Sample records for year tmy weather

  1. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energymore » management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the

  2. Rainfall Estimates from the TMI and the SSM/I

    NASA Technical Reports Server (NTRS)

    Hong, Ye; Kummerow, Christian D.; Olson, William S.; Viltard, Nicolas

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM), which is a joint Japan-U.S. Earth observing satellite, has been successfully launched from Japan on November 27, 1997. The main purpose of the TRMM is to measure quantitatively rainfall over the tropics for the research of climate and weather. One of three rainfall measuring instruments abroad the TRMM is the high resolution TRMM Microwave Imager (TMI). The TMI instrument is essentially the copy of the SSM/I with a dual-polarized pair of 10.7 GHz channels added to increase the dynamic range of rainfall estimates. In addition, the 21.3 GHz water vapor absorption channel is designed in the TMI as opposed to the 22.235 GHz in the SSM/I to avoid saturation in the tropics. This paper will present instantaneous rain rates estimated from the coincident TMI and SSM/I observations. The algorithm for estimating instantaneous rainfall rates from both sensors is the Goddard Profiling algorithm (Gprof). The Gprof algorithm is a physically based, multichannel rainfall retrieval algorithm, The algorithm is very portable and can be used for various sensors with different channels and resolutions. The comparison of rain rates estimated from TMI and SSM/I on the same rain regions will be performed. The results from the comparison and the insight of tile retrieval algorithm will be given.

  3. Digital TMI

    NASA Technical Reports Server (NTRS)

    Rios, Joseph

    2012-01-01

    Presenting the current status of the Digital TMI project to visiting members of the FAA Command Center. Digital TMI is an effort to store national-level traffic management initiatives in a standards-compliant manner. Work is funded by the FAA.

  4. TRMM Microwave Imager (TMI) Updates for Final Data Version Release

    NASA Technical Reports Server (NTRS)

    Kroodsma, Rachael A; Bilanow, Stephen; Ji, Yimin; McKague, Darren

    2017-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) dataset released by the Precipitation Processing System (PPS) will be updated to a final version within the next year. These updates are based on increased knowledge in recent years of radiometer calibration and sensor performance issues. In particular, the Global Precipitation Measurement (GPM) Microwave Imager (GMI) is used as a model for many of the TMI version updates. This paper discusses four aspects of the TMI data product that will be improved: spacecraft attitude, calibration and quality control, along-scan bias corrections, and sensor pointing accuracy. These updates will be incorporated into the final TMI data version, improving the quality of the data product and ensuring accurate geophysical parameters can be derived from TMI.

  5. Improving Assimilated Global Data Sets using TMI Rainfall and Columnar Moisture Observations

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    A global analysis that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data products contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the tropics. In this study, we show that assimilating precipitation and total precipitable water (TPW) retrievals derived from the TRMM Microwave Imager (TMI) improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the large-scale circulation produced by the Goddard Earth Observing System (GEOS) data assimilation system (DAS). In particular, assimilating TMI rain improves clouds and radiation in areas of active convection, as well as the latent heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW retrievals leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. The improved analysis also improves short-range forecasts in the tropics. Ensemble forecasts initialized with the GEOS analysis incorporating TMI rain rates and TPW yield smaller biases in tropical precipitation forecasts beyond 1 day and better 500 hPa geopotential height forecasts up to 5 days. Results of this study demonstrate the potential of using high-quality space-borne rainfall and moisture observations to improve the quality of assimilated global data for climate analysis and weather forecasting applications

  6. Psychosocial effects of restarting a TMI reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    ORNL is studying human responses to hazardous environmental phenomena. This study attempts to understand the human behavior associated with the restart of TMI-1 Reactor after a nuclear event occurred at TMI-2.

  7. Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma

    NASA Technical Reports Server (NTRS)

    Fisher, Brad L.

    2004-01-01

    The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.

  8. Instrumentation Performance During the TMI-2 Accident

    NASA Astrophysics Data System (ADS)

    Rempe, Joy L.; Knudson, Darrell L.

    2014-08-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. The loss of coolant and the hydrogen combustion that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focused upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this paper. As noted within this paper, several techniques were invoked in the TMI-2 post-accident program to evaluate sensor survivability status and data qualification, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this paper provides recommendations related to sensor survivability and the data evaluation process that could be implemented in upcoming Fukushima Daiichi recovery efforts.

  9. TmiRUSite and TmiROSite scripts: searching for mRNA fragments with miRNA binding sites with encoded amino acid residues.

    PubMed

    Berillo, Olga; Régnier, Mireille; Ivashchenko, Anatoly

    2014-01-01

    microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents all received data in table formats that are easy to analyse further. The predicted data finds utility in molecular and evolutionary biology studies. They find use in studying miRNA binding sites in animals and plants. TmiRUSite and TmiROSite scripts are available for free from authors upon request and at https: //sites.google.com/site/malaheenee/downloads for download.

  10. Indonesia sea surface temperature from TRMM Microwave Imaging (TMI) sensor

    NASA Astrophysics Data System (ADS)

    Marini, Y.; Setiawan, K. T.

    2018-05-01

    We analysis the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) data to monitor the sea surface temperature (SST) of Indonesia waters for a decade of 2005-2014. The TMI SST data shows the seasonal and interannual SST in Indonesian waters. In general, the SST average was highest in March-May period with SST average was 29.4°C, and the lowest was in June – August period with the SST average was 28.5°C. The monthly SST average fluctuation of Indonesian waters for 10 years tends to increase. The lowest SST average of Indonesia occurred in August 2006 with the SST average was 27.6° C, while the maximum occurred in May 2014 with the monthly SST average temperature was 29.9 ° C.

  11. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  12. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  13. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  14. Generation and evaluation of typical meteorological year datasets for greenhouse and external conditions on the Mediterranean coast.

    PubMed

    Fernández, M D; López, J C; Baeza, E; Céspedes, A; Meca, D E; Bailey, B

    2015-08-01

    A typical meteorological year (TMY) represents the typical meteorological conditions over many years but still contains the short term fluctuations which are absent from long-term averaged data. Meteorological data were measured at the Experimental Station of Cajamar 'Las Palmerillas' (Cajamar Foundation) in Almeria, Spain, over 19 years at the meteorological station and in a reference greenhouse which is typical of those used in the region. The two sets of measurements were subjected to quality control analysis and then used to create TMY datasets using three different methodologies proposed in the literature. Three TMY datasets were generated for the external conditions and two for the greenhouse. They were assessed by using each as input to seven horticultural models and comparing the model results with those obtained by experiment in practical trials. In addition, the models were used with the meteorological data recorded during the trials. A scoring system was used to identify the best performing TMY in each application and then rank them in overall performance. The best methodology was that of Argiriou for both greenhouse and external conditions. The average relative errors between the seasonal values estimated using the 19-year dataset and those using the Argiriou greenhouse TMY were 2.2 % (reference evapotranspiration), -0.45 % (pepper crop transpiration), 3.4 % (pepper crop nitrogen uptake) and 0.8 % (green bean yield). The values obtained using the Argiriou external TMY were 1.8 % (greenhouse reference evapotranspiration), 0.6 % (external reference evapotranspiration), 4.7 % (greenhouse heat requirement) and 0.9 % (loquat harvest date). Using the models with the 19 individual years in the historical dataset showed that the year to year weather variability gave results which differed from the average values by ± 15 %. By comparison with results from other greenhouses it was shown that the greenhouse TMY is applicable to greenhouses which have a solar

  15. Generation and evaluation of typical meteorological year datasets for greenhouse and external conditions on the Mediterranean coast

    NASA Astrophysics Data System (ADS)

    Fernández, M. D.; López, J. C.; Baeza, E.; Céspedes, A.; Meca, D. E.; Bailey, B.

    2015-08-01

    A typical meteorological year (TMY) represents the typical meteorological conditions over many years but still contains the short term fluctuations which are absent from long-term averaged data. Meteorological data were measured at the Experimental Station of Cajamar `Las Palmerillas' (Cajamar Foundation) in Almeria, Spain, over 19 years at the meteorological station and in a reference greenhouse which is typical of those used in the region. The two sets of measurements were subjected to quality control analysis and then used to create TMY datasets using three different methodologies proposed in the literature. Three TMY datasets were generated for the external conditions and two for the greenhouse. They were assessed by using each as input to seven horticultural models and comparing the model results with those obtained by experiment in practical trials. In addition, the models were used with the meteorological data recorded during the trials. A scoring system was used to identify the best performing TMY in each application and then rank them in overall performance. The best methodology was that of Argiriou for both greenhouse and external conditions. The average relative errors between the seasonal values estimated using the 19-year dataset and those using the Argiriou greenhouse TMY were 2.2 % (reference evapotranspiration), -0.45 % (pepper crop transpiration), 3.4 % (pepper crop nitrogen uptake) and 0.8 % (green bean yield). The values obtained using the Argiriou external TMY were 1.8 % (greenhouse reference evapotranspiration), 0.6 % (external reference evapotranspiration), 4.7 % (greenhouse heat requirement) and 0.9 % (loquat harvest date). Using the models with the 19 individual years in the historical dataset showed that the year to year weather variability gave results which differed from the average values by ± 15 %. By comparison with results from other greenhouses it was shown that the greenhouse TMY is applicable to greenhouses which have a solar

  16. Limits on the Secular Drift of the TMI Calibration

    NASA Astrophysics Data System (ADS)

    Wilheit, T. T.; Farrar, S.; Jones, L.; Santos-Garcia, A.

    2012-12-01

    Data from the TRMM Microwave Imager (TMI) can be applied to the problem of determining the trend in oceanic precipitation over more than a decade. It is thus critical to know if the calibration of the instrument has any drift over this time scale. Recently a set of Windsat data with a self-consistent calibration covering July 2005 through June of 2006 and all of 2011 has become available. The mission of Windsat, determining the feasibility of measuring oceanic wind speed and direction, requires extraordinary attention to instrument calibration. With TRMM being in a low inclination orbit and Windsat in a near polar sun synchronous orbit, there are many observations coincident in space and nearly coincident in time. A data set has been assembled where the observations are averaged over 1 degree boxes of latitude and longitude and restricted to a maximum of 1 hour time difference. University of Central Florida (UCF) compares the two radiometers by computing radiances based on Global Data Assimilation System (GDAS) analyses for all channels of each radiometer for each box and computing double differences for corresponding channels. The algorithm is described in detail by Biswas et al., (2012). Texas A&M (TAMU) uses an independent implementation of GDAS-based algorithm and another where the radiances of Windsat are used to compute Sea Surface Temperature, Sea Surface Wind Speed, Precipitable Water and Cloud Liquid Water for each box. These are, in turn, used to compute the TMI radiances. These two algorithms have been described in detail by Wilheit (2012). Both teams apply stringent filters to the boxes to assure that the conditions are consistent with the model assumptions. Examination of both teams' results indicates that the drift is less than 0.04K over the 5 ½ year span for the 10 and 37 GHz channels of TMI. The 19 and 21 GHz channels have somewhat larger differences, but they are more influenced by atmospheric changes. Given the design of the instruments, it is

  17. Application of TRMM PR and TMI Measurements to Assess Cloud Microphysical Schemes in the MM5 Model for a Winter Storm

    NASA Technical Reports Server (NTRS)

    Han, Mei; Braun, Scott A.; Olson, William S.; Persson, P. Ola G.; Bao, Jian-Wen

    2009-01-01

    Seen by the human eye, precipitation particles are commonly drops of rain, flakes of snow, or lumps of hail that reach the ground. Remote sensors and numerical models usually deal with information about large collections of rain, snow, and hail (or graupel --also called soft hail ) in a volume of air. Therefore, the size and number of the precipitation particles and how particles interact, evolve, and fall within the volume of air need to be represented using physical laws and mathematical tools, which are often implemented as cloud and precipitation microphysical parameterizations in numerical models. To account for the complexity of the precipitation physical processes, scientists have developed various types of such schemes in models. The accuracy of numerical weather forecasting may vary dramatically when different types of these schemes are employed. Therefore, systematic evaluations of cloud and precipitation schemes are of great importance for improvement of weather forecasts. This study is one such endeavor; it pursues quantitative assessment of all the available cloud and precipitation microphysical schemes in a weather model (MM5) through comparison with the observations obtained by National Aeronautics and Space Administration (NASA) s and Japan Aerospace Exploration Agency (JAXA) s Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and microwave imager (TMI). When satellite sensors (like PR or TMI) detect information from precipitation particles, they cannot directly observe the microphysical quantities (e.g., water species phase, density, size, and amount etc.). Instead, they tell how much radiation is absorbed by rain, reflected away from the sensor by snow or graupel, or reflected back to the satellite. On the other hand, the microphysical quantities in the model are usually well represented in microphysical schemes and can be converted to radiative properties that can be directly compared to the corresponding PR and TMI observations

  18. Extreme weather-year sequences have nonadditive effects on environmental nitrogen losses.

    PubMed

    Iqbal, Javed; Necpalova, Magdalena; Archontoulis, Sotirios V; Anex, Robert P; Bourguignon, Marie; Herzmann, Daryl; Mitchell, David C; Sawyer, John E; Zhu, Qing; Castellano, Michael J

    2018-01-01

    The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet-dry vs. dry-wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn-soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2-year sequences of extreme weather affect 2-year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951-2013), we created nine 2-year scenarios with all possible combinations of the driest ("dry"), wettest ("wet"), and average ("normal") weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal-normal 2-year weather scenario, 2-year extreme weather scenarios affected 2-year cumulative NO 3 - leaching (range: -93 to +290%) more than N 2 O emissions (range: -49 to +18%). The 2-year weather scenarios had nonadditive effects on N losses: compared with the normal-normal scenario, the dry-wet sequence decreased 2-year cumulative N 2 O emissions while the wet-dry sequence increased 2-year cumulative N 2 O emissions. Although dry weather decreased NO 3 - leaching and N 2 O emissions in isolation, 2-year cumulative N losses from the wet-dry scenario were greater than the dry-wet scenario. Cover crops reduced the effects of extreme weather on NO 3 - leaching but had a lesser effect on N 2 O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather

  19. TMI-2 upper-core particle bed thermal behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, P.

    1987-08-01

    Models of dryout heat fluxes of particle beds believed to be applicable to the TMI-2 upper-core particle bed are reviewed and developed. A simplified Lipinski model and a model based on flooding are shown to agree between themselves and with experiments. These models are applied to the calculation of the dryout heat flux of the TMI-2 upper-core particle bed. The TMI-2 upper-core particle bed is shown to be: (a) coolable, if little heat is transferred to it from the consolidated region below, (b) only marginally coolable, if not uncoolable, before material relocation from the consolidated region, if most of themore » heat in the consolidiated region is transferred to it, and (c) coolable, after the relocation, regardless of heat transfer from the remaining consolidated region. Based on an analogy to quenching experiments, which show that the heat flux during the quench of a particle bed is approximately equal to the dryout heat flux, the time required to quench the TMI-2 upper-core particle bed from 2000 K to the saturation temperature of water during the accident is estimated. The bed was either quenched by 225 min after the initiation of the accident (assuming no heat was transferred to it from the consolidated region) or, at the latest, by 245 min (20 min after molten material relocation to the lower plenum from the consolidated region; assuming most of the heat generated in the consolidated region, both before and after the relocation, was transferred to the particle bed).« less

  20. World weather program: Plan for fiscal year 1972

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The World Weather Program which is composed of the World Weather Watch, the Global Atmospheric Research Program, and the Systems Design and Technological Development Program is presented. The U.S. effort for improving the national weather services through advances in science, technology and expanded international cooperation during FY 72 are described. The activities of the global Atmospheric Research Program for last year are highlighted and fiscal summary of U.S. programs is included.

  1. Qualification of data obtained during a severe accident. Illustrative examples from TMI-2 evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempe, Joy L.; Knudson, Darrell L.

    2015-02-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. Post-TMI-2 instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken bymore » these operators. Prior efforts also focused on sensors providing data required for subsequent forensic evaluations and accident simulations. This paper provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: reactor coolant system (RCS) pressure; containment building temperature; and containment pressure. These selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are described to facilitate implementation of a similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.« less

  2. Preparations to ship the TMI-2 damaged reactor core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, R.C.; Quinn, G.J.

    1985-11-01

    The March 1979 accident at Three Mile Island Unit 2 (TMI-2) resulted in a severely damaged core. Entries into that core using various tools and inspection devices have shown a significant void, large amounts of rubble, partially intact fuel assemblies, and some resolidified molten materials. The removal and disposition of that core has been of considerable public, regulatory, and governmental interest for some time. In a contractual agreement between General Public Utility Nuclear (GPUN) and the US Department of Energy (DOE), DOE has agreed to accept the TMI-2 core for interim storage at the Idaho National Engineering Laboratory (INEL), conductmore » research on fuel and materials of the core, and eventually dispose of the core either by processing or internment at the national repository. GPUN has removed various samples of material from the core and was scheduled to begin extensive defueling operations in September 1985. EG and G Idaho, Inc. (EG and G), acting on behalf of DOE, is responsible for transporting, receiving, examining, and storing the TMI-2 core. This paper addresses the preparations to ship the core to INEL, which is scheduled to commence in March 1986.« less

  3. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joy L. Rempe; Darrell L. Knudson

    2013-03-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensorsmore » that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data

  4. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joy L. Rempe; Darrell L. Knudson

    2014-05-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensorsmore » that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data

  5. Mesoscale Assimilation of TMI Rainfall Data with 4DVAR: Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Pu, Zhaoxia

    2003-01-01

    Sensitivity studies are performed on the assimilation of TRMM (Tropical Rainfall Measurement Mission) Microwave Imager (TMI) derived rainfall data into a mesoscale model using a four-dimensional variational data assimilation (4DVAR) technique. A series of numerical experiments is conducted to evaluate the impact of TMI rainfall data on the numerical simulation of Hurricane Bonnie (1998). The results indicate that rainfall data assimilation is sensitive to the error characteristics of the data and the inclusion of physics in the adjoint and forward models. In addition, assimilating the rainfall data alone is helpful for producing a more realistic eye and rain bands in the hurricane but does not ensure improvements in hurricane intensity forecasts. Further study indicated that it is necessary to incorporate TMI rainfall data together with other types of data such as wind data into the model, in which case the inclusion of the rainfall data further improves the intensity forecast of the hurricane. This implies that proper constraints may be needed for rainfall assimilation.

  6. Laser linewidth dependence to the transverse mode instability (TMI) nonlinear gain in kW-class fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Mermelstein, Marc D.

    2018-02-01

    The thermal grating (TG) and inversion grating (IG) TMI gain dependence on the light beating intensity spectrum is investigated. TMI gain is restricted to intensity bandwidths comparable to the thermal gain bandwidth of 20 kHz. Seed laser phase noise generates intensity spectra determined by the laser linewidth and the relative group delay time of the gain fiber. These spectral bandwidths exceed the thermal gain bandwidth by orders of magnitude in both the coherent and incoherent regimes, making them unlikely sources of TMI. It is suggested that phase noise generated in the gain fiber due to external perturbations may be the source of the TMI.

  7. Complete Genome Sequence of Thermus thermophilus TMY, Isolated from a Geothermal Power Plant

    PubMed Central

    Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya

    2017-01-01

    ABSTRACT Thermus thermophilus TMY (JCM 10668) was isolated from silica scale formed at a geothermal power plant in Japan. Here, we report the complete genome sequence for this strain, which contains a chromosomal DNA of 2,121,526 bp with 2,500 predicted genes and a pTMY plasmid of 19,139 bp, with 28 predicted genes. PMID:28153912

  8. Complete Genome Sequence of Thermus thermophilus TMY, Isolated from a Geothermal Power Plant.

    PubMed

    Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya; Doi, Katsumi

    2017-02-02

    Thermus thermophilus TMY (JCM 10668) was isolated from silica scale formed at a geothermal power plant in Japan. Here, we report the complete genome sequence for this strain, which contains a chromosomal DNA of 2,121,526 bp with 2,500 predicted genes and a pTMY plasmid of 19,139 bp, with 28 predicted genes. Copyright © 2017 Fujino et al.

  9. Fifty Years of Space Weather Forecasting from Boulder

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2015-12-01

    The first official space weather forecast was issued by the Space Disturbances Laboratory in Boulder, Colorado, in 1965, ushering in an era of operational prediction that continues to this day. Today, the National Oceanic and Atmospheric Administration (NOAA) charters the Space Weather Prediction Center (SWPC) as one of the nine National Centers for Environmental Prediction (NCEP) to provide the nation's official watches, warnings, and alerts of space weather phenomena. SWPC is now integral to national and international efforts to predict space weather events, from the common and mild, to the rare and extreme, that can impact critical technological infrastructure. In 2012, the Strategic National Risk Assessment included extreme space weather events as low-to-medium probability phenomena that could, unlike any other meteorogical phenomena, have an impact on the government's ability to function. Recognizing this, the White House chartered the Office of Science and Technology Policy (OSTP) to produce the first comprehensive national strategy for the prediction, mitigation, and response to an extreme space weather event. The implementation of the National Strategy is ongoing with NOAA, its partners, and stakeholders concentrating on the goal of improving our ability to observe, model, and predict the onset and severity of space weather events. In addition, work continues with the research community to improve our understanding of the physical mechanisms - on the Sun, in the heliosphere, and in the Earth's magnetic field and upper atmosphere - of space weather as well as the effects on critical infrastructure such as electrical power transmission systems. In fifty years, people will hopefully look back at the history of operational space weather prediction and credit our efforts today with solidifying the necessary developments in observational systems, full-physics models of the entire Sun-Earth system, and tools for predicting the impacts to infrastructure to protect

  10. 77 FR 27085 - TMI Forest Products, Inc., Crane Creek Division, Morton, WA; Notice of Negative Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-80,454] TMI Forest Products, Inc., Crane Creek Division, Morton, WA; Notice of Negative Determination Regarding Application for... workers of TMI Forest Products, Inc., Crane Creek Division, Morton, Washington (subject firm). The [[Page...

  11. Government: Nuclear Safety in Doubt a Year after Accident.

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1980-01-01

    A year after the accident at Three Mile Island (TMI), the signals transmitted to the public are still confused. Industry says that nuclear power is safe and that the aftermath of TMI ushers in a new era of safety. Antinuclear activists say TMI sounded nuclear power's death knell. (Author/RE)

  12. Experiment of Rain Retrieval over Land Using Surface Emissivity Map Derived from TRMM TMI and JRA25

    NASA Astrophysics Data System (ADS)

    Furuzawa, Fumie; Masunaga, Hirohiko; Nakamura, Kenji

    2010-05-01

    We are developing a data-set of global land surface emissivity calculated from TRMM TMI brightness temperature (TB) and atmospheric profile data of Japanese 25-year Reanalysis Project (JRA-25) for the region identified as no-rain by TRMM PR, assuming zero cloud liquid water beyond 0-C level. For the evaluation, some characteristics of global monthly emissivity maps, for example, dependency of emissivity on each TMI frequency or each local time or seasonal/annual variation are checked. Moreover, these data are classified based on JRA25 land type or soilwetness and compared. Histogram of polarization difference of emissivity is similar to that of TB and mostly reflects the variability of land type or soil wetness, while histogram of vertical emissivity show a small difference. Next, by interpolating this instantaneous dataset with Gaussian function weighting, we derive an emissivity over neighboring rainy region and assess the interpolated emissivity by running radiative transfer model using PR rain profile and comparing with observed TB. Preliminary rain retrieval from the emissivities for some frequencies and TBs is evaluated based on PR rain profile and TMI rain rate. Moreover, another method is tested to estimate surface temperature from two emissivities, based on their statistical relation for each land type. We will show the results for vertical and horizontal emissivities of each frequency.

  13. INL Director Discusses Lessons Learned from TMI, Fukushima

    ScienceCinema

    Grossenbacher, John

    2017-12-22

    Idaho National Laboratory's Director John Grossenbacher explains how the U.S. nuclear industry has boosted its safety procedures as a result of the Three Mile Island (TMI) accident in 1979 and how the industry plans to use current events at Japan's Fukushima nuclear plants to further enhance safety. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  14. Comparisons of Monthly Oceanic Rainfall Derived from TMI and SSM/I

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Chiu, L. S.; Meng, J.; Wilheit, T. T.; Kummerow, C. D.

    1999-01-01

    A technique for estimating monthly oceanic rainfall rate using multi-channel microwave measurements has been developed. There are three prominent features of this algorithm. First, the knowledge of the form of the rainfall intensity probability density function used to augment the measurements. Second, utilizing a linear combination of the 19.35 and 22.235 GHz channels to de-emphasize the effect of water vapor. Third, an objective technique has been developed to estimate the rain layer thickness from the 19.35 and 22.235 GHz brightness temperature histograms. This technique is applied to the SSM/I data since 1987 to infer monthly rainfall for the Global Precipitation Climatology Project (GPCP). A modified version of this algorithm is now being applied to the TRMM Microwave Imager (TMI) data. TMI data with better spatial resolution and 24 hour sampling (vs. sun-synchronized sampling, which is limited to two narrow intervals of local solar time for DMSP satellites) prompt us to study the similarity and difference between these two rainfall estimates. Six months of rainfall data (January to June 1998) are used in this study. Means and standard deviations are calculated. Paired student t-tests are administrated to evaluate the differences between rainfall estimates from SSM/I and TMI data. Their differences are discussed in the context of global satellite rainfall estimation.

  15. Assessment of TMY generation methods for solar power production estimation

    NASA Astrophysics Data System (ADS)

    Zebner, H.

    2010-09-01

    This paper deals with the evaluation of different methods commonly employed in the solar power industry for the generation of representative data sets with solar resource information and further climate parameters. The quality of energy yield simulation data sets is defined by the accuracy of the data source (e. g. measurement device or calculation model) and its representativeness for the typical meteorological conditions at the location of the investigated power plant site. Supposing that data with high accuracy is available the next challenge is to prepare a best-possible input data set for the energy production simulation software. Such programs are often limited to the simulation of one-year data sets with hourly frequency (i. e. 8760 values). The data set shall therefore contain values which are most representative for each hour of the year and reflect the dynamical behaviour of the resource. As simple averaging of long-term data would not fulfil these requirements, certain methods for selecting such a typical meteorological year (TMY) have been developed in recent years. Presently, there are three to four different methods recommended in scientific literature or suggested by practitioners in the solar industry. The evaluation in this paper seeks to test the most commonly used methods with high precision data from the baseline surface radiation network (BSRN). From a long-term time series retrieved from a station in a region suitable for the development of solar power plants a TMY is created by utilizing different generation methods. The resulting data set is then compared to the average over all years in order to evaluate the general representativeness. As the plant operator is interested in the average production over the life time of a plant the result of an energy yield simulation performed with each of the different data set is then compared to the mean production gained by simulating the yield of for each single year and then averaging the results

  16. TMI Rain Rate Estimation Over Land and Ocean Utilizing Convective and Stratiform Discrimination

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Weinman, J. A.; Dalu, G.

    1999-01-01

    Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer brightness temperature data in the 85 GHz channel (T85) reveal distinct local minima in a regional map containing a Mesoscale Convective System (MCS). This is because of relatively small footprint size (approximately 5.5 km) and strong extinction properties in this channel of the TMI. A map of rain rate for that region, deduced from simultaneous measurements made by the Precipitation Radar (PR) on board the TRMM satellite, reveals that these T85 minima, produced by scattering, correspond to local PR rain maxima. Utilizing the PR rain rate map as a guide, we infer from TMI data the presence of three different kinds of thunderstorms or Cbs. They are young, mature, and decaying Cbs that have a scale of about 20 km on the average. Two parameters enable us to infer these three kinds of Cbs objectively: a) the magnitude of scattering depression deduced from local T85 minima and b) the mean horizontal gradient of T85 around such minima. Knowing the category of a given Cb, we can estimate the rain rate associated with it. Such estimation is done with the help of relationships linking T85 minimum to rain rate in each Cb type. Similarly, a weak background rain rate in all the areas where T85 is less than 260 K is deduced with another relationship linking T85 to rain rate. In our rain retrieval model, this background rain constitutes the stratiform rain where the Cbs are absent. Initially, these relationships are optimized or tuned utilizing the PR and TMI data of a few MCS events. After such tuning, the model is applied to independent MCS cases. The areal distribution of light (1-10 mm/hr), moderate (10-20 mm/hr), and intense (> 20 mm/hr) rain rates are retrieved satisfactorally. Accuracy in the estimates of the light, moderate and intense rain areas and the mean rain rates associated with such areas in these independent MCS cases is on the average about 15%. Taking advantage of this ability of our

  17. Three Mile Island epidemiologic radiation dose assessment revisited: 25 years after the accident.

    PubMed

    Field, R William

    2005-01-01

    Over the past 25 years, public health concerns following the Three Mile Island (TMI) accident prompted several epidemiologic investigations in the vicinity of TMI. One of these studies is ongoing. This commentary suggests that the major source of radiation exposure to the population has been ignored as a potential confounding factor or effect modifying factor in previous and ongoing TMI epidemiologic studies that explore whether or not TMI accidental plant radiation releases caused an increase in lung cancer in the community around TMI. The commentary also documents the observation that the counties around TMI have the highest regional radon potential in the United States and concludes that radon progeny exposure should be included as part of the overall radiation dose assessment in future studies of radiation-induced lung cancer resulting from the TMI accident.

  18. The Early Years: The Wonders of Weather

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2013-01-01

    This article reports on the wonders of winter weather, as it often inspires teachers' and students' interest in collecting weather data, especially if snow falls. Beginning weather data collection in preschool will introduce children to the concepts of making regular observations of natural phenomena, recording the observations (data),…

  19. Quantifying Interannual Variability for Photovoltaic Systems in PVWatts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryberg, David Severin; Freeman, Janine; Blair, Nate

    2015-10-01

    The National Renewable Energy Laboratory's (NREL's) PVWatts is a relatively simple tool used by industry and individuals alike to easily estimate the amount of energy a photovoltaic (PV) system will produce throughout the course of a typical year. PVWatts Version 5 has previously been shown to be able to reasonably represent an operating system's output when provided with concurrent weather data, however this type of data is not available when estimating system output during future time frames. For this purpose PVWatts uses weather data from typical meteorological year (TMY) datasets which are available on the NREL website. The TMY filesmore » represent a statistically 'typical' year which by definition excludes anomalous weather patterns and as a result may not provide sufficient quantification of project risk to the financial community. It was therefore desired to quantify the interannual variability associated with TMY files in order to improve the understanding of risk associated with these projects. To begin to understand the interannual variability of a PV project, we simulated two archetypal PV system designs, which are common in the PV industry, in PVWatts using the NSRDB's 1961-1990 historical dataset. This dataset contains measured hourly weather data and spans the thirty years from 1961-1990 for 239 locations in the United States. To note, this historical dataset was used to compose the TMY2 dataset. Using the results of these simulations we computed several statistical metrics which may be of interest to the financial community and normalized the results with respect to the TMY energy prediction at each location, so that these results could be easily translated to similar systems. This report briefly describes the simulation process used and the statistical methodology employed for this project, but otherwise focuses mainly on a sample of our results. A short discussion of these results is also provided. It is our hope that this quantification of the

  20. Engaging Undergraduate Students in Space Weather Research at a 2- Year College

    NASA Astrophysics Data System (ADS)

    Damas, M. C.

    2017-07-01

    The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, has been very successful at engaging undergraduate students in space weather research for the past ten years. Recently, it received two awards to support student research and education in solar and atmospheric physics under the umbrella discipline of space weather. Through these awards, students receive stipends during the academic year and summer to engage in scientific research. Students also have the opportunity to complete a summer internship at NASA and at other partner institutions. Funding also supports the development of course materials and tools in space weather. Educational materials development and the challenges of engaging students in research as early as their first year will be discussed. Once funding is over, how is the program sustained? Sustaining such a program, as well as how to implement it at other universities will also be discussed.

  1. The Early Years: About the Weather

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2015-01-01

    Observing and documenting elements of weather teach children about using tools and their senses to learn about the environment. This column discusses resources and science topics related to students in grades preK to 2. This month's issue describes an activity where students indirectly document local weather by counting outdoor clothing types worn…

  2. Qualification of Daiichi Units 1, 2, and 3 Data for Severe Accident Evaluations - Process and Illustrative Examples from Prior TMI-2 Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempe, Joy Lynn; Knudson, Darrell Lee

    2014-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2more » sensor survivability and data qualification efforts. This initial review focused on the set of sensors deemed most important by post-TMI-2 instrumentation evaluation programs. Instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. In addition, prior efforts focused on sensors providing data required for subsequent forensic evaluations and accident simulations. To encourage the potential for similar activities to be completed for qualifying data from Daiichi Units 1, 2, and 3, this report provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: primary system pressure; containment building temperature; and containment pressure. As described within this report, sensor evaluations and data qualification required implementation of various processes, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design to instruments easily removed from the TMI-2 plant for evaluations. As

  3. Changes in the TRMM Version 7 Space/Time Averaged Level 3 Data Products Based on GPROF TMI Swath-Based Precipitation Retrievals

    NASA Technical Reports Server (NTRS)

    Stocker, Erich; Kelley, Owen; Kummerow, Christian; Chou, Joyce; Woltz, Lawrence

    2010-01-01

    TRMM has three level 3 (space/time averaged) data products that aggregate level 2 TRMM Microwave Imager (TMI) GPROF precipitation retrievals. These three products are TRMM 3A12, which is a monthly accumulation of 2A12 the GPROF swath retrieval product; TRMM 3B31, which is a monthly accumulation of 2A12 and 2B31 the combined retrieval product that uses both Precipitation Radar (PR) and TMI data; and 3G68 and its variants, which provide hourly retrievals for TMI, PR and combined. The 3G68 products are packaged as daily files but provide hourly information at 0.5 deg x 0.5 deg resolution globally, 0.25 deg x 0.25 deg globally, or 0.1 deg x 0.1 deg over Africa, Australia and South America. This paper will present early information of the changes in the v7 TMI GPROF level 2 retrievals that have an impact on the level 3 accumulations. This paper provides an analysis of the effect the 2A12 GPROF changes have on 3G68 products. In addition, it provides a comparison between the TRMM level 3 products that use the TMI GPROF swath retrievals.

  4. Benchmarking of Typical Meteorological Year datasets dedicated to Concentrated-PV systems

    NASA Astrophysics Data System (ADS)

    Realpe, Ana Maria; Vernay, Christophe; Pitaval, Sébastien; Blanc, Philippe; Wald, Lucien; Lenoir, Camille

    2016-04-01

    Accurate analysis of meteorological and pyranometric data for long-term analysis is the basis of decision-making for banks and investors, regarding solar energy conversion systems. This has led to the development of methodologies for the generation of Typical Meteorological Years (TMY) datasets. The most used method for solar energy conversion systems was proposed in 1978 by the Sandia Laboratory (Hall et al., 1978) considering a specific weighted combination of different meteorological variables with notably global, diffuse horizontal and direct normal irradiances, air temperature, wind speed, relative humidity. In 2012, a new approach was proposed in the framework of the European project FP7 ENDORSE. It introduced the concept of "driver" that is defined by the user as an explicit function of the pyranometric and meteorological relevant variables to improve the representativeness of the TMY datasets with respect the specific solar energy conversion system of interest. The present study aims at comparing and benchmarking different TMY datasets considering a specific Concentrated-PV (CPV) system as the solar energy conversion system of interest. Using long-term (15+ years) time-series of high quality meteorological and pyranometric ground measurements, three types of TMY datasets generated by the following methods: the Sandia method, a simplified driver with DNI as the only representative variable and a more sophisticated driver. The latter takes into account the sensitivities of the CPV system with respect to the spectral distribution of the solar irradiance and wind speed. Different TMY datasets from the three methods have been generated considering different numbers of years in the historical dataset, ranging from 5 to 15 years. The comparisons and benchmarking of these TMY datasets are conducted considering the long-term time series of simulated CPV electric production as a reference. The results of this benchmarking clearly show that the Sandia method is not

  5. NATIONAL EVALUATION OF THE WEATHERIZATION ASSISTANCE PROGRAM DURING THE ARRA PERIOD: PROGRAM YEARS 2009-2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Rose, Erin M; Schmoyer, Richard L

    This report describes the third major evaluation of the Program, encompassing program years 2009 to 2011. In this report, this period of time is referred to as the ARRA Period. This is a special period of time for the Program because the American Recovery and Reinvestment Act (ARRA) of 2009 has allocated $5 billion of funding for the Program. In normal program years, WAP s annual appropriation is in the range of $200-250 million, supporting the weatherization of approximately 100,000 homes. With the addition of ARRA funding during these program years, the expectation is that weatherization activity will exceed 300,000more » homes per year. In addition to saving energy and reducing low-income energy bills, expanded WAP funding is expected to stimulate the economy by providing new jobs in the weatherization field and allowing low-income households to spend more money on goods and services by spending less on energy.« less

  6. Status of TMI-2 instruments and electrical components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helbert, H J

    In the Task 1.0 section of the GEND 001 Planning Report, the Instrumentation and Electrical Equipment Survivability Planning Group (IEPG) supplied planning, guidance, and recommendations on collecting survivability data on instruments and electrical equipment involved in the March 28, 1979, accident at the Three Mile Island Unit 2 (TMI-2) Reactor. GEND 001 recommended collection of further data on the status of all the instruments and electrical equipment it listed. The current report supplies information concerning the operational status of instruments and electrical equipment listed in the Task 1.0 section of GEND 001. This document will be updated in the futuremore » as additional information is obtained.« less

  7. BLAST: Building energy simulation in Hong Kong

    NASA Astrophysics Data System (ADS)

    Fong, Sai-Keung

    1999-11-01

    The characteristics of energy use in buildings under local weather conditions were studied and evaluated using the energy simulation program BLAST-3.0. The parameters used in the energy simulation for the study and evaluation include the architectural features, different internal building heat load settings and weather data. In this study, mathematical equations and the associated coefficients useful to the industry were established. A technology for estimating energy use in buildings under local weather conditions was developed by using the results of this study. A weather data file of Typical Meteorological Years (TMY) has been compiled for building energy studies by analyzing and evaluating the weather of Hong Kong from the year 1979 to 1988. The weather data file TMY and the example weather years 1980 and 1988 were used by BLAST-3.0 to evaluate and study the energy use in different buildings. BLAST-3.0 was compared with other building energy simulation and approximation methods: Bin method and Degree Days method. Energy use in rectangular compartments of different volumes varying from 4,000 m3 to 40,000 m3 with different aspect ratios were analyzed. The use of energy in buildings with concrete roofs was compared with those with glass roofs at indoor temperature 21°C, 23°C and 25°C. Correlation relationships among building energy, space volume, monthly mean temperature and solar radiation were derived and investigated. The effects of space volume, monthly mean temperature and solar radiation on building energy were evaluated. The coefficients of the mathematical relationships between space volume and energy use in a building were computed and found satisfactory. The calculated coefficients can be used for quick estimation of energy use in buildings under similar situations. To study energy use in buildings, the cooling load per floor area against room volume was investigated. The case of an air-conditioned single compartment with 5 m ceiling height was

  8. NOAA honors New York farmer for 84 years of service as volunteer weather

    Science.gov Websites

    Print Facebook Google StumbleUpon Digg More Destinations NOAA honors New York farmer for 84 years of Weather Service, Herbert Hoover occupied the White House. Since then the Bridgehampton, New York, farmer decades, the new 80-year service award will be named in his honor. Richard G. Hendrickson looks out over

  9. SU-E-T-337: Dosimetric Study of TMI Using Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phurailatpam, R; Swamidas, J; Sastri, J

    Purpose: The purpose of this study is to evaluate the dosimtry of TMI using Helical Tomotherapy (HT). Methods: Whole body CT data sets of 4 patients (median age : range:12–37 years) with 5mm slice thickness were used for planning in HT (TPS version 4.2.3). The contouring of the target and organ at risks (OAR) were delineated ( Oncentra Master Plan v 4.1). Two plans were generated using 5cm and 2.5 cm field widths.The modulation factor and pitch was 3 and 0.3 respectively. Dose to PTV, OARs and the dose homogeneity were evaluated. The doses obtained were compared with the existimgmore » literature. Dose delivery verification was carried out by point dose and 2D array measurements with ion chamber and Arc check dosimetry (Sun NuclearTM) system repectively. The prescribed dose was 14.4 Gy in 8 fractions. Results: The mean PTV volume was 7341.28cc (sd=2353) The dose homogeneity index of PTV was 12.03(sd=2.98) for 2.5cm-FW and 14.61 (sd=1.33) for 5cm-FW.The conformation number for 2.5 and 5 cm plans are 0.6328(sd=0.09) and 0.5915 (sd=0.0376) respectively. The mean dose(Gy) to the OARs were as follows for 2.5cm-FW : eyes, lens, lungs, kidneys, heart, liver,thyroid and testes for are 4.12,1.9,6.61,4.04,4.85,6.06,7.17 and 1.27. The mean dose(Gy) to the OARs were as follows for 5cm-FW :eyes, lens, lungs, kidneys, heart, liver,thyroid and testes for are 4.45,3.14,6.79,4.02,5.01,6.01,10.8 and 1.33. The mean variation of the point dose as compared to the expected dose was within 2% and the gamma analysis was at 91%. Conclusion: It was concluded that 5cm field width plans produces optimal dose volume parameters with deliverable treatment time. From this initial dissymmetric study, it was concluded that the treatment planning and the dose delivery verification was feasible considering the complexity of the TMI.« less

  10. A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Chichester; S. J. Thompson

    2013-09-01

    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium inmore » the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Anthony

    Presentation at ASHRAE about the spatial and temporal variability of gridded TMYs, discussing advanced GIS and Web services that allow for direct access to data, surface-based observations for thousands of stations, climate reanalysis data, and products derived from satellite data; new developments in NREL's solar databases based on both observed data and satellite-derived gridded data, status of TMY3 weather files, and NREL's plans for the next-generation TMY weather files; and also covers what is new and different in the Climatic Design Conditions Table in the 2013 ASHRAE Handbook of Fundamentals.

  12. NASA Space Weather Center Services: Potential for Space Weather Research

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  13. Incidence of thyroid cancer surrounding Three Mile Island nuclear facility: the 30-year follow-up.

    PubMed

    Levin, Roger J; De Simone, Nicole F; Slotkin, Jaime F; Henson, Baker L

    2013-08-01

    Original data reported a potential increased incidence of thyroid cancer surrounding the Three Mile Island (TMI) nuclear facility. A causal link to the accident, however, was indeterminate. Our objective was to determine if data 30 years later will change original conclusions, explore thyroid cancer incidence rates near nuclear power plants, and better understand effects of chronic low level radiation. Retrospective cross-sectional study. Retrospective data for specific Pennsylvania counties were provided by the Pennsylvania Cancer Registry Dataset for thyroid cancer using the Epidemiological Query and Mapping System search engine. Our study examines thyroid cancer incidence from 1985 through 2009 analyzed by year, county, and age. Thirty years after the TMI accident, an increased incidence of thyroid cancer is seen in counties south of TMI and in high-risk age groups. The average incidence rates from 1990 through 2009 were greater than expected in York, Lancaster, Adams, and Chester Counties. Thyroid cancer incidence since the TMI accident was greater than expected in the counties analyzed when compared to local and national population growth. This supports a link to chronic low level radiation exposure and thyroid cancer development. Despite these findings, a direct correlation to the accident remains uncertain as incidence rates may coincide with other factors, and original data were limited. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Effectiveness of fire-retardant treatments for shingles after 10 years of outdoor weathering

    Treesearch

    S. L. LeVan; C. A. Holmes

    Some building codes require wood shingles to be fire-retardant treated. Because exterior fire-retardant treatments are subjected to weathering, treatment durability and leach resistance are critical for insuring adequate fire protection. We examined the effectiveness of various fire-retardant treatments on wood after 0, 2, 5, and 10 years of outdoor exposure. We used a...

  15. Space weather and human deaths distribution: 25 years' observation (Lithuania, 1989-2013).

    PubMed

    Stoupel, Eliyahu G; Petrauskiene, Jadvyga; Kalediene, Ramune; Sauliune, Skirmante; Abramson, Evgeny; Shochat, Tzippy

    2015-09-01

    Human health is affected by space weather component [solar (SA), geomagnetic (GMA), cosmic ray (CRA) - neutrons, space proton flux] activity levels. The aim of this study was to check possible links between timing of human (both genders) monthly deaths distribution and space weather activity. Human deaths distribution in the Republic of Lithuania from 1989 to 2013 (25 years, i.e., 300 consecutive months) was studied, which included 1,050,503 deaths (549,764 male, 500,739 female). Pearson correlation coefficients (r) and their probabilities (p) were obtained for years: months 1-12, sunspot number, smoothed sunspot number, solar flux (2800 MGH, 10.7 cm), adjusted solar flux for SA; A, C indices of GMA; neutron activity at the earth's surface (imp/min) for CRA. The cosmophysical data were obtained from space science institutions in the USA, Russia and Finland. The mentioned physical parameters were compared with the total number of deaths, deaths from ischemic heart disease (n=376,074), stroke (n=132,020), non-cardiovascular causes (n=542,409), accidents (n=98,805), traffic accidents (n=21,261), oncology (n=193,017), diabetes mellitus (n=6631) and suicide (n=33,072). Space factors were interrelated as follows for the considered period: CRA was inversely related to SA and GMA, CRA/SA (r=-0.86, p>0.0001), CRA/GMA (r=-0.70, p<0.0001); SA and GMA were correlated (r=0.50, p<0.0001). The total deaths distribution was inversely related to SA (r=-0.31, p<0.0001) and correlated with CRA (neutron) activity (r=0.234, p<0.0001). Ischemic heart disease (IHD) deaths (most at home) show a drop yearly (r=-0.2551), more for men. It was correlated with GMA for the total IHD population and men. Stroke deaths were inversely related to SA (r=-0.38, p<0.0001) and correlated with CRA (r=0.41, p<0.0001) and year (r=0.49, p<0.0001), showing a steady rise. The IHD/stroke deaths ratio was negatively correlated with the years of observation (r=-0.754, p=0.0001). Non-cardiovascular deaths were

  16. Decreasing trend in severe weather occurrence over China during the past 50 years.

    PubMed

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-17

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  17. Decreasing trend in severe weather occurrence over China during the past 50 years

    PubMed Central

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-01-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China. PMID:28211465

  18. Decreasing trend in severe weather occurrence over China during the past 50 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-04-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  19. Decreasing trend in severe weather occurrence over China during the past 50 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  20. Fabulous Weather Day

    ERIC Educational Resources Information Center

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  1. Interpreting Weather for 3 to 8 Year Olds.

    ERIC Educational Resources Information Center

    Hallgren-Scaffidi, Lynette

    1994-01-01

    Discusses the interpretation of weather for children and shares program ideas to interpret the water cycle, thunderstorms (including fear of thunderstorms), and rainbows (including the colors of the rainbow). (MKR)

  2. [Incidence of proximal femur fractures in relation to seasons of the year and weather].

    PubMed

    Burget, F; Pleva, L; Kudrna, K; Kudrnová, Z

    2012-01-01

    The opinion that proximal femur fractures occur mainly in the winter season and are related to slippery surfaces prevails in both the lay and medical communities. The elucidation of this relationship would lead to a better understanding of the aetiology of these fractures and may help to prevent them in the elderly population. In a retrospective study conducted at two departments, the occurrence of proximal femur fractures in patients 60+ years old in relation to weather conditions (air temperature and its humidity, atmospheric pressure, rain and mist) between January 1, 2001 and December 31, 2005 was investigated. Patients with high-energy or pathological fractures were excluded. The results were evaluated by Statistika software. A total of 1720 patients were studied, of whom 1313 were women and 407 were men. The numbers of fractures did not differ significantly among either the seasons or months of the year. No correlation was found between the number of fractures and each of the weather characteristics (air temperature and its humidity, atmospheric pressure, wind speed and visibility). It is widely believed that hip fractures are connected with winter months and temperatures below zero. This is supported by several facts related to winter characteristics, such as slippery icy pavements, clumsiness due to warm bulky clothes, bodies affected by cold and thus predisposed to a fall and poorer visibility on shorter winter days. The effect of seasonal variation on hip fracture incidence has been investigated in 10 studies of which only one has taken the influence of daily temperature into consideration. All studies were conduced in the countries north of 40° latitude, i.e., in climatic conditions similar to our country, with temperatures falling below zero and ice-glazed pavements in winter months. Of them, six have found no relation between proximal femur fractures and weather conditions, two have reported an increased incidence of these fractures in winter months

  3. Aviation Weather Information Requirements Study

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.; Stancil, Charles E.; Eckert, Clifford A.; Brown, Susan M.; Gimmestad, Gary G.; Richards, Mark A.; Schaffner, Philip R. (Technical Monitor)

    2000-01-01

    The Aviation Safety Program (AvSP) has as its goal an improvement in aviation safety by a factor of 5 over the next 10 years and a factor of 10 over the next 20 years. Since weather has a big impact on aviation safety and is associated with 30% of all aviation accidents, Weather Accident Prevention (WxAP) is a major element under this program. The Aviation Weather Information (AWIN) Distribution and Presentation project is one of three projects under this element. This report contains the findings of a study conducted by the Georgia Tech Research Institute (GTRI) under the Enhanced Weather Products effort, which is a task under AWIN. The study examines current aviation weather products and there application. The study goes on to identify deficiencies in the current system and to define requirements for aviation weather products that would lead to an increase in safety. The study also provides an overview the current set of sensors applied to the collection of aviation weather information. New, modified, or fused sensor systems are identified which could be applied in improving the current set of weather products and in addressing the deficiencies defined in the report. In addition, the study addresses and recommends possible sensors for inclusion in an electronic pilot reporting (EPIREP) system.

  4. Forest bat population dynamics over 14 years at a climate refuge: Effects of timber harvesting and weather extremes

    PubMed Central

    Chidel, Mark; Law, Peter R.

    2018-01-01

    Long-term data are needed to explore the interaction of weather extremes with habitat alteration; in particular, can ‘refugia’ buffer population dynamics against climate change and are they robust to disturbances such as timber harvesting. Because forest bats are good indicators of ecosystem health, we used 14 years (1999–2012) of mark-recapture data from a suite of small tree-hollow roosting bats to estimate survival, abundance and body condition in harvested and unharvested forest and over extreme El Niño and La Niña weather events in southeastern Australia. Trapping was replicated within an experimental forest, located in a climate refuge, with different timber harvesting treatments. We trapped foraging bats and banded 3043 with a 32% retrap rate. Mark-recapture analyses allowed for dependence of survival on time, species, sex, logging treatment and for transients. A large portion of the population remained resident, with a maximum time to recapture of nine years. The effect of logging history (unlogged vs 16–30 years post-logging regrowth) on apparent survival was minor and species specific, with no detectable effect for two species, a positive effect for one and negative for the other. There was no effect of logging history on abundance or body condition for any of these species. Apparent survival of residents was not strongly influenced by weather variation (except for the smallest species), unlike previous studies outside of refugia. Despite annual variation in abundance and body condition across the 14 years of the study, no relationship with extreme weather was evident. The location of our study area in a climate refuge potentially buffered bat population dynamics from extreme weather. These results support the value of climate refugia in mitigating climate change impacts, though the lack of an external control highlights the need for further studies on the functioning of climate refugia. Relatively stable population dynamics were not compromised

  5. Forest bat population dynamics over 14 years at a climate refuge: Effects of timber harvesting and weather extremes.

    PubMed

    Law, Bradley S; Chidel, Mark; Law, Peter R

    2018-01-01

    Long-term data are needed to explore the interaction of weather extremes with habitat alteration; in particular, can 'refugia' buffer population dynamics against climate change and are they robust to disturbances such as timber harvesting. Because forest bats are good indicators of ecosystem health, we used 14 years (1999-2012) of mark-recapture data from a suite of small tree-hollow roosting bats to estimate survival, abundance and body condition in harvested and unharvested forest and over extreme El Niño and La Niña weather events in southeastern Australia. Trapping was replicated within an experimental forest, located in a climate refuge, with different timber harvesting treatments. We trapped foraging bats and banded 3043 with a 32% retrap rate. Mark-recapture analyses allowed for dependence of survival on time, species, sex, logging treatment and for transients. A large portion of the population remained resident, with a maximum time to recapture of nine years. The effect of logging history (unlogged vs 16-30 years post-logging regrowth) on apparent survival was minor and species specific, with no detectable effect for two species, a positive effect for one and negative for the other. There was no effect of logging history on abundance or body condition for any of these species. Apparent survival of residents was not strongly influenced by weather variation (except for the smallest species), unlike previous studies outside of refugia. Despite annual variation in abundance and body condition across the 14 years of the study, no relationship with extreme weather was evident. The location of our study area in a climate refuge potentially buffered bat population dynamics from extreme weather. These results support the value of climate refugia in mitigating climate change impacts, though the lack of an external control highlights the need for further studies on the functioning of climate refugia. Relatively stable population dynamics were not compromised by

  6. Site dose calculations for the INEEL/TMI-2 storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, K.B.

    1997-12-01

    The U.S. Department of Energy (DOE) is licensing an independent spent-fuel storage installation (ISFSI) for the Three Mile Island unit 2 (TMI-2) core debris to be constructed at the Idaho Chemical Processing Plant (ICPP) site at the Idaho National Engineering and Environmental Laboratory (INEEL) using the NUHOMS spent-fuel storage system. This paper describes the site dose calculations, performed in support of the license application, that estimate exposures both on the site and for members of the public. These calculations are unusual for dry-storage facilities in that they must account for effluents from the system in addition to skyshine from themore » ISFSI. The purpose of the analysis was to demonstrate compliance with the 10 CFR 20 and 10 CFR 72.104 exposure limits.« less

  7. Fire weather in western Oregon and western Washington in 1952 compared with other years.

    Treesearch

    Owen P. Cramer

    1953-01-01

    How did the potential burning conditions of the 1952 fire season compare with those of previous years? The answer is important to those who protect forests from fire. Knowing the relative severity of the burning conditions will help them judge the effectiveness of their fire protection programs. This paper reports ratings of the weather factors most closely related to...

  8. Variational Continuous Assimilation of TMI and SSM/I Rain Rates: Impact on GEOS-3 Hurricane Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; Reale, Oreste

    2003-01-01

    We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfall data using moisture and temperature tendency corrections as the control variable to offset model deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted precipitation is based on parameterized moist physics, which can have substantial systematic errors. This study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective pathway to precipitation assimilation. The particular scheme we exarnine employs a '1+1' dimension precipitation observation operator based on a 6-h integration of a column model of moist physics from the Goddard Earth Observing System (GEOS) global data assimilation system DAS). In earlier studies, we tested a simplified version of this scheme and obtained improved monthly-mean analyses and better short-range forecast skills. This paper describes the full implementation ofthe 1+1D VCA scheme using background and observation error statistics, and examines how it may improve GEOS analyses and forecasts of prominent tropical weather systems such as hurricanes. Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd show that assimilating 6-h TMI and SSM/I surfice rain rates leads to more realistic storm features in the analysis, which, in turn, provide better initial conditions for 5-day storm track prediction and precipitation forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be crucial to making effective use of precipitation information in data assimilation.

  9. Weather Safety - NOAA's National Weather Service

    Science.gov Websites

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Safety Weather Safety This page weather safety. StormReady NOAA Weather Radio Emergency Managers Information Network U.S. Hazard Assmt

  10. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  11. A Severe Weather Laboratory Exercise for an Introductory Weather and Climate Class Using Active Learning Techniques

    ERIC Educational Resources Information Center

    Grundstein, Andrew; Durkee, Joshua; Frye, John; Andersen, Theresa; Lieberman, Jordan

    2011-01-01

    This paper describes a new severe weather laboratory exercise for an Introductory Weather and Climate class, appropriate for first and second year college students (including nonscience majors), that incorporates inquiry-based learning techniques. In the lab, students play the role of meteorologists making forecasts for severe weather. The…

  12. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years.

    PubMed

    Ewald, Julie A; Wheatley, Christopher J; Aebischer, Nicholas J; Moreby, Stephen J; Duffield, Simon J; Crick, Humphrey Q P; Morecroft, Michael B

    2015-11-01

    Cereal fields are central to balancing food production and environmental health in the face of climate change. Within them, invertebrates provide key ecosystem services. Using 42 years of monitoring data collected in southern England, we investigated the sensitivity and resilience of invertebrates in cereal fields to extreme weather events and examined the effect of long-term changes in temperature, rainfall and pesticide use on invertebrate abundance. Of the 26 invertebrate groups examined, eleven proved sensitive to extreme weather events. Average abundance increased in hot/dry years and decreased in cold/wet years for Araneae, Cicadellidae, adult Heteroptera, Thysanoptera, Braconidae, Enicmus and Lathridiidae. The average abundance of Delphacidae, Cryptophagidae and Mycetophilidae increased in both hot/dry and cold/wet years relative to other years. The abundance of all 10 groups usually returned to their long-term trend within a year after the extreme event. For five of them, sensitivity to cold/wet events was lowest (translating into higher abundances) at locations with a westerly aspect. Some long-term trends in invertebrate abundance correlated with temperature and rainfall, indicating that climate change may affect them. However, pesticide use was more important in explaining the trends, suggesting that reduced pesticide use would mitigate the effects of climate change. © 2015 John Wiley & Sons Ltd.

  13. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  14. Prevalence of weather sensitivity in Germany and Canada

    NASA Astrophysics Data System (ADS)

    Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis

    2005-01-01

    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health “to a strong degree,” 35.3% that weather had “some influence on their health” (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32

  15. Advances in road weather research

    DOT National Transportation Integrated Search

    2003-01-01

    Nearly a billion hours and seven thousand lives are lost each year due to the effects of adverse weather on the nations highways. To address this national challenge, the transportation and weather communities have joined forces to define needs and...

  16. Use of the Kelly Decontamination System for the cleanup of the auxiliary and fuel-handling buildings at TMI-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, K.R.; Pavelek, M.D. II

    1987-01-01

    Following the accident at Three Mile Island Unit 2 (TMI-2) substantial areas in the auxiliary and fuel-handling buildings were contaminated. Overflowing sumps backed up floor drains and contaminated a substantial portion of the 282-ft elevation floor. In addition, contamination was spread into the overheads when the nitrogen purge system, which had become internally contaminated, was relieved of overpressure. Operating experience with the Kelly Decontamination System has been exceptional. The system has been defined as a tool of the trade for labor personnel to operate as part of their duties. A detailed training program was provided by the Kelly Division ofmore » Container Products Corporation for the engineers who then trained labor personnel in the operation of the equipment. There were very few problems with personnel on the equipment for routine decontamination operations. The Kelly Decontamination System has proven to be a dose and cost-effective alternative to hands-on decontamination techniques at TMI-2 and should have wide application for large-scale decontamination operations.« less

  17. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

  18. Impact of space weather on human heart rate during the years 2011-2013

    NASA Astrophysics Data System (ADS)

    Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K.

    2017-08-01

    During the last years a possible link between different levels of solar and geomagnetic disturbances and human physiological parameters is suggested by several published studies. In this work the examination of the potential association between heart rate variations and specific space weather activities was performed. A total of 482 individuals treated at Hippocratio General Hospital in Athens, the Cardiology clinics of Nikaia General Hospital in Piraeus and the Heraklion University Hospital in Crete, Greece, were assessed from July 2011 to April 2013. The heart rate of the individuals was recorded by a Holter monitor on a n hourly basis, while the hourly variations of the cosmic ray intensity measured by the Neutron Monitor Station of the Athens University and of the geomagnetic index Dst provided by the Kyoto Observatory were used. The ANalysis Of VAriance (ANOVA) and the Multiple Linear Regression analysis were used for analysis of these data. A statistically significant effect of both cosmic rays and geomagnetic activity on heart rate was observed, which may indicate that changes in space weather could be linked to heart rate variations.

  19. Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.

    2007-01-01

    A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples

  20. Distribution and weathering of crude oil residues on shorelines 18 years after the Exxon Valdez spill.

    PubMed

    Boehm, Paul D; Page, David S; Brown, John S; Neff, Jerry M; Bragg, James R; Atlas, Ronald M

    2008-12-15

    In 2007, a systematic study was conducted to evaluate the form and location of residues of oil buried on Prince William Sound (PWS) shorelines, 18 years after the 1989 Exxon Valdez Oil Spill (EVOS). We took 678 sediment samples from 22 sites that were most heavily oiled in 1989 and known to contain the heaviest subsurface oil (SSO) deposits based on multiple studies conducted since 2001. An additional 66 samples were taken from two sites, both heavily oiled in 1989 and known to be active otter foraging sites. All samples were analyzed for total extractable hydrocarbons (TEH), and 25% were also analyzed for saturated and aromatic hydrocarbon weathering parameters. Over 90% of the samples from all sites contained light or no SSO at all. Of samples containing SSO, 81% showed total polycyclic aromatic hydrocarbon (TPAH) losses greater than 70%, relative to cargo oil, with most having >80% loss. Samples with SSO were observed in isolated patches sequestered by surface boulder and cobble armoring. Samples showing lowest TPAH loss correlated strongly with higher elevations in the intertidal zones. Of the 17 atypical, less-weathered samples having less than 70% loss of TPAH (>30% remaining), only two were found sequestered in the lower intertidal zone, both at a single site. Most of the EVOS oil in PWS has been eliminated due to natural weathering. Some isolated SSO residues remain because they are sequestered and only slowly affected by natural weathering processes that normally would bring about their rapid removal. Even where SSO patches remain, most are highly weathered, sporadically distributed at a small number of sites, and widely separated from biologically productive lower intertidal zones where most foraging by wildlife occurs.

  1. Sometimes You Need a Weatherman to Know Which Way the Wind Blows: The 25-Year Weather Underground Experience

    NASA Astrophysics Data System (ADS)

    Masters, J.

    2014-12-01

    Originally an educational project at the University of Michigan in the early 1990s, the Weather Underground transformed into the highly successful commercial Internet weather web site, wunderground.com, in 1995. I give an overview of the science communication experiences learned during my 25-year experience with the Weather Underground. Some lessons learned: Find your own unique voice. Be entertaining; don't be such a scientist. Tell stories. Earn people's trust. Use colorful graphs, images that show people, historical events, or scenes of local interest to illustrate your message. Be careful with criticism. Allow your audience to participate. Enrich people's experience by turning them on to other groups that offer unique and interesting information. Collaborate with other communicators with the goal of providing the public with simple, clear messages, repeated by a variety of trusted sources.

  2. Space Weathering Rates in Lunar and Itokawa Samples

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.

    2017-01-01

    Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.

  3. Associations between weather conditions and clinical symptoms in patients with hip osteoarthritis: a 2-year cohort study.

    PubMed

    Dorleijn, Desirée M J; Luijsterburg, Pim A J; Burdorf, Alex; Rozendaal, Rianne M; Verhaar, Jan A N; Bos, Pieter K; Bierma-Zeinstra, Sita M A

    2014-04-01

    The goal of this study was to assess whether there is an association between ambient weather conditions and patients' clinical symptoms in patients with hip osteoarthritis (OA). The design was a cohort study with a 2-year follow-up and 3-monthly measurements and prospectively collected data on weather variables. The study population consisted of 222 primary care patients with hip OA. Weather variables included temperature, wind speed, total amount of sun hours, precipitation, barometric pressure, and relative humidity. The primary outcomes were severity of hip pain and hip disability as measured with the Western Ontario and McMasters University Osteoarthritis Index (WOMAC) pain and function subscales. Associations between hip pain and hip disability and the weather variables were assessed using crude and multivariate adjusted linear mixed-model analysis for repeated measurements. On the day of questionnaire completion, mean relative humidity was associated with WOMAC pain (estimate 0.1; 95% confidence interval=0.0-0.2; P=.02). Relative humidity contributed < or = 1% to the explained within-patient variance and between-patient variance of the WOMAC pain score. Mean barometric pressure was associated with WOMAC function (estimate 0.1; 95% confidence interval=0.0-0.1; P=.02). Barometric pressure contributed < or = 1% to the explained within-patient variance and between-patient variance of the WOMAC function score. The other weather variables were not associated with the WOMAC pain or function score. Our results support the general opinion of OA patients that barometric pressure and relative humidity influence perceived OA symptoms. However, the contribution of these weather variables (< or = 1%) to the severity of OA symptoms is not considered to be clinically relevant. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  4. URBAN WET-WEATHER FLOWS LITERATURE REVIEW 2000

    EPA Science Inventory

    This paper is an urban wet weather flow (WWF) literature reviews for the year of 1999. The reviews were originally published in the annual literature review issues of Water Environment Research. Over the past year, many people were involved in preparing these urban wet weather f...

  5. The Status of the Tropical Rainfall Measuring Mission (TRMM) after 2 Years in Orbit

    NASA Technical Reports Server (NTRS)

    Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A. T. C.; Stocker, E.; Adler, R. F.; Hou, A.; Kakar, R.; Wentz, F.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms, in related modeling applications and in new datasets tailored specifically for these applications. This paper reports the latest results regarding the calibration of the TRMM Microwave Imager, (TMI), Precipitation Radar (PR) and Visible and Infrared Sensor (VIRS). For the TMI, a new product is in place that corrects for a still unknown source of radiation leaking in to the TMI receiver. The PR calibration has been adjusted upward slightly (by 0.6 dBZ) to better match ground reference targets, while the VIRS calibration remains largely unchanged. In addition to the instrument calibration, great strides have been made with the rainfall algorithms as well, with the new rainfall products agreeing with each other to within less than 20% over monthly zonally averaged statistics. The TRMM Science Data and Information System (TSDIS) has responded equally well by making a number of new products, including real-time and fine resolution gridded rainfall fields available to the modeling community. The TRMM Ground Validation (GV) program is also responding with improved radar calibration techniques and rainfall algorithms to provide more accurate GV products which will be further enhanced with the new multiparameter 10 cm radar being developed for TRMM validation and precipitation studies. Progress in these various areas has, in turn, led to exciting new developments in the modeling area where Data Assimilation, and Weather Forecast models are showing dramatic improvements after the assimilation of observed rainfall fields.

  6. Reducing Aviation Weather-Related Accidents Through High-Fidelity Weather Information Distribution and Presentation

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.

    2000-01-01

    In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.

  7. Thirty years of weather change and effects on a grassland in the Peloncillo Mountains, New Mexico

    Treesearch

    William H. Moir

    2011-01-01

    In this paper I describe and compare grassland changes since 1977 at the Central Peloncillo Research Natural Area (CPRNA) with temperature and precipitation data from its nearby weather station. The grama grasslands there have thrived through two distinctive climate periods since 1977. The current period began with warm and dry years beginning around 1993 and...

  8. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  9. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  10. Weatherization Assistance Program Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy e ciency of their homes, while ensuring their health and safety. The Program supports 8,500 jobs and provides weatherization services to approximately 35,000 homes every year using DOE funds.

  11. Weather explains high annual variation in butterfly dispersal

    PubMed Central

    Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter

    2016-01-01

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662

  12. Weather explains high annual variation in butterfly dispersal.

    PubMed

    Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter

    2016-07-27

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).

  13. Sunspots, Space Weather and Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  14. Ensemble flare forecasting: using numerical weather prediction techniques to improve space weather operations

    NASA Astrophysics Data System (ADS)

    Murray, S.; Guerra, J. A.

    2017-12-01

    One essential component of operational space weather forecasting is the prediction of solar flares. Early flare forecasting work focused on statistical methods based on historical flaring rates, but more complex machine learning methods have been developed in recent years. A multitude of flare forecasting methods are now available, however it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Current operational space weather centres cannot rely on automated methods, and generally use statistical forecasts with a little human intervention. Space weather researchers are increasingly looking towards methods used in terrestrial weather to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. It has proved useful in areas such as magnetospheric modelling and coronal mass ejection arrival analysis, however has not yet been implemented in operational flare forecasting. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASSA, ASAP, MAG4, MOSWOC, NOAA, and Solar Monitor). Forecasts from each method are weighted by a factor that accounts for the method's ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. The results provide space weather forecasters with a set of parameters (combination weights, thresholds) that allow them to select the most appropriate values for constructing the 'best' ensemble forecast probability value, according to the performance metric of their choice. In this way different forecasts can be made to fit different end-user needs.

  15. Weather.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1996-01-01

    This theme issue of "The Goldfinch" focuses on weather in Iowa and weather lore. The bulletin contains historical articles, fiction, activities, and maps. The table of contents lists: (1) "Wild Rosie's Map"; (2) "History Mystery"; (3) "Iowa's Weather History"; (4) "Weather Wonders"; (6)…

  16. Space Weather Research: Indian perspective

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  17. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  18. Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S. H.; Haubold, H. J.

    2014-01-01

    Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.

  19. Heat stress control in the TMI-2 (Three Mile Island Unit 2) defueling and decontamination activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schork, J.S.; Parfitt, B.A.

    During the initial stages of the Three Mile Island Unit 2 (TMI-2) defueling and decontamination activities for the reactor building, it was realized that the high levels of loose radioactive contamination would require the use of extensive protective clothing by entry personnel. While there was no doubt that layered protective clothing protects workers from becoming contaminated, it was recognized that these same layers of clothing would impose a very significant heat stress burden. To prevent the potentially serious consequences of a severe reaction to heat stress by workers in the hostile environment of the TMI-2 reactor building and yet maintainmore » the reasonable work productivity necessary to perform the recovery adequately, an effective program of controlling worker exposure to heat stress had to be developed. Body-cooling devices produce a flow of cool air, which is introduced close to the skin to remove body heat through convection and increased sweat evaporation. The cooling effect produced by the Vortex tube successfully protected the workers from heat stress, however, there were several logistical and operational problems that hindered extensive use of these devices. The last type of cooling garment examined was the frozen water garment (FWG) developed by Elizier Kamon at the Pennsylvania State University as part of an Electric Power Research Institute research grant. Personal protection, i.e., body cooling, engineering controls, and administrative controls, have been implemented successfully.« less

  20. Greek Children's Alternative Conceptions on Weather and Climate.

    ERIC Educational Resources Information Center

    Spiropoulou, D.; Kostopoulos, D.; Jacovides, C. P.

    1999-01-01

    Describes a survey of Greek schoolchildren's alternative conceptions about weather and climate. Finds that misconceptions exist, including confusion between the meanings of the terms "weather" and "climate", inflated estimates of temperature, and a belief that yearly weather data define climate. Suggests ways to help students…

  1. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  2. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Davila, Joseph M.

    2010-01-01

    The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.

  3. Ecological Effects of Weather Modification: A Problem Analysis.

    ERIC Educational Resources Information Center

    Cooper, Charles F.; Jolly, William C.

    This publication reviews the potential hazards to the environment of weather modification techniques as they eventually become capable of producing large scale weather pattern modifications. Such weather modifications could result in ecological changes which would generally require several years to be fully evident, including the alteration of…

  4. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  5. Fifth Space Weather Enterprise Forum Reaches New Heights

    NASA Astrophysics Data System (ADS)

    Williamson, Samuel P.; Babcock, Michael R.; Bonadonna, Michael F.

    2011-09-01

    As the world's commercial infrastructure grows more dependent on sensitive electronics and space-based technologies, the global economy is becoming increasingly vulnerable to solar storms. Experts from the federal government, academia, and the private sector met to discuss the societal effects of major solar storms and other space weather at the fifth annual Space Weather Enterprise Forum (SWEF), held on 21 June 2011 at the National Press Club in Washington, D. C. More than 200 members of the space weather community attended this year's SWEF, which focused on the consequences of severe space weather for national security, critical infrastructure, and human safety. Participants also addressed the question of how to prepare for and mitigate those consequences as the current solar cycle approaches and reaches its peak, expected in 2013. This year's forum included details of plans for a "Unified National Space Weather Capability," a new interagency initiative which will be implemented over the next two years, designed to improve forecasting, warning, and other services ahead of the coming solar maximum.

  6. Inferring silicate weathering rates over recent timescales (less than 100 years) in crystalline aquifers by calibrating lumped parameters models with atmospheric tracers

    NASA Astrophysics Data System (ADS)

    Marçais, J.; Labasque, T.; Gauvain, A.; De Dreuzy, J. R.; Aquilina, L.; Abbott, B. W.

    2016-12-01

    Silicate minerals (e.g. feldspars, micas and olivines) are ubiquitous in crystalline rocks such as granite and schist. Groundwater dissolves some of this silica via weathering processes as it passes through the catchment, increasing silica concentration with residence time. However, quantifying weathering rates is complicated by the fact that groundwater residence time distributions (RTD) are typically unknown. Batch experiments can characterize weathering reaction type and provide estimates of dissolution rates, but weathering timescales in the field are far greater than what can be simulated in the laboratory (White and Brantley, 2003). Here we implement a novel approach coupling chlorofluorocarbons (CFC) and dissolved silica concentrations to infer timescales of silica weathering processes at the watershed scale. We investigated 6 crystalline aquifers in Brittany with contrasting lithology. We quantified silicate weathering at the watershed scale based on individual measurements from multiple wells, assuming first-order reaction kinetics. For each well, we used a lumped parameter model to determined RTD with inverse gaussian distributions, which allow two degrees of freedom. Production rate and initial silicate concentration were then optimized at the watershed scale with the calibrated model. Weathering rates were relatively similar among watersheds, varying for most sites from 0.16 to 0.42 mg/L/yr (SD = 0.09 mg/L/yr), and estimates of weathering rates were not significantly influenced by single well measurements. This work demonstrates how atmospheric tracers can be used with dissolved silica concentration to inform both RTD and first order kinetics of weathering reactions. Together these results suggest that dissolved silica could be a robust and cheap groundwater age proxy for recent timescales (less than 100 years). ------------------ White, Art F, and Susan L Brantley. 2003. « The effect of time on the weathering of silicate minerals: why do weathering

  7. Space Weather Data Drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Space weather data collected via instruments on GPS satellites has been made available to researchers for the first time. The instruments were developed at Los Alamos National Laboratory and ride aboard 23 of the nation’s more than 30 on-orbit GPS satellites. When you multiply the number of satellites collecting data with the number of years they’ve been doing it, it totals more than 167 years. This data gives researchers a treasure trove of measurements that they can use to better understand how space weather works and how best to protect critical infrastructure, such as the nation’s satellites, aircraft, communications networks,more » navigation systems, and the electric power grid.« less

  8. System services and architecture of the TMI satellite mobile data system

    NASA Technical Reports Server (NTRS)

    Gokhale, D.; Agarwal, A.; Guibord, A.

    1993-01-01

    The North American Mobile Satellite Service (MSS) system being developed by AMSC/TMI and scheduled to go into service in early 1995 will include the provision for real time packet switched services (mobile data service - MDS) and circuit switched services (mobile telephony service - MTS). These services will utilize geostationary satellites which provide access to mobile terminals (MT's) through L-band beams. The MDS system utilizes a star topology with a centralized data hub (DH) and will support a large number of mobile terminals. The DH, which accesses the satellite via a single Ku band beam, is responsible for satellite resource management, for providing mobile users with access to public and private data networks, and for comprehensive network management of the system. This paper describes the various MDS services available for the users, the ground segment elements involved in the provisioning of these services, and a summary description of the channel types, protocol architecture, and network management capabilities provided within the system.

  9. Accumulation mechanisms and the weathering of Antarctic equilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Benoit, P. H.; Sears, D. W. G.

    1999-06-01

    Induced thermoluminescence (TL) is used to quantitatively evaluate the degree of weathering of meteorites found in Antarctica. We find a weak correlation between TL sensitivity and descriptions of weathering in hand specimens, the highly weathered meteorites having lower TL sensitivity than unweathered meteorites. Analysis of samples taken throughout large meteorites shows that the heterogeneity in TL sensitivity within meteorite finds is not large relative to the range exhibited by different weathered meteorites. The TL sensitivity values can be restored by minimal acid washing, suggesting the lower TL sensitivities of weathered meteorites reflects thin weathering rims on mineral grains or coating of these grains by iron oxides produced by hydration and oxidation of metal and sulfides. Small meteorites may tend to be more highly weathered than large meteorites at the Allan Hills ice fields. We find that meteorite fragments >150 g may take up to 300,000 years to reach the highest degrees of weathering, while meteorites <150 g require <40,000 years. However, at other fields, local environmental conditions and variability in terrestrial history are more important in determining weathering than size alone. Weathering correlates poorly with surface exposure duration, presumably because weathering occurs primarily during interglacial periods. The Allan Hills locality has served as a fairly stable surface over the last 100,000 years or so and has efficiently preserved both small and large meteorites. Meteorites from Lewis Cliff, however, have experienced extensive weathering, probably because of increased surface melt water from nearby outcrops. Meteorites from the Elephant Moraine locality tend to exhibit only minor degrees of weathering, but small meteorites are less weathered than large meteorites, which we suggest is due to the loss of small meteorites by aeolian transport.

  10. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  11. Proposed U.S. Space Weather Budget for Fiscal Year 2011 Would Fund Key Programs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-09-01

    The proposed U.S. federal budget for space weather research for fiscal year (FY) 2011 would provide funding for key space weather programs within several U.S. agencies, including NASA, NOAA, the National Science Foundation (NSF), and the Air Force. Funding for the programs comes ahead of the upcoming solar maximum, a period of the solar cycle with heightened solar activity, projected for 2013. Several officials indicated that while funding is not tied to a particular solar maximum or minimum, available assets could help with studying and preparing for the solar maximum. The proposed FY 2011 budget for the Heliophysics Division within NASA's Science Mission Directorate is $641.9 million, compared with the FY 2010 enacted budget of $627.4 million. Within the proposed budget is $166.9 million for heliophysics research, down slightly from $173 million for FY 2010. The proposed budget would include $31.7 million for heliophysics research and analysis (compared with $31 million for FY 2010); $66.7 million for “other missions and data analysis,” including Cluster II, the Advanced Composition Explorer (ACE), and the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission; and $48.9 million for sounding rockets.

  12. Weather | National Oceanic and Atmospheric Administration

    Science.gov Websites

    Jump to Content Enter Search Terms Weather Climate Oceans & Coasts Fisheries Satellites - NWS provides each person in the U.S. with timely and accurate basic weather, water, and climate climate events, cause an average of approximately 650 deaths and $15 billion in damage per year and are

  13. Weather during bloom affects pollination and yield of highbush blueberry.

    PubMed

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Weather plays an important role in spring-blooming fruit crops due to the combined effects on bee activity, flower opening, pollen germination, and fertilization. To determine the effects of weather on highbush blueberry, Vaccinium corymbosum L., productivity, we monitored bee activity and compared fruit set, weight, and seed number in a field stocked with honey bees, Apis mellifera L., and common eastern bumble bees, Bombus impatiens (Cresson). Flowers were subjected to one of five treatments during bloom: enclosed, open, open during poor weather only, open during good weather only, or open during poor and good weather. Fewer bees of all types were observed foraging and fewer pollen foragers returned to colonies during poor weather than during good weather. There were also changes in foraging community composition: honey bees dominated during good weather, whereas bumble bees dominated during poor weather. Berries from flowers exposed only during poor weather had higher fruit set in 1 yr and higher berry weight in the other year compared with enclosed clusters. In both years, clusters exposed only during good weather had > 5 times as many mature seeds, weighed twice as much, and had double the fruit set of those not exposed. No significant increase over flowers exposed during good weather was observed when clusters were exposed during good and poor weather. Our results are discussed in terms of the role of weather during bloom on the contribution of bees adapted to foraging during cool conditions.

  14. Historical Time Series of Extreme Convective Weather in Finland

    NASA Astrophysics Data System (ADS)

    Laurila, T. K.; Mäkelä, A.; Rauhala, J.; Olsson, T.; Jylhä, K.

    2016-12-01

    Thunderstorms, lightning, tornadoes, downbursts, large hail and heavy precipitation are well-known for their impacts to human life. In the high latitudes as in Finland, these hazardous warm season convective weather events are focused in the summer season, roughly from May to September with peak in the midsummer. The position of Finland between the maritime Atlantic and the continental Asian climate zones makes possible large variability in weather in general which reflects also to the occurrence of severe weather; the hot, moist and extremely unstable air masses sometimes reach Finland and makes possible for the occurrence of extreme and devastating weather events. Compared to lower latitudes, the Finnish climate of severe convection is "moderate" and contains a large year-to-year variation; however, behind the modest annual average is hidden the climate of severe weather events that practically every year cause large economical losses and sometimes even losses of life. Because of the increased vulnerability of our modern society, these episodes have gained recently plenty of interest. During the decades, the Finnish Meteorological Institute (FMI) has collected observations and damage descriptions of severe weather episodes in Finland; thunderstorm days (1887-present), annual number of lightning flashes (1960-present), tornados (1796-present), large hail (1930-present), heavy rainfall (1922-present). The research findings show e.g. that a severe weather event may occur practically anywhere in the country, although in general the probability of occurrence is smaller in the Northern Finland. This study, funded by the Finnish Research Programme on Nuclear Power Plant Safety (SAFIR), combines the individual Finnish severe weather time series' and examines their trends, cross-correlation and correlations with other atmospheric parameters. Furthermore, a numerical weather model (HARMONIE) simulation is performed for a historical severe weather case for analyzing how

  15. What is the weather like today

    NASA Astrophysics Data System (ADS)

    Jovic, Sladjana

    2017-04-01

    Meteorology is the study of all changes in the atmosphere that surround the Earth. In this project, students will design and build some of the instruments that meteorologists use and make two school Weather Stations and placed them in different school yards so that results of weather parameters date can be follow during three months and be compared. Poster will present a procedure and a preparation how to work with weather stations that contain 1. Barometer (Air pressure) 2. Rain Gauge (Precipitation) 3. Thermometer (Temperature ) 4. Wind Vane (Wind Direction) By collecting their own data, the students found out more about weather through a process similar to the one that professional meteorologists used. Finally students compared differences between two school weather station and used these results to presented how different places had different climate and how climate changed during the months in a year. This was opportunity for cooperation between students from different schools and different grades when older students from secondary school helped younger student to make their weather station and shared knowledge and experience while they followed weather condition during the project .

  16. Weatherization Works--Summary of Findings from the Retrospective Evaluation of the U.S. DOE's Weatherization Assistance Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Carroll, David; Pigg, Scott

    This report presents a summary of the studies and analyses that compose the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program (WAP). WAP provides grants to Grantees (i.e., states) that then provide grants to Subgrantees (i.e., local weatherization agencies) to weatherize low-income homes. This evaluation focused on the WAP Program Year 2008. The retrospective evaluation produced twenty separate reports, including this summary. Four separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, small multifamily, and large multifamily. Other reports address the environmentalmore » emissions, macroeconomic, and health and household-related benefits attributable to WAP, and characterize the program, its recipients, and those eligible for the program. Major field studies are also summarized, including a major indoor air quality study and a follow-up ventilation study, an in-depth in-field assessment of weatherization work and quality, and a study that assesses reasons for variations in energy savings across homes. Results of surveys of weatherization staff, occupants, occupants satisfaction with weatherization services provided, and weatherization trainees are summarized. Lastly, this report summarizes a set of fifteen case studies of high-performing and unique local weatherization agencies.« less

  17. The International Space Weather Initiative

    NASA Technical Reports Server (NTRS)

    Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson

    2010-01-01

    The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.

  18. Space climate and space weather over the past 400 years: 2. Proxy indicators of geomagnetic storm and substorm occurrence

    NASA Astrophysics Data System (ADS)

    Lockwood, Mike; Owens, Mathew J.; Barnard, Luke A.; Scott, Chris J.; Watt, Clare E.; Bentley, Sarah

    2018-02-01

    Using the reconstruction of power input to the magnetosphere presented in Paper 1 Lockwood et al. [J Space Weather Space Clim 7 (2017a)], we reconstruct annual means of the geomagnetic Ap and AE indices over the past 400 years to within a 1-sigma error of ±20%. In addition, we study the behaviour of the lognormal distribution of daily and hourly values about these annual means and show that we can also reconstruct the fraction of geomagnetically-active (storm-like) days and (substorm-like) hours in each year to accuracies of to accuracies of 50%, including the large percentage uncertainties in near-zero values. The results are the first physics-based quantification of the space weather conditions in both the Dalton and Maunder minima. Looking to the future, the weakening of Earth's magnetic moment means that the terrestrial disturbance levels during a future repeats of the solar Dalton and Maunder minima will be weaker and we here quantify this effect for the first time.

  19. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  20. National Weatherization Assistance Program Characterization Describing the Recovery Act Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    This report characterizes the U.S. Department of Energy s Weatherization Assistance Program (WAP) during the American Recovery and Reinvestment Act of 2009 (Recovery Act) period. This research was one component of the Recovery Act evaluation of WAP. The report presents the results of surveys administered to Grantees (i.e., state weatherization offices) and Subgrantees (i.e., local weatherization agencies). The report also documents the ramp up and ramp down of weatherization production and direct employment during the Recovery Act period and other challenges faced by the Grantees and Subgrantees during this period. Program operations during the Recovery Act (Program Year 2010) aremore » compared to operations during the year previous to the Recovery Act (Program Year 2008).« less

  1. Space Weather Forecasting at NOAA with Michigan's Geospace Model: Results from the First Year in Real-Time Operations

    NASA Astrophysics Data System (ADS)

    Cash, M. D.; Singer, H. J.; Millward, G. H.; Balch, C. C.; Toth, G.; Welling, D. T.

    2017-12-01

    In October 2016, the first version of the Geospace model was transitioned into real-time operations at NOAA Space Weather Prediction Center (SWPC). The Geospace model is a part of the Space Weather Modeling Framework (SWMF) developed at the University of Michigan, and the model simulates the full time-dependent 3D Geospace environment (Earth's magnetosphere, ring current and ionosphere) and predicts global space weather parameters such as induced magnetic perturbations in space and on Earth's surface. The current version of the Geospace model uses three coupled components of SWMF: the BATS-R-US global magnetosphere model, the Rice Convection Model (RCM) of the inner magnetosphere, and the Ridley Ionosphere electrodynamics Model (RIM). In the operational mode, SWMF/Geospace runs continually in real-time as long as there is new solar wind data arriving from a satellite at L1, either DSCOVR or ACE. We present an analysis of the overall performance of the Geospace model during the first year of real-time operations. Evaluation metrics include Kp, Dst, as well as regional magnetometer stations. We will also present initial results from new products, such as the AE index, available with the recent upgrade to the Geospace model.

  2. The International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    2010-01-01

    The International Heliophysical Year (IHY) provided a successful model for the deployment of arrays of small scientific instruments in new and scientifically interesting geographic locations, and outreach. The new International Space Weather Initiative (ISWI) is designed to build on this momentum to promote the observation, understanding, and prediction space weather phenomena, and to communicate the scientific results to the public.

  3. Models of Weather Impact on Air Traffic

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao

    2017-01-01

    Flight delays have been a serious problem in the national airspace system costing about $30B per year. About 70 of the delays are attributed to weather and upto two thirds of these are avoidable. Better decision support tools would reduce these delays and improve air traffic management tools. Such tools would benefit from models of weather impacts on the airspace operations. This presentation discusses use of machine learning methods to mine various types of weather and traffic data to develop such models.

  4. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  5. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  6. Space Weather Workshop 2010 to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2010-03-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 27-30 April 2010. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda include ionospheric storms and their impacts on the Global Navigation Satellite System (GNSS), an update on NASA's recently launched Solar Dynamics Observatory (SDO), and new space weather-related activities in the Federal Emergency Management Agency (FEMA). Also this year, the Commercial Space Weather Interest Group will feature a presentation by former NOAA administrator, Vice Admiral Conrad Lautenbacher, U.S. Navy (Ret.).

  7. Operational Space Weather Activities in the US

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert

    2016-07-01

    We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.

  8. Probability fire weather forecasts .. show promise in 3-year trial

    Treesearch

    Paul G. Scowcroft

    1970-01-01

    Probability fire weather forecasts were compared with categorical and climatological forecasts in a trial in southern California during the 1965-1967 fire seasons. Equations were developed to express the reliability of forecasts and degree of skill shown by the forecaster. Evaluation of 336 daily reports suggests that probability forecasts were more reliable. For...

  9. International Polar Research and Space Weather

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2009-02-01

    The fiftieth anniversary of the International Geophysical Year (IGY), currently celebrated in the 2007-2009 International Polar Year (IPY), highlights space weather's heritage from polar research. The polar regions were still very much "terra incognito" 50 years ago. At the same time, communications technologies had significantly advanced since the time of the second IPY, in 1932-1933. Yet even before the second IPY, several directors of international meteorological services stated in a 1928 resolution that "increased knowledge [of the polar regions] will be of practical application to problems connected with terrestrial magnetism, marine and aerial navigation, wireless telegraphy and weather forecasting" (see http://scaa.usask.ca/gallery/northern/currie/en_polaryear.shtml).

  10. PuTmiR: A database for extracting neighboring transcription factors of human microRNAs

    PubMed Central

    2010-01-01

    Background Some of the recent investigations in systems biology have revealed the existence of a complex regulatory network between genes, microRNAs (miRNAs) and transcription factors (TFs). In this paper, we focus on TF to miRNA regulation and provide a novel interface for extracting the list of putative TFs for human miRNAs. A putative TF of an miRNA is considered here as those binding within the close genomic locality of that miRNA with respect to its starting or ending base pair on the chromosome. Recent studies suggest that these putative TFs are possible regulators of those miRNAs. Description The interface is built around two datasets that consist of the exhaustive lists of putative TFs binding respectively in the 10 kb upstream region (USR) and downstream region (DSR) of human miRNAs. A web server, named as PuTmiR, is designed. It provides an option for extracting the putative TFs for human miRNAs, as per the requirement of a user, based on genomic locality, i.e., any upstream or downstream region of interest less than 10 kb. The degree distributions of the number of putative TFs and miRNAs against each other for the 10 kb USR and DSR are analyzed from the data and they explore some interesting results. We also report about the finding of a significant regulatory activity of the YY1 protein over a set of oncomiRNAs related to the colon cancer. Conclusion The interface provided by the PuTmiR web server provides an important resource for analyzing the direct and indirect regulation of human miRNAs. While it is already an established fact that miRNAs are regulated by TFs binding to their USR, this database might possibly help to study whether an miRNA can also be regulated by the TFs binding to their DSR. PMID:20398296

  11. Engaging Earth- and Environmental-Science Undergraduates Through Weather Discussions and an eLearning Weather Forecasting Contest

    NASA Astrophysics Data System (ADS)

    Schultz, David M.; Anderson, Stuart; Seo-Zindy, Ryo

    2013-06-01

    For students who major in meteorology, engaging in weather forecasting can motivate learning, develop critical-thinking skills, improve their written communication, and yield better forecasts. Whether such advances apply to students who are not meteorology majors has been less demonstrated. To test this idea, a weather discussion and an eLearning weather forecasting contest were devised for a meteorology course taken by third-year undergraduate earth- and environmental-science students. The discussion consisted of using the recent, present, and future weather to amplify the topics of the week's lectures. Then, students forecasted the next day's high temperature and the probability of precipitation for Woodford, the closest official observing site to Manchester, UK. The contest ran for 10 weeks, and the students received credit for participation. The top students at the end of the contest received bonus points on their final grade. A Web-based forecast contest application was developed to register the students, receive their forecasts, and calculate weekly standings. Students who were successful in the forecast contest were not necessarily those who achieved the highest scores on the tests, demonstrating that the contest was possibly testing different skills than traditional learning. Student evaluations indicate that the weather discussion and contest were reasonably successful in engaging students to learn about the weather outside of the classroom, synthesize their knowledge from the lectures, and improve their practical understanding of the weather. Therefore, students taking a meteorology class, but not majoring in meteorology, can derive academic benefits from weather discussions and forecast contests. Nevertheless, student evaluations also indicate that better integration of the lectures, weather discussions, and the forecasting contests is necessary.

  12. Impact of Probabilistic Weather on Flight Routing Decisions

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Sridhar, Banavar; Mulfinger, Daniel

    2006-01-01

    Flight delays in the United States have been found to increase year after year, along with the increase in air traffic. During the four-month period from May through August of 2005, weather related delays accounted for roughly 70% of all reported delays, The current weather prediction in tactical (within 2 hours) timeframe is at manageable levels, however, the state of forecasting weather for strategic (2-6 hours) timeframe is still not dependable for long-term planning. In the absence of reliable severe weather forecasts, the decision-making for flights longer than two hours is challenging. This paper deals with an approach of using probabilistic weather prediction for Traffic Flow Management use, and a general method using this prediction for estimating expected values of flight length and delays in the National Airspace System (NAS). The current state-of-the-art convective weather forecasting is employed to aid the decision makers in arriving at decisions for traffic flow and flight planing. The six-agency effort working on the Next Generation Air Transportation System (NGATS) have considered weather-assimilated decision-making as one of the principal foci out of a list of eight. The weather Integrated Product Team has considered integrated weather information and improved aviation weather forecasts as two of the main efforts (Ref. 1, 2). Recently, research has focused on the concept of operations for strategic traffic flow management (Ref. 3) and how weather data can be integrated for improved decision-making for efficient traffic management initiatives (Ref. 4, 5). An overview of the weather data needs and benefits of various participants in the air traffic system along with available products can be found in Ref. 6. Previous work related to use of weather data in identifying and categorizing pilot intrusions into severe weather regions (Ref. 7, 8) has demonstrated a need for better forecasting in the strategic planning timeframes and moving towards a

  13. Concept of operations for road weather connected vehicle applications.

    DOT National Transportation Integrated Search

    2013-02-01

    Weather has a significant impact on the operations of the nations roadway system year round. These weather events translate into changes in traffic conditions, roadway safety, travel reliability, operational effectiveness, and productivity. It is,...

  14. Communications Related to Weather Information Handling and Dissemination

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    This report summarizes the tasking contained in the Statement of Work and describes the results of the project. In addition, it addresses the principles, procedures, and methods of application that would be generally applicable to using the results of the project. NASA Glenn Research Center (GRC) is involved in the Aviation Weather Information (AWIN) Program, which has a goal of reducing the aircraft accident rate, by a factor of five within 10 years and by a factor of 10 within 20 years. GRC's effort concentrates on the communications means needed to disseminate effective weather data. GRC's focus in on developing new technologies and techniques to support the digital communication of weather information between airborne and ground-based users.

  15. NASA's Internal Space Weather Working Group

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  16. Space Weather Forecasting: An Enigma

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.

    2012-12-01

    The space age began in earnest on October 4, 1957 with the launch of Sputnik 1 and was fuelled for over a decade by very strong national societal concerns. Prior to this single event the adverse effects of space weather had been registered on telegraph lines as well as interference on early WWII radar systems, while for countless eons the beauty of space weather as mid-latitude auroral displays were much appreciated. These prior space weather impacts were in themselves only a low-level science puzzle pursued by a few dedicated researchers. The technology boost and innovation that the post Sputnik era generated has almost single handedly defined our present day societal technology infrastructure. During the decade following Neil's walk on the moon on July 21, 1969 an international thrust to understand the science of space, and its weather, was in progress. However, the search for scientific understand was parsed into independent "stove pipe" categories: The ionosphere-aeronomy, the magnetosphere, the heliosphere-sun. The present day scientific infrastructure of funding agencies, learned societies, and international organizations are still hampered by these 1960's logical divisions which today are outdated in the pursuit of understanding space weather. As this era of intensive and well funded scientific research progressed so did societies innovative uses for space technologies and space "spin-offs". Well over a decade ago leaders in technology, science, and the military realized that there was indeed an adverse side to space weather that with each passing year became more severe. In 1994 several U.S. agencies established the National Space Weather Program (NSWP) to focus scientific attention on the system wide issue of the adverse effects of space weather on society and its technologies. Indeed for the past two decades a significant fraction of the scientific community has actively engaged in understanding space weather and hence crossing the "stove

  17. Fire weather and large fire potential in the northern Sierra Nevada

    Treesearch

    Brandon M. Collins

    2014-01-01

    Fuels, weather, and topography all contribute to observed fire behavior. Of these, weather is not only the most dynamic factor, it is the most likely to be directly influenced by climate change. In this study 40 years of daily fire weather observations from five weather stations across the northern Sierra Nevada were analyzed to investigate potential changes or trends...

  18. Land plants, weathering, and Paleozoic climatic evolution

    NASA Astrophysics Data System (ADS)

    Goddéris, Yves; Maffre, Pierre; Donnadieu, Yannick; Carretier, Sébastien

    2017-04-01

    At the end of the Paleozoic, the Earth plunged into the longest and most severe glaciation of the Phanerozoic eon (Montanez et al., 2013). The triggers for this event (called the Late Paleozoic Ice Age, LPIA) are still debated. Based on field observations and laboratory experiments showing that CO2 consumption by rock weathering is enhanced by the presence of plants, the onset of the LPIA has been related to the colonization of the continents by vascular plants in the latest Devonian. By releasing organic acids, concentrating respired CO2 in the soil, and by mechanically breaking rocks with their roots, land plants may have increased the weatherability of the continental surfaces. The "greening" of the continents may also have contributed to an enhanced burial of organic carbon in continental sedimentary basins, assuming that lignin decomposers have not yet evolved (Berner, 2004). As a consequence, CO2 went down, setting the conditions for the onset of the LPIA. This scenario is now widely accepted in the scientific community, and reinforces the feeling that biotic evolutionary steps are main drivers of the long-term climatic evolution. Although appealing, this scenario suffers from some weaknesses. The timing of the continent colonization by vascular plants was achieved in the late Devonian, several tens of million years before the onset of the LPIA (Davies and Gibling, 2013). Second, lignin decomposer fungi were present at the beginning of the Carboniferous, 360 million years ago while the LPIA started around 340-330 Ma (Nelsen et al., 2016). Land plants have also decreased the continental albedo, warming the Earth surface and promoting runoff. Weathering was thus facilitated and CO2 went down. Yet, temperature may have stayed constant, the albedo change compensating for the CO2 fall (Le Hir et al., 2010). From a modelling point of view, the effect of land plants on CO2 consumption by rock weathering is accounted for by forcing the weatherability of the

  19. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  20. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  1. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  2. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings

    PubMed Central

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities’ preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities’ capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change. PMID:27649547

  3. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    PubMed

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  4. Application of SeaWinds Scatterometer and TMI-SSM/I Rain Rates to Hurricane Analysis and Forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Hou, Arthur; Reale, Oreste

    2004-01-01

    Results provided by two different assimilation methodologies involving data from passive and active space-borne microwave instruments are presented. The impact of the precipitation estimates produced by the TRMM Microwave Imager (TMI) and Special Sensor Microwave/Imager (SSM/I) in a previously developed 1D variational continuous assimilation algorithm for assimilating tropical rainfall is shown on two hurricane cases. Results on the impact of the SeaWinds scatterometer on the intensity and track forecast of a mid-Atlantic hurricane are also presented. This work is the outcome of a collaborative effort between NASA and NOAA and indicates the substantial improvement in tropical cyclone forecasting that can result from the assimilation of space-based data in global atmospheric models.

  5. Weather and emotional state: a search for associations between weather and calls to telephone counseling services

    NASA Astrophysics Data System (ADS)

    Driscoll, Dennis; Stillman, Daniel

    2002-08-01

    Previous research has revealed that an emotional response to weather might be indicated by calls to telephone counseling services. We analyzed call frequency from such "hotlines", each serving communities in a major metropolitan area of the United States (Detroit, Washington DC, Dallas and Seattle). The periods examined were all, or parts of, the years 1997 and 1998. Associations with subjectively derived synoptic weather types for all cities except Seattle, as well as with individual weather elements [cloudiness (sky cover), precipitation, windspeed, and interdiurnal temperature change] for all four cities, were investigated. Analysis of variance and t-tests (significance of means) were applied to test the statistical significance of differences. Although statistically significant results were obtained in scattered instances, the total number was within that expected by chance, and there was little in the way of consistency to these associations. One clear exception was the increased call frequency during destructive (severe) weather, when there is obvious concern about the damage done by it.

  6. Relationships between Long-Term Demography and Weather in a Sub-Arctic Population of Common Eider

    PubMed Central

    Jónsson, Jón Einar; Gardarsson, Arnthor; Gill, Jennifer A.; Pétursdóttir, Una Krístín; Petersen, Aevar; Gunnarsson, Tómas Grétar

    2013-01-01

    Effects of local weather on individuals and populations are key drivers of wildlife responses to climatic changes. However, studies often do not last long enough to identify weather conditions that influence demographic processes, or to capture rare but extreme weather events at appropriate scales. In Iceland, farmers collect nest down of wild common eider Somateria mollissima and many farmers count nests within colonies annually, which reflects annual variation in the number of breeding females. We collated these data for 17 colonies. Synchrony in breeding numbers was generally low between colonies. We evaluated 1) demographic relationships with weather in nesting colonies of common eider across Iceland during 1900–2007; and 2) impacts of episodic weather events (aberrantly cold seasons or years) on subsequent breeding numbers. Except for episodic events, breeding numbers within a colony generally had no relationship to local weather conditions in the preceding year. However, common eider are sexually mature at 2–3 years of age and we found a 3-year time lag between summer weather and breeding numbers for three colonies, indicating a positive effect of higher pressure, drier summers for one colony, and a negative effect of warmer, calmer summers for two colonies. These findings may represent weather effects on duckling production and subsequent recruitment. Weather effects were mostly limited to a few aberrant years causing reductions in breeding numbers, i.e. declines in several colonies followed severe winters (1918) and some years with high NAO (1992, 1995). In terms of life history, adult survival generally is high and stable and probably only markedly affected by inclement weather or aberrantly bad years. Conversely, breeding propensity of adults and duckling production probably do respond more to annual weather variations; i.e. unfavorable winter conditions for adults increase probability of death or skipped breeding, whereas favorable summers can

  7. STEREO Space Weather and the Space Weather Beacon

    NASA Technical Reports Server (NTRS)

    Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.

    2007-01-01

    The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.

  8. Determining mineral weathering rates based on solid and solute weathering gradients and velocities: Application to biotite weathering in saprolites

    USGS Publications Warehouse

    White, A.F.

    2002-01-01

    Chemical weathering gradients are defined by the changes in the measured elemental concentrations in solids and pore waters with depth in soils and regoliths. An increase in the mineral weathering rate increases the change in these concentrations with depth while increases in the weathering velocity decrease the change. The solid-state weathering velocity is the rate at which the weathering front propagates through the regolith and the solute weathering velocity is equivalent to the rate of pore water infiltration. These relationships provide a unifying approach to calculating both solid and solute weathering rates from the respective ratios of the weathering velocities and gradients. Contemporary weathering rates based on solute residence times can be directly compared to long-term past weathering based on changes in regolith composition. Both rates incorporate identical parameters describing mineral abundance, stoichiometry, and surface area. Weathering gradients were used to calculate biotite weathering rates in saprolitic regoliths in the Piedmont of Northern Georgia, USA and in Luquillo Mountains of Puerto Rico. Solid-state weathering gradients for Mg and K at Panola produced reaction rates of 3 to 6 x 10-17 mol m-2 s-1 for biotite. Faster weathering rates of 1.8 to 3.6 ?? 10-16 mol m-2 s-1 are calculated based on Mg and K pore water gradients in the Rio Icacos regolith. The relative rates are in agreement with a warmer and wetter tropical climate in Puerto Rico. Both natural rates are three to six orders of magnitude slower than reported experimental rates of biotite weathering. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  10. History of surface weather observations in the United States

    NASA Astrophysics Data System (ADS)

    Fiebrich, Christopher A.

    2009-04-01

    In this paper, the history of surface weather observations in the United States is reviewed. Local weather observations were first documented in the 17th Century along the East Coast. For many years, the progression of a weather observation from an initial reading to dissemination remained a slow and laborious process. The number of observers remained small and unorganized until agencies including the Surgeon General, Army, and General Land Office began to request regular observations at satellite locations in the 1800s. The Smithsonian was responsible for first organizing a large "network" of volunteer weather observers across the nation. These observers became the foundation for today's Cooperative Observer network. As applications of weather data continued to grow and users required the data with an ever-decreasing latency, automated weather networks saw rapid growth in the later part of the 20th century. Today, the number of weather observations across the U.S. totals in the tens of thousands due largely to privately-owned weather networks and amateur weather observers who submit observations over the internet.

  11. Maintenance coating of weathering steel : field evaluation and guidelines

    DOT National Transportation Integrated Search

    1995-03-01

    This report describes a 4-year bridge and test fence evaluation of protective coatings for maintaining weathering steel bridges. The test specimens consisted of steel panels cut from existing aged weathering steel bridges, along with some new mill sc...

  12. The quiet revolution of numerical weather prediction.

    PubMed

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-03

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  13. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  14. CCMC: bringing space weather awareness to the next generation

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.

    2017-12-01

    Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper

  15. White House and agencies focus on space weather concerns

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-06-01

    "Space weather is a serious matter that can affect human economies around the world," Tamara Dickinson, a senior policy analyst with the White House Office of Science and Technology Policy (OSTP), told attendees at the 2012 Space Weather Enterprise Forum, held 5 June in Washington, D. C. With the 2013 solar maximum nearing, researchers and government agencies are focusing on how the greater solar activity could affect our increasingly technological society and what measures can be taken to help prevent or mitigate any threats to the electricity grid, GPS, and other potentially vulnerable technologies. Dickenson said that there has been an increased awareness about space weather in the White House and that President Barack Obama recently has requested briefing memos on the topic. She highlighted several efforts the administration is taking related to space weather, including a forthcoming national Earth observation strategy, which could be released in July and will include an assessment of space weather. She explained that the strategy document will be part of the fiscal year 2014 presidential budget request and that it will be updated every 3 years.

  16. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  17. Weatherization Works II - Summary of Findings from the ARRA Period Evaluation of the U.S. Department of Energy's Weatherization Assistance Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Carroll, David; Rose, Erin M.

    2015-10-01

    This report presents a summary of the American Recovery and Reinvestment Act of 2009 (ARRA) evaluation of the U.S. Department of Energy s low-income Weatherization Program. This evaluation focused on the WAP Program Year 2010. The ARRA evaluation produced fourteen separate reports, including this summary. Three separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, and large multifamily. Other reports address the environmental emissions benefits attributable to WAP, and characterize the program. Special studies were conducted to: estimate the impacts of weatherization and healthy homes interventions onmore » asthma-related Medicaid claims in a small cohort in Washington State; assess how weatherization recipients communicate their weatherization experiences to those in their social network, and assess processes implemented to defer homes for weatherization. Small studies addressed energy use in refrigerators, WAP as implemented in the U.S. territories for the first time, and weatherization s impacts on air conditioning energy savings. The national occupant survey was mined for additional insights on the impacts of weatherization on household budgets and energy behaviors post-weatherization. Lastly, the results of a survey of weatherization training centers are summarized.« less

  18. Using Space Weather for Enhanced, Extreme Terrestrial Weather Predictions.

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; Lee, T. A., III

    2017-12-01

    Considering the complexities of the Sun-Earth system, the impacts of space weather to weather here on Earth are not fully understood. This study attempts to analyze this interrelationship by providing a theoretical framework for studying the varied modalities of solar inclination and explores the extent to which they contribute, both in formation and intensity, to extreme terrestrial weather. Using basic topologic and ontology engineering concepts (TOEC), the transdisciplinary syntaxes of space physics, geophysics, and meteorology are analyzed as a seamless interrelated system. This paper reports this investigation's initial findings and examines the validity of the question "Does space weather contribute to extreme weather on Earth, and if so, to what degree?"

  19. How Satellites Have Contributed to Building a Weather Ready Nation

    NASA Astrophysics Data System (ADS)

    Lapenta, W.

    2017-12-01

    NOAA's primary mission since its inception has been to reduce the loss of life and property, as well as disruptions from, high impact weather and water-related events. In recent years, significant societal losses resulting even from well forecast extreme events have shifted attention from the forecast alone toward ensuring societal response is equal to the risks that exist for communities, businesses and the public. The responses relate to decisions ranging from coastal communities planning years in advance to mitigate impacts from rising sea level, to immediate lifesaving decisions such as a family seeking adequate shelter during a tornado warning. NOAA is committed to building a "Weather-Ready Nation" where communities are prepared for and respond appropriately to these events. The Weather-Ready Nation (WRN) strategic priority is building community resilience in the face of increasing vulnerability to extreme weather, water, climate and environmental threats. To build a Weather-Ready Nation, NOAA is enhancing Impact-Based Decision Support Services (IDSS), transitioning science and technology advances into forecast operations, applying social science research to improve the communication and usefulness of information, and expanding its dissemination efforts to achieve far-reaching readiness, responsiveness and resilience. These four components of Weather-Ready Nation are helping ensure NOAA data, products and services are fully utilized to minimize societal impacts from extreme events. Satellite data and satellite products have been important elements of the national Weather Service (NWS) operations for more than 40 years. When one examines the uses of satellite data specific to the internal forecast and warning operations of NWS, two main applications are evident. The first is the use of satellite data in numerical weather prediction models; the second is the use of satellite imagery and derived products for mesoscale and short-range weather warning and

  20. Space Weathering: Laboratory Analyses and In-Situ Instrumentation

    NASA Technical Reports Server (NTRS)

    Bentley, M. S.; Ball, A. J.; Dyar, M. D.; Pieters, C. M.; Wright, I. P.; Zarnecki, J. C.

    2005-01-01

    Space weathering is now understood to be a key modifier of visible and near infrared reflectance spectra of airless bodies. Believed to be caused by vapour recondensation after either ion sputtering or impact vaporization, space weathering has been successfully simulated in the laboratory over the past few years. The optical changes caused by space weathering have been attributed to the accumulation of sub-microscopic iron on regolith grain surfaces. Such fine-grained metallic iron has distinctive magnetic properties that can be used to study it.

  1. Evaluation of several finishes on severely weathered wood

    Treesearch

    R. Sam Williams; Peter Sotos; William Feist

    1999-01-01

    Alkyd-, oil-modified-latex-, and latex-based finishes were applied to severely weathered western redcedar and redwood boards that did not have any surface treatment to ameliorate the weathered surface prior to painting. Six finishes were evaluated annually for 11 years for cracking, flaking, erosion, mildew growth, discoloration, and general appearance. Low-solids-...

  2. Space weather forecasting: Past, Present, Future

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2012-12-01

    There have been revolutionary advances in electrical technologies over the last 160 years. The historical record demonstrates that space weather processes have often provided surprises in the implementation and operation of many of these technologies. The historical record also demonstrates that as the complexity of systems increase, including their interconnectedness and interoperability, they can become more susceptible to space weather effects. An engineering goal, beginning during the decades following the 1859 Carrington event, has been to attempt to forecast solar-produced disturbances that could affect technical systems, be they long grounded conductor-based or radio-based or required for exploration, or the increasingly complex systems immersed in the space environment itself. Forecasting of space weather events involves both frontier measurements and models to address engineering requirements, and industrial and governmental policies that encourage and permit creativity and entrepreneurship. While analogies of space weather forecasting to terrestrial weather forecasting are frequently made, and while many of the analogies are valid, there are also important differences. This presentation will provide some historical perspectives on the forecast problem, a personal assessment of current status of several areas including important policy issues, and a look into the not-too-distant future.

  3. Global Cooperation in the Science of Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Space Weather Initiative (ISWI). The ISWI program is a continuation of the successful International Heliophysical Year (IHY) program. These programs have brought scientists together to tackle the scientific issues behind space weather. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and ISWI activities that promote space weather science via complementary approaches in international scientific collaborations. capacity building. and public outreach.

  4. Weather effects on the success of longleaf pine cone crops

    Treesearch

    Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer

    2016-01-01

    We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...

  5. Third Space Weather Summit Held for Industry and Government Agencies

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    2009-12-01

    The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.

  6. Fun with Weather

    ERIC Educational Resources Information Center

    Yildirim, Rana

    2007-01-01

    This three-part weather-themed lesson for young learners connects weather, clothing, and feelings vocabulary. The target structures covered are: asking about the weather; comparing weather; using the modal auxiliary, should; and the question word, when. The lessons utilize all four skills and include such activities as going outside, singing,…

  7. Mexican Space Weather Service (SCIESMEX)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.

    2015-12-01

    Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space weather phenomena. During the last few years, the UN has promoted international cooperation on Space Weather awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space Weather Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the experience of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO).

  8. The impact of weather on human health.

    PubMed

    Sulman, F G

    1984-01-01

    The impact of weather on human health is a well-known fact, yet, alas, neglected in the past. Bioclimatology, a vast field of medical knowledge, has only been developed in the past few years. It shows that the air we breathe has a profound influence on our well-being. Electrical charges of the air, such as ions, spherics and electrofields can affect our endocrine, vegetative and autonomous nerve system. It may even be responsible for post-operative thromboembolism. The present article describes weather reactions, electric radiations, climate rhythm, medical aspects of weather changes, and their effect on health and disease. Special devotion is also given to the manifestations of evil winds.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Lopez, A.; Sengupta, M.

    Typical Meteorological Year (TMY) data sets provide industry standard resource information for building designers and are commonly used by the solar industry to estimate photovoltaic and concentrating solar power system performance. Historically, TMY data sets were only available for certain station locations, but current TMY data sets are available on the same grid as the National Solar Radiation Database data and are referred to as the gridded TMY. In this report, a comparison of TMY, typical direct (normal irradiance) year (TDY), and typical global (horizontal irradiance) year (TGY) data sets were performed to better understand the impact of ancillary weathermore » variables upon them. These analyses identified geographical areas of high and low temporal and spatial variability, thereby providing insight into the representativeness of a particular TMY data set for use in renewable energy as well as other applications.« less

  10. Weathering and landscape evolution

    NASA Astrophysics Data System (ADS)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  11. Weather-Corrected Performance Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dierauf, T.; Growitz, A.; Kurtz, S.

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimatemore » expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.« less

  12. All-weather-landing operations bibliography

    DOT National Transportation Integrated Search

    1972-06-01

    The bibliography provides a selected coverage of several topic areas within the general subject : of all-weather landing. The period covers the recent years of 1966 through 1971. The areas are : as follows: Approach and Landing, Human-Factors, Naviga...

  13. Potential weathering by freeze-thaw action in alpine rocks in the European Alps during a nine year monitoring period

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas

    2017-11-01

    A quantification of rock weathering by freeze-thaw processes in alpine rocks requires at least rock temperature data in high temporal resolution, in high quality, and over a sufficient period of time. In this study up to nine years of rock temperature data (2006-2015) from eleven rock monitoring sites in two of the highest mountain ranges of Austria were analyzed. Data were recorded at a half-hourly or hourly logging interval and at rock depths of 3, 10, and 30-40 cm. These data have been used to quantify mean conditions, ranges, and relationships of the potential near-surface weathering by freeze-thaw action considering volumetric-expansion of ice and ice segregation. For the former, freeze-thaw cycles and effective freeze-thaw cycles for frost shattering have been considered. For the latter, the intensity and duration of freezing events as well as time within the 'frost cracking window' have been analyzed. Results show that the eleven sites are in rather extreme topoclimatic positions and hence represent some of the highest and coolest parts of Austria and therefore the Eastern Alps. Only four sites are presumably affected by permafrost. Most sites are influenced by a long-lasting seasonal snow cover. Freeze-thaw cycles and effective freeze-thaw cycles for frost shattering are mainly affecting the near-surface and are unimportant at few tens of centimeters below the rock surface. The lowest temperatures during freezing events and the shortest freezing events have been quantified at all eleven monitoring sites very close to the surface. The time within the frost cracking window decreases in most cases from the rock surface inwards apart from very cold years/sites with very low temperatures close to the surface. As shown by this study and predicted climate change scenarios, assumed warmer rock temperature conditions in the future at alpine rock walls in Austria will lead to less severe freezing events and to shorter time periods within the frost-cracking window

  14. UTM Weather Presentation

    NASA Technical Reports Server (NTRS)

    Chan, William N.; Kopardekar, Parimal H.; Carmichael, Bruce; Cornman, Larry

    2017-01-01

    Presentation highlighting how weather affected UAS operations during the UTM field tests. Research to develop UAS weather translation models with a description of current and future work for UTM weather.

  15. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    NASA Astrophysics Data System (ADS)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  16. Utilizing Vehicle Data for Road Weather Management (Pikalert 5.0).

    DOT National Transportation Integrated Search

    2017-01-01

    Weather has a significant impact on the operations of the nations roadway system year round. For example, rain reduces pavement friction; winter weather can leave pavements snow-covered or icy; fog, smoke, blowing dust, heavy precipitation, and ve...

  17. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    NASA Astrophysics Data System (ADS)

    Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre

    2018-03-01

    The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith

  18. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space

  19. 2011 Space Weather Workshop to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2011-04-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 26-29 April 2011. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda will include presentations on space weather impacts on the Global Positioning System (GPS), the Solar Terrestrial Relations Observatory's (STEREO) mission milestone of a 360° view of the Sun, the latest from NASA's Solar Dynamics Observatory (SDO), and space weather impacts on emergency response by the Federal Emergency Management Agency (FEMA). Additionally, the vulnerabilities of satellites and the power grid to space weather will be addressed. Additional highlights will include the Commercial Space Weather Interest Group's (CSWIG) roundtable session and a presentation from the Office of the Federal Coordinator for Meteorology (OFCM). The CSWIG roundtable session on the growth of the space weather enterprise will feature distinguished panelists. As always, lively interaction between the audience and the panel is anticipated. The OFCM will present the National Space Weather Program's new strategic plan.

  20. The Future of Planetary Climate Modeling and Weather Prediction

    NASA Technical Reports Server (NTRS)

    Del Genio, A. D.; Domagal-Goldman, S. D.; Kiang, N. Y.; Kopparapu, R. K.; Schmidt, G. A.; Sohl, L. E.

    2017-01-01

    Modeling of planetary climate and weather has followed the development of tools for studying Earth, with lags of a few years. Early Earth climate studies were performed with 1-dimensionalradiative-convective models, which were soon fol-lowed by similar models for the climates of Mars and Venus and eventually by similar models for exoplan-ets. 3-dimensional general circulation models (GCMs) became common in Earth science soon after and within several years were applied to the meteorology of Mars, but it was several decades before a GCM was used to simulate extrasolar planets. Recent trends in Earth weather and and climate modeling serve as a useful guide to how modeling of Solar System and exoplanet weather and climate will evolve in the coming decade.

  1. Privacy Policy of NOAA's National Weather Service - NOAA's National Weather

    Science.gov Websites

    Safety Weather Radio Hazard Assmt... StormReady / TsunamiReady Skywarn(tm) Education/Outreach Information , and National Weather Service information collection practices. This Privacy Policy Statement applies only to National Weather Service web sites. Some organizations within NOAA may have other information

  2. 1980 Weather summary

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The weather in the United States during 1980 was bad. A 3-month heat wave in the southwest caused about $20 billion in ruined crops, an increase in power consumption, and damage to roads and highways. Nationwide, the heat killed 1320 people. Floods caused more than $1 billion in losses. Hurricane Allen caused about $500 million in property losses and took two lives.The highest temperature reading during 1980, 51°C (124°F), was reached five times. Locations were at Bull Head, Arizona; Death Valley, California; and three times at Baker, California. Preliminary figures also show that the lowest temperature for the year was recorded at Tok weather station, 150 miles southeast of Fairbanks, Alaska. There the mercury plummeted to -56°C (-68°F). In the lower 48 states the minimum thermometer reading was -44°C at Wisdom, Montana.

  3. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    mechanisms between climate and chemical weathering. On timescales longer than a million years, atmospheric CO2 levels have been primarily controlled by the balance between the rate of volcanic inputs from the Earth's interior and the rate of uptake through chemical weathering of silicates at the Earth's surface (Ruddiman, 1997). Weathering is proposed as the principal moderator in controlling large increases and decreases in global temperature and precipitation through the greenhouse effects of CO2 over geologic time (R. A. Berner and E. K. Berner, 1997). Weathering processes observed in paleosols, discussed elsewhere in this volume (see Chapter 5.18), have also been proposed as indicating changes in Archean atmospheric CO2 and O2 levels (Ohmoto, 1996; Rye and Holland, 1998).

  4. [50 years of the methodology of weather forecasting for medicine].

    PubMed

    Grigor'ev, K I; Povazhnaia, E L

    2014-01-01

    The materials reported in the present article illustrate the possibility of weather forecasting for the medical purposes in the historical aspect. The main characteristics of the relevant organizational and methodological approaches to meteoprophylaxis based of the standard medical forecasts are presented. The emphasis is laid on the priority of the domestic medical school in the development of the principles of diagnostics and treatment of meteosensitivity and meteotropic complications in the patients presenting with various diseases with special reference to their age-related characteristics.

  5. National Weatherization Assistance Program Characterization - Describing the Pre-ARRA Progam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bensch, Ingo; Keene, Ashleigh; Cowan, Claire

    2014-09-01

    This report characterizes the Department of Energy s Weatherization Assistance Program (WAP) as it was administered in Program Year 2008. WAP has supported energy efficiency improvements to the homes of low-income households in the United States since 1976. The program provides grants, guidance, and other support to grantees: weatherization programs administered by each of the 50 states, the District of Columbia and some Native American tribes. Although there have been studies of some grantee-administered weatherization programs, the overall effectiveness of the national weatherization program has not been formally evaluated since Program Year 1989. Since that time, the program has evolvedmore » significantly, with an increased focus on baseload electric usage, continued evolution of diagnostic tools, new guidelines and best practices for heating-related measures, and adjustments in program rules. More recently, the program has also adjusted to large, temporary funding increases and changes in federal rules spurred by the American Recovery and Reinvestment Act (ARRA). Because the Weatherization Assistance Program of today is dramatically different from the one evaluated in 1989, DOE determined to undertake a new comprehensive evaluation of the national program. This new national evaluation is managed by Oak Ridge National Laboratory (ORNL). Under a competitive solicitation process, ORNL selected APPRISE, Inc., Blasnik & Associates, Dalhoff Associates and the Energy Center of Wisconsin to conduct the evaluation. The national evaluation comprises two independent evaluations. The first evaluation of which this report is a part focuses on Program Year 2008 (PY08). The second evaluation focuses on the ARRA-funded years of 2009 through 2011. This report, together with its companion the Eligible Population Study addresses specific program characterization goals established for the greater evaluation. The Energy Center led grantee and subgrantee data collection efforts

  6. Space weather services: now and in the future

    NASA Astrophysics Data System (ADS)

    Kunches, J.; Murtagh, W.

    The NOAA Space Environment Center has provided continuous 24 hours per day 7 days per week space weather products and services to the United States and the international community via the International Space Environment Service for more than 30 years Over that time span an evolutionary process has occurred In the early days the products consisted of short text and coded messages to accommodate the communications technologies of the period The birth of the Internet made the sharing of graphical imagery and real-time data possible enabling service providers to communicate more information more quickly to the users Now in parallel with the advances in telecommunications the space weather user community has grown dramatically and is enunciating ever-stronger requirements back to the service providers The commercial airline community is probably the best example of an industry wanting more from space weather How are the users going to continue to change over the next 10-20 years and what services might they need How will they get this information and how might they use it This is the overall thrust of the presentation offering a look to the future and a challenge to the space weather community

  7. The impact of weather changes on air quality and health in the United States in 1994-2012

    NASA Astrophysics Data System (ADS)

    Jhun, Iny; Coull, Brent A.; Schwartz, Joel; Hubbell, Bryan; Koutrakis, Petros

    2015-08-01

    Air quality is heavily influenced by weather conditions. In this study, we assessed the impact of long-term weather changes on air quality and health in the US during 1994-2012. We quantified past weather-related increases, or ‘weather penalty’, in ozone (O3) and fine particulate matter (PM2.5), and thereafter estimated the associated excess deaths. Using statistical regression methods, we derived the weather penalty as the additional increases in air pollution relative to trends assuming constant weather conditions (i.e., weather-adjusted trends). During our study period, temperature increased and wind speed decreased in most US regions. Nationally, weather-related 8 h max O3 increases were 0.18 ppb per year (95% CI: 0.06, 0.31) in the warm season (May-October) and 0.07 ppb per year (95% CI: 0.02, 0.13) in the cold season (November-April). The weather penalties on O3 were relatively larger than PM2.5 weather penalties, which were 0.056 μg m-3 per year (95% CI: 0.016, 0.096) in warm months and 0.027 μg m-3 per year (95% CI: 0.010, 0.043) in cold months. Weather penalties on O3 and PM2.5 were associated with 290 (95% CI: 80, 510) and 770 (95% CI: 190, 1350) excess annual deaths, respectively. Over a 19-year period, this amounts to 20 300 excess deaths (5600 from O3, 14 700 from PM2.5) attributable to the weather penalty on air quality.

  8. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  9. Activities in Teaching Weather

    ERIC Educational Resources Information Center

    Tonn, Martin

    1977-01-01

    Presented is a unit composed of activities for teaching weather. Topics include cloud types and formation, simple weather instruments, and the weather station. Illustrations include a weather chart and instruments. A bibliography is given. (MA)

  10. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  11. Groundwater quality under the influence of spent mushroom substrate weathering.

    PubMed

    Guo, Mingxin

    2005-10-01

    Nitrate and other solutes resulting from field-weathering of spent mushroom substrate (SMS) percolate into underlying soils and may migrate to groundwater. A field trial was conducted to investigate the potential influences of SMS weathering on groundwater quality. Spent mushroom substrate was deposited at 90 and 150 cm pile depths over a Typic Hapludult and weathered for 2 years. Eight casing wells were installed around the SMS piles to monitor the quality changes of groundwater with a high seasonal water table of 760 cm below the surface. Although leachate solutes had moved more than 200 cm deep in soil from the surface, no significant changes of groundwater quality caused by SMS weathering were observed even one year after removal of the SMS piles (3 years total). The groundwater had pH, electrical conductivity (EC) and dissolved organic carbon (DOC) of 4.3-5.7, 0.2-0.3 dS m(-1) and 0.7-2.2 mg L(-1), respectively. The major inorganic ions were Mg(2+), Ca(2+), Na(+), Cl(-), SO(4)(2-) and NO(3)(-), with a concentration range of 2.5-68.3 mg L(-1). The results suggest that SMS leachate solutes migrated fairly slow in deep subsurface soils of the experimental field. Considering that leachate solutes may move several meters in soil through preferential flow channels, weathering of SMS in fields with a high seasonal groundwater table >or=5 m below the ground is recommended. Conservatively, SMS weathering should be conducted on compact surfaces and leachate be collected and reused as liquid fertilizers.

  12. NOAA's weather forecasts go hyper-local with next-generation weather

    Science.gov Websites

    model NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS with next-generation weather model New model will help forecasters predict a storm's path, timing and intensity better than ever September 30, 2014 This is a comparison of two weather forecast models looking

  13. Cold-Weather Sports

    MedlinePlus

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  14. Weathering steel as a potential source for metal contamination: Metal dissolution during 3-year of field exposure in a urban coastal site.

    PubMed

    Raffo, Simona; Vassura, Ivano; Chiavari, Cristina; Martini, Carla; Bignozzi, Maria C; Passarini, Fabrizio; Bernardi, Elena

    2016-06-01

    Surface and building runoff can significantly contribute to the total metal loading in urban runoff waters, with potential adverse effects on the receiving ecosystems. The present paper analyses the corrosion-induced metal dissolution (Fe, Mn, Cr, Ni, Cu) from weathering steel (Cor-Ten A) with or without artificial patinas, exposed for 3 years in unsheltered conditions at a marine urban site (Rimini, Italy). The influence of environmental parameters, atmospheric pollutants and surface finish on the release of dissolved metals in rain was evaluated, also by means of multivariate analysis (two-way and three-way Principal Component Analysis). In addition, surface and cross-section investigations were performed so as to monitor the patina evolution. The contribution provided by weathering steel runoff to the dissolved Fe, Mn and Ni loading at local level is not negligible and pre-patination treatments seem to worsen the performance of weathering steel in term of metal release. Metal dissolution is strongly affected by extreme events and shows seasonal variations, with different influence of seasonal parameters on the behaviour of bare or artificially patinated steel, suggesting that climate changes could significantly influence metal release from this alloy. Therefore, it is essential to perform a long-term monitoring of the performance, the durability and the environmental impact of weathering steel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dress for the Weather

    ERIC Educational Resources Information Center

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice…

  16. Space Weather: Where Is The Beef?

    NASA Astrophysics Data System (ADS)

    Koskinen, H. E. J.

    Space weather has become a highly fashionable topic in solar-terrestrial physics. It is perhaps the best tool to popularise the field and it has contributed significantly to the dialogue between solar, magnetospheric, and ionospheric scientist, and also to mu- tual understanding between science and engineering communities. While these are laudable achievements, it is important for the integrity of scientific space weather re- search to recognise the central open questions in the physics of space weather and the progress toward solving them. We still lack sufficient understanding of the solar physics to be able to tell in advance when and where a solar eruption will take place and whether it will turn to a geoeffective event. There is much to do to understand ac- celeration of solar energetic particles and propagation of solar mass ejecta toward the Earth. After more than 40 years of research scientific discussion of energy and plasma transfer through the magnetopause still deals mostly with qualitative issues and the rapid acceleration processes in the magnetosphere are not yet explained in a satisfac- tory way. Also the coupling to the ionosphere and from there to the strong induction effects on ground is another complex of research problems. For space weather science the beef is in the investigation of these and related topics, not in marketing half-useful space weather products to hesitant customers.

  17. NASA Weather Support 2017

    NASA Technical Reports Server (NTRS)

    Carroll, Matt

    2017-01-01

    In the mid to late 1980's, as NASA was studying ways to improve weather forecasting capabilities to reduce excessive weather launch delays and to reduce excessive weather Launch Commit Criteria (LCC) waivers, the Challenger Accident occurred and the AC-67 Mishap occurred.[1] NASA and USAF weather personnel had advance knowledge of extremely high levels of weather hazards that ultimately caused or contributed to both of these accidents. In both cases, key knowledge of the risks posed by violations of weather LCC was not in the possession of final decision makers on the launch teams. In addition to convening the mishap boards for these two lost missions, NASA convened expert meteorological boards focusing on weather support. These meteorological boards recommended the development of a dedicated organization with the highest levels of weather expertise and influence to support all of American spaceflight. NASA immediately established the Weather Support Office (WSO) in the Office of Space Flight (OSF), and in coordination with the United Stated Air Force (USAF), initiated an overhaul of the organization and an improvement in technology used for weather support as recommended. Soon after, the USAF established a senior civilian Launch Weather Officer (LWO) position to provide meteorological support and continuity of weather expertise and knowledge over time. The Applied Meteorology Unit (AMU) was established by NASA, USAF, and the National Weather Service to support initiatives to place new tools and methods into an operational status. At the end of the Shuttle Program, after several weather office reorganizations, the WSO function had been assigned to a weather branch at Kennedy Space Center (KSC). This branch was dismantled in steps due to further reorganization, loss of key personnel, and loss of budget line authority. NASA is facing the loss of sufficient expertise and leadership required to provide current levels of weather support. The recommendation proposed

  18. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  19. Employing Numerical Weather Models to Enhance Fire Weather and Fire Behavior Predictions

    Treesearch

    Joseph J. Charney; Lesley A. Fusina

    2006-01-01

    This paper presents an assessment of fire weather and fire behavior predictions produced by a numerical weather prediction model similar to those used by operational weather forecasters when preparing their forecasts. The PSU/NCAR MM5 model is used to simulate the weather conditions associated with three fire episodes in June 2005. Extreme fire behavior was reported...

  20. Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook

    2012-01-01

    The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.

  1. Space Weather Around the World: An IHY Education Program

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Ng, C.; Hawkins, I.; Lewis, E.; Cline, T.

    2007-05-01

    Fifty years ago the International Geophysical Year organized a unique and unprecedented program of research that united 60,000 scientists from 66 nations to study global phenomena concerning the Earth and its space environment. In that same spirit, "Space Weather Around the World" is a program to coordinate and facilitate the involvement of NASA heliophysics missions and scientists to inspire and educate a world-wide audience about the International Heliophysical Year (IHY). We will use the popular Sun-Earth Day annual event framework sponsored by the Sun-Earth Connection Education Forum to promote IHY science and the spirit of international collaboration. The theme for the March 2007 Sun-Earth Day: "IHY: Living in the Atmosphere of the Sun" was selected a year ago in anticipation of the IHY celebration. These efforts will be expanded through a series of coordinated programs under the theme "Space Weather Around the World" for Sun-Earth Day 2008. We will produce a live broadcast from China of the total solar eclipse on August 1st 2008 as the central event, highlighting investigations associated with the eclipse by the international heliophysics community. Additional collaborative efforts will include: a Space Weather Media Maker web-tool to allow educators and scientists to create their own multi-media resource to enhance teaching and learning at all levels; Rock-n-Sol, a musical composition by children internationally inspired by space weather and incorporating sonifications of solar data; and Space Weather Action Centers for students to track a solar storm featuring podcasts of multi-cultural perspectives on IHY. The anticipated audience would be millions of people internationally The science and E/PO heliophysics community has an exciting story to tell about IHY, and we look forward to the opportunity to share it globally.

  2. Weather Education/Outreach - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News

  3. Careers in Weather - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News

  4. Global markets and the differential effects of climate and weather on conflict

    NASA Astrophysics Data System (ADS)

    Meng, K. C.; Hsiang, S. M.; Cane, M. A.

    2011-12-01

    Both climate and weather have been attributed historically as possible drivers for violence. Previous empirical studies have either focused on isolating local idiosyncratic weather variation or have conflated weather with spatially coherent climatic changes. This paper provides the first study of the differential impacts of climate and weather variation by employing methods developed in earlier work linking the El Nino Southern Oscillation (ENSO) with the onset of civil conflicts. By separating the effects of climate from local weather, we are able to test possible mechanisms by which atmospheric changes can cause violence. It is generally difficult to separate the effect of year-to-year climate variations from other global events that might drive conflict. We avoid this problem by examining the set of tropical countries that are strongly teleconnected to ENSO. For this region, the ENSO cycle parallels the common year-to-year pattern of violence. Using ENSO, we isolate the influence of climatic changes from other global determinants of violence and compare it with the effect of local weather variations. We find that while climate affects the onset of civil conflicts in teleconnected countries, local weather has no significant effect. Productivity overall as well as across major sectors is more affected by local weather than by climatic variation. This is particularly evident in the agricultural sector where total value and cereal yield decline much greater from a 1°C increase in local temperature than a 1°C increase in ENSO. However, when examining the effect on food prices, we find that ENSO is associated with a large and statistically significant increase in cereal prices but no effect from hotter local temperatures. Altogether, this evidence points toward the ability of global and regional commodity markets to insure against the effects of local weather variation and their limitations in containing losses from aggregate shocks such as El Nino events. We posit

  5. NASA's Sentinels Monitoring Weather and Climate: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Herring, David; Gutro, Rob; Huffman, George; Halverson, Jeff

    2002-01-01

    Weatherwise is probably the most popular newstand magazine focusing on the subject of weather. It is published six times per year and includes features on weather, climate, and technology. This article (to appear in the January/February Issue) provides a comprehensive review of NASA s past, present, and future contributions in satellite remote sensing for weather and climate processes. The article spans the historical strides of the TIROS program through the scientific and technological innovation of Earth Observer-3 and Global Precipitation Measurement (GPM). It is one of the most thorough reviews of NASA s weather and climate satellite efforts to appear in the popular literature.

  6. Adverse Space Weather at the Solar Cycle Minimum

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Kanekal, S. G.; McCollough, J. P.; Singer, H. J.; Chappell, S. P.; Allen, J. H.

    2008-05-01

    It is commonly understood that many types of adverse space weather (solar flares, coronal mass ejections, geomagnetic storms) occur most commonly around the maximum of the 11-year sunspot activity cycle. Other types of well-known space weather such as relativistic electron events in the Earth's outer magnetosphere (that produce deep dielectric charging in spacecraft systems) are usually associated with the period just after sunspot maximum. At the present time, we are in the very lowest activity phase of the sunspot cycle (solar minimum). As such we would not expect much in the way of adverse space weather events. However, in early to mid-February of 2008 quite prominent solar coronal holes produced two high-speed streams that in turn stimulated very large, long-duration relativistic electron enhancements in Earth's magnetosphere. These seem to have been associated with several spacecraft operational anomalies at various spacecraft orbital locations. We describe these recent space weather events and assess their operational significance in this presentation. These results show that substantial space weather events can and do occur even during the quietest parts of the solar cycle.

  7. American Weather Stories.

    ERIC Educational Resources Information Center

    Hughes, Patrick

    Weather has shaped United States' culture, national character and folklore; at times it has changed the course of history. The seven accounts compiled in this publication highlight some of the nation's weather experiences from the hurricanes that threatened Christopher Columbus to the peculiar run of bad weather that has plagued American…

  8. The impact of weather changes on air quality and health in the United States in 1994–2012

    PubMed Central

    Jhun, Iny; Coull, Brent A; Schwartz, Joel; Hubbell, Bryan; Koutrakis, Petros

    2016-01-01

    Air quality is heavily influenced by weather conditions. In this study, we assessed the impact of long-term weather changes on air quality and health in the US during 1994–2012. We quantified past weather-related increases, or ‘weather penalty’, in ozone (O3) and fine particulate matter (PM2.5), and thereafter estimated the associated excess deaths. Using statistical regression methods, we derived the weather penalty as the additional increases in air pollution relative to trends assuming constant weather conditions (i.e., weather-adjusted trends). During our study period, temperature increased and wind speed decreased in most US regions. Nationally, weather-related 8 h max O3 increases were 0.18 ppb per year (95% CI: 0.06, 0.31) in the warm season (May–October) and 0.07 ppb per year (95% CI: 0.02, 0.13) in the cold season (November–April). The weather penalties on O3 were relatively larger than PM2.5 weather penalties, which were 0.056 µg m−3 per year (95% CI: 0.016, 0.096) in warm months and 0.027 µg m−3 per year (95% CI: 0.010, 0.043) in cold months. Weather penalties on O3 and PM2.5 were associated with 290 (95% CI: 80, 510) and 770 (95% CI: 190, 1350) excess annual deaths, respectively. Over a 19-year period, this amounts to 20 300 excess deaths (5600 from O3, 14 700 from PM2.5) attributable to the weather penalty on air quality PMID:27570539

  9. Airline flight planning - The weather connection

    NASA Technical Reports Server (NTRS)

    Steinberg, R.

    1981-01-01

    The history of airline flight planning is briefly reviewed. Over half a century ago, when scheduled airline services began, weather data were almost nonexistent. By the early 1950's a reliable synoptic network provided upper air reports. The next 15 years saw a rapid growth in commercial aviation, and airlines introduced computer techniques to flight planning. The 1970's saw the development of weather satellites. The current state of flight planning activities is analyzed. It is found that accurate flight planning will require meteorological information on a finer scale than can be provided by a synoptic forecast. Opportunities for a new approach are examined, giving attention to the available options, a mesoscale numerical weather prediction model, limited area fine mesh models, man-computer interactive display systems, the use of interactive techniques with the present upper air data base, and the implementation of interactive techniques.

  10. Weathering and weathering rates of natural stone

    NASA Astrophysics Data System (ADS)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  11. Aviation weather : FAA and the National Weather Service are considering plans to consolidate weather service offices, but face significant challenges.

    DOT National Transportation Integrated Search

    2009-07-01

    The National Weather Services (NWS) weather products are a vital component of the Federal Aviation Administrations (FAA) air traffic control system. In addition to providing aviation weather products developed at its own facilities, NWS also pr...

  12. Positive lightning and severe weather

    NASA Astrophysics Data System (ADS)

    Price, C.; Murphy, B.

    2003-04-01

    In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.

  13. National Weatherization Assistance Program Impact Evaluation: Energy Impacts for Large Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasnik, Michael; Dalhoff, Greg; Carroll, David

    This report estimates energy savings, energy cost savings, and cost effectiveness attributable to weatherizing large multifamily buildings under the auspices of the Department of Energy's Weatherization Assistance Program during Program Year 2008.

  14. National Weatherization Assistance Program Impact Evaluation: Energy Impacts for Small Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasnik, Michael; Dalhoff, Greg; Carroll, David

    2014-09-01

    This report estimates energy savings, energy cost savings, and cost effectiveness attributable to weatherizing small multifamily buildings under the auspices of the Department of Energy's Weatherization Assistance Program during Program Year 2008.

  15. Do GCM's predict the climate.... Or the low frequency weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Schertzer, D.; Varon, D.

    2012-04-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500 - 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT vary in power law manners ≈ Δt**H the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale (Δt). At longer scales Δt >τw (≈ 10 days) H changes sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime. In this regime, the spectrum is a relatively flat "plateau", it's variability is low, stable, corresponding to our usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, once again H>0, so that the variability increases with scale: the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, to define "climate states" as fluctuations at scale τc and then "climate change" as the fluctuations at longer periods (Δt>τc). We show that the intermediate low frequency weather regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched so that only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by stochastic cascade models of weather, but also by

  16. PREFACE: Selected contributions from the 3rd Theory Meets Industry International Workshop, TMI2009 (Nagoya, Japan, 11-13 November 2009) Selected contributions from the 3rd Theory Meets Industry International Workshop, TMI2009 (Nagoya, Japan, 11-13 November 2009)

    NASA Astrophysics Data System (ADS)

    Tanaka, Isao; Hafner, Jürgen; Wimmer, Erich; Asahi, Ryoji

    2010-09-01

    The structures, physicochemical and thermodynamic properties of materials are becoming increasingly amenable to treatment by first-principles (ab initio) quantum mechanical simulations. Calculations containing a few hundred atoms are now routine, thanks to improvements in computer technology and computational techniques. Schemes to determine electronic structures more accurately and to treat more complex systems continue to be developed. A growing number of scientists and engineers are becoming aware of the power of these approaches. By applying these new computational tools, materials science and technology is expected to enter a new era of accelerated progress and efficiency. In 1998 the first workshop entitled 'Theory Meets Industry' (TMI) was held at the Vienna University of Technology. The aim of the workshop was to direct the potential of the ab initio simulation codes developed in academia towards the necessities arising from industrial research. Over the next decade, significant advances in ab initio methodology and its application to academic and industrial research were achieved. It was thus considered timely to hold a second TMI workshop in 2007, again in Vienna. The contributions from academia concentrated on a wide range of new developments in ab initio simulations, as well as on applications at the forefront of materials research. Speakers from the industrial sector also emphasized the progress made in successfully applying ab initiotechniques to key areas of modern technology. The proceedings were published in Journal of Physics: Condensed Matter as a special issue (volume 20, number 6, 2008), which was included in the 'Top papers 2008 showcase' of that journal. Following the notable success of the first two workshops, it was decided that the third TMI workshop would be held outside Europe. Holding the workshop in Japan was intended to increase awareness of theoretical materials science and foster further international collaboration in this field

  17. Understanding the weather signal in national crop-yield variability

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders

    2017-06-01

    Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

  18. 1955 forest fire weather in western Oregon and Washington.

    Treesearch

    Owen P. Cramer

    1955-01-01

    While fire-weather severity remained low for the third successive year in western Washington, 1955 brought near normal fire weather to western Oregon for the first time since 1952. Temperatures were cooler than normal throughout the season in both half States, with record or near record lows for April, May, and July. April, July, and October were unusually rainy while...

  19. Evaluation and economic value of winter weather forecasts

    NASA Astrophysics Data System (ADS)

    Snyder, Derrick W.

    State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of winter weather hazards produced daily, was evaluated for quality and economic value. Verification of the forecasts was performed with data from the Rapid Refresh numerical weather model. Two objective verification criteria were developed to evaluate the performance of the timeline forecasts. Using both criteria, the timeline forecasts had issues with reliability and discrimination, systematically over-forecasting the amount of winter weather that was observed while also missing significant winter weather events. Despite these quality issues, the forecasts still showed significant, but varied, economic value compared to climatology. Economic value of the forecasts was estimated to be 29.5 million or 4.1 million, depending on the verification criteria used. Limitations of this valuation system are discussed and a framework is developed for more thorough studies in the future.

  20. A reactive transport model for Marcellus shale weathering

    NASA Astrophysics Data System (ADS)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore

  1. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  2. Weathering of wood

    Treesearch

    R. Sam Williams

    2005-01-01

    Weathering is the general term used to define the slow degradation of materials exposed to the weather. The degradation mechanism depends on the type of material, but the cause is a combination of factors found in nature: moisture, sunlight, heat/cold, chemicals, abrasion by windblown materials, and biological agents. Tall mountains weather by the complex and...

  3. A Case of TMI (Too Much Information): Improving the Usability of the Library's Website through the Implementation of LibAnswers and the A-Z Database List (LibGuides v2)

    ERIC Educational Resources Information Center

    Tobias, Christine

    2017-01-01

    The Michigan State University (MSU) Libraries' Website has a case of TMI: too much information organized by librarians for librarians. Finding relevant information about various library services, including the 24/7 Distance Learning Support Line, and access points to scholarly resources is often cumbersome, and given the limited time and staffing…

  4. Space Weather

    NASA Astrophysics Data System (ADS)

    Hapgood, Mike

    2017-01-01

    Space weather-changes in the Earth's environment that can often be traced to physical processes in the Sun-can have a profound impact on critical Earth-based infrastructures such as power grids and civil aviation. Violent eruptions on the solar surface can eject huge clouds of magnetized plasma and particle radiation, which then propagate across interplanetary space and envelop the Earth. These space weather events can drive major changes in a variety of terrestrial environments, which can disrupt, or even damage, many of the technological systems that underpin modern societies. The aim of this book is to offer an insight into our current scientific understanding of space weather, and how we can use that knowledge to mitigate the risks it poses for Earth-based technologies. It also identifies some key challenges for future space-weather research, and considers how emerging technological developments may introduce new risks that will drive continuing investigation.

  5. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  6. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  7. A Nine-year Record of Groundwater Environmental Tracer Variations in a Weathered Sandstone Plateau Aquifer.

    NASA Astrophysics Data System (ADS)

    Cendon, D. I.; Hankin, S. I.; Hughes, C. E.; Meredith, K.; Peterson, M.; Scheiber, L.; Shimizu, Y.

    2016-12-01

    Most groundwater isotopic studies are limited to one snapshot in time due to high costs associated with sampling and analytical procedures. The timing of sampling within long-term seasonal climatic cycles may affect interpretations, particularly in unconfined or semi-confined aquifer systems. To test the potential influence of decadal climatic trends, particularly on groundwater residence time, we have combined results from a multi-year sampling programme. Hydrogeochemistry and isotopic tracer analysis including H2O stable isotopes, δ13CDIC, 3H, 14CDIC for all samples and 87Sr/86Sr and NO3-δ15N, have been applied to groundwater recovered from the Kulnura - Mangrove Mountain aquifer hosted by a weathered sandstone plateau within the Sydney Basin (Australia). In general, the study area is characterised by alternating dry and wet periods that can be prolonged as they are linked to wider climatic events such as El Niño, La Niña and modulated by the Indian Ocean Dipole. The region experienced above average rainfall from 1985-1990 followed by generally drier conditions (1991-2007) and slightly wetter conditions to 2015. Groundwater results from the first years (2006-2010), under generally dry conditions resulted in lower groundwater levels, revealed important inter-annual variations. These are interpreted to be locally driven by groundwater extraction, resulting in a progressive influx of modern groundwater. The progressive input of modern water has exposed deeper parts of the aquifer to increased NO3- concentrations of anthropogenic origin. The change in chemistry of the groundwater, particularly the lowering of groundwater pH, has accelerated the dissolution of carbonate mineral phases that in turn affects 14C residence time assessments. Subsequent sampling results (2012-2015), under higher rainfall conditions, suggest modern recharge in areas previously without measurable tritium activities. The complex interplay between recharge, anthropogenic influences and

  8. When Weather Matters: Science and Service to Meet Critical Societal Needs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The goal of weather prediction is to provide information people and organizations can use to reduce weather-related losses and enhance societal benefits, including protection of life and property, public health and safety, and support of economic prosperity and quality of life. In economic terms, the benefit of the investment in public weather forecasts and warnings is substantial: the estimated annualized benefit is about $31.5 billion, compared to the $5.1 billion cost of generating the information. Between 1980 and 2009, 96 weather disasters in the United States each caused at least $1 billion in damages, with total losses exceeding $700 billion. Between 1999 and 2008, there were an average of 629 direct weather fatalities per year. The annual impacts of adverse weather on the national highway system and roads are staggering: 1.5 million weather-related crashes with 7,400 deaths, more than 700,000 injuries, and $42 billion in economic losses.

  9. Human factors analysis of road weather advisory and control information : final report.

    DOT National Transportation Integrated Search

    2010-03-31

    The amount of available weather information and the methods by which this information can be disseminated to travelers have grown considerably in recent years. This growth includes weather gathering devices (sensors, satellites), models and forecasti...

  10. Concept of Operations for Road Weather Connected Vehicle and Automated Vehicle Applications

    DOT National Transportation Integrated Search

    2017-05-21

    Weather has a significant impact on the operations of the nation's roadway system year round. These weather events translate into changes in traffic conditions, roadway safety, travel reliability, operational effectiveness and productivity. It is, th...

  11. Using PBL to Prepare Educators and Emergency Managers to Plan for Severe Weather

    ERIC Educational Resources Information Center

    Stalker, Sarah L.; Cullen, Theresa A.; Kloesel, Kevin

    2015-01-01

    Within the past 10 years severe weather has been responsible for an annual average of 278 fatalities in the United States (National Weather Service, 2013). During severe weather special populations are populations of high concentrations of people that cannot respond quickly. Schools show both of these characteristics. The average lead time for…

  12. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  13. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  14. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    PubMed

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  15. Capturing the WUnder: Using weather stations and WeatherUnderground to increase middle school students' understanding and interest in science

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Dunne, P.

    2014-12-01

    New models of elementary- and middle-school level science education are emerging in response to the need for science literacy and the development of the Next Generation Science Standards. One of these models is fostered through the NSF's Graduate Teaching Fellows in K-12 Education (GK-12) program, which pairs a graduate fellow with a science teacher at a local school for an entire school year. In our project, a PhD Earth Sciences student was paired with a local middle school science teacher with the goal of installing a weather station, and incorporating the station data into the 8th grade science curriculum. Here we discuss how we were able to use a school weather station to introduce weather and climate material, engage and involve students in the creative process of science, and motivate students through inquiry-based lessons. In using a weather station as the starting point for material, we were able to make science tangible for students and provide an opportunity for each student to experience the entire process of scientific inquiry. This hands-on approach resulted in a more thorough understanding the system beyond a knowledge of the components, and was particularly effective in challenging prior weather and climate misconceptions. We were also able to expand the reach of the lessons by connecting with other weather stations in our region and even globally, enabling the students to become members of a larger system.

  16. Realtime Space Weather Forecasts Via Android Phone App

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Haacke, B.; Reynolds, A.

    2010-12-01

    For the past several years, ASTRA has run a first-principles global 3-D fully coupled thermosphere-ionosphere model in real-time for space weather applications. The model is the Thermosphere-Ionosphere Mesosphere Electrodynamics General Circulation Model (TIMEGCM). ASTRA also runs the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) in real-time. Using AMIE to drive the high latitude inputs to the TIMEGCM produces high fidelity simulations of the global thermosphere and ionosphere. These simulations can be viewed on the Android Phone App developed by ASTRA. The SpaceWeather app for the Android operating system is free and can be downloaded from the Google Marketplace. We present the current status of realtime thermosphere-ionosphere space-weather forcasting and discuss the way forward. We explore some of the issues in maintaining real-time simulations with assimilative data feeds in a quasi-operational setting. We also discuss some of the challenges of presenting large amounts of data on a smartphone. The ASTRA SpaceWeather app includes the broadest and most unique range of space weather data yet to be found on a single smartphone app. This is a one-stop-shop for space weather and the only app where you can get access to ASTRA’s real-time predictions of the global thermosphere and ionosphere, high latitude convection and geomagnetic activity. Because of the phone's GPS capability, users can obtain location specific vertical profiles of electron density, temperature, and time-histories of various parameters from the models. The SpaceWeather app has over 9000 downloads, 30 reviews, and a following of active users. It is clear that real-time space weather on smartphones is here to stay, and must be included in planning for any transition to operational space-weather use.

  17. A Reactive Transport Model for Marcellus Shale Weathering

    NASA Astrophysics Data System (ADS)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important

  18. Weathering of the New Albany Shale, Kentucky, USA: I. Weathering zones defined by mineralogy and major-element composition

    USGS Publications Warehouse

    Tuttle, M.L.W.; Breit, G.N.

    2009-01-01

    Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop-Zones A-C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite-smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C

  19. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  20. Space Weather: What is it, and Why Should a Meteorologist Care?

    NASA Technical Reports Server (NTRS)

    SaintCyr, Chris; Murtagh, Bill

    2008-01-01

    "Space weather" is a term coined almost 15 years ago to describe environmental conditions ABOVE Earth's atmosphere that affect satellites and astronauts. As society has become more dependent on technology, we nave found that space weather conditions increasingly affect numerous commercial and infrastructure sectors: airline operations, the precision positioning industry, and the electric power grid, to name a few. Similar to meteorology where "weather" often refers to severe conditions, "space weather" includes geomagnetic storms, radiation storms, and radio blackouts. But almost all space weather conditions begin at the Sun--our middle-age, magnetically-variable star. At NASA, the science behind space weather takes place in the Heliophysics Division. The Space Weather Prediction Center in Boulder, Colorado, is manned jointly by NCAA and US Air Force personnel, and it provides space weather alerts and warnings for disturbances that can affect people and equipment working in space and on Earth. Organizationally, it resides in NOAA's National Weather Service as one of the National Centers for Environmental Prediction. In this seminar we hope to give the audience a brief introduction to the causes of space weather, discuss some of the effects, and describe the state of the art in forecasting. Our goal is to highlight that meteorologists are increasingly becoming the "first responders" to questions about space weather causes and effects.

  1. Weather and emotional state

    NASA Astrophysics Data System (ADS)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  2. Aviation weather services

    NASA Technical Reports Server (NTRS)

    Sprinkle, C. H.

    1983-01-01

    The primary responsibilities of the National Weather Service (NWS) are to: provide warnings of severe weather and flooding for the protection of life and property; provide public forecasts for land and adjacent ocean areas for planning and operation; and provide weather support for: production of food and fiber; management of water resources; production, distribution and use of energy; and efficient and safe air operations.

  3. Detection and attribution of extreme weather disasters

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    Single disasters related to extreme weather events have caused loss and damage on the order of up to tens of billions US dollars over the past years. Recent disasters fueled the debate about whether and to what extent these events are related to climate change. In international climate negotiations disaster loss and damage is now high on the agenda, and related policy mechanisms have been discussed or are being implemented. In view of funding allocation and effective risk reduction strategies detection and attribution to climate change of extreme weather events and disasters is a key issue. Different avenues have so far been taken to address detection and attribution in this context. Physical climate sciences have developed approaches, among others, where variables that are reasonably sampled over climatically relevant time periods and related to the meteorological characteristics of the extreme event are examined. Trends in these variables (e.g. air or sea surface temperatures) are compared between observations and climate simulations with and without anthropogenic forcing. Generally, progress has been made in recent years in attribution of changes in the chance of some single extreme weather events to anthropogenic climate change but there remain important challenges. A different line of research is primarily concerned with losses related to the extreme weather events over time, using disaster databases. A growing consensus is that the increase in asset values and in exposure are main drivers of the strong increase of economic losses over the past several decades, and only a limited number of studies have found trends consistent with expectations from climate change. Here we propose a better integration of existing lines of research in detection and attribution of extreme weather events and disasters by applying a risk framework. Risk is thereby defined as a function of the probability of occurrence of an extreme weather event, and the associated consequences

  4. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  5. Activities of NICT space weather project

    NASA Astrophysics Data System (ADS)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  6. Restoration of severely weathered wood

    Treesearch

    R. Sam Williams; Mark Knaebe

    2000-01-01

    Severely weathered window units were used to test various restoration methods and pretreatments. Sanded and unsanded units were pretreated with a consolidant or water repellent preservative, finished with an oil- or latex-based paint system, and exposed outdoors near Madison, WI, for five years. Pretreatments were applied to both window sashes (stiles and rails) and...

  7. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  8. Optimizing Placement of Weather Stations: Exploring Objective Functions of Meaningful Combinations of Multiple Weather Variables

    NASA Astrophysics Data System (ADS)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2017-12-01

    Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these

  9. Synoptic weather types associated with critical fire weather

    Treesearch

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  10. New weather index

    NASA Astrophysics Data System (ADS)

    Scientists at the National Oceanic and Atmospheric Administration (NOAA) and the University of Delaware have refined the wind-chill factor, a common measurement of weather discomfort, into a new misery register called the weather stress index. In addition to the mix of temperature and wind speed data used to calculate wind chill, the recipe for the index adds two new ingredients—humidity and a dash of benchmark statistics—to estimate human reaction to weather conditions. NOAA says that the weather stress index estimates human reaction to weather conditions and that the reaction depends on variations from the ‘normal’ conditions in the locality involved.Discomfort criteria for New Orleans, La., and Bismarck, N.D., for example, differ drastically. According to NOAA, when it's the middle of winter and it's -10°C with a relative humidity of 80% and 24 km/h winds, persons in New Orleans would be highly stressed while those in Bismarck wouldn't bat an eye.

  11. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks

    Treesearch

    Jason R. Price; Michael A. Velbel

    2003-01-01

    Chemical weathering indices are commonly used for characterizing weathering profiles by incorporating bulk major element oxide chemistry into a single metric for each sample. Generally, on homogeneous parent rocks, weathering indices change systematically with depth. However, the weathering of heterogeneous metamorphic rocks confounds the relationship between...

  12. Data Network Weather Service Reporting - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Frey

    2012-08-30

    A final report is made of a three-year effort to develop a new forecasting paradigm for computer network performance. This effort was made in co-ordination with Fermi Lab's construction of e-Weather Center.

  13. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    USGS Publications Warehouse

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  14. Weather Information Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  15. Time-lagged effects of weather on plant demography: drought and Astragalus scaphoides.

    PubMed

    Tenhumberg, Brigitte; Crone, Elizabeth E; Ramula, Satu; Tyre, Andrew J

    2018-04-01

    Temperature and precipitation determine the conditions where plant species can occur. Despite their significance, to date, surprisingly few demographic field studies have considered the effects of abiotic drivers. This is problematic because anticipating the effect of global climate change on plant population viability requires understanding how weather variables affect population dynamics. One possible reason for omitting the effect of weather variables in demographic studies is the difficulty in detecting tight associations between vital rates and environmental drivers. In this paper, we applied Functional Linear Models (FLMs) to long-term demographic data of the perennial wildflower, Astragalus scaphoides, and explored sensitivity of the results to reduced amounts of data. We compared models of the effect of average temperature, total precipitation, or an integrated measure of drought intensity (standardized precipitation evapotranspiration index, SPEI), on plant vital rates. We found that transitions to flowering and recruitment in year t were highest if winter/spring of year t was wet (positive effect of SPEI). Counterintuitively, if the preceding spring of year t - 1 was wet, flowering probabilities were decreased (negative effect of SPEI). Survival of vegetative plants from t - 1 to t was also negatively affected by wet weather in the spring of year t - 1 and, for large plants, even wet weather in the spring of t - 2 had a negative effect. We assessed the integrated effect of all vital rates on life history performance by fitting FLMs to the asymptotic growth rate, log(λt). Log(λt) was highest if dry conditions in year t - 1 were followed by wet conditions in the year t. Overall, the positive effects of wet years exceeded their negative effects, suggesting that increasing frequency of drought conditions would reduce population viability of A. scaphoides. The drought signal weakened when reducing the number of monitoring years. Substituting space for time

  16. Synoptic-scale fire weather conditions in Alaska

    NASA Astrophysics Data System (ADS)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  17. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  18. Above the weathering front: contrasting approaches to the study and classification of weathered mantle

    NASA Astrophysics Data System (ADS)

    Ehlen, Judy

    2005-04-01

    Weathered mantle comprises the materials above bedrock and below the soil. It can vary in thickness from millimeters to hundreds of meters, depending primarily on climate and parent material. Study of the weathered mantle comes within the realms of four disciplines: geology, geomorphology, soil science, and civil engineering, each of which uses a different approach to describe and classify the material. The approaches of engineers, geomorphologists, and geologists are contrasted and compared using example papers from the published literature. Soil scientists rarely study the weathering profile as such, and instead concentrate upon soil-forming processes and spatial distribution primarily in the solum. Engineers, including engineering geologists, study the stability and durability of the weathered mantle and the strength of the materials using sophisticated procedures to classify weathered materials, but their approach tends to be one-dimensional. Furthermore, they believe that the study of mineralogy and chemistry is not useful. Geomorphologists deal with weathering in terms of process—how the weathered mantle is formed—and with respect to landform evolution using a spatial approach. Geologists tend to ignore the weathered mantle because it is not bedrock, or to study its mineralogy and/or chemistry in the laboratory. I recommend that the approaches of the various disciplines be integrated—geomorphologists and geologists should consider using engineering weathering classifications, and geologists should adopt a spatial perspective to weathering, as should engineers and engineering geologists.

  19. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  20. The Power of Many: Nanosatellites For Cost Effective Global Weather Data

    NASA Astrophysics Data System (ADS)

    Greenberg, A.; Platzer, P.

    2015-12-01

    While weather processing technology through modeling and simulations has continued to advance, the amount of raw data available for analysis has dwindled. Most raw weather data is collected from satellites that are past their intended decommission date, and the likelihood of a catastrophic failure and diminishing reliability increases with each passing day. A United States government report released this year recognized the potential risk that this creates, citing a few alternatives to our aging satellite technology to at least maintain the level of raw weather data we currently have available. This report also highlighted nanosatellites as one of the most promising solutions, due in no small part to their standard form factor, translating into increased launch capabilities and better resiliency with fewer points of failure, rapidly advancing technology and low capital expenditure. Taking advantage of rapid advancements in sensor technology, these nanosatellites are replaced every two years or less and de-orbit quickly. Each new generation carries an improved payload and offers more network-wide resiliency. A constellation of just ten GPS-RO enabled nanosatellites taking measurements from every point on Earth, coupled with a globally distributed network of ground stations, can provide five times more radio occultation data than the combined efforts of current weather satellites. By the end of this year, Spire Global, Inc. will launch the world's first network of commercial weather satellites using GPS-RO for raw data collection.

  1. Streamflow and estimated loads of phosphorus and dissolved and suspended solids from selected tributaries to Lake Ontario, New York, water years 2012–14

    USGS Publications Warehouse

    Hayhurst, Brett A.; Fisher, Benjamin N.; Reddy, James E.

    2016-07-20

    This report presents results of the evaluation and interpretation of hydrologic and water-quality data collected as part of a cooperative program between the U.S. Geological Survey and the U.S. Environmental Protection Agency. Streamflow, phosphorus, and solids dissolved and suspended in stream water were the focus of monitoring by the U.S. Geological Survey at 10 sites on 9 selected tributaries to Lake Ontario during the period from October 2011 through September 2014. Streamflow yields (flow per unit area) were the highest from the Salmon River Basin due to sustained yields from the Tug Hill aquifer. The Eighteenmile Creek streamflow yields also were high as a result of sustained base flow contributions from a dam just upstream of the U.S. Geological Survey monitoring station at Burt. The lowest streamflow yields were measured in the Honeoye Creek Basin, which reflects a decrease in flow because of withdrawals from Canadice and Hemlock Lakes for the water supply of the City of Rochester. The Eighteenmile Creek and Oak Orchard Creek Basins had relatively high yields due in part to groundwater contributions from the Niagara Escarpment and seasonal releases from the New York State Barge Canal.Annual constituent yields (load per unit area) of suspended solids, phosphorus, orthophosphate, and dissolved solids were computed to assess the relative contributions and allow direct comparison of loads among the monitored basins. High yields of total suspended solids were attributed to agricultural land use in highly erodible soils at all sites. The Genesee River, Irondequoit Creek, and Honeoye Creek had the highest concentrations and largest mean yields of total suspended solids (165 short tons per square mile [t/mi2], 184 t/mi2, and 89.7 t/mi2, respectively) of the study sites.Samples from Eighteenmile Creek, Oak Orchard Creek at Kenyonville, and Irondequoit Creek had the highest concentrations and largest mean yields of phosphorus (0.27 t/mi2, 0.26 t/mi2, and 0.20 t/mi2

  2. The ESA Space Weather Applications Pilot Project

    NASA Astrophysics Data System (ADS)

    Glover, A.; Hilgers, A.; Daly, E.

    Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field

  3. ISES Experience in Delivering Space Weather Services

    NASA Astrophysics Data System (ADS)

    Boteler, David

    The International Space Environment Service has over eighty years experience in providing space weather services to meet a wide variety of user needs. This started with broadcast on December 1, 2008 from the Eiffel Tower about radio conditions. The delivery of information about ionospheric effects on high frequency (HF) radio propagation continue to be a major concern in many parts of the world. The movement into space brought requirements for a new set of space weather services, ranging from radiation dangers to man in space, damage to satellites and effects on satellite communication and navigation systems. On the ground magnetic survey, power system and pipeline operators require information about magnetic disturbances that can affect their operations. In the past these services have been delivered by individual Regional Warning Centres. However, the needs of new trans-national users are stimulating the development of new collaborative international space weather services.

  4. Aviation Weather Observations for Supplementary Aviation Weather Reporting Stations (SAWRS) and Limited Aviation Weather Reporting Stations (LAWRS). Federal Meteorological Handbook No. 9.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC.

    This handbook provides instructions for observing, identifying, and recording aviation weather at Limited Aviation Weather Reporting Stations (LAWRS) and Supplementary Aviation Weather Reporting Stations (SAWRS). Official technical definitions, meteorological and administrative procedures are outlined. Although this publication is intended for use…

  5. Improving the Wyoming Road Weather Information System

    DOT National Transportation Integrated Search

    1998-11-01

    A two-year study of the Wyoming Road Weather Information System (RWIS) indicated that the system will facilitate and improve maintenance operations and enhance the safety and convenience of highway travel if certain critical improvements are made. Wi...

  6. Genetically optimizing weather predictions

    NASA Astrophysics Data System (ADS)

    Potter, S. B.; Staats, Kai; Romero-Colmenero, Encarni

    2016-07-01

    humidity, air pressure, wind speed and wind direction) into a database. Built upon this database, we have developed a remarkably simple approach to derive a functional weather predictor. The aim is provide up to the minute local weather predictions in order to e.g. prepare dome environment conditions ready for night time operations or plan, prioritize and update weather dependent observing queues. In order to predict the weather for the next 24 hours, we take the current live weather readings and search the entire archive for similar conditions. Predictions are made against an averaged, subsequent 24 hours of the closest matches for the current readings. We use an Evolutionary Algorithm to optimize our formula through weighted parameters. The accuracy of the predictor is routinely tested and tuned against the full, updated archive to account for seasonal trends and total, climate shifts. The live (updated every 5 minutes) SALT weather predictor can be viewed here: http://www.saao.ac.za/ sbp/suthweather_predict.html

  7. Total lightning characteristics of recent hazardous weather events in Japan

    NASA Astrophysics Data System (ADS)

    Hobara, Y.; Kono, S.; Ogawa, T.; Heckman, S.; Stock, M.; Liu, C.

    2017-12-01

    In recent years, the total lightning (IC + CG) activity have attracted a lot of attention to improve the quality of prediction of hazardous weather phenomena (hail, wind gusts, tornadoes, heavy precipitation). Sudden increases of the total lightning flash rate so-called lightning jump (LJ) preceding the hazardous weather, reported in several studies, are one of the promising precursors. Although, increases in the frequency and intensity of these extreme weather events were reported in Japan, relationship with these events with total lightning have not studied intensively yet. In this paper, we will demonstrate the recent results from Japanese total lightning detection network (JTLN) in relation with hazardous weather events occurred in Japan in the period of 2014-2016. Automatic thunderstorm cell tracking was carried out based on the very high spatial and temporal resolution X-band MP radar echo data (1 min and 250 m) to correlate with total lightning activity. Results obtained reveal promising because the flash rate of total lightning tends to increase about 10 40 minutes before the onset of the extreme weather events. We also present the differences in lightning characteristics of thunderstorm cells between hazardous weather events and non-hazardous weather events, which is a vital information to improve the prediction efficiency.

  8. Web-based Weather Expert System (WES) for Space Shuttle Launch

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  9. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  10. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada)

    NASA Astrophysics Data System (ADS)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.

    2017-10-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  11. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada).

    PubMed

    Hewer, Micah J; Scott, Daniel J; Gough, William A

    2017-10-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  12. Testing the weathering hypothesis among Mexican-origin women.

    PubMed

    Wildsmith, Elizabeth M

    2002-01-01

    To examine the "weathering hypothesis," as proposed by Geronimus (1986; 1987; 1992; 1996), among US-born and foreign-born Mexican-origin women. This hypothesis specifically argues that the relationship between age and a variety of reproductively related heath outcomes varies by socioeconomic and environmental context. 1989-1991 National Center for Health Statistics (NCHS) linked birth-death files. These files include all women who experienced a live birth in the United States and whose infants were issued a birth certificate during the years 1989 to 1991 (NCHS 1995). Age and nativity specific distributions on infant mortality, low birth weight, anemia, pregnancy related hypertension, and smoking were estimated for Mexican-origin women. For the foreign-born, levels of neonatal mortality are highest for younger women and tend to increase again in women at the oldest ages. For the US born, the lowest levels are for women aged 17 and 18 years, and 27-29 years. Levels for women aged 19-24 years and 30-34 years are higher than those for 17-and 18-year-olds. For both groups of women, giving birth to infants with low birth weight is most common at the earlier ages, declining more or less until the mid twenties when the rate begins to rise again slowly. Patterns for the maternal health indicators vary, with pregnancy related hypertension most strongly following the pattern suggested by weathering. Overall, this analysis suggests that there is evidence of weathering within the Mexican-origin population, particularly for the US-born population, and this is most clearly seen in levels of neonatal mortality and pregnancy related hypertension.

  13. The Precipitation Characteristics of ISCCP Tropical Weather States

    NASA Technical Reports Server (NTRS)

    Lee, Dongmin; Oreopoulos, Lazaros; Huffman, George J.; Rossow, William B.; Kang, In-Sik

    2011-01-01

    We examine the daytime precipitation characteristics of the International Satellite Cloud Climatology Project (ISCCP) weather states in the extended tropics (35 deg S to 35 deg N) for a 10-year period. Our main precipitation data set is the TRMM Multisatellite Precipitation Analysis 3B42 data set, but Global Precipitation Climatology Project daily data are also used for comparison. We find that the most convective weather state (WS1), despite an occurrence frequency below 10%, is the most dominant state with regard to surface precipitation, producing both the largest mean precipitation rates when present and the largest percent contribution to the total precipitation of the tropical zone of our study; yet, even this weather state appears to not precipitate about half the time. WS1 exhibits a modest annual cycle of domain-average precipitation rate, but notable seasonal shifts in its geographic distribution. The precipitation rates of the other weather states tend to be stronger when occurring before or after WS1. The relative contribution of the various weather states to total precipitation is different between ocean and land, with WS1 producing more intense precipitation on average over ocean than land. The results of this study, in addition to advancing our understanding of the current state of tropical precipitation, can serve as a higher order diagnostic test on whether it is distributed realistically among different weather states in atmospheric models.

  14. Finding past weather...Fast - Public Affairs - NOAA's National Weather

    Science.gov Websites

    government web resources and services. Home >>Climate Data Finding past weather...Fast Climate data Weather Forecast Offices (WFOs). First, find the location you need climate data for on the following map the left side of the page there will be a section called Climate in yellow-colored text. You may have

  15. National Weather Service

    MedlinePlus

    ... Data SAFETY Floods Tsunami Beach Hazards Wildfire Cold Tornadoes Fog Air Quality Heat Hurricanes Lightning Safe Boating ... Winter Weather Forecasts River Flooding Latest Warnings Thunderstorm/Tornado Outlook Hurricanes Fire Weather Outlooks UV Alerts Drought ...

  16. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    NASA Technical Reports Server (NTRS)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  17. Parametric vs. non-parametric daily weather generator: validation and comparison

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin

    2016-04-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30 years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series

  18. Weather Fundamentals: Meteorology. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  19. Do GCM's Predict the Climate.... Or the Low Frequency Weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Varon, D.; Schertzer, D. J.

    2011-12-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500- 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT ≈ ΔtH the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale. At longer scales Δt >τw (≈ 10 days) they change sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime the spectrum is a relatively flat "plateau", it's variability is that of the usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, again H>0, the variability again increases with scale. This is the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, "climate states", as fluctuations at scale τc and "climate change" as the fluctuations at longer periods >τc). We show that the intermediate regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched, only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by weather cascade models, but also by control runs (i.e. without climate forcing) of GCM's (including IPSL and ECHAM GCM's). In order for GCM's to go beyond simply

  20. Climate, weather, space weather: model development in an operational context

    NASA Astrophysics Data System (ADS)

    Folini, Doris

    2018-05-01

    Aspects of operational modeling for climate, weather, and space weather forecasts are contrasted, with a particular focus on the somewhat conflicting demands of "operational stability" versus "dynamic development" of the involved models. Some common key elements are identified, indicating potential for fruitful exchange across communities. Operational model development is compelling, driven by factors that broadly fall into four categories: model skill, basic physics, advances in computer architecture, and new aspects to be covered, from costumer needs over physics to observational data. Evaluation of model skill as part of the operational chain goes beyond an automated skill score. Permanent interaction between "pure research" and "operational forecast" people is beneficial to both sides. This includes joint model development projects, although ultimate responsibility for the operational code remains with the forecast provider. The pace of model development reflects operational lead times. The points are illustrated with selected examples, many of which reflect the author's background and personal contacts, notably with the Swiss Weather Service and the Max Planck Institute for Meteorology, Hamburg, Germany. In view of current and future challenges, large collaborations covering a range of expertise are a must - within and across climate, weather, and space weather. To profit from and cope with the rapid progress of computer architectures, supercompute centers must form part of the team.

  1. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    NASA Astrophysics Data System (ADS)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  2. Space Weather Impacts to Mariners

    Science.gov Websites

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts SPACE WEATHER IMPACTS TO MARINERS Marine present an even greater danger near shore or any shallow waters? Space Weather Impacts to Mariners Don't ), Notices to Mariners, Special Paragraphs: "(73) SPACE WEATHER IMPACTS. There is a growing potential

  3. Estimating The Rate of Technology Adoption for Cockpit Weather Information Systems

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul; Stough, H. P.

    2000-01-01

    In February 1997, President Clinton announced a national goal to reduce the weather related fatal accident rate for aviation by 80% in ten years. To support that goal, NASA established an Aviation Weather Information Distribution and Presentation Project to develop technologies that will provide timely and intuitive information to pilots, dispatchers, and air traffic controllers. This information should enable the detection and avoidance of atmospheric hazards and support an improvement in the fatal accident rate related to weather. A critical issue in the success of NASA's weather information program is the rate at which the market place will adopt this new weather information technology. This paper examines that question by developing estimated adoption curves for weather information systems in five critical aviation segments: commercial, commuter, business, general aviation, and rotorcraft. The paper begins with development of general product descriptions. Using this data, key adopters are surveyed and estimates of adoption rates are obtained. These estimates are regressed to develop adoption curves and equations for weather related information systems. The paper demonstrates the use of adoption rate curves in product development and research planning to improve managerial decision processes and resource allocation.

  4. Weather impacts on space operations

    NASA Astrophysics Data System (ADS)

    Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.

  5. Winter Weather Emergencies

    MedlinePlus

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  6. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  7. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  8. A Framework to Understand Extreme Space Weather Event Probability.

    PubMed

    Jonas, Seth; Fronczyk, Kassandra; Pratt, Lucas M

    2018-03-12

    An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social well-being. Space weather events occur regularly, but extreme events are less frequent, with a small number of historical examples over the last 160 years. During the past decade, published works have (1) examined the physical characteristics of the extreme historical events and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present initial findings on a unified framework approach to visualize space weather event probability, using a Bayesian model average, in the context of historical extreme events. We present disturbance storm time (Dst) probability (a proxy for geomagnetic disturbance intensity) across multiple return periods and discuss parameters of interest to policymakers and planners in the context of past extreme space weather events. We discuss the current state of these analyses, their utility to policymakers and planners, the current limitations when compared to other hazards, and several gaps that need to be filled to enhance space weather risk assessments. © 2018 Society for Risk Analysis.

  9. Weather dissemination and public usage

    NASA Technical Reports Server (NTRS)

    Stacey, M. S.

    1973-01-01

    The existing public usage of weather information was examined. A survey was conducted to substantiate the general public's needs for dissemination of current (0-12 hours) weather information, needs which, in a previous study, were found to be extensive and urgent. The goal of the study was to discover how the general public obtains weather information, what information they seek and why they seek it, to what use this information is put, and to further ascertain the public's attitudes and beliefs regarding weather reporting and the diffusion of weather information. Major findings from the study include: 1. The public has a real need for weather information in the 0-6 hour bracket. 2. The visual medium is preferred but due to the lack of frequent (0-6 hours) forecasts, the audio media only, i.e., telephone recordings and radio weathercasts, were more frequently used. 3. Weather information usage is sporadic.

  10. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  11. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  12. Validation of two (parametric vs non-parametric) daily weather generators

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Skalak, P.

    2015-12-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series

  13. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    NASA Astrophysics Data System (ADS)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  14. Environmental Education Tips: Weather Activities.

    ERIC Educational Resources Information Center

    Brainard, Audrey H.

    1989-01-01

    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  15. A framework of space weather satellite data pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Fuli; Zou, Ziming

    Various applications indicate a need of permanent space weather information. The diversity of available instruments enables a big variety of products. As an indispensable part of space weather satellite operation system, space weather data processing system is more complicated than before. The information handled by the data processing system has been used in more and more fields such as space weather monitoring and space weather prediction models. In the past few years, many satellites have been launched by China. The data volume downlinked by these satellites has achieved the so-called big data level and it will continue to grow fast in the next few years due to the implementation of many new space weather programs. Because of the huge amount of data, the current infrastructure is no longer incapable of processing data timely, so we proposed a new space weather data processing system (SWDPS) based on the architecture of cloud computing. Similar to Hadoop, SWDPS decomposes the tasks into smaller tasks which will be executed by many different work nodes. Control Center in SWDPS, just like NameNode and JobTracker within Hadoop which is the bond between the data and the cluster, will establish work plan for the cluster once a client submits data. Control Center will allocate node for the tasks and the monitor the status of all tasks. As the same of TaskTrakcer, Compute Nodes in SWDPS are the salves of Control Center which are responsible for calling the plugins(e.g., dividing and sorting plugins) to execute the concrete jobs. They will also manage all the tasks’ status and report them to Control Center. Once a task fails, a Compute Node will notify Control Center. Control Center decides what to do then; it may resubmit the job elsewhere, it may mark that specific record as something to avoid, and it may even blacklist the Compute Node as unreliable. In addition to these modules, SWDPS has a different module named Data Service which is used to provide file

  16. Explaining the road accident risk: weather effects.

    PubMed

    Bergel-Hayat, Ruth; Debbarh, Mohammed; Antoniou, Constantinos; Yannis, George

    2013-11-01

    This research aims to highlight the link between weather conditions and road accident risk at an aggregate level and on a monthly basis, in order to improve road safety monitoring at a national level. It is based on some case studies carried out in Work Package 7 on "Data analysis and synthesis" of the EU-FP6 project "SafetyNet-Building the European Road Safety Observatory", which illustrate the use of weather variables for analysing changes in the number of road injury accidents. Time series analysis models with explanatory variables that measure the weather quantitatively were used and applied to aggregate datasets of injury accidents for France, the Netherlands and the Athens region, over periods of more than 20 years. The main results reveal significant correlations on a monthly basis between weather variables and the aggregate number of injury accidents, but the magnitude and even the sign of these correlations vary according to the type of road (motorways, rural roads or urban roads). Moreover, in the case of the interurban network in France, it appears that the rainfall effect is mainly direct on motorways--exposure being unchanged, and partly indirect on main roads--as a result of changes in exposure. Additional results obtained on a daily basis for the Athens region indicate that capturing the within-the-month variability of the weather variables and including it in a monthly model highlights the effects of extreme weather. Such findings are consistent with previous results obtained for France using a similar approach, with the exception of the negative correlation between precipitation and the number of injury accidents found for the Athens region, which is further investigated. The outlook for the approach and its added value are discussed in the conclusion. Copyright © 2013. Published by Elsevier Ltd.

  17. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.

    2015-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  18. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik

    2016-07-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  19. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  20. The Art and Science of Long-Range Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  1. A new precipitation and meteorological drought climatology based on weather patterns

    NASA Astrophysics Data System (ADS)

    Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.

    2017-12-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined weather patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. Weather pattern definitions and daily occurrences are mapped to the commonly-used Lamb Weather Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 weather patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. Weather patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a global seasonal forecast model) can predict weather pattern occurrences then regional drought outlooks may be derived from the forecasted weather patterns.

  2. CCMC: Serving research and space weather communities with unique space weather services, innovative tools and resources

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo

    2015-04-01

    With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.

  3. Weather Information Communications (WINCOMM) Project: Dissemination of Weather Information for the Reduction of Aviation Weather-Related Accident Causal Factors

    NASA Technical Reports Server (NTRS)

    Jarrell, Michael; Tanger, Thomas

    2004-01-01

    Weather Information Communications (WINCOMM) is part of the Weather Accident Prevention (WxAP) Project, which is part of the NASA's Aviation Safety and Security Program. The goals of WINCOMM are to facilitate the exchange of tactical and strategic weather information between air and ground. This viewgraph presentation provides information on data link decision factors, architectures, validation goals. WINCOMM is capable of providing en-route communication air-to-ground, ground-to-air, and air-to-air, even on international or intercontinental flights. The presentation also includes information on the capacity, cost, and development of data links.

  4. Using weather data to improve decision-making

    USDA-ARS?s Scientific Manuscript database

    Weather in the western United States is relatively dry and highly variable. The consequences of this variability can be effectively dealt with through the process of adaptive management which includes contingency planning for partial restoration success or restoration failure in any given year. Pr...

  5. Comparison of Selected Weather Translation Products

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    2017-01-01

    Weather is a primary contributor to the air traffic delays within the National Airspace System (NAS). At present, it is the individual decision makers who use weather information and assess its operational impact in creating effective air traffic management solutions. As a result, the estimation of the impact of forecast weather and the quality of ATM response relies on the skill and experience level of the decision maker. FAA Weather-ATM working groups have developed a Weather-ATM integration framework that consists of weather collection, weather translation, ATM impact conversion and ATM decision support. Some weather translation measures have been developed for hypothetical operations such as decentralized free flight, whereas others are meant to be relevant in current operations. This paper does comparative study of two different weather translation products relevant in current operations and finds that these products have strong correlation with each other. Given inaccuracies in prediction of weather, these differences would not be expected to be of significance in statistical study of a large number of decisions made with a look-ahead time of two hours or more.

  6. AWE: Aviation Weather Data Visualization Environment

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2000-01-01

    The two official sources for aviation weather reports both provide weather information to a pilot in a textual format. A number of systems have recently become available to help pilots with the visualization task by providing much of the data graphically. However, two types of aviation weather data are still not being presented graphically. These are airport-specific current weather reports (known as meteorological observations, or METARs) and forecast weather reports (known as terminal area forecasts, or TAFs). Our system, Aviation Weather Environment (AWE), presents intuitive graphical displays for both METARs and TAFs, as well as winds aloft forecasts. We start with a computer-generated textual aviation weather briefing. We map this briefing onto a cartographic grid specific to the pilot's area of interest. The pilot is able to obtain aviation-specific weather for the entire area or for his specific route. The route, altitude, true airspeed, and proposed departure time can each be modified in AWE. Integral visual display of these three elements of weather reports makes AWE a useful planning tool, as well as a weather briefing tool.

  7. Forest fire weather in western Oregon and western Washington in 1956.

    Treesearch

    Owen P. Cramer

    1956-01-01

    The 1956 fire season will be remembered for the record number of lightning storms in nearly all parts of the area. In other respects, fire-weather severity was slightly below the average of the previous ten years. In western Oregon, fire weather over the entire season (April through October) was slightly less severe than in 1955, while in western Washington it was...

  8. Forest fire weather in western Oregon and western Washington in 1957.

    Treesearch

    Owen P. Cramer

    1957-01-01

    Severity of 1957 fire weather west of the Cascade Range summit in Oregon and Washington was near the average of the previous 10 years. The season (April 1 through October 31) was slightly more severe than 1956 in western Oregon and about the same as 1956 in western Washington. Spring fire weather was near average severity in both western Washington and western Oregon....

  9. Alteration of Labile Trace Element Concentrations in Antarctic Meteorites by Weathering: A Five-Year Assessment

    NASA Astrophysics Data System (ADS)

    Wang, M.-S.; Xiao, X.; Lipschutz, M. E.

    1992-07-01

    Cl- normalized weight ratio of 0.585+-0.069. Other elements--even Rb, which should be easily transported in a phyllosilicate exposed to water--show no evidence for gain or loss in Antarctica. This is true also for 39 other Antarctic C2-6 chondrites [6]; 3 additional Cl-2 chondrites thermally metamorphosed in their parent bodies [7]; and lunar meteorites studied by us and others. Hydration effects are absent in these meteorites. 3. Eucrites exhibiting evidence for Ce transport: A pair of eucrite clast samples (EET 87503,23 interior and exterior), was previously studied by INAA yield REE data suggesting addition of LREE (except Ce) to the interior during Antarctic residence (Mittlefehldt, personal communication). The exterior/interior ratio for Ce, 1.1, is the same as the mean value for our RNAA trace element suite, 1.1+-0.5. Despite the large uncertainty of this ratio (reflecting the normally heterogeneous distribution of labile elements in eucrites--including falls [8]), results for EET 87503,23 are consistent with the interpretation that our suite of labile trace elements is unaffected by the process that affected REE other than Ce. Our elements are probably dispersed among many host sites, rather than being sited in a single host, like whitlockite. More RNAA measurements of additional eucrite pairs should be done to confirm this result. Further, a putative C3 clast exhibits no evidence for terrestrial alteration of RNAA elements, saponitic matrix, etc. even though REE have apparently been leached from basalts in its host eucrite, LEW 85300 [5]. After five years, numerous investigations confirm meteorite population differences consistent with the RNAA results. While Antarctic processes may have affected REE contents in some eucrites, at present no evidence exists for labile trace element transport into/out of interiors of meteorites of weathering types A to B. The absence of evidence is not evidence of absence, so continued vigilance remains necessary. Research

  10. What will be the weather like tomorrow?

    NASA Astrophysics Data System (ADS)

    Christelle, Guilloux

    2014-05-01

    Since June 2010, our school is part of the network '"météo à l'école'": it hosts an autonomous weather station, approved by Météo France , which measures continuously the temperature and precipitation. The data is transmitted by a GSM module to a computer server. After its validation by Météo France, it is send online every day on a public accessible website : http://www.edumeteo.org/ The MPS Education ( Scientific Methods and Practices) in junior high school classes (one hour and half per week throughout the school year ) makes full use of data from the networks '"météo à l'école'" data and Météo France. Three scientific disciplines :; Mathematics, Life and Earth Sciences, Physical Sciences and Chemistry are part of a schedule defined after consultation and educational coherence to enable students to: - Discovering and understanding the operation of the sensors station, weather satellites ... - Operating satellite images, studying of the atmosphere and weather phenomena (formation of a storm, for example) - Operating collected data (networks 'météo à l'école' and Météo France) to identify climatic differences between regions, seasons, and their effects on living beings (study of the greenhouse effect and climate warming among others). The ultimate goal is to discover used tools and data to produce a weather forecast. We work for these purposes with the Cité de l'Espace in Toulouse (weather Pole) and the head forecaster Meteo France Merignac.

  11. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Vivit, D.V.; Stonestrom, David A.; Larsen, M.; Murphy, S.F.; Eberl, D.

    1998-01-01

    flux rates (e.g., Si = 2.7 ?? 10-8 moles m-2 s-1). Consistency between three independently determined sets of weathering fluxes imply that possible changes in precipitation, temperature, and vegetation over the last several hundred thousand years have not significantly impacted weathering rates in the Luquillo Mountains of Puerto Rico. This has important ramifications for tropical environments and global climate change. Copyright ?? 1998 Elsevier Science Ltd.

  12. Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?

    NASA Astrophysics Data System (ADS)

    Maffre, Pierre; Ladant, Jean-Baptiste; Moquet, Jean-Sébastien; Carretier, Sébastien; Labat, David; Goddéris, Yves

    2018-07-01

    The role of mountains in the geological evolution of the carbon cycle has been intensively debated for the last decades. Mountains are thought to increase the local physical erosion, which in turns promotes silicate weathering, organic carbon transport and burial, and release of sulfuric acid by dissolution of sulfides. In this contribution, we explore the impact of mountain ranges on silicate weathering. Mountains modify the global pattern of atmospheric circulation as well as the local erosion conditions. Using an IPCC-class climate model, we first estimate the climatic impact of mountains by comparing the present day climate with the climate when all the continents are assumed to be flat. We then use these climate output to calculate weathering changes when mountains are present or absent, using standard expression for physical erosion and a 1D vertical model for rock weathering. We found that large-scale climate changes and enhanced rock supply by erosion due to mountain uplift have opposite effect, with similar orders of magnitude. A thorough testing of the weathering model parameters by data-model comparison shows that best-fit parameterizations lead to a decrease of weathering rate in the absence of mountain by about 20%. However, we demonstrate that solutions predicting an increase in weathering in the absence of mountain cannot be excluded. A clear discrimination between the solutions predicting an increase or a decrease in global weathering is pending on the improvement of the existing global databases for silicate weathering. Nevertheless, imposing a constant and homogeneous erosion rate for models without relief, we found that weathering decrease becomes unequivocal for very low erosion rates (below 10 t/km2/yr). We conclude that further monitoring of continental silicate weathering should be performed with a spatial distribution allowing to discriminate between the various continental landscapes (mountains, plains …).

  13. Weather conditions: a neglected factor in human salivary cortisol research?

    NASA Astrophysics Data System (ADS)

    Milas, Goran; Šupe-Domić, Daniela; Drmić-Hofman, Irena; Rumora, Lada; Klarić, Irena Martinović

    2018-02-01

    There is ample evidence that environmental stressors such as extreme weather conditions affect animal behavior and that this process is in part mediated through the elevated activity of the hypothalamic pituitary adrenal axis which results in an increase in cortisol secretion. This relationship has not been extensively researched in humans, and weather conditions have not been analyzed as a potential confounder in human studies of stress. Consequently, the goal of this paper was to assess the relationship between salivary cortisol and weather conditions in the course of everyday life and to test a possible moderating effect of two weather-related variables, the climate region and timing of exposure to outdoors conditions. The sample consisted of 903 secondary school students aged 18 to 21 years from Mediterranean and Continental regions. Cortisol from saliva was sampled in naturalistic settings at three time points over the course of a single day. We found that weather conditions are related to salivary cortisol concentration and that this relationship may be moderated by both the specific climate and the anticipation of immediate exposure to outdoors conditions. Unpleasant weather conditions are predictive for the level of salivary cortisol, but only among individuals who anticipate being exposed to it in the immediate future (e.g., in students attending school in the morning shift). We also demonstrated that isolated weather conditions or their patterns may be relevant in one climate area (e.g., Continental) while less relevant in the other (e.g., Mediterranean). Results of this study draw attention to the importance of controlling weather conditions in human salivary cortisol research.

  14. Does Weather Matter? The Effect of Weather Patterns and Temporal Factors on Pediatric Orthopedic Trauma Volume

    PubMed Central

    Livingston, Kristin S.; Miller, Patricia E.; Lierhaus, Anneliese; Matheney, Travis H.; Mahan, Susan T.

    2016-01-01

    Objectives: Orthopaedists often speculate how weather and school schedule may influence pediatric orthopedic trauma volume, but few studies have examined this. This study aims to determine: how do weather patterns, day, month, season and public school schedule influence the daily frequency of pediatric orthopedic trauma consults and admissions? Methods: With IRB approval, orthopedic trauma data from a level 1 pediatric trauma center, including number of daily orthopedic trauma consults and admissions, were collected from July 2009 to March 2012. Historical weather data (high temperatures, precipitation and hours of daylight), along with local public school schedule data were collected for the same time period. Univariate and multivariate regression models were used to show the average number of orthopedic trauma consults and admissions as a function of weather and temporal variables. Results: High temperature, precipitation, month and day of the week significantly affected the number of daily consults and admissions. The number of consults and admissions increased by 1% for each degree increase in temperature (p=0.001 and p<0.001, respectively), and decreased by 21% for each inch of precipitation (p<0.001, p=0.006). Daily consults on snowy days decreased by an additional 16% compared to days with no precipitation. November had the lowest daily consult and admission rate, while September had the highest. Daily consult rate was lowest on Wednesdays and highest on Saturdays. Holiday schedule was not independently significant. Conclusion: Pediatric orthopedic trauma consultations and admissions are highly linked to temperature and precipitation, as well as day of the week and time of year. PMID:27990193

  15. Does Weather Matter? The Effect of Weather Patterns and Temporal Factors on Pediatric Orthopedic Trauma Volume.

    PubMed

    Livingston, Kristin S; Miller, Patricia E; Lierhaus, Anneliese; Matheney, Travis H; Mahan, Susan T

    2016-01-01

    Orthopaedists often speculate how weather and school schedule may influence pediatric orthopedic trauma volume, but few studies have examined this. This study aims to determine: how do weather patterns, day, month, season and public school schedule influence the daily frequency of pediatric orthopedic trauma consults and admissions? With IRB approval, orthopedic trauma data from a level 1 pediatric trauma center, including number of daily orthopedic trauma consults and admissions, were collected from July 2009 to March 2012. Historical weather data (high temperatures, precipitation and hours of daylight), along with local public school schedule data were collected for the same time period. Univariate and multivariate regression models were used to show the average number of orthopedic trauma consults and admissions as a function of weather and temporal variables. High temperature, precipitation, month and day of the week significantly affected the number of daily consults and admissions. The number of consults and admissions increased by 1% for each degree increase in temperature (p=0.001 and p<0.001, respectively), and decreased by 21% for each inch of precipitation (p<0.001, p=0.006). Daily consults on snowy days decreased by an additional 16% compared to days with no precipitation. November had the lowest daily consult and admission rate, while September had the highest. Daily consult rate was lowest on Wednesdays and highest on Saturdays. Holiday schedule was not independently significant. Pediatric orthopedic trauma consultations and admissions are highly linked to temperature and precipitation, as well as day of the week and time of year.

  16. Extreme Space Weather Events: From Cradle to Grave

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel

    2018-02-01

    Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called "100-year" solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth's lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

  17. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    NASA Technical Reports Server (NTRS)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  18. Integration of Weather Avoidance and Traffic Separation

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  19. Intensifying weathering and land use in Iron Age Central Africa.

    PubMed

    Bayon, Germain; Dennielou, Bernard; Etoubleau, Joël; Ponzevera, Emmanuel; Toucanne, Samuel; Bermell, Sylvain

    2012-03-09

    About 3000 years ago, a major vegetation change occurred in Central Africa, when rainforest trees were abruptly replaced by savannas. Up to this point, the consensus of the scientific community has been that the forest disturbance was caused by climate change. We show here that chemical weathering in Central Africa, reconstructed from geochemical analyses of a marine sediment core, intensified abruptly at the same period, departing substantially from the long-term weathering fluctuations related to the Late Quaternary climate. Evidence that this weathering event was also contemporaneous with the migration of Bantu-speaking farmers across Central Africa suggests that human land-use intensification at that time had already made a major impact on the rainforest.

  20. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  1. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  2. Incremental laser space weathering of Allende reveals non-lunar like space weathering effects

    NASA Astrophysics Data System (ADS)

    Gillis-Davis, Jeffrey J.; Lucey, Paul G.; Bradley, John P.; Ishii, Hope A.; Kaluna, Heather M.; Misra, Anumpam; Connolly, Harold C.

    2017-04-01

    We report findings from a series of laser-simulated space weathering experiments on Allende, a CV3 carbonaceous chondrite. The purpose of these experiments is to understand how spectra of anhydrous C-complex asteroids might vary as a function of micrometeorite bombardment. Four 0.5-gram aliquots of powdered, unpacked Allende meteorite were incrementally laser weathered with 30 mJ pulses while under vacuum. Radiative transfer modeling of the spectra and Scanning Transmission Electron Microscope (STEM) analyses of the samples show lunar-like similarities and differences in response to laser-simulated space weathering. For instance, laser weathered Allende exhibited lunar-like spectral changes. The overall spectra from visible to near infrared (Vis-NIR) redden and darken, and characteristic absorption bands weaken as a function of laser exposure. Unlike lunar weathering, however, the continuum slope between 450-550 nm does not vary monotonically with laser irradiation. Initially, spectra in this region redden with laser irradiation; then, the visible continua become less red and eventually spectrally bluer. STEM analyses of less mature samples confirm submicroscopic iron metal (SMFe) and micron sized sulfides. More mature samples reveal increased dispersal of Fe-Ni sulfides by the laser, which we infer to be the cause for the non-lunar-like changes in spectral behavior. Spectra of laser weathered Allende are a reasonable match to T- or possibly K-type asteroids; though the spectral match with a parent body is not exact. The key take away is, laser weathered Allende looks spectrally different (i.e., darker, and redder or bluer depending on the wavelength region) than its unweathered spectrum. Consequently, connecting meteorites to asteroids using unweathered spectra of meteorites would result in a different parent body than one matched on the basis of weathered spectra. Further, spectra for these laser weathering experiments may provide an explanation for

  3. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiita, Joanne

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paidmore » OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.« less

  4. The New Space Weather Action Center; the Next Level on Space Weather Education

    NASA Astrophysics Data System (ADS)

    Collado-Vega, Y. M.; Lewis, E. M.; Cline, T. D.; MacDonald, E.

    2016-12-01

    The Space Weather Action Center (SWAC) provides access for students to near real-time space weather data, and a set of easy instructions and well-defined protocols that allow them to correctly interpret such data. It is a student centered approach to teaching science and technology in classrooms, as students are encouraged to act like real scientists by accessing, collecting, analyzing, recording, and communicating space weather forecasts. Integration and implementation of several programs will enhance and provide a rich education experience for students' grades 5-16. We will enhance the existing data and tutorials available using the Integrated Space Weather Analysis (iSWA) tool created by the Community Coordinated Modeling Center (CCMC) at NASA GSFC. iSWA is a flexible, turn-key, customer-configurable, Web-based dissemination system for NASA-relevant space weather information that combines data based on the most advanced space weather models available through the CCMC with concurrent space environment information. This tool provides an additional component by the use of videos and still imagery from different sources as a tool for educators to effectively show what happens during an eruption from the surface of the Sun. We will also update content on the net result of space weather forecasting that the public can experience by including Aurorasaurus, a well established, growing, modern, innovative, interdisciplinary citizen science project centered around the public's visibility of the northern lights with mobile applications via the use of social media connections.

  5. Use of EOS Data in AWIPS for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason

    2003-01-01

    Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.

  6. Guidelines for disseminating road weather messages : improved road weather information for travelers.

    DOT National Transportation Integrated Search

    2013-01-01

    The Federal Highway Administration (FHWA) Road Weather Management Program (RWMP) recently published a document titled Guidelines for Disseminating Road Weather Advisory and Control Information (FHWA-JPO-12- 046). The guidelines are intended for use b...

  7. Home Weatherization Visit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven; Strickland, Ted

    2009-08-25

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  8. Home Weatherization Visit

    ScienceCinema

    Chu, Steven; Strickland, Ted

    2018-02-14

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  9. A clustering approach for the analysis of solar energy yields: A case study for concentrating solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Peruchena, Carlos M. Fernández; García-Barberena, Javier; Guisado, María Vicenta; Gastón, Martín

    2016-05-01

    The design of Concentrating Solar Thermal Power (CSTP) systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest. Meteorological series are often condensed into one representative year with the aim of data volume reduction and speeding-up of energy system simulations, defined as Typical Meteorological Year (TMY). This approach seems to be appropriate for rather detailed simulations of a specific plant; however, in previous stages of the design of a power plant, especially during the optimization of the large number of plant parameters before a final design is reached, a huge number of simulations are needed. Even with today's technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work presents a simple and efficient methodology for selecting number of individual days able to represent the electrical production of the plant throughout the complete year. To achieve this objective, a new procedure for determining a reduced set of typical weather data in order to evaluate the long-term performance of a solar energy system is proposed. The proposed methodology is based on cluster analysis and permits to drastically reduce computational effort related to the calculation of a CSTP plant energy yield by simulating a reduced number of days from a high frequency TMY.

  10. Quantifying Uncertainty in Instantaneous Orbital Data Products of TRMM over Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Jayaluxmi, I.; Nagesh, D.

    2013-12-01

    In the last 20 years, microwave radiometers have taken satellite images of earth's weather proving to be a valuable tool for quantitative estimation of precipitation from space. However, along with the widespread acceptance of microwave based precipitation products, it has also been recognized that they contain large uncertainties. While most of the uncertainty evaluation studies focus on the accuracy of rainfall accumulated over time (e.g., season/year), evaluation of instantaneous rainfall intensities from satellite orbital data products are relatively rare. These instantaneous products are known to potentially cause large uncertainties during real time flood forecasting studies at the watershed scale. Especially over land regions, where the highly varying land surface emissivity offer a myriad of complications hindering accurate rainfall estimation. The error components of orbital data products also tend to interact nonlinearly with hydrologic modeling uncertainty. Keeping these in mind, the present study fosters the development of uncertainty analysis using instantaneous satellite orbital data products (version 7 of 1B11, 2A25, 2A23) derived from the passive and active sensors onboard Tropical Rainfall Measuring Mission (TRMM) satellite, namely TRMM microwave imager (TMI) and Precipitation Radar (PR). The study utilizes 11 years of orbital data from 2002 to 2012 over the Indian subcontinent and examines the influence of various error sources on the convective and stratiform precipitation types. Analysis conducted over the land regions of India investigates three sources of uncertainty in detail. These include 1) Errors due to improper delineation of rainfall signature within microwave footprint (rain/no rain classification), 2) Uncertainty offered by the transfer function linking rainfall with TMI low frequency channels and 3) Sampling errors owing to the narrow swath and infrequent visits of TRMM sensors. Case study results obtained during the Indian summer

  11. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    PubMed

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  12. Weather Forecasting Systems and Methods

    NASA Technical Reports Server (NTRS)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  13. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    PubMed Central

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  14. Rock-weathering rates as functions of time

    USGS Publications Warehouse

    Colman, Steven M.

    1981-01-01

    The scarcity of documented numerical relations between rock weathering and time has led to a common assumption that rates of weathering are linear. This assumption has been strengthened by studies that have calculated long-term average rates. However, little theoretical or empirical evidence exists to support linear rates for most chemical-weathering processes, with the exception of congruent dissolution processes. The few previous studies of rock-weathering rates that contain quantitative documentation of the relation between chemical weathering and time suggest that the rates of most weathering processes decrease with time. Recent studies of weathering rinds on basaltic and andesitic stones in glacial deposits in the western United States also clearly demonstrate that rock-weathering processes slow with time. Some weathering processes appear to conform to exponential functions of time, such as the square-root time function for hydration of volcanic glass, which conforms to the theoretical predictions of diffusion kinetics. However, weathering of mineralogically heterogeneous rocks involves complex physical and chemical processes that generally can be expressed only empirically, commonly by way of logarithmic time functions. Incongruent dissolution and other weathering processes produce residues, which are commonly used as measures of weathering. These residues appear to slow movement of water to unaltered material and impede chemical transport away from it. If weathering residues impede weathering processes then rates of weathering and rates of residue production are inversely proportional to some function of the residue thickness. This results in simple mathematical analogs for weathering that imply nonlinear time functions. The rate of weathering becomes constant only when an equilibrium thickness of the residue is reached. Because weathering residues are relatively stable chemically, and because physical removal of residues below the ground surface is slight

  15. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  16. On the Nature of People's Reaction to Space Weather and Meteorological Weather Changes

    NASA Astrophysics Data System (ADS)

    Khabarova, O. V.; Dimitrova, S.

    2009-12-01

    Our environment includes many natural and artificial agents affecting any person on the Earth in one way or other. This work is focused on two of them - weather and space weather, which are permanently effective. Their cumulative effect is proved by means of the modeling. It is shown that combination of geomagnetic and solar indices and weather strength parameter (which includes six main meteorological parameters) correlates with health state significantly better (up to R=0.7), than separate environmental parameters do. The typical shape of any health characteristics' time-series during human body reaction to any negative impact represents a curve, well-known in medicine as a General Adaptation Syndrome curve by Hans Selye. We demonstrate this on the base of blood pressure time-series and acupunctural experiment data, averaged by group. The first stage of adaptive stress-reaction (resistance to stress) is sometimes observed 1-2 days before geomagnetic storm onset. The effect of "outstripping reaction to magnetic storm", named Tchizhevsky- Velkhover effect, had been known for many years, but its explanation was obtained recently due to the consideration of the near-Earth space plasma processes. It was shown that lowfrequency variations of the solar wind density on a background of the density growth can stimulate the development of the geomagnetic filed (GMF) variations of the wide frequency range. These variations seem to have "bioeffective frequencies", resonant with own frequencies of body organs and systems. The mechanism of human body reaction is supposed to be a parametrical resonance in low-frequency range (which is determined by the resonance in large-scale organs and systems) and a simple forced resonance in GHz-range of variations (the resonance of micro-objects in the organism such as DNA, cell membranes, blood ions etc.) Given examples of mass-reaction of the objects to ULF-range GMF variations during quiet space weather time prove this hypothesis.

  17. Nature's wrath-The effect of weather on pain following orthopaedic trauma.

    PubMed

    Shulman, Brandon S; Marcano, Alejandro I; Davidovitch, Roy I; Karia, Raj; Egol, Kenneth A

    2016-08-01

    Despite frequent complaints by orthopaedic trauma patients, to our knowledge there is no data regarding weather's effect on pain and function following acute and chronic fracture. The aim of our study was to investigate the influence of daily weather conditions on patient reported pain and functional status. We retrospectively examined prospectively collected data from 2369 separate outpatient visits of patients recovering from operative management of acute tibial plateau fractures, acute distal radius fractures, and chronic fracture nonunions. Pain and functional status were assessed using a visual analogue scale (VAS) and the DASH and SMFA functional indexes. For each visit date, the mean temperature, difference between mean temperature and expected temperature, dew point, mean humidity, amount of rain, amount of snow, and barometric pressure were recorded. Statistical analysis was run to search for associations between weather data and patient reported pain and function. Low barometric pressure was associated with increased pain across all patient visits (p=0.007) and for patients at 1-year follow-up only (p=0.005). At 1-year follow-up, high temperature (p=0.021) and high humidity (p=0.030) were also associated with increased pain. No significant association was noted between weather data and patient reported functional status at any follow-up interval. Patient complaints of weather influencing pain after orthopaedic trauma are valid. While pain in the immediate postoperative period is most likely dominated by incisional and soft tissue injuries, as time progresses barometric pressure, temperature, and humidity impact patient pain levels. Affirming and counseling that pain may vary based on changing weather conditions can help manage patient expectations and improve satisfaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Graphical tools for TV weather presentation

    NASA Astrophysics Data System (ADS)

    Najman, M.

    2010-09-01

    Contemporary meteorology and its media presentation faces in my opinion following key tasks: - Delivering the meteorological information to the end user/spectator in understandable and modern fashion, which follows industry standard of video output (HD, 16:9) - Besides weather icons show also the outputs of numerical weather prediction models, climatological data, satellite and radar images, observed weather as actual as possible. - Does not compromise the accuracy of presented data. - Ability to prepare and adjust the weather show according to actual synoptic situtation. - Ability to refocus and completely adjust the weather show to actual extreme weather events. - Ground map resolution weather data presentation need to be at least 20 m/pixel to be able to follow the numerical weather prediction model resolution. - Ability to switch between different numerical weather prediction models each day, each show or even in the middle of one weather show. - The graphical weather software need to be flexible and fast. The graphical changes nee to be implementable and airable within minutes before the show or even live. These tasks are so demanding and the usual original approach of custom graphics could not deal with it. It was not able to change the show every day, the shows were static and identical day after day. To change the content of the weather show daily was costly and most of the time impossible with the usual approach. The development in this area is fast though and there are several different options for weather predicting organisations such as national meteorological offices and private meteorological companies to solve this problem. What are the ways to solve it? What are the limitations and advantages of contemporary graphical tools for meteorologists? All these questions will be answered.

  19. Food Safety for Warmer Weather

    MedlinePlus

    ... Fight Off Food Poisoning Food Safety for Warmer Weather En español Send us your comments In warm-weather months, who doesn’t love to get outside ... to keep foods safe to eat during warmer weather. If you’re eating or preparing foods outside, ...

  20. Road weather information for travelers : improving road weather messages and dissemination methods.

    DOT National Transportation Integrated Search

    2010-01-01

    The Federal Highway Administration (FHWA) Road Weather Management Program (RWMP) recently completed a study titled Human Factors Analysis of Road Weather Advisory and Control Information (Publication No. FHWAJPO- 10-053). The goal of the study was to...

  1. NOAA WEATHER SATELLITES

    Science.gov Websites

    extent of snow cover. In addition, satellite sensors detect ice fields and map the movement of sea and greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE SATELLITE PRODUCTS NOAA's operational weather satellite system is composed of two types of satellites: geostationary operational

  2. Pilot's Automated Weather Support System (PAWSS) concepts demonstration project. Phase 1: Pilot's weather information requirements and implications for weather data systems design

    NASA Technical Reports Server (NTRS)

    Crabill, Norman L.; Dash, Ernie R.

    1991-01-01

    The weather information requirements for pilots and the deficiencies of the current aviation weather support system in meeting these requirements are defined. As the amount of data available to pilots increases significantly in the near future, expert system technology will be needed to assist pilots in assimilating that information. Some other desirable characteristics of an automation-assisted system for weather data acquisition, dissemination, and assimilation are also described.

  3. Weather variability and adaptive management for rangeland restoration

    USDA-ARS?s Scientific Manuscript database

    Inherent weather variability in upland rangeland systems requires relatively long-term goal setting, and contingency planning for partial success or failure in any given year. Rangeland plant communities are dynamic systems and successional planning is essential for achieving and maintaining system...

  4. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  5. Interactive effects of prey and weather on golden eagle reproduction

    USGS Publications Warehouse

    Steenhof, Karen; Kochert, Michael N.; McDonald, T.L.

    1997-01-01

    1. The reproduction of the golden eagle Aquila chrysaetos was studied in southwestern Idaho for 23 years, and the relationship between eagle reproduction and jackrabbit Lepus californicus abundance, weather factors, and their interactions, was modelled using general linear models. Backward elimination procedures were used to arrive at parsimonious models.2. The number of golden eagle pairs occupying nesting territories each year showed a significant decline through time that was unrelated to either annual rabbit abundance or winter severity. However, eagle hatching dates were significantly related to both winter severity and jackrabbit abundance. Eagles hatched earlier when jackrabbits were abundant, and they hatched later after severe winters.3. Jackrabbit abundance influenced the proportion of pairs that laid eggs, the proportion of pairs that were successful, mean brood size at fledging, and the number of young fledged per pair. Weather interacted with prey to influence eagle reproductive rates.4. Both jackrabbit abundance and winter severity were important in predicting the percentage of eagle pairs that laid eggs. Percentage laying was related positively to jackrabbit abundance and inversely related to winter severity.5. The variables most useful in predicting percentage of laying pairs successful were rabbit abundance and the number of extremely hot days during brood-rearing. The number of hot days and rabbit abundance were also significant in a model predicting eagle brood size at fledging. Both success and brood size were positively related to jackrabbit abundance and inversely related to the frequency of hot days in spring.6. Eagle reproduction was limited by rabbit abundance during approximately twothirds of the years studied. Weather influenced how severely eagle reproduction declined in those years.7. This study demonstrates that prey and weather can interact to limit a large raptor population's productivity. Smaller raptors could be affected more

  6. Severe Weather Environments in Atmospheric Reanalyses

    NASA Astrophysics Data System (ADS)

    King, A. T.; Kennedy, A. D.

    2017-12-01

    Atmospheric reanalyses combine historical observation data using a fixed assimilation scheme to achieve a dynamically coherent representation of the atmosphere. How well these reanalyses represent severe weather environments via proxies is poorly defined. To quantify the performance of reanalyses, a database of proximity soundings near severe storms from the Rapid Update Cycle 2 (RUC-2) model will be compared to a suite of reanalyses including: North American Reanalysis (NARR), European Interim Reanalysis (ERA-Interim), 2nd Modern-Era Retrospective Reanalysis for Research and Applications (MERRA-2), Japanese 55-year Reanalysis (JRA-55), 20th Century Reanalysis (20CR), and Climate Forecast System Reanalysis (CFSR). A variety of severe weather parameters will be calculated from these soundings including: convective available potential energy (CAPE), storm relative helicity (SRH), supercell composite parameter (SCP), and significant tornado parameter (STP). These soundings will be generated using the SHARPpy python module, which is an open source tool used to calculate severe weather parameters. Preliminary results indicate that the NARR and JRA55 are significantly more skilled at producing accurate severe weather environments than the other reanalyses. The primary difference between these two reanalyses and the remaining reanalyses is a significant negative bias for thermodynamic parameters. To facilitate climatological studies, the scope of work will be expanded to compute these parameters for the entire domain and duration of select renalyses. Preliminary results from this effort will be presented and compared to observations at select locations. This dataset will be made pubically available to the larger scientific community, and details of this product will be provided.

  7. NOAA Weather Radio

    Science.gov Websites

    Questions NOAA WEATHER RADIO Marine Coverage The NOAA Weather Radio network provides near continuous coverage of the coastal U.S, Great Lakes, Hawaii, and populated Alaska coastline. Typical coverage is 25 Transmitter frequency, call sign and power; and remarks (if any.) Atlantic Gulf of Mexico Great Lakes West

  8. Weatherizing a Structure.

    ERIC Educational Resources Information Center

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with weatherizing a structure. Its objective is for the student to be able to analyze factors related to specific structures that indicate need for weatherizing activities and to determine steps to correct defects in structures that…

  9. Weather Forecaster Understanding of Climate Models

    NASA Astrophysics Data System (ADS)

    Bol, A.; Kiehl, J. T.; Abshire, W. E.

    2013-12-01

    Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.

  10. Influence of solar variability on the occurrence of central European weather types from 1763 to 2009

    NASA Astrophysics Data System (ADS)

    Schwander, Mikhaël; Rohrer, Marco; Brönnimann, Stefan; Malik, Abdul

    2017-09-01

    The impact of solar variability on weather and climate in central Europe is still not well understood. In this paper we use a new time series of daily weather types to analyse the influence of the 11-year solar cycle on the tropospheric weather of central Europe. We employ a novel, daily weather type classification over the period 1763-2009 and investigate the occurrence frequency of weather types under low, moderate, and high solar activity level. Results show a tendency towards fewer days with westerly and west-southwesterly flow over central Europe under low solar activity. In parallel, the occurrence of northerly and easterly types increases. For the 1958-2009 period, a more detailed view can be gained from reanalysis data. Mean sea level pressure composites under low solar activity also show a reduced zonal flow, with an increase of the mean blocking frequency between Iceland and Scandinavia. Weather types and reanalysis data show that the 11-year solar cycle influences the late winter atmospheric circulation over central Europe with colder (warmer) conditions under low (high) solar activity.

  11. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Weather limitations. 45.187 Section 45.187 Shipping... River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor route must operate during fair weather conditions only. (b) The weather limits (ice conditions, wave height...

  12. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Weather limitations. 45.187 Section 45.187 Shipping... River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor route must operate during fair weather conditions only. (b) The weather limits (ice conditions, wave height...

  13. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Weather limitations. 45.187 Section 45.187 Shipping... River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor route must operate during fair weather conditions only. (b) The weather limits (ice conditions, wave height...

  14. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Weather limitations. 45.187 Section 45.187 Shipping... River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor route must operate during fair weather conditions only. (b) The weather limits (ice conditions, wave height...

  15. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Weather limitations. 45.187 Section 45.187 Shipping... River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor route must operate during fair weather conditions only. (b) The weather limits (ice conditions, wave height...

  16. Premature Extinction of the Weather Observer: How Much Risk is the Air Force Assuming

    DTIC Science & Technology

    2015-12-01

    is impacted in some way by the weather and the forecast. DOD assets are exposed to haz- ardous weather conditions each year, the effects of which...discussion of ASOS accuracy follows and is accompanied by an assessment of sur- face weather observations’ impacts to operations as a function of time as well...from some back-up techniques. This section details current knowledge of AMOS and cor- responding impacts of AMOS employment. Current Fielded Systems

  17. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  18. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  19. Weathering Database Technology

    ERIC Educational Resources Information Center

    Snyder, Robert

    2005-01-01

    Collecting weather data is a traditional part of a meteorology unit at the middle level. However, making connections between the data and weather conditions can be a challenge. One way to make these connections clearer is to enter the data into a database. This allows students to quickly compare different fields of data and recognize which…

  20. Teacher's Weather Sourcebook.

    ERIC Educational Resources Information Center

    Konvicka, Tom

    This book is a teaching resource for the study of weather-related phenomena. A "weather unit" is often incorporated into school study because of its importance to our daily lives and because of its potential to cut across disciplinary content. This book consists of two parts. Part I covers the major topics of atmospheric science such as the modern…

  1. Weathered stony meteorites from Victoria Land, Antarctica, as possible guides to rock weathering on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1984-01-01

    Parallel studies of Martian geomorphic features and their analogs on Earth continue to be fruitful in deciphering the geologic history of Mars. In the context of rock weathering, the Earth-analog approach is admirably served by the study of meteorites recovered from ice sheets in Antarctica. The weathering environment of Victoria Land possesses several Mars-like attributes. Four of the five Antarctic meteorites being studied contain rust and EETA79005 further possesses a conspicuous, dark, weathering rind on one side. Secondary minerals (rust and salts) occur both on the surfaces and interiors of some of the samples and textural evidence indicates that such secondary mineralization contributed to physical weathering (by salt riving) of the rocks. Several different rust morphologies occur and emphasis is being placed on identifying the phase compositions of the various rust occurrances. A thorough understanding of terrestrial weathering features of the meteorites is a prerequisite for identifying possible Martian weathering features (if such features exist) that might be postulated to occur in some meteorites.

  2. Weather Fundamentals: Climate & Seasons. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes), describes weather patterns and cycles around the globe. The various types of climates around…

  3. Road weather management best practices : version 3.0.

    DOT National Transportation Integrated Search

    2012-06-01

    On average, there are over 6,301,000 vehicle crashes each year. Twenty-four (24) percent of these crashes approximately 1,511,000 are weather-related, resulting in 7,130 fatalities and 629,000 injuries. In spite of these statistics, there is ...

  4. A climatology of weather-driven mixing events in a dimictic Arctic lake

    NASA Astrophysics Data System (ADS)

    Cooke, Melanie; MacIntyre, Sally; Kushner, Paul

    2014-05-01

    For dimictic and polymictic Arctic lakes, mixing during the ice-free season is primarily controlled by the passage of cold fronts and their associated strong winds. At Toolik Lake, a Long Term Ecological Research site in Alaska, year-to-year variability in lake stability and mixing frequency has been considerable over the past 14 summers. Mixing is important for lake productivity, distributing dissolved gases and nutrients through the water column. Summertime Arctic warming might be expected to stabilize Arctic lakes such as Toolik, but the control of individual weather events on a season's mixing characteristics complicates the ability to predict trends in stability and mixing. With this motivation, this work aims to characterize weather systems that are conducive to mixing at Toolik. High resolution lake and meteorological data from the site were used to characterize mixing while atmospheric reanalysis data were used to describe the weather systems. Mixing events were first identified using an automated algorithm based on Lake Number and lake thermal structure. The algorithm identified mixing events that are separated by at least the timescale of weather systems, so that any given weather event should cause at most one mixing event. Because low Lake Number conditions typically highlight strong wind events, temperature profile data over time were used to identify thermocline deepening as a complementary indicator for mixing. Mixing events were found to be most often characterized by simultaneous occurrence of a low Lake Number condition and thermocline deepening. Once mixing events were identified, they were classified according to their corresponding atmospheric structures. Two primary weather system types with distinct characteristics were determined to be associated with mixing. The analysis suggests that changing the occurrence of these weather system types might change the summertime thermal structure of Toolik Lake, and by extension other lakes in the region.

  5. Weather Augmented Risk Determination (WARD) System

    NASA Astrophysics Data System (ADS)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  6. Climate Prediction - NOAA's National Weather Service

    Science.gov Websites

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Climate > Predictions Climate Prediction Long range forecasts across the U.S. Climate Prediction Web Sites Climate Prediction

  7. [Perceived pain and weather changes in rheumatic patients].

    PubMed

    Miranda, L Cunha; Parente, M; Silva, C; Clemente-Coelho, P; Santos, H; Cortes, S; Medeiros, D; Ribeiro, J Saraiva; Barcelos, F; Sousa, M; Miguel, C; Figueiredo, R; Mediavilla, M; Simões, E; Silva, M; Patto, J Vaz; Madeira, H; Ferreira, J; Micaelo, M; Leitão, R; Las, V; Faustino, A; Teixeira, A

    2007-01-01

    Rheumatic patients with chronic pain describe in a vivid way the influence of climate on pain and disease activity. Several studies seem to confirm this association. To evaluate and compare in a population of rheumatic patients the perceived influence of weather changes on pain and disease activity This is a retrospective cross-sectional study. For three weeks an assisted self-reported questionnaire with nine dimensions and a VAS pain scale was performed on consecutive out-patients in our clinic. 955 patients 787 female 168 male mean age 57.9 years with several rheumatologic diagnosis were evaluated. Overall 70 of the patients believed that the weather influenced their disease and 40 believed that the influence was high. Morning stiffness was influenced in 54 high influenced in 34 . Autumn and Winter were the most influential periods as well as humidity 67 and low temperatures 59 . In our study as well as in literature we found that a high percentage of patients 70 perceived that weather conditions influenced their pain and disease. Fibromyalgia patients seemed to be strongly influenced by weather changes. Our study confirms that patients perception on the influence of climate on pain and therefore their disease is an important clinical factor and it should be considered when evaluating rheumatic patients.

  8. Weather Effects on Crop Diseases in Eastern Germany

    NASA Astrophysics Data System (ADS)

    Conradt, Tobias

    2017-04-01

    Since the 1970s there are several long-term monitoring programmes for plant diseases and pests in Germany. Within the framework of a national research project, some otherwise confidential databases comprising 77 111 samples from numerous sites accross Eastern Germany could be accessed and analysed. The pest data covered leaf rust (Puccinia triticina) and powdery mildew (Blumeria graminis) in winter wheat, aphids (Aphididae, four genera) on wheat and other cereal crops, late blight (Phytophthora infestans) in potatoes, and pollen beetles (Brassicogethes aeneus) on rape. These data were complemented by daily weather observations from the German Weather Service (DWD). In a first step, Pearson correlations between weather variables and pest frequencies were calculated for seasonal time periods of different start months and durations and ordered into so-called correlograms. This revealed principal weather effects on disease spread - e. g. that wind is favourable for mildew throughout the year or that rape pollen beetles like it warm, but not during wintertime. Secondly, the pest frequency samples were found to resemble gamma distributions, and a generalised linear model was fitted to describe their parameter shift depending on end-of-winter temperatures for aphids on cereals. The method clearly shows potential for systematic pest risk assessments regarding climate change.

  9. Studying Weather and Climate Using Atmospheric Retrospective Analyses

    NASA Astrophysics Data System (ADS)

    Bosilovich, M. G.

    2014-12-01

    Over the last 35 years, tremendous amounts of satellite observations of the Earth's atmosphere have been collected along side the much longer and diverse record of in situ measurements. The satellite data records have disparate qualities, structure and uncertainty which make comparing weather from the 80s and 2000s a challenging prospect. Likewise, in-situ data records lack complete coverage of the earth in both space and time. Atmospheric reanalyses use the observations with numerical models and data assimilation to produce continuous and consistent weather data records for periods longer than decades. The result is a simplified data format with a relatively straightforward learning curve that includes many more variables available (through the modeling component of the system), but driven by a full suite of observational data. The simplified data format allows introduction into weather and climate data analysis. Some examples are provided from undergraduate meteorology program internship projects. We will present the students progression through the projects from their initial understanding and competencies to some final results and the skills learned along the way. Reanalyses are a leading research tool in weather and climate, but can also provide an introductory experience as well, allowing students to develop an understanding of the physical system while learning basic programming and analysis skills.

  10. Space Weathering on Airless Bodies.

    PubMed

    Pieters, Carle M; Noble, Sarah K

    2016-10-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.

  11. Space Weathering on Airless Bodies

    PubMed Central

    Pieters, Carle M.; Noble, Sarah K.

    2018-01-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research. PMID:29862145

  12. Severe Weather Planning for Schools

    ERIC Educational Resources Information Center

    Watson, Barbara McNaught; Strong, Christopher; Bunting, Bill

    2008-01-01

    Flash floods, severe thunderstorms, and tornadoes occur with rapid onset and often no warning. Decisions must be made quickly and actions taken immediately. This paper provides tips for schools on: (1) Preparing for Severe Weather Emergencies; (2) Activating a Severe Weather Plan; (3) Severe Weather Plan Checklist; and (4) Periodic Drills and…

  13. Comparison of characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012

    NASA Astrophysics Data System (ADS)

    Chen, Huizhong; Wu, Dui; Yu, Jianzhen

    2016-04-01

    Using the data on aerosol observed hourly by Marga ADI 2080 and Grimm 180, we compared the characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012. The mass concentration of aerosol appeared distinct between the two weather processes. During rainy weather, the mass concentration of PM and total water-soluble components decreased obviously. During cold air-dust weather, the cleaning effect of cold air occurred much more suddenly and about a half day earlier than the dust effect. As a result, the mass concentration of PM and total water-soluble components first dropped dramatically to a below-normal level and then rose gradually to an above-normal level. The ratio of PM2.5/PM10 and PM1/PM10 decreased, suggesting that dust-storm weather mainly brought in coarse particles. The proportion of Ca2+ in the total water-soluble components significantly increased to as high as 50 % because of the effect of dust weather. We further analysed the ionic equilibrium during rainy and cold air-dust weather, and compared it with that during hazy weather during the same period. The aerosol during rainy weather was slightly acidic, whereas that during hazy weather and cold air-dust weather was obviously alkaline, with that during cold air-dust weather being significantly more alkaline. Most of the anions, including SO4 2- and NO3 -, were neutralised by NH4 + during rainy and hazy weather, and by Ca2+ during cold air-dust weather.

  14. How Cities Make Their Own Weather

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in d e near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. We will also present results from experiments using a regional atmospheric-land surface modeling system. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.

  15. Ozone trends and their relationship to characteristic weather patterns.

    PubMed

    Austin, Elena; Zanobetti, Antonella; Coull, Brent; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros

    2015-01-01

    Local trends in ozone concentration may differ by meteorological conditions. Furthermore, the trends occurring at the extremes of the Ozone distribution are often not reported even though these may be very different than the trend observed at the mean or median and they may be more relevant to health outcomes. Classify days of observation over a 16-year period into broad categories that capture salient daily local weather characteristics. Determine the rate of change in mean and median O3 concentrations within these different categories to assess how concentration trends are impacted by daily weather. Further examine if trends vary for observations in the extremes of the O3 distribution. We used k-means clustering to categorize days of observation based on the maximum daily temperature, standard deviation of daily temperature, mean daily ground level wind speed, mean daily water vapor pressure and mean daily sea-level barometric pressure. The five cluster solution was determined to be the appropriate one based on cluster diagnostics and cluster interpretability. Trends in cluster frequency and pollution trends within clusters were modeled using Poisson regression with penalized splines as well as quantile regression. There were five characteristic groupings identified. The frequency of days with large standard deviations in hourly temperature decreased over the observation period, whereas the frequency of warmer days with smaller deviations in temperature increased. O3 trends were significantly different within the different weather groupings. Furthermore, the rate of O3 change for the 95th percentile and 5th percentile was significantly different than the rate of change of the median for several of the weather categories.We found that O3 trends vary between different characteristic local weather patterns. O3 trends were significantly different between the different weather groupings suggesting an important interaction between changes in prevailing weather

  16. The Application of Synoptic Weather Forecasting Rules to Selected Weather Situations in the United States.

    ERIC Educational Resources Information Center

    Kohler, Fred E.

    The document describes the use of weather maps and data in teaching introductory college courses in synoptic meteorology. Students examine weather changes at three-hour intervals from data obtained from the "Monthly Summary of Local Climatological Data." Weather variables in the local summary include sky cover, air temperature, dew point, relative…

  17. Convective Weather Forecast Accuracy Analysis at Center and Sector Levels

    NASA Technical Reports Server (NTRS)

    Wang, Yao; Sridhar, Banavar

    2010-01-01

    This paper presents a detailed convective forecast accuracy analysis at center and sector levels. The study is aimed to provide more meaningful forecast verification measures to aviation community, as well as to obtain useful information leading to the improvements in the weather translation capacity models. In general, the vast majority of forecast verification efforts over past decades have been on the calculation of traditional standard verification measure scores over forecast and observation data analyses onto grids. These verification measures based on the binary classification have been applied in quality assurance of weather forecast products at the national level for many years. Our research focuses on the forecast at the center and sector levels. We calculate the standard forecast verification measure scores for en-route air traffic centers and sectors first, followed by conducting the forecast validation analysis and related verification measures for weather intensities and locations at centers and sectors levels. An approach to improve the prediction of sector weather coverage by multiple sector forecasts is then developed. The weather severe intensity assessment was carried out by using the correlations between forecast and actual weather observation airspace coverage. The weather forecast accuracy on horizontal location was assessed by examining the forecast errors. The improvement in prediction of weather coverage was determined by the correlation between actual sector weather coverage and prediction. observed and forecasted Convective Weather Avoidance Model (CWAM) data collected from June to September in 2007. CWAM zero-minute forecast data with aircraft avoidance probability of 60% and 80% are used as the actual weather observation. All forecast measurements are based on 30-minute, 60- minute, 90-minute, and 120-minute forecasts with the same avoidance probabilities. The forecast accuracy analysis for times under one-hour showed that the errors in

  18. Development research for wind power weather insurance index through analysis of weather elements and new renewable energy

    NASA Astrophysics Data System (ADS)

    Park, Ki-Jun; jung, jihoon

    2014-05-01

    Recently, social interests and concerns regarding weather risk are gradually growing with increase in frequency of unusual phenomena. Actually, the threat to many vulnerable industries (sensitive to climate conditions) such as agriculture, architecture, logistics, transportation, clothing, home appliance, and food is increasing. According to climate change scenario reports published by National Institute of Meteorological Research (NIMR) in 2012, temperature and precipitation are expected to increase by 4.8% and 13.2% respectively with current status of CO2 emissions (RCP 8.5) at the end of the 21st century. Furthermore, most of areas in Korea except some mountainous areas are also expected to shift from temperate climate to subtropical climate. In the context of climate change, the intensity of severe weathers such as heavy rainfalls and droughts is enhanced, which, in turn, increases the necessity and importance of weather insurance. However, most insurance market is small and limited to policy insurance like crop disaster insurance, and natural disaster insurance in Korea. The reason for poor and small weather insurance market could result from the lack of recognition of weather risk management even though all economic components (firms, governments, and households) are significantly influenced by weather. However, fortunately, new renewable energy and leisure industry which are vulnerable to weather risk are in a long term uptrend and the interest of weather risk is also getting larger and larger in Korea. So, in the long run, growth potential of weather insurance market in Korea might be higher than ever. Therefore, in this study, the capacity of power generation per hour and hourly wind speed are analyzed to develop and test weather insurance index for wind power, and then the effectiveness of weather insurance index are investigated and the guidance will be derived to objectively calculate the weather insurance index.

  19. Does the Weather Really Matter?

    NASA Astrophysics Data System (ADS)

    Burroughs, William James

    1997-09-01

    We talk about it endlessly, write about it copiously, and predict it badly. It influences what we do, what we wear, and how we live. Weather--how does it really impact our lives? In this compelling look at weather, author Burroughs combines historical perspective and economic and political analysis to give the impact of weather and climate change relevance and weight. He examines whether the frequency of extreme events is changing and the consequences of these changes. He looks at the chaotic nature of the climate and how this unpredictability can impose serious limits on how we plan for the future. Finally, he poses the important question: what types of serious, even less predictable changes are around the corner? In balanced and accessible prose, Burroughs works these issues into lucid analysis. This refreshing and insightful look at the impact of weather will appeal to anyone who has ever worried about forgetting an umbrella. William James Burroughs is the author of Watching the World's Weather (CUP, 1991) and Weather Cycles: Real or Imaginary? (CUP, 1994).

  20. Annual distributions and variations of dust weather occurrence over the Tarim Basin, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhou, Yang; Wang, Minzhong; Huo, Wen; Huang, Anning; Yang, Xinhua; Yang, Fan

    2018-04-01

    The annual distribution and variations in dust weather occurrence (DWO) have been analyzed using monthly DWO data from 26 stations over the Tarim Basin during the period of 1961 to 2010. The results show that the DWO presents a significant decreasing trend for different parts of the Tarim Basin in recent decades. The monthly DWO has two peaks in the east and west. In the first half of the year, the peak is in April, but in the second half of the year, the peak is in September. According to the concentration period and concentration degree (CD) of DWO, we can find that the maximum DWO occurs in April in the eastern, western, and northern parts of the basin, but it occurs in May in the southern part. The dust weather season is shorter for the northern and eastern parts of the basin than those of the remaining parts. On average, the dust weather season initiates in April in the northeast and in May for the rest of the region. As an indicator for the length of dust weather season, the CD is significantly related to DWO, with a correlation coefficient of -0.51, revealing an interesting feature of regional climate change with declining DWO and declining dust weather season over the Tarim Basin. The correlation analysis exhibits that all the Arctic Oscillation, Antarctic Oscillation, and North Atlantic Oscillation have a negative relation with the DWO but a positive relation with the length of dust weather season.

  1. Weather information network including graphical display

    NASA Technical Reports Server (NTRS)

    Leger, Daniel R. (Inventor); Burdon, David (Inventor); Son, Robert S. (Inventor); Martin, Kevin D. (Inventor); Harrison, John (Inventor); Hughes, Keith R. (Inventor)

    2006-01-01

    An apparatus for providing weather information onboard an aircraft includes a processor unit and a graphical user interface. The processor unit processes weather information after it is received onboard the aircraft from a ground-based source, and the graphical user interface provides a graphical presentation of the weather information to a user onboard the aircraft. Preferably, the graphical user interface includes one or more user-selectable options for graphically displaying at least one of convection information, turbulence information, icing information, weather satellite information, SIGMET information, significant weather prognosis information, and winds aloft information.

  2. Weatherization Plays a Starring Role in Mississippi: Weatherization Assistance Close-Up Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D&R International

    2001-10-10

    Mississippi demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  3. Impact of derived global weather data on simulated crop yields

    PubMed Central

    van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G

    2013-01-01

    Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26–72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12–19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. PMID:23801639

  4. Where fast weathering creates thin regolith and slow weathering creates thick regolith

    USGS Publications Warehouse

    Bazilevskaya, Ekaterina; Lebedeva, Marina; Pavich, Milan J.; Brantley, Susan L.; Rother, Gernot; Parkinson, Dilworth Y.; Cole, David

    2013-01-01

    Weathering disaggregates rock into regolith – the fractured or granular earth material that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA). A priori, we predicted that the regolith on diabase would be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20 deeper into the granite than the diabase. The 20 -thicker regolith is attributed mainly to connected micron-sized pores, microfractures formed around oxidizing biotite at 20 m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explain why regolith worldwide is thicker on felsic compared to mafic rock under similar conditions. To understand regolith formation will require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering.

  5. Seasonality in trauma admissions - Are daylight and weather variables better predictors than general cyclic effects?

    PubMed

    Røislien, Jo; Søvik, Signe; Eken, Torsten

    2018-01-01

    Trauma is a leading global cause of death, and predicting the burden of trauma admissions is vital for good planning of trauma care. Seasonality in trauma admissions has been found in several studies. Seasonal fluctuations in daylight hours, temperature and weather affect social and cultural practices but also individual neuroendocrine rhythms that may ultimately modify behaviour and potentially predispose to trauma. The aim of the present study was to explore to what extent the observed seasonality in daily trauma admissions could be explained by changes in daylight and weather variables throughout the year. Retrospective registry study on trauma admissions in the 10-year period 2001-2010 at Oslo University Hospital, Ullevål, Norway, where the amount of daylight varies from less than 6 hours to almost 19 hours per day throughout the year. Daily number of admissions was analysed by fitting non-linear Poisson time series regression models, simultaneously adjusting for several layers of temporal patterns, including a non-linear long-term trend and both seasonal and weekly cyclic effects. Five daylight and weather variables were explored, including hours of daylight and amount of precipitation. Models were compared using Akaike's Information Criterion (AIC). A regression model including daylight and weather variables significantly outperformed a traditional seasonality model in terms of AIC. A cyclic week effect was significant in all models. Daylight and weather variables are better predictors of seasonality in daily trauma admissions than mere information on day-of-year.

  6. The Contribution of Mesoscale Convective Weather Systems to the Warm-Season Precipitation in the United States.

    NASA Astrophysics Data System (ADS)

    Fritsch, J. M.; Kane, R. J.; Chelius, C. R.

    1986-10-01

    The contribution of precipitation from mesoscale convective weather systems to the warm-season (April-September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a `normal' year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April-September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the `normal' year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by

  7. International Collaboration in Space Weather Situational Awareness

    NASA Astrophysics Data System (ADS)

    Boteler, David; Trichtchenko, Larisa; Danskin, Donald

    Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space weather forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space weather produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space weather.

  8. Guidelines for disseminating road weather messages.

    DOT National Transportation Integrated Search

    2010-06-01

    The tremendous growth in the amount of available weather and road condition informationincluding devices that gather weather information, models and forecasting tools for predicting weather conditions, and electronic devices used by travelersha...

  9. AWE: Aviation Weather Data Visualization Environment

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  10. Learn about Earth Science: Weather. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This CD-ROM, designed for students in grades K-2, explores the world of weather. Students investigate weather to learn about climate and the seasons, how animals adapt to weather changes, how clouds tell us about conditions, and how weather plays a part in our everyday lives. The weather calendar lets students record and write about conditions…

  11. The Relationships between Weather-Related Factors and Daily Outdoor Physical Activity Counts on an Urban Greenway

    PubMed Central

    Wolff, Dana; Fitzhugh, Eugene C.

    2011-01-01

    The purpose of this study was to examine relationships between weather and outdoor physical activity (PA). An online weather source was used to obtain daily max temperature [DMT], precipitation, and wind speed. An infra-red trail counter provided data on daily trail use along a greenway, over a 2-year period. Multiple regression analysis was used to examine associations between PA and weather, while controlling for day of the week and month of the year. The overall regression model explained 77.0% of the variance in daily PA (p < 0.001). DMT (b = 10.5), max temp-squared (b = −4.0), precipitation (b = −70.0), and max wind speed (b = 1.9) contributed significantly. Conclusion: Aggregated daily data can detect relationships between weather and outdoor PA. PMID:21556205

  12. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa

    PubMed Central

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-01-01

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region. PMID:28290474

  13. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa.

    PubMed

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-03-14

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth's climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region.

  14. Weather data for simplified energy calculation methods. Volume IV. United States: WYEC data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, A.R.; Moreno, S.; Deringer, J.

    The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 23 cities using Weather Year for Energy Calculations (WYEC) source weather data. Considerable overlap is present in cities (21) covered by both the TRY and WYEC data. The weather data at each city hasmore » been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.« less

  15. Assessing Weather Curiosity in University Students

    NASA Astrophysics Data System (ADS)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of trait curiosity about the weather using the Weather Curiosity Scale (WCS). The measure consists of 15 self-report items that describe weather preferences and/or behaviors that people may perform more or less frequently. The author reports on two initial studies of the WCS that have used the responses of 710 undergraduate students from a large university in the southeastern United States. In the first study, factor analysis of the 15 items indicated that the measure was unidimensional - suggesting that its items singularly assessed weather curiosity. The WCS also was internally consistent as evidenced by an acceptable Cronbach's alpha, a = .81). The second study sought to identify other personality variables that may relate with the WCS scores and thus illuminate the nature of weather curiosity. Several clusters of personality variables appear to underlie the curiosity levels people exhibited, the first of which related to perceptual curiosity (r = .59). Being curious about sights, sounds, smells, and textures generally related somewhat to curiosity about weather. Two measures of trait sensitivity to environmental stimulation, the Highly Sensitive Person Scale (r = .47) and the Orientation Sensitivity Scale of the Adult Temperament Questionnaire (r = .43), also predicted weather curiosity levels. Finally, possessing extraverted personality traits (r = .34) and an intense style of experiencing one's emotions (r = .33) related to weather curiosity. How can this measure be used in K-12 or post-secondary settings to further climate literacy? First, the WCS can identify students with natural curiosities about weather and climate so these students may be given more challenging instruction that will leverage their natural interests. Second, high-WCS students may function as weather and climate ambassadors during inquiry-based learning activities and thus help other students who are not as oriented to the

  16. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    NASA Astrophysics Data System (ADS)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  17. How accurate are the weather forecasts for Bierun (southern Poland)?

    NASA Astrophysics Data System (ADS)

    Gawor, J.

    2012-04-01

    Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why

  18. Evidence linking rapid Arctic warming to mid-latitude weather patterns.

    PubMed

    Francis, Jennifer; Skific, Natasa

    2015-07-13

    The effects of rapid Arctic warming and ice loss on weather patterns in the Northern Hemisphere is a topic of active research, lively scientific debate and high societal impact. The emergence of Arctic amplification--the enhanced sensitivity of high-latitude temperature to global warming--in only the last 10-20 years presents a challenge to identifying statistically robust atmospheric responses using observations. Several recent studies have proposed and demonstrated new mechanisms by which the changing Arctic may be affecting weather patterns in mid-latitudes, and these linkages differ fundamentally from tropics/jet-stream interactions through the transfer of wave energy. In this study, new metrics and evidence are presented that suggest disproportionate Arctic warming-and resulting weakening of the poleward temperature gradient-is causing the Northern Hemisphere circulation to assume a more meridional character (i.e. wavier), although not uniformly in space or by season, and that highly amplified jet-stream patterns are occurring more frequently. Further analysis based on self-organizing maps supports this finding. These changes in circulation are expected to lead to persistent weather patterns that are known to cause extreme weather events. As emissions of greenhouse gases continue unabated, therefore, the continued amplification of Arctic warming should favour an increased occurrence of extreme events caused by prolonged weather conditions.

  19. Weather conditions drive dynamic habitat selection in a generalist predator.

    PubMed

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B; Rahbek, Carsten

    2014-01-01

    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year-round resident generalist predator, to see how this varied as a function of weather, season and availability. Use of the two most frequently used land cover types, gardens/buildings and cultivated fields varied more than 3-fold as a simple function of season and weather through linear effects of wind and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types. An opportunistic foraging strategy in a landscape with erratically appearing feeding opportunities in different land cover types, may possibly also explain decreasing selection of the two most frequently used land cover types with increasing availability.

  20. RISK MANAGEMENT RESEARCH PLAN FOR WET WEATHER FLOWS

    EPA Science Inventory

    This plan was prepared by the National Risk Management Research Laboratory (NRMRL) of EPA's Office of Research and Development (ORD) to guide the risk management aspects of the urban wet weather flow (WWF) research for the next five years. There are three types of urban WWF dis...

  1. New Technologies for Weather Accident Prevention

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  2. Reactions of psychiatric patients to the Three Mile Island nuclear accident.

    PubMed

    Bromet, E; Schulberg, H C; Dunn, L

    1982-06-01

    The reaction of patients in the community mental health system to the nuclear accident at Three Mile Island (TMI), Middletown, Pa, were assessed. The sample was composed of 151 patients from the TMI area and 64 patients from a comparison site where a similar nuclear plant is located. Mental health status was determined for the period immediately after the accident, nine to ten months later, and one year later. No significant differences were found between the TMI group and the comparison group. To isolate risk factors within the TMI group, patients who were most distressed were compared with patients with the least distress. The results showed that quality of network support and viewing TMI as dangerous were significantly associated with mental health.

  3. The Value of Weather Forecast in Irrigation

    NASA Astrophysics Data System (ADS)

    Cai, X.; Wang, D.

    2007-12-01

    This paper studies irrigation scheduling (when and how much water to apply during the crop growth season) in the Havana Lowlands region, Illinois, using meteorological, agronomic and agricultural production data from 2002. Irrigation scheduling determines the timing and amount of water applied to an irrigated cropland during the crop growing season. In this study a hydrologic-agronomic simulation is coupled with an optimization algorithm to search for the optimal irrigation schedule under various weather forecast horizons. The economic profit of irrigated corn from an optimized scheduling is compared to that from and the actual schedule, which is adopted from a pervious study. Extended and reliable climate prediction and weather forecast are found to be significantly valuable. If a weather forecast horizon is long enough to include the critical crop growth stage, in which crop yield bears the maximum loss over all stages, much economic loss can be avoided. Climate predictions of one to two months, which can cover the critical period, might be even more beneficial during a dry year. The other purpose of this paper is to analyze farmers' behavior in irrigation scheduling by comparing the "actual" schedule to the "optimized" ones. The ultimate goal of irrigation schedule optimization is to provide information to farmers so that they may modify their behavior. In practice, farmers' decision may not follow an optimal irrigation schedule due to the impact of various factors such as natural conditions, policies, farmers' habits and empirical knowledge, and the uncertain or inexact information that they receive. In this study farmers' behavior in irrigation decision making is analyzed by comparing the "actual" schedule to the "optimized" ones. This study finds that the identification of the crop growth stage with the most severe water stress is critical for irrigation scheduling. For the case study site in the year of 2002, framers' response to water stress was found to be

  4. Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.

    2011-01-01

    The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.

  5. Increasing weather-related impacts on European population under climate and demographic change

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Cescatti, Alessandro; Batista e Silva, Filipe; Kovats, Sari R.; Feyen, Luc

    2017-04-01

    Over the last three decades the overwhelming majority of disasters have been caused by weather-related events. The observed rise in weather-related disaster losses has been largely attributed to increased exposure and to a lesser degree to global warming. Recent studies suggest an intensification in the climatology of multiple weather extremes in Europe over the coming decades in view of climate change, while urbanization continues. In view of these pressures, understanding and quantifying the potential impacts of extreme weather events on future societies is imperative in order to identify where and to what extent their livelihoods will be at risk in the future, and develop timely and effective adaptation and disaster risk reduction strategies. Here we show a comprehensive assessment of single- and multi-hazard impacts on the European population until the year 2100. For this purpose, we developed a novel methodology that quantifies the human impacts as a multiplicative function of hazard, exposure and population vulnerability. We focus on seven of the most impacting weather-related hazards - including heat and cold waves, wildfires, droughts, river and coastal floods and windstorms - and evaluated their spatial and temporal variations in intensity and frequency under a business-as-usual climate scenario. Long-term demographic dynamics were modelled to assess exposure developments under a corresponding middle-of-the-road scenario. Vulnerability of humans to weather extremes was appraised based on more than 2300 records of weather-related disasters. The integration of these elements provides a range of plausible estimates of extreme weather-related risks for future European generations. Expected impacts on population are quantified in terms of fatalities and number of people exposed. We find a staggering rise in fatalities from extreme weather events, with the projected death toll by the end of the century amounting to more than 50 times the present number of people

  6. Smooth Sailing for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.

  7. Electro-optical seasonal weather and gender data collection

    NASA Astrophysics Data System (ADS)

    McCoppin, Ryan; Koester, Nathan; Rude, Howard N.; Rizki, Mateen; Tamburino, Louis; Freeman, Andrew; Mendoza-Schrock, Olga

    2013-05-01

    This paper describes the process used to collect the Seasonal Weather And Gender (SWAG) dataset; an electro-optical dataset of human subjects that can be used to develop advanced gender classification algorithms. Several novel features characterize this ongoing effort (1) the human subjects self-label their gender by performing a specific action during the data collection and (2) the data collection will span months and even years resulting in a dataset containing realistic levels and types of clothing corresponding to the various seasons and weather conditions. It is envisioned that this type of data will support the development and evaluation of more robust gender classification systems that are capable of accurate gender recognition under extended operating conditions.

  8. AWE: Aviation Weather Data Visualization

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2001-01-01

    The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.

  9. Cold-Weather Sports and Your Family

    MedlinePlus

    ... Videos for Educators Search English Español Cold-Weather Sports and Your Family KidsHealth / For Parents / Cold-Weather ... kids while being active. Types of Cold-Weather Sports Skiing, snowboarding, ice skating, and snowshoeing are just ...

  10. ... AND HERE COMES THE WEATHER - Austrian TV and radio weather news in the eye of the public

    NASA Astrophysics Data System (ADS)

    Keul, A.; Holzer, A. M.; Wostal, T.

    2010-09-01

    Media weather reports as the main avenue of meteorological and climatological information to the general public have always been in the focus of critical investigation. Former research found that although weather reports are high-interest topics, the amount of information recalled by non-experts is rather low, and criticized this. A pilot study (Keul et al., 2009) by the Salzburg University in cooperation with ORF, the Austrian Broadcasting Corporation, used historic radio files on a fair-weather and a storm situation. It identified the importance of intelligible wording of the weather forecast messages for lay people. Without quality control, weather information can stimulate rumours, false comfort or false alarms. More qualitative and experimental research, also on TV weather, seems justified. This need for further research was addressed by a second and larger field experiment in the spring of 2010. The survey took place in Salzburg City, Austria, with a quota sample of about 90 lay persons. This time TV and radio weather reports were used and a more realistic listening and viewing situation was created by presenting the latest weather forecasts of the given day to the test persons in the very next hours after originally broadcasting them. It asked lay people what they find important in the weather reports and what they remember for their actual next-day use. Reports of a fairweather prognosis were compared with a warning condition. The weather media mix of the users was explored. A second part of the study was a questionnaire which tested the understanding of typical figures of speech used in weather forecasts or even meteorological terms, which might also be important for fully understanding the severe weather warnings. This leads to quantitative and qualitative analysis from which the most important and unexpected results are presented. Short presentation times (1.5 to 2 minutes) make Austrian radio and TV weather reports a narrow compromise between general

  11. There's no such thing as bad weather, just the wrong clothing: climate, weather and active school transportation in Toronto, Canada.

    PubMed

    Mitra, Raktim; Faulkner, Guy

    2012-07-10

    Climatic conditions may enable or deter active school transportation in many North American cities, but the topic remains largely overlooked in the existing literature. This study explores the effect of seasonal climate (i.e., fall versus winter) and weekly weather conditions (i.e., temperature, precipitation) on active travelling to school across different built and policy environments. Home-to-school trips by 11-12-year-old children in the City of Toronto were examined using data from the 2006 Transportation Tomorrow Survey. Binomial logistic regressions were estimated to explore the correlates of the choice of active (i.e., walking) versus non-active (i.e., private automobile, transit and school bus) mode for school trips. Climate and weather-related variables were not associated with choice of school travel mode. Children living within the sidewalk snow-plough zone (i.e., in the inner-suburban neighbourhoods) were less likely to walk to school than children living outside of the zone (i.e., in the inner-city neighbourhoods). Given that seasonality and short-term weather conditions appear not to limit active school transportation in general, built environment interventions designed to facilitate active travel could have benefits that spill over across the entire year rather than being limited to a particular season. Educational campaigns with strategies for making the trip fun and ensuring that the appropriate clothing choices are made are also warranted in complementing built environment modifications.

  12. Benign Weather Modification,

    DTIC Science & Technology

    1997-05-01

    with respect to weather modification. Publicizing these efforts is necessary in order to eliminate all traces of " cloak and dagger " efforts tainting...theater, the Japanese used the weather to conceal their approach to the Hawaiian Islands, enhancing their surprise attack on Pearl Harbor. There... attack is different than previous researcher goals. Therefore, future experiments would have to be tailored for the new objective of hiding military

  13. Comparison of Weather Shows in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Najman, M.

    2009-09-01

    Comparison of Weather Shows in Eastern Europe Television weather shows in Eastern Europe have in most cases in the high graphical standard. There is though a wast difference in duration and information content in the weather shows. There are few signs and regularities by which we can see the character of the weather show. The main differences are mainly caused by the income structure of the TV station. Either it is a fully privately funded TV relying on the TV commercials income. Or it is a public service TV station funded mainly by the national budget or fixed fee structure/tax. There are wast differences in duration and even a graphical presentation of the weather. Next important aspect is a supplier of the weather information and /or the processor. Shortly we can say, that when the TV show is produced by the national met office, the TV show consists of more scientific terms, synoptic maps, satellite imagery, etc. If the supplier is the private meteorological company, the weather show is more user-friendly, laical with less scientific terms. We are experiencing a massive shift in public weather knowledge and demand for information. In the past, weather shows consisted only of maps with weather icons. In todaýs world, even the laic weather shows consist partly of numerical weather model outputs - they are of course designed to be understandable and graphically attractive. Outputs of the numerical weather models used to be only a part of daily life of a professional meteorologist, today they are common part of life of regular people. Video samples are a part of this presentation.

  14. Comparison of pore space textural characteristics of natural stone exposed to real weathering environment and/or subjected to accelerated weathering tests: implications for durability assessment

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Weishauptová, Zuzana

    2017-04-01

    One of the key questions in the debate on durability of natural stone is related to the relevance of accelerated weathering tests for durability assessments, specifically whether similar material responses can be achieved? In the recent study, specimens of opuka stone (extremely fine-grained clayey-calcareous silicite) was subjected to accelerated weathering tests in a climatic chamber (sulphur dioxide atmosphere, freezing/thawing). After completion of certain number of cycles, pore space textural characteristics by means of mercury porosimetry were studied. These data were compared with porosimetric data obtained from a piece of stone, sampled from a carved stone altar located in the interior of the St. Vitus Cathedral (Prague, Czech Republic) which was affected by 150-years lasting indoor decay processes (cyclic themohygric stresses due to variable indoor atmospheric conditions). Interestingly, the pore space textural characteristics of these two sets of specimens are closely related and show some distinct features different from fresh, non-weathered material. Our observation therefore supports relevance of some accelerated weathering simulations; however, conditions of these simulations must be based on parameters of real environment.

  15. The effect of weather on morphometric traits of juvenile cliff swallows

    USGS Publications Warehouse

    Roche, Erin A.; Brown, Mary Bomberger; Brown, Charles R.

    2015-01-01

    Episodes of food deprivation may change how nestling birds allocate energy to the growth of skeletal and feather morphological traits during development. Cliff swallows (Petrochelidon pyrrhonota) are colonial, insectivorous birds that regularly experience brief periods of severe weather-induced food deprivation during the nesting season which may affect offspring development. We investigated how annual variation in timing of rearing and weather were associated with length of wing and tail, skeletal traits, and body mass in juvenile cliff swallows reared in southwestern Nebraska during 2001–2006. As predicted under conditions of food deprivation, nestling skeletal and feather measurements were generally smaller in cooler years. However, variability explained by weather was small, suggesting that morphometric traits of juvenile cliff swallows were not highly sensitive to weather conditions experienced during this study. Measurements of juvenile morphological traits were positively correlated with measurements taken as adults, meaning that any variation among juveniles in response to rearing conditions showed evidence of persisting into a bird’s first breeding season. Our results show that body size in this species is phenotypically plastic and influenced, in part, by weather variables.

  16. Weathering of stony meteorites in Antarctica

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    Weathering produces undesirable physical, chemical, and isotopic changes that might disturb the records of cosmochemical evolution that are sought in meteorites. Meteorites are physically disintegrated by crack propagation phenomena, including ice riving and secondary mineral riving, and are probably abraded by wind that is laden with ice crystals or dust particles. Chemical weathering proceeds by oxidation, hydration, carbonation, and solution and produces a variety of secondary minerals and mineraloids. Differential weathering under freezing conditions is discussed, as well as, the mineralogy of weathering products. Furthermore, the use of Antarctic alteration of meteorites could be used as an excellent analog for weathering on Mars or on cometary bodies.

  17. The importance of range edges for an irruptive species during extreme weather events

    USGS Publications Warehouse

    Bateman, Brooke L.; Pidgeon, Anna M.; Radeloff, Volker C.; Allstadt, Andrew J.; Akçakaya, H. Resit; Thogmartin, Wayne E.; Vavrus, Stephen J.; Heglund, Patricia J.

    2015-01-01

    In a changing climate where more frequent extreme weather may be more common, conservation strategies for weather-sensitive species may require consideration of habitat in the edges of species’ ranges, even though non-core areas may be unoccupied in ‘normal’ years. Our results highlight the conservation importance of range edges in providing refuge from extreme events, such as drought, and climate change.

  18. Enhanced weathering strategies for cooling the planet and saving coral reefs

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Quirk, J.; Thorley, R.; Kharecha, P. A.; Hansen, J. E.; Ridgwell, A. J.; Lomas, M.; Banwart, S. A.

    2014-12-01

    Acceleration of the chemical weathering sink for atmospheric CO2 via distribution of pulverized silicate rocks across terrestrial landscapes has been proposed as a macro-engineering Carbon Dioxide Removal (CDR) scheme, but its effectiveness and response to ongoing global change is poorly understood. We employ a detailed spatially resolved weathering model driven by two ensemble Representative Concentration Pathway (RCP) projections of 21st Century climate (RCP8.5 and RCP4.5) to assess enhanced weathering and examine feedbacks on atmospheric CO2 and ocean carbonate biogeochemistry. Atmospheric CO2 reduction of ~100-260 ppm by year 2100, the range depending mainly on rock composition, is obtained by spreading 5 kg m-2 yr-1 over 20 Mkm2 tropical weathering 'hotspots'. Ocean acidification is neutralized in RCP4.5 and ameliorated in RCP8.5 due to enhanced land-ocean export of weathered alkalinity products and reduced CO2 forcings, and the aragonite saturation state of surface oceans is raised to >3.5, thus avoiding likely extinction of coral reef ecosystems. We suggest that accelerated weathering has substantial potential to help limit global warming and benefits to marine life not obtained from other CDR approaches, but major issues of cost, social acceptability, and potential unanticipated consequences should encourage urgent efforts to phase down fossil fuel emissions.

  19. Flat world versus real world : where is weathering the most important ?

    NASA Astrophysics Data System (ADS)

    Godderis, Yves; Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-04-01

    Mountain ranges are a key driver of the Earth climates. Acting on a large range of timescales, they modulate the atmospheric and oceanic circulations but also plays a crucial role in regulating the geological carbon cycle through their impacts on erosion and continental weathering. Since the 90's, there is an ongoing debate about the role of the mountain uplift on the long term global cooling of the Earth climate. Mountain ranges are thought to enhance silicate weathering and the associated CO2 consumption. But this has been repeatedly questioned in the recent years. Here we present a new method for modeling the spatial distribution of both physical erosion and coupled chemical weathering. The IPSL ocean-atmosphere model calculates the continental climate, which is used to force the erosion/weathering model. We first compare the global silicate weathering for two geographical configurations: the present-day world with mountain ranges, and a world where all mountains have been removed. Depending on the chosen formalism for silicate weathering and on the climate changes linked to the removal of mountains, it can be higher in the flat world than in the real world, or up to 5 times weaker. In the second part of the talk, we will explore the role of the Hercynian mountain range on the onset and demise of the late Paleozoic ice age, within the context of the Pangea assembly.

  20. Planetary Space Weather

    NASA Astrophysics Data System (ADS)

    Grande, M.

    2012-04-01

    Invited Talk - Space weather at other planets While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an exreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. Indeed, space weather may be a significant factor in the habitability of other solar system and extrasolar planets, and the ability of life to travel between them.

  1. The Critical Role of the Research Community in Space Weather Planning and Execution

    NASA Astrophysics Data System (ADS)

    Robinson, Robert M.; Behnke, Richard A.; Moretto, Therese

    2018-03-01

    The explosion of interest in space weather in the last 25 years has been due to a confluence of efforts all over the globe, motivated by the recognition that events on the Sun and the consequent conditions in interplanetary space and Earth's magnetosphere, ionosphere, and thermosphere can have serious impacts on vital technological systems. The fundamental research conducted at universities, government laboratories, and in the private sector has led to tremendous improvements in the ability to forecast space weather events and predict their impacts on human technology and health. The mobilization of the research community that made this progress possible was the result of a series of actions taken by the National Science Foundation (NSF) to build a national program aimed at space weather. The path forward for space weather is to build on those successes through continued involvement of the research community and support for programs aimed at strengthening basic research and education in academia, the private sector, and government laboratories. Investments in space weather are most effective when applied at the intersection of research and applications. Thus, to achieve the goals set forth originally by the National Space Weather Program, the research community must be fully engaged in the planning, implementation, and execution of space weather activities, currently being coordinated by the Space Weather Operations, Research, and Mitigation Subcommittee under the National Science and Technology Council.

  2. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    NASA Astrophysics Data System (ADS)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  3. Overview of Goal 1 (Establish Benchmarks for Space-Weather Events) of the National Space Weather Action Plan

    NASA Astrophysics Data System (ADS)

    Jonas, S.; Murtagh, W. J.; Clarke, S. W.

    2017-12-01

    The National Space Weather Action Plan identifies approximately 100 distinct activities across six strategic goals. Many of these activities depend on the identification of a series of benchmarks that describe the physical characteristics of space weather events on or near Earth. My talk will provide an overview of Goal 1 (Establish Benchmarks for Space-Weather Events) of the National Space Weather Action Plan which will provide an introduction to the panel presentations and discussions.

  4. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  5. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  6. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  7. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  8. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  9. Effect of weather patterns on preweaning growth of beef calves in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Beef production records collected over a 76-year investigation into effects of linebreeding and selection of Hereford cattle, and concurrent weather records were used to assess effects of weather patterns on the growth of calves from birth to weaning. Data were simultaneously adjusted for trends in ...

  10. Rainmakers: why bad weather means good productivity.

    PubMed

    Lee, Jooa Julia; Gino, Francesca; Staats, Bradley R

    2014-05-01

    People believe that weather conditions influence their everyday work life, but to date, little is known about how weather affects individual productivity. Contrary to conventional wisdom, we predict and find that bad weather increases individual productivity and that it does so by eliminating potential cognitive distractions resulting from good weather. When the weather is bad, individuals appear to focus more on their work than on alternate outdoor activities. We investigate the proposed relationship between worse weather and higher productivity through 4 studies: (a) field data on employees' productivity from a bank in Japan, (b) 2 studies from an online labor market in the United States, and (c) a laboratory experiment. Our findings suggest that worker productivity is higher on bad-, rather than good-, weather days and that cognitive distractions associated with good weather may explain the relationship. We discuss the theoretical and practical implications of our research. (c) 2014 APA, all rights reserved.

  11. KSC Weather and Research

    NASA Technical Reports Server (NTRS)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  12. Association of weather and air pollution interactions on daily mortality in 12 Canadian cities.

    PubMed

    Vanos, J K; Cakmak, S; Kalkstein, L S; Yagouti, Abderrahmane

    It has been well established that both meteorological attributes and air pollution concentrations affect human health outcomes. We examined all cause nonaccident mortality relationships for 28 years (1981-2008) in relation to air pollution and synoptic weather type (encompassing air mass) data in 12 Canadian cities. This study first determines the likelihood of summertime extreme air pollution events within weather types using spatial synoptic classification. Second, it examines the modifying effect of weather types on the relative risk of mortality (RR) due to daily concentrations of air pollution (nitrogen dioxide, ozone, sulfur dioxide, and particulate matter <2.5 μm). We assess both single- and two-pollutant interactions to determine dependent and independent pollutant effects using the relatively new time series technique of distributed lag nonlinear modeling (DLNM). Results display dry tropical (DT) and moist tropical plus (MT+) weathers to result in a fourfold and twofold increased likelihood, respectively, of an extreme pollution event (top 5 % of pollution concentrations throughout the 28 years) occurring. We also demonstrate statistically significant effects of single-pollutant exposure on mortality ( p  < 0.05) to be dependent on summer weather type, where stronger results occur in dry moderate (fair weather) and DT or MT+ weather types. The overall average single-effect RR increases due to pollutant exposure within DT and MT+ weather types are 14.9 and 11.9 %, respectively. Adjusted exposures (two-way pollutant effect estimates) generally results in decreased RR estimates, indicating that the pollutants are not independent. Adjusting for ozone significantly lowers 67 % of the single-pollutant RR estimates and reduces model variability, which demonstrates that ozone significantly controls a portion of the mortality signal from the model. Our findings demonstrate the mortality risks of air pollution exposure to differ by weather type, with

  13. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  14. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  15. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  16. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  17. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  18. Risk of Fall-Related Injury due to Adverse Weather Events, Philadelphia, Pennsylvania, 2006-2011.

    PubMed

    Gevitz, Kathryn; Madera, Robbie; Newbern, Claire; Lojo, José; Johnson, Caroline C

    Following a surge in fall-related visits to local hospital emergency departments (EDs) after a severe ice storm, the Philadelphia Department of Public Health examined the association between inclement winter weather events and fall-related ED visits during a 5-year period. Using a standardized set of keywords, we identified fall-related injuries in ED chief complaint logs submitted as part of Philadelphia Department of Public Health's syndromic surveillance from December 2006 through March 2011. We compared days when falls exceeded the winter fall threshold (ie, "high-fall days") with control days within the same winter season. We then conducted matched case-control analysis to identify weather and patient characteristics related to increased fall-related ED visits. Fifteen high-fall days occurred during winter months in the 5-year period. In multivariable analysis, 18- to 64-year-olds were twice as likely to receive ED care for fall-related injuries on high-fall days than on control days. The crude odds of ED visits occurring from 7:00 am to 10:59 am were 70% higher on high-fall days vs control days. Snow was a predictor of a high-fall day: the adjusted odds of snow before a high-fall day as compared with snow before a control day was 13.4. The association between the number of fall-related ED visits and weather-related fall injuries, age, and timing suggests that many events occurred en route to work in the morning. Promoting work closures or delaying openings after severe winter weather would allow time for better snow or ice removal, and including "fall risk" in winter weather advisories might effectively warn morning commuters. Both strategies could help reduce the number of weather-related fall injuries.

  19. The impact of weather factors, moon phases, and seasons on abdominal aortic aneurysm rupture.

    PubMed

    Kózka, Mateusz Andrzej; Bijak, Piotr; Chwala, Maciej; Mrowiecki, Tomasz; Kotynia, Maksymilian; Kaczmarek, Bogusz; Szczeklik, Michał; Lall, Kulvinder S; Szczeklik, Wojciech

    2014-04-01

    Several studies have documented that weather factors, seasons of the year, time of the day, and even changes in moon phases have an impact on the occurrence of rupture of an abdominal aortic aneurysm (RAAA); however, the available data are confounding. The objective of this study was to determine the impact of these factors on the prevalence and mortality rate of RAAA. This is a retrospective analysis of medical records of patients treated for RAAA over a 10-year period. Weather data (i.e., atmospheric pressure, air temperature, humidity, visibility, and wind speed) and weather events (i.e., rain, snow, and storms, etc) were obtained from the local meteorologic weather station and analyzed for a correlation with RAAA. Five hundred thirty patients with RAAA were identified, and these patients presented on 478 days during the 10-year study period (3,652 days), with the overall in-hospital mortality rate of 48.7%. The RAAA mortality was higher during weekends and national holidays, when compared to weekdays (59% vs 45%; P = 0.006) and in patients admitted between 3-7 am when compared to work day hours (65.5% vs 44.1%; P = 0.035). Season changes had no influence on the frequency of RAAA; however, summer seemed to be associated with an increase in mortality as opposed to autumn (54.4% vs 42.5%; P = 0.047). Mean atmospheric pressure (and fluctuations thereof) and other weather factors, including phases and parts of the moon, did not correlate with RAAA occurrence or its mortality. Patients with RAAA who were admitted on weekends, national holidays and in late night hours had lower survival rates. Weather factors (including atmospheric pressure) do not influence the prevalence and mortality of RAAA. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Economic Value of Weather and Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Katz, Richard W.; Murphy, Allan H.

    1997-06-01

    Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects of weather prediction. Chapters by area specialists provide a comprehensive view of this timely topic. They encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behavior. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential text for economists, statisticians, and meteorologists.

  1. Extreme Weather Years Drive Episodic Acidification and Brownification in Lakes in the Northeast US: Implications for Long-term Shifts in Dissolved Organic Carbon, Water Clarity, and Thermal Structure

    NASA Astrophysics Data System (ADS)

    Strock, K.; Saros, J. E.

    2017-12-01

    Interannual climate variability is expected to increase over the next century, but the extent to which hydroclimatic variability influences biogeochemical processes is unclear. To determine the effects of extreme weather on surface water chemistry, a 30-year record of surface water geochemistry for 84 lakes in the northeastern U.S. was combined with landscape data and watershed-specific weather data. With these data, responses in sulfate and dissolved organic carbon (DOC) concentrations were characterized during extreme wet and extreme dry conditions. Episodic acidification during drought and episodic brownification (increased DOC) during wet years were detected broadly across the northeastern U.S. Episodic chemical response was linearly related to wetland coverage in lake watersheds only during extreme wet years. The results of a redundancy analysis suggest that topographic features also need to be considered and that the interplay between wetlands and their degree of connectivity to surface waters could be driving episodic acidification in this region. A subset of lakes located in Acadia National Park, Maine U.S.A. were studied to better understand the implications of regional increases of DOC in lakes. Water transparency declined across six study sites since 1995 as DOC increased. As clarity declined, some lakes experienced reduced epilimnion thickness. The degree to which transparency changed across the lakes was dependent on DOC concentration, with a larger decline in transparency occurring in clear water lakes than brown water lakes. The results presented here help to clarify the variability observed in long-term recovery from acidification and regional increases in DOC. Specifically, an increased frequency of extreme wet years may be contributing to a recent acceleration in the recovery of lake ecosystems from acidification; however, increased frequency of wet years may also lead to reduced water clarity and altered physical lake habitat. Clarifying the

  2. The Garden State Flourishes with Weatherization (New Jersey): Weatherization Assistance Close-Up Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D&R International

    2001-10-10

    New Jersey demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  3. The Weathering of Antarctic Meteorites: Climatic Controls on Weathering Rates and Implications for Meteorite Accumulation

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Akridge, J. M. C.; Sears, D. W. G.; Bland, P. A.

    1995-01-01

    Weathering of meteorites includes a variety of chemical and mineralogical changes, including conversion of metal to iron oxides, or rust. Other changes include the devitrification of glass, especially in fusion crust. On a longer time scale, major minerals such as olivine, pyroxene, and feldspar are partially or wholly converted to various phyllosilicates. The degree of weathering of meteorite finds is often noted using a qualitative system based on visual inspection of hand specimens. Several quantitative weathering classification systems have been proposed or are currently under development. Wlotzka has proposed a classification system based on mineralogical changes observed in polished sections and Mossbauer properties of meteorite powders have also been used. In the current paper, we discuss induced thermoluminescence (TL) as an indicator of degree of weathering of individual meteorites. The quantitative measures of weathering, including induced TL, suffer from one major flaw, namely that their results only apply to small portions of the meteorite.

  4. A method to assess the inter-annual weather-dependent variability in air pollution concentration and deposition based on weather typing

    NASA Astrophysics Data System (ADS)

    Pleijel, Håkan; Grundström, Maria; Karlsson, Gunilla Pihl; Karlsson, Per Erik; Chen, Deliang

    2016-02-01

    Annual anomalies in air pollutant concentrations, and deposition (bulk and throughfall) of sulphate, nitrate and ammonium, in the Gothenburg region, south-west Sweden, were correlated with optimized linear combinations of the yearly frequency of Lamb Weather Types (LWTs) to determine the extent to which the year-to-year variation in pollution exposure can be partly explained by weather related variability. Air concentrations of urban NO2, CO, PM10, as well as O3 at both an urban and a rural monitoring site, and the deposition of sulphate, nitrate and ammonium for the period 1997-2010 were included in the analysis. Linear detrending of the time series was performed to estimate trend-independent anomalies. These estimated anomalies were subtracted from observed annual values. Then the statistical significance of temporal trends with and without LWT adjustment was tested. For the pollutants studied, the annual anomaly was well correlated with the annual LWT combination (R2 in the range 0.52-0.90). Some negative (annual average [NO2], ammonia bulk deposition) or positive (average urban [O3]) temporal trends became statistically significant (p < 0.05) when the LWT adjustment was applied. In all the cases but one (NH4 throughfall, for which no temporal trend existed) the significance of temporal trends became stronger with LWT adjustment. For nitrate and ammonium, the LWT based adjustment explained a larger fraction of the inter-annual variation for bulk deposition than for throughfall. This is probably linked to the longer time scale of canopy related dry deposition processes influencing throughfall being explained to a lesser extent by LWTs than the meteorological factors controlling bulk deposition. The proposed novel methodology can be used by authorities responsible for air pollution management, and by researchers studying temporal trends in pollution, to evaluate e.g. the relative importance of changes in emissions and weather variability in annual air pollution

  5. Assessing weather effects on dengue disease in Malaysia.

    PubMed

    Cheong, Yoon Ling; Burkart, Katrin; Leitão, Pedro J; Lakes, Tobia

    2013-11-26

    The number of dengue cases has been increasing on a global level in recent years, and particularly so in Malaysia, yet little is known about the effects of weather for identifying the short-term risk of dengue for the population. The aim of this paper is to estimate the weather effects on dengue disease accounting for non-linear temporal effects in Selangor, Kuala Lumpur and Putrajaya, Malaysia, from 2008 to 2010. We selected the weather parameters with a Poisson generalized additive model, and then assessed the effects of minimum temperature, bi-weekly accumulated rainfall and wind speed on dengue cases using a distributed non-linear lag model while adjusting for trend, day-of-week and week of the year. We found that the relative risk of dengue cases is positively associated with increased minimum temperature at a cumulative percentage change of 11.92% (95% CI: 4.41-32.19), from 25.4 °C to 26.5 °C, with the highest effect delayed by 51 days. Increasing bi-weekly accumulated rainfall had a positively strong effect on dengue cases at a cumulative percentage change of 21.45% (95% CI: 8.96, 51.37), from 215 mm to 302 mm, with the highest effect delayed by 26-28 days. The wind speed is negatively associated with dengue cases. The estimated lagged effects can be adapted in the dengue early warning system to assist in vector control and prevention plan.

  6. Assessing Weather Effects on Dengue Disease in Malaysia

    PubMed Central

    Cheong, Yoon Ling; Burkart, Katrin; Leitão, Pedro J.; Lakes, Tobia

    2013-01-01

    The number of dengue cases has been increasing on a global level in recent years, and particularly so in Malaysia, yet little is known about the effects of weather for identifying the short-term risk of dengue for the population. The aim of this paper is to estimate the weather effects on dengue disease accounting for non-linear temporal effects in Selangor, Kuala Lumpur and Putrajaya, Malaysia, from 2008 to 2010. We selected the weather parameters with a Poisson generalized additive model, and then assessed the effects of minimum temperature, bi-weekly accumulated rainfall and wind speed on dengue cases using a distributed non-linear lag model while adjusting for trend, day-of-week and week of the year. We found that the relative risk of dengue cases is positively associated with increased minimum temperature at a cumulative percentage change of 11.92% (95% CI: 4.41–32.19), from 25.4 °C to 26.5 °C, with the highest effect delayed by 51 days. Increasing bi-weekly accumulated rainfall had a positively strong effect on dengue cases at a cumulative percentage change of 21.45% (95% CI: 8.96, 51.37), from 215 mm to 302 mm, with the highest effect delayed by 26–28 days. The wind speed is negatively associated with dengue cases. The estimated lagged effects can be adapted in the dengue early warning system to assist in vector control and prevention plan. PMID:24287855

  7. Airline flight planning: The weather connection

    NASA Technical Reports Server (NTRS)

    Steinberg, R.

    1981-01-01

    Airline flight planning has shown little improvement in accuracy since the introduction of computerized techniques in 1964. This has primarily been, because both the type of weather product utilized by the carriers and the way they have employed it has remained unchanged over the past 15 years. The airlines now have an opportunity to make a significant advance in this area with attendant benefits in fuel savings. Most the technological ingredients are in place, but it will take increased cooperation between government and the private sector if cost effective improvements are to be made on a reasonable time scale. This paper reviews the meteorological basis for the present method of flight planning and analyzes its impact on current flight operations. A new approach is suggested for developing a weather data base, for flight planning, which has the potential of providing a fuel savings of between 2 and 3 percent on long distance flights.

  8. Utilization of medical care following the Three Mile Island crisis.

    PubMed

    Houts, P S; Hu, T W; Henderson, R A; Cleary, P D; Tokuhata, G

    1984-02-01

    Four studies are reported on how utilization of primary health care was affected by the Three Mile Island (TMI) crisis and subsequent distress experienced by persons living in the vicinity of the plant. The studies concerned: 1) Blue Cross-Blue Shield records of claims by primary care physicians in the vicinity of TMI; 2) utilization rates in a family practice located near the facility; 3) interviews with persons living within five miles of TMI following the crisis; and 4) responses to a questionnaire by primary care physicians practicing within 25 miles of TMI. All four studies indicated only slight increases in utilization rates during the year following the crisis. One study found that persons who were upset during the crisis tended to be high practice utilizers both before and after the crisis. These results suggest that, while patterns of physician utilization prior to the TMI crisis predicted emotional response during the crisis, the impact of the TMI crisis on subsequent physician utilization was small.

  9. Utilization of medical care following the Three Mile Island crisis.

    PubMed Central

    Houts, P S; Hu, T W; Henderson, R A; Cleary, P D; Tokuhata, G

    1984-01-01

    Four studies are reported on how utilization of primary health care was affected by the Three Mile Island (TMI) crisis and subsequent distress experienced by persons living in the vicinity of the plant. The studies concerned: 1) Blue Cross-Blue Shield records of claims by primary care physicians in the vicinity of TMI; 2) utilization rates in a family practice located near the facility; 3) interviews with persons living within five miles of TMI following the crisis; and 4) responses to a questionnaire by primary care physicians practicing within 25 miles of TMI. All four studies indicated only slight increases in utilization rates during the year following the crisis. One study found that persons who were upset during the crisis tended to be high practice utilizers both before and after the crisis. These results suggest that, while patterns of physician utilization prior to the TMI crisis predicted emotional response during the crisis, the impact of the TMI crisis on subsequent physician utilization was small. PMID:6691524

  10. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  11. Using the Quantile Mapping to improve a weather generator

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Themessl, M.; Gobiet, A.

    2012-04-01

    We developed a weather generator (WG) by using statistical and stochastic methods, among them are quantile mapping (QM), Monte-Carlo, auto-regression, empirical orthogonal function (EOF). One of the important steps in the WG is using QM, through which all the variables, no matter what distribution they originally are, are transformed into normal distributed variables. Therefore, the WG can work on normally distributed variables, which greatly facilitates the treatment of random numbers in the WG. Monte-Carlo and auto-regression are used to generate the realization; EOFs are employed for preserving spatial relationships and the relationships between different meteorological variables. We have established a complete model named WGQM (weather generator and quantile mapping), which can be applied flexibly to generate daily or hourly time series. For example, with 30-year daily (hourly) data and 100-year monthly (daily) data as input, the 100-year daily (hourly) data would be relatively reasonably produced. Some evaluation experiments with WGQM have been carried out in the area of Austria and the evaluation results will be presented.

  12. Challenges in Heliophysics and Space Weather: What Instrumentation for the Future?

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Madhulika

    A hundred years ago, the sun-Earth connection (the field of heliophysics research and space weather impacts) was of interest to only a small number of scientists. Solar activity had little effect on daily life. Today, a single strong solar flare could bring civilization to its knees. Modern society has come to depend on technologies sensitive to solar radiation and geomagnetic storms. Particularly vulnerable are intercontinental power grids, interplanetary robotic and human exploration, satellite operations and communications, and GPS navigation. These technologies are woven into the fabric of daily life, from health care and finance to basic utilities. Both short- and long-term forecasting models are urgently needed to mitigate the effects of solar storms and to anticipate their collective impact on aviation, astronaut safety, terrestrial climate and others. Even during a relatively weak solar maximum, the potential consequences that such events can have on society are too important to ignore. The challenges associated with space weather affect all developed and developing countries. Work on space weather specification, modeling, and forecasting has great societal benefit: It is basic research with a high public purpose. At present, we have a fleet “Heliophysics System Observatory” of dedicated spacecraft titled (e.g. SOHO, STEREO, SDO, ACE), and serendipitous resources contributing data for space weather modeling from both remote observations of the sun and in-situ measurements to provide sparse space weather situational awareness which were mostly built for a 2-3 year lifetime and are wearing out and won’t be around for very long. Missions currently in formulation will significantly enhance the capability of physics-based models that are used to understand and predict the impact of the variable sun. To enhance current models, and make them effective in predicting space weather throughout the solar system, we need a distributed network of spacecraft

  13. 36 CFR 910.71 - Weather protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.71 Weather protection. Weather protection means a seasonal or...

  14. 36 CFR 910.71 - Weather protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.71 Weather protection. Weather protection means a seasonal or...

  15. 36 CFR 910.71 - Weather protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.71 Weather protection. Weather protection means a seasonal or...

  16. 36 CFR 910.71 - Weather protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.71 Weather protection. Weather protection means a seasonal or...

  17. Mild and Wild Weather.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Presents background information and six activities that focus on clouds, precipitation, and stormy weather. Each activity includes an objective, recommended age level(s), subject area(s), and instructional strategies. Also provided are two ready-to-copy pages (a coloring page on lightning and a list of weather riddles to solve). (JN)

  18. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  19. Characterizing Space Weather Effects in the Post-DMSP Era

    NASA Astrophysics Data System (ADS)

    Groves, K. M.

    2015-12-01

    Space weather generally refers to heliophysical phenomena or events that produce a negative impact on manmade systems. While many space weather events originate with impulsive disturbances on the sun, others result from complex internal interactions in the ionosphere-thermosphere system. The reliance of mankind on satellite-based services continues to increase rapidly, yet the global capacity for sensing space weather in the ionosphere seems headed towards decline. A number of recent ionospheric-focused space-based missions are either presently, or soon-to-be, no longer available, and the end of the multi-decade Defense Meteorological Satellite Program is now in sight. The challenge facing the space weather community is how to maintain or increase sensing capabilities in an operational environment constrained by a decreasing numbers of sensors. The upcoming launch of COSMIC-2 in 2016/2018 represents the most significant new capability planned for the future. GNSS RO data has some benefit for background ionospheric models, particularly over regions where ground-based GNSS TEC measurements are unavailable, but the space weather community has a dire need to leverage such missions for far more knowledge of the ionosphere, and specifically for information related to space weather impacts. Meanwhile, the number of ground-based GNSS sensors worldwide has increased substantially, yet progress instrumenting some vastly undersampled regions, such as Africa, remains slow. In fact, the recent loss of support for many existing ground stations in such areas under the former Scintillation Network Decision Aid (SCINDA) program may actually result in a decrease in such sensing sites over the next 1-2 years, abruptly reversing a positive trend established over the last decade. Here we present potential solutions to the challenges these developments pose to the space weather enterprise. Specific topics include modeling advances required to detect and accurately characterize

  20. The weather and Climate: emergent laws and multifractal cascades

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.

    2016-12-01

    In the atmosphere, nonlinear terms are typically about a trillion times larger than linear ones; we anticipate the emergence of high level turbulence laws. The classical turbulence laws were restricted to homogeneous and isotropic systems; to apply them to the atmosphere they must be generalized to account for strong anisotropy (especially stratification) and variability (intermittency). Over the last 30 years, using scaling symmetry principles and multifractal cascades, this has been done. While hitherto they were believed applicable only up to ≈ 100 m, (generalized) turbulence laws now anisotropic and multifractal, they cover spatial scales up planetary in extent and in time well beyond weather scales to include the climate. These higher level laws are stochastic in nature and provide the theoretical basis both for stochastic parametrizations as well as stochastic forecasting. In the time domain the emergent laws for fluctuations DT (for example in temperature T) have means T > ≈ DtH i.e. they are scaling (power laws) in the time interval Dt. We find find exponents H>0 (fluctuations increase with scale) up to ≈ Dt ≈10 days (the lifetime of planetary scale structures, the analogous transition in the ocean is at Dt ≈ 1 year on Mars it is Dt ≈ 2 sols). At larger Dt, there is a transition to a new "macroweather" regime with H<0: successive fluctuations tend cancel each; at Dt >≈30 years (anthropocene; larger in the pre-industrial epoch), new climate processes begin to dominate, leading to H>0. "The climate is what you expect, the weather is what you get": the climate is thought to be a kind of "average weather". However this "expected" behavior is macroweather, not the climate. On the contrary, the climate is the new even lower frequency regime at scales Dt> 30 yrs and it has statistical properties very similar to the weather. At these scales, "macroweather is what you expect, the climate is what you get". The scaling in the macroweather regime implies

  1. Convective weather hazards in the Twin Cities Metropolitan Area, MN

    NASA Astrophysics Data System (ADS)

    Blumenfeld, Kenneth A.

    This dissertation investigates the frequency and intensity of severe convective storms, and their associated hazards, in the Twin Cities Metropolitan Area (TCMA), Minnesota. Using public severe weather reports databases and high spatial density rain gauge data, annual frequencies and return-periods are calculated for tornadoes, damaging winds, large hail, and flood-inducing rainfall. The hypothesis that severe thunderstorms and tornadoes are less likely in the central TCMA than in surrounding areas also is examined, and techniques for estimating 100-year rainfall amounts are developed and discussed. This research finds that: (i) storms capable of significant damage somewhere within the TCMA recur annually (sometimes multiple times per year), while storms virtually certain to cause such damage recur every 2-3 years; (ii) though severe weather reports data are not amenable to classical comparative statistical testing, careful treatment of them suggests all types and intensity categories of severe convective weather have been and should continue to be approximately as common in the central TCMA as in surrounding areas; and (iii) applications of Generalized Extreme Value (GEV) statistics and areal analyses of rainfall data lead to significantly larger (25-50%) estimates of 100-year rainfall amounts in the TCMA and parts of Minnesota than those currently published and used for precipitation design. The growth of the TCMA, the popular sentiment that downtown areas somehow deter severe storms and tornadoes, and the prior underestimation of extreme rainfall thresholds for precipitation design, all act to enhance local susceptibility to hazards from severe convective storms.

  2. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  3. A framework for standardized calculation of weather indices in Germany

    NASA Astrophysics Data System (ADS)

    Möller, Markus; Doms, Juliane; Gerstmann, Henning; Feike, Til

    2018-05-01

    Climate change has been recognized as a main driver in the increasing occurrence of extreme weather. Weather indices (WIs) are used to assess extreme weather conditions regarding its impact on crop yields. Designing WIs is challenging, since complex and dynamic crop-climate relationships have to be considered. As a consequence, geodata for WI calculations have to represent both the spatio-temporal dynamic of crop development and corresponding weather conditions. In this study, we introduce a WI design framework for Germany, which is based on public and open raster data of long-term spatio-temporal availability. The operational process chain enables the dynamic and automatic definition of relevant phenological phases for the main cultivated crops in Germany. Within the temporal bounds, WIs can be calculated for any year and test site in Germany in a reproducible and transparent manner. The workflow is demonstrated on the example of a simple cumulative rainfall index for the phenological phase shooting of winter wheat using 16 test sites and the period between 1994 and 2014. Compared to station-based approaches, the major advantage of our approach is the possibility to design spatial WIs based on raster data characterized by accuracy metrics. Raster data and WIs, which fulfill data quality standards, can contribute to an increased acceptance and farmers' trust in WI products for crop yield modeling or weather index-based insurances (WIIs).

  4. Weather Avoidance Using Route Optimization as a Decision Aid: An AWIN Topical Study. Phase 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The aviation community is faced with reducing the fatal aircraft accident rate by 80 percent within 10 years. This must be achieved even with ever increasing, traffic and a changing National Airspace System. This is not just an altruistic goal, but a real necessity, if our growing level of commerce is to continue. Honeywell Technology Center's topical study, "Weather Avoidance Using Route Optimization as a Decision Aid", addresses these pressing needs. The goal of this program is to use route optimization and user interface technologies to develop a prototype decision aid for dispatchers and pilots. This decision aid will suggest possible diversions through single or multiple weather hazards and present weather information with a human-centered design. At the conclusion of the program, we will have a laptop prototype decision aid that will be used to demonstrate concepts to industry for integration into commercialized products for dispatchers and/or pilots. With weather a factor in 30% of aircraft accidents, our program will prevent accidents by strategically avoiding weather hazards in flight. By supplying more relevant weather information in a human-centered format along with the tools to generate flight plans around weather, aircraft exposure to weather hazards can be reduced. Our program directly addresses the NASA's five year investment areas of Strategic Weather Information and Weather Operations (simulation/hazard characterization and crew/dispatch/ATChazard monitoring, display, and decision support) (NASA Aeronautics Safety Investment Strategy: Weather Investment Recommendations, April 15, 1997). This program is comprised of two phases, Phase I concluded December 31, 1998. This first phase defined weather data requirements, lateral routing algorithms, an conceptual displays for a user-centered design. Phase II runs from January 1999 through September 1999. The second phase integrates vertical routing into the lateral optimizer and combines the user

  5. Auroras and Space Weather Celebrating the International Heliophysics Year in Classroom

    NASA Astrophysics Data System (ADS)

    Craig, N.; Peticolas, L. M.; Angelopoulos, V.; Thompson, B.

    2007-05-01

    2007 Celebrates the International Heliophysics year and its outreach has a primary objective, to "demonstrate the beauty, relevance and significance of Space and Earth Science to the world." NASA's first five-satellite mission, THEMIS (Time History of Events and Macroscale Interactions during Substorms), was launched on February 17, 2007 and is to investigate a key mystery surrounding the dynamics of the auroras- when, where, and how are they triggered? When the five probes align perfectly over the North American continent- every four days - and with 20 ground stations in Northern Canada and Alaska with automated, all-sky cameras will document the auroras from Earth. To monitor the large-scale local effects of the currents in space, THEMIS Education and Outreach program has installed 10 ground magnetometers, instruments that measure Earth's magnetic field, in competitively selected rural schools around the country and receive data. The THEMIS Education and Outreach Program shares the IHY objective by bringing in this live local space weather data in the classrooms and engaging the teachers and students on authentic research in the classroom. The data are displayed on the school computer monitors as well as on the THEMIS E/PO website providing the local data to the science mission as well as schools. Teachers use the data to teach about the aurora not only in math and science, but also in Earth science, history and art. These students and their teachers are our ambassadors to rural America and share the excitement of learning and teaching with their regional teachers. We will share how authentic space science data related to Earth's magnetic field and auroras can be understood, researched, predicted and shared via the internet to any school around the globe that wished to be part of tracking solar storms. Complimenting IHY, World Space Week will take place from October 4-10th and this year. World Space week is "an international celebration of science and technology

  6. Memories and Perceptions of Weather and Climate in the Denver Metropolitan Area: Calibrating the Human Thermometer

    NASA Astrophysics Data System (ADS)

    Malmberg, J.; Blanken, P.

    2006-12-01

    Due to a lack of World Meteorological Organization (WMO) data in locations such as polar regions, non- traditional datasets such as indigenous local knowledge are sometimes used as an indicator of climate change. Local indigenous knowledge depends on human memory of weather and climate, yet the accuracy of this knowledge has not been checked. The purpose of this study is to determine how accurate recollections of memory and climate are, and what may influence these memories. This pilot study examined recollections of weather and climate in the Denver metropolitan area, a WMO location, in periods varying from days to years. The approximately 400 respondents answered questions about the weather, climate, and various factors (e.g. gender, education, occupation) that may influence memories of weather and climate via an online survey. Results were compared to the actual meteorological conditions recorded at the Denver-Boulder National Weather Service Forecast Office and at the Western Regional Climate Center. When asked to give the minimum and maximum daily temperature ranges and significant weather, participants' accuracy decreased as the length of time since the day or event increased. For example, more than 85% of participants had an accurate response one day in the past, and this decreased to less than 50% for conditions seven days in the past. When asked about climate data two years ago, most respondents recalled the temperature trend (e.g. higher, about the same, or lower), however, participants did not agree about precipitation amounts (e.g. more, about the same amount, or less). Other factors (e.g gender, education, occupation) did not seem to influence weather memories two years prior to the survey. When asked to recall climate 20 years prior to the survey, more participants (up to 44%) reported that they did not remember. Of participants who did select a trend, the temperature trend was again more accurate than the precipitation trend. The role of factors that

  7. The science of space weather.

    PubMed

    Eastwood, Jonathan P

    2008-12-13

    The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.

  8. The Effects of Aviation Weather Information Systems on General Aviation Weather Information Systems on General Pilots' Workload

    NASA Technical Reports Server (NTRS)

    Scerbo, Mark; Coyne, Joseph; Burt, Jennifer L. (Technical Monitor)

    2002-01-01

    My work at NASA Langley has focused around Aviation Weather Information CAWING displays. The majority of my time at LYRIC has been spent on the Workload and Relative Position (WaRP) Study. The goal of this project is to determine how an AWIN display at various positions within the cockpit affects pilot performance and workload. The project is being conducted in Languages Cessna 206H research aircraft. During the past year the design of the experiment was finalized and approved. Despite facing several delays the data collection was completed in early February. Alter the completion of the data collection an extensive data entry task began. This required recording air speed, altitude, course heading, bank angle, and vertical speed information from videos of the primary flight displays. This data was then used to determine root mean square error (RMSE) for each experimental condition. In addition to the performance data (RMSE) taken from flight path deviation, the study also collected data on pilot;s accuracy in reporting weather information, and a subjective rating of workload from the pilot. The data for this experiment is currently being analyzed. Overall the current experiment should help to determine potential costs and benefits associated with AWIN displays. The data will be used to determine if a private pilot can safely fly a general aviation aircraft while operating a weather display. Clearly a display that adds to the pilot#s already heavy workload represents a potential problem. The study will compare the use of an AWIN display to conventional means of acquiring weather data. The placement of the display within the cockpit (i.e., either on the yoke, kneeboard, or panel) will be also compared in terms of workload, performance, and pilot preference.

  9. Impact of derived global weather data on simulated crop yields.

    PubMed

    van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G

    2013-12-01

    Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26-72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12-19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. © 2013 John Wiley & Sons Ltd.

  10. Dobbins AFB, Georgia Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1984-04-25

    Ii4 GL(,BAL CLIMATOLOGY BRANCH uSArETAC WEATHER CONDITIONS Ar7 WEATHFR SERVICE/MAC 2ATIN DORINS AFR TIONNAME I -A YEARS PE;?CENTAGE FREQUENCY OF...USAFETAC CEILING VERSUS VISIBILITY AIr WEATHER SF1VICE/MAC ?"󈧚’ " DORIN , 4FB GA _4-81 JU - PERCENTAGE FREQUENCY OF OCCURRENCE (FROM HOURLY OBSERVATIONS

  11. Effect of weathering on accuracy of fuel-moisture-indicator sticks in the Pacific Northwest.

    Treesearch

    William G. Morris

    1959-01-01

    How much does weathering affect accuracy of fuel-moisture indicator stick readings in different sections of Oregon and Washington? If unpainted lumber is exposed to weather for a few years, its color changes and the grain shows as much erosion as if it were sandblasted. According to the Forest Products Laboratory, chemical as well as physical changes produce these...

  12. A Multi-Scale Analysis of Tropical Cyclogenesis Within the Critical Layer of Tropical Easterly Waves in the Atlantic and Western North Pacific Sectors

    DTIC Science & Technology

    2010-09-01

    Electra Doppler Radar (ELDORA), dropwindsonde capability, a Doppler wind lidar , and the ability to collect flight-level data] flew aircraft research...ELDORA Electra Doppler Radar ECMWF European Center for Medium-range Weather Prediction Forecasts ER Equatorial Rossby ERA-40 ECMWF Reanalysis Data...2006) use Dual Doppler radar and rain gauge data to evaluate the performance of the TRMM TMI V6 rainfall algorithm. They 23 conclude that: “In

  13. Weather Fundamentals: Wind. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) describes the roles of the sun, temperature, and air pressure in creating the incredible power…

  14. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  15. Public health vulnerability to wintertime weather: time-series regression and episode analyses of national mortality and morbidity databases to inform the Cold Weather Plan for England.

    PubMed

    Hajat, S; Chalabi, Z; Wilkinson, P; Erens, B; Jones, L; Mays, N

    2016-08-01

    To inform development of Public Health England's Cold Weather Plan (CWP) by characterizing pre-existing relationships between wintertime weather and mortality and morbidity outcomes, and identification of groups most at risk. Time-series regression analysis and episode analysis of daily mortality, emergency hospital admissions, and accident and emergency visits for each region of England. Seasonally-adjusted Poisson regression models estimating the percent change in daily health events per 1 °C fall in temperature or during individual episodes of extreme weather. Adverse cold effects were observed in all regions, with the North East, North West and London having the greatest risk of cold-related mortality. Nationally, there was a 3.44% (95% CI: 3.01, 3.87) increase in all-cause deaths and 0.78% (95% CI: 0.53, 1.04) increase in all-cause emergency admissions for every 1 °C drop in temperature below identified thresholds. The very elderly and people with COPD were most at risk from low temperatures. A&E visits for fractures were elevated during heavy snowfall periods, with adults (16-64 years) being the most sensitive age-group. Since even moderately cold days are associated with adverse health effects, by far the greatest health burdens of cold weather fell outside of the alert periods currently used in the CWP. Our findings indicate that levels 0 ('year round planning') and 1 ('winter preparedness and action') are crucial components of the CWP in comparison to the alerts. Those most vulnerable during winter may vary depending on the type of weather conditions being experienced. Recommendations are made for the CWP. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  16. Cluster analyses of association of weather, daily factors and emergent medical conditions.

    PubMed

    Malkić, Jasmin; Sarajlić, Nermin; Smrke, Barbara U R; Smrke, Dragica

    2013-03-01

    The goal of this study was to evaluate associations between the meteorological conditions and the number of emergency cases for five distinctive causes of dispatch groups reported to SOS dispatch centre in Uppsala, Sweden. Center's responsibility include alerting to 17 ambulances in whole Uppsala County, area of 8,209 km2 with around 320,000 inhabitants representing the target patient group. Source of the medical data for this study is the database of dispatch data for the year of 2009, while the metrological data have been provided from Uppsala University Department of Earth Sciences yearly weather report. Medical and meteorological data were summoned into the unified data space where each point represents a day with its weather parameters and dispatch cause group cardinality. DBSCAN data mining algorithm was implemented to five distinctive groups of dispatch causes after the data spaces have gone through the variance adjustment and the principal component analyses. As the result, several point clusters were discovered in each of the examined data spaces indicating the distinctive conditions regarding the weather and daily cardinality of the dispatch cause, as well as the associations between these two. Most interesting finding is that specific type of winter weather formed a cluster only around the days with the high count of breathing difficulties, while one of the summer weather clusters made similar association with the days with low number of cases. Findings were confirmed by confidence level estimation based on signal to noise ratio for the observed data points.

  17. Weatherization and Intergovernmental Program - Portal to New Jobs in Home Weatherization (Green Jobs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-04-01

    Expanding training opportunities in the weatherization of buildings will accelerate learning and provide a direct path for many Americans to find jobs in the clean energy field. The National Weatherization Training Portal (NWTP), which is now in the final stages of testing, features multi-media, interactive, self-paced training modules.

  18. The Effects of Virtual Weather on Presence

    NASA Astrophysics Data System (ADS)

    Wissmath, Bartholomäus; Weibel, David; Mast, Fred W.

    In modern societies people tend to spend more time in front of computer screens than outdoors. Along with an increasing degree of realism displayed in digital environments, simulated weather appears more and more realistic and more often implemented in digital environments. Research has found that the actual weather influences behavior and mood. In this paper we experimentally examine the effects of virtual weather on the sense of presence. Thereby we found individuals (N=30) to immerse deeper in digital environments displaying fair weather conditions than in environments displaying bad weather. We also investigate whether virtual weather can influence behavior. The possible implications of theses findings for presence theory as well as digital environment designers will be discussed.

  19. Geography and Weather: Mountain Meterology.

    ERIC Educational Resources Information Center

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  20. Dynamic Routing of Aircraft in the Presence of Adverse Weather Using a POMDP Framework

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Roychoudhury, Indranil; Spirkovska, Lilly; Sankararaman, Shankar; Kulkarni, Chetan; Arnon, Tomer

    2017-01-01

    Each year weather-related airline delays result in hundreds of millions of dollars in additional fuel burn, maintenance, and lost revenue, not to mention passenger inconvenience. The current approaches for aircraft route planning in the presence of adverse weather still mainly rely on deterministic methods. In contrast, this work aims to deal with the problem using a Partially Observable Markov Decision Processes (POMDPs) framework, which allows for reasoning over uncertainty (including uncertainty in weather evolution over time) and results in solutions that are more robust to disruptions. The POMDP-based decision support system is demonstrated on several scenarios involving convective weather cells and is benchmarked against a deterministic planning system with functionality similar to those currently in use or under development.

  1. Weather data dissemination to aircraft

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.; Parker, Craig B.

    1990-01-01

    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels.

  2. Weather data for simplified energy calculation methods. Volume II. Middle United States: TRY data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, A.R.; Moreno, S.; Deringer, J.

    1984-08-01

    The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 22 cities in the continental United States using Test Reference Year (TRY) source weather data. The weather data at each city has been summarized in a number of ways to provide differing levels ofmore » detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.« less

  3. Time Relevance of Convective Weather Forecast for Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Chan, William N.

    2006-01-01

    The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic

  4. Using Artificial Intelligence to Inform Pilots of Weather

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2006-01-01

    An automated system to assist a General Aviation (GA) pilot in improving situational awareness of weather in flight is now undergoing development. This development is prompted by the observation that most fatal GA accidents are attributable to loss of weather awareness. Loss of weather awareness, in turn, has been attributed to the difficulty of interpreting traditional preflight weather briefings and the difficulty of both obtaining and interpreting traditional in-flight weather briefings. The developmental automated system not only improves weather awareness but also substantially reduces the time a pilot must spend in acquiring and maintaining weather awareness.

  5. 46 CFR 170.170 - Weather criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Weather criteria. 170.170 Section 170.170 Shipping COAST... ALL INSPECTED VESSELS Intact Stability Criteria § 170.170 Weather criteria. (a) Each vessel must be... weather deck or abnormal sheer. (c) When doing the calculations required by paragraph (a) of this section...

  6. 46 CFR 170.170 - Weather criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Weather criteria. 170.170 Section 170.170 Shipping COAST... ALL INSPECTED VESSELS Intact Stability Criteria § 170.170 Weather criteria. (a) Each vessel must be... weather deck or abnormal sheer. (c) When doing the calculations required by paragraph (a) of this section...

  7. 46 CFR 170.170 - Weather criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Weather criteria. 170.170 Section 170.170 Shipping COAST... ALL INSPECTED VESSELS Intact Stability Criteria § 170.170 Weather criteria. (a) Each vessel must be... weather deck or abnormal sheer. (c) When doing the calculations required by paragraph (a) of this section...

  8. 46 CFR 170.170 - Weather criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Weather criteria. 170.170 Section 170.170 Shipping COAST... ALL INSPECTED VESSELS Intact Stability Criteria § 170.170 Weather criteria. (a) Each vessel must be... weather deck or abnormal sheer. (c) When doing the calculations required by paragraph (a) of this section...

  9. The relevance and legibility of radio/TV weather reports to the Austrian public

    NASA Astrophysics Data System (ADS)

    Keul, A. G.; Holzer, A. M.

    2013-03-01

    The communicative quality of media weather reports, especially warnings, can be evaluated by user research. It is an interdisciplinary field, still uncoordinated after 35 years. The authors suggest to shift from a cognitive learning model to news processing, qualitative discourse and usability models as the media audience is in an edutainment situation where it acts highly selective. A series of field surveys 2008-2011 tested the relevance and legibility of Austrian radio and television weather reports on fair weather and in warning situations. 247 laypeople heard/saw original, mostly up-to-date radio/TV weather reports and recalled personally relevant data. Also, a questionnaire on weather knowledge was answered by 237 Austrians. Several research hypotheses were tested. The main results were (a) a relatively high level of meteorological knowledge of the general population, with interest and participation of German-speaking migrants, (b) a pluralistic media usage with TV, radio and internet as the leading media, (c) higher interest and attention (also for local weather) after warnings, but a risk of more false recalls after long warnings, (d) more recall problems with radio messages and a wish that the weather elements should always appear in the same order to faciliate processing for the audience. In their narrow time windows, radio/TV weather reports should concentrate on main features (synoptic situation, tomorrow's temperature and precipitation, possible warnings), keep a verbal “speed limit” and restrict show elements to serve the active, selective, multioptional, multicultural audience.

  10. The influence of weather on Golden Eagle migration in northwestern Montana

    USGS Publications Warehouse

    Yates, R.E.; McClelland, B.R.; Mcclelland, P.T.; Key, C.H.; Bennetts, R.E.

    2001-01-01

    We analyzed the influence of 17 weather factors on migrating Golden Eagles (Aquila chrysaetos) near the Continental Divide in Glacier National Park, Montana, U.S.A. Local weather measurements were recorded at automated stations on the flanks of two peaks within the migration path. During a total of 506 hr of observation, the yearly number of Golden Eagles in autumn counts (1994-96) averaged 1973; spring counts (1995 and 1996) averaged 605 eagles. Mean passage rates (eagles/hr) were 16.5 in autumn and 8.2 in spring. Maximum rates were 137 in autumn and 67 in spring. Using generalized linear modeling, we tested for the effects of weather factors on the number of eagles counted. In the autumn model, the number of eagles increased with increasing air temperature, rising barometric pressure, decreasing relative humidity, and interactions among those factors. In the spring model, the number of eagles increased with increasing wind speed, barometric pressure, and the interaction between these factors. Our data suggest that a complex interaction among weather factors influenced the number of eagles passing on a given day. We hypothesize that in complex landscapes with high topographic relief, such as Glacier National Park, numerous weather factors produce different daily combinations to which migrating eagles respond opportunistically. ?? 2001 The Raptor Research Foundation, Inc.

  11. Thermal stress weathering and the spalling of Antarctic rocks

    NASA Astrophysics Data System (ADS)

    Lamp, J. L.; Marchant, D. R.; Mackay, S. L.; Head, J. W.

    2017-01-01

    Using in situ field measurements, laboratory analyses, and numerical modeling, we test the potential efficacy of thermal stress weathering in the flaking of millimeter-thick alteration rinds observed on cobbles and boulders of Ferrar Dolerite on Mullins Glacier, McMurdo Dry Valleys (MDV). In particular, we examine whether low-magnitude stresses, arising from temperature variations over time, result in thermal fatigue weathering, yielding slow crack propagation along existing cracks and ultimate flake detachment. Our field results show that during summer months clasts of Ferrar Dolerite experience large-temperature gradients across partially detached alteration rinds (>4.7°C mm-1) and abrupt fluctuations in surface temperature (up to 12°C min-1); the latter are likely due to the combined effects of changing solar irradiation and cooling from episodic winds. The results of our thermal stress model, coupled with subcritical crack growth theory, suggest that thermal stresses induced at the base of thin alteration rinds 2 mm thick, common on rocks exposed for 105 years, may be sufficient to cause existing cracks to propagate under present-day meteorological forcing, eventually leading to rind detachment. The increase in porosity observed within alteration rinds relative to unaltered rock interiors, as well as predicted decreases in rind strength based on allied weathering studies, likely facilitates thermal stress crack propagation through a reduction of fracture toughness. We conclude that thermal stress weathering may be an active, though undervalued, weathering process in hyperarid, terrestrial polar deserts such as the stable upland region of the MDV.

  12. Effects of Weather on Tourism and its Moderation

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Kim, S.; Lee, D. K.

    2016-12-01

    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  13. Weather forecasting support for AASE-2

    NASA Technical Reports Server (NTRS)

    Forbes, Gregory S.

    1992-01-01

    The AFEAS Contract and NASA Grant were awarded to Penn State in order to obtain real-time weather forecasting support for the NASA AASE-II Project, which was conducted between October 1991 and March 1992. Because of the special weather sensitivities of the NASA ER-2 aircraft, AASE-II planners felt that public weather forecasts issued by the National Weather Service would not be adequate for mission planning purposes. A likely consequence of resorting to that medium would have been that scientists would have had to be at work by 4 AM day after day in the hope that the aircraft could fly, only to be frustrated by a great number of 'scrubbed' missions. Thus, the Pennsylvania State University was contracted to provide real-time weather support to the AASE-II mission.

  14. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  15. Satellite Delivery of Aviation Weather Data

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Haendel, Richard

    2001-01-01

    With aviation traffic continuing to increase worldwide, reducing the aviation accident rate and aviation schedule delays is of critical importance. In the United States, the National Aeronautics and Space Administration (NASA) has established the Aviation Safety Program and the Aviation System Capacity Program to develop and test new technologies to increase aviation safety and system capacity. Weather is a significant contributor to aviation accidents and schedule delays. The timely dissemination of weather information to decision makers in the aviation system, particularly to pilots, is essential in reducing system delays and weather related aviation accidents. The NASA Glenn Research Center is investigating improved methods of weather information dissemination through satellite broadcasting directly to aircraft. This paper describes an on-going cooperative research program with NASA, Rockwell Collins, WorldSpace, Jeppesen and American Airlines to evaluate the use of satellite digital audio radio service (SDARS) for low cost broadcast of aviation weather information, called Satellite Weather Information Service (SWIS). The description and results of the completed SWIS Phase 1 are presented, and the description of the on-going SWIS Phase 2 is given.

  16. Weather based risks and insurances for agricultural production

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2015-04-01

    Extreme weather events such as frost, drought, heat waves and rain storms can have devastating effects on cropping systems. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The principle of return periods or frequencies of natural hazards is adopted in many countries as the basis of eligibility for the compensation of associated losses. For adequate risk management and eligibility, hazard maps for events with a 20-year return period are often used. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The impact of extreme weather events particularly during the sensitive periods of the farming calendar therefore requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event in the farming calendar. Physically based crop models such as REGCROP (Gobin, 2010) assist in understanding the links between different factors causing crop damage. Subsequent examination of the frequency, magnitude and impacts of frost, drought, heat stress and soil moisture stress in relation to the cropping season and crop sensitive stages allows for risk profiles to be confronted with yields, yield losses and insurance claims. The methodology is demonstrated for arable food crops, bio-energy crops and fruit. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. Though average yields have risen continuously due to technological advances, there is no evidence that relative tolerance to adverse weather events has improved. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  17. Hazardous Convective Weather in the Central United States: Present and Future

    NASA Astrophysics Data System (ADS)

    Liu, C.; Ikeda, K.; Rasmussen, R.

    2017-12-01

    Two sets of 13-year continental-scale convection-permitting simulations were performed using the 4-km-resolution WRF model. They consist of a retrospective simulation, which downscales the ERA-Interim reanalysis during the period October 2000 - September 2013, and a future climate sensitivity simulation for the same period based on the perturbed reanalysis-derived boundary conditions with the CMIP5 ensemble-mean high-end emission scenario climate change. The evaluation of the retrospective simulation indicates that the model is able to realistically reproduce the main characteristics of deep precipitating convection observed in the current climate such as the spectra of convective population and propagating mesoscale convective systems (MCSs). It is also shown that severe convection and associated MCS will increase in frequency and intensity, implying a potential increase in high impact convective weather in a future warmer climate. In this study, the warm-season hazardous convective weather (i.e., tonadoes, hails and damaging gusty wind) in the central United states is examined using these 4-km downscaling simulations. First, a model-based proxy for hazardous convective weather is derived on the basis of a set of characteristic meteorological variables such as the model composite radar reflectivity, updraft helicity, vertical wind shear, and low-level wind. Second, the developed proxy is applied to the retrospective simulation for estimate of the model hazardous weather events during the historical period. Third, the simulated hazardous weather statistics are evaluated against the NOAA severe weather reports. Lastly, the proxy is applied to the future climate simulation for the projected change of hazardous convective weather in response to global warming. Preliminary results will be reported at the 2017 AGU session "High Resolution Climate Modeling".

  18. Will climate change affect weather types associated with flooding in the Elbe river basin?

    NASA Astrophysics Data System (ADS)

    Nissen, Katrin M.; Pardowitz, Tobias; Ulbrich, Uwe; Nied, Manuela

    2013-04-01

    This study investigates the effects of anthropogenic climate change on weather types associated with flooding in the Elbe river basin. The study is based on an ensemble of 3 simulations with the ECHAM5 MPIOM coupled model forced with historical and SRES A1B greenhouse gas concentrations. Relevant weather types, occuring in association with recent flood events, are identified in the ERA40 reanalysis data set. The weather types are classified with the SANDRA cluster algorithm. Distributions of tropospheric humidity content, 500 hPa geopotential height and 500 hPa temperature over Europe are taken as input parameters. 8 (out of 40) weather types are found to be associated with flooding events in the Elbe river basin. The majority of these (6) typically occur during winter, while 2 are warm season patterns. Downscaling reveals characteristic precipitation anomalies associated with the individual patterns. The 8 flood relevant weather types are then identified in the ECHAM5 simulations. The effect of climate change on these patterns is investigated by comparing the last 30 years of the previous century to the last 30 years of the 21st century. According to the model the frequency of most patterns will not change. 5 patterns may experience a statistically significant increase in the mean precipitation over the catchment area and 4 patterns an increase in extreme precipitation. Persistence may slightly decrease for 2 patterns and remain unchanged for the others. Overall, this indicates a moderate increase in the risk for Elbe river flooding, related to changes in the weather patterns, in the coming decades.

  19. Public Affairs - NOAA's National Weather Service

    Science.gov Websites

    Publications Contact Us USA.gov is the U.S. government's official web portal to all federal, state and local government web resources and services. Top Story NOAA predicts active 2013 Atlantic hurricane season In its ... Weather Favorites Finding Past Weather Alphabetical listing of NOAA's most sought after weather Web sites

  20. A survey of customers of space weather information

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Rabanal, J. P.

    2013-09-01

    We present an analysis of the users of space weather information based on 2783 responses to an online survey among subscribers of NOAA's Space Weather Prediction Center e-mail services. The survey requested information focused on the three NOAA space weather scales: geomagnetic storms, solar radiation storms, and radio blackouts. Space weather information is most commonly obtained for reasons of human safety and continuity or reliability of operations. The information is primarily used for situational awareness, as aid to understand anomalies, to avoid impacts on current and near-future operations by implementing mitigating strategies, and to prepare for potential near-future impacts that might occur in conjunction with contingencies that include electric power outages or GPS perturbations. Interest in, anticipated impacts from, and responses to the three main categories of space weather are quite uniform across societal sectors. Approximately 40% of the respondents expect serious to very serious impacts from space weather events if no action were taken to mitigate or in the absence of adequate space weather information. The impacts of space weather are deemed to be substantially reduced because of the availability of, and their response to, space weather forecasts and alerts. Current and near-future space weather conditions are generally highly valued, considered useful, and generally, though not fully, adequate to avoid or mitigate societal impacts. We conclude that even among those receiving space weather information, there is considerable uncertainty about the possible impacts of space weather and thus about how to act on the space weather information that is provided.