&Phenomena Monitoring). This presented device is designed for detection and monitoring the one-axis rotational motions, brought about to ground or human-made structures both by seismic events and the creep processes. The presented system works by measuring Sagnac effect and generally consists of two basic elements: optical sensor and electronic part. The optical sensor is based on so-called the minimum configuration of FOG (Fibre-Optic Gyroscope) where the Sagnac effect produces a phase shift between two counter-propagating light beams proportional to the measured rotation speed. The main advantage of the sensor of this type is its complete insensitivity to linear motions and a direct measurement of rotational speed. It may work even when tilted, moreover, used in continuous mode it may record the tilt. The electronic system, involving specific electronic solutions, calculates and records rotational events data by realizing synchronous in a digital form by using 32 bit DSP (Digital Signal Processing). Storage data and system control are realised over the internet by using connection between FOSREM and GSM/GPS. The most significant attribute of our system is possibility to measure rotation in wide range both amplitude up to 10 rad/s and frequency up to 328.12 Hz. Application of the wideband, low coherence and high power superluminescent diode with long fibre loop and suitable low losses optical elements assures the theoretical sensitivity of the system equal to 2·10-8 rad/s/Sqrt(Hz). Moreover, the FOSREM is fully remote controlled as well as is suited for continuous, autonomous work in very long period of time (weeks, months, even years), so it is useful for systematic seismological investigation at any place. Possible applications of this system include seismic monitoring in observatories, buildings, mines and even on glaciers and in

  8. Atmospheric effects on earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1988-01-01

    The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.

  9. Global transport in a nonautonomous periodic standard map

    DOE PAGES

    Calleja, Renato C.; del-Castillo-Negrete, D.; Martinez-del-Rio, D.; ...

    2017-04-14

    A non-autonomous version of the standard map with a periodic variation of the perturbation parameter is introduced and studied via an autonomous map obtained from the iteration of the nonautonomous map over a period. Symmetry properties in the variables and parameters of the map are found and used to find relations between rotation numbers of invariant sets. The role of the nonautonomous dynamics on period-one orbits, stability and bifurcation is studied. The critical boundaries for the global transport and for the destruction of invariant circles with fixed rotation number are studied in detail using direct computation and a continuation method.more » In the case of global transport, the critical boundary has a particular symmetrical horn shape. Here, the results are contrasted with similar calculations found in the literature.« less

  10. Global transport in a nonautonomous periodic standard map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calleja, Renato C.; del-Castillo-Negrete, D.; Martinez-del-Rio, D.

    A non-autonomous version of the standard map with a periodic variation of the perturbation parameter is introduced and studied via an autonomous map obtained from the iteration of the nonautonomous map over a period. Symmetry properties in the variables and parameters of the map are found and used to find relations between rotation numbers of invariant sets. The role of the nonautonomous dynamics on period-one orbits, stability and bifurcation is studied. The critical boundaries for the global transport and for the destruction of invariant circles with fixed rotation number are studied in detail using direct computation and a continuation method.more » In the case of global transport, the critical boundary has a particular symmetrical horn shape. Here, the results are contrasted with similar calculations found in the literature.« less

  11. Outcome of Expedited Rotator Cuff Surgery in Injured Workers: Determinants of Successful Recovery.

    PubMed

    Razmjou, Helen; Boljanovic, Dragana; Lincoln, Sandra; Holtby, Richard; Gallay, Stephen; Henry, Patrick; Macritchie, Iona; Borthwick, Cheryl; Mayer, Lauren; Roknic, Carolyn; Shore, Deborah; Kamino, Allison; Grossman, Julie; Hill, Joanne; Singh, Gargi; Travers, Niki; Yanofsky, Loraine; Wilson, Marni; Sumar, Shellina; Savona, Alicia; De Medeiros, Filomena; Mann, Helen; Champsi, Aisha; Chau, Stefanie; Medeiros, Danielle; Richards, Robin R

    2017-05-01

    Work-related rotator cuff injuries are a common cause of disability and employee time loss. To examine the effectiveness of expedited rotator cuff surgery in injured workers who underwent rotator cuff decompression or repair and to explore the impact of demographic, clinical, and psychosocial factors in predicting the outcome of surgery. Case series; Level of evidence, 4. Injured workers who were seen at a shoulder specialty program and who underwent expedited arthroscopic rotator cuff decompression or repair were observed for a period of 6 to 12 months based on their type of surgery and recovery trajectory. The primary outcome measure was the American Shoulder and Elbow Surgeons (ASES) Standardized Shoulder Assessment Form. The impact of surgery was assessed by whether the change in the ASES score exceeded the minimal clinically important difference (MCID) of 17 points. Secondary outcomes were range of motion (ROM), medication consumption, and work status. One hundred forty-six patients (43 women [29%], 103 men [71%]; mean age, 52 years; SD, 8 years) completed the study. Sixty-seven (46%) patients underwent rotator cuff repair. The mean time between the date the patient consented to have surgery and the date of surgery was 82 (SD, 44) days. There was a statistically significant improvement in ASES score and ROM and work status (52 returned to regular duties and 59 to modified duties) ( P < .0001). Eighty-four percent (n = 122) of patients exceeded the MCID of 17 points. Individual factors that affected patient overall disability were preoperative ASES, work status prior to surgery, access to care, and autonomy at work. Achieving a minimal clinically meaningful change was influenced by perceived access to care, autonomy and stress at work, and overall satisfaction with the job. Expedited rotator cuff surgery improved disability, ROM, and work status in injured workers. Successful recovery after work-related shoulder injuries may further be facilitated by improving

  12. Treatment of the calcific tendinopathy of the rotator cuff by ultrasound-guided percutaneous needle lavage. Two years prospective study

    PubMed Central

    Castillo-González, Federico Del; Ramos-Álvarez, Juan José; Rodríguez-Fabián, Guillermo; González-Pérez, José; Calderón-Montero, Javier

    2014-01-01

    Summary Background: to evaluate the short and long term effectiveness of ultrasonography (US)-guided percutaneous needle lavage in calcific tendinopathy of the rotator cuff. To study the evolution of the size of calcifications and pain in the two years after treatment. Methods: study design: A 2 year longitudinal prospective study is carried out after applying the UGPL technique on a number of patients diagnosed with calcific tendinitis of the rotator cuff. Clinical, ultrasound and radiology follow-up controls were performed, 3 months, 6 months, one year and two years after the treatment. The Visual Analog Scale (VAS) was used to assess the pain. The degree and point of pain is selected on a 10 cm line, arranged horizontally or vertically. The “0” represents no pain and “10” represents worst pain. The population studied was made up of 121 patients that required our service as a result of suffering from a painful shoulder. Results: the pain (VAS) and the size of the calcification significantly decreased with the application of the technique (p< 0,001 in both cases) and regardless of the sex (p: 0.384 for pain and p: 0.578 for the size of the calcification). This occurred from the first check-up (3 months) and was maintained for two year. Conclusions: we consider this technique to be a valid alternative as a first-choice treatment of calcific tendinitis of the shoulder. The intervention is simple, cost-effective, does not require hospitalization, involves no complications, rehabilitation treatment is not required and it shows very few side effects without sequelae, significantly reducing the size of the calcification and pain in the majority of patients. PMID:25332939

  13. Treatment of the calcific tendinopathy of the rotator cuff by ultrasound-guided percutaneous needle lavage. Two years prospective study

    PubMed Central

    Del Castillo-González, Federico; Ramos-Álvarez, Juan José; Rodríguez-Fabián, Guillermo; González-Pérez, José; Calderón-Montero, Javier

    2014-01-01

    Summary Purpose: to evaluate the short and long term effectiveness of ultrasonography (US)-guided percutaneous needle lavage in calcific tendinopathy of the rotator cuff. To study the evolution of the size of calcifications and pain in the two years after treatment. Methods: a 2 year longitudinal prospective study is carried out after applying the UGPL technique on a number of patients diagnosed with calcific tendinitis of the rotator cuff. Clinical, ultrasound and radiology follow-up controls were performed, 3 months, 6 months, one year and two years after the treatment. The Visual Analog Scale (VAS) was used to assess the pain. The degree and point of pain is selected on a 10cm line, arranged horizontally or vertically. The “0” represents no pain and “10” represents worst pain. The population studied was made up of 121 patients that required our service as a result of suffering from a painful shoulder. Results: the pain (VAS) and the size of the calcification significantly decreased with the application of the technique (p< 0,001 in both cases) and regardless of the sex (p: 0.384 for pain and p: 0.578 for the size of the calcification). This occurred from the first check-up (3 months) and was maintained for two year. Conclusion: we consider this technique to be a valid alternative as a first-choice treatment of calcific tendinitis of the shoulder. The intervention is simple, cost-effective, does not require hospitalization, involves no complications, rehabilitation treatment is not required and it shows very few side effects without sequelae, significantly reducing the size of the calcification and pain in the majority of patients. PMID:25767776

  14. Management of Lesion Nematodes and Potato Early Dying with Rotation Crops

    PubMed Central

    LaMondia, J.A.

    2006-01-01

    Soil-incorporated rotation/green manure crops were evaluated for management of potato early dying caused by Verticillium dahliae and Pratylenchus penetrans. After two years of rotation/green manure and a subsequent potato crop, P. penetrans numbers were less after ‘Saia’ oat/‘Polynema’ marigold, ‘Triple S’ sorghum-sudangrass, or ‘Garry’ oat than ‘Superior’ potato or ‘Humus’ rapeseed. The area under the disease progress curve (AUDPC) for early dying was lowest after Saia oat/marigold, and tuber yields were greater than continuous potato after all crops except sorghum-sudangrass. Saia oat/marigold crops resulted in the greatest tuber yields. After one year of rotation/green manure, a marigold crop increased tuber yields and reduced AUDPC and P. penetrans. In the second potato crop after a single year of rotation, plots previously planted to marigolds had reduced P. penetrans densities and AUDPC and increased tuber yield. Rapeseed supported more P. penetrans than potato, but had greater yields. After two years of rotation/green manure crops and a subsequent potato crop, continuous potato had the highest AUDPC and lowest tuber weight. Rotation with Saia oats (2 yr) and Rudbeckia hirta (1 yr) reduced P. penetrans and increased tuber yields. AUDPC was lowest after R. hirta. Two years of sorghum-sudangrass did not affect P. penetrans, tuber yield or AUDPC. These results demonstrate that P. penetrans may be reduced by one or two years of rotation to non-host or antagonistic plants such as Saia oat, Polynema marigold, or R. hirta and that nematode control may reduce the severity of potato early dying. PMID:19259461

  15. Turbulent convection in liquid metal with and without rotation

    PubMed Central

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional buoyancy forcing and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer . In general, we find that the convective behavior of liquid metal differs substantially from that of moderate fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of and fluids, respectively. PMID:23569262

  16. Does the Rotator Cuff Tear Pattern Influence Clinical Outcomes After Surgical Repair?

    PubMed

    Watson, Scott; Allen, Benjamin; Robbins, Chris; Bedi, Asheesh; Gagnier, Joel J; Miller, Bruce

    2018-03-01

    Limited literature exists regarding the influence of rotator cuff tear morphology on patient outcomes. To determine the effect of rotator cuff tear pattern (crescent, U-shape, L-shape) on patient-reported outcomes after rotator cuff repair. Cohort study; Level of evidence, 3. Patients undergoing arthroscopic repair of known full-thickness rotator cuff tears were observed prospectively at regular intervals from baseline to 1 year. The tear pattern was classified at the time of surgery as crescent, U-shaped, or L-shaped. Primary outcome measures were the Western Ontario Rotator Cuff Index (WORC), the American Shoulder and Elbow Surgeons (ASES), and a visual analog scale (VAS) for pain. The tear pattern was evaluated as the primary predictor while controlling for variables known to affect rotator cuff outcomes. Mixed-methods regression and analysis of variance (ANOVA) were used to examine the effects of tear morphology on patient-reported outcomes after surgical repair from baseline to 1 year. A total of 82 patients were included in the study (53 male, 29 female; mean age, 58 years [range, 41-75 years]). A crescent shape was the most common tear pattern (54%), followed by U-shaped (25%) and L-shaped tears (21%). There were no significant differences in outcome scores between the 3 groups at baseline. All 3 groups showed statistically significant improvement from baseline to 1 year, but analysis failed to show any predictive effect in the change in outcome scores from baseline to 1 year for the WORC, ASES, or VAS when tear pattern was the primary predictor. Further ANOVA also failed to show any significant difference in the change in outcome scores from baseline to 1 year for the WORC ( P = .96), ASES ( P = .71), or VAS ( P = .86). Rotator cuff tear pattern is not a predictor of functional outcomes after arthroscopic rotator cuff repair.

  17. Eyes open versus eyes closed - Effect on human rotational responses

    NASA Technical Reports Server (NTRS)

    Wall, Conrad, III; Furman, Joseph M. R.

    1989-01-01

    The effect of eyelid closure on the response to rotational vestibular stimulation was assessed by evaluating 16 normal human subjects with both earth vertical axis (EVA) and earth horizontal axis (EHA) yaw rotations with either eyes closed (EC) or eyes open in the dark (EOD). Results indicated that for EVA rotation, the subjects' responses were of larger magnitude and less variable with EOD than with EC. However, for EHA rotation, responses were of larger magnitude and equally variable with EC as compared to EOD. Data also indicated that the quality of the EHA response with EC was altered because eyelid closure influenced the amount of periodic gaze. It is concluded that eyelid closure has an effect upon both canalocular and otolithocular reflexes and it is suggested that both EVA and EHA rotational testing be performed with EOD rather than with EC.

  18. Multiple Motor Learning Strategies in Visuomotor Rotation

    PubMed Central

    Saijo, Naoki; Gomi, Hiroaki

    2010-01-01

    Background When exposed to a continuous directional discrepancy between movements of a visible hand cursor and the actual hand (visuomotor rotation), subjects adapt their reaching movements so that the cursor is brought to the target. Abrupt removal of the discrepancy after training induces reaching error in the direction opposite to the original discrepancy, which is called an aftereffect. Previous studies have shown that training with gradually increasing visuomotor rotation results in a larger aftereffect than with a suddenly increasing one. Although the aftereffect difference implies a difference in the learning process, it is still unclear whether the learned visuomotor transformations are qualitatively different between the training conditions. Methodology/Principal Findings We examined the qualitative changes in the visuomotor transformation after the learning of the sudden and gradual visuomotor rotations. The learning of the sudden rotation led to a significant increase of the reaction time for arm movement initiation and then the reaching error decreased, indicating that the learning is associated with an increase of computational load in motor preparation (planning). In contrast, the learning of the gradual rotation did not change the reaction time but resulted in an increase of the gain of feedback control, suggesting that the online adjustment of the reaching contributes to the learning of the gradual rotation. When the online cursor feedback was eliminated during the learning of the gradual rotation, the reaction time increased, indicating that additional computations are involved in the learning of the gradual rotation. Conclusions/Significance The results suggest that the change in the motor planning and online feedback adjustment of the movement are involved in the learning of the visuomotor rotation. The contributions of those computations to the learning are flexibly modulated according to the visual environment. Such multiple learning strategies

  19. Construction of the Non-Rigid Earth Rotation Series

    NASA Astrophysics Data System (ADS)

    Pashkevich, V. V.

    2007-01-01

    Last years a lot of attempts to derive a high-precision theory of the non-rigid Earth rotation are carried out. For these purposes different transfer functions are used. Usually these transfer functions are applied to the series representing the nutation in the longitude and the obliquity of the rigid Earth rotation with respect to the ecliptic of date. The aim of this investigation is a construction of new high-precision non-rigid Earth rotation series (SN9000), dynamically adequate to the DE404/LE404 ephemeris over 2000 time span years, which are presented as functions of the Euler angles Ψ, θ and φ with respect to the fixed ecliptic plane and equinox J2000.0.

  20. Impact of Resident Rotations on Critically Ill Patient Outcomes: Results of a French Multicenter Observational Study.

    PubMed

    Chousterman, Benjamin G; Pirracchio, Romain; Guidet, Bertrand; Aegerter, Philippe; Mentec, Hervé

    2016-01-01

    The impact of resident rotation on patient outcomes in the intensive care unit (ICU) has been poorly studied. The aim of this study was to address this question using a large ICU database. We retrospectively analyzed the French CUB-REA database. French residents rotate every six months. Two periods were compared: the first (POST) and fifth (PRE) months of the rotation. The primary endpoint was ICU mortality. The secondary endpoints were the length of ICU stay (LOS), the number of organ supports, and the duration of mechanical ventilation (DMV). The impact of resident rotation was explored using multivariate regression, classification tree and random forest models. 262,772 patients were included between 1996 and 2010 in the database. The patient characteristics were similar between the PRE (n = 44,431) and POST (n = 49,979) periods. Multivariate analysis did not reveal any impact of resident rotation on ICU mortality (OR = 1.01, 95% CI = 0.94; 1.07, p = 0.91). Based on the classification trees, the SAPS II and the number of organ failures were the strongest predictors of ICU mortality. In the less severe patients (SAPS II<24), the POST period was associated with increased mortality (OR = 1.65, 95%CI = 1.17-2.33, p = 0.004). After adjustment, no significant association was observed between the rotation period and the LOS, the number of organ supports, or the DMV. Resident rotation exerts no impact on overall ICU mortality at French teaching hospitals but might affect the prognosis of less severe ICU patients. Surveillance should be reinforced when treating those patients.

  1. Current status of rotational atherectomy.

    PubMed

    Tomey, Matthew I; Kini, Annapoorna S; Sharma, Samin K

    2014-04-01

    Rotational atherectomy facilitates percutaneous coronary intervention for complex de novo lesions with severe calcification. A strategy of routine rotational atherectomy has not, however, conferred reduction in restenosis or major adverse cardiac events. As it is technically demanding, rotational atherectomy is also uncommon. At this 25-year anniversary since the introduction of rotational atherectomy, we sought to review the current state-of-the-art in rotational atherectomy technique, safety, and efficacy data in the modern era of drug-eluting stents, strategies to prevent and manage complications, including slow-flow/no-reflow and burr entrapment, and appropriate use in the context of the broader evolution in the management of stable ischemic heart disease. Fundamental elements of optimal technique include use of a single burr with burr-to-artery ratio of 0.5 to 0.6-rotational speed of 140,000 to 150,000 rpm, gradual burr advancement using a pecking motion, short ablation runs of 15 to 20 s, and avoidance of decelerations >5,000 rpm. Combined with meticulous technique, optimal antiplatelet therapy, vasodilators, flush solution, and provisional use of atropine, temporary pacing, vasopressors, and mechanical support may prevent slow-flow/no-reflow, which in contemporary series is reported in 0.0% to 2.6% of cases. On the basis of the results of recent large clinical trials, a subset of patients with complex coronary artery disease previously assigned to rotational atherectomy may be directed instead to medical therapy alone or bypass surgery. For patients with de novo severely calcified lesions for which rotational atherectomy remains appropriate, referral centers of excellence are required. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. IUE observations of rapidly rotating low-mass stars in young clusters - The relation between chromospheric activity and rotation

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    1990-01-01

    If the rapid spindown of low-mass stars immediately following their arrival on the ZAMS results from magnetic braking by coronal winds, an equally sharp decline in their chromospheric emission may be expected. To search for evidence of this effect, the IUE spacecraft was used to observe the chromospheric Mg II emission lines of G-M dwarfs in the nearby IC 2391, Alpha Persei, Pleiades, and Hyades clusters. Similar observations were made of a group of X-ray-selected 'naked' T Tauri stars in Taurus-Auriga. The existence of a decline in activity cannot be confirmed from the resulting data. However, the strength of the chromospheric emission in the Mg II lines of the cluster stars is found to be correlated with rotation rate, being strongest for the stars with the shortest rotation periods and weakest for those with the longest periods. This provides indirect support for such an evolutionary change in activity. Chromospheric activity may thus be only an implicit function of age.

  3. Immobilization After Rotator Cuff Repair: What Evidence Do We Have Now?

    PubMed

    Hsu, Jason E; Horneff, John G; Gee, Albert O

    2016-01-01

    Recurrent tears after rotator cuff repair are common. Postoperative rehabilitation after rotator cuff repair is a modifiable factor controlled by the surgeon that can affect re-tear rates. Some surgeons prefer early mobilization after rotator cuff repair, whereas others prefer a period of immobilization to protect the repair site. The tendon-healing process incorporates biochemical and biomechanical responses to mechanical loading. Healing can be optimized with controlled loading. Complete load removal and chronic overload can be deleterious to the process. Several randomized clinical studies have also characterized the role of postoperative mobilization after rotator cuff repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Rotation of low-mass stars - A new probe of stellar evolution

    NASA Technical Reports Server (NTRS)

    Pinsonneault, M. H.; Kawaler, Steven D.; Demarque, P.

    1990-01-01

    Models of stars of various masses and rotational parameters were developed and compared with observations of stars in open clusters of various ages in order to analyze the evolution of rotating stars from the early premain sequence to an age of 1.7 x 10 to the 9th yrs. It is shown that, for stars older than 10 to the 8th yrs and less massive than 1.1 solar mass, the surface rotation rates depend most strongly on the properties of the angular momentum loss. The trends of the currently available observations suggest that the rotation periods are a good indicator of the field-star ages.

  5. Femoral rotational asymmetry is a common anatomical variant.

    PubMed

    Newman, Christopher R; Walter, William L; Talbot, Simon

    2018-05-01

    The sulcus line (SL) is a three-dimensional landmark that corrects for individual variation in the coronal alignment of the trochlear groove in contrast to the traditional Whiteside's line (WL). Femoral rotational asymmetry (FRA) is an anatomical variation in which the posterior condyles and trochlear groove are not perpendicular to each other. This study aims to measure the SL and assess its reliability relative to WL, in addition to measuring and classifying the FRA. A retrospective analysis of a series of 191 CT scans of nonarthritic knees was performed. Measurements were taken of rotational landmarks in three-dimensional reconstructions. The variability and outlier rate of SL was less than WL (P < 0.05), however, it was also greater than the posterior condylar line (PC) (P < 0.05). Averaging the PC + 3° and the SL did not change the rate of femoral malrotation relative to the surgical epicondylar axis (SEA) (P > 0.05), however it decreased the rate of change of the rotational alignment of the trochlear groove between the native knee and the prosthetic knee from 31% to 5% (P < 0.05). FRA was classified and was >5° in 56/191 (29%) of cases. The SL technique is more accurate than WL for determining the rotational alignment of the trochlear groove. Nonarthritic femora have a high rate of rotational asymmetry. Identifying and classifying FRA in individual cases allows the femoral component to be inserted in a position which gives the best possible match to both the native posterior condyles and trochlear groove. Clin. Anat. 31:551-559, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. Total and cause-specific mortality of U.S. nurses working rotating night shifts.

    PubMed

    Gu, Fangyi; Han, Jiali; Laden, Francine; Pan, An; Caporaso, Neil E; Stampfer, Meir J; Kawachi, Ichiro; Rexrode, Kathryn M; Willett, Walter C; Hankinson, Susan E; Speizer, Frank E; Schernhammer, Eva S

    2015-03-01

    Rotating night shift work imposes circadian strain and is linked to the risk of several chronic diseases. To examine associations between rotating night shift work and all-cause; cardiovascular disease (CVD); and cancer mortality in a prospective cohort study of 74,862 registered U.S. nurses from the Nurses' Health Study. Lifetime rotating night shift work (defined as ≥3 nights/month) information was collected in 1988. During 22 years (1988-2010) of follow-up, 14,181 deaths were documented, including 3,062 CVD and 5,413 cancer deaths. Cox proportional hazards models estimated multivariable-adjusted hazard ratios (HRs) and 95% CIs. All-cause and CVD mortality were significantly increased among women with ≥5 years of rotating night shift work, compared to women who never worked night shifts. Specifically, for women with 6-14 and ≥15 years of rotating night shift work, the HRs were 1.11 (95% CI=1.06, 1.17) and 1.11 (95% CI=1.05, 1.18) for all-cause mortality and 1.19 (95% CI=1.07, 1.33) and 1.23 (95% CI=1.09, 1.38) for CVD mortality. There was no significant association between rotating night shift work and all-cancer mortality (HR≥15years=1.08, 95% CI=0.98, 1.19) or mortality of any individual cancer, with the exception of lung cancer (HR≥15years=1.25, 95% CI=1.04, 1.51). Women working rotating night shifts for ≥5 years have a modest increase in all-cause and CVD mortality; those working ≥15 years of rotating night shift work have a modest increase in lung cancer mortality. These results add to prior evidence of a potentially detrimental effect of rotating night shift work on health and longevity. Copyright © 2015 American Journal of Preventive Medicine. All rights reserved.

  7. Total and Cause-Specific Mortality of U.S. Nurses Working Rotating Night Shifts

    PubMed Central

    Gu, Fangyi; Han, Jiali; Laden, Francine; Pan, An; Caporaso, Neil E.; Stampfer, Meir J.; Kawachi, Ichiro; Rexrode, Kathryn M.; Willett, Walter C.; Hankinson, Susan E.; Speizer, Frank; Schernhammer, Eva S.

    2014-01-01

    Background Rotating night shift work imposes circadian strain and is linked to the risk of several chronic diseases. Purpose To examine associations between rotating night shift work and all-cause, cardiovascular disease (CVD), and cancer mortality in a prospective cohort study of 74,862 registered U.S. nurses from the Nurses’ Health Study. Methods Lifetime rotating night shift work (defined as ≥3 nights/month) information was collected in 1988. During 22 years (1988–2010) of follow-up, 14,181 deaths were documented, including 3,062 CVD and 5,413 cancer deaths. Cox proportional hazards models (2013) estimated multivariable-adjusted hazard ratios (HRs) and 95% CIs. Results All-cause and CVD mortality were significantly increased among women with ≥5 years of rotating night shift work, compared to women who never worked night shifts. Specifically, for women with 6–14 and ≥15 years of rotating night shift work, the HRs were 1.11 (95% CI=1.06, 1.17) and 1.11 (95% CI=1.05, 1.18) for all-cause mortality and 1.19 (95% CI=1.07, 1.33) and 1.23 (95% CI=1.09, 1.38) for CVD mortality. There was no association between rotating night shift work and all-cancer mortality (HR≥15years=1.08, 95% CI=0.89, 1.19) or any other cancer, with the exception of lung cancer (HR≥15years=1.25, 95% CI=1.04, 1.51). Conclusions Women working rotating night shifts for ≥5 five years have a modest increase in all-cause and CVD mortality; those working ≥15 years of rotating night shift work have a modest increase in lung cancer mortality. These results add to prior evidence of a potentially detrimental effect of rotating night shift work on health and longevity. PMID:25576495

  8. Triaxial instabilities in rapidly rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Basak, Arkadip

    2018-06-01

    Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of a neutron star than the Kepler frequency/mass-shedding limit. The procedure employed in the code comprises of perturbing an axisymmetric and stationary configuration of a neutron star and studying its evolution by constructing a series of triaxial quasi-equilibrium configurations. Symmetry breaking point was found out for Polytropic as well as 10 realistic equations of states (EOS) from the CompOSE data base. The concept of piecewise polytropic EOSs has been used to comprehend the rotational instability of Realistic EOSs and validated with 19 different Realistic EOSs from CompOSE. The possibility of detecting quasi-periodic gravitational waves from viscosity driven instability with ground-based LIGO/VIRGO interferometers is also discussed very briefly.

  9. NATIONAL EVALUATION OF THE WEATHERIZATION ASSISTANCE PROGRAM DURING THE ARRA PERIOD: PROGRAM YEARS 2009-2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Rose, Erin M; Schmoyer, Richard L

    This report describes the third major evaluation of the Program, encompassing program years 2009 to 2011. In this report, this period of time is referred to as the ARRA Period. This is a special period of time for the Program because the American Recovery and Reinvestment Act (ARRA) of 2009 has allocated $5 billion of funding for the Program. In normal program years, WAP s annual appropriation is in the range of $200-250 million, supporting the weatherization of approximately 100,000 homes. With the addition of ARRA funding during these program years, the expectation is that weatherization activity will exceed 300,000more » homes per year. In addition to saving energy and reducing low-income energy bills, expanded WAP funding is expected to stimulate the economy by providing new jobs in the weatherization field and allowing low-income households to spend more money on goods and services by spending less on energy.« less

  10. Periodic variations in the signal-to-noise ratios of signals received from the ICE spacecraft

    NASA Technical Reports Server (NTRS)

    Nadeau, T.

    1986-01-01

    Data from the ICE probe to comet Giacobini-Zinner are analyzed to determine the effects of spacecraft rotation upon the signal to noise ratio (SNR) for the two channels of data. In addition, long-term variations from sources other than rotations are considered. Results include a pronounced SNR variation over a period of three seconds (one rotation) and a lesser effect over a two minute period (possibly due to the receiving antenna conscan).

  11. 299 Thora and 496 Gryphia: Two More Very Slowly Rotating Asteroids

    NASA Astrophysics Data System (ADS)

    Pilcher, Frederick; Franco, Lorenzo; Pravec, Petr

    2017-07-01

    CCD observations of the asteroids 299 Thora and 496 Gryphia were made to determine the synodic rotation periods. For 299 Thora, the period is 272.9 ± 0.9 h with a maximum amplitude 0.47 mag. No evidence of tumbling was found. We measured a color index of V-R = 0.52. Using average lightcurve magnitude, we found H = 11.68 ± 0.06, G = 0.27 ± 0.06. For 496 Gryphia, we found a rotation period near 1072 h and amplitude of 1.25 mag. Tumbling behavior was found but not quantified. The color index is V-R = 0.48. Using average lightcurve magnitudes, we found H = 12.21 ± 0.05, G = 0.18 ± 0.04.

  12. On the dust zoning of rapidly rotating cometary nuclei

    NASA Astrophysics Data System (ADS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-12-01

    The effects of nuclear rotation on the surface of a cometary nucleus (a comet at 1 AU that is H2O dominated and has a radius of 1 km) are considered. It is shown that this dust does not accumulate uniformly on the surface, which here is considered spherical. While dust particles in the two polar cap regions and an equatorial belt remain at rest on the surface, those in two midlatitude bands migrate toward the equator, stopping at the two low latitudes to form dust ridges. As the nucleus spins up, both the polar caps and the equatorial belt shrink in size, and the dust ridges move toward the equator, eventually spinning off the dust from the nucleus when the nuclear rotation period is less than about 3.3 hr. For larger particles for which the gas buoyancy is negligible, migration takes place only if the rotation period is not significantly larger than the critical value of 3.3 hr or if the surface friction is abnormally small.

  13. The rotation of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  14. Mid-term periodicities and heliospheric modulation of coronal index and solar flare index during solar cycles 22-23

    NASA Astrophysics Data System (ADS)

    Singh, Prithvi Raj; Saxena, A. K.; Tiwari, C. M.

    2018-04-01

    We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986-2008, in order to investigate the long- and mid-term periodicities including the Rieger ({˜ }130 to {˜ }190 days), quasi-period ({˜ }200 to {˜ }374 days), and quasi-biennial periodicities ({˜ }1.20 to {˜ }3.27 years) during the combined solar cycles 22-23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of {˜ }1.43 years and for solar flare index of {˜ }1.41 year, and galactic cosmic ray, {˜ }1.35 year, during combined solar cycles 22-23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22-23, we found that galactic cosmic ray modulation at mid cut-off rigidity (Rc = 2.43GV) is anti-correlated with time-lag of few months.

  15. Relating Stellar Cycle Periods to Dynamo Calculations

    NASA Technical Reports Server (NTRS)

    Tobias, S. M.

    1998-01-01

    Stellar magnetic activity in slowly rotating stars is often cyclic, with the period of the magnetic cycle depending critically on the rotation rate and the convective turnover time of the star. Here we show that the interpretation of this law from dynamo models is not a simple task. It is demonstrated that the period is (unsurprisingly) sensitive to the precise type of non-linearity employed. Moreover the calculation of the wave-speed of plane-wave solutions does not (as was previously supposed) give an indication of the magnetic period in a more realistic dynamo model, as the changes in length-scale of solutions are not easily captured by this approach. Progress can be made, however, by considering a realistic two-dimensional model, in which the radial length-scale of waves is included. We show that it is possible in this case to derive a more robust relation between cycle period and dynamo number. For all the non-linearities considered in the most realistic model, the magnetic cycle period is a decreasing function of IDI (the amplitude of the dynamo number). However, discriminating between different non-linearities is difficult in this case and care must therefore be taken before advancing explanations for the magnetic periods of stars.

  16. Rotational properties of main belt asteroids: photoelectric and CCD observations of 15 objects

    NASA Astrophysics Data System (ADS)

    Florczak, M.; Dotto, E.; Barucci, M. A.; Birlan, M.; Erikson, A.; Fulchignoni, M.; Nathues, A.; Perret, L.; Thebault, P.

    1997-11-01

    In this paper we present the results of several observational campaigns carried out during 1996 at the 1.2 m telescope of the Haute Provence Observatory (France) and at the 1.5m Danish, 0.9m Dutch, 0.6m Bochum and 0.5m telescopes of the European Southern Observatory (ESO, La Silla, Chile), in order to enlarge the available sample of know asteroid rotational periods. A total of 64 single night lightcurves for 15 asteroids were obtained. The rotational periods have been determined for 12 objects, with different quality code: 424 Gratia ( Psyn = 19.47 h), 440 Theodora ( Psyn = 4.828 h), 446 Aeternitas ( Psyn = 15.85 h), 491 Carina ( Psyn = 14.87 h), 727 Nipponia ( Psyn = 4.6 h), 732 Tjilaki ( Psyn = 12.34 h), 783 Nora ( Psyn = 34.4 h), 888 Parysatis ( Psyn = 5.49 h), 1626 Sadeya ( Psyn = 3.438 h), 2209 Tianjin ( Psyn = 9.47 h), 2446 Lunacharsky ( Psyn = 3.613 h) and 3776 Vartiovuori ( Psyn = 7.7 h). For 1246 Chaka, 1507 Vaasa and 1994 Shane the complete rotational phase was not covered and for two of them it was possible to find only an indication of the rotational period.

  17. A Required Rotation in Clinical Laboratory Management for Pathology Residents

    PubMed Central

    Hoda, Syed T.; Crawford, James M.

    2016-01-01

    Leadership and management training during pathology residency have been identified repeatedly by employers as insufficient. A 1-month rotation in clinical laboratory management (CLM) was created for third-year pathology residents. We report on our experience and assess the value of this rotation. The rotation was one-half observational and one-half active. The observational component involved being a member of department and laboratory service line leadership, both at the departmental and institutional level. Observational participation enabled learning of both the content and principles of leadership and management activities. The active half of the rotation was performance of a project intended to advance the strategic trajectory of the department and laboratory service line. In our program that matriculates 4 residents per year, 20 residents participated from April 2010 through December 2015. Their projects either activated a new priority area or helped propel an existing strategic priority forward. Of the 16 resident graduates who had obtained their first employment or a fellowship position, 9 responded to an assessment survey. The majority of respondents (5/9) felt that the rotation significantly contributed to their ability to compete for a fellowship or their first employment position. The top reported benefits of the rotation included people management; communication with staff, departmental, and institutional leadership; and involvement in department and institutional meetings and task groups. Our 5-year experience demonstrates both the successful principles by which the CLM rotation can be established and the high value of this rotation to residency graduates. PMID:28725766

  18. New 1982-1990 photometry of Lambda Andromedae and its 11-year cycle

    NASA Technical Reports Server (NTRS)

    Hall, Douglas S.; Henry, Gregory W.; Boehme, Dietmar; Brooks, Peter A.; Chang, Sandy; Dolzan, Ales; Fortier, George L.; Fried, Robert E.; Genet, Russell M.; Grim, Bruce S.

    1991-01-01

    The paper presents photoelectric photometry of Lambda And never before published, obtained between February 1982 and December 1990 at 29 different observatories. Then it is combined with all other photometry available (previously published, contained in the I.A.U. Commission 27 Archives, and obtained with the Vanderbilt 16-inch automatic telescope but not yet published), to yield a 14.8-year data base. Analysis reveals a long-term cycle in mean brightness, with a full range of 0.15 m and a period of 11.4 +/- 0.4 years. Because most of the new photometry was concentrated in the 1983-1984 observing season, this one well-defined light curve is analyzed with a two-spot model. Spot A keeps a 0.04 m amplitude throughout four rotation cycles whereas the amplitude of spot B diminishes from 0.09 m down almost to 0.03 m. The spot rotation periods were 55.9 d +/- 0.6 d and 52.8 d +/- 1.0 d, respectively.

  19. [Diagnostic value of a predictive model for complete ruptures of the rotator cuff associated to subacromial impingement].

    PubMed

    Águila-Ledesma, I R; Córdova-Fonseca, J L; Medina-Pontaza, O; Núñez-Gómez, D A; Calvache-García, C; Pérez-Atanasio, J M; Torres-González, R

    2017-01-01

    Pathology related to the rotator cuff remains among the most prevalent musculoskeletal diseases. There is an increasing need for imaging studies (MRI, US, arthroscopy) to test the diagnostic performance of the medical history and physical examination. To prove the diagnostic value of a clinical-radiographic predictive model to find complete ruptures of the rotator cuff. Descriptive, observational, prospective, transversal and analytical study. Fifty-five patients with preoperative shoulder pain were evaluated with 13 predictive variables: age > 50 years, nocturnal pain, muscle weakness, clinical signs of Neer, Hawkins, Jobe, external rotation lag (ERLS), belly-press, bear hug, and lift-off, radiographic measurement of subacromial space, acromial index and critical shoulder angle. Sensitivity, specificity, and positive and negative predictive values were measured in each variable, comparing the results of each one against the postoperative findings. Of the 55 patients evaluated, 42 had a complete rupture of the rotator cuff in the postoperative period. The eight variables with a higher diagnostic value were selected and a ROC curve was performed, providing an area under the curve of 0.88. This predictive model uses eight variables (age > 50 years, nocturnal pain, muscle weakness, Jobe, Hawkins, ERLS, subacromial space ≤ 6 mm, and critical shoulder angle > 35°), which together add the predictive value of 0.88 (AUC) to diagnose complete ruptures of the supraspinatus tendon.

  20. Keeping It in Three Dimensions: Measuring the Development of Mental Rotation in Children with the Rotated Colour Cube Test (RCCT).

    PubMed

    Lütke, Nikolay; Lange-Küttner, Christiane

    2015-08-03

    This study introduces the new Rotated Colour Cube Test (RCCT) as a measure of object identification and mental rotation using single 3D colour cube images in a matching-to-sample procedure. One hundred 7- to 11-year-old children were tested with aligned or rotated cube models, distracters and targets. While different orientations of distracters made the RCCT more difficult, different colours of distracters had the opposite effect and made the RCCT easier because colour facilitated clearer discrimination between target and distracters. Ten-year-olds performed significantly better than 7- to 8-year-olds. The RCCT significantly correlated with children's performance on the Raven's Coloured Progressive Matrices Test (RCPM) presumably due to the shared multiple-choice format, but the RCCT was easier, as it did not require sequencing. Children from families with a high socio-economic status performed best on both tests, with boys outperforming girls on the more difficult RCCT test sections.

  1. Competency-based learning in an ambulatory care setting: Implementation of simulation training in the Ambulatory Care Rotation during the final year of the MaReCuM model curriculum.

    PubMed

    Dusch, Martin; Narciß, Elisabeth; Strohmer, Renate; Schüttpelz-Brauns, Katrin

    2018-01-01

    Aim: As part of the MaReCuM model curriculum at Medical Faculty Mannheim Heidelberg University, a final year rotation in ambulatory care was implemented and augmented to include ambulatory care simulation. In this paper we describe this ambulatory care simulation, the designated competency-based learning objectives, and evaluate the educational effect of the ambulatory care simulation training. Method: Seventy-five final year medical students participated in the survey (response rate: 83%). The control group completed the ambulatory rotation prior to the implementation of the ambulatory care simulation. The experimental group was required to participate in the simulation at the beginning of the final year rotation in ambulatory care. A survey of both groups was conducted at the beginning and at the end of the rotation. The learning objectives were taken from the National Competency-based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM). Results: The ambulatory care simulation had no measurable influence on students' subjectively perceived learning progress, the evaluation of the ambulatory care rotation, or working in an ambulatory care setting. At the end of the rotation participants in both groups reported having gained better insight into treating outpatients. At the beginning of the rotation members of both groups assessed their competencies to be at the same level. The simulated ambulatory scenarios were evaluated by the participating students as being well structured and easy to understand. The scenarios successfully created a sense of time pressure for those confronted with them. The ability to correctly fill out a narcotic prescription form as required was rated significantly higher by those who participated in the simulation. Participation in the ambulatory care simulation had no effect on the other competencies covered by the survey. Discussion: The effect of the four instructional units comprising the ambulatory care simulation

  2. Effect of rotation on a rotating hot-wire sensor

    NASA Technical Reports Server (NTRS)

    Hah, C.; Lakshminarayana, B.

    1978-01-01

    An investigation was conducted to discern the effects of centrifugal and Coriolis forces on a rotating hot-wire. The probe was calibrated in a wind tunnel as well as in a rotating mode. The effect of rotation was found to be negligibly small. A small change in cold resistance (1.5%) was observed in the rotating wire. The rotation seems to have a negligible effect on the fluid mechanics, heat transfer and material characteristics of the wire. This is a significant conclusion in view of the potential application of the hot-wire probe in a rotating passage (such as turbomachinery).

  3. Diverse rotations and poultry litter improves soybean yield

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without rotations or cover crops are perceived as unsustainable for long-term yield and soil health. Continuous systems, defined as continually producing a crop on the same parcel of land for more than three years, is thought to reduce yields. Given that crop rotations a...

  4. Effect of steady crucible rotation on the segregation of impurities in vertical Bridgman growth of multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Bellmann, M. P.; Meese, E. A.

    2011-10-01

    We have performed axisymmetric, transient simulations of the vertical Bridgman growth of multi-crystalline (mc) silicon to study the effect of the steady crucible rotation on the melt flow and impurity segregation. A solute transport model has been applied to predict the final segregation pattern of impurities in a circular ingot. Imposing rotation rates of 1-5 rpm on the system makes radial segregation much worse compared to the non-rotating case. Low rotation rates at 1-2 rpm increase radial segregation in the first half period of solidification, whereas at rotation rates above the effect is insignificantly small. Contrary behavior was observed for the second half period of solidification. Here radial segregation is increased at high rotation rates from 3 to 5 rpm with small impact at 1-2 rpm.

  5. Continuous distal migration and internal rotation of the C-stem prosthesis without any adverse clinical effects: an RSA study of 33 primary total hip arthroplasties followed for up to ten years.

    PubMed

    von Schewelov, T; Carlsson, A; Sanzén, L; Besjakov, J

    2014-05-01

    In 2005, we demonstrated that the polished triple-tapered C-stem at two years had migrated distally and rotated internally. From that series, 33 patients have now been followed radiologically, clinically and by radiostereometric analysis (RSA) for up to ten years. The distal migration within the cement mantle had continued and reached a mean of 2 mm (0.5 to 4.0) at ten years. Internal rotation, also within the cement mantle, was a mean 3.8° (external 1.6° to internal 6.6°) The cement mantle did not show any sign of migration or loosening in relation to the femoral bone. There were no clinical or radiological signs indicating that the migration or rotation within the cement mantle had had any adverse effects for the patients.

  6. Rotational Dynamics of Inactive Satellites as a Result of the YORP Effect

    NASA Astrophysics Data System (ADS)

    Albuja, Antonella A.

    Observations of inactive satellites in Earth orbit show that these objects are generally rotating, some with very fast rotation rates. In addition, observations indicate that the rotation rate at which defunct satellites spin tends to evolve over time. However, the cause for this behavior is unknown. The observed secular change in the spin rate and spin axis orientation of asteroids is known to be caused by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, which results in a torque that is created from reflected thermal energy and sunlight from the surface of an asteroid. This thesis explores the effect of YORP on defunct satellites in Earth orbit and offers this as a potential cause for the observed rotation states of inactive satellites. In this work, several different satellite models are developed to represent inactive satellites in Geostationary Earth Orbit (GEO). The evolution of the spin rate and obliquity for each satellite is then explored using Euler's equations of motion as well as spin and year averaged dynamics. This results in the dynamics being analyzed to understand the secular changes that occur, as well as the variations that result from short period terms over the course of a year. Some of the model satellites have asymmetric geometries, leading to the classical YORP effect as originally formulated for asteroids. One model satellite is geometrically symmetric, but relies on mass distribution asymmetry to generate the YORP effect. Because the YORP effect is directly dependent on geometric, optical and thermal properties of the satellite, varying these parameters can lead to different long-term rotational behavior. A sensitivity study is done by varying these parameters and analyzing its effect on the long-term dynamics of a satellite. Additionally, available observation data of inactive GEO satellites are used to estimate the YORP torque acting on those bodies. A comparison between this torque and the expected torque on a defunct satellite

  7. Retrospective study of sonographic findings in bone involvement associated with rotator cuff calcific tendinopathy: preliminary results of a case series.

    PubMed

    Nogueira-Barbosa, Marcello H; Gregio-Junior, Everaldo; Lorenzato, Mario Muller

    2015-01-01

    The present study was aimed at investigating bone involvement secondary to rotator cuff calcific tendonitis at ultrasonography. Retrospective study of a case series. The authors reviewed shoulder ultrasonography reports of 141 patients diagnosed with rotator cuff calcific tendonitis, collected from the computer-based data records of their institution over a four-year period. Imaging findings were retrospectively and consensually analyzed by two experienced musculoskeletal radiologists looking for bone involvement associated with calcific tendonitis. Only the cases confirmed by computed tomography were considered for descriptive analysis. Sonographic findings of calcific tendinopathy with bone involvement were observed in 7/141 (~ 5%) patients (mean age, 50.9 years; age range, 42-58 years; 42% female). Cortical bone erosion adjacent to tendon calcification was the most common finding, observed in 7/7 cases. Signs of intraosseous migration were found in 3/7 cases, and subcortical cysts in 2/7 cases. The findings were confirmed by computed tomography. Calcifications associated with bone abnormalities showed no acoustic shadowing at ultrasonography, favoring the hypothesis of resorption phase of the disease. Preliminary results of the present study suggest that ultrasonography can identify bone abnormalities secondary to rotator cuff calcific tendinopathy, particularly the presence of cortical bone erosion.

  8. Laser-driven clockwise molecular rotation for a transient spinning waveplate.

    PubMed

    York, Andrew G

    2009-08-03

    Our simulations show a copropagating pair of laser pulses polarized in two different directions can selectively excite clockwise or counterclockwise molecular rotation in a gas of linear molecules. The resulting birefringence of the gas rotates on a femtosecond timescale and shows a periodic revival structure. The total duration of the pulse pair can be subpicosecond, allowing molecular alignment at the high densities and temperatures necessary to create a transient spinning waveplate.

  9. Temporal trends in inflammatory bowel disease publications over a 19-years period.

    PubMed

    Weintraub, Yael; Mimouni, Francis B; Cohen, Shlomi

    2014-11-28

    To determine whether temporal changes occurred in the pediatric vs adult inflammatory bowel disease (IBD), both in terms of number and type of yearly published articles. We aimed to evaluate all PubMed-registered articles related to the field of IBD from January 1, 1993 and until December 31, 2011. We searched for articles using the key words "inflammatory bowel disease" or "Crohn's disease" or "ulcerative colitis" or "undetermined colitis", using the age filters of "child" or "adult". We repeated the search according to the total number per year of articles per type of article, for each year of the specified period. We studied randomized controlled trials, clinical trials, case reports, meta-analyses, letters to the editor, reviews, systematic reviews, practice guidelines, and editorials. We identified 44645 articles over the 19 year-period. There were 8687 pediatric-tagged articles vs 19750 adult-tagged articles. Thus 16208 articles were unaccounted and not assigned a "pediatric" or "adult" tag by PubMed. There was an approximately 3-fold significant increase in all articles recorded both in pediatric and adult articles. This significant increase was true for nearly every category of article but the number of clinical trials, meta-analysis, and randomized controlled trials increased proportionally more than the number of "lower quality" articles such as editorials or letters to the editor. Very few guidelines were published every year. There is a yearly linear increase in publications related to IBD. Relatively, there are more and more clinical trials and higher quality articles.

  10. X-Raying the Beating Heart of a Newborn Star: Rotational Modulation of High-Energy Radiation from V1647 Ori

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael; Petre, Robert; Teets, William K.; Principe, David

    2012-01-01

    We report a periodicity of approx.1 day in the highly elevated X-ray emission from the protostar V1647 Ori during its two recent multiple-year outbursts of mass accretion. This periodicity is indicative of protostellar rotation at near-breakup speed. Modeling of the phased X-ray light curve indicates the high-temperature ( 50 MK), X-ray-emitting plasma, which is most likely heated by accretion-induced magnetic reconnection, resides in dense ( 5 1010 cm.3), pancake-shaped magnetic footprints where the accretion stream feeds the newborn star. The sustained X-ray periodicity of V1647 Ori demonstrates that such protostellar magnetospheric accretion configurations can be stable over timescales of years. Subject headings: stars: formation stars: individual (V1647 Ori) stars: pre-main sequence X-rays: stars

  11. Does successful rotator cuff repair improve muscle atrophy and fatty infiltration of the rotator cuff? A retrospective magnetic resonance imaging study performed shortly after surgery as a reference.

    PubMed

    Hamano, Noritaka; Yamamoto, Atsushi; Shitara, Hitoshi; Ichinose, Tsuyoshi; Shimoyama, Daisuke; Sasaki, Tsuyoshi; Kobayashi, Tsutomu; Kakuta, Yohei; Osawa, Toshihisa; Takagishi, Kenji

    2017-06-01

    Muscle atrophy and fatty infiltration in the rotator cuff muscles are often observed in patients with chronic rotator cuff tears. The recovery from these conditions has not been clarified. Ninety-four patients were included in this study. The improvement in muscle atrophy and fatty infiltration in successfully repaired rotator cuff tears was evaluated by magnetic resonance imaging at 1 year and 2 years after surgery and was compared with muscle atrophy and fatty infiltration observed on magnetic resonance imaging at 2 weeks after surgery to discount any changes due to the medial retraction of the torn tendon. The patients' muscle strength was evaluated in abduction and external rotation. Muscle atrophy and fatty infiltration of the supraspinatus were significantly improved at 2 years after surgery in comparison to 2 weeks after surgery. The subjects' abduction and external rotation strength was also significantly improved at 2 years after surgery in comparison to the preoperative values. Patients whose occupation ratio was improved had a better abduction range of motion, stronger abduction strength, and higher Constant score. Patients whose fatty infiltration was improved had a better range of motion in flexion and abduction, whereas the improvements of muscle strength and the Constant score were similar in the group that showed an improvement of fatty infiltration and the group that did not. Muscle atrophy and fatty infiltration can improve after rotator cuff repair. The strengths of abduction and external rotation were also improved at 2 years after surgery. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. 26 CFR 1.1382-4 - Taxable income of cooperatives; payment period for each taxable year.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... taxable year is the period beginning with the first day of such taxable year and ending with the fifteenth day of the ninth month following the close of such year. [T.D. 6643, 28 FR 3156, Nov. 26, 1963] ...

  13. Rotational reorganization of doped cholesteric liquid crystalline films.

    PubMed

    Eelkema, Rienk; Pollard, Michael M; Katsonis, Nathalie; Vicario, Javier; Broer, Dirk J; Feringa, Ben L

    2006-11-08

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pitch. The direction of this reorganization is correlated to the sign of the change in helical twisting power of the dopant. The rotational reorganization of the liquid crystalline film was used to rotate microscopic objects 4 orders of magnitude larger than the bistable dopants in the film, which shows that molecular motors and switches can perform work. The surface of the doped cholesteric liquid crystalline films was found to possess a regular surface relief, whose periodicity coincides with typical cholesteric polygonal line textures. These surface features originate from the cholesteric superstructure in the liquid crystalline film, which in turn is the result of the presence of the chiral dopant. As such, the presence of the dopant is expressed in these distinct surface structures. A possible mechanism at the origin of the rotational reorganization of liquid crystalline films and the cholesteric surface relief is discussed.

  14. Mental rotation in human infants: a sex difference.

    PubMed

    Moore, David S; Johnson, Scott P

    2008-11-01

    A sex difference on mental-rotation tasks has been demonstrated repeatedly, but not in children less than 4 years of age. To demonstrate mental rotation in human infants, we habituated 5-month-old infants to an object revolving through a 240 degrees angle. In successive test trials, infants saw the habituation object or its mirror image revolving through a previously unseen 120 degrees angle. Only the male infants appeared to recognize the familiar object from the new perspective, a feat requiring mental rotation. These data provide evidence for a sex difference in mental rotation of an object through three-dimensional space, consistently seen in adult populations.

  15. Mental Rotation in Human Infants: A Sex Difference

    PubMed Central

    Moore, David S.; Johnson, Scott P.

    2009-01-01

    A sex difference on mental-rotation tasks has been demonstrated repeatedly, but not in children less than 4 years of age. To demonstrate mental rotation in human infants, we habituated 5-month-old infants to an object revolving through a 240° angle. In successive test trials, infants saw the habituation object or its mirror image revolving through a previously unseen 120° angle. Only the male infants appeared to recognize the familiar object from the new perspective, a feat requiring mental rotation. These data provide evidence for a sex difference in mental rotation of an object through three-dimensional space, consistently seen in adult populations. PMID:19076473

  16. Correction of a Severely Rotated Maxillary Incisor by Elastics in Mixed Dentition Complicated by a Mesiodens.

    PubMed

    Sidiq, Mohsin; Yousuf, Asif; Bhat, Manohar; Sharma, Rajesh; Bhargava, Neha; Ganta, Shravani

    2015-01-01

    The aim of this case study was to report a potentially convenient approach instead of a conventional orthodontic procedure for correcting severe rotation of anterior tooth of an 11-year-old Indian boy, with a mixed dentition class I malocclusion. The child reported seeking treatment for severely rotated upper right central incisor with mesiodens and a single tooth crossbite. The supernumerary tooth was first extracted and bondable buttons were placed on the rotated tooth, an appliance composed of a removable plate with Adam's clasp with distal extension and a loop for engagement of elastics was delivered. Circumferential supracrestal fibrotomy was performed on the corrected derotated tooth. Then, Hawley's appliance with a z-spring and posterior bite plane was fabricated and placed for correction of crossbite. Thus, this removable appliance can be a simplified and a cost-effective treatment alternative for derotation of anterior tooth, especially during the mixed dentition period. How to cite this article: Sidiq M, Yousuf A, Bhat M, Sharma R, Bhargava N, Ganta S. Correction of a Severely Rotated Maxillary Incisor by Elastics in Mixed Dentition Complicated by a Mesiodens. Int J Clin Pediatr Dent 2015;8(3):234-238.

  17. Correction of a Severely Rotated Maxillary Incisor by Elastics in Mixed Dentition Complicated by a Mesiodens

    PubMed Central

    Sidiq, Mohsin; Bhat, Manohar; Sharma, Rajesh; Bhargava, Neha; Ganta, Shravani

    2015-01-01

    ABSTRACT The aim of this case study was to report a potentially convenient approach instead of a conventional orthodontic procedure for correcting severe rotation of anterior tooth of an 11-year-old Indian boy, with a mixed dentition class I malocclusion. The child reported seeking treatment for severely rotated upper right central incisor with mesiodens and a single tooth crossbite. The supernumerary tooth was first extracted and bondable buttons were placed on the rotated tooth, an appliance composed of a removable plate with Adam’s clasp with distal extension and a loop for engagement of elastics was delivered. Circumferential supracrestal fibrotomy was performed on the corrected derotated tooth. Then, Hawley’s appliance with a z-spring and posterior bite plane was fabricated and placed for correction of crossbite. Thus, this removable appliance can be a simplified and a cost-effective treatment alternative for derotation of anterior tooth, especially during the mixed dentition period. How to cite this article: Sidiq M, Yousuf A, Bhat M, Sharma R, Bhargava N, Ganta S. Correction of a Severely Rotated Maxillary Incisor by Elastics in Mixed Dentition Complicated by a Mesiodens. Int J Clin Pediatr Dent 2015;8(3):234-238. PMID:26604544

  18. Photometric light curves for seven rapidly-rotating K dwarfs in the Pleiades and Alpha Persei clusters

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Schild, Rudolph A.; Baliunas, Sallie L.; Africano, John L.

    1987-01-01

    Light curves and period estimates were obtained for several Pleiades and Alpha Persei cluster K dwarfs which were identified as rapid rotators in earlier spectroscopic studies. A few of the stars have previously-published light curves, making it possible to study the long-term variability of the light-curve shapes. The general cause of the photometric variability observed for these stars is an asymmetric distribution of photospheric inhomogeneities (starspots). The presence of these inhomogeneities combined with the rotation of the star lead to the light curves observed. The photometric periods derived are thus identified with the rotation period of the star, making it possible to estimate equatorial rotational velocities for these K dwarfs. These data are of particular importance because the clusters are sufficiently young that stars of this mass should have just arrived on the main sequence. These data could be used to estimate the temperatures and sizes of the spot groups necessary to produce the observed light curves for these stars.

  19. Contributions of high-altitude winds and atmospheric moment of inertia to the atmospheric angular momentum-earth rotation relationship

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Mayr, H. G.; Kramer, L.

    1985-01-01

    For many years it has been recognized that recurrent modulations occur in the time series of the earth's rotation rate or, alternatively, the change in the length of the day (Delta-LOD). Studies relating Delta-LOD to global patterns of zonal winds have confirmed that the variability of atmospheric angular momentum (M) is of sufficient magnitude to account for a large portion of the gross periodicities observed in the earth rotation. The present investigation is concerned with the importance of the contributions of the moment of inertia and high-altitude winds to the angular momentum budget. On the basis of an analysis of the various factors, it is found that within the available data, contributions of high-altitude winds and atmospheric moment of inertia reach levels detectable in the atmospheric angular momentum budget. Nevertheless, for the period December 1978 to December 1979 these contributions are not sufficient to resolve the apparent short-term discrepancies which are evident between Delta-LOD and M.

  20. Does the Rotator Cuff Tear Pattern Influence Clinical Outcomes After Surgical Repair?

    PubMed Central

    Watson, Scott; Allen, Benjamin; Robbins, Chris; Bedi, Asheesh; Gagnier, Joel J.; Miller, Bruce

    2018-01-01

    Background: Limited literature exists regarding the influence of rotator cuff tear morphology on patient outcomes. Purpose: To determine the effect of rotator cuff tear pattern (crescent, U-shape, L-shape) on patient-reported outcomes after rotator cuff repair. Study Design: Cohort study; Level of evidence, 3. Methods: Patients undergoing arthroscopic repair of known full-thickness rotator cuff tears were observed prospectively at regular intervals from baseline to 1 year. The tear pattern was classified at the time of surgery as crescent, U-shaped, or L-shaped. Primary outcome measures were the Western Ontario Rotator Cuff Index (WORC), the American Shoulder and Elbow Surgeons (ASES), and a visual analog scale (VAS) for pain. The tear pattern was evaluated as the primary predictor while controlling for variables known to affect rotator cuff outcomes. Mixed-methods regression and analysis of variance (ANOVA) were used to examine the effects of tear morphology on patient-reported outcomes after surgical repair from baseline to 1 year. Results: A total of 82 patients were included in the study (53 male, 29 female; mean age, 58 years [range, 41-75 years]). A crescent shape was the most common tear pattern (54%), followed by U-shaped (25%) and L-shaped tears (21%). There were no significant differences in outcome scores between the 3 groups at baseline. All 3 groups showed statistically significant improvement from baseline to 1 year, but analysis failed to show any predictive effect in the change in outcome scores from baseline to 1 year for the WORC, ASES, or VAS when tear pattern was the primary predictor. Further ANOVA also failed to show any significant difference in the change in outcome scores from baseline to 1 year for the WORC (P = .96), ASES (P = .71), or VAS (P = .86). Conclusion: Rotator cuff tear pattern is not a predictor of functional outcomes after arthroscopic rotator cuff repair. PMID:29623283

  1. Trends in U.S., Past-Year Marijuana Use from 1985–2009; An Age-Period-Cohort Analysis

    PubMed Central

    Miech, Richard; Koester, Stephen

    2014-01-01

    Background We present a formal age-period-cohort analysis to examine if the recent increase in past-year marijuana use among the young is specific to the younger generation or if, instead, it is part of a general increase present across cohorts of all ages. This is the first age-period-cohort analysis of past-year marijuana use that includes adult trends from 2001–09. Methods Data come from the National Survey on Drug Use and Health, a series of annual, nationally-representative, cross-sectional surveys of the U.S. civilian, non-institutionalized population. The analysis focuses on the 25 year time span from 1985–2009 and uses the recently developed ‘intrinsic estimator’ algorithm to estimate independent effects of age, period, and cohort. Results The recent increase in past-year marijuana use is not unique to the youngest birth cohorts. An independent, positive influence of cohort membership on past-year marijuana use, net of historical period and age effects, is smaller for today’s youngest cohorts than it was for the cohorts that came immediately before, and, in fact, is at its lowest level in three decades. The recent increase in marijuana use among the young is more consistent with a historical period effect that has acted across all cohorts. Period and cohort trends differ substantially for Hispanics. Conclusions The major forces that drive trends in past-year marijuana use are moving away from cohort-specific factors and toward broad-based influences that affect cohorts of all ages. Strategic public health and policy efforts aimed at countering the recent increase in past-year marijuana use should do the same. PMID:22361212

  2. Hip Rotation Range of Motion in People With and Without Low Back Pain Who Participate in Rotation-Related Sports

    PubMed Central

    Van Dillen, Linda R.; Bloom, Nancy J.; Gombatto, Sara P.; Susco, Thomas M.

    2008-01-01

    Objective To examine whether passive hip rotation motion was different between people with and without low back pain (LBP) who regularly participate in sports that require repeated rotation of the trunk and hips. We hypothesized that people with LBP would have less total hip rotation motion and more asymmetry of motion between sides than people without LBP. Design Two group, case-control. Setting University-based musculoskeletal analysis laboratory. Participants Forty-eight subjects (35 males, 13 females; mean age: 26.56±7.44 years) who reported regular participation in a rotation-related sport participated. Two groups were compared; people with LBP (N=24) and people without LBP (N=24; NoLBP). Main outcome measures Data were collected on participant-related, LBP-related, sport-related and activity-related variables. Measures of passive hip rotation range of motion were obtained. The differences between the LBP and NoLBP groups were examined. Results People with and without a history of LBP were the same with regard to all participant-related, sport-related and activity-related variables. The LBP group had significantly less total rotation (P=.035) and more asymmetry of total rotation, right hip versus left hip, (P=.022) than the NoLBP group. Left total hip rotation was more limited than right total hip rotation in the LBP group (P=.004). There were no significant differences in left and right total hip rotation for the NoLBP group (P=.323). Conclusions Among people who participate in rotation-related sports, those with LBP had less overall passive hip rotation motion and more asymmetry of rotation between sides than people without LBP. These findings suggest that the specific directional demands imposed on the hip and trunk during regularly performed activities may be an important consideration in deciding which impairments may be most relevant to test and to consider in prevention and intervention strategies. PMID:19081817

  3. Aging and shiftwork: the effects of 20 years of rotating 12-hour shifts among petroleum refinery operators.

    PubMed

    Bourdouxhe, M A; Quéinnec, Y; Granger, D; Baril, R H; Guertin, S C; Massicotte, P R; Levy, M; Lemay, F L

    1999-01-01

    The survey was conducted in a Canadian refinery where operators have been working rotating 12-hour shifts for 20 years. A multidisciplinary approach was adopted, based on 12 sources of data. Descriptive statistics and chronoergonomic observations were used. The most marked consequences of the schedule were observed among former shiftworkers. Among current shift workers, sleep deficit, chronic fatigue, health problems, and disruption of social and family life were the most serious effects observed. Aging and under-staffing, however, interact with schedule by necessitating overtime and reducing the actual number of rest days, which in turn affects fatigue and reliability. In the near future, the low replacement rate of the workforce and the limitations on reassignment of aging workers to day shifts will probably prevent the selection process from playing its "protective" role. Besides, with the 5-year delay of the retirement age, the harmful effects in older operators active over the next 5-10 years may prove greater than those observed in this study.

  4. Rotation rates in the Koronis family, complete to H≈11.2

    NASA Astrophysics Data System (ADS)

    Slivan, Stephen M.; Binzel, Richard P.; Boroumand, Shaida C.; Pan, Margaret W.; Simpson, Christine M.; Tanabe, James T.; Villastrigo, Rosalinda M.; Yen, Lesley L.; Ditteon, Richard P.; Pray, Donald P.; Stephens, Robert D.

    2008-05-01

    We report the results of an observational survey of rotation lightcurves for members of the Koronis asteroid family that we conducted using CCD imaging cameras at seven different observatories during the period 1998-2005. A total of 375 individual lightcurves yield new or refined rotation periods for the 24 survey objects (658) Asteria, (761) Brendelia, (811) Nauheima, (975) Perseverantia, (1029) La Plata, (1079) Mimosa, (1100) Arnica, (1245) Calvinia, (1336) Zeelandia, (1350) Rosselia, (1423) Jose, (1482) Sebastiana, (1618) Dawn, (1635) Bohrmann, (1725) CrAO, (1741) Giclas, (1742) Schaifers, (1848) Delvaux, (1955) McMath, (2123) Vltava, (2144) Marietta, (2224) Tucson, (2729) Urumqi, and (2985) Shakespeare. Most of the data have been calibrated to standard magnitudes. Several previously unpublished lightcurves recorded using a photoelectric photometer during the period 1987-1989 are also reported here. We present composite lightcurves and report derived synodic rotation periods. For those objects with sufficient coverage in solar phase angle we also determined Lumme-Bowell solar phase parameters, and for four objects we obtained V-R colors. Our results reduce selection biases among known rotation lightcurve parameters for Koronis family members by completing the sample down to H≈11.2, and they lay the foundation for future spin vector and shape determinations. The distribution of rotation rates in the available sample of N=40 Koronis members is non-Maxwellian at a confidence level of 99%. It also seems to be qualitatively consistent with the effects of long-term modification by thermal YORP torques, as proposed by Vokrouhlický et al. [Vokrouhlický, D., Nesvorný, D., Bottke, W.F., 2003. Nature 425, 147-151] to explain the distribution of the ten Koronis member spin vectors that have already been determined [Slivan, S.M., 2002. Nature 419, 49-51; Slivan, S.M., Binzel, R.P., Crespo da Silva, L.D., Kaasalainen, M., Lyndaker, M.M., Krčo, M., 2003. Icarus 162, 285-307].

  5. Turbulent convection in liquid metal with and without rotation.

    PubMed

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr < 1. Most analog models of planetary dynamos, however, use moderate Pr fluids, and the systematic influence of reducing Pr is not well understood. We perform rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr < 1 and Pr > 1 fluids, respectively.

  6. Tumbling asteroid rotation with the YORP torque and inelastic energy dissipation

    NASA Astrophysics Data System (ADS)

    Breiter, S.; Murawiecka, M.

    2015-05-01

    The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect and rotational energy dissipation due to inelastic deformations are two key mechanisms affecting rotation of tumbling asteroids in long term. Each of the effects used to be discussed separately. We present the first results concerning a simulation of their joint action. Asteroids (3103) Eger and (99942) Apophis, as well as their scaled variants, are used as test bodies. Plugging in the dissipation destroys limit cycles of the pure YORP, but creates a new asymptotic state of stationary tumbling with a fixed rotation period. The present model does not contradict finding Eger in the principal axis rotation. For Apophis, the model suggests that its current rotation state should be relatively young. In general, the fraction of initial conditions leading to the principal axis rotation is too small, compared to the actual data. The model requires a stronger energy dissipation and weaker YORP components in the nutation angle and obliquity.

  7. Rotation and Morphology of Comet 252P/LINEAR

    NASA Astrophysics Data System (ADS)

    Woodney, Laura; Schambeau, Charles A.; Fernandez, Yanga R.

    2017-10-01

    Comet 252P/LINEAR had an incredibly close approach early in 2016 - minimum distance 0.036 AU on March 21 - that allowed detailed investigation of its behavior. Analysis of observations of the morphology of 252P have resulted in several possible rotational periods. Knight and Schleicher found that repetition of features in narrowband imaging from April 2016 indicated a period of 7.35 +/- 0.05 hr [1]. HST broadband data obtained by Li et al. in March and April partially fit the 7.35 hr period, but found 5.5 hr was a better fit for the April 4 r’ band data [2]. Given this discrepancy, additional observations may shed light on the true rotation state, and we present here the pieces of the puzzle obtained by our group.We observed 252P with the Kitt Peak National Observatory WIYN 0.9 m telescope on 7 nights: May 2 - 5 and June 6,8,9, 2016 using a Harris R filter. An oscillating jet is clearly visible in our data. While there is insufficient phase coverage to determine a best fit period from our data alone, we will present how our observations of the morphology fit the two proposed periods.[1] Knight, M.M and D.G. Schleicher. AAS, DPS Meeting #48, id.207.02, 2016 [2] Li, J.-Y. et al. AAS, DPS Meeting #48, id. 206.03, 2016.

  8. Axisymmetric modes of rotating relativistic stars in the Cowling approximation

    NASA Astrophysics Data System (ADS)

    Font, José A.; Dimmelmeier, Harald; Gupta, Anshu; Stergioulas, Nikolaos

    2001-08-01

    Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core collapse, crust- and core-quakes or binary mergers, and could become detectable in either gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations are appropriately perturbed and are numerically evolved using an axisymmetric, non-linear relativistic hydrodynamics code, assuming time-independence of the gravitational field (Cowling approximation). The simulations are performed using a high-resolution shock-capturing finite-difference scheme accurate enough to maintain the initial rotation law for a large number of rotational periods, even for stars at the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid variables, we compute the frequencies of quasi-radial and non-radial modes with spherical harmonic indices l=0, 1, 2 and 3, for a sequence of rotating stars from the non-rotating limit to the mass-shedding limit. The frequencies of the axisymmetric modes are affected significantly by rotation only when the rotation rate exceeds about 50 per cent of the maximum allowed. As expected, at large rotation rates, apparent mode crossings between different modes appear. In addition to the above modes, several axisymmetric inertial modes are also excited in our numerical evolutions.

  9. Long-term variation analysis of a tropical river's annual streamflow regime over a 50-year period

    NASA Astrophysics Data System (ADS)

    Seyam, Mohammed; Othman, Faridah

    2015-07-01

    Studying the long-term changes of streamflow is an important tool for enhancing water resource and river system planning, design, and management. The aim of this work is to identify the long-term variations in annual streamflow regime over a 50-year period from 1961 to 2010 in the Selangor River, which is one of the main tropical rivers in Malaysia. Initially, the data underwent preliminary independence, normality, and homogeneity testing using the Pearson correlation coefficient and Shapiro-Wilk and Pettitt's tests, respectively. The work includes a study and analysis of the changes through nine variables describing the annual streamflow and variations in the yearly duration of high and low streamflows. The analyses were conducted via two time scales: yearly and sub-periodic. The sub-periods were obtained by segmenting the 50 years into seven sub-periods by two techniques, namely the change-point test and direct method. Even though analysis revealed nearly negligible changes in mean annual flow over the study period, the maximum annual flow generally increased while the minimum annual flow significantly decreased with respect to time. It was also observed that the variables describing the dispersion in streamflow continually increased with respect to time. An obvious increase was detected in the yearly duration of danger level of streamflow, a slight increase was noted in the yearly duration of warning and alert levels, and a slight decrease in the yearly duration of low streamflow was found. The perceived changes validate the existence of long-term changes in annual streamflow regime, which increase the probability of floods and droughts occurring in future. In light of the results, attention should be drawn to developing water resource management and flood protection plans in order to avert the harmful effects potentially resulting from the expected changes in annual streamflow regime.

  10. Preschoolers' Mental Rotation: Sex Differences in Hemispheric Asymmetry

    ERIC Educational Resources Information Center

    Hahn, Nicola; Jansen, Petra; Heil, Martin

    2010-01-01

    Mental rotation performance has been found to produce one of the largest sex differences in cognition accompanied by sex differences in functional cerebral asymmetry. Although sex differences in mental rotation performance can be reliably demonstrated as early as age 5 years old, that is, long before puberty, no data exist as to whether…

  11. RoboPol: first season rotations of optical polarization plane in blazars

    DOE PAGES

    Blinov, D.; Pavlidou, V.; Papadakis, I.; ...

    2015-08-26

    Here, we present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periodsmore » have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10 -2) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (~5 × 10 -5) that none of our rotations is physically connected with an increase in gamma-ray activity.« less

  12. The Evolution of Rotation and Activity in Young Open Clusters: the Zero-Age Main Sequence.

    NASA Astrophysics Data System (ADS)

    Patten, Brian Michael

    1995-01-01

    I have undertaken a program of ground- and space -based observations to measure photometric rotation periods and X-ray luminosities for late-type stars in the young open clusters IC 2391 and IC 2602. With cluster ages of ~30 Myr, IC 2391 and IC 2602 are ideal sites in which to observe conditions at the ZAMS since the solar-type stars in these clusters have not been on the main sequence long enough to undergo significant magnetic braking. The ROSAT survey of IC 2391 revealed 80 X-ray sources, 44 of which were found to be associated with stars which are now classified as new cluster members. Among the solar-type stars in both IC 2391 and IC 2602, I find a factor of ~25 spread in the distribution of rotation periods, which range from 0.21 to 4.86 day. I also find a factor of ~10-20 spread in the range of LX about a median LX value of ~10^{30 } erg s^{-1} for both clusters. These results show conclusively that stars arrive on the ZAMS with a wide range of rotation rates and coronal activity levels. When compared to data from older clusters, such as the Pleiades and the Hyades, there is an overall decline observed in both the rotation rates and median X-ray luminosity of cluster members with increasing age, however, while the spread in the range of rotation rates decreases to a small value, the spread in the range of LX values as a fraction of the median is observed to increase with age. This behavior is best explained through a dependence of LX on P rot which is weak in the young clusters and strong in the older clusters. The Rossby diagram shows there is a tight correlation between L X/Lbol and the Rossby number, Prot divided by the convective turnover time. Young, rapidly rotating, main sequence stars lie along a plateau of magnetic saturation, where LX has a weak dependence on rotation period, while older, more slowly rotating stars lie in a region on the Rossby diagram where LX has a strong dependence on rotation period.

  13. Rotation and activity among solar-type stars of the Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Mayor, Michel

    1993-01-01

    We examine rotation and chromospheric activity among G and K dwarfs recently shown to be members of the Ursa Major Group (UMaG). Rotation periods for UMaG stars are smaller than for stars of the same colors in the Hyades, and by an amount corresponding to the Skumanich relation. Most UMaG stars have about the same level of Ca II and K emission, implying that they also have nearly uniform intrinsic rotation rates. That means that the diversity of rotation rates and levels of activity seen among solar-type stars in the Alpha Persei and Pleiades clusters has largely converged by the age of UMaG (0.3 Gyr).

  14. Rotational Diffusion Depends on Box Size in Molecular Dynamics Simulations.

    PubMed

    Linke, Max; Köfinger, Jürgen; Hummer, Gerhard

    2018-06-07

    We show that the rotational dynamics of proteins and nucleic acids determined from molecular dynamics simulations under periodic boundary conditions suffer from significant finite-size effects. We remove the box-size dependence of the rotational diffusion coefficients by adding a hydrodynamic correction k B T/6 ηV with k B Boltzmann's constant, T the absolute temperature, η the solvent shear viscosity, and V the box volume. We show that this correction accounts for the finite-size dependence of the rotational diffusion coefficients of horse-heart myoglobin and a B-DNA dodecamer in aqueous solution. The resulting hydrodynamic radii are in excellent agreement with experiment.

  15. Pool boiling from rotating and stationary spheres in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  16. Developing methods of determining unknown roational periods of asteroids via observations of (3122) Florence by the Harvard Observing Project

    NASA Astrophysics Data System (ADS)

    Abrams, Natasha Sarah; Bieryla, Allyson; Gomez, Sebastian; Huang, Jane; Lewis, John; Todd, Zoe; Alam, Munazza; Carmichael, Theron; Garrison, Lehman H.; Weaver, Ian; Chen, Chen; McGruder, Chima; Medina, Amber

    2018-06-01

    (3122) Florence is an asteroid that made the headlines with its close approach to Earth in late 2017. It is one of the biggest and brightest near-Earth asteroids that has been discovered and it has recently been found to have two moons. By observing the light reflected off an asteroid, we can measure its brightness over time and determine the rotational period of the asteroid. An asteroid’s rotational period can reveal information about its physical characteristics, such as its shape, and further our knowledge about processes that contribute to asteroid rotation in general. The Harvard Observing Project (HOP) is an initiative that allows undergraduates to learn about observational astronomy and take part in formal data collection and analysis. Over the course of the fall 2017 semester, HOP obtained four multi-hour, continuous observations in the R-band of the asteroid using the Harvard University 16-inch Clay Telescope. In our analysis, we reduced the images and performed astrometry and photometry on the data. The asteroid’s light curve was produced using AstroImageJ and we used the Python package gatspy to determine its rotational period. We found the rotational period to be 2.22 hours +/- 0.25, which agrees with the known rotational period of 2.3580 hours +/- 0.0002. This spring 2018 semester we are applying our methods to data collected on asteroids with unknown rotational periods and plan to present our findings.

  17. Rotational Spin-up Caused CO2 Outgassing on Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Graves, Kevin; Hirabayashi, Masatoshi; Richardson, James

    2015-11-01

    The Deep Impact spacecraft’s flyby of comet 103P/Hartley 2 on November 4, 2010 revealed its nucleus to be a small, bilobate, and highly active world [1] [2]. The bulk of this activity is driven by CO2 sublimation, which is enigmatically restricted to the tip of the small lobe [1]. Because Hartley 2's CO2 production responds to the diurnal cycle of the nucleus [1], CO2 ice must be no deeper than a few centimeters below the surface of the small lobe. However the high volatility of CO2 would suggest that its sublimation front should recede deep below the surface, such that diurnal volatile production is dominated by more refractory species such as water ice, as was observed at comet Tempel 1 [3].Here we show that both the near surface CO2 ice and its geographic restriction to the tip of the small lobe suggest that Hartley 2 recently experienced an episode of fast rotation. We use the GRAVMAP code to compute the stability of slopes on the surface of Hartley 2 as a function of spin period. We determine that the surface of the active region of Hartley 2’s small lobe becomes unstable at a rotation period of ~10-12 hours (as opposed to its current spin period of ~ 18 hours [1]), and will flow toward the tip of the lobe, excavating buried CO2 ice and activating CO2-driven activity. However, the rest of the surface of the nucleus is stable at these spin rates, and will therefore not exhibit CO2 activity. We additionally use Finite Element Model (FEM) analysis to demonstrate that the interior of Hartley 2’s nucleus is structurally stable (assuming a cohesive strength of at least 5 Pa) at these spin rates.The uncommonly high angular acceleration of Hartley 2, which has changed the nucleus spin period by two hours in three months [4], suggests that this episode of fast rotation may have existed only a few years or decades ago. Thus, Hartley 2 may provide an excellent case study into the reactivation of quiescent comet nuclei via rotational spin up, as would result from

  18. Magnetic island and plasma rotation under external resonant magnetic perturbation in the T-10 tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, L. G.; Ivanov, N. V., E-mail: ivanov-nv@nrcki.ru; Kakurin, A. M.

    2015-05-15

    Experimental comparison of the m = 2, n = 1 mode and plasma rotation velocities at q = 2 magnetic surface in a wide range of the mode amplitudes is presented. Phase velocity of the mode rotation is measured with a set of poloidal magnetic field sensors located at the inner side of the vacuum vessel wall. Plasma rotation velocity at the q = 2 magnetic surface in the direction of the mode phase velocity is measured with the heavy ion beam probe diagnostics. In the presence of a static Resonant Magnetic Perturbation (RMP), the rotation is irregular that appears as cyclical variations of the mode and plasmamore » instantaneous velocities. The period of these variations is equal to the period of the mode oscillations. In the case of high mode amplitude, the rotation irregularity of the mode is consistent with the rotation irregularity of the resonant plasma layer. On the contrary, the observed rise of the mode rotation irregularity in the case of low mode amplitude occurs without an increase of the rotation irregularity of the resonant plasma layer. The experimental results are simulated and analyzed with the TEAR code based on the two-fluid MHD approximation. Calculated irregularities of the mode and plasma rotation depend on the mode amplitude similar to the experimental data. For large islands, the rotation irregularity is attributed to oscillations of the electromagnetic torque applied to the resonant plasma layer. For small islands, the deviation of the mode rotation velocity from the plasma velocity occurs due to the effect of finite plasma resistivity.« less

  19. Managing carbon sinks in rubber (Hevea brasilensis) plantation by changing rotation length in SW China.

    PubMed

    Nizami, Syed Moazzam; Yiping, Zhang; Liqing, Sha; Zhao, Wei; Zhang, Xiang

    2014-01-01

    Extension of the rotation length in forest management has been highlighted in Article 3.4 of the Kyoto Protocol to help the countries in their commitments for reduction in greenhouse gas emissions. CO2FIX Model Ver.3.2 was used to examine the dynamics of carbon stocks (C stocks) in a rubber plantation in South Western China with the changing rotation lengths. To estimate the efficiency of increasing the rotation length as an Article 3.4 activity, study predicted that the rubber production and C stocks of the ecosystem increased with the increasing rotation (25, 30, 35, 40 and 45 years). While comparing the pace of growth both in economical (rubber production) and ecological (C stocks) terms in each rotation, 40 years rotation length showed maximum production and C stocks. After elongation of 40 year rotation to four consecutive cycles, it was concluded that the total C stocks of the ecosystem were 186.65 Mg ha(-1). The longer rotation lengths showed comparatively increased C stocks in below ground C stock after consecutive four rotations. The pace of C input (Mg C ha(-1) yr(-1)) and rubber production indicated that 40 years rotation is best suited for rubber plantation. The study has developed carbon mitigation based on four rotation scenarios. The possible stimulated increase in C stocks of the entire ecosystem after consecutive long rotations indicated that the emphasis must be paid on deciding the rotation of rubber plantation in SW China for reporting under article 3.4 of the Kyoto Protocol.

  20. Managing Carbon Sinks in Rubber (Hevea brasilensis) Plantation by Changing Rotation length in SW China

    PubMed Central

    Nizami, Syed Moazzam; Yiping, Zhang; Liqing, Sha; Zhao, Wei; Zhang, Xiang

    2014-01-01

    Extension of the rotation length in forest management has been highlighted in Article 3.4 of the Kyoto Protocol to help the countries in their commitments for reduction in greenhouse gas emissions. CO2FIX Model Ver.3.2 was used to examine the dynamics of carbon stocks (C stocks) in a rubber plantation in South Western China with the changing rotation lengths. To estimate the efficiency of increasing the rotation length as an Article 3.4 activity, study predicted that the rubber production and C stocks of the ecosystem increased with the increasing rotation (25, 30, 35, 40 and 45 years). While comparing the pace of growth both in economical (rubber production) and ecological (C stocks) terms in each rotation, 40 years rotation length showed maximum production and C stocks. After elongation of 40 year rotation to four consecutive cycles, it was concluded that the total C stocks of the ecosystem were 186.65 Mg ha-1. The longer rotation lengths showed comparatively increased C stocks in below ground C stock after consecutive four rotations. The pace of C input (Mg C ha-1yr-1) and rubber production indicated that 40years rotation is best suited for rubber plantation. The study has developed carbon mitigation based on four rotation scenarios. The possible stimulated increase in C stocks of the entire ecosystem after consecutive long rotations indicated that the emphasis must be paid on deciding the rotation of rubber plantation in SW China for reporting under article 3.4 of the Kyoto Protocol. PMID:25536041

  1. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  2. Nearshore sandbar rotation at single-barred embayed beaches

    NASA Astrophysics Data System (ADS)

    Blossier, B.; Bryan, K. R.; Daly, C. J.; Winter, C.

    2016-04-01

    The location of a shore-parallel nearshore sandbar derived from 7 years of video imagery data at the single-barred embayed Tairua Beach (NZ) is investigated to assess the contribution of barline rotation to the overall morphodynamics of sandbars in embayed environments and to characterize the process of rotation in relation to external conditions. Rotation induces cross-shore barline variations at the embayment extremities on the order of magnitude of those induced by alongshore uniform cross-shore migration of the bar. Two semiempirical models have been developed to relate the barline cross-shore migration and rotation to external wave forcing conditions. The rotation model is directly derived from the cross-shore migration model. Therefore, its formulation advocates for a primary role of cross-shore processes in the rotation of sandbars at embayed beaches. The orientation evolves toward an equilibrium angle directly related to the alongshore wave energy gradient due to two different mechanisms. Either the bar extremities migrate in opposite directions with no overall cross-shore bar migration (pivotal rotation) or the rotation relates to an overall migration of the barline which is not uniform along the beach (migration-driven rotation). Migration and rotation characteristic response times are similar, ranging from 10 to 30 days for mild and energetic wave conditions and above 200 days during very calm conditions or when the bar is located far offshore.

  3. Rotator cuff tear and sarcopenia: are these related?

    PubMed

    Chung, Seok Won; Yoon, Jong Pil; Oh, Kyung-Soo; Kim, Hyung Sup; Kim, Young Gun; Lee, Hyun-Joo; Jeong, Won-Ju; Kim, Dong-Hyun; Lee, Jong Soo; Yoon, Jee Wook

    2016-09-01

    Sarcopenia is the loss of muscle mass and consequent loss of muscle function with aging. Its prevalence among the general population is 12% to 30% in those aged >60 years. We evaluated (1) the difference in the prevalence of sarcopenia between patients with rotator cuff tear and controls and (2) the sarcopenia severity according to the size of the rotator cuff tear. Group 1 included 48 consecutive patients with chronic symptomatic full-thickness rotator cuff tears (mean age, 60.1 ± 6.5 years; range, 46-76 years), and group 2 included 48 age- and sex-matched patients. The sarcopenic index was evaluated by using the grip strength of the asymptomatic contralateral side and the skeletal muscle mass. No significant differences were found in the baseline data and demographic factors between the groups. The sarcopenic index was significantly inferior in the rotator cuff tear group than in the age- and sex-matched control groups (P = .041, .007, and .05, respectively). Patients with large to massive tears had a significantly inferior sarcopenic index than those with small and medium tears. The results showed that sarcopenia was more severe in patients with a chronic symptomatic full-thickness rotator cuff tear than in the age- and sex-matched control population and was correlated with the size of the tear, with the numbers available. Despite the individual variance in the underlying medical condition and physical activities, this study suggests that clinicians should consider the sarcopenic condition of patients with a rotator cuff tear, especially in elderly patients with large to massive tears. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Harvesting systems and costs for short rotation poplar

    Treesearch

    B. Rummer; D. Mitchell

    2013-01-01

    The objective of this review is to compare the cost of coppice and longer rotation poplar harvesting technology. Harvesting technology for short rotation poplar has evolved over the years to address both coppice harvest and single-stem harvest systems. Two potential approaches for coppice harvesting are modified forage harvesters and modified mulcher-balers. Both of...

  5. Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Buncher, J. B.; Fischbach, E.; Gruenwald, J. T.; Javorsek, D.; Jenkins, J. H.; Lee, R. H.; Mattes, J. J.; Newport, J. R.

    2010-12-01

    Evidence for an anomalous annual periodicity in certain nuclear-decay data has led to speculation on a possible solar influence on nuclear processes. We have recently analyzed data concerning the decay rates of 36Cl and 32Si, acquired at the Brookhaven National Laboratory (BNL), to search for evidence that might be indicative of a process involving solar rotation. Smoothing of the power spectrum by weighted-running-mean analysis leads to a significant peak at frequency 11.18 year-1, which is lower than the equatorial synodic rotation rates of the convection and radiative zones. This article concerns measurements of the decay rates of 226Ra acquired at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar (but not identical) analysis yields a significant peak in the PTB dataset at frequency 11.21 year-1, and a peak in the BNL dataset at 11.25 year-1. The change in the BNL result is not significant, since the uncertainties in the BNL and PTB analyses are estimated to be 0.13 year-1 and 0.07 year-1, respectively. Combining the two running means by forming the joint power statistic leads to a highly significant peak at frequency 11.23 year-1. We will briefly comment on the possible implications of these results for solar physics and for particle physics.

  6. Periodic Analysis Between Solar Variability and the Earth's Temperature From Centuries to Ten Thousand Years

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Feng, X. S.

    2014-12-01

    The global warming is one of the hottest topics for both scientists and the public at present. Strong evidences have shown that the global warming is related to the man-made increasing greenhouse gas levels. Besides the artificial factors, natural forces also contribute to the Earth's climate change. Among them, solar activity is an important ingredient of the natural driving forces of the Earth's climate. In this study, two data sets are adopted to investigate the periodicities of both solar activity and the variation of the Earth temperature as well as their correlations based on the wavelet analysis and cross correlation method. The first one is a directly measured data set covering centuries, while the second one is the reconstructed data during the past 11,000 years. The obtained results demonstrate that solar activity and the Earth's temperature have significant resonance cycles, and the Earth's temperature has periodic variations similar to those of solar activity. For centuries, these common periodicities include the 22-year cycle and the 50-year cycle. While for 11,000 years, they are the 200-year, 500-year, 1000-year, and 2000-year cycles. Correlation analysis reveals that the correlations between solar variability and the Earth's temperature are statistically significant. The correlation coefficient (C.C.) between the 11-year running averaged Total Solar Irradiance (TSI) and the ocean temperature is 0.88 during the past 133 years of global warming. While for 11,000 years, the C.C. between the 500-year running averages of sunspot number (SSN) and the Earth temperature (r=0.51, p=1%) is stronger than that between the temperature and the atmospheric CO2 concentration (r=0.35, p=10%). All these support that solar activity should have non-ignorable effects on the Earth's climate change, especially before the modern industrial time.

  7. Rotation of Low-mass Stars in Upper Scorpius and ρ Ophiuchus with K2

    NASA Astrophysics Data System (ADS)

    Rebull, L. M.; Stauffer, J. R.; Cody, A. M.; Hillenbrand, L. A.; David, T. J.; Pinsonneault, M.

    2018-05-01

    We present an analysis of K2 light curves (LCs) for candidate members of the young Upper Sco (USco) association (∼8 Myr) and the neighboring ρ Oph embedded cluster (∼1 Myr). We establish ∼1300 stars as probable members, ∼80% of which are periodic. The phased LCs have a variety of shapes which can be attributed to physical causes ranging from stellar pulsation and stellar rotation to disk-related phenomena. We identify and discuss a number of observed behaviors. The periods are ∼0.2–30 days with a peak near 2 days and the rapid period end nearing breakup velocity. M stars in the young USco region rotate systematically faster than GK stars, a pattern also present in K2 data for the older Pleiades and Praesepe systems. At higher masses (types FGK), the well-defined period–color relationship for slowly rotating stars seen in the Pleiades and Praesepe systems is not yet present in USco. Circumstellar disks are present predominantly among the more slowly rotating M stars in USco, with few disks in the subday rotators. However, M dwarfs with disks rotate faster on average than FGK systems with disks. For four of these disked M dwarfs, we provide direct evidence for disk locking based on the K2 LC morphologies. Our preliminary analysis shows a relatively mass-independent spin-up by a factor of ∼3.5 between USco and the Pleiades, then mass-dependent spin-down between Pleiades and Praesepe.

  8. Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation

    NASA Technical Reports Server (NTRS)

    Ponte, Rui M.

    2000-01-01

    Our three year investigation, carried out over the period 18-19 Nov 2000, focused on the study of the variability in ocean angular momentum and mass signals and their relation to the Earth's variable rotation and gravity field. This final report includes a summary description of our work and a list of related publications and presentations. One thrust of the investigation was to determine and interpret the changes in the ocean mass field, as they impact on the variable gravity field and Earth rotation. In this regard, the seasonal cycle in local vertically-integrated ocean mass was analyzed using two ocean models of different complexity: (1) the simple constant-density, coarse resolution model of Ponte; and (2) the fully stratified, eddy-resolving model of Semtner and Chervin. The dynamics and thermodynamics of the seasonal variability in ocean mass were examined in detail, as well as the methodologies to calculate those changes under different model formulations. Another thrust of the investigation was to examine signals in ocean angular momentum (OAM) in relation to Earth rotation changes. A number of efforts were undertaken in this regard. Sensitivity of the oceanic excitation to different assumptions about how the ocean is forced and how it dissipates its energy was explored.

  9. Analysis of preexistent vertebral rotation in the normal infantile, juvenile, and adolescent spine.

    PubMed

    Janssen, Michiel M A; Kouwenhoven, Jan-Willem M; Schlösser, Tom P C; Viergever, Max A; Bartels, Lambertus W; Castelein, René M; Vincken, Koen L

    2011-04-01

    Vertebral rotation was systematically analyzed in the normal, nonscoliotic thoracic spine of children aged 0 to 16 years. Subgroups were created to match the infantile, juvenile, and adolescent age groups according to the criteria of the Scoliosis Research Society. To determine whether a distinct pattern of vertebral rotation in the transverse plane exists in the normal, nonscoliotic infantile, juvenile, and adolescent spine. We assume that, once the spine starts to deteriorate into a scoliotic deformity, it will follow a preexisting rotational pattern. Recently, we identified a rotational pattern in the normal nonscoliotic adult spine that corresponds to the most common curve types in adolescent idiopathic scoliosis. In infantile idiopathic scoliosis, curves are typically left sided and boys are affected more often than girls, whereas in adolescent idiopathic scoliosis, the thoracic curve is typically right sided and predominantly girls are affected. The present study is the first systematic analysis of vertebral rotation in the normal children's spine. Vertebral rotation in the transverse plane of T2-T12 was measured by using a semiautomatic method on 146 computed tomographic scans of children (0-16 years old) without clinical or radiologic evidence of spinal pathology. Scans were mainly made for reasons such as recurrent respiratory tract infections, malignancies, or immune disorders. Vertebral rotational patterns were analyzed in the infantile (0-3-year-old), juvenile (4-9-year-old), and adolescent (10-16-year-old) boys and girls. In the infantile spine, vertebrae T2-T6 were significantly rotated to the left (P < 0.001). In the juvenile spine, T4 was significantly rotated to the left. In the adolescent spine, T6-T12 were significantly rotated to the right (P ≤ 0.001). Rotation to the left was more pronounced in infantile boys than in the girls (P = 0.023). In juvenile and adolescent children, no statistical differences in rotation were found between the sexes

  10. A Period-Activity Relation for Active RS CVN Stars

    NASA Astrophysics Data System (ADS)

    Simon, Theodore

    Soft X ray observations of RS CVn binaries point to a correlation between L x /Lbol (the X ray to bolometric luminosity ratio that measures the coronal heating rate) and Omega (the stellar angular velocity). This correlation is almost certainly caused by a stellar dynamo, operating in rapidly-rotating late-type stars with deep convection zones. We are proposing to extend the X ray "rotation-activity relation" to the uv transition region and chromospheric emission lines observable with IUE. If the non-radiative heating rates of stellar transition regions and chromospheres are determined largely by magnetic processes associated with a stellar dynamo, then a similar correlation may be found. We have selected a group of recently discovered active long-period systems, which we believe will be very bright at uv wavelengths. One important goal of this program is to determine whether past studies of the "rotation-activity connection" have been compromised by the omission of active long-period RS CVn systems.

  11. Rotational energy in a physical pendulum

    NASA Astrophysics Data System (ADS)

    Monteiro, Martín; Cabeza, Cecilia; Marti, Arturo C.

    2014-03-01

    Smartphone usage has expanded dramatically in recent years worldwide. This revolution also has impact in undergraduate laboratories where different experiences are facilitated by the use of the sensors usually included in these devices. Recently, in several articles published in the literature, the use of smartphones has been proposed for several physics experiments. Although most previous articles focused on mechanical experiments, an aspect that has received less attention is the use of rotation sensors or gyroscopes. Indeed, the use of these sensors paves the way for new experiments enabling the measurement of angular velocities. In a very recent paper the conservation of the angular momentum is considered using rotation sensors.3 In this paper we present an analysis of the rotational energy of a physical pendulum.

  12. Mountain building and earth rotation.

    NASA Astrophysics Data System (ADS)

    Vermeersen, L. L. A.; Sabadini, R.; Spada, G.; Vlaar, N. J.

    1994-06-01

    Whereas the present-day true polar wander and the secular non-tidal acceleration of the Earth have usually been attributed to postglacial rebound, it has recently been suggested that non-glacially induced vertical tectonic movements taking place under non-isostatic conditions can also be effective in changing the Earth's rotation. The authors present a case study in which they analyse the effects of some simple uplift histories of the Himalayas and the Tibetan Plateau on the rotational axis and on the second-degree zonal harmonic of the geoid, for time-scales of up to a few million years.

  13. Rotational elasticity

    NASA Astrophysics Data System (ADS)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  14. Mental Rotation with Tangible Three-Dimensional Objects: A New Measure Sensitive to Developmental Differences in 4- to 8-year-old Children

    ERIC Educational Resources Information Center

    Hawes, Zachary; LeFevre, Jo-Anne; Xu, Chang; Bruce, Catherine D.

    2015-01-01

    There is an emerging consensus that spatial thinking is fundamental to later success in math and science. The goals of this study were to design and evaluate a novel test of three-dimensional (3D) mental rotation for 4- to 8-year-old children (N?=?165) that uses tangible 3D objects. Results revealed that the measure was both valid and reliable and…

  15. Scaling of rotational inertia of primate mandibles.

    PubMed

    Ross, Callum F; Iriarte-Diaz, Jose; Platts, Ellen; Walsh, Treva; Heins, Liam; Gerstner, Geoffrey E; Taylor, Andrea B

    2017-05-01

    The relative importance of pendulum mechanics and muscle mechanics in chewing dynamics has implications for understanding the optimality criteria driving the evolution of primate feeding systems. The Spring Model (Ross et al., 2009b), which modeled the primate chewing system as a forced mass-spring system, predicted that chew cycle time would increase faster than was actually observed. We hypothesized that if mandibular momentum plays an important role in chewing dynamics, more accurate estimates of the rotational inertia of the mandible would improve the accuracy with which the Spring Model predicts the scaling of primate chew cycle period. However, if mass-related momentum effects are of negligible importance in the scaling of primate chew cycle period, this hypothesis would be falsified. We also predicted that greater "robusticity" of anthropoid mandibles compared with prosimians would be associated with higher moments of inertia. From computed tomography scans, we estimated the scaling of the moment of inertia (I j ) of the mandibles of thirty-one species of primates, including 22 anthropoid and nine prosimian species, separating I j into the moment about a transverse axis through the center of mass (I xx ) and the moment of the center of mass about plausible axes of rotation. We found that across primates I j increases with positive allometry relative to jaw length, primarily due to positive allometry of jaw mass and I xx , and that anthropoid mandibles have greater rotational inertia compared with prosimian mandibles of similar length. Positive allometry of I j of primate mandibles actually lowers the predictive ability of the Spring Model, suggesting that scaling of primate chew cycle period, and chewing dynamics in general, are more strongly influenced by factors other than scaling of inertial properties of the mandible, such as the dynamic properties of the jaw muscles and neural control. Differences in cycle period scaling between chewing and locomotion

  16. On the period of the periodic orbits of the restricted three body problem

    NASA Astrophysics Data System (ADS)

    Perdomo, Oscar

    2017-09-01

    We will show that the period T of a closed orbit of the planar circular restricted three body problem (viewed on rotating coordinates) depends on the region it encloses. Roughly speaking, we show that, 2 T=kπ +\\int _Ω g where k is an integer, Ω is the region enclosed by the periodic orbit and g:R^2→ R is a function that only depends on the constant C known as the Jacobian constant; it does not depend on Ω . This theorem has a Keplerian flavor in the sense that it relates the period with the space "swept" by the orbit. As an application we prove that there is a neighborhood around L_4 such that every periodic solution contained in this neighborhood must move clockwise. The same result holds true for L_5.

  17. Glenohumeral joint rotation range of motion in competitive swimmers.

    PubMed

    Riemann, Bryan L; Witt, Joe; Davies, George J

    2011-08-01

    Much research has examined shoulder range of motion adaptations in overhead-unilateral athletes. Based on the void examining overhead-bilateral athletes, especially competitive swimmers, we examined shoulder external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion of competitive swimmers. The range of motion of registered competitive swimmers (n = 144, age = 12-61 years) was compared by limb (dominant, non-dominant), sex, and age group (youth, high school, college, masters). Significantly (P < 0.05) greater dominant external rotation was observed for both men and women high school and college swimmers, youth women swimmers, and men masters swimmers compared with the non-dominant limb. The isolated internal rotation (glenohumeral rotation), composite internal rotation (glenohumeral rotation plus scapulothoracic protraction), and total arc of motion (external rotation plus composite internal rotation) of the non-dominant limb was significantly greater than that of the dominant limb by sex and age group. Youth and high school swimmers demonstrated significantly greater composite internal rotation than college and masters swimmers. Youth swimmers displayed significantly greater total arc of motion than all other age groups. These data will aid in the interpretation of shoulder range of motion values in competitive swimmers during preseason screenings, injury evaluations and post-rehabilitation programmes, with the results suggesting that differences exist in bilateral external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion.

  18. Do fourth year pharmacy students use Facebook to form workplace-based learning peer groups during rotations?

    PubMed

    Phillips, Jennifer; Gettig, Jacob; Goliak, Kristen; Allen, Sheila; Fjortoft, Nancy

    2017-11-01

    The objective of this study was to gain an understanding of whether pharmacy students are using Facebook ® to create formal or informal workplace-based peer groups to learn from each other and share information while completing their advanced pharmacy practice experiences (APPEs). Fourth-year pharmacy students from two colleges of pharmacy in the same geographical area were recruited by email to participate. Inclusion criteria were: completion of two or more APPEs, current assignment to an APPE rotation in the local area, and a Facebook ® profile. Two focus groups, of eight students each were conducted on each of the two colleges' campuses. An incentive to participate was provided. Thematic analysis was used to analyze responses. Students reported using Facebook ® to learn about rotation expectations, roles/responsibilities, and preceptors. However, frequency and depth of interactions varied among the participants. Most participants noted that they prefer more private methods of communication to learn about APPE experiences. Students found Facebook ® to be a good source of motivation and support during experiential learning. The use of social media sites like Facebook ® may help students form "virtual" workplace-based peer groups during APPEs. Pharmacy schools interested in providing support for formal workplace-based learning groups should consider using social media sites as one component of this program. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. An epidemiological study of rotator cuff pathology using The Health Improvement Network database.

    PubMed

    White, J J E; Titchener, A G; Fakis, A; Tambe, A A; Hubbard, R B; Clark, D I

    2014-03-01

    Little is known about the incidence of rotator cuff pathology or its demographic associations in the general population. We undertook a large epidemiological study of rotator cuff pathology in the United Kingdom using The Health Improvement Network (THIN) database. The incidence of rotator cuff pathology was 87 per 100,000 person-years. It was more common in women than in men (90 cases per 100,000 person-years in women and 83 per 100,000 person-years in men; p < 0.001). The highest incidence of 198 per 100,000 person-years was found in those aged between 55 and 59 years. The regional distribution of incidence demonstrated an even spread across 13 UK health authorities except Wales, where the incidence was significantly higher (122 per 100,000 person-years; p < 0.001). The lowest socioeconomic group had the highest incidence (98 per 100,000 person-years). The incidence has risen fourfold since 1987 and as of 2006 shows no signs of plateauing. This study represents the largest general population study of rotator cuff pathology reported to date. The results obtained provide an enhanced appreciation of the epidemiology of rotator cuff pathology and may help to direct future upper limb orthopaedic services.

  20. Changing trends of chronic myeloid leukemia in greater Mumbai, India over a period of 30 years

    PubMed Central

    Dikshit, Rajesh P.; Nagrani, Rajini; Yeole, Balkrishna; Koyande, Shravani; Banawali, Shripad

    2011-01-01

    Background: Little is known about burden of chronic myeloid leukemia (CML) in India. There is a recent interest to observe incidence and mortality because of advent of new diagnostic and treatment policies for CML. Materials and Methods: We extracted data from the oldest population-based cancer registry of Mumbai for 30 years period from 1976−2005 to observe incidence and mortality rates of CML. We classified the data into four age groups 0–14, 15–29, 30–54 and 55–74 to observe incidence rates in the respective age groups. Results: The age specific rates were highest for the age group of 55–74 years. No significant change in trends of CML was observed for 30 years period. However, there was a significant reduction in incidence rate for recent 15-years period (Estimated average annual percentage change=-3.9). No significant reduction in mortality rate was observed till 2005. Conclusion: The study demonstrates that age-specific rates for CML are highest in age group of 55-74 years, although they are lower compared to western populations. Significant reduction in incidence of CML in recent periods might be because of reduced misclassification of leukemias. The data of CML has to be observed for another decade to witness reduction in mortality because of changes in treatment management. PMID:22174498