Sample records for year undergraduate research

  1. Developing Early Undergraduate Research at a Two-Year College

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2013-01-01

    Two-year college (TYC) physics teachers are not often required to provide student research experiences as a part of their contracted duties. However, some TYC physics faculty members are interested in developing research opportunities for their freshman- and sophomore-level students, often called "early undergraduate research" (EUR).…

  2. Year-Long Undergraduate Research Projects

    ERIC Educational Resources Information Center

    Razzaghi, Mehdi

    2017-01-01

    Undergraduate research has become the centerpiece of many institutions of higher education's efforts to attract and recruit high school graduates. Since 1987, throughout my tenure at Bloomsburg University, I have involved over 20 students in my research. In my experience, there is clear evidence that students of mathematics substantially benefit…

  3. Two-Year Community: A 3+8 Model of Undergraduate Research for Community College STEM Majors

    ERIC Educational Resources Information Center

    Leggett-Robinson, Pamela M.; Villa, Brandi C.; Mooring, Suazette Reid

    2015-01-01

    This article describes the implementation of an innovative undergraduate research model for students attending a two-year institution. It gives students an opportunity to engage in undergraduate research at nearby four-year institutions, which provides a foundation that allows them to successfully make the transition to STEM programs at the…

  4. When Twitter Meets Advocacy: A Multicultural Undergraduate Research Project from a First-Year Seminar

    ERIC Educational Resources Information Center

    Maben, Sarah; Helvie-Mason, Lora

    2017-01-01

    Two professors share how they combined Web 2.0, multicultural themes, and undergraduate research in a first-year seminar. The professors explain the "perfect storm" of a project in which undergraduate students collected and analyzed tweets from advocates for various multicultural causes to produce their first collegiate research project.…

  5. Developing Effective Undergraduate Research Experience

    NASA Astrophysics Data System (ADS)

    Evans, Michael; Ilie, Carolina C.

    2011-03-01

    Undergraduate research is a valuable educational tool for students pursuing a degree in physics, but these experiences can become problematic and ineffective if not handled properly. Undergraduate research should be planned as an immersive learning experience in which the student has the opportunity to develop his/her skills in accordance with their interests. Effective undergraduate research experiences are marked by clear, measurable objectives and frequent student-professor collaboration. These objectives should reflect the long and short-term goals of the individual undergraduates, with a heightened focus on developing research skills for future use. 1. Seymour, E., Hunter, A.-B., Laursen, S. L. and DeAntoni, T. (2004), ``Establishing the benefits of research experiences for undergraduates in the sciences: First findings from a three-year study''. Science Education, 88: 493--534. 2. Behar-Horenstein, Linda S., Johnson, Melissa L. ``Enticing Students to Enter Into Undergraduate Research: The Instrumentality of an Undergraduate Course.'' Journal of College Science Teaching 39.3 (2010): 62-70.

  6. Undergraduate Research in Geoscience with Students from Two-year Colleges: SAGE 2YC Resources

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Hodder, J.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.

    2014-12-01

    Undergraduate research experiences are important for the development of expertise in geoscience disciplines. These experiences have been shown to help students learn content and skills, promote students' cognitive and affective development, and develop students' sense of self. Early exposure to research experiences has shown to be effective in the recruitment of students, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Just as departments at four-year institutions (4YCs) are increasingly integrating research into their introductory courses, two-year college (2YC) geoscience faculty have a great opportunity to ground their students in authentic research. The Undergraduate Research with Two-year College Students website developed by SAGE 2YC: Supporting and Advancing Geoscience Education at Two-year Colleges provides ideas and advice for 2YC and 4YC faculty who want to get more 2YC students involved in research. The continuum of possibilities for faculty to explore includes things that can be done at 2YCs (eg. doing research as part of a regular course, developing a course specifically around research on a particular topic, or independent study), done in collaboration with other local institutions (eg. using their facilities, conducting joint class research, or using research to support transfer programs), and by involving students in the kind of organized Undergraduate Research programs run by a number of institutions and organizations. The website includes profiles illustrating how 2YC geoscience faculty have tackled these various models of research and addressed potential challenges such as lack of time, space, and funding as part of supporting the wide diversity of students that attend 2YCs, most of whom have less experience than that of rising seniors who are the traditional REU participant. The website also

  7. What Knowledge of Responsible Conduct of Research Do Undergraduates Bring to Their Undergraduate Research Experiences?

    ERIC Educational Resources Information Center

    Mabrouk, Patricia Ann

    2016-01-01

    Over a three-year period, chemistry and engineering students participating in six Research Experience for Undergraduates (REU) programs were surveyed before and after participating in a research ethics training workshop. The goal was to learn what undergraduate students already knew about key concepts in research ethics at the start of their…

  8. The Benefits of Multi-Year Research Experiences: Differences in Novice and Experienced Students’ Reported Gains from Undergraduate Research

    PubMed Central

    Thiry, Heather; Weston, Timothy J.; Laursen, Sandra L.; Hunter, Anne-Barrie

    2012-01-01

    This mixed-methods study explores differences in novice and experienced undergraduate students’ perceptions of their cognitive, personal, and professional gains from engaging in scientific research. The study was conducted in four different undergraduate research (UR) programs at two research-extensive universities; three of these programs had a focus on the biosciences. Seventy-three entry-level and experienced student researchers participated in in-depth, semi-structured interviews and completed the quantitative Undergraduate Research Student Self-Assessment (URSSA) instrument. Interviews and surveys assessed students’ developmental outcomes from engaging in UR. Experienced students reported distinct personal, professional, and cognitive outcomes relative to their novice peers, including a more sophisticated understanding of the process of scientific research. Students also described the trajectories by which they developed not only the intellectual skills necessary to advance in science, but also the behaviors and temperament necessary to be a scientist. The findings suggest that students benefit from multi-year UR experiences. Implications for UR program design, advising practices, and funding structures are discussed. PMID:22949423

  9. Undergraduate Research at Two-Year Community Colleges

    ERIC Educational Resources Information Center

    Schuster, Matthew

    2018-01-01

    There is a growing movement in academia that focuses on increased efforts at undergraduate research. Historically, this movement has been driven by faculty in the science, technology, engineering, and mathematics (STEM) fields and has only recently become a focus for social sciences in general and political science in particular. For students to…

  10. The Year of the Solar System Undergraduate Research Conference: Bringing Student Researchers and Scientists Together in a Professional Conference Setting

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Buxner, S.; Joseph, E.; CoBabe-Ammann, E.

    2015-12-01

    The Year of the Solar System (YSS) Undergraduate Research Conference (URC) brought together undergraduate researchers from across the U.S. to interact with each other and with researchers in planetary science. Held in conjunction with the Lunar and Planetary Science Conference (2011-2014), the YSS URC provided undergraduate researchers the opportunity to present to their research to their peers, and provided practicing scientists the chance to connect with students. Scientists could interact with students in multiple ways. Some provided insight into a planetary science career as an invited panelist; panel topics being 1) Choosing the Graduate School That's Right for You, 2) Women in Planetary Science, and 3) Alternative Careers in Science. Others provided feedback to students on their research during the URC poster session, and still others served as Meeting Mentors during the first day of LPSC. Over the four years of the program more than 50 scientists across NASA, academia and industry participated in the URC. Scientists reported in follow-up evaluations that they participated because they felt it was important to meet and help students, and that it was a way to serve the community. More evaluation data, and instruments, will be discussed.

  11. Journal of Undergraduate Research, Volume IX, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiner, K. S.; Graham, S.; Khan, M.

    Each year more than 600 undergraduate students are awarded paid internships at the Department of Energy’s (DOE) National Laboratories. Th ese interns are paired with research scientists who serve as mentors in authentic research projects. All participants write a research abstract and present at a poster session and/or complete a fulllength research paper. Abstracts and selected papers from our 2007–2008 interns that represent the breadth and depth of undergraduate research performed each year at our National Laboratories are published here in the Journal of Undergraduate Research. The fields in which these students worked included: Biology; Chemistry; Computer Science; Engineering; Environmentalmore » Science; General Science; Materials Science; Medical and Health Sciences; Nuclear Science; Physics; Science Policy; and Waste Management.« less

  12. Some Lessons Learned From 15 Years of Engaging Undergraduates in Space Physics Research

    NASA Astrophysics Data System (ADS)

    Lopez, R. E.; Bruntz, R. J.

    2016-12-01

    Over the past 15 years, the Lopez research group has provided about 10 undergraduates each year with opportunities to enagage in space physics research. In this presentation I will discuss and describe three critical factors to the success of the group. First of these is the use of near-peer mentoring structure that entends from undergradutes who have just joined the group up through postdocs and the lead professor. Second is the empahasis we place on science communication, which includes professional development of presentation skills and attending regional or national scientific meetings. Third is the careful selection of research projects that can be carried out successfully by undergraduates with the proper support and scaffolding. While other elements do contribute to the success of the group (such as the use of a group-wide wiki as a resource center and lab notebook), these three elements are at the core of what we do, and all senior group members (Ph.D. graduates and Postdocs) gain an understanding of these elements that they have been able to apply in their own settings once they move on.

  13. An IDeA for enhancing undergraduate research at rural primarily undergraduate institutions.

    PubMed

    Sens, Donald A; Cisek, Karen L; Conway, Pat; Doze, Van A

    2017-09-01

    This study documents the efforts of the North Dakota (ND) IDeA Networks of Biomedical Research Excellence (INBRE) program to assist in the development of undergraduate research programs at four state-supported primarily undergraduate institutions (PUIs) in ND. The study was initiated in the 2004-2005 academic year and continues to the present. The study shows that gaining initial institutional support for undergraduate research was assisted by providing salary support for faculty involved in undergraduate research. Once research was ongoing, each institution evolved their own unique plan for the use of support from the ND INBRE. Undergraduate student researchers have prepared, presented, and defended their research results on 188 unique posters since initiation of the program, with many posters being presented at more than one meeting. PUI faculty have authored 35 peer-reviewed manuscripts. Evaluation has shown that over 95% of the undergraduate students performing research matriculated with their bachelor's degree. Career choices of 77.2% of these graduates was determined, and 37% pursued a career in the health professions. Of the students not pursuing a post-baccalaureate degree, 81.2% chose careers directly linked to science. The study reinforces the concept that undergraduate research can be performed directly on the PUI campus and be of value in preparing the next generation of health professionals in research, service, and teaching. Copyright © 2017 the American Physiological Society.

  14. Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program: 10 Years of REU

    NASA Astrophysics Data System (ADS)

    Canterna, R.; Beck, K.; Hickman, M. A.

    1996-05-01

    The Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program (SURAP) will complete its tenth year as an NSF REU site. Using the theme, a tutorial in research, SURAP has provided research experience for over 90 students from all regions of the United States. We will present typical histories of past students to illustrate the impact an REU experience has on the scientific careers of these students. Demographic data will be presented to show the diverse backgrounds of our SURAP students. A short film describing our science ethics seminar will be available for later presentation.

  15. Mentored undergraduate research in the geosciences

    NASA Astrophysics Data System (ADS)

    Judge, Shelley; Pollock, Meagen; Wiles, Greg; Wilson, Mark

    2012-09-01

    There is little argument about the merits of undergraduate research, but it can seem like a complex, resource-intensive endeavor [e.g., Laursen et al., 2010; Lopatto, 2009; Hunter et al., 2006]. Although mentored undergraduate research can be challenging, the authors of this feature have found that research programs are strengthened when students and faculty collaborate to build new knowledge. Faculty members in the geology department at The College of Wooster have conducted mentored undergraduate research with their students for more than 60 years and have developed a highly effective program that enhances the teaching, scholarship, and research of our faculty and provides life-changing experiences for our students. Other colleges and universities have also implemented successful mentored undergraduate research programs in the geosciences. For instance, the 18 Keck Geology Consortium schools (http://keckgeology.org/), Princeton University, and other institutions have been recognized for their senior capstone experiences by U.S. News & World Report.

  16. Involving Undergraduates in Solar Physics Research

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Jenkins, Nancy

    1996-05-01

    Via a combination of local funding, Cottrell Research Corporation and a pending NSF proposal, I am actively involved in including undergraduates in solar physics research. Severl undergraduates, about 2-3 per academic year over the past several years have participated in a combination of activities. This project has been ongoing since November of 1992. Student involvement includes; 1)acquiring image and other data via the INTERNET, 2) reducing dat via inhouse programs and image processing, 3) traveling to Kitt Peak to obtain solar spectral index data.

  17. Undergraduate Research as a Primary Pathway to STEM Careers: Perspectives from the Council on Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Manley, P. L.; Ambos, E. L.

    2012-12-01

    Undergraduate research (UR) is one of the most authentic and effective ways to promote student learning, and is a high-impact educational practice that can lead to measurable gains in student retention and graduation rates, as well as career aspirations. In recent years, UR has expanded from intensive summer one-on-one faculty-student mentored experiences to application in a variety of educational settings, including large lower division courses. The Council on Undergraduate Research (CUR), founded in 1978, is a national organization of individual (8000) and institutional members (650) within a divisional structure that includes geosciences, as well as 10 other thematic areas. CUR's main mission is to support and promote high-quality undergraduate student-faculty collaborative research and scholarship that develops learning through research. CUR fulfills this mission through extensive publication offerings, faculty and student-directed professional development events, and outreach and advocacy activities that share successful models and strategies for establishing, institutionalizing, and sustaining undergraduate research programs. Over the last decade, CUR has worked with hundreds of academic institutions, including two-year colleges, to develop practices to build undergraduate research into campus cultures and operations. As documented in CUR publications such as Characteristics of Excellence in Undergraduate Research (COEUR), strategies institutions may adopt to enhance and sustain UR often include: (1) the establishment of a central UR campus office, (2) extensive student and faculty participation in campus-based, as well as regional UR celebration events, (3) development of a consistent practice of assessment of UR's impact on student success, and, (4) establishment of clear policies for recognizing and rewarding faculty engagement in UR, particularly with respect to mentorship and publication with student scholars. Three areas of current focus within the

  18. A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students

    PubMed Central

    Jordan, Tuajuanda C.; Burnett, Sandra H.; Carson, Susan; Caruso, Steven M.; Clase, Kari; DeJong, Randall J.; Dennehy, John J.; Denver, Dee R.; Dunbar, David; Elgin, Sarah C. R.; Findley, Ann M.; Gissendanner, Chris R.; Golebiewska, Urszula P.; Guild, Nancy; Hartzog, Grant A.; Grillo, Wendy H.; Hollowell, Gail P.; Hughes, Lee E.; Johnson, Allison; King, Rodney A.; Lewis, Lynn O.; Li, Wei; Rosenzweig, Frank; Rubin, Michael R.; Saha, Margaret S.; Sandoz, James; Shaffer, Christopher D.; Taylor, Barbara; Temple, Louise; Vazquez, Edwin; Ware, Vassie C.; Barker, Lucia P.; Bradley, Kevin W.; Jacobs-Sera, Deborah; Pope, Welkin H.; Russell, Daniel A.; Cresawn, Steven G.; Lopatto, David; Bailey, Cheryl P.; Hatfull, Graham F.

    2014-01-01

    ABSTRACT Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students’ interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. PMID:24496795

  19. Preparing for Multi-Disciplinary Undergraduate Research Conferences

    ERIC Educational Resources Information Center

    Hill, Jennifer; West, Harry; Kneale, Pauline

    2018-01-01

    National undergraduate research conferences have been commonplace in the US for many years e.g. the National Conference on Undergraduate Research (NCUR), and are becoming more frequent elsewhere. Alongside national conferences many universities hold their own events, which are often institution-wide, so as to appeal to a large proportion of their…

  20. Faculty Workload Issues Connected to Undergraduate Research

    ERIC Educational Resources Information Center

    Free, Rhona; Griffith, Suzanne; Spellman, Bill

    2015-01-01

    This chapter delineates the consortial activities of the Council of Public Liberal Arts Colleges (COPLAC) to explore models of undergraduate research and to address the impact of undergraduate research on faculty workload. The significant progress made on the member campus of the University of Wisconsin-Superior over the last 10 years is…

  1. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students.

    PubMed

    Jordan, Tuajuanda C; Burnett, Sandra H; Carson, Susan; Caruso, Steven M; Clase, Kari; DeJong, Randall J; Dennehy, John J; Denver, Dee R; Dunbar, David; Elgin, Sarah C R; Findley, Ann M; Gissendanner, Chris R; Golebiewska, Urszula P; Guild, Nancy; Hartzog, Grant A; Grillo, Wendy H; Hollowell, Gail P; Hughes, Lee E; Johnson, Allison; King, Rodney A; Lewis, Lynn O; Li, Wei; Rosenzweig, Frank; Rubin, Michael R; Saha, Margaret S; Sandoz, James; Shaffer, Christopher D; Taylor, Barbara; Temple, Louise; Vazquez, Edwin; Ware, Vassie C; Barker, Lucia P; Bradley, Kevin W; Jacobs-Sera, Deborah; Pope, Welkin H; Russell, Daniel A; Cresawn, Steven G; Lopatto, David; Bailey, Cheryl P; Hatfull, Graham F

    2014-02-04

    Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over 4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of phage genomics but also stimulates students' interest in science, positively influences academic achievement, and enhances persistence in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science education and research training. Engagement of undergraduate students in scientific research at early stages in their careers presents an opportunity to excite students about science, technology, engineering, and mathematics (STEM) disciplines and promote continued interests in these areas. Many excellent course-based undergraduate research experiences have been developed, but scaling these to a broader impact with larger numbers of students is challenging. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunting Advancing Genomics and Evolutionary Science (SEA-PHAGES) program takes advantage of the huge size and diversity of the bacteriophage population to engage students in discovery of new viruses, genome

  2. Engaging Undergraduate Students in Space Weather Research at a 2- Year College

    NASA Astrophysics Data System (ADS)

    Damas, M. C.

    2017-07-01

    The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, has been very successful at engaging undergraduate students in space weather research for the past ten years. Recently, it received two awards to support student research and education in solar and atmospheric physics under the umbrella discipline of space weather. Through these awards, students receive stipends during the academic year and summer to engage in scientific research. Students also have the opportunity to complete a summer internship at NASA and at other partner institutions. Funding also supports the development of course materials and tools in space weather. Educational materials development and the challenges of engaging students in research as early as their first year will be discussed. Once funding is over, how is the program sustained? Sustaining such a program, as well as how to implement it at other universities will also be discussed.

  3. Student Experience of Final-Year Undergraduate Research Projects: An Exploration of "Research Preparedness"

    ERIC Educational Resources Information Center

    Shaw, Kylie; Holbrook, Allyson; Bourke, Sid

    2013-01-01

    During this past decade the level of interest in building research capacity has intensified in Australia and internationally, with a particular emphasis on the development of postgraduate research students, but also extending to undergraduate research experience. This study investigated the student experience across a diverse range of fourth-year…

  4. Increasing Research Productivity in Undergraduate Research Experiences: Exploring Predictors of Collaborative Faculty–Student Publications

    PubMed Central

    Morales, Danielle X.; Grineski, Sara E.; Collins, Timothy W.

    2017-01-01

    Little attention has been paid to understanding faculty–student productivity via undergraduate research from the faculty member’s perspective. This study examines predictors of faculty–student publications resulting from mentored undergraduate research, including measures of faculty–student collaboration, faculty commitment to undergraduate students, and faculty characteristics. Generalized estimating equations were used to analyze data from 468 faculty members across 13 research-intensive institutions, collected by a cross-sectional survey in 2013/2014. Results show that biomedical faculty mentors were more productive in publishing collaboratively with undergraduate students when they worked with students for more than 1 year on average, enjoyed teaching students about research, had mentored Black students, had received more funding from the National Institutes of Health, had a higher H-index scores, and had more years of experience working in higher education. This study suggests that college administrators and research program directors should strive to create incentives for faculty members to collaborate with undergraduate students and promote faculty awareness that undergraduates can contribute to their research. PMID:28747352

  5. Researching Undergraduate Social Science Research

    ERIC Educational Resources Information Center

    Rand, Jane

    2016-01-01

    The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…

  6. Ten Time-Saving Tips for Undergraduate Research Mentors

    ERIC Educational Resources Information Center

    Coker, Jeffrey Scott; Davies, Eric

    2006-01-01

    Undergraduate research experiences can be extremely valuable for students, but can also be very time-consuming for mentors. A series of surveys were administered to plant biologists during the last 4 years to understand the perspectives of mentors on training undergraduate and high school student researchers. The survey responses provided a wealth…

  7. Learning, Teaching and Scholarship: Fundamental Tensions of Undergraduate Research

    ERIC Educational Resources Information Center

    Laursen, Sandra; Seymour, Elaine; Hunter, Anne-Barrie

    2012-01-01

    Each year, thousands of undergraduates in the science, technology, engineering, and mathematics (STEM) fields conduct research in US university and college laboratories. Such undergraduate research (UR) experiences are common practice in US higher education, with nearly a century of history at research universities and liberal arts colleges.…

  8. Final-Year Education Projects for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Page, Elizabeth

    2011-01-01

    The Undergraduate Ambassadors Scheme provides an opportunity for students in their final year of the chemistry degree course at the University of Reading to choose an educational project as an alternative to practical research. The undergraduates work in schools where they can be regarded as role models and offer one way of inspiring pupils to…

  9. Self-Cleaning Surfaces: A Third-Year Undergraduate Research Project

    ERIC Educational Resources Information Center

    Haines, Ronald S.; Wu, Alex H. F.; Zhang, Hua; Coffey, Jacob; Huddle, Thomas; Lafountaine, Justin S.; Lim, Zhi-Jun; White, Eugene A.; Tuong, Nam T.; Lamb, Robert N.

    2009-01-01

    Superhydrophobic (non water-wettable) surfaces can possess the ability to self-clean (the so-called "lotus effect"). The task of devising the apparatus and method for quantifying this self-cleaning effect was offered as a project in a third-year undergraduate laboratory course. Using commonly available equipment the students devised a…

  10. The impacts and "best practices" of undergraduate - graduate student mentoring relationships in undergraduate research experiences

    NASA Astrophysics Data System (ADS)

    Campanile, Megan Faurot

    With the growth of undergraduate research in the U.S., over the past two decades, faculty are more often assigning graduate students to mentor undergraduate students than providing the one-on-one mentoring themselves. A critical gap that exists in the literature is how undergraduate -- graduate student mentoring relationships in undergraduate research influences both students' academic and career paths. The research questions that framed this study were: (1) What, if any, changes occur in the academic and career paths of undergraduate and graduate students who participate in undergraduate research experiences? and (2) Are there variables that constitute "best practices" in the mentoring relationships in undergraduate research experiences and, if so, what are they? The study context was the National Science Foundation Research Experiences for Undergraduates program at Illinois Institute of Technology and the 113 undergraduate researchers and 31 graduate student mentors who participated from 2006 -- 2014. Surveys and interviews were administered to collect pre- and post-program data and follow-up data during the 2014 -- 2015 academic year. Descriptive statistics, content analysis method, and constant comparative method were used to analyze the data. Key findings on the undergraduate researchers were their actual earned graduate degree types (Ph.D. 20%, M.D. 20%, M.S. 48%, other 12%) and fields (STEM 57%, medical 35%, other 8%) and the careers they were pursuing or working in. All the graduate student mentors were pursuing or working in the STEM fields (academia 50%, industry 40%, government 10%). More than 75% of both the undergraduate and graduate students reported that their mentoring relationships had a somewhat to extremely influential impact on their academic and career paths. A set of "best practices" of mentoring were developed for both the undergraduate and graduate students and focused on the mentoring experiences related to learning and teaching about

  11. The undergraduate-postgraduate-faculty triad: unique functions and tensions associated with undergraduate research experiences at research universities.

    PubMed

    Dolan, Erin L; Johnson, Deborah

    2010-01-01

    We present an exploratory study of how undergraduates' involvement in research influences postgraduates (i.e., graduate and postdoctoral researchers) and faculty. We used a qualitative approach to examine the relationships among undergraduates, postgraduates, and the faculty head in a research group. In this group, undergraduates viewed postgraduates as more approachable than the faculty head both literally and figuratively. Mentorship by postgraduates presented unique challenges for undergraduates, including unrealistic expectations and varying abilities to mentor. The postgraduates and faculty head concurred that undergraduates contributed to the group's success and served as a source of frustration. Postgraduates appreciated the opportunity to observe multiple approaches to mentoring as they saw the faculty head and other postgraduates interact with undergraduates. The faculty head viewed undergraduate research as important for propagating the research community and for gaining insights into undergraduates and their postgraduate mentors. These results highlight how the involvement of undergraduates and postgraduates in research can limit and enhance the research experiences of members of the undergraduate-postgraduate-faculty triad. A number of tensions emerge that we hypothesize are intrinsic to undergraduate research experiences at research universities. Future studies can focus on determining the generalizability of these findings to other groups and disciplines.

  12. Conducting Mathematical Research with Undergraduates

    ERIC Educational Resources Information Center

    Roberts, Gareth E.

    2013-01-01

    The notion that undergraduates are capable of making profound and original contributions to mathematical research is rapidly gaining acceptance. Undergraduates bring their enthusiasm, creativity, curiosity, and perseverance to bona fide research problems. This article discusses some of the key issues concerning undergraduate mathematical research:…

  13. Undergraduate research as curriculum.

    PubMed

    Dolan, Erin L

    2017-07-08

    To date, national interests, policies, and calls for transformation of undergraduate education have been the main drivers of research integration into the undergraduate curriculum, briefly described here. The New Horizons in Biochemistry and Molecular Biology Education conference at the Weizmann Institute of Science (Israel) this fall presents an exciting opportunity to discuss integration of undergraduate research into the curriculum and other cutting-edge topics in biochemistry and molecular biology education from a cross-national perspective. I look forward to exploring prospects for international collaboration on research and development of course-based undergraduate research experiences and on STEM education in general. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):293-298, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. Undergraduate Research as a Process for STEM Teaching and Learning Systemic Change: Lessons Learned from the Council on Undergraduate Research NSF CCLI and TUES Projects

    NASA Astrophysics Data System (ADS)

    Ambos, E. L.; Havholm, K. G.; Malachowski, M.; Osborn, J.; Karukstis, K.

    2013-12-01

    For more than seven years, the Council on Undergraduate Research (CUR), the primary organization supporting programs, services, and advocacy for undergraduate research, has been working with support from the NSF's Division of Undergraduate Education (DUE) to enhance, sustain, and institutionalize undergraduate research in diverse STEM disciplines and higher education settings. The Council on Undergraduate Research comprises more than 9000 individual and 670 institutional members within a divisional structure that includes geosciences, as well as 11 other thematic areas. Through its most recent grant: 'Transformational Learning through Undergraduate Research: Comprehensive Support for Faculty, Institutions, State Systems and Consortia' (NSF DUE CCLI III Award #09-20275), CUR has been collaborating with six higher education systems, each selected after a rigorous national application process in 2010 and 2011. These six systems, which collectively represent 79 individual institutions, are the Council of Public Liberal Arts Colleges (COPLAC), University of Wisconsin System (UWS), California State University System (CSU), City University of New York (CUNY), Great Lakes Colleges Association (GLCA), and Pennsylvania State System of Higher Education (PASSHE). The more than 350 participants of faculty and senior-level administrators from the six systems are engaged in shared multi-faceted and multi-year professional development experiences. Teams from each system attended customized institutes facilitated by CUR experts in 2011-2012, during which the teams developed specific action plans focused on institutionalizing undergraduate research on their campus and within their system. The systems were reconvened as a group a year after the first institute, to chart progress toward achieving their goals. Based on interviews and surveys with participants, campus teams are making substantial progress toward implementation of robust undergraduate research programs, and are making

  15. Lasting Lessons: Following up with Recipients of the Forum's Undergraduate Research Award

    ERIC Educational Resources Information Center

    Forum on Education Abroad, 2012

    2012-01-01

    The annual Forum on Education Abroad Undergraduate Research Award showcases rigorous and significant undergraduate research that occurs as part of education abroad programs. Every year, the award recipients present their research at a plenary luncheon at the Forum's Annual Conference. The Forum granted the first Undergraduate Research Awards in…

  16. From Inquiry-Based Learning to Student Research in an Undergraduate Mathematics Program

    ERIC Educational Resources Information Center

    Das, Kumer

    2013-01-01

    As an extension to various sponsored summer undergraduate research programs, academic year research for undergraduate students is becoming popular. Mathematics faculty around the country are getting involved with this type of research and administrators are encouraging this effort. Since 2007, we have been conducting academic year research at…

  17. Increasing Research Productivity in Undergraduate Research Experiences: Exploring Predictors of Collaborative Faculty-Student Publications.

    PubMed

    Morales, Danielle X; Grineski, Sara E; Collins, Timothy W

    2017-01-01

    Little attention has been paid to understanding faculty-student productivity via undergraduate research from the faculty member's perspective. This study examines predictors of faculty-student publications resulting from mentored undergraduate research, including measures of faculty-student collaboration, faculty commitment to undergraduate students, and faculty characteristics. Generalized estimating equations were used to analyze data from 468 faculty members across 13 research-intensive institutions, collected by a cross-sectional survey in 2013/2014. Results show that biomedical faculty mentors were more productive in publishing collaboratively with undergraduate students when they worked with students for more than 1 year on average, enjoyed teaching students about research, had mentored Black students, had received more funding from the National Institutes of Health, had a higher H-index scores, and had more years of experience working in higher education. This study suggests that college administrators and research program directors should strive to create incentives for faculty members to collaborate with undergraduate students and promote faculty awareness that undergraduates can contribute to their research. © 2017 D. X. Morales et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Enhancing Undergraduate Education through Mentored Research and Practical Writing Experiences

    NASA Astrophysics Data System (ADS)

    Stephens, Denise C.; Hintz, Eric G.; Joner, Michael D.; Moody, J. Ward

    2015-01-01

    Twenty years ago I attended my very first AAS meeting as a 21-year old undergraduate physics major. At that meeting I presented the light curve of a variable star I had studied as part of a mentored research program at BYU. That opportunity to do mentored research, and to attend a professional meeting of astronomers, helped to set the foundation for my success today as an associate professor of physics and astronomy. Twenty years ago I was the student, now I am the mentor! I have eight undergraduate students whom I currently supervise in active research, four of which are presenting their senior projects at the 225th meeting of the AAS.My experience has shown me that the full impact of mentored research cannot be measured by yearly numbers or statistics. When we mentor a student, we influence their career path and choices for years to come. Where feasible, every undergraduate should have the opportunity to do research if they so choose. It is a sacrifice of our time and our effort that cannot be easily measured through numbers or results, and is only visible many years down the road as these students become the future leaders in astronomy and policy. In this poster, I will discuss the benefits of mentored research, the growth we have seen at BYU over the past twenty years with the introduction of a mentored research program, and ideas for implementing mentored research and writing into course curricula to enhance the undergraduate educational experience.

  19. Integrating Research-Informed Teaching within an Undergraduate Level 4 (Year 1) Diagnostic Radiography Curriculum: A Pilot Study

    ERIC Educational Resources Information Center

    Higgins, Robert; Hogg, Peter; Robinson, Leslie

    2013-01-01

    This article discusses the piloting and evaluation of the Research-informed Teaching experience (RiTe) project. The aim of RiTe was to link teaching and learning with research within an undergraduate diagnostic radiography curriculum. A preliminary pilot study of RiTe was undertaken with a group of level 4 (year 1) volunteer BSc (Hons) diagnostic…

  20. The Undergraduate ALFALFA Team: A Model for Involving Undergraduates in Major Legacy Astronomy Research

    NASA Astrophysics Data System (ADS)

    Troischt, Parker; Koopmann, Rebecca A.; Haynes, Martha P.; Higdon, Sarah; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David; Durbala, Adriana; Finn, Rose; Hoffman, G. Lyle; Kornreich, David A.; Lebron, Mayra E.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Rosenberg, Jessica L.; Venkatesan, Aparna; Wilcots, Eric M.; Alfalfa Team

    2015-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 19 institutions founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The collaborative nature of the UAT allows faculty and students from a wide ​range of public and private colleges and especially those with small astronomy programs to develop scholarly collaborations. Components of the program include an annual undergraduate workshop at Arecibo Observatory, observing runs at Arecibo, computer infrastructure, summer and academic year research projects, and dissemination at national meetings (e.g., Alfvin et al., Martens et al., Sanders et al., this meeting). Through this model, faculty and students are learning how science is accomplished in a large collaboration while contributing to the scientific goals of a major legacy survey. In the 7 years of the program, 23 faculty and more than 220 undergraduate students have participated at a significant level. 40% of them have been women and members of underrepresented groups. Faculty, many of whom were new to the collaboration and had expertise in other fields, contribute their diverse sets of skills to ALFALFA ​related projects via observing, data reduction, collaborative research, and research with students. 142 undergraduate students have attended the annual workshops at Arecibo Observatory, interacting with faculty, graduate students, their peers, and Arecibo staff in lectures, group activities, tours, and observing runs. Team faculty have supervised 131 summer research projects and 94 academic year (e.g., senior thesis) projects. 62 students have traveled to Arecibo Observatory for observing runs and 46 have presented their results at national meetings. 93% of alumni are attending graduate school and/or pursuing a career in STEM. Half of those pursuing graduate degrees in Physics or Astronomy are women. This work has been

  1. Research and Teaching: Development of Course-Based Undergraduate Research Experiences Using a Design-Based Approach

    ERIC Educational Resources Information Center

    Mordacq, John C.; Drane, Denise L.; Swarat, Su L.; Lo, Stanley M.

    2017-01-01

    In recent years, commissions and reports have called for laboratory courses that engage undergraduates in authentic research experiences. We present an iterative approach for developing course-based undergraduate research experiences (CUREs) that help students learn scientific inquiry skills and foster expert-like perceptions about biology. This…

  2. CRP: Collaborative Research Project (A Mathematical Research Experience for Undergraduates)

    ERIC Educational Resources Information Center

    Parsley, Jason; Rusinko, Joseph

    2017-01-01

    The "Collaborative Research Project" ("CRP")--a mathematics research experience for undergraduates--offers a large-scale collaborative experience in research for undergraduate students. CRP seeks to widen the audience of students who participate in undergraduate research in mathematics. In 2015, the inaugural CRP had 100…

  3. (De)Constructing the Undergraduate Research Experience in an Environmental Geochemistry Lab (Invited)

    NASA Astrophysics Data System (ADS)

    Kim, C. S.

    2013-12-01

    Maintaining a productive research lab at the undergraduate level requires a savvy combination of internal organization, high (but realistic) expectations, and adaptation of one's research interests into semester- and summer-length projects. Several key strategies can help achieve the goal of building a lab culture that both enriches students' academic experiences and advances one's own scholarly research and visibility. Foremost among these is the need to maintain momentum and preserve institutional knowledge in an environment where undergraduate students' lifetime in an individual lab may only last a year or two. Examples from the Environmental Geochemistry Lab at Chapman University (www.chapman.edu/envgeo) developed over several years and with 40+ undergraduate students will be presented which can be transferable to other faculty research labs in the earth sciences. Approaches to writing successful external research grant proposals at a primarily undergraduate institution (PUI) and strategies for both personal and institutional time management/savings will also be discussed, with a focus on new models at Chapman offered to further incentivize faculty involvement in undergraduate research.

  4. 2012 Summer Research Experiences for Undergraduates at Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Owen, L.

    2013-01-01

    Pisgah Astronomical Research Institute (PARI) offers research experiences for undergraduates (REU). PARI receives support for the internships from the NC Space Grant Consortium, NSF awards, private donations, and industry partner funding. The PARI REU program began in 2001 with 4 students and has averaged 6 students per year over the past 11 years. This year PARI hosted 8 funded REU students. Mentors for the interns include PARI’s Science, Education, and Information Technology staff and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the annually published PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors and the logistics for hosting the PARI undergraduate internship program.

  5. Undergraduate Research or Research-Based Courses: Which Is Most Beneficial for Science Students?

    NASA Astrophysics Data System (ADS)

    Olivares-Donoso, Ruby; González, Carlos

    2017-06-01

    Over the last 25 years, both research literature and practice-oriented reports have claimed the need for improving the quality of undergraduate science education through linking research and teaching. Two manners of doing this are reported: undergraduate research and research-based courses. Although there are studies reporting benefits of participating in these experiences, few synthesize their findings. In this article, we present a literature review aimed at synthesizing and comparing results of the impact of participating in these research experiences to establish which approach is most beneficial for students to develop as scientists. Twenty studies on student participation in undergraduate research and research-based courses were reviewed. Results show that both types of experiences have positive effects on students. These results have implications for both practice and research. Regarding practice, we propose ideas for designing and implementing experiences that combine both types of experiences. Concerning research, we identify some methodological limitations that should be addressed in further studies.

  6. Providing Real Research Opoportunities to Undergraduates

    NASA Astrophysics Data System (ADS)

    Ragozzine, Darin

    2016-01-01

    The current approach to undergraduate education focuses on teaching classes which provide the foundational knowledge for more applied experiences such as scientific research. Like most programs, Florida Institute of Technology (Florida Tech or FIT) strongly encourages undergraduate research, but is dominated by content-focused courses (e.g., "Physical Mechanics"). Research-like experiences are generally offered through "lab" classes, but these are almost always reproductions of past experiments: contrived, formulaic, and lacking the "heart" of real (i.e., potentially publishable) scientific research. Real research opportunities 1) provide students with realistic insight into the actual scientific process; 2) excite students far more than end-of-chapter problems; 3) provide context for the importance of learning math, physics, and astrophysics concepts; and 4) allow unique research progress for well-chosen problems. I have provided real research opportunities as an "Exoplanet Lab" component of my Introduction to Space Science (SPS1020) class at Florida Tech, generally taken by first-year majors in our Physics, Astronomy & Astrophysics, Planetary Science, and Astrobiology degree programs. These labs are a hybrid between citizen science (e.g., PlanetHunters) and simultaneously mentoring ~60 undergraduates in similar small research projects. These projects focus on problems that can be understood in the context of the course, but which benefit from "crowdsourcing". Examples include: dividing up the known planetary systems and developing a classification scheme and organizing them into populations (Fall 2013); searching through folded light curves to discover new exoplanets missed by previous pipelines (Fall 2014); and fitting n-body models to all exoplanets with known Transit Timing Variations to estimate planet masses (Fall 2015). The students love the fact that they are doing real potentially publishable research: not many undergraduates can claim to have discovered

  7. Participatory Action Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Sample McMeeking, L. B.; Weinberg, A. E.

    2013-12-01

    Research experiences for undergraduates (REU) have been shown to be effective in improving undergraduate students' personal/professional development, ability to synthesize knowledge, improvement in research skills, professional advancement, and career choice. Adding to the literature on REU programs, a new conceptual model situating REU within a context of participatory action research (PAR) is presented and compared with data from a PAR-based coastal climate research experience that took place in Summer 2012. The purpose of the interdisciplinary Participatory Action Research Experiences for Undergraduates (PAREU) model is to act as an additional year to traditional, lab-based REU where undergraduate science students, social science experts, and community members collaborate to develop research with the goal of enacting change. The benefits to traditional REU's are well established and include increased content knowledge, better research skills, changes in attitudes, and greater career awareness gained by students. Additional positive outcomes are expected from undergraduate researchers (UR) who participate in PAREU, including the ability to better communicate with non-scientists. With highly politicized aspects of science, such as climate change, this becomes especially important for future scientists. Further, they will be able to articulate the relevance of science research to society, which is an important skill, especially given the funding climate where agencies require broader impacts statements. Making science relevant may also benefit URs who wish to apply their science research. Finally, URs will gain social science research skills by apprenticing in a research project that includes science and social science research components, which enables them to participate in future education and outreach. The model also positively impacts community members by elevating their voices within and outside the community, particularly in areas severely underserved

  8. Teaching and Research at Undergraduate Institutions

    NASA Astrophysics Data System (ADS)

    Garg, Shila

    2006-03-01

    My own career path has been non-traditional and I ended up at a primarily undergraduate institution by pure accident. However, teaching at a small college has been extremely rewarding to me, since I get to know and interact with my students, have an opportunity to work with them one-on-one and promote their intellectual growth and sense of social responsibility. One of the growing trends at undergraduate institutions in the past decade has been the crucial role of undergraduate research as part of the teaching process and the training of future scientists. There are several liberal arts institutions that expect research-active Faculty who can mentor undergraduate research activities. Often faculty members at these institutions consider their roles as teacher-scholars with no boundary between these two primary activities. A researcher who is in touch with the developments in his/her own field and contributes to new knowledge in the field is likely to be a more exciting teacher in the classroom and share the excitement of discovery with the students. At undergraduate institutions, there is generally very good support available for faculty development projects in both teaching and research. Often, there is a generous research leave program as well. For those who like advising and mentoring undergraduates and a teaching and learning centered paradigm, I will recommend a career at an undergraduate institution. In my presentation, I will talk about how one can prepare for such a career.

  9. The Undergraduate ALFALFA Team: A Model for Undergraduate Participation and Outreach in Large Research Collaborations

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Koopmann, R.; Higdon, S.; Balonek, T. J.; Haynes, M. P.; Giovanelli, R.; Adams, E. A. K.; Kent, B. R.; Stierwalt, S.

    2011-09-01

    The Arecibo Legacy Fast ALFA (ALFALFA) blind neutral hydrogen survey is an ongoing project that includes an innovative undergraduate outreach component promoting the participation of students and faculty at undergraduate-focused institutions in a large, multi-year research collaboration. The survey, which will ultimately detect ˜30,000 gas-rich galaxies, provides resources and authentic opportunities for undergraduates and faculty, including a high fraction of women and minorities, through the Undergraduate ALFALFA Team (UAT), an NSF-sponsored consortium of 18 participating institutions. The UAT experience features annual workshops at the Arecibo Observatory with hands-on experience for undergrad participants and their faculty mentors. Graduate students on the Cornell ALFALFA Team help plan and facilitate UAT activities and benefit by developing their own skills as mentors, project supervisors, and science communicators. The UAT is developing online lesson plans and activity guides that make use of the ALFALFA online data archive and of innovative learning techniques supported by the findings of astronomy education research.

  10. Undergraduate Research Mentoring: Obstacles and Opportunities

    ERIC Educational Resources Information Center

    Johnson, W. Brad; Behling, Laura L.; Miller, Paul; Vandermaas-Peeler, Maureen

    2015-01-01

    Researchers and policy-makers in higher education increasingly espouse the view that undergraduate students should have the opportunity to learn about scholarship and research in the context of faculty-mentored research experiences. There is mounting consensus that mentored undergraduate research should be standard pedagogical practice in all…

  11. From Faculty for Undergraduate Neuroscience: Encouraging Innovation in Undergraduate Neuroscience Education by Supporting Student Research and Faculty Development

    ERIC Educational Resources Information Center

    Hardwick, Jean C.; Kerchner, Michael; Lom, Barbara; Ramirez, Julio J.; Wiertelak, Eric P.

    2006-01-01

    This article features the organization Faculty for Undergraduate Neuroscience. FUN was established by a group of neuroscientists dedicated to innovation and excellence in undergraduate neuroscience education and research. In the years since its inception, FUN has grown into a dynamic organization making a significant impact on the quality of…

  12. The Potential to use Publication of Undergraduate Research as a Teaching Tool

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Lindbo, David L.; Belcher, Christopher

    2015-04-01

    Several studies crossing numerous disciplinary boundaries have demonstrated that undergraduate students benefit from research experiences. These benefits include personal and intellectual development, more and closer contact with faculty, the use of active learning techniques, the creation of high expectations, the development of creative and problem-solving skills, and the development of greater independence and intrinsic motivation to learn. The discipline also gains in that studies show undergraduates who engage in research experiences are more likely to remain science majors and finish their degree program. Research experiences come as close as possible to allowing undergraduates to experience what it is like to be an academic or research member of their profession working to advance their discipline, therefore enhancing their professional socialization into their chosen field. If the goals achieved by undergraduate research include introducing these students to the advancement of their chosen field, it stands to reason the ultimate ending to this experience would be the publication of a peer-reviewed paper. While not all undergraduate projects will end with a product worthy of peer-reviewed publication, some definitely do, and the personal experience of the authors indicates that undergraduate students who achieve publication get great satisfaction and a sense of personal achievement from that publication. While a top-tier international journal probably isn't going to be the ultimate destination for many of these projects, there are several appropriate outlets. The SSSA journal Soil Horizons has published several undergraduate projects in recent years, and good undergraduate projects can often be published in state academy of science journals. Journals focused expressly on publishing undergraduate research include the Journal of Undergraduate Research and Scholarly Excellence, Reinvention, and the American Journal of Undergraduate Research. Case studies of

  13. The SUPER Program: A Research-based Undergraduate Experience

    NASA Astrophysics Data System (ADS)

    Ernakovich, J. G.; Boone, R. B.; Boot, C. M.; Denef, K.; Lavallee, J. M.; Moore, J. C.; Wallenstein, M. D.

    2014-12-01

    Producing undergraduates capable of broad, independent thinking is one of the grand challenges in science education. Experience-based learning, specifically hands-on research, is one mechanism for increasing students' ability to think critically. With this in mind, we created a two-semester long research program called SUPER (Skills for Undergraduate Participation in Ecological Research) aimed at teaching students to think like scientists and enhancing the student research experience through instruction and active-learning about the scientific method. Our aim was for students to gain knowledge, skills, and experience, and to conduct their own research. In the first semester, we hosted active-learning workshops on "Forming Hypotheses", "Experimental Design", "Collecting and Managing Data", "Analysis of Data", "Communicating to a Scientific Audience", "Reading Literature Effectively", and "Ethical Approaches". Each lesson was taught by different scientists from one of many ecological disciplines so that students were exposed to the variation in approach that scientists have. In the second semester, students paired with a scientific mentor and began doing research. To ensure the continued growth of the undergraduate researcher, we continued the active-learning workshops and the students attended meetings with their mentors. Thus, the students gained technical and cognitive skills in parallel, enabling them to understand both "the how" and "the why" of what they were doing in their research. The program culminated with a research poster session presented by the students. The interest in the program has grown beyond our expectations, and we have now run the program successfully for two years. Many of the students have gone on to campus research jobs, internships and graduate school, and have attributed part of their success in obtaining their positions to their experience with the SUPER program. Although common in other sciences, undergraduate research experiences are

  14. Undergraduate Research Summer Fellowships Undergo Change

    NASA Astrophysics Data System (ADS)

    Elgren, Timothy E.

    2000-09-01

    At the 22nd Annual Council Meeting of Council on Undergraduate Research (CUR), held this past June at the College of Wooster, the general council voted to make fundamental changes to the Undergraduate Research Summer Fellowship Program. The most important change is that awards will no longer be made to individual students. Instead, awards will be made to individual faculty member on the basis of applications written by faculty members comprised of a curriculum vitae, a description of the proposed research project, and the role of undergraduate collaborators in the proposed research activities. This change brings the program more in line with the overall CUR objective to support faculty in their efforts to provide research experiences for undergraduate students. Faculty members selected for awards will be asked to designate a student recipient at the time the funds are awarded, a key change to the fellowship program.

  15. AGU Activities to Promote Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Grove, K.; Johnson, R.; Giesler, J.

    2001-05-01

    A primary goal of the AGU Committee on Education and Human Resources (CEHR) is to significantly increase the participation of undergraduate students at AGU meetings. Involving students in scientific meetings at this level of their education helps them to better prepare for graduate school and for a career in the geophysical sciences. Ongoing CEHR activities to promote undergraduate participation include: (1) sponsoring technical sessions to showcase undergraduate research; (2) sponsoring sessions about careers and other topics of special interest to students; (3) sponsoring workshops to inform faculty about doing research with undergraduates; (4) sponsoring meeting events to partner graduate student mentors with first-time undergraduate attendees; (5) working with sections to create situations where undergraduates and section scientists can interact; (6) creating a guide for first-time meeting attendees; (7) sponsoring an Academic Recruiting Forum at meetings to connect undergraduates with geophysical graduate programs; (8) running a Career Center at meetings to connect students and employers; (9) raising funds for more travel grants to provide more student support to attend meetings; (10) developing a listserve to inform AGU members about opportunities to do research with undergraduates and to involve more members in mentoring activities; and (11) collecting data, such as career outcomes and demographic characteristics of recent Ph.D. recipients, that are of interest to students.

  16. How do students' perceptions of research and approaches to learning change in undergraduate research?

    PubMed Central

    Saiki, Takuya; Kawakami, Chihiro; Suzuki, Yasuyuki

    2015-01-01

    Objectives This study aimed to examine how students' perceptions of research and learning change through participation in undergraduate research and to identify the factors that affect the process of their engagement in re-search projects. Methods This qualitative study has drawn on phenomenography as research methodology to explore third-year medical students' experiences of undergraduate research from participants' perspectives (n=14). Data included semi-structured individual interviews conducted as pre and post reflections. Thematic analysis of pre-course interviews combined with researcher-participant observations in-formed design of end-of-course interview questions. Results Phenomenographic data analysis demonstrated qualitative changes in students' perceptions of research. At the beginning of the course, the majority of students ex-pressed a relatively narrow definition of research, focusing on the content and outcomes of scientific research. End-of-course reflections indicated increased attention to research processes including researcher autonomy, collaboration and knowledge construction processes. Furthermore, acknowledgement of the linkage between research and learning processes indicated an epistemological change leading them to take a deep approach to learning in undergraduate research. Themes included: an inquiring mind, synthesis of knowledge, active participation, collaborative and reflective learning. However, they also encountered some difficulties in undertaking group research projects. These were attributed to their prior learning experiences, differences in valuing towards interpersonal communication, understanding of the research process, and social relationships with others. Conclusions This study provided insights into the potential for undergraduate research in medical education. Medical students' awareness of the linkage between research and learning may be one of the most important outcomes in the undergraduate research process. PMID

  17. Undergraduate Research Program Between SCU and SOFIA

    NASA Astrophysics Data System (ADS)

    Kulas, Kristin Rose; Andersson, B.-G.

    2018-06-01

    We present results on an undergraduate research program run in collaboration between Santa Clara University (SCU), a predominately undergraduate liberal arts college and the SOFIA Science Center/USRA. We have started a synergistic program between SCU and SOFIA (located at NASA Ames) where the students are able to be fully immersed in astronomical research; from helping to write telescope observing proposal; to observing at a world-class telescope; to reducing and analyzing the data that they acquired and ultimately to presenting/publishing their findings. A recently awarded NSF collaborative grant will allow us to execute and expand this program over the next several years. In this poster we present some of our students research and their success after the program. In addition, we discuss how a small university can actively collaborate with a large government-funded program like SOFIA, funded by NASA.

  18. A Tiered Mentoring Model of Exposing and Engaging Students with Research Throughout the Undergraduate Curriculum

    NASA Astrophysics Data System (ADS)

    Guerard, J.; Hayes, S. M.

    2015-12-01

    Incorporating research into undergraduate curricula has been linked to improved critical thinking, intellectual independence, and student retention, resulting in a graduating population more ready for the workforce or graduate school. We have designed a three-tier model of undergraduate chemistry courses that enable first-year students with no previous research experience to gain the skills needed to develop, fund and execute independent research projects by the close of their undergraduate studies. First-year students are provided with context through a broadly focused introductory class that exposes them to current faculty research activities, and also gives them direct experience with the research process through peer mentored research teams as they participate in faculty-directed projects. Mid-career undergraduate students receive exposure and support in two formats: illustrative examples from current faculty research are incorporated into lessons in core classes, and courses specially designed to foster research independence. This is done by providing content and process mentoring as students develop independent projects, write proposals, and build relationships with faculty and graduate students in research groups. Advanced undergraduates further develop their research independence performing student-designed projects with faculty collaboration that frequently result in tangible research products. Further, graduate students gain experience in mentoring though formal training, as well as through actively mentoring mid-career undergraduates. This novel, integrated approach enables faculty to directly incorporate their research into all levels of the undergraduate curriculum while fostering undergraduates in developing and executing independent projects and empowering mentoring relationships.

  19. Creating Authentic Geoscience Research Experiences for Underrepresented Students in Two-Year Undergraduate Programs

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.

    2014-12-01

    With community college and two-year program students playing pivotal roles in advancing the nation's STEM agenda now and throughout the remainder of this young millennia, it is incumbent on educators to devise innovative and sustainable STEM initiatives to attract, retain, graduate, and elevate these students to four-year programs and beyond. Involving these students in comprehensive, holistic research experiences is one approach that has paid tremendous dividends. The New York City College of Technology (City Tech) was recently awarded a National Science Foundation Research Experiences for Undergraduates (REU) supplemental grant to integrate a community college/two-year program component into its existing REU program. The program created an inviting and supportive community of scholars for these students, nurtured them through strong, dynamic mentoring, provided them with the support structures needed for successful scholarship, and challenged them to attain the same research prominence as their Bachelor degree program companions. Along with their colleagues, the community college/two-year program students were given an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) at City College and its CREST Institute Center for Remote Sensing and Earth System Science (ReSESS) at City Tech. This presentation highlights the challenges, the rewards, and the lessons learned from this necessary and timely experiment. Preliminary results indicate that this paradigm for geoscience inclusion and high expectation has been remarkably successful. (The program is supported by NSF REU grant #1062934.)

  20. Research Ethics with Undergraduates in Summer Research Training Programs

    NASA Astrophysics Data System (ADS)

    Cheung, I.; Yalcin, K.

    2016-02-01

    Many undergraduate research training programs incorporate research ethics into their programs and some are required. Engaging students in conversations around challenging topics such as conflict of interest, cultural and gender biases, what is science and what is normative science can difficult in newly formed student cohorts. In addition, discussing topics with more distant impacts such as science and policy, intellectual property and authorship, can be difficult for students in their first research experience that have more immediate concerns about plagiarism, data manipulation, and the student/faculty relationship. Oregon State University's Research Experience for Undergraduates (REU) in Ocean Sciences: From Estuaries to the Deep Sea as one model for incorporating a research ethics component into summer undergraduate research training programs. Weaved into the 10-week REU program, undergraduate interns participate in a series of conversations and a faculty mentor panel focused on research ethics. Topics discussed are in a framework for sharing myths, knowledge and personal experiences on issues in research with ethical implications. The series follows guidelines and case studies outlined from the text, On Being A Scientist: Responsible Conduct In Research Committee on Science, Engineering, and Public Policy, National Academy of Sciences.

  1. Framing the Undergraduate Research Experience: Discovery Involvement in Retailing Undergraduate Education

    ERIC Educational Resources Information Center

    Sternquist, Brenda; Huddleston, Patricia; Fairhurst, Ann

    2018-01-01

    We provide an overview of ways to involve undergraduate business and retailing students in faculty research projects and discuss advantages of these student-faculty collaborations. We use Kolb's experiential learning cycle to provide a framework for creating an effective and engaging undergraduate research experience and use it to classify types…

  2. Intellectual Growth for Undergraduate Students: Evaluation Results from an Undergraduate Research Conference

    ERIC Educational Resources Information Center

    Potter, Sharyn J.; Abrams, Eleanor; Townson, Lisa; Wake, Cameron; Williams, Julie E.

    2010-01-01

    We describe the development and evaluation of the university-wide, weeklong undergraduate research conference at the University of New Hampshire. Despite increases nationally in the number of undergraduate research conferences (URC), there has been little research examining the social and educational impact of these events on student presenters.…

  3. Alive and aware: Undergraduate research as a mechanism for program vitalization

    NASA Astrophysics Data System (ADS)

    Rohs, C.

    2013-12-01

    . Finally, it is important to look at the long-range benefit of undergraduate research as an investment that pays off through alumni in the years to come. These alumni have the potential to become the pillars in support of the geoscience program. With their support, the program and associated department becomes strengthened and continues to develop in order to provide for the geoscience workforce needs of the future.

  4. Undergraduate Research as Engaged Student Learning

    ERIC Educational Resources Information Center

    Wolf, Lorraine W.

    2018-01-01

    This chapter discusses the impact of undergraduate research as a form of engaged student learning. It summarizes the gains reported in post-fellowship assessment essays acquired from students participating in the Auburn University Undergraduate Research Fellowship Program. The chapter also discusses the program's efforts to increase opportunities…

  5. Cultivating and Nurturing Undergraduate IS Research

    ERIC Educational Resources Information Center

    Tams, Stefan

    2014-01-01

    Assurance of student motivation and retention is a central challenge for Information Systems faculty. A promising means of stimulating interest in the Information Systems major and in subsequent graduate degree programs is undergraduate Information Systems research. Undergraduate Information Systems research allows students to engage more deeply…

  6. Undergraduate Research at SETI in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kress, Monika; Phillips, C.; DeVore, E.; Hubickyj, O.

    2012-05-01

    The SETI Institute and San Jose State University (SJSU) have begun a partnership (URSA: Undergraduate Research at the SETI Institute in Astrobiology) in which undergraduate science and engineering majors from SJSU participate in research at the SETI Institute during the academic year. We are currently in our second year of the three-year NASA-funded grant. The goal of this program is to expose future scientists, engineers and educators to the science of astrobiology and to NASA in general, and by so doing, to prepare them for the transition to their future career in the Silicon Valley or beyond. The URSA students are mentored by a SETI Institute scientist who conducts research at the SETI Institute headquarters or nearby at NASA Ames Research Center. The SETI Institute is a private, nonprofit organization dedicated to scientific research, education and public outreach. Its mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. SJSU is a large urban public university that serves the greater Silicon Valley area in California. Students at SJSU come from diverse ethnic, cultural and socioeconomic backgrounds. Many of them face financial pressures that force them to pursue part-time work. URSA students are paid to work for 10 hours/week during the academic year, and also participate in monthly group meetings where they practice their presentation skills and discuss future plans. We encourage underserved and underrepresented students, including women, minority, and those who are the first in their family to go to college, to apply to the URSA program and provide ongoing mentoring and support as needed. While preparing students for graduate school is not a primary goal, some of our students have gone on to MS or PhD programs or plan to do so. The URSA program is funded by NASA EPOESS.

  7. Undergraduate Research in the Human Sciences: Three Models

    ERIC Educational Resources Information Center

    Collins, Nina; Mitstifer, Dorothy I.; Nelson Goff, Briana S.; Hymon-Parker, Shirley

    2009-01-01

    Undergraduate research in the sciences has been shown by numerous studies to enhance the educational experience. The Undergraduate Research Community (URC) founded in 2001 supports several initiatives that promote research in human sciences/family and consumer sciences including an online peer-reviewed journal specifically for undergraduate work,…

  8. Web-Based Surveys Facilitate Undergraduate Research and Knowledge

    ERIC Educational Resources Information Center

    Grimes, Paul, Ed.; Steele, Scott R.

    2008-01-01

    The author presents Web-based surveying as a valuable tool for achieving quality undergraduate research in upper-level economics courses. Web-based surveys can be employed in efforts to integrate undergraduate research into the curriculum without overburdening students or faculty. The author discusses the value of undergraduate research, notes…

  9. Targeting Critical Thinking Skills in a First-Year Undergraduate Research Course.

    PubMed

    Carson, Susan

    2015-12-01

    TH!NK is a new initiative at NC State University focused on enhancing students' higher-order cognitive skills. As part of this initiative, I explicitly emphasized critical and creative thinking in an existing bacteriophage discovery first-year research course. In addition to the typical activities associated with undergraduate research such as review of primary literature and writing research papers, another strategy employed to enhance students' critical thinking skills was the use of discipline-specific, real-world scenarios. This paper outlines a general "formula" for writing scenarios, as well as several specific scenarios created for the described course. I also present how embedding aspects of the scenarios in reviews of the primary literature enriched the activity. I assessed student gains in critical thinking skills using a pre-/posttest model of the Critical Thinking Assessment Test (CAT), developed by Tennessee Technological University. I observed a positive gain trend in most of the individual skills assessed in the CAT, with a statistically significant large effect on critical thinking skills overall in students in the test group. I also show that a higher level of critical thinking skills was demonstrated in research papers written by students who participated in the scenarios compared with similar students who did not participate in the scenario activities. The scenario strategy described here can be modified for use in biology and other STEM disciplines, as well as in diverse disciplines in the social sciences and humanities.

  10. Undergraduate research in geochemistry at a larger university: developing a community of undergraduate and graduate researchers.

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.

    2003-12-01

    Faculty at state research universities can find the paired requirements of establishing research programs and developing a "pipeline" of graduate students to be the most challenging aspects of their jobs, especially with shrinking pools of graduate applicants. These problems may be more acute for laboratory-based geochemists, as few graduate candidates possess the requisite quantitative and chemical backgrounds. The need to "get my research going" at the University of South Florida led me to work primarily with undergraduates, as a) they were available and interested, b) they required no more laboratory training than M.S. students; and c) small-dollar funds were available to support them, both in-house and via NSF REU Supplements. Some senior colleagues argued that this approach would hinder my developing a graduate program as is necessary for tenure. This contention turned out to be untrue. My success in undergraduate research draws funding (in NSF REU Site and disciplinary research grants), has attracted outside MS and Ph.D. candidates, and has retained quality in-house students seeking MS degrees. Students working with me join a laboratory community in which undergraduate and graduate researchers are on equal footing in terms of access to instrumentation and other facilities. I work with all my students, irrespective of rank, as members of a cooperative research group. I encourage and expect that technical instruction I provide to any individual will be passed on to their colleagues, which helps develop a "lab culture" of best practices, and ingrains new knowledge and skills through the act of teaching them to others. Maintaining this research environment requires active recruitment of capable graduate AND undergraduate students, regular monitoring of laboratory practices, and ready availability for consultation and mentoring. One must be cognizant of the differing time commitment issues of undergraduates and graduates, and set research goals appropriately

  11. Embedding Information Literacy in a First-Year Business Undergraduate Course

    ERIC Educational Resources Information Center

    Price, Robin; Becker, Karen; Clark, Lynette; Collins, Sue

    2011-01-01

    This article reports on a project to embed information literacy skills development in a first-year undergraduate business course at an Australian university. In accordance with prior research suggesting that first-year students are over-confident about their skills, the project used an optional online quiz to allow students to pre-test their…

  12. Skills, Learning Styles and Success of First-Year Undergraduates

    ERIC Educational Resources Information Center

    Goldfinch, Judy; Hughes, Moira

    2007-01-01

    This study investigates the relationships between students' confidence in their generic skills on entry to university, their learning styles and their academic performance in first year. Research based on a large cohort of Scottish undergraduates found that students generally entered university feeling very confident that they already possessed…

  13. Field Research in the Teaching of Undergraduate Soil Science

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Senturklu, Songul; Landblom, Douglas

    2015-04-01

    Several studies have demonstrated that undergraduate students benefit from research experiences. Benefits of undergraduate research include 1) personal and intellectual development, 2) more and closer contact with faculty, 3) the use of active learning techniques, 4) creation of high expectations, 5) development of creative and problem-solving skills, 6) greater independence and intrinsic motivation to learn, and 7) exposure to practical skills. The scientific discipline also benefits, as studies have shown that undergraduates who engage in research experiences are more likely to remain science majors and finish their degree program (Lopatto, 2007). Research experiences come as close as possible to allowing undergraduates to experience what it is like to be an academic or research member of their profession working to advance their discipline. Soils form in the field, therefore, field experiences are very important in developing a complete and holistic understanding of soil science. Combining undergraduate research with field experiences can provide extremely beneficial outcomes to the undergraduate student, including increased understanding of and appreciation for detailed descriptions and data analysis as well as an enhanced ability to see how various parts of their undergraduate education come together to understand a complex problem. The experiences of the authors in working with undergraduate students on field-based research projects will be discussed, along with examples of some of the undergraduate research projects that have been undertaken. In addition, student impressions of their research experiences will be presented. Reference Lopatto, D. 2007. Undergraduate research experiences support science career decisions and active learning. CBE -- Life Sciences Education 6:297-306.

  14. Group-effort Applied Research: Expanding Opportunities for Undergraduate Research through Original, Class-Based Research Projects

    ERIC Educational Resources Information Center

    Moore, Sean D.; Teter, Ken

    2014-01-01

    Undergraduate research clearly enriches the educational development of participating students, but these experiences are limited by the inherent inefficiency of the standard one student-one mentor model for undergraduate research. Group-effort applied research (GEAR) was developed as a strategy to provide substantial numbers of undergraduates with…

  15. Strategies for involving undergraduates in mentored research (Invited)

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.

    2013-12-01

    Early engagement in research can transform the undergraduate experience and has a positive effect on minority student recruitment to graduate school. Multiple strategies used to involve undergraduates in research at a large R1 university are presented. During my first four years as an assistant professor, my lab has hosted 14 undergraduates, 9 of them women and 4 of them Hispanic. Institutional support has been critical for undergraduate student involvement. UW supports a research program for incoming underrepresented students. An advantage of this program is very early research participation, with the opportunity for long-term training. One disadvantage is that many first year students have not yet identified their interests. The Biology major also requires students to complete an independent project, which culminates in a research symposium. Competitive research fellowships and grants are available for students to conduct work under faculty mentorship. We have been successful at keeping students on even when their majors are very different from our research discipline, mainly by providing flexibility and a welcoming lab environment. This mentoring culture is strongly fostered by graduate student interest and involvement with all undergraduates as well as active mentor training. By offering multiple pathways for involvement, we can accommodate students' changing schedules and priorities as well as changing lab needs. Students can volunteer, receive course credit, conduct an independent project or honors thesis, contribute to an existing project, do lab work or write a literature review, work with one mentor or on multiple projects. We often provide employment over the summer and subsequent semesters for continuing students. Some will increase their commitment over time and work more closely with me. Others reduce down to a few hours a week as they gain experience elsewhere. Most students stay multiple semesters and multiple years because they 'enjoy being in the

  16. Undergraduates and Research: Connectivity in the University

    ERIC Educational Resources Information Center

    Hordern, Jim

    2013-01-01

    Contemporary universities are engaged in multiple activities, which are often disconnected and subject to powerful external influences. Undergraduate research projects have been posited as a means of enhancing undergraduate education and improving the integration of research and teaching. However, engagement with the core research activity of the…

  17. Social Work Faculty and Undergraduate Research Mentorships

    ERIC Educational Resources Information Center

    Horner, Pilar S.; Hughes, Anne K.; Vélez Ortiz, Daniel

    2016-01-01

    Social work faculty scholars lead the field as generators of knowledge that integrates investigative studies with practical social welfare outcomes. As such, the faculty potentially offers undergraduate researchers a different way of envisioning research that extends beyond traditional undergraduate research models. To date, however, no research…

  18. Mentoring Undergraduate Interdisciplinary Mathematics Research Students: Junior Faculty Experiences

    ERIC Educational Resources Information Center

    Gevertz, Jana L.; Kim, Peter S.; Wares, Joanna R.

    2017-01-01

    To be successful, junior faculty must properly manage their time in the face of expanding responsibilities. One such responsibility is supervising undergraduate research projects. Student research projects (either single or multi-student) can be undertaken as a full-time summer experience, or as a part-time academic year commitment. With many…

  19. Advice for Gaining Upper Administration Support for Research at an Undergraduate Institution

    NASA Astrophysics Data System (ADS)

    Isenhower, Donald

    2015-10-01

    This talk has its beginnings in questions asked after my invited talk for the 2015 APS Prize for Outstanding Research at an Undergraduate Institution at the April APS Meeting. A common question was how to gain support from one's university's administration to start an undergraduate research program. As my talk was addressing work done during 28 years at a university that had a long history of undergraduate research, I was not prepared to answer the question. It is easy to point out what one must do to obtain funding, even if actually obtaining the funding is difficult. Many other aspects of choosing appropriate research projects, collaborations, and such can also be relatively easy to do. Answers and advice in how to get upper level university administrators to notice and help you start a research program is not as easy or obvious, but is what this talk will address. It will be based on the premiss that one is at a university that is centered on providing high quality undergraduate education. Thus you have the job of showing your administration that having students working on a research program under you will help provide the highest level of education possible. Experience over many years of interactions at ACU will be drawn on for the advice provided. Research supported in part by Grants from the U.S. DOE Office of Science.

  20. The Polaris Project: Undergraduate Research Catalyzing Advances in Arctic Science

    NASA Astrophysics Data System (ADS)

    Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Bunn, A. G.; Frey, K. E.

    2017-12-01

    With guidance and sufficient resources, undergraduates can drive the exploration of new research directions, lead high impact scientific products, and effectively communicate the value of science to the public. As mentors, we must recognize the strong contribution undergraduates make to the advancement of scientific understanding and their unique ability and desire to be transdisciplinary and to translate ideas into action. Our job is to be sure students have the resources and tools to successfully explore questions that they care about, not to provide or lead them towards answers we already have. The central goal of the Polaris Project is to advance understanding of climate change in the Arctic through an integrated research, training, and outreach program that has at its heart a research expedition for undergraduates to a remote field station in the Arctic. Our integrative approach to training provides undergraduates with strong intellectual development and they bring fresh perspectives, creativity, and a unique willingness to take risks on new ideas that have an energizing effect on research and outreach. Since the projects inception in summer 2008, we have had >90 undergraduates participate in high-impact field expeditions and outreach activities. Over the years, we have also been fortunate enough to attract an ethnically, racially, and culturally diverse group of students, including students from Puerto Rico, Hispanic-, African- and Native-Americans, members of the LGBT community, and first-generation college students. Most of these students have since pursued graduate degrees in ecology, and many have received NSF fellowships and Fulbright scholarships. One of our major goals is to increase the diversity of the scientific community, and we have been successful in our short-term goal of recruiting and retaining a diverse group of students. The goal of this presentation is to provide a description of the mentoring model at the heart of the Polaris Project

  1. Undergraduate Medical Education Research in Malaysia: Time for a Change

    PubMed Central

    Salam, Abdus; Hamzah, Jemaima Che; Chin, Tan Geok; Siraj, Harlina Halizah; Idrus, Ruszymah; Mohamad, Nabishah; Raymond, Azman Ali

    2015-01-01

    Objective: Special Study Module (SSM) is a mandatory research module implemented in Universiti Kebangsaan Malaysia (UKM). The objective of this paper is to provide a brief overview on the student research activities and to find out the outcome measures in terms of publication. Methods: It was a retrospective study done on SSM research projects at UKM. The SSM research is conducted from beginning of year-4 until 1st seven weeks of year-5. In year-4, students are assigned to a faculty-supervisor in small groups and spend every Thursday afternoon to plan and carry the research. Whole first seven weeks of year-5, students are placed with their supervisor continuously to collect data, do analysis, write report and present in the scientific conference. Outcomes of 5-years SSM research-projects starting from 2008/2009 to 2012/2013 academic session were analyzed. Results: Total 257 projects were completed and presented in annual scientific meetings from which 57 (22.2%) articles were published in peer reviewed journals. Conclusion: Mandatory undergraduate student research project brings an opportunity to develop students’ capacity building from conception to final report writing and thereby narrowing the gap between education and practice. Medical schools should implement research module to bring changes in research and publication culture of undergraduate medical education. PMID:26150832

  2. Undergraduate Research in the Dartmouth Economics Department

    ERIC Educational Resources Information Center

    Feyrer, James

    2017-01-01

    One of the key components to the undergraduate research enterprise at Dartmouth is the recognition that learning to do research requires both directed instruction and learning by doing. The economics faculty have tailored a fruitful undergraduate research program based on this philosophy, and this article describes these efforts while also…

  3. Undergraduate Research at the Research Universities.

    ERIC Educational Resources Information Center

    Merkel, Carolyn Ash

    2003-01-01

    Explores four higher education institutions (Rutgers University, the University of Washington, the Massachusetts Institute of Technology, and the California Institute of Technology) and their histories of developing a culture of undergraduate research. (EV)

  4. Culturally Diverse Undergraduate Researchers' Academic Outcomes and Perceptions of Their Research Mentoring Relationships

    NASA Astrophysics Data System (ADS)

    Byars-Winston, Angela M.; Branchaw, Janet; Pfund, Christine; Leverett, Patrice; Newton, Joseph

    2015-10-01

    Few studies have empirically investigated the specific factors in mentoring relationships between undergraduate researchers (mentees) and their mentors in the biological and life sciences that account for mentees' positive academic and career outcomes. Using archival evaluation data from more than 400 mentees gathered over a multi-year period (2005-2011) from several undergraduate biology research programs at a large, Midwestern research university, we validated existing evaluation measures of the mentored research experience and the mentor-mentee relationship. We used a subset of data from mentees (77% underrepresented racial/ethnic minorities) to test a hypothesized social cognitive career theory model of associations between mentees' academic outcomes and perceptions of their research mentoring relationships. Results from path analysis indicate that perceived mentor effectiveness indirectly predicted post-baccalaureate outcomes via research self-efficacy beliefs. Findings are discussed with implications for developing new and refining existing tools to measure this impact, programmatic interventions to increase the success of culturally diverse research mentees and future directions for research.

  5. A Survey of Campus Coordinators of Undergraduate Research Programs

    ERIC Educational Resources Information Center

    Hensley, Merinda Kaye; Shreeves, Sarah L.; Davis-Kahl, Stephanie

    2015-01-01

    Interest in supporting undergraduate research programs continues to grow within academic librarianship. This article presents how undergraduate research program coordinators perceive and value library support of their programs. Undergraduate research coordinators from a variety of institutions were surveyed on which elements of libraries and…

  6. Embedding Responsible Conduct in Learning and Research into an Australian Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Fernandes, Lynette B.

    2017-01-01

    Responsible conduct in learning and research (RCLR) was progressively introduced into the pharmacology curriculum for undergraduate science students at The University of Western Australia. In the second year of this undergraduate curriculum, a lecture introduces students to issues such as the use of animals in teaching and responsible conduct of…

  7. Embedding responsible conduct in learning and research into an Australian undergraduate curriculum.

    PubMed

    Fernandes, Lynette B

    2017-01-02

    Responsible conduct in learning and research (RCLR) was progressively introduced into the pharmacology curriculum for undergraduate science students at The University of Western Australia. In the second year of this undergraduate curriculum, a lecture introduces students to issues such as the use of animals in teaching and responsible conduct of research. Third year student groups deliver presentations on topics including scientific integrity and the use of human subjects in research. Academic and research staff attending these presentations provide feedback and participate in discussions. Students enrolled in an optional capstone Honours year complete an online course on the responsible conduct of research and participate in an interactive movie. Once RCLR became established in the curriculum, a survey of Likert-scaled and open-ended questions examined student and staff perceptions. Data were expressed as Approval (% of responses represented by Strongly Agree and Agree). RCLR was found to be relevant to the study of pharmacology (69-100% Approval), important for one's future career (62-100% Approval), and stimulated further interest in this area (32-75% Approval). Free entry comments demonstrated the value of RCLR and constructive suggestions for improvement have now been incorporated. RCLR modules were found to be a valuable addition to the pharmacology undergraduate curriculum. This approach may be used to incorporate ethics into any science undergraduate curriculum, with the use of discipline-specific topics. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):53-59, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  8. Targeting Critical Thinking Skills in a First-Year Undergraduate Research Course †

    PubMed Central

    Carson, Susan

    2015-01-01

    TH!NK is a new initiative at NC State University focused on enhancing students’ higher-order cognitive skills. As part of this initiative, I explicitly emphasized critical and creative thinking in an existing bacteriophage discovery first-year research course. In addition to the typical activities associated with undergraduate research such as review of primary literature and writing research papers, another strategy employed to enhance students’ critical thinking skills was the use of discipline-specific, real-world scenarios. This paper outlines a general “formula” for writing scenarios, as well as several specific scenarios created for the described course. I also present how embedding aspects of the scenarios in reviews of the primary literature enriched the activity. I assessed student gains in critical thinking skills using a pre-/posttest model of the Critical Thinking Assessment Test (CAT), developed by Tennessee Technological University. I observed a positive gain trend in most of the individual skills assessed in the CAT, with a statistically significant large effect on critical thinking skills overall in students in the test group. I also show that a higher level of critical thinking skills was demonstrated in research papers written by students who participated in the scenarios compared with similar students who did not participate in the scenario activities. The scenario strategy described here can be modified for use in biology and other STEM disciplines, as well as in diverse disciplines in the social sciences and humanities. PMID:26753022

  9. Ethics and Research with Undergraduates

    ERIC Educational Resources Information Center

    Richman, Kenneth A.; Alexander, Leslie B.

    2006-01-01

    Ethicists, researchers and policy makers have paid increasing attention to the ethical conduct of research, especially research involving human beings. Research performed with and by undergraduates poses a specific set of ethical challenges. These challenges are often overlooked by the research community because it is assumed that undergraduate…

  10. Engaging Students: An Authentic Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Alderton, Elizabeth; Manzi, Michelina

    2017-01-01

    Engaging students in valuable undergraduate research can be an arduous task to craft outside of the regular schedule of both staff and students. This paper describes a successful research experience that was part of an ongoing methods class for undergraduate pre-service education students. Participants simultaneously engaged in community service…

  11. Assessing Student Outcomes of Undergraduate Research with URSSA, the Undergraduate Student Self-Assessment Instrument

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Weston, T. J.; Thiry, H.

    2012-12-01

    graphs, and as raw, downloadable data. Finally, URSSA has high content validity based on its research grounding and rigorous development. We will present examples of how URSSA has been used in evaluations of UR programs. A multi-year evaluation of a university-based UR program shows that URSSA items are sensitive to differences in students' prior level of experience with research. For example, experienced student researchers reported greater gains than did their peers new to UR in understanding the process of research and in coming to see themselves as scientists. These differences are consistent with interview data that suggest a developmental progression of gains as students pursue research and gain confidence in their ability to contribute meaningfully. A second example comes from a multi-site evaluation of sites funded by the National Science Foundation's Research Experience for Undergraduates (REU) program in Biology. This study acquired data from nearly 800 students at some 60 Bio REU sites in 2010 and 2011. Results reveal differences in gains among demographic groups, and the general strength of these well-planned programs relative to a comparison sample of UR programs that are not part of REU. Our presentation will demonstrate the evaluative use of URSSA and its potential applications to undergraduate research in the geosciences.

  12. What do medical students understand by research and research skills? Identifying research opportunities within undergraduate projects.

    PubMed

    Murdoch-Eaton, Deborah; Drewery, Sarah; Elton, Sarah; Emmerson, Catherine; Marshall, Michelle; Smith, John A; Stark, Patsy; Whittle, Sue

    2010-01-01

    Undergraduate research exposure leads to increased recruitment into academic medicine, enhanced employability and improved postgraduate research productivity. Uptake of undergraduate research opportunities is reported to be disappointing, and little is known about how students perceive research. To investigate opportunities for undergraduate participation in research, recognition of such opportunities, and associated skills development. A mixed method approach, incorporating student focus and study groups, and documentary analysis at five UK medical schools. Undergraduates recognised the benefits of acquiring research skills, but identified practical difficulties and disadvantages of participating. Analysis of 905 projects in four main research skill areas - (1) research methods; (2) information gathering; (3) critical analysis and review; (4) data processing - indicated 52% of projects provided opportunities for students to develop one or more skills, only 13% offered development in all areas. In 17%, project descriptions provided insufficient information to determine opportunities. Supplied with information from a representative sample of projects (n = 80), there was little consensus in identifying skills among students or between students and researchers. Consensus improved dramatically following guidance on how to identify skills. Undergraduates recognise the benefits of research experience but need a realistic understanding of the research process. Opportunities for research skill development may not be obvious. Undergraduates require training to recognise the skills required for research and enhanced transparency in potential project outcomes.

  13. Women in STEM: The Effect of Undergraduate Research on Persistence

    NASA Astrophysics Data System (ADS)

    Wilker, Jodi

    The underrepresentation of women in science, technology, engineering, and math (STEM) careers constitutes a major issue in postsecondary science education. Perseverance of women in STEM is linked to a strong science identity. Experiential learning activities, such as undergraduate research, increase science identity and thus should help keep women in STEM. Most studies on research program development are from 4-year institutions, yet many women start at community colleges. The goal of this study was to fill this gap. Science identity and experiential learning theories provided the framework for this case study at a local institution (LECC). Semistructured interviews determined college science faculty and administrators perceptions of advantages and disadvantages of undergraduate research, the viability of developing a research program, and specific research options feasible for LECC. Transcripted data were analyzed through multiple rounds of coding yielding five themes: faculty perception of undergraduate research, authentic experiences, health technologies/nursing programs, LECC students career focus, and the unique culture at LECC. The most viable type of undergraduate research for LECC is course-based and of short timeframe. The project study advocates the use of citizen science (CS) studies in the classroom as they are relatively short-term and can take the place of lab sessions. The true benefit is that students perform authentic science by contributing to an actual scientific research project. CS projects can effect social change by developing science literate citizens, empowering faculty to create authentic learning experiences, and by sparking interest in science and directing women into STEM careers.

  14. Research Experiences for Undergraduates.

    ERIC Educational Resources Information Center

    Rettig, Terrence W.; And Others

    1990-01-01

    Reviewed are six programs at different colleges and universities which provide research opportunities for undergraduate students in physics, astronomy, marine biology, meteorology, and anthropology. Background, features, and accomplishments of the programs are discussed. (CW)

  15. Course-Based Undergraduate Research Experiences Can Make Scientific Research More Inclusive

    ERIC Educational Resources Information Center

    Bangera, Gita; Brownell, Sara E.

    2014-01-01

    Current approaches to improving diversity in scientific research focus on graduating more science, technology, engineering, and mathematics (STEM) majors, but graduation with a STEM undergraduate degree alone is not sufficient for entry into graduate school. Undergraduate independent research experiences are becoming more or less a prerequisite…

  16. Astrobites: Engaging Undergraduate Science Majors with Current Astrophysical Research

    NASA Astrophysics Data System (ADS)

    Zevin, Michael; Astrobites

    2017-01-01

    Astrobites is a graduate-student organization that publishes an online astrophysical literature blog (astrobites.com). The purpose of the site is to make current astrophysical research accessible to and exciting for undergraduate physical science majors and astronomy enthusiasts, and the site now hosts an archive of over 1300 posts summarizing recent astrophysical research. In addition, Astrobites presents posts on career guidance, practical 'how-to' articles, conference summaries, and astronomy news. Astrobites has an average of more than 1000 pageviews per day and reaches not only its target audience of undergraduates, but also graduate students and professionals within astronomy, astronomy enthusiasts, and educators. As we enter our seventh year of successful blogging, we share here the most up-to-date summary of our organization, readership, and growth.

  17. Undergraduate research experiences support science career decisions and active learning.

    PubMed

    Lopatto, David

    2007-01-01

    The present study examined the reliability of student evaluations of summer undergraduate research experiences using the SURE (Survey of Undergraduate Research Experiences) and a follow-up survey disseminated 9 mo later. The survey further examines the hypothesis that undergraduate research enhances the educational experience of science undergraduates, attracts and retains talented students to careers in science, and acts as a pathway for minority students into science careers. Undergraduates participated in an online survey on the benefits of undergraduate research experiences. Participants indicated gains on 20 potential benefits and reported on career plans. Most of the participants began or continued to plan for postgraduate education in the sciences. A small group of students who discontinued their plans for postgraduate science education reported significantly lower gains than continuing students. Women and men reported similar levels of benefits and similar patterns of career plans. Undergraduate researchers from underrepresented groups reported higher learning gains than comparison students. The results replicated previously reported data from this survey. The follow-up survey indicated that students reported gains in independence, intrinsic motivation to learn, and active participation in courses taken after the summer undergraduate research experience.

  18. Integrating undergraduate research into the electro-optics and laser engineering technology program at Indiana University of Pennsylvania

    NASA Astrophysics Data System (ADS)

    Zhou, Andrew F.

    2014-07-01

    Bringing research into an undergraduate curriculum is a proven and powerful practice with many educational benefits to students and the professional rewards to faculty mentors. In recent years, undergraduate research has gained national prominence as an effective problem-based learning strategy. Developing and sustaining a vibrant undergraduate research program of high quality and productivity is an outstanding example of the problem-based learning. To foster student understanding of the content learned in the classroom and nurture enduring problem-solving and critical-thinking abilities, we have created a collaborative learning environment by building research into the Electro-Optics curriculum for the first- and second-year students. The teaching methodology is described and examples of the research projects are given. Such a research-integrated curriculum effectively enhances student learning and critical thinking skills, and strengthens the research culture for the first- and second-year students.

  19. Promoting Undergraduate Research at Grand Valley State University

    NASA Astrophysics Data System (ADS)

    Riemersma, P.; Mekik, F. A.

    2003-12-01

    Grand Valley State University (GVSU) is a relatively young, rapidly growing, predominately undergraduate institution of about 20,000 students located in western Michigan in which undergraduate research plays a vital role in the education of our students. Student research is supported and actively promoted by 1) creating university funding opportunities and taking advantage of small outside funding sources 2) building a tradition of undergraduate research 3) incorporating small research activities into classes and 4) educating students explicitly in how to prepare a professional poster, give a professional talk and write a journal article. As the saying goes, if you have money, the students will come. At GVSU most students recognize the value of a research experience but need income to pay for college expenses. The internally funded Student Summer Scholars program at GVSU provides student salary and faculty stipend for a summer research project (\\6000 per grant). The geology department has also been successful at obtaining grants from the NASA Michigan Space Grant Consortium (\\5,000 plus a 100% GVSU match). We have been successful in using these easier to obtain smaller grants to fund undergraduate projects. In some cases small grants actually allow us to pursue "risky" or otherwise difficult to fund projects. Undergraduate research "counts" at GVSU and once a tradition and critical mass of undergraduate research has been established, it can become self-sustaining. To recognize the achievements of undergraduate research at GVSU, there is an annual Student Scholarship Day in which the students (580 university wide) present the results of their research. Also, by persuading students in our introductory classes (for extra credit) to attend Student Scholarship Day, the students, early in their college career, can see what fellow students can accomplish and student presenters can revel in their role of researcher and educator. Such an event helps to build a tradition

  20. Culturally Diverse Undergraduate Researchers' Academic Outcomes and Perceptions of Their Research Mentoring Relationships

    ERIC Educational Resources Information Center

    Byars-Winston, Angela M.; Branchaw, Janet; Pfund, Christine; Leverett, Patrice; Newton, Joseph

    2015-01-01

    Few studies have empirically investigated the specific factors in mentoring relationships between undergraduate researchers (mentees) and their mentors in the biological and life sciences that account for mentees' positive academic and career outcomes. Using archival evaluation data from more than 400 mentees gathered over a multi-year period…

  1. A Survey of Library Support for Formal Undergraduate Research Programs

    ERIC Educational Resources Information Center

    Hensley, Merinda Kaye; Shreeves, Sarah L.; Davis-Kahl, Stephanie

    2014-01-01

    Undergraduate research is defined by the Council on Undergraduate Research (CUR) as "an inquiry or investigation conducted by an undergraduate student that makes an original intellectual or creative contribution to the discipline." This study serves as a snapshot of current library practices in relation to formal undergraduate research…

  2. Planning and Implementing a Comprehensive Student-Centered Research Program for First-Year STEM Undergraduates

    ERIC Educational Resources Information Center

    Schneider, Kimberly R.; Bickel, Amelia; Morrison-Shetlar, Alison

    2015-01-01

    Retaining college-level science, technology, engineering, and mathematics (STEM) students remains a priority in higher education. A variety of methods have been shown to increase retention, including mentorship, tutoring, course enhancements, community building, and engagement in high-impact practices such as undergraduate research. In 2011, an…

  3. Extending the JOVE Program through undergraduate research

    NASA Technical Reports Server (NTRS)

    Lebo, George R.

    1996-01-01

    The JOVE program was initiated in 1988 to develop NASA-related research capabilities in colleges and universities which had had little or no previous experience with NASA. Any institution which was not currently funded at more than $100 K annually by NASA was eligible. In an open competition six universities were selected for participation in the first year. NASA supplied funds, access to its facilities and data, collaboration with its researchers and a hookup to the internet. In return the university was expected to match NASA's investment by giving its participating faculty members time off of their teaching schedules to perform research during the school year, by waiving it overhead charge and by putting up real funds to match those supplied by NASA. Each school was eligible for three years after which they were expected to seek funds from other sources. Over the span of the program more than 100 colleges and universities have participated. Fifteen have finished their eligiblity. Since one of the strong components of the program was the direct involvement of undergraduate students in active research, it was decided to develop a follow-on program which would provide stipends to undergraduate students at the institutions who had used up their JOVE eligiblity. NASA's desire to transfer its technologies to the private sector now permeates all of its programs. Therefore a Partnering Venture (PAVE) program is now being discussed in which JOVE-like rules will be applied to small companies which do not now do much business with NASA. The JOVE, PAVE, and other summer activities of the author are told here.

  4. Race and Gender Differences in Undergraduate Research Mentoring Structures and Research Outcomes

    ERIC Educational Resources Information Center

    Aikens, Melissa L.; Robertson, Melissa M.; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Runyon, Christopher R.; Eby, Lillian T.; Dolan, Erin L.

    2017-01-01

    Participating in undergraduate research with mentorship from faculty may be particularly important for ensuring the persistence of women and minority students in science. Yet many life science undergraduates at research universities are mentored by graduate or postdoctoral researchers (i.e., postgraduates). We surveyed a national sample of…

  5. Developing Graduate Attributes through Participation in Undergraduate Research Conferences

    ERIC Educational Resources Information Center

    Hill, Jennifer; Walkington, Helen

    2016-01-01

    Graduate attributes are a framework of skills, attitudes, values and knowledge that graduates should develop by the end of their degree programmes. Adopting a largely qualitative approach and using semi-structured interviews, this paper outlines students' experiences at a national undergraduate research conference over three years and evidences…

  6. Call to Publish in an Undergraduate Medical Course: Dissemination of the Final-Year Research Project.

    PubMed

    Barbosa, Joselina Maria Pinto; Magalhães, Sónia Isabel Costa; Ferreira, Maria Amélia Duarte

    2016-01-01

    Today's medical doctors must not only have the clinical skills to treat patients effectively but also keep current with new advances in medicine and critically analyze evidence to choose the best treatments and explain the risks and benefits of different options. In this article, we aim to share the approach taken at a Portuguese medical school to promote a close connection between research and learning. In a blended-learning approach, students studied research and scientific methods and undertook one of three faculty-supervised research and dissemination projects. To support immediate application of new research knowledge, students were offered optional short lectures and problem sets. All course information was featured on a website that also supported a discussion forum. We analyzed 1,350 theses leading to the medical degree, defended in six consecutive academic years (2007-2013). Our aim was to estimate the publication rates and factors associated with publication of the final-year undergraduate research projects. The present research curriculum was developed at the University of Porto Faculty of Medicine as part of the Bologna process curriculum implemented in the 2007-2008 academic year. From May to June 2014 we looked for corresponding articles published over the period of September 2007 to April 2014. We searched PubMed, Scielo, Scopus, and IndexRMP databases to locate publications resulting from student theses. Over 6 years, the diffusion of knowledge produced by medical students, who engaged in clinical practice concurrently with research projects, was fairly low (10.4%). Program modifications that increased student accountability and engagement allowed for an increased rate of publication from 1.0% to 23.9%. Factors associated with publication were research area, publication as a performance assessment criterion, and publication language. The results of this study suggest that it is helpful to provide research opportunities that allow aspiring future

  7. Improving undergraduate biology education in a large research university.

    PubMed Central

    Bender, C; Ward, S; Wells, M A

    1994-01-01

    The campus-wide Undergraduate Biology Research Program (UBRP) at the University of Arizona improves undergraduate science education by expanding student opportunities for independent research in faculty laboratories. Within the supportive community of a research laboratory, underclassmen, nonscience majors, and those aspiring to scientific careers all learn to appreciate the process of science. The Program impacts more than the students, promoting departmental cooperation, interdisciplinary collaborations, and improvements in undergraduate science education throughout a Research I University. PMID:8018999

  8. Engaging Undergraduates in Science Research: Not Just about Faculty Willingness

    ERIC Educational Resources Information Center

    Eagan, M. Kevin, Jr.; Sharkness, Jessica; Hurtado, Sylvia; Mosqueda, Cynthia M.; Chang, Mitchell J.

    2011-01-01

    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty…

  9. Journal of Undergraduate Research, Volume VIII, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiner, K. S.; Graham, S.; Khan, M.

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  10. Undergraduate Research Participation at the University of California, Berkeley. Research & Occasional Paper Series: CSHE.17.08

    ERIC Educational Resources Information Center

    Berkes, Elizabeth

    2008-01-01

    Although the University of California, Berkeley has increased efforts to involve undergraduates in scientific research, little data exists regarding the number of undergraduate researchers. The University of California Undergraduate Experience Survey (UCUES) presents an opportunity to investigate the extent of undergraduate research involvement at…

  11. Introducing Research Methods to Undergraduate Majors Through an On-Campus Observatory with The University of Toledo's Ritter Observatory

    NASA Astrophysics Data System (ADS)

    Richardson, Noel; Hardegree-Ullman, Kevin; Bjorkman, Jon Eric; Bjorkman, Karen S.; Ritter Observing Team

    2017-01-01

    With a 1-m telescope on the University of Toledo (OH) main campus, we have initiated a grad student-undergraduate partnership to help teach the undergraduates observational methods and introduce them to research through peer mentorship. For the last 3 years, we have trained up to 21 undergraduates (primarily physics/astronomy majors) in a given academic semester, ranging from freshman to seniors. Various projects are currently being conducted by undergraduate students with guidance from graduate student mentors, including constructing three-color images, observations of transiting exoplanets, and determination of binary star orbits from echelle spectra. This academic year we initiated a large group research project to help students learn about the databases, journal repositories, and online observing tools astronomers use for day-to-day research. We discuss early inclusion in observational astronomy and research of these students and the impact it has on departmental retention, undergraduate involvement, and academic success.

  12. Undergraduate medical research: the student perspective

    PubMed Central

    Burgoyne, Louise N.; O'Flynn, Siun; Boylan, Geraldine B.

    2010-01-01

    Background Research training is essential in a modern undergraduate medical curriculum. Our evaluation aimed to (a) gauge students' awareness of research activities, (b) compare students' perceptions of their transferable and research-specific skills competencies, (c) determine students' motivation for research and (d) obtain students' personal views on doing research. Methods Undergraduate medical students (N=317) completed a research skills questionnaire developed by the Centre for Excellence in Teaching and Learning in Applied Undergraduate Research Skills (CETL-AURS) at Reading University. The questionnaire assessed students' transferable skills, research-specific skills (e.g., study design, data collection and data analysis), research experience and attitude and motivation towards doing research. Results The majority of students are motivated to pursue research. Graduate entrants and male students appear to be the most confident regarding their research skills competencies. Although all students recognise the role of research in medical practice, many are unaware of the medical research activities or successes within their university. Of those who report no interest in a career incorporating research, a common perception was that researchers are isolated from patients and clinical practice. Discussion Students have a narrow definition of research and what it entails. An explanation for why research competence does not align more closely with research motivation is derived from students' lack of understanding of the concept of translational research, as well as a lack of awareness of the research activity being undertaken by their teachers and mentors. We plan to address this with specific research awareness initiatives. PMID:20844608

  13. [Curriculum reform and research in dentistry at the undergraduate level: history under construction].

    PubMed

    Maltagliati, Luciana Avila; Goldenberg, Paulete

    2007-01-01

    Approaching from the perspective of curriculum organization, the article examines the development of undergraduate research in dentistry. Based on Brazilian and international printed or electronic publications, the authors examine the institutionalization of higher education in dentistry, university reform, and the enactment of Curriculum Guidelines. From the earliest days of higher education in dentistry, there has been a concern with research. But Brazil's university reform assigned research to graduate studies and scientific instruction to undergraduate studies. In recent years, Curriculum Guidelines have reconsidered the position of research and have recommended changes that allow research to be viewed as an educational principle.

  14. Use of research in undergraduate nursing students' theses: A mixed methods study.

    PubMed

    Nordsteien, Anita; Horntvedt, May-Elin T; Syse, Jonn

    2017-09-01

    Health care personnel are expected to be familiar with evidence-based practice (EBP). Asking clinical questions, conducting systematic literature searches and conducting critical appraisal of research findings have been some of the barriers to EBP. To improve undergraduate nurses' research skills, a collaborative library-faculty teaching intervention was established in 2012. The aim of this study was to evaluate how the collaborative library-faculty teaching intervention affected the nursing students' research skills when writing their final theses. Both quantitative and qualitative data collection and analysis were used. The study focused on a final year undergraduate nurse training programme in Norway. 194 theses submitted between 2013 and 2015 were collected and assessed. The students were exposed to the intervention for respectively one, two and three years during this period. Descriptive statistics were used to compare each year's output over the three-year period and to examine the frequency of the use of various databases, types of information and EBP-tools. Qualitative data was used to capture the students' reasoning behind their selection processes in their research. The research skills with regard to EBP have clearly improved over the three years. There was an increase in employing most EBP-tools and the justifications were connected to important EBP principles. The grades in the upper half of the grading scale increased from 66.7 to 82.1% over the period 2013 to 2015, and a correlation was found between grades and critical appraisal skills. The collaborative library-faculty teaching intervention employed has been successful in the promotion of nursing student research skills as far as the EBP principles are concerned. Writing a thesis in the undergraduate nursing programme is important to develop and practice these research skills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Early Undergraduate Research Experiences Lead to Similar Learning Gains for STEM and Non-STEM Undergraduates

    ERIC Educational Resources Information Center

    Stanford, Jennifer S.; Rocheleau, Suzanne E.; Smith, Kevin P. W.; Mohan, Jaya

    2017-01-01

    Undergraduate research is touted as a high-impact educational practice yielding important benefits such as increased retention and notable learning gains. Large-scale studies describing benefits of mentored research programs have focused primarily on outcomes for science, technology, engineering and mathematics (STEM) undergraduates. The Students…

  16. Teaching Undergraduate Research: The One-Room Schoolhouse Model

    ERIC Educational Resources Information Center

    Henderson, LaRhee; Buising, Charisse; Wall, Piper

    2008-01-01

    Undergraduate research in the biochemistry, cell, and molecular biology program at Drake University uses apprenticeship, cooperative-style learning, and peer mentoring in a cross-disciplinary and cross-community educational program. We call it the one-room schoolhouse approach to teaching undergraduate research. This approach is cost effective,…

  17. Research Experience for Undergraduate Students and Its Impact on STEM Education

    ERIC Educational Resources Information Center

    Zhan, Wei

    2014-01-01

    Research experience has been proven to be effective in enhancing the overall educational experience for undergraduate students. In this article, two engineering research projects with undergraduate students involvement are discussed. The projects provided the undergraduate student researchers with motivation for independent research work and…

  18. Designing Effective Undergraduate Research Experiences

    NASA Astrophysics Data System (ADS)

    Severson, S.

    2010-12-01

    I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.

  19. Rutgers Young Horse Teaching and Research Program: undergraduate student outcomes.

    PubMed

    Ralston, Sarah L

    2012-12-01

    Equine teaching and research programs are popular but expensive components of most land grant universities. External funding for equine research, however, is limited and restricts undergraduate research opportunities that enhance student learning. In 1999, a novel undergraduate teaching and research program was initiated at Rutgers University, New Brunswick, NJ. A unique aspect of this program was the use of young horses generally considered "at risk" and in need of rescue but of relatively low value. The media interest in such horses was utilized to advantage to obtain funding for the program. The use of horses from pregnant mare urine (PMU) ranches and Bureau of Land Management (BLM) mustangs held the risks of attracting negative publicity, potential of injury while training previously unhandled young horses, and uncertainty regarding re-sale value; however, none of these concerns were realized. For 12 years the Young Horse Teaching and Research Program received extensive positive press and provided invaluable learning opportunities for students. Over 500 students, at least 80 of which were minorities, participated in not only horse management and training but also research, event planning, public outreach, fund-raising, and website development. Public and industry support provided program sustainability with only basic University infrastructural support despite severe economic downturns. Student research projects generated 25 research abstracts presented at national and international meetings and 14 honors theses. Over 100 students went on to veterinary school or other higher education programs, and more than 100 others pursued equine- or science-related careers. Laudatory popular press articles were published in a wide variety of breed/discipline journals and in local and regional newspapers each year. Taking the risk of using "at risk" horses yielded positive outcomes for all, especially the undergraduate students.

  20. Geoscience Research at Storm Peak (GRASP), a year-long program providing exceptional field research for a diverse group of undergraduate students

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.; Hallar, B. L.; Stockwell, W.; Kittelson, J.; Lopez, J.

    2008-12-01

    Geoscience Research at Storm Peak (GRASP) was designed to engage students from underrepresented groups through a partnership between Minority Serving Institutions and the University of Nevada, Reno (UNR). The program exposed the GRASP participants to potential careers in the geosciences, provided them with an authentic research experience at Storm Peak Laboratory (SPL), and gave them an opportunity to explore dynamic scenery. Undergraduate students from Howard University, Colorado State at Pueblo, Leman College, and SUNY Oneonta, gathered at SPL in June of 2008 via funding from the National Science Foundation Opportunity for Enhancing Diversity. The students reunited at Howard University in November to present the results of their research project. Throughout the year-long GRASP program students encountered the scientific process-creating a hypothesis, collecting and analyzing data, and presenting their results. Results from surveys, focus groups, and individual interviews will be discussed in this presentation.

  1. Does Undergraduate Student Research Constitute Scholarship? Drawing on the Experiences of One Medical Faculty

    ERIC Educational Resources Information Center

    McLean, Michelle; Howarth, F. Christopher

    2008-01-01

    While undergraduate research has been part of the learning culture in some disciplines for many years, it is only more recently that it is being included into mainstream medical curricula. Undergraduate medical students at the Faculty of Medicine and Health Sciences, United Arab Emirates University, have several opportunities to undertake research…

  2. The Relationship between Undergraduate Research Participation and Subsequent Research Performance of Early Career STEM Graduate Students

    ERIC Educational Resources Information Center

    Gilmore, Joanna; Vieyra, Michelle; Timmerman, Briana; Feldon, David; Maher, Michelle

    2015-01-01

    Undergraduate research experiences have been adopted across higher education institutions. However, most studies examining benefits derived from undergraduate research rely on self-report of skill development. This study used an empirical assessment of research skills to investigate associations between undergraduate research experiences and…

  3. Lessons Learned: The Evolution of an Undergraduate Research Program

    ERIC Educational Resources Information Center

    Smith, Gregory; Laker, Lauren; Tesch, Debbie

    2013-01-01

    Undergraduate research programs are commonplace at many universities. However, little research has been conducted to evaluate their ongoing and long-term effectiveness from the standpoint of the undergraduate student researcher. In an effort to gain perspective from the student researcher, including their thoughts on such a program, a survey was…

  4. NorthEast Under/graduate Research Organization for Neuroscience (NEURON): Our Third New York City Meeting

    PubMed Central

    Goyette, Sharon Ramos; Edinger, Kassandra L.; Luine, Vicki; Young, Jason; Frye, Cheryl A.

    2007-01-01

    The NorthEast Under/graduate Research Organization for Neuroscience (N.E.U.R.O.N.) promotes preparation, education, and undergraduate research in Neuroscience. The N.E.U.R.O.N. Conference was initially held at undergraduate institutions primarily in New England. Then, for the previous two years, to broaden its impact and increase diversity, the meeting moved to Hunter College, CUNY, New York. This year represents the first year in which two N.E.U.R.O.N. meetings were held, one in Boston and one in New York City. The following is a report of the New York City meeting which was held at Hunter College on April 28, 2007. Eminent Neuroscientist, Dr. Carol Sue Carter, of the University of Illinois at Chicago, delivered the keynote address. The meeting also included the second bestowal of the Suzannah Bliss Tieman Research Awards for outstanding poster presentations and a workshop aimed at increasing minority participation in Neuroscience research. These highlights and future plans for N.E.U.R.O.N. are discussed. PMID:23495318

  5. Building Capacity for Undergraduate Research in Mathematics: A Case Study at Georgia College

    ERIC Educational Resources Information Center

    Brown, Ryan; Chiorescu, Marcela; Mohr, Darin

    2017-01-01

    The Georgia College mathematics department has reimagined its major requirements to integrate meaningful undergraduate research experiences. We have developed and implemented a multi-year action plan to transform our major. In this article we discuss how the department has developed and implemented a year-long research experience as a capstone…

  6. Interpreting Undergraduate Research Posters in the Literature Classroom

    ERIC Educational Resources Information Center

    Manarin, Karen

    2016-01-01

    This essay explores the use of undergraduate research posters in English literature classrooms; at the same time, it argues for a scholarship of teaching and learning responsive to how meaning is constructed in the arts and humanities. Our scholarly practice requires interaction with texts and with each other, yet the undergraduate research paper…

  7. The Undergraduate Teaching Assistant Experience Offers Opportunities Similar to the Undergraduate Research Experience†

    PubMed Central

    Schalk, Kelly A.; McGinnis, J. Randy; Harring, Jeffrey R.; Hendrickson, Amy; Smith, Ann C.

    2009-01-01

    There has been a growing concern in higher education about our failure to produce scientifically trained workers and scientifically literate citizens. Active-learning and research-oriented activities are posited as ways to give students a deeper understanding of science. We report on an undergraduate teaching assistant (UTA) experience and suggest that students who participate as a UTA obtain benefits analogous to those who participate as an undergraduate research assistant (URA). We examined the experiences of 24 undergraduates acting as UTAs in a general microbiology course. Self-reported gains by the UTAs were supported by observational data from undergraduates in the course who were mentored by the UTAs and by the graduate teaching assistants (GTAs) with whom the UTAs worked. Specifically, data from the UTAs’ journals and self-reported Likert scales and rubrics indicated that our teaching assistants developed professional characteristics such as self-confidence and communication and leadership skills, while they acquired knowledge of microbiology content and laboratory skills. Data from the undergraduate Likert scale as well as the pre- and post-GTA rubrics further confirmed our UTA’s data interpretations. These findings are significant because they offer empirical data to support the suggestion that the UTA experience is an effective option for developing skills and knowledge in undergraduates that are essential for careers in science. The UTA experience provides a valuable alternative to the URA experience. PMID:23653688

  8. Turning an Undergraduate Class into a Professional Research Community

    ERIC Educational Resources Information Center

    Chang, Hasok

    2005-01-01

    I describe here an ongoing pilot project aimed at a full integration of teaching and research at the undergraduate level. Our chief innovation is the mechanism of inheritance: each year students receive a body of work produced by the previous group of students and make improvements and additions to it; this process can be repeated until…

  9. Undergraduate Research Engagement at Major US Research Universities. Research & Occasional Paper Series: CSHE.14.13

    ERIC Educational Resources Information Center

    Douglass, John Aubrey; Zhao, Chun-Mei

    2013-01-01

    Bolstered by the recommendations of the 1998 Boyer Report, US federal agencies have put significant resources into promoting opportunities for undergraduates to engage in research. American universities and colleges have been creating support programs and curricular opportunities intended to create a "culture of undergraduate research."…

  10. The Role of Academic Developers in Embedding High-Impact Undergraduate Research and Inquiry in Mainstream Higher Education: Twenty Years' Reflection

    ERIC Educational Resources Information Center

    Healey, Mick; Jenkins, Alan

    2018-01-01

    The focus of this article is on the role of academic developers in supporting and influencing undergraduate research and inquiry, a high-impact activity. We examine the levels at which academic developers can influence undergraduate research and inquiry practices by distinguishing between staff and student practices; disciplinary and departmental…

  11. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    NASA Astrophysics Data System (ADS)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  12. Mississippi CaP HBCU Undergraduate Research Training Program

    DTIC Science & Technology

    2017-11-01

    AWARD NUMBER: W81XWH-14-1-0151 TITLE: Mississippi CaP HBCU Undergraduate Research Training Program PRINCIPAL INVESTIGATOR: Christian Gomez...Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for...2017 4. TITLE AND SUBTITLE Mississippi CaP HBCU Undergraduate Research Training Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0151 5c

  13. A Social Capital Perspective on the Mentoring of Undergraduate Life Science Researchers: An Empirical Study of Undergraduate-Postgraduate-Faculty Triads.

    PubMed

    Aikens, Melissa L; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Eby, Lillian T; Dolan, Erin L

    2016-01-01

    Undergraduate researchers at research universities are often mentored by graduate students or postdoctoral researchers (referred to collectively as "postgraduates") and faculty, creating a mentoring triad structure. Triads differ based on whether the undergraduate, postgraduate, and faculty member interact with one another about the undergraduate's research. Using a social capital theory framework, we hypothesized that different triad structures provide undergraduates with varying resources (e.g., information, advice, psychosocial support) from the postgraduates and/or faculty, which would affect the undergraduates' research outcomes. To test this, we collected data from a national sample of undergraduate life science researchers about their mentoring triad structure and a range of outcomes associated with research experiences, such as perceived gains in their abilities to think and work like scientists, science identity, and intentions to enroll in a PhD program. Undergraduates mentored by postgraduates alone reported positive outcomes, indicating that postgraduates can be effective mentors. However, undergraduates who interacted directly with faculty realized greater outcomes, suggesting that faculty interaction is important for undergraduates to realize the full benefits of research. The "closed triad," in which undergraduates, postgraduates, and faculty all interact directly, appeared to be uniquely beneficial; these undergraduates reported the highest gains in thinking and working like a scientist. © 2016 M. L. Aikens et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Undergraduate Research Experience in Ocean/Marine Science (URE-OMS)

    DTIC Science & Technology

    2003-09-30

    The URE-Ocean/Marine Science program supports active research participation by undergraduate students in remote sensing and GIS. The program is based on a model for undergraduate research programs supported by the National Science Foundation . URE project features mentors, research projects, and professional development opportunities. It is the long-term goal

  15. The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Whitworth, C.; Clavier, D.; Owen, L.; Barker, T.

    2012-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 7 funded students participated in 2011. Mentors for the interns include PARI's Science, Education, and Information Technology Directors and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.

  16. The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Cline, J.; Whitworth, C.; Clavier, D.

    2011-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 9 funded students participated in 2010. Mentors for the interns include PARI's Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and applets for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.

  17. Providing Opportunities for Interdisciplinary Research through Partnering two Undergraduate Research Programs: RESESS and SOARS

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Eriksson, S. C.

    2005-12-01

    Undergraduate research provides a unique opportunity to explore scientifically novel questions, particularly those at the intersection of disciplines. This opportunity should be balanced with the need to provide the strong discipline-based training that undergraduate students require to continue their academic careers. This need for balance is especially acute for students from groups who are historically under-represented in geosciences; their status as minorities and women makes them especially vulnerable to the devaluing of their research if it isn't along traditional lines. Combining undergraduate research with a strong, diverse learning community is one way to balance the opportunity of interdisciplinary research with the need for depth of understanding in a field. In this model, students individually pursue focused research in partnership with a particular scientist as they work collaboratively across disciplines to prepare scientific papers, presentations, and posters to share the results of their research. Over time, programmatic success can even help insulate students from the risks of interdisciplinary work. Research Experience for Students in Solid Earth Science (RESESS) and Significant Opportunities in Atmospheric Science (SOARS) implement this approach. SOARS is a program with a 10-year history in the atmospheric science; RESESS is a new program focused on Solid Earth Sciences. The two currently collaborate by merging their learning communities while maintaining distinct research focuses. While still in the pilot phase of partnering, initial discussions by the student participants indicate a growing awareness of potential for cross-disciplinary collaboration. In fact, two projects, both by graduate students who have participated for multiple summers, straddle the disciplines of geology and meteorology. One project characterized dust storms in the Southwest US using remote sensing, and a second project studied wind-driven migration of sand dunes on the

  18. Undergraduate Research Possibilities with a 0.6m Telescope

    NASA Astrophysics Data System (ADS)

    Carini, M. T.; Barnaby, D.; Gelderman, R.; Marchenko, S.; McGruder, C. H., III; Strolger, L.

    2005-12-01

    We present a discussion of the research projects that are being carried out by undergraduate students with the 0.6m telescope at the Bell Observatory, operated by Western Kentucky University. As a primarily undergraduate institution, our goal is to provide a meaningful undergraduate educational experience through both quality instruction and engagement of students in mentored research activities. Such activities not only enhance the student's educational experience, but also prepare them to be competitive in graduate school and/or the workplace. Using our modernized 0.6m telescope, our students pursue research projects which investigate a variety of astrophysically interesting problems: variability of Blazars, eclipsing binary stars, Gamma-ray burst identifications and follow up, photometric searches for extra-solar planets, supernova monitoring and survey programs, the relationship between morphological disturbances and activity in Seyfert nuclei, and variability in Wolf Rayet stars. We discuss the instrumentation, projects and results obtained by our undergraduate students, and the impact this has had on their undergraduate experience.

  19. Advancing Research on Undergraduate Science Learning

    ERIC Educational Resources Information Center

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  20. The Undergraduate Research Resources at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, Michael W.

    2016-01-01

    Pisgah Astronomical Research Institute (PARI), a former NASA tracking station located in western North Carolina, has been offering programs, campus, and instrument use for undergraduate research and learning experiences since 2000. Over these years, PARI has collaborated with universities and colleges in the Southeastern U.S. Sharing its campus with institutions of higher learning is a priority for PARI as part of its mission to "to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines."PARI is a 200 acre campus for environmental, earth, geological, physical, and astronomical sciences. For example, the PARI 26-m and 4.6-m radio telescopes are excellent for teaching electromagnetic theory, spectroscopy, atomic and molecular emission processes, and general physics and astronomy concepts. The PARI campus has lab and office space, data centers with high speed internet, distance learning capabilities, radio and optical telescopes, earth science sensors, housing and cafeteria.Also, the campus is in an excellent spot for environmental and biological sciences lab and classroom experiences for students. The campus has the capability to put power and Internet access almost anywhere on its 200 acre campus so experiments can be set up in a protected area of a national forest. For example, Earthscope operates a Plate Boundary Observatory sensor on campus to measure plate tectonic motion. And, Clemson University has an instrument measuring winds and temperatures in the Thermsophere. The use of thePARI campus is limited only by the creativity faculty to provide a rich educational environment for their students. An overview of PARI will be presented along with a summary of programs, and a summary of undergraduate research experiences over the past 15 years. Access to PARI and collaboration possibilities will be presented.

  1. The NSF Undergraduate ALFALFA Team: Partnering with Arecibo Observatory to Offer Undergraduate and Faculty Extragalactic Radio Astronomy Research Opportunities

    NASA Astrophysics Data System (ADS)

    Ribaudo, Joseph; Koopmann, Rebecca A.; Haynes, Martha P.; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David W.; Denn, Grant R.; Durbala, Adriana; Finn, Rose; Hallenbeck, Gregory L.; Hoffman, G. Lyle; Lebron, Mayra E.; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Pisano, Daniel J.; Rosenberg, Jessica L.; Troischt, Parker; Venkatesan, Aparna; Wilcots, Eric M.; ALFALFA Team

    2017-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.

  2. Student Effort in and Perceived Benefits from Undergraduate Research

    ERIC Educational Resources Information Center

    Salsman, Nicholas; Dulaney, Cynthia L.; Chinta, Ravi; Zascavage, Victoria; Joshi, Hem

    2013-01-01

    The benefits of student engagement in undergraduate research are well-recognized by many higher education institutions. Increased emphasis on undergraduate research in these institutions has taken many forms resulting in considerable differences across institutions ranging from "light touch" to "heavy duty" involvement of…

  3. Successful Undergraduate Research: Creating Win-Win-Win

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Rhodes, A. L.

    2003-12-01

    Undergraduate involvement in research has the potential to advance science, enhance education, strengthen the research community, and raise general awareness of the importance and impact of scientific understanding. Rather than being competing objectives, these goals are synergistic. Effective research experiences are those that create win-win-win situations: benefits to the student, benefits to the project, and benefits to the scientific community. When structured appropriately, undergraduate research fits into a learner-centered paradigm that puts emphasis on student learning, rather than instructor teaching. Under such a paradigm the student and professor learn together, constructing knowledge by integrating information with critical-thinking and problem-solving skills, and use this knowledge to address issues in real-life contexts. Creating such a learning environment requires that the professor be vested in the outcome of the research, that the student take a meta-cognitive approach to the project and work at a level appropriate to her abilities, and that the student understand how her contribution fits into the project and the larger field. All of these factors lead to greater independence, confidence, and productivity on the part of the student. By providing undergraduates with these experiences, we introduce not only future scientists but also non-scientists to the excitement of discovery and the value of scientific research. Currently, we involve undergraduates in our research on the hydrology and geochemistry of a tropical montane cloud forest in Monteverde, Costa Rica. At the start of each student's involvement, we provide her with the big picture: our project goals, the relevant social issues, and the importance of watershed research. Each student then articulates her own educational and project objectives. Together, we choose tasks that match her skills and interests with our scholarly work. Specific activities range from literature review to

  4. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  5. Undergraduate Research and Academic Archives: Instruction, Learning and Assessment

    ERIC Educational Resources Information Center

    Krause, Magia G.

    2010-01-01

    Colleges and universities are increasingly investing resources to promote undergraduate research. Undergraduate research can be broadly defined to incorporate scientific inquiry, creative expression, and scholarship with the result of producing original work. Academic archives and special collections can play a vital role in the undergraduate…

  6. Negotiating Peer Mentoring Roles in Undergraduate Research Lab Settings

    ERIC Educational Resources Information Center

    Packard, Becky W.; Marciano, Vincenza N.; Payne, Jessica M.; Bledzki, Leszek A.; Woodard, Craig T.

    2014-01-01

    Undergraduate research is viewed as an important catalyst for educational engagement and persistence, with an emphasis on the faculty mentoring relationship. Despite the common practice of having multi-tiered lab teams composed of newer undergraduates and more seasoned undergraduates serving as peer mentors, less is understood about the experience…

  7. Lessons in collaboration and effective field research from the Appalachian Headwaters Research Experience for Undergraduates Program

    NASA Astrophysics Data System (ADS)

    Jones, A. L.; Fox, J.; Wilder, M. S.

    2009-12-01

    In the summer of 2009, the authors launched year one of a three-year National Science Foundation-funded Research Experience for Undergraduates entitled "Carbon Storage and Headwater Health in the Appalachian Headwaters." Eight undergraduates selected from a nationally competitive field of more than 60 applicants participated in the ten-week field- and laboratory-based program along with three middle- and high-school teachers. Each student developed and completed an independent research project related to coal mining’s impact on soil organic carbon and sediment transport processes. Specifically, they used isotope ratio mass spectrometry to measure the carbon and nitrogen stable isotopic signature of soils and sediments in the Appalachian headwater landscapes and first order streams of Kentucky's southeastern coalfields. Among the program's innovative features was its fundamentally collaborative nature--which was represented in several ways. First, the background of the three program leaders was very different: an environmental planner with an academic background in land use planning and administration (Jones); a civil engineer trained in biogeochemistry and watershed modeling (Fox); and an environmental educator experienced in both formal and nonformal educator training and certification (Wilder). The program was also a collaboration between a Carnegie 1 research-oriented institution and an undergraduate/ teaching -focused regional comprehensive university. Finally, the participants themselves represented a diversity of disciplines and institutional backgrounds--including biology, geology, chemistry, environmental science and civil engineering. The Research Experience for Teachers component was another innovative program element. The teachers participated in all field and laboratory research activities during the first six weeks, then developed a unit of study for their own classrooms to be implemented during the current school year. In addition to the six

  8. Group-effort applied research: expanding opportunities for undergraduate research through original, class-based research projects.

    PubMed

    Moore, Sean D; Teter, Ken

    2014-01-01

    Undergraduate research clearly enriches the educational development of participating students, but these experiences are limited by the inherent inefficiency of the standard one student-one mentor model for undergraduate research. Group-effort applied research (GEAR) was developed as a strategy to provide substantial numbers of undergraduates with meaningful research experiences. The GEAR curriculum delivers concept-driven lecture material and provides hands-on training in the context of an active research project from the instructor's laboratory. Because GEAR is structured as a class, participating students benefit from intensive, supervised research training that involves a built-in network of peer support and abundant contact with faculty mentors. The class format also ensures a relatively standardized and consistent research experience. Furthermore, meaningful progress toward a research objective can be achieved more readily with GEAR than with the traditional one student-one mentor model of undergraduate research because sporadic mistakes by individuals in the class are overshadowed by the successes of the group as a whole. Three separate GEAR classes involving three distinct research projects have been offered to date. In this article, we provide an overview of the GEAR format and review some of the recurring themes for GEAR instruction. We propose GEAR can serve as a template to expand student opportunities for life science research without sacrificing the quality of the mentored research experience. © 2014 The International Union of Biochemistry and Molecular Biology.

  9. An Undergraduate Student's Perspective on Geoscience Research

    NASA Astrophysics Data System (ADS)

    Wilder, A.; Feeley, T.; Michelfelder, G.

    2011-12-01

    formulate research questions, how to systematically investigate these questions, how to prioritize their time, and how to critique their work objectively. Finally, by presenting the results of their work at professional meetings and departmental seminars, they share in the excitement of making new discoveries and generating results that are truly used. The most significant challenges are time and money. Costs related to stipends, analytical expenses, and travel are substantial and likely prohibitive for many individual students without generous grant or institutional support. Time is equally prohibitive because it can involve periods of more than two years from initial planning to dissemination of the results, in addition to disruption of progression within the undergraduate course curriculum. The latter is particularly significant in this case where field work was conducted in the Southern Hemisphere during the traditional Spring Semesters. As such, success in field- and laboratory-based petrology research at the undergraduate level requires replacing the concept of a "senior thesis" with that of a longer term project beginning as early as, perhaps, the sophomore year.

  10. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    NASA Astrophysics Data System (ADS)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  11. Pathways to Undergraduate Research Experiences: A Multi-Institutional Study

    ERIC Educational Resources Information Center

    Mahatmya, Duhita; Morrison, Janet; Jones, Rebecca M.; Garner, Pamela W.; Davis, Shannon N.; Manske, Jill; Berner, Nancy; Johnson, Ann; Ditty, Jayna

    2017-01-01

    The positive impact of undergraduate research experiences on students' post-secondary success is well-documented. However, these conclusions are drawn from undergraduate students who already participate; very little research has explored the pathways by which students enter these experiences. Using data from a multi-institutional survey, we…

  12. Making the Most of Multi-Disciplinary Undergraduate Research Conferences

    ERIC Educational Resources Information Center

    Hill, Jennifer; West, Harry; Kneale, Pauline

    2018-01-01

    This is the second of two Directions articles, which together offer guidance to help the reader gain the maximum benefit from participating in institutional and national multi-disciplinary undergraduate research conferences. The earlier article introduced undergraduate research conferences, summarized the key benefits of participating in such…

  13. Undergraduate Research Experience for STEM Students: Efforts and Outcomes

    ERIC Educational Resources Information Center

    Zhang, Chuanlei; Swaid, Samar

    2017-01-01

    Undergraduate research for STEM students involves students who are attending college or universities pursuing a bachelor's degree, majoring in fields related to Science, Technology, Engineering and Mathematics (STEM). Research experience for STEM undergraduates has been viewed as a positive experience that has several benefits such as developing…

  14. Undergraduate Research in Physics as an Educational Tool

    NASA Astrophysics Data System (ADS)

    Hakim, Toufic M.; Garg, Shila

    2001-03-01

    The National Science Foundation's 1996 report "Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering and Technology" urged that in order to improve SME&T education, decisive action must be taken so that "all students have access to excellent undergraduate education in science .... and all students learn these subjects by direct experience with the methods and processes of inquiry." Research-related educational activities that integrate education and research have been shown to be valuable in improving the quality of education and enhancing the number of majors in physics departments. Student researchers develop a motivation to continue in science and engineering through an appreciation of how science is done and the excitement of doing frontier research. We will address some of the challenges of integrating research into the physics undergraduate curriculum effectively. The departmental and institutional policies and infrastructure required to help prepare students for this endeavor will be discussed as well as sources of support and the establishment of appropriate evaluation procedures.

  15. Providing Undergraduate Research Opportunities Through the World Rivers Observatory Collaborative Network

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Marsh, S. J.; Janmaat, A.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.

    2013-12-01

    Successful research collaboration exists between the University of the Fraser Valley (UFV), a primarily undergraduate-serving university located on the Fraser River in British Columbia, and the World Rivers Observatory that is coordinated through the Woods Hole Oceanographic Institution (WHOI) and the Woods Hole Research Center (WHRC). The World Rivers Observatory coordinates time-series sampling of 15 large rivers, with particular focus on the large Arctic rivers, the Ganges-Brahmaputra, Congo, Fraser, Yangtze (Changjiang), Amazon, and Mackenzie River systems. The success of this international observatory critically depends on the participation of local collaborators, such as UFV, that are necessary in order to collect temporally resolved data from these rivers. Several faculty members and undergraduate students from the Biology and Geography Departments of UFV received on-site training from the lead-PIs of the Global Rivers Observatory. To share information and ensure good quality control of sampling methods, WHOI and WHRC hosted two international workshops at Woods Hole for collaborators. For the past four years, faculty and students from UFV have been collecting a variety of bi-monthly water samples from the Fraser River for the World Rivers Observatory. UFV undergraduate students who become involved learn proper sampling techniques and are given the opportunity to design and conduct their own research. Students have collected, analyzed and presented data from this project at regional, national, and international scientific meetings. UFV undergraduate students have also been hosted by WHOI and WHRC as guest students to work on independent research projects. While at WHOI and WHRC, students are able to conduct research using state-of-the-art specialized research facilities not available at UFV.

  16. Student Perceptions on Live-Case Projects: Undergraduate Marketing Research

    ERIC Educational Resources Information Center

    Gundala, Raghava Rao; Singh, Mandeep; Baldwin, Andrew

    2014-01-01

    This paper is an investigation into undergraduate students' perceptions on use of live projects as a teaching pedagogy in marketing research courses. Students in undergraduate marketing research courses from fall 2009 to spring 2013 completed an online questionnaire consisting of 17 items. The results suggested that student understanding of…

  17. Relationship between Students' Scores on Research Methods and Statistics, and Undergraduate Project Scores

    ERIC Educational Resources Information Center

    Ossai, Peter Agbadobi Uloku

    2016-01-01

    This study examined the relationship between students' scores on Research Methods and statistics, and undergraduate project at the final year. The purpose was to find out whether students matched knowledge of research with project-writing skill. The study adopted an expost facto correlational design. Scores on Research Methods and Statistics for…

  18. Why Work with Undergraduate Researchers? Differences in Research Advisors’ Motivations and Outcomes by Career Stage

    PubMed Central

    Hayward, Charles N.; Laursen, Sandra L.; Thiry, Heather

    2017-01-01

    Undergraduate research is often hailed as a solution to increasing the number and quality of science, technology, engineering, and mathematics graduates needed to fill the high-tech jobs of the future. Student benefits of research are well documented but the emerging literature on advisors’ perspectives is incomplete: only a few studies have included the graduate students and postdocs who often serve as research advisors, and not much is known about why research advisors choose to work with undergraduate researchers. We report the motivations for advising undergraduate researchers, and the related costs and benefits of doing so, from 30 interviews with research advisors at various career stages. Many advisors stated intrinsic motivations, but a small group of early-career advisors expressed only instrumental motivations. We explore what this means for how advisors work with student researchers, the benefits students may or may not gain from the experience, and the implications for training and retaining research advisors who can provide high-quality research experiences for undergraduate students. PMID:28213583

  19. Methods for Retention of Undergraduate Students in Field-Based Research

    NASA Astrophysics Data System (ADS)

    Lehnen, J. N.

    2017-12-01

    Undergraduate students often participate in research by following the vision, creativity, and procedures established by their principal investigators. Students at the undergraduate level rarely get a chance to direct the course of their own research and have little experience creatively solving advanced problems and establishing project objectives. This lack of independence and ingenuity results in students missing out on some of the most key aspects of research. For the last two years, the Undergraduate Student Instrument Project (USIP) at the University of Houston has encouraged students to become more independent scientists by completing a research project from start to finish with minimal reliance on faculty mentors. As part of USIP, students were responsible for proposing scientific questions about the upper stratosphere, designing instruments to answer those questions, and launching their experiments into the atmosphere of Fairbanks, Alaska. Everything from formulation of experiment ideas to actual launching of the balloon borne payloads was planned by and performed by students; members of the team even established a student leadership system, handled monetary responsibilities, and coordinated with NASA representatives to complete design review requirements. This session will discuss the pros and cons of student-led research by drawing on USIP as an example, focusing specifically on how the experience impacted student engagement and retention in the program. This session will also discuss how to encourage students to disseminate their knowledge through conferences, collaborations, and educational outreach initiatives by again using USIP students as an example.

  20. Race and Gender Differences in Undergraduate Research Mentoring Structures and Research Outcomes.

    PubMed

    Aikens, Melissa L; Robertson, Melissa M; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Runyon, Christopher R; Eby, Lillian T; Dolan, Erin L

    2017-01-01

    Participating in undergraduate research with mentorship from faculty may be particularly important for ensuring the persistence of women and minority students in science. Yet many life science undergraduates at research universities are mentored by graduate or postdoctoral researchers (i.e., postgraduates). We surveyed a national sample of undergraduate life science researchers about the mentoring structure of their research experiences and the outcomes they realized from participating in research. We observed two common mentoring structures: an open triad with undergraduate-postgraduate and postgraduate-faculty ties but no undergraduate-faculty tie, and a closed triad with ties among all three members. We found that men and underrepresented minority (URM) students are significantly more likely to report a direct tie to their faculty mentors (closed triad) than women, white, and Asian students. We also determined that mentoring structure was associated with differences in student outcomes. Women's mentoring structures were associated with their lower scientific identity, lower intentions to pursue a science, technology, engineering, and mathematics (STEM) PhD, and lower scholarly productivity. URM students' mentoring structures were associated with higher scientific identity, greater intentions to pursue a STEM PhD, and higher scholarly productivity. Asian students reported lower scientific identity and intentions to pursue a STEM PhD, which were unrelated to their mentoring structures. © 2017 M. L. Aikens et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Development of a structured undergraduate research experience: Framework and implications.

    PubMed

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  2. Undergraduate Instruction in Empirical Research Methods in Communication: Assessment and Recommendations

    ERIC Educational Resources Information Center

    Parks, Malcolm R.; Faw, Meara; Goldsmith, Daena

    2011-01-01

    This study assesses the current state of undergraduate instruction in empirical research methods in communication and offers recommendations for enhancing such instruction. Responses to an online questionnaire were received from 149 communication-related programs at four-year colleges and universities. Just over 85% of responding programs offered…

  3. Toward a Conceptual Framework for Measuring the Effectiveness of Course-Based Undergraduate Research Experiences in Undergraduate Biology

    ERIC Educational Resources Information Center

    Brownell, Sara E.; Kloser, Matthew J.

    2015-01-01

    Recent calls for reform have advocated for extensive changes to undergraduate science lab experiences, namely providing more authentic research experiences for students. Course-based Undergraduate Research Experiences (CUREs) have attempted to eschew the limitations of traditional "cookbook" laboratory exercises and have received…

  4. Group-Effort Applied Research (GEAR): Expanding Opportunities for Undergraduate Research Through Original, Class-Based Research Projects

    PubMed Central

    Moore, Sean D.; Teter, Ken

    2014-01-01

    Undergraduate research clearly enriches the educational development of participating students, but these experiences are limited by the inherent inefficiency of the standard one student - one mentor model for undergraduate research. Group-Effort Applied Research (GEAR) was developed as a strategy to provide substantial numbers of undergraduates with meaningful research experiences. The GEAR curriculum delivers concept-driven lecture material and provides hands-on training in the context of an active research project from the instructor's lab. Because GEAR is structured as a class, participating students benefit from intensive, supervised research training that involves a built-in network of peer support and abundant contact with faculty mentors. The class format also ensures a relatively standardized and consistent research experience. Furthermore, meaningful progress toward a research objective can be achieved more readily with GEAR than with the traditional one student - one mentor model of undergraduate research because sporadic mistakes by individuals in the class are overshadowed by the successes of the group as a whole. Three separate GEAR classes involving three distinct research projects have been offered to date. In this paper, we provide an overview of the GEAR format and review some of the recurring themes for GEAR instruction. We propose GEAR can serve as a template to expand student opportunities for life science research without sacrificing the quality of the mentored research experience. PMID:24898007

  5. Research Experiences of Undergraduate Students at a Comprehensive University

    ERIC Educational Resources Information Center

    Tan, Emily B.

    2007-01-01

    Narrative inquiry was utilized to allow undergraduate students involved in an undergraduate research course to narrate their experiences in their research undertakings under the guidance of their respective mentors. A total of four focus groups representing the Bachelor of Arts and Letters, Bachelor of Commerce, Bachelor of Secondary Education,…

  6. [Glimpsing undergraduate research from the view of the advisors of Nursing scholarships].

    PubMed

    Erdmann, Alacoque Lorenzini; Leite, Joséte Luzia; Nascimento, Keyla Cristiane do; Lanzoni, Gabriela Marcellino de Melo

    2011-01-01

    This research aimed at understanding the meaning of undergraduate research for supervisors of Nursing scholarship students in a university in the South of Brazil. The methodological reference used was the Grounded Theory, by the means of interviews with seven undergraduate research scholarship advisors forming two sample groups. The phenomenon "glimpsing undergraduate research activities of research groups coordinated by nursing advisors, the basis of competency formation in research of the scholarships" emerged form the interrelation of six categories. To be a advisor and researcher of human resources in research form undergraduation requires pedagogical, instrumental, and managerial competencies associated to research policies of nursing and health.

  7. Chinese International Undergraduate Students at a U.S. University: A Mixed Methods Study of First-Year Academic Experiences and Achievement

    ERIC Educational Resources Information Center

    Ma, Wei

    2014-01-01

    The purpose of this study was to explore the first-year academic experiences and achievement of Chinese international undergraduate students in American higher education. To do so, I tracked a cohort of Chinese international undergraduates through their first-year at a public research university in the United States. Both qualitative and…

  8. Undergraduate research in medical education: a descriptive study of students' views.

    PubMed

    Oliveira, Cristiano C; de Souza, Renata C; Abe, Erika H Sassaki; Silva Móz, Luís E; de Carvalho, Lidia R; Domingues, Maria A C

    2014-03-17

    Medical students engage in curricular and extracurricular activities, including undergraduate research (UR). The advantages, difficulties and motivations for medical students pursuing research activities during their studies have rarely been addressed. In Brazil, some medical schools have included undergraduate research into their curriculum. The present study aimed to understand the reality of scientific practice among medical students at a well-established Brazilian medical school, analyzing this context from the students' viewpoint. A cross-sectional survey based on a questionnaire applied to students from years one to six enrolled in an established Brazilian medical school that currently has no curricular UR program. The questionnaire was answered by 415 students, 47.2% of whom were involved in research activities, with greater participation in UR in the second half of the course. Independent of student involvement in research activities, time constraints were cited as the main obstacle to participation. Among students not involved in UR, 91.1% said they favored its inclusion in the curriculum, since this would facilitate the development of such activity. This approach could signify an approximation between the axes of teaching and research. Among students who had completed at least one UR project, 87.7% said they would recommend the activity to students entering the course. Even without an undergraduate research program, students of this medical school report strong involvement in research activities, but discussion of the difficulties inherent in its practice is important to future developments.

  9. Uncovering Students' Preconceptions of Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Adedokun, Omolola A.; Burgess, Wilella D.

    2011-01-01

    Like all learners, undergraduate research interns bring to their research internships a variety of initial ideas, opinions, expectations, beliefs and attitudes about research internships. However, there is little published research on students' preconceptions about research internships and the relationships of these preconceptions to actual…

  10. Undergraduate Certificate Programs of Less than Two Years: 1991-92. Research Briefs, Volume 6, Number 1, 1995.

    ERIC Educational Resources Information Center

    Henderson, Cathy

    Many higher education institutions serve students enrolled in specialized training courses who receive undergraduate certificates rather than degrees. In academic year 1991-92, almost 65,000 postsecondary students earned certificates for programs of less than 1 year, and nearly 117,000 completed requirements for programs lasting between 1 and 2…

  11. An Introductory Research Experience in Mathematics for Undergraduates

    ERIC Educational Resources Information Center

    Johnston, William W.; Webster, Jonathan E.; Wilson, Christopher James

    2017-01-01

    This paper offers a strategic initiative designed to boost the level of collaborative mathematical research involving undergraduate mathematics students at Butler University. It describes goals, program design, logistics, and outcomes for an 8-day intensive summer experience in which undergraduate mathematics majors engaged in original…

  12. Transforming Undergraduate Research Opportunities Using Telepresence

    ERIC Educational Resources Information Center

    Pallant, Amy; McIntyre, Cynthia; Stephens, A. Lynn

    2016-01-01

    The National Science Foundation funded the "Transforming Remotely Conducted Research through Ethnography, Education, and Rapidly Evolving Technologies" (TREET) project to explore ways to utilize advances in technology and thus to provide opportunities for scientists and undergraduate students to engage in deep sea research. The…

  13. The undergraduate research fellows program: a unique model to promote engagement in research.

    PubMed

    Vessey, Judith A; DeMarco, Rosanna F

    2008-01-01

    Well-educated nurses with research expertise are needed to advance evidence-based nursing practice. A primary goal of undergraduate nursing curricula is to create meaningful participatory experiences to help students develop a research skill set that articulates with rapid career advancement of gifted, young graduates interested in nursing research and faculty careers. Three research enrichment models-undergraduate honors programs, research assistant work-for-hire programs, and research work/mentorship programs-to be in conjunction with standard research content are reviewed. The development and implementation of one research work/mentorship program, the Boston College undergraduate research fellows program (UGRF), is explicated. This process included surveying previous UGRFs followed by creating a retreat and seminars to address specific research skill sets. The research skill sets included (a) how to develop a research team, (b) accurate data retrieval, (c) ethical considerations, (d) the research process, (e) data management, (f) successful writing of abstracts, and (g) creating effective poster presentations. Outcomes include evidence of involvement in research productivity and valuing of evidenced-based practice through the UGRF mentorship process with faculty partners.

  14. Perspectives on Interdisciplinary Undergraduate Research

    ERIC Educational Resources Information Center

    Ülkü, M. Ali; Karkowski, Andrea M.; Lahm, Terry D.

    2018-01-01

    Undergraduate Research (UR) provides deeper experiential learning opportunities for students while increasing their self-efficacy, academic success and motivation to pursue graduate studies. Many real-world problems require an integrated solution and collaboration across different disciplines; therefore, it is important that students develop…

  15. An Evaluation of Research Ethics in Undergraduate Health Science Research Methodology Programs at a South African University.

    PubMed

    Coetzee, Tanya; Hoffmann, Willem A; de Roubaix, Malcolm

    2015-10-01

    The amended research ethics policy at a South African University required the ethics review of undergraduate research projects, prompting the need to explore the content and teaching approach of research ethics education in health science undergraduate programs. Two qualitative data collection strategies were used: document analysis (syllabi and study guides) and semi-structured interviews with research methodology coordinators. Five main themes emerged: (a) timing of research ethics courses, (b) research ethics course content, (c) sub-optimal use of creative classroom activities to facilitate research ethics lectures, (d) understanding the need for undergraduate project research ethics review, and (e) research ethics capacity training for research methodology lecturers and undergraduate project supervisors. © The Author(s) 2015.

  16. Valuing Professional Development Components for Emerging Undergraduate Researchers

    NASA Astrophysics Data System (ADS)

    Cheung, I.

    2015-12-01

    In 2004 the Hatfield Marine Science Center (HMSC) at Oregon State University (OSU) established a Research Experience for Undergraduates (REU) program to engage undergraduate students in hands-on research training in the marine sciences. The program offers students the opportunity to conduct research focused on biological and ecological topics, chemical and physical oceanography, marine geology, and atmospheric science. In partnership with state and federal government agencies, this ten-week summer program has grown to include 20+ students annually. Participants obtain a background in the academic discipline, professional development training, and research experience to make informed decisions about careers and advanced degrees in marine and earth system sciences. Professional development components of the program are designed to support students in their research experience, explore career goals and develop skills necessary to becoming a successful young marine scientist. These components generally include seminars, discussions, workshops, lab tours, and standards of conduct. These componentscontribute to achieving the following professional development objectives for the overall success of new emerging undergraduate researchers: Forming a fellowship of undergraduate students pursuing marine research Stimulating student interest and understanding of marine research science Learning about research opportunities at Oregon State University "Cross-Training" - broadening the hands-on research experience Exploring and learning about marine science careers and pathways Developing science communication and presentation skills Cultivating a sense of belonging in the sciences Exposure to federal and state agencies in marine and estuarine science Academic and career planning Retention of talented students in the marine science Standards of conduct in science Details of this program's components, objectives and best practices will be discussed.

  17. Evaluating an interdisciplinary undergraduate training program in health promotion research.

    PubMed

    Misra, Shalini; Harvey, Richard H; Stokols, Daniel; Pine, Kathleen H; Fuqua, Juliana; Shokair, Said M; Whiteley, John M

    2009-04-01

    The University of California at Irvine Interdisciplinary Summer Undergraduate Research Experience (ID-SURE) program had three objectives: (1) designing an interdisciplinary health promotion training curriculum for undergraduate research fellows; (2) developing measures for evaluating and assessing program-related educational processes and products; and (3) comparing these educational process and product measures between groups of students who did or did not receive the training. A total of 101 students participated in the ID-SURE program during 2005, 2006, and 2007. A longitudinal research design was employed whereby students' interdisciplinary attitudes and behaviors were assessed at the beginning and end of the training program. The interdisciplinary and intellectual qualities of students' academic and research products were assessed at the conclusion of the training activities. In addition, ID-SURE participants' interdisciplinary attitudes, behaviors, and research products were compared to those of 70 participants in another fellowship program that did not have an interdisciplinary training component. Exposing undergraduate research fellows to the interdisciplinary curriculum led to increased participation in, and positive attitudes about, interdisciplinary classroom and laboratory activities. Products, such as the integrative and interdisciplinary quality of student research projects, showed no differences when compared to those of undergraduates who were not exposed to the interdisciplinary curriculum. However, undergraduates exposed to the training engaged in more interdisciplinary behaviors at the end of the program than students who were not trained in interdisciplinary research techniques. The findings from this study offer evidence for the efficacy of the ID-SURE program for training undergraduate students in transdisciplinary concepts, methods, and skills that are needed for effective scientific collaboration. Additionally, this study makes two important

  18. Assessment of Course-Based Undergraduate Research Experiences: A Meeting Report

    PubMed Central

    Auchincloss, Lisa Corwin; Laursen, Sandra L.; Branchaw, Janet L.; Eagan, Kevin; Graham, Mark; Hanauer, David I.; Lawrie, Gwendolyn; McLinn, Colleen M.; Pelaez, Nancy; Rowland, Susan; Towns, Marcy; Trautmann, Nancy M.; Varma-Nelson, Pratibha; Weston, Timothy J.; Dolan, Erin L.

    2014-01-01

    The Course-Based Undergraduate Research Experiences Network (CUREnet) was initiated in 2012 with funding from the National Science Foundation program for Research Coordination Networks in Undergraduate Biology Education. CUREnet aims to address topics, problems, and opportunities inherent to integrating research experiences into undergraduate courses. During CUREnet meetings and discussions, it became apparent that there is need for a clear definition of what constitutes a CURE and systematic exploration of what makes CUREs meaningful in terms of student learning. Thus, we assembled a small working group of people with expertise in CURE instruction and assessment to: 1) draft an operational definition of a CURE, with the aim of defining what makes a laboratory course or project a “research experience”; 2) summarize research on CUREs, as well as findings from studies of undergraduate research internships that would be useful for thinking about how students are influenced by participating in CUREs; and 3) identify areas of greatest need with respect to CURE assessment, and directions for future research on and evaluation of CUREs. This report summarizes the outcomes and recommendations of this meeting. PMID:24591501

  19. Participant Trends in the Geosciences Research Experiences for Undergraduates Program

    NASA Astrophysics Data System (ADS)

    Walters, C. K.; Patino, L. C.; Rom, E. L.; Adams, A. S.

    2016-12-01

    The National Science Foundation (NSF) supports programs for undergraduate students to gain experience in research. In 2016, there were nearly 60 active Research Experience for Undergraduate (REU) sites across the nation that provided research opportunities in Geosciences (GEO). At these REU sites, students carried out independent research projects and had the chance to present the information at national conferences. The participants often joined research groups that included other undergraduate and graduate students, postdoctoral scholars, and investigators. Between 2009 and 2016, there were over 26,000 applications to GEO REU sites and about 1,953 applicants were selected to participate. Data for GEO REU sites has been collected using two mechanisms, direct queries to the REU site managers (2009-2012, and 2016) and analysis of award progress reports (2014-2015). The information collected since 2009 has provided a temporal description of who is participating in the GEO REU sites (e.g. gender, demographics, academic level). The analysis of the trends in the REU sites has shown an increase of women participating in the research opportunities across all disciplines, to the point that in some sites there is need to increase the participation of men. The number of minority and underrepresented students has also increased. Throughout this period, the academic level of the participants in GEO REU sites has also changed; the number of students who have completed only the first or second year of college has increased. The trends in the data allow NSF to understand who is participating in the REUs and to incentivize the research community to engage students who will benefit from these experiences, but who are not currently participating.

  20. Greater Research Opportunities (GRO) Undergraduate Fellowships

    EPA Pesticide Factsheets

    By enhancing and supporting quality environmental education for undergraduate students, the GRO supported fellows have provided new environmental research in the physical, biological, health, and social sciences as well as in engineering.

  1. Enhancing Undergraduate Students' Research and Writing

    ERIC Educational Resources Information Center

    Lumpkin, Angela

    2015-01-01

    Concern about the research and writing abilities of undergraduate students led to the development, implementation and enhancement of four sequential writing assignments in an introductory course. These writing assignments--which included a report on an interview of a professional in the field, a research paper on an aspirational career, a research…

  2. Enhancing Undergraduate Teaching and Research with a "Drosophila" Virginizing System

    ERIC Educational Resources Information Center

    Venema, Dennis R.

    2006-01-01

    Laboratory exercises using "Drosophila" crosses are an effective pedagogical method to complement traditional lecture and textbook presentations of genetics. Undergraduate thesis research is another common setting for using "Drosophila." A significant barrier to using "Drosophila" for undergraduate teaching or research is the time and skill…

  3. The Peer Assisted Teaching Model for Undergraduate Research at a HBCU

    ERIC Educational Resources Information Center

    Wu, Liyun; Lewis, Marilyn W.

    2018-01-01

    Despite wide application of research skills in higher education, undergraduate students reported research and computer anxiety, and low association between research and their professional goals. This study aims to assess whether peer-assisted mentoring programs would promote positive changes in undergraduates' attitudes toward research. Using a…

  4. Lowering Barriers to Undergraduate Research through Collaboration with Local Craft Breweries

    ERIC Educational Resources Information Center

    McDermott, M. Luke

    2016-01-01

    Laboratory research experiences are highly impactful learning environments for undergraduate students. However, a surprising number of chemistry students do not research. These students often do not research because they lack the time, interest, opportunity, or awareness. Course-based undergraduate research experiences can reach out to these…

  5. Course-based undergraduate research experiences in molecular biosciences-patterns, trends, and faculty support.

    PubMed

    Wang, Jack T H

    2017-08-15

    Inquiry-driven learning, research internships and course-based undergraduate research experiences all represent mechanisms through which educators can engage undergraduate students in scientific research. In life sciences education, the benefits of undergraduate research have been thoroughly evaluated, but limitations in infrastructure and training can prevent widespread uptake of these practices. It is not clear how faculty members can integrate complex laboratory techniques and equipment into their unique context, while finding the time and resources to implement undergraduate research according to best practice guidelines. This review will go through the trends and patterns in inquiry-based undergraduate life science projects with particular emphasis on molecular biosciences-the research-aligned disciplines of biochemistry, molecular cell biology, microbiology, and genomics and bioinformatics. This will provide instructors with an overview of the model organisms, laboratory techniques and research questions that are adaptable for semester-long projects, and serve as starting guidelines for course-based undergraduate research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Accelerated Learning: Undergraduate Research Experiences at the Texas A&M Cyclotron Institute

    NASA Astrophysics Data System (ADS)

    Yennello, S. J.

    The Texas A&M Cyclotron Institute (TAMU CI) has had an NSF funded Research Experiences for Undergraduates program since 2004. Each summer about a dozen students from across the country join us for the 10-week program. They are each imbedded in one of the research groups of the TAMU CI and given their own research project. While the main focus of their effort is their individual research project, we also have other activities to broaden their experience. For instance, one of those activities has been involvement in a dedicated group experiment. Because not every experimental group will run during those 10 weeks and the fact that some of the students are in theory research groups, a group research experience allows everyone to actually be involved in an experiment using the accelerator. In stark contrast to the REU students' very focused experience during the summer, Texas A&M undergraduates can be involved in research projects at the Cyclotron throughout the year, often for multiple years. This extended exposure enables Texas A&M students to have a learning experience that cannot be duplicated without a local accelerator. The motivation for the REU program was to share this accelerator experience with students who do not have that opportunity at their home institution.

  7. Physics in ;Real Life;: Accelerator-based Research with Undergraduates

    NASA Astrophysics Data System (ADS)

    Klay, J. L.

    All undergraduates in physics and astronomy should have access to significant research experiences. When given the opportunity to tackle challenging open-ended problems outside the classroom, students build their problem-solving skills in ways that better prepare them for the workplace or future research in graduate school. Accelerator-based research on fundamental nuclear and particle physics can provide a myriad of opportunities for undergraduate involvement in hardware and software development as well as ;big data; analysis. The collaborative nature of large experiments exposes students to scientists of every culture and helps them begin to build their professional network even before they graduate. This paper presents an overview of my experiences - the good, the bad, and the ugly - engaging undergraduates in particle and nuclear physics research at the CERN Large Hadron Collider and the Los Alamos Neutron Science Center.

  8. Telepresence-Enabled Remote Fieldwork: Undergraduate Research in the Deep Sea

    ERIC Educational Resources Information Center

    Stephens, A. Lynn; Pallant, Amy; McIntyre, Cynthia

    2016-01-01

    Deep-sea research is rarely available to undergraduate students. However, as telepresence technology becomes more available, doors may open for more undergraduates to pursue research that includes remote fieldwork. This descriptive case study is an initial investigation into whether such technology might provide a feasible opportunity for…

  9. Undergraduate Chemistry Education: A Workshop Summary

    ERIC Educational Resources Information Center

    Sawyer, Keegan; Alper, Joe

    2014-01-01

    "Undergraduate Chemistry Education" is the summary of a workshop convened in May 2013 by the Chemical Science Roundtable of the National Research Council to explore the current state of undergraduate chemistry education. Research and innovation in undergraduate chemistry education has been done for many years, and one goal of this…

  10. Coping self-efficacy of Chinese nursing undergraduates with their research projects.

    PubMed

    Zhang, Wei; Li, Kun; Zhang, XiuMin; Chen, Li

    2016-10-01

    Undergraduate nursing education includes both professional knowledge and research skills. With regard to training nursing professionals for future healthcare settings, the ability to conduct research is fundamental for nurses after they graduate from universities. However, how nursing students develop coping self-efficacy and scientific skills as a specific ability during their professional study has received little attention. We studied nursing undergraduates' scientific research ability and its associated factors in the Chinese context and evaluated their self-efficacy for coping with research tasks. A total of 134 nursing undergraduates participated in the study. A purposely designed 22-item questionnaire was used to quantify students' research ability in implementing their research projects and the associated factors. Coping self-efficacy was measured with a modified Chinese version. The mean total self-efficacy score was 50.78±6.604 (M±SD). The majority (63.4%) of the students' coping self-efficacy was at a moderate level. Having "the ability to write a manuscript before conducting research projects" (P=0.006) and "topics determined by instructors after discussion with group members" (P=0.005) were the two predictive factors of good coping self-efficacy in students. Nursing undergraduates' self-efficacy was high enough to cope with their scientific research projects, but the information on procedures needed for project application was not abundant, and new training programs might be needed to meet the needs of nursing undergraduates. We should make full use of the predictors of good coping self-efficacy and promote nursing undergraduates' research ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Emphasizing Research (Further) in Undergraduate Technical Communication Curricula: Involving Undergraduate Students with an Academic Journal's Publication and Management

    ERIC Educational Resources Information Center

    Ford, Julie Dyke; Newmark, Julianne

    2011-01-01

    This article presents follow-up information to a previous publication regarding ways to increase emphasis on research skills in undergraduate Technical Communication curricula. We detail the ways our undergraduate program highlights research by requiring majors to complete senior thesis projects that culminate in submission to an online…

  12. Undergraduate Research Experience in Ocean/Marine Science (URE-OMS) with African Student Component

    DTIC Science & Technology

    2011-01-01

    The Undergraduate Research Experience in Ocean/Marine Science program supports active participation by underrepresented undergraduate students in remote sensing and Ocean/Marine Science research training activities. The program is based on a model for undergraduate research programs supported by the National Science Foundation . The

  13. A First-Year Course That Teaches Research Skills

    ERIC Educational Resources Information Center

    Czarneski, Debra

    2013-01-01

    In the Fall semester of 2009, I taught a first-year course that focused on skills required to successfully complete undergraduate research. This paper will discuss the Simpson College first-year course requirements, my course goals, the graph theory topics covered, student feedback, and instructor reflection.

  14. The Role of High School Research Experiences in Shaping Students' Research Self-Efficacy and Preparation for Undergraduate Research Participation

    ERIC Educational Resources Information Center

    Swan, Amy K.; Inkelas, Karen Kurotsuchi; Jones, Jill N.; Pretlow, Joshua; Keller, Tierney F.

    2018-01-01

    The effects of undergraduate research participation are well documented, but less is known about students' pathways into undergraduate research participation. This mixed-methods study explored the role of an International Baccalaureate research project in students' development of research self-efficacy in high school, and how this development…

  15. A Social Capital Perspective on the Mentoring of Undergraduate Life Science Researchers: An Empirical Study of Undergraduate-Postgraduate-Faculty Triads

    ERIC Educational Resources Information Center

    Aikens, Melissa L.; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Eby, Lillian T.; Dolan, Erin L.

    2016-01-01

    Undergraduate researchers at research universities are often mentored by graduate students or postdoctoral researchers (referred to collectively as "postgraduates") and faculty, creating a mentoring triad structure. Triads differ based on whether the undergraduate, postgraduate, and faculty member interact with one another about the…

  16. Undergraduate Science Coursework: Teachers' Goal Statements and How Students Experience Research

    ERIC Educational Resources Information Center

    Van der Rijst, Roeland M.; Visser-Wijnveen, Gerda J.; Verloop, Nico; Van Driel, Jan H.

    2013-01-01

    Understanding the relation between teachers' goal statements and students' experiences about the position of research in undergraduate coursework can give use insight into ways to integrate research and teaching and foster undergraduate research. In this study, we examined to what extent teachers' goal statements agreed with students' experiences…

  17. Developing Research Skills across the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Gray, Simon; Coates, Lee; Fraser, Ann; Pierce, Pam

    2015-01-01

    This chapter describes consortial efforts within the Great Lakes Colleges Association to share expertise and programming to build research skills throughout the undergraduate curriculum. Strategies to scaffold research skill development are provided from Allegheny College, Kalamazoo College, and The College of Wooster.

  18. Participation in Research Program: A Novel Course in Undergraduate Education of Life Science

    ERIC Educational Resources Information Center

    Zhou, Xuanwei; Lin, Juan; Yin, Yizhou; Sun, Xiaofen; Tang, Kexuan

    2007-01-01

    A novel course, "Participation in Research Program (PRP)" in life sciences is open for 1st to 3rd year undergraduates. PRP introduces the principles of a variety of biological methods and techniques and also offers an opportunity to explore some specific knowledge in more detail prior to thesis research. In addition, the PRP introduces some…

  19. The lived experience of first year undergraduate student nurses: A hermeneutic phenomenological study.

    PubMed

    Porteous, Debra J; Machin, Alison

    2018-01-01

    This study gives insight into the experiences and perceptions of one group of undergraduate nursing students as they make the transition into Higher Education and the nursing profession, during the first year, of their three-year programme. Research has shown that first year undergraduate experience is complex and challenging for any student. For undergraduate nursing students, the process of achieving additional professional practice competencies required for United Kingdom nursing registration adds additional responsibility and potentially, more pressure. Few studies have considered student nurses' lived experiences during their first year of study in any depth. This study aimed to understand how one group of undergraduate nursing students perceived their experiences of the transition into higher education and nursing profession. Framed within an interpretive philosophical paradigm, a hermeneutic phenomenological approach enabled the exploration of participants' lived experiences. The study took place at a Higher Education Institution approved nurse education provider in the North of England, United Kingdom (UK). Following ethical approval, ten first year student nurses from a range of different backgrounds gave informed consent to participate. Over a one year period between 2013 and 2014 participants provided data at three points during their first year (four months, eight months and twelve months) via semi-structured, digitally recorded individual interviews (n=30) and digital recordings of critical incident accounts as they occurred (n=30). Data was transcribed verbatim, systematically thematically analysed drawing on hermeneutic phenomenological principles and verified for thematic accuracy by participants in 2015. Five themes emerged from the data: uncertainty; expectations; learning to survive; seeking support; and moving forward. Findings identify that the participants had developed skills to survive however considerable variation in their experience

  20. Race and Gender Differences in Undergraduate Research Mentoring Structures and Research Outcomes

    PubMed Central

    Aikens, Melissa L.; Robertson, Melissa M.; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Runyon, Christopher R.; Eby, Lillian T.; Dolan, Erin L.

    2017-01-01

    Participating in undergraduate research with mentorship from faculty may be particularly important for ensuring the persistence of women and minority students in science. Yet many life science undergraduates at research universities are mentored by graduate or postdoctoral researchers (i.e., postgraduates). We surveyed a national sample of undergraduate life science researchers about the mentoring structure of their research experiences and the outcomes they realized from participating in research. We observed two common mentoring structures: an open triad with undergraduate–postgraduate and postgraduate–faculty ties but no undergraduate–faculty tie, and a closed triad with ties among all three members. We found that men and underrepresented minority (URM) students are significantly more likely to report a direct tie to their faculty mentors (closed triad) than women, white, and Asian students. We also determined that mentoring structure was associated with differences in student outcomes. Women’s mentoring structures were associated with their lower scientific identity, lower intentions to pursue a science, technology, engineering, and mathematics (STEM) PhD, and lower scholarly productivity. URM students’ mentoring structures were associated with higher scientific identity, greater intentions to pursue a STEM PhD, and higher scholarly productivity. Asian students reported lower scientific identity and intentions to pursue a STEM PhD, which were unrelated to their mentoring structures. PMID:28550078

  1. Introducing Undergraduates to a Research Laboratory

    ERIC Educational Resources Information Center

    Weinberg, Robert

    1974-01-01

    Discusses a student project which is intended to teach undergraduates concepts and techniques of nuclear physics, experimental methods used in particle detection, and provide experience in a functioning research environment. Included are detailed procedures for carrying out the project. (CC)

  2. Developing an Undergraduate Astronomical Research Program

    NASA Astrophysics Data System (ADS)

    Genet, R. M.

    2007-05-01

    Time-series astronomical photometry is an area of scientific research well suited to amateurs and undergraduates, and their backyard and campus observatories. I describe two past one-semester community college research programs, one six year ago and one last fall (2006), as well as a program planned for this coming fall (2007). The 2001 program, a course at Central Arizona College, utilized a robotic telescope at the Fairborn Observatory. Results were presented at the 200th meeting of the American Astronomical Society. This past fall, three students, in a 17-week, one-semester course at Cuesta College, were able to plan a research program, make several thousand CCD photometric observations, reduce and analyze their data, write up their results and, on the last day of class, send their paper off to a refereed journal, the JAAVSO. A course is being offered this coming fall (2007) that will involve about a dozen students (including high school students), several local amateur astronomers, and at least three CCD- equipped semi-automatic telescopes. Potential solutions to "scaling up" challenges created by increased class size are discussed.

  3. Imaging Spectrograph as a Tool to Enhance the Undergraduate Student Research Experience

    NASA Astrophysics Data System (ADS)

    Williams, B.; Nielsen, K.; Johnson, S.

    2015-12-01

    Undergraduate students often engage in research activities that are part of a larger project outlined by research faculty, while it is less common for students to explore and define their own research project. The later has been shown to have tremendous impact on the learning outcome of the students and provide a stronger sense of pride and ownership of the research project. It is unrealistic to expect starting undergraduate students to define transformative research projects. However, with the proper training and guidance student-driven transformative research is possible for upper division students. We have instituted a student research paradigm with focus on the development of student research skills in coordination with their course progress. We present here a specific student project that engage students in aeronomy research activities and provide them with a solid base to establish their own research projects for senior year. The core of the project is an imaging spectrograph, which is constructed, tested, and calibrated by the students. The instrument provides unique opportunities student research projects across subject such as optics, quantum mechanics, and how these subjects are applied in the geosciences of aeronomy and space physics.

  4. An entrepreneurial training model to enhance undergraduate training in biomedical research.

    PubMed

    Kamangar, Farin; Silver, Gillian; Hohmann, Christine; Hughes-Darden, Cleo; Turner-Musa, Jocelyn; Haines, Robert Trent; Jackson, Avis; Aguila, Nelson; Sheikhattari, Payam

    2017-01-01

    Undergraduate students who are interested in biomedical research typically work on a faculty member's research project, conduct one distinct task (e.g., running gels), and, step by step, enhance their skills. This "apprenticeship" model has been helpful in training many distinguished scientists over the years, but it has several potential drawbacks. For example, the students have limited autonomy, and may not understand the big picture, which may result in students giving up on their goals for a research career. Also, the model is costly and may greatly depend on a single mentor. The NIH Building Infrastructure Leading to Diversity (BUILD) Initiative has been established to fund innovative undergraduate research training programs and support institutional and faculty development of the recipient university. The training model at Morgan State University (MSU), namely " A S tudent- C entered En trepreneurship D evelopment training model" (ASCEND), is one of the 10 NIH BUILD-funded programs, and offers a novel, experimental "entrepreneurial" training approach. In the ASCEND training model, the students take the lead. They own the research, understand the big picture, and experience the entire scope of the research process, which we hypothesize will lead to a greater sense of self-efficacy and research competency, as well as an enhanced sense of science identity. They are also immersed in environments with substantial peer support, where they can exchange research ideas and share experiences. This is important for underrepresented minority students who might have fewer role models and less peer support in conducting research. In this article, we describe the MSU ASCEND entrepreneurial training model's components, rationale, and history, and how it may enhance undergraduate training in biomedical research that may be of benefit to other institutions. We also discuss evaluation methods, possible sustainability solutions, and programmatic challenges that can affect all

  5. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  6. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    PubMed Central

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  7. An Undergraduate Research Experience on Studying Variable Stars

    NASA Astrophysics Data System (ADS)

    Amaral, A.; Percy, J. R.

    2016-06-01

    We describe and evaluate a summer undergraduate research project and experience by one of us (AA), under the supervision of the other (JP). The aim of the project was to sample current approaches to analyzing variable star data, and topics related to the study of Mira variable stars and their astrophysical importance. This project was done through the Summer Undergraduate Research Program (SURP) in astronomy at the University of Toronto. SURP allowed undergraduate students to explore and learn about many topics within astronomy and astrophysics, from instrumentation to cosmology. SURP introduced students to key skills which are essential for students hoping to pursue graduate studies in any scientific field. Variable stars proved to be an excellent topic for a research project. For beginners to independent research, it introduces key concepts in research such as critical thinking and problem solving, while illuminating previously learned topics in stellar physics. The focus of this summer project was to compare observations with structural and evolutionary models, including modelling the random walk behavior exhibited in the (O-C) diagrams of most Mira stars. We found that the random walk could be modelled by using random fluctuations of the period. This explanation agreed well with observations.

  8. A Survey of Instructional Support for Undergraduate Research Programs

    ERIC Educational Resources Information Center

    Hensley, Merinda Kaye

    2015-01-01

    Undergraduate research and other high-impact educational practices simulate real-world learning environments and present an opportunity for high-level information literacy teaching to be better incorporated into the curriculum. The purpose of this survey is to examine efforts of libraries currently offering IL instruction to undergraduate research…

  9. Cultivating the scientific research ability of undergraduate students in teaching of genetics.

    PubMed

    Xing, Wan-jin; Morigen, Morigen

    2016-11-20

    The classroom is the main venue for undergraduate teaching. It is worth pondering how to cultivate undergraduate's research ability in classroom teaching. Here we introduce the practices and experiences in teaching reform in genetics for training the research quality of undergraduate students from six aspects: (1) constructing the framework for curriculum framework systematicaly, (2) using the teaching content to reflect research progress, (3) explaining knowledge points with research activities, (4) explaining the scientific principles and experiments with PPT animation, (5) improving English reading ability through bilingual teaching, and (6) testing students' analysing ability through examination. These reforms stimulate undergraduate students' enthusiasm for learning, cultivate their ability to find, analyze and solve scientific problems, and improve their English reading and literature reviewing capacity, which lay a foundation for them to enter the field of scientific research.

  10. Role of the Undergraduate Student Research Assistant in the New Millennium

    PubMed Central

    2004-01-01

    In this study, we analyze the contribution of the undergraduate student who participates in the process of generating scientific data and developing a research project using Brazilian research as an example. Historically, undergraduate students have performed the critical role of research assistants in developing countries. This aspect has been underappreciated as a means of generating scientific data in Brazilian research facilities. Brazilian educational institutions are facing major age-related generational changes among the science faculty within the next 5–10 yr. A lack of adequate support for graduate students leads to a concern that undergraduates will not be interested in choosing research assistant programs and, subsequently, academic research careers. To remedy this situation it is important to focus on ways to encourage new research careers and enhance university–industry collaborations. PMID:15592596

  11. Why Work with Undergraduate Researchers? Differences in Research Advisors' Motivations and Outcomes by Career Stage.

    PubMed

    Hayward, Charles N; Laursen, Sandra L; Thiry, Heather

    2017-01-01

    Undergraduate research is often hailed as a solution to increasing the number and quality of science, technology, engineering, and mathematics graduates needed to fill the high-tech jobs of the future. Student benefits of research are well documented but the emerging literature on advisors' perspectives is incomplete: only a few studies have included the graduate students and postdocs who often serve as research advisors, and not much is known about why research advisors choose to work with undergraduate researchers. We report the motivations for advising undergraduate researchers, and the related costs and benefits of doing so, from 30 interviews with research advisors at various career stages. Many advisors stated intrinsic motivations, but a small group of early-career advisors expressed only instrumental motivations. We explore what this means for how advisors work with student researchers, the benefits students may or may not gain from the experience, and the implications for training and retaining research advisors who can provide high-quality research experiences for undergraduate students. © 2017 C. N. Hayward et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. An Applied Project-Driven Approach to Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Karls, Michael A.

    2017-01-01

    In this paper I will outline the process I have developed for conducting applied mathematics research with undergraduates and give some examples of the projects we have worked on. Several of these projects have led to refereed publications that could be used to illustrate topics taught in the undergraduate curriculum.

  13. Learning by Doing: The Challenge of Engaging Undergraduates in Economics Research

    ERIC Educational Resources Information Center

    Brunnermeier, Smita

    2017-01-01

    This article describes strategies developed at Princeton University to foster and promote research by all undergraduate students majoring in economics. It describes core features of the undergraduate research program and provides tangible recommendations for addressing resource constraints, and for incentivizing faculty advisors and students to…

  14. Research profile of physiotherapy undergraduates in Nigeria.

    PubMed

    Adeniyi, Ade F; Ekechukwu, Nelson E; Umar, Lawan; Ogwumike, Omoyemi O

    2013-01-01

    Physiotherapy training in Nigeria is almost 50 years old with no history of appraisal of research projects produced by the physiotherapy students. Physiotherapy students complete research projects in partial fulfilment of the requirements for graduation. An appraisal will reveal areas of strength and weakness in the research requirement for students, potentially leading to better research capacity and promoting evidence-based clinical practice among graduates. This study describes issues related to the study design, scope, statistical analysis and supervision of physiotherapy undergraduates in Nigerian universities. This retrospective study analysed 864 projects undertaken by Nigerian physiotherapy students between years 2000 and 2010. A maximum of 20 projects per academic year were randomly selected from each of the seven physiotherapy institutions in Nigeria. Data were obtained using a self-designed data retrieval form and analysed using descriptive and inferential statistics. Cross-sectional surveys constituted 47.6% of the research projects with mainly non-probability sampling (57.7%) and lack of objective sample size determination in 91.6% of the projects. Most projects (56.4%) did not report any ethical approval. The particular university attended (χ2 = 109.5, P = 0.0001), type of degree offered (χ2 = 47.24, P = 0.00001) and the academic qualification of supervisors (χ2 = 21.99, P = 0.001) were significantly related to the strength of the research design executed by students. Most research projects carried out by Nigerian physiotherapy students were cross-sectional, characterised by arbitrary sample sizes, and were conducted on human subjects but most without report of ethical approval. Efforts to improve research methodology, documentation and exploration of a wider range of research areas are needed to strengthen this educational experience for students.

  15. Undergraduate Research: Three Institutions' Success Stories. Research Corporation Annual Report, 1999.

    ERIC Educational Resources Information Center

    Research Corp., Tucson, AZ.

    This annual report describes the 1999 activities of Research Corporation, a foundation that supports research programs at colleges and universities in the United States and Canada. It focuses on three primarily undergraduate institutions, two private and one public, that are active producers of published research and students going into the…

  16. A model undergraduate research institute for study of emerging non-contact measurement technologies and techniques

    NASA Astrophysics Data System (ADS)

    Dvonch, Curt; Smith, Christopher; Bourne, Stefanie; Blandino, Joseph R.; Miles, Jonathan J.

    2006-04-01

    The Infrared Development and Thermal Structures Laboratory (IDTSL) is an undergraduate research laboratory in the College of Integrated Science and Technology (CISAT) at James Madison University (JMU) in Harrisonburg, Virginia. During the 1997-98 academic year, Dr. Jonathan Miles established the IDTSL at JMU with the support of a collaborative research grant from the NASA Langley Research Center and with additional support from the College of Integrated Science and Technology at JMU. The IDTSL supports research and development efforts that feature non-contact thermal and mechanical measurements and advance the state of the art. These efforts all entail undergraduate participation intended to significantly enrich their technical education. The IDTSL is funded by major government organizations and the private sector and provides a unique opportunity to undergraduates who wish to participate in projects that push the boundaries of non-contact measurement technologies, and provides a model for effective hands-on, project oriented, student-centered learning that reinforces concepts and skills introduced within the Integrated Science and Technology (ISAT) curriculum. The lab also provides access to advanced topics and emerging measurement technologies; fosters development of teaming and communication skills in an interdisciplinary environment; and avails undergraduates of professional activities including writing papers, presentation at conferences, and participation in summer internships. This paper provides an overview of the Infrared Development and Thermal Structures Laboratory, its functionality, its record of achievements, and the important contribution it has made to the field of non-contact measurement and undergraduate education.

  17. Vermont EPSCoR Streams Project: Engaging High School and Undergraduate Students in Watershed Research

    NASA Astrophysics Data System (ADS)

    Ray, E.; McCabe, D.; Sheldon, S.; Jankowski, K.; Haselton, L.; Luck, M.; van Houten, J.

    2009-12-01

    The Vermont EPSCoR Streams Project engages a diverse group of undergraduates, high school students, and their teachers in hands-on water quality research and exposes them to the process of science. The project aims to (1) recruit students to science careers and (2) create a water quality database comprised of high-quality data collected by undergraduates and high school groups. The project is the training and outreach mechanism of the Complex Systems Modeling for Environmental Problem Solving research program, an NSF-funded program at the University of Vermont (UVM) that provides computational strategies and fresh approaches for understanding how natural and built environments interact. The Streams Project trains participants to collect and analyze data from streams throughout Vermont and at limited sites in Connecticut, New York, and Puerto Rico. Participants contribute their data to an online database and use it to complete individual research projects that focus on the effect of land use and precipitation patterns on selected measures of stream water quality. All undergraduates and some high school groups are paired with a mentor, who is either a graduate student or a faculty member at UVM or other college. Each year, undergraduate students and high school groups are trained to (1) collect water and macroinvertebrate samples from streams, (2) analyze water samples for total phosphorus, bacteria, and total suspended solids in an analytical laboratory, and/or (3) use geographic information systems (GIS) to assess landscape-level data for their watersheds. After training, high school groups collect samples from stream sites on a twice-monthly basis while undergraduates conduct semi-autonomous field and laboratory research. High school groups monitor sites in two watersheds with contrasting land uses. Undergraduate projects are shaped by the interests of students and their mentors. Contribution to a common database provides students with the option to expand the

  18. Incorporating "Ethics in Science" into a Summer Undergraduate Research Program.

    ERIC Educational Resources Information Center

    Shachter, Amy M.; McNelis, Brian J.; Shanks, Thomas

    1999-01-01

    Describes a program at Santa Clara University, California where undergraduates participated in weekly Ethics in Science discussions while conducting scientific research. The program was successful in improving the ethical sensitivity, judgment, and commitment of the undergraduates. (WRM)

  19. Entering Research: A course that creates community and structure for beginning undergraduate researchers in the STEM disciplines

    NASA Astrophysics Data System (ADS)

    Balster, N.

    2009-12-01

    The benefits of undergraduate research are well documented such that these experiences have been incorporated into many school curricula. However, students still face many challenges (e.g. community establishment, identifying a mentor) when beginning research or are insufficiently supported to be successful in them. To help students overcome these challenges, we developed a novel course, called Entering Research, which helps undergraduates navigate the research experience and provides a supportive community of peers and experienced researchers as course facilitators. Following a teaching as research model, we studied the impact of this course over the three years it has been offered (2006-09). To date, 83 students who completed the course were given a pre and post assessment of learning gains (77% response). These students were also asked to answer a series of questions related to confidence, skills, and knowledge at course end, which we also compared to a group of similar students (n=92) who did not take the course, but were engaged in undergraduate research (63% response). Overall, we found that students value the Entering Research course, as they rated all of the topics covered in the seminar as helpful to their learning. Learning about research ethics and developing a research proposal were rated as most helpful, while web-based discussions and visiting peer laboratories were ranked lowest among the 20 survey questions. Relative to the post assessments, when aggregated by category, confidence, skill, and knowledge all significantly increased: knowledge at 22%, followed by skills (13%), and confidence (10%). All but two areas of confidence were self-rated as significant gains (p<0.01). All but two skills showed significant increases (p<0.01). And all five knowledge questions increased significantly (p<0.01). To test if these gains were related to the course, we compared these results to control group assessments. Students in the Entering Research course were

  20. The Svalbard REU Program: Undergraduates Pursuing Arctic Climate Change Research on Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Roof, S.; Werner, A.

    2007-12-01

    The Svalbard Research Experiences for Undergraduates (REU) program sponsored by the Arctic Natural Sciences Program of the National Science Foundation has been successfully providing international field research experiences since 2004. Each year, 7-9 undergraduate students have participated in 4-5 weeks of glacial geology and climate change fieldwork on Spitsbergen in the Svalbard archipelago in the North Atlantic (76- 80° N lat.). While we continue to learn new and better ways to run our program, we have learned specific management and pedagogical strategies that allow us to streamline our logistics and to provide genuine, meaningful research opportunities to undergraduate students. We select student participants after extensive nationwide advertising and recruiting. Even before applying to the program, students understand that they will be doing meaningful climate change science, will take charge of their own project, and will be expected to continue their research at their home institution. We look for a strong commitment of support from a student's advisor at their home institution before accepting students into our program. We present clear information, including participant responsibilities, potential risks and hazards, application procedures, equipment needed, etc on our program website. The website also provides relevant research papers and data and results from previous years, so potential participants can see how their efforts will contribute to growing body of knowledge. New participants meet with the previous years' participants at a professional meeting (our "REUnion") before they start their field experience. During fieldwork, students are expected to develop research questions and test their own hypotheses while providing and responding to peer feedback. Professional assessment by an independent expert provides us with feedback that helps us improve logistical procedures and shape our educational strategies. The assessment also shows us how

  1. A program for undergraduate research into the mechanisms of sensory coding and memory decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calin-Jageman, R J

    This is the final technical report for this DOE project, entitltled "A program for undergraduate research into the mechanisms of sensory coding and memory decay". The report summarizes progress on the three research aims: 1) to identify phyisological and genetic correlates of long-term habituation, 2) to understand mechanisms of olfactory coding, and 3) to foster a world-class undergraduate neuroscience program. Progress on the first aim has enabled comparison of learning-regulated transcripts across closely related learning paradigms and species, and results suggest that only a small core of transcripts serve truly general roles in long-term memory. Progress on the second aimmore » has enabled testing of several mutant phenotypes for olfactory behaviors, and results show that responses are not fully consistent with the combinitoral coding hypothesis. Finally, 14 undergraduate students participated in this research, the neuroscience program attracted extramural funding, and we completed a successful summer program to enhance transitions for community-college students into 4-year colleges to persue STEM fields.« less

  2. STEERing an IDeA in Undergraduate Research at a Rural Research Intensive University.

    PubMed

    Sens, Donald A; Cisek, Karen L; Garrett, Scott H; Somji, Seema; Dunlevy, Jane R; Sens, Mary Ann; Conway, Pat; Doze, Van A

    2017-01-01

    This study documents outcomes, including student career choices, of the North Dakota Institutional Development Award Networks of Biomedical Research Excellence program that provides 10-week, summer undergraduate research experiences at the University of North Dakota School of Medicine and Health Sciences. Program evaluation initiated in 2008 and, to date, 335 students have completed the program. Of the 335, 214 students have successfully completed their bachelor's degree, 102 are still undergraduates, and 19 either did not complete a bachelor's degree or were lost to follow-up. The program was able to track 200 of the 214 students for education and career choices following graduation. Of these 200, 76% continued in postgraduate health-related education; 34.0% and 20.5% are enrolled in or have completed MD or PhD programs, respectively. Other postbaccalaureate pursuits included careers in pharmacy, optometry, dentistry, public health, physical therapy, nurse practitioner, and physician's assistant, accounting for an additional 21.5%. Most students electing to stop formal education at the bachelor's degree also entered fields related to health care or science, technology, engineering, and mathematics (19.5%), with only a small number of the 200 students tracked going into service or industries which lacked an association with the health-care workforce (4.5%). These student outcomes support the concept that participation in summer undergraduate research boosts efforts to populate the pipeline of future researchers and health professionals. It is also an indication that future researchers and health professionals will be able to communicate the value of research in their professional and social associations. The report also discusses best practices and issues in summer undergraduate research for students originating from rural environments.

  3. Evaluating the Effectiveness of Lecture Capture: Lessons Learned from an Undergraduate Political Research Class

    ERIC Educational Resources Information Center

    Roberts, James C.

    2015-01-01

    This article presents the results of a 4-year quasi-experimental study of the effectiveness of lecture capture in an undergraduate political research class. Students self-enrolled in either a traditional in-class lecture-discussion section or a fully online section of a required political research course. The class sessions from the in-class…

  4. Promoting Undergraduate Research through Integrative Learning

    ERIC Educational Resources Information Center

    Lewis, Elise C.

    2017-01-01

    Educators in higher education often seek innovative pedagogies to include in their classrooms. This article describes an integrative learning experience and details the planning, implementation, considerations, and benefits of creating a major-specific undergraduate research day. The event created an opportunity for students to gain confidence and…

  5. An Outline of a Proposed Five- plus Three-Year Combined Undergraduate-Master's Degree for Clinical Medicine Majors at Nanjing Medical University

    ERIC Educational Resources Information Center

    Gao, Xing-Ya; Yu, Rong-Bin; Shen, Hong-Bing; Chen, Qi

    2014-01-01

    To build an effective model to train excellent doctors, Nanjing Medical University has proposed a five- plus three-year combined undergraduate-master's clinical medicine degree program. The program integrates undergraduate education, the education of research students, and standardized doctor residency training into a single system, allowing…

  6. Undergraduate GPAs, MCAT scores, and academic performance the first 2 years in podiatric medical school at Des Moines University.

    PubMed

    Yoho, Robert M; Antonopoulos, Kosta; Vardaxis, Vassilios

    2012-01-01

    This study was performed to determine the relationship between undergraduate academic performance and total Medical College Admission Test score and academic performance in the podiatric medical program at Des Moines University. The allopathic and osteopathic medical professions have published educational research examining this relationship. To our knowledge, no such educational research has been published for podiatric medical education. The undergraduate cumulative and science grade point averages and total Medical College Admission Test scores of four podiatric medical classes (2007-2010, N = 169) were compared with their academic performance in the first 2 years of podiatric medical school using pairwise Pearson product moment correlations and multiple regression analysis. Significant low to moderate positive correlations were identified between undergraduate cumulative and science grade point averages and student academic performance in years 1 and 2 of podiatric medical school for each of the four classes (except one) and the pooled data. There was no significant correlation between Medical College Admission Test score and academic performance in years 1 and 2 (except one) and the pooled data. These results identify undergraduate cumulative grade point average as the strongest cognitive admissions variable in predicting academic performance in the podiatric medicine program at Des Moines University, followed by undergraduate science grade point average. These results also suggest limitations of the total Medical College Admission Test score in predicting academic performance. Information from this study can be used in the admissions process and to monitor student progress.

  7. Insights for Academic Developers from Three International Undergraduate Research Program Resources

    ERIC Educational Resources Information Center

    Allison, Meredith; Miller, Paul

    2018-01-01

    Undergraduate research is recognized as a high-impact educational practice (Kuh & O'Donnell, 2013), and increasingly it occurs world-wide in higher education, in particular in the United States, United Kingdom, and Australia. In each of these countries, undergraduate research is delivered through a variety of pedagogical approaches that…

  8. Involving Undergraduate Students in Educational Research: Achieving Two Goals at Once.

    ERIC Educational Resources Information Center

    Staik, Irene M.; Rogers, Julia S.

    In a relatively small, predominantly undergraduate university, it is often hard to find the time and resources to conduct educational research. One small liberal arts college, the University of Montevallo (Alabama), has addressed this problem by involving undergraduate psychology majors in collaboration in educational research with faculty. It is…

  9. Faculty Development Workshops to Support Establishing and Sustaining Undergraduate Research Programs in the Earth Sciences (Invited)

    NASA Astrophysics Data System (ADS)

    Fox, L. K.; Guertin, L. A.

    2013-12-01

    The Geosciences Division of the Council of Undergraduate Research (GeoCUR, http://curgeoscience.wordpress.com/) has a long history of supporting faculty who engage in undergraduate research. The division has held faculty development workshops at national meetings of the GSA and AGU for over 15 years. These workshops serve faculty at all career stages and cover multiple aspects of the enterprise of engaging students in undergraduate research. Topics covered include: getting a job (particularly at a primarily undergraduate institution), incorporating research into classes, mentoring independent research projects and identifying sources of internal and external funding. Originally, these workshops were funded through CUR and registration income. When the administrative costs to run the workshops increased, we successfully sought funding from the NSF Course, Curriculum, and Laboratory Improvement (CCLI) program. This CCLI Type 1 special project allowed the expansion of the GSA workshops from half-day to full-day and the offering of workshops to other venues, including the annual meeting of the Association of American Geographers and sectional GSA meetings. The workshops are organized and led by GeoCUR councilors, some of whom attended workshops as graduate students or new faculty. Current and past Geoscience program officers in the NSF Division of Undergraduate Education (DUE) have presented on NSF funding opportunities. Based on participant surveys, the content of the workshops has evolved over time. Workshop content is also tailored to the particular audience; for example, AGU workshops enroll more graduate students and post-docs and thus the focus is on the job ';search' and getting started in undergraduate research. To date, this CCLI Type 1 project has supported 15 workshops and a variety of print and digital resources shared with workshop participants. This presentation will highlight the goals of this workshop proposal and also provide insights about strategies

  10. Espousal of Undergraduate Teaching Normative Patterns of First-Year Teaching Assistants

    ERIC Educational Resources Information Center

    Helland, Patricia A.

    2010-01-01

    This study focuses on the espousal of undergraduate teaching normative patterns. Results showed that entering teaching assistants had higher levels of disdain than Research I faculty. The country in which students received their undergraduate degrees and gender variables also showed differences in espousal levels. The results give insight into…

  11. The Value of Collaborative Research before Independent Research in Undergraduate Music Education

    ERIC Educational Resources Information Center

    Harney, Kristin

    2017-01-01

    Increasing evidence points to the importance of undergraduate research in teacher education programs. Before undertaking independent research, it is essential that music education students gain exposure to a range of research skills and develop basic research competencies. In this study, I explored the influence of a semester-long collaborative…

  12. Increasing Diversity in Global Climate Change Research for Undergraduates

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Peteet, D. M.; Rosenzweig, C.; Druyan, L. M.; Fulakeza, M.; Gaffin, S.; Austin, S. A.; Cheung, T. D.; Damas, M. C.; Boxe, C.; Prince, T.; Ng, C.; Frost, J.

    2014-12-01

    Global Climate Change and the ability to predict the effects of forcings and feedback mechanisms on global and local climate are critical to the survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies towards advanced degrees and pursue careers related to climate change. This is best accomplished by involving undergraduates in global climate change research. This Research Experience for Undergraduates (REU) initiative is based at the City University of New York (CUNY) and the Goddard Institute for Space Studies (GISS), and is supported by NASA and NSF. Mentors for the primarily summer research experiences include CUNY faculty and GISS scientists. Research topics include the Wetland Carbon Project, The Cooling Power Of Urban Vegetation, Internal Ocean Mixing, El Niño Southern Oscillation, Pollution Transport and Tropospheric Ozone. Students are recruited from CUNY colleges and other colleges and universities. The program maintains an emphasis on under-represented minorities and females. Approximately sixty percent of the undergraduate students are under-represented minorities and forty percent are female. The project is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research.

  13. Undergraduate Researchers and the Poster Session

    ERIC Educational Resources Information Center

    Johnson, Gail; Green, Raymond

    2007-01-01

    Undergraduates presented original research in classroom poster sessions open to students, faculty, and friends. We assessed the reaction of the students to the experience and their reported change in their interest in presenting at conferences. Students enjoyed the poster session experience and indicated they preferred this method over other…

  14. The Undergraduate ALFALFA Team: Collaborative Research Projects

    NASA Astrophysics Data System (ADS)

    Cannon, John M.; Koopmann, Rebecca A.; Haynes, Martha P.; Undergraduate ALFALFA Team, ALFALFA Team

    2016-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) has allowed faculty and students from a wide range of public and private colleges and especially those with small astronomy programs to learn how science is accomplished in a large collaboration while contributing to the scientific goals of a legacy radio astronomy survey. The UAT has achieved this through close collaboration with ALFALFA PIs to identify research areas accessible to undergraduates. In this talk we will summarize the main research efforts of the UAT, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey. This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, and AST-1211005.

  15. USC Undergraduate Team Research, Geological Field Experience and Outdoor Education in the Tuolumne Batholith and Kings Canyon, High Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Culbert, K. N.; Anderson, J. L.; Cao, W.; Chang, J.; Ehret, P.; Enriquez, M.; Gross, M. B.; Gelbach, L. B.; Hardy, J.; Paterson, S. R.; Ianno, A.; Iannone, M.; Memeti, V.; Morris, M.; Lodewyk, J.; Davis, J.; Stanley, R.; van Guilder, E.; Whitesides, A. S.; Zhang, T.

    2009-12-01

    Within four years, USC’s College of Letters, Arts and Sciences and Earth Science department have successfully launched the revolutionary undergraduate team research (UTR) program “Geologic Wonders of Yosemite at Two Miles High”. A diverse group of professors, graduate students and undergraduates spent two weeks mapping the Boyden Cave in Kings Canyon National Park, the Iron Mountain pendants south of Yosemite, the Western Metamorphic belt along the Merced River, and the Tuolumne Batholith (TB) in June and August 2009. During their experience in the field, the undergraduates learned geologic field techniques from their peers, professors, and experienced graduate students and developed ideas that will form the basis of the independent and group research projects. Apart from teaching undergraduates about the geology of the TB and Kings Canyon, the two weeks in the field were also rigorous exercise in critical thinking and communication. Every day spent in the field required complete cooperation between mentors and undergraduates in order to successfully gather and interpret the day’s data. Undergraduates were to execute the next day’s schedule and divide mapping duties among themselves. The two-week field experience was also the ideal setting in which to learn about the environmental impacts of their work and the actions of others. The UTR groups quickly adapted to the demanding conditions of the High Sierra—snow, grizzly bears, tourists, and all. For many of the undergraduates, the two weeks spent in the field was their first experience with field geology. The vast differences in geological experience among the undergraduates proved to be advantageous to the ‘team-teaching’ focus of the program: more experienced undergraduates were able to assist less experienced undergraduates while cementing their own previously gained knowledge about geology. Over the rest of the academic year, undergraduates will learn about the research process and scientific

  16. Research Experience for Undergraduates: Understanding the Arctic as a System

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Walsh, J. E.; Arp, C. D.; Hock, R.; Euskirchen, E. S.; Kaden, U.; Polyakov, I.; Romanovsky, V. E.; Trainor, S.

    2017-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to understand and explain changes in the Arctic and the implications of those changes. Responding to needs in innovative research and education for understanding high-latitude rapid climate change, scientists at the International Arctic research Center of the University of Alaska Fairbanks (UAF) established a new REU (=Research Experience for Undergraduates) NSF-funded site, aiming to attract more undergraduates to arctic sciences. The science focus of this program, building upon the research strengths of UAF, is on understanding the Arctic as a system with emphasis on its physical component. The goals, which were to disseminate new knowledge at the frontiers of polar science and to ignite the enthusiasm of the undergraduates about the Arctic, are pursued by involving undergraduate students in research and educational projects with their mentors using the available diverse on-campus capabilities. IARC hosted the first group of eight students this past summer, focusing on a variety of different disciplines of the Arctic System Science. Students visited research sites around Fairbanks and in remote parts of Alaska (Toolik Lake Field Station, Gulkana glacier, Bonanza Creek, Poker Flats, the CRREL Permafrost Tunnel and others) to see and experience first-hand how the arctic science is done. Each student worked on a research project guided by an experienced instructor. The summer program culminated with a workshop that consisted of reports from the students about their experiences and the results of their projects.

  17. Nursing student feedback on undergraduate research education: implications for teaching and learning.

    PubMed

    Halcomb, Elizabeth J; Peters, Kathleen

    2009-08-01

    Teaching research to undergraduate students presents many challenges to nurse academics. Yet facilitating students to develop skills in critically analysing and interpreting research is vital if we are to achieve evidence-based nursing practice. This paper explores student feedback from a research unit undertaken by Australian undergraduate nurses in order to highlight the challenges for academics trying to engage students in this material. Three hundred and sixty nine (83.5%) second year nursing students provided qualitative and quantitative feedback at the completion of a research unit using a standardised student feedback form. From a combination of the qualitative and quantitative feedback, the most positive aspects of the unit were the teaching staff, the group work and interaction in the class room and the online assessment item. Participants were least satisfied with the way in which the unit was presented, the written assessment items and assessment feedback and the perceived relevance of the unit. The implications of these findings are discussed in the context of the theoretical underpinnings of adult learning and teaching in the development of future course materials.

  18. Successfully Mentoring Undergraduates in Research: A How to Guide for Mathematicians

    ERIC Educational Resources Information Center

    Dorff, Michael; Henrich, Allison; Pudwell, Lara

    2017-01-01

    Undergraduate research occurs in a variety of mathematical fields and in diverse settings, but all mentors of undergraduates face a number of common considerations. This article is a brief guide to help faculty with various levels of previous mentoring experience lead students in research projects. In particular, we discuss the issues of picking…

  19. Implementation and Assessment of Undergraduate Experiences in SOAP: An Atmospheric Science Research and Education Program

    ERIC Educational Resources Information Center

    Hopper, Larry J., Jr.; Schumacher, Courtney; Stachnik, Justin P.

    2013-01-01

    The Student Operational Aggie Doppler Radar Project (SOAP) involved 95 undergraduates in a research and education program to better understand the climatology of storms in southeast Texas from 2006-2010. This paper describes the structure, components, and implementation of the 1-credit-hour research course, comparing first-year participants'…

  20. Mentoring undergraduate students in neuroscience research: a model system at baldwin-wallace college.

    PubMed

    Mickley, G Andrew; Kenmuir, Cynthia; Remmers-Roeber, Dawn

    2003-01-01

    As neuroscience research and discovery undergoes phenomenal growth worldwide, undergraduate students are seeking complete laboratory experiences that go beyond the classic classroom curriculum and provide mentoring in all aspects of science. Stock, in-class, laboratory experiences with known outcomes are less desirable than discovery-based projects in which students become full partners with faculty in the design, conduct and documentation of experiments that find their way into the peer-reviewed literature. The challenges of providing such experiences in the context of a primarily undergraduate institution (PUI) can be daunting. Faculty teaching loads are high, and student time is spread over a variety of courses and co-curricular activities. In this context, undergraduates are often reluctant, or ill equipped, to take individual initiative to generate and perform empirical studies. They are more likely to become involved in a sustained, faculty-initiated research program. This paper describes such a program at Baldwin-Wallace College. Students frequently start their laboratory activities in the freshman or sophomore year and enter into a system of faculty and peer mentoring that leads them to experience all aspects of the research enterprise. Students begin with learning basic laboratory tasks and may eventually achieve the status of "Senior Laboratory Associate" (SLA). SLAs become involved in laboratory management, training of less-experienced students, manuscript preparation, and grant proposal writing. The system described here provides a structured, but encouraging, community in which talented undergraduates can develop and mature as they are mentored in the context of a modern neuroscience laboratory. Retention is very good - as most students continue their work in the laboratory for 2-3 years. Student self-reports regarding their growth and satisfaction with the experiences in the laboratory have been excellent and our neuroscience students' acceptance rate

  1. STEERing an IDeA in Undergraduate Research at a Rural Research Intensive University

    PubMed Central

    Sens, Donald A.; Cisek, Karen L.; Garrett, Scott H.; Somji, Seema; Dunlevy, Jane R.; Sens, Mary Ann; Conway, Pat; Doze, Van A.

    2017-01-01

    This study documents outcomes, including student career choices, of the North Dakota Institutional Development Award Networks of Biomedical Research Excellence program that provides 10-week, summer undergraduate research experiences at the University of North Dakota School of Medicine and Health Sciences. Program evaluation initiated in 2008 and, to date, 335 students have completed the program. Of the 335, 214 students have successfully completed their bachelor’s degree, 102 are still undergraduates, and 19 either did not complete a bachelor’s degree or were lost to follow-up. The program was able to track 200 of the 214 students for education and career choices following graduation. Of these 200, 76% continued in postgraduate health-related education; 34.0% and 20.5% are enrolled in or have completed MD or PhD programs, respectively. Other postbaccalaureate pursuits included careers in pharmacy, optometry, dentistry, public health, physical therapy, nurse practitioner, and physician’s assistant, accounting for an additional 21.5%. Most students electing to stop formal education at the bachelor’s degree also entered fields related to health care or science, technology, engineering, and mathematics (19.5%), with only a small number of the 200 students tracked going into service or industries which lacked an association with the health-care workforce (4.5%). These student outcomes support the concept that participation in summer undergraduate research boosts efforts to populate the pipeline of future researchers and health professionals. It is also an indication that future researchers and health professionals will be able to communicate the value of research in their professional and social associations. The report also discusses best practices and issues in summer undergraduate research for students originating from rural environments. PMID:29057317

  2. A Global Endeavor: Honors Undergraduate Research

    ERIC Educational Resources Information Center

    Killinger, Mimi; Spies, Kate; Runyambo, Daniella

    2016-01-01

    Like many other universities of its kind, the University of Maine (UMaine) has a centralized body, the Center for Undergraduate Research (CUGR), charged with engaging motivated students in independent learning and in the creation of new knowledge. UMaine furthermore has an honors college that is likewise committed to fostering undergraduate…

  3. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering?…

  4. Undergraduate Research and Inquiry-Based Learning: The Revitalization of the Humboldtian Ideals

    ERIC Educational Resources Information Center

    Zupanc, Gunther K. H.

    2012-01-01

    The past few decades have witnessed an increasing separation of research and teaching, particularly in the area of undergraduate education. Supporters of such a separation have argued that involvement of undergraduates in research is incompatible with the idea of the research university. However, one of the founding principles of the research…

  5. Proceedings of the ninth national conference on undergraduate research, 1995. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yearout, R.D.

    The Ninth National Conference on Undergraduate Research (NCUR 95) was held at Union College in Schenectady, New York. This annual celebration of undergraduate scholarly activity continues to elicit strong nation-wide support and enthusiasm among both students and faculty. Attendance was nearly 1,650, which included 1,213 student oral and poster presenters. For the second year in a row, many student papers had to be rejected for presentation at NCUR due to conference size limitations. Thus, submitted papers for presentation at NCUR 95 were put through a careful review process before acceptance. Those students who have been selected to have their papermore » appear in these Proceedings have been through yet a second review process. As a consequence, their work has been judged to represent an impressive level of achievement at the undergraduate level. Volume 3 contains papers related to Biological Sciences (46 papers); Chemical Sciences (21 papers); and Environmental Sciences (7 papers).« less

  6. Proceedings of the ninth national conference on undergraduate research, 1995. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yearout, R.D.

    The Ninth National Conference on Undergraduate Research (NCUR 95) was held at Union College in Schenectady, New York. This annual celebration of undergraduate scholarly activity continues to elicit strong nation-wide support and enthusiasm among both students and faculty. Attendance was nearly 1,650, which included 1,213 student oral and poster presenters. For the second year in a row, many student papers had to be rejected for presentation at NCUR due to conference size limitations. Thus, submitted papers for presentation at NCUR 95 were put through a careful review process before acceptance. Those students who have been selected to have their papermore » appear in these Proceedings have been through yet a second review process. As a consequence, their work has been judged to represent an impressive level of achievement at the undergraduate level. Volume 1 contains papers related to Arts and Humanities (52 papers), and Social and Behavioral Sciences (64 papers).« less

  7. Proceedings of the ninth national conference on undergraduate research, 1995. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yearout, R.D.

    1995-07-01

    The Ninth National Conference on Undergraduate Research (NCUR 95) was held at Union College in Schenectady, New York. This annual celebration of undergraduate scholarly activity continues to elicit strong nation-wide support and enthusiasm among both students and faculty. Attendance was nearly 1,650, which included 1,213 student oral and poster presenters. For the second year in a row, many student papers had to be rejected for presentation at NCUR due to conference size limitations. Thus, submitted papers for presentation at NCUR 95 were put through a careful review process before acceptance. Those students who have been selected to have their papermore » appear in these Proceedings have been through yet a second review process. As a consequence, their work has been judged to represent an impressive level of achievement at the undergraduate level. Volume 2 contains papers related to Engineering and Mathematics (41 papers) and Physical Science (18 papers).« less

  8. Grades and Attendance: Is There a Link between Them with Respect to First Year Undergraduate Criminology Students?

    ERIC Educational Resources Information Center

    Chamberlain, John Martyn

    2012-01-01

    This paper discusses the findings of research concerned with analysing the relationship between student attendance to core first year undergraduate criminology and criminal justice modules and the grades they receive in their first summative assessed coursework task for these modules. The research took place against the background of a concern…

  9. The UCAR SOARS Program: Strategies for Supplementing Undergraduate Research Experience

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2005-12-01

    Many REU programs have a goal of recruiting students to continue in the sciences. Undergraduate research is a successful strategy for engaging talented undergraduates to think about a career in science, encouraging them to purse graduate degrees, and for preparing them to succeed in graduate school. In the Significant Opportunities for Atmospheric Research (SOARS) program, we supplement undergraduate research with several strategies as part of an undergraduate-to-graduate bridge program aimed at broadening participation in the atmospheric and related sciences. In addition to a 10-week research program, SOARS also includes a formal mentoring program, writing workshop, vigorous learning community, and extensive professional development opportunities. Our presentation will describe these research-extending strategies in SOARS in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw on the results of a major, independent evaluation of the SOARS program to determine the relative importance of these strategies in the overall success of the SOARS program. In the 10 yeas since SOARS creations, 98 students have participated in the program. Of those participants, 18 are still enrolled as undergraduates, and 55 have gone on to purse graduate school in the atmospheric sciences. Overall, this represents a graduate school placement rate of 69% and an overall retention rate of 82%. Of the 27 SOARS participants who have entered the workforce, 23 are in STEM related disciplines. Finally, 3 SOARS participants have already earned their PhD, and 32 have earned Master's. These numbers are especially significant given that SOARS participants come from groups that have been historically under-represented in the atmospheric sciences.

  10. Research Education in Undergraduate Occupational Therapy Programs.

    ERIC Educational Resources Information Center

    Petersen, Paul; And Others

    1992-01-01

    Of 63 undergraduate occupational therapy programs surveyed, the 38 responses revealed some common areas covered: elementary descriptive statistics, validity, reliability, and measurement. Areas underrepresented include statistical analysis with or without computers, research design, and advanced statistics. (SK)

  11. Fostering Undergraduate Research Change at the System and Consortium Level: Perspectives from the Council on Undergraduate Research

    ERIC Educational Resources Information Center

    Malachowski, Mitchell; Osborn, Jeffrey M.; Karukstis, Kerry K.; Ambos, Elizabeth L.; Kincaid, Shontay L.; Weiler, Daniel

    2015-01-01

    In this final chapter, we summarize the lessons learned from working with six systems/consortia to enhance and expand undergraduate research. The theory of change model for systems/consortia differs in significant ways from the change processes exhibited by individual institutions, offering important insights for academic leaders as they seek to…

  12. Content Analysis of Research in Undergraduate Medical Education.

    ERIC Educational Resources Information Center

    Dimitroff, Alexandra; Davis, Wayne K.

    1996-01-01

    Analysis of 773 journal articles on undergraduate medical education found curriculum, teaching, and student assessment most frequently discussed, with 45% reporting research activities. Research studies were generally conducted in a naturalistic environment; were evaluative or comparative; used observation, testing, or questionnaires for data…

  13. Linguistic analysis of project ownership for undergraduate research experiences.

    PubMed

    Hanauer, D I; Frederick, J; Fotinakes, B; Strobel, S A

    2012-01-01

    We used computational linguistic and content analyses to explore the concept of project ownership for undergraduate research. We used linguistic analysis of student interview data to develop a quantitative methodology for assessing project ownership and applied this method to measure degrees of project ownership expressed by students in relation to different types of educational research experiences. The results of the study suggest that the design of a research experience significantly influences the degree of project ownership expressed by students when they describe those experiences. The analysis identified both positive and negative aspects of project ownership and provided a working definition for how a student experiences his or her research opportunity. These elements suggest several features that could be incorporated into an undergraduate research experience to foster a student's sense of project ownership.

  14. The New Mexico EPSCoR Undergraduate Research Opportunities Program: A Successful Summer Research Program for Community College and PUI College Students

    NASA Astrophysics Data System (ADS)

    Pullin, M. J.

    2013-12-01

    The statewide NSF New Mexico EPSCoR Program (Climate Change and Water in New Mexico) sponsored a summer undergraduate research program from 2009 to 2013. This program was open to undergraduates attending the state's community colleges and primarily undergraduate institutions (PUIs). Participants who are chosen for the program attend a week of workshops on climate change, hydrology, water quality and professional development. Following that, they spend eight weeks working with an EPSCoR-funded scientist at a research intensive university or related field site. Participants are paired during their research project. This strategy has been shown to be a key factor in the success and comfort level of the participants. The program concludes with a research conference and many of the participants later present their work at national and regional conferences. The program has shown to be effective at introducing students from non-research institutions to authentic research in the Earth and Environmental Sciences and improving their confidence in future success at higher degree levels. The program is also successful at recruiting underrepresented minority students, mainly from Hispanic and Native American populations. We will also present data on participant degree completions, transfers to four year colleges, STEM career attainment, and graduate school admissions.

  15. Explorations: A Research-Based Program Introducing Undergraduates to Diverse Biology Research Topics Taught by Grad Students and Postdocs

    ERIC Educational Resources Information Center

    Brownell, Sara E.; Khalfan, Waheeda; Bergmann, Dominique; Simoni, Robert

    2013-01-01

    Undergraduate biology majors are often overwhelmed by and underinformed about the diversity and complexity of biological research that is conducted on research-intensive campuses. We present a program that introduces undergraduates to the diversity and scope of biological research and also provides unique teaching opportunities for graduate…

  16. Ideas and Approaches for Teaching Undergraduate Research Methods in the Health Sciences

    ERIC Educational Resources Information Center

    Peachey, Andrew A.; Baller, Stephanie L.

    2015-01-01

    Training in research methodology is becoming more commonly expected within undergraduate curricula designed to prepare students for entry into graduate allied health programs. Little information is currently available about pedagogical strategies to promote undergraduate students' learning of research methods, and less yet is available discussing…

  17. GT-SUPREEM: the Georgia Tech summer undergraduate packaging research and engineering experience for minorities

    NASA Astrophysics Data System (ADS)

    May, Gary S.

    1996-07-01

    The Georgia Tech SUmmer Undergraduate Packaging Research and Engineering Experience for Minorities (GT-SUPREEM) is an eight-week summer program designed to attract qualified minority students to pursue graduate degrees in packaging- related disciplines. The program is conducted under the auspices of the Georgia Tech Engineering Research Center in Low-Cost Electronic Packaging, which is sponsored by the National Science Foundation. In this program, nine junior and senior level undergraduate students are selected on a nationwide basis and paired with a faculty advisor to undertake research projects in the Packaging Research CEnter. The students are housed on campus and provided with a $DLR3,000 stipend and a travel allowance. At the conclusion of the program, the students present both oral and written project summaries. It is anticipated that this experience will motivate these students to become applicants for graduate study in ensuring years. This paper will provide an overview of the GT-SUPREEM program, including student research activities, success stories, lessons learned, and overall program outlook.

  18. Undergraduates' Experience of Preparedness for Engaging with Sensitive Research Topics Using Qualitative Research

    ERIC Educational Resources Information Center

    Simpson, Kerri L.; Wilson-Smith, Kevin

    2017-01-01

    This research explored the experience of five undergraduates who engaged with qualitative research as part of their final dissertation project. There have been concerns raised over the emotional safety of researchers carrying out qualitative research, which increases when researchers are inexperienced making this a poignant issues for lectures…

  19. Integrating grant-funded research into the undergraduate biology curriculum using IMG-ACT.

    PubMed

    Ditty, Jayna L; Williams, Kayla M; Keller, Megan M; Chen, Grischa Y; Liu, Xianxian; Parales, Rebecca E

    2013-01-01

    It has become clear in current scientific pedagogy that the emersion of students in the scientific process in terms of designing, implementing, and analyzing experiments is imperative for their education; as such, it has been our goal to model this active learning process in the classroom and laboratory in the context of a genuine scientific question. Toward this objective, the National Science Foundation funded a collaborative research grant between a primarily undergraduate institution and a research-intensive institution to study the chemotactic responses of the bacterium Pseudomonas putida F1. As part of the project, a new Bioinformatics course was developed in which undergraduates annotate relevant regions of the P. putida F1 genome using Integrated Microbial Genomes Annotation Collaboration Toolkit, a bioinformatics interface specifically developed for undergraduate programs by the Department of Energy Joint Genome Institute. Based on annotations of putative chemotaxis genes in P. putida F1 and comparative genomics studies, undergraduate students from both institutions developed functional genomics research projects that evolved from the annotations. The purpose of this study is to describe the nature of the NSF grant, the development of the Bioinformatics lecture and wet laboratory course, and how undergraduate student involvement in the project that was initiated in the classroom has served as a springboard for independent undergraduate research projects. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  20. Evaluation of Minority Retention Programs: The Undergraduate Research Opportunities Program at the University of Michigan.

    ERIC Educational Resources Information Center

    Jonides, John; And Others

    An evaluation was done of the first year of the Undergraduate Research Opportunities Program (UROP) at the University of Michigan (Ann Arbor), which is designed not only to teach students about research and/or certain academic topics, but also to facilitate the identification of minority students with the university. This second aim is based on…

  1. Entering research: A course that creates community and structure for beginning undergraduate researchers in the STEM disciplines.

    PubMed

    Balster, Nicholas; Pfund, Christine; Rediske, Raelyn; Branchaw, Janet

    2010-01-01

    Undergraduate research experiences have been shown to enhance the educational experience and retention of college students, especially those from underrepresented populations. However, many challenges still exist relative to building community among students navigating large institutions. We developed a novel course called Entering Research that creates a learning community to support beginning undergraduate researchers and is designed to parallel the Entering Mentoring course for graduate students, postdocs, and faculty serving as mentors of undergraduate researchers. The course serves as a model that can be easily adapted for use across the science, technology, engineering, and mathematics (STEM) disciplines using a readily available facilitator's manual. Course evaluations and rigorous assessment show that the Entering Research course helps students in many ways, including finding a mentor, understanding their place in a research community, and connecting their research to their course work in the biological and physical sciences. Students in the course reported statistically significant gains in their skills, knowledge, and confidence as researchers compared with a control group of students, who also were engaged in undergraduate research but not enrolled in this course. In addition, the faculty and staff members who served as facilitators of the Entering Research course described their experience as rewarding and one they would recommend to their colleagues.

  2. Interdisciplinary Biomathematics: Engaging Undergraduates in Research on the Fringe of Mathematical Biology

    ERIC Educational Resources Information Center

    Fowler, Kathleen; Luttman, Aaron; Mondal, Sumona

    2013-01-01

    The US National Science Foundation's (NSF's) Undergraduate Biology and Mathematics (UBM) program significantly increased undergraduate research in the biomathematical sciences. We discuss three UBM-funded student research projects at Clarkson University that lie at the intersection of not just mathematics and biology, but also other fields. The…

  3. The Transformative Impact of Undergraduate Research Mentoring on Students and the Role of the Council on Undergraduate Research (CUR) in Supporting Faculty Mentors

    NASA Astrophysics Data System (ADS)

    Fox, L. K.; Singer, J.

    2015-12-01

    Undergraduate Research (UR) is broadly accepted as a high impact educational practice. Student participation in UR contributes to measurable gains in content knowledge and skills/methodology, oral and written communication skills, problem solving and critical thinking, self-confidence, autonomy, among others. First-generation college students and students from underrepresented minorities that participate in UR are more likely to remain in STEM majors, persist to graduation, and pursue graduate degrees. While engagement in the research process contributes to these outcomes, the impact of the interaction with the faculty mentor is critical. A number of studies provide evidence that it is the relationship that forms with the faculty mentor that is most valued by students and strongly contributes to their career development. Faculty mentors play an important role in student development and the relationship between mentor and student evolves from teacher to coach to colleague. Effective mentoring is not an inherent skill and is generally not taught in graduate school and generally differs from mentoring of graduate students. Each UR mentoring relationship is unique and there are many effective mentoring models and practices documented in the literature. The Council on Undergraduate Research (CUR) has a long history of supporting faculty who engage in research with undergraduates and offers resources for establishing UR programs at individual, departmental, and institutional levels. The Geosciences Division of CUR leads faculty development workshops at professional meetings and provides extensive resources to support geosciences faculty as UR mentors (http://serc.carleton.edu/NAGTWorkshops/undergraduate_research/index.html). Examples of effective mentoring strategies are highlighted, including a model developed by SUNY- Buffalo State that integrates mentoring directly into the evaluation of UR.

  4. Developing Collaboration Skills in Team Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Sturner, Kelly K.; Bishop, Pamela; Lenhart, Suzanne M.

    2017-01-01

    Interdisciplinary undergraduate research experiences often require students to work in teams with other students and researchers from different disciplines, creating a need for development of new skills in interdisciplinary collaboration. In this paper, we describe our unique efforts to mentor participants in developing these skills during our…

  5. Experiences of mentors training underrepresented undergraduates in the research laboratory.

    PubMed

    Prunuske, Amy J; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors' experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students' experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research.

  6. Experiences of Mentors Training Underrepresented Undergraduates in the Research Laboratory

    PubMed Central

    Prunuske, Amy J.; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors’ experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students’ experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research. PMID:24006389

  7. Impact of Undergraduate Research on Academic Performance, Educational Planning, and Career Development

    ERIC Educational Resources Information Center

    Kinkel, Doreen H.; Henke, Scott E.

    2006-01-01

    An undergraduate research mentoring program (URMP), initiated at Texas A&M University-Kingsville, was developed (1) to aid undergraduate wildlife students in the design, conduct, and analysis of original research projects; and (2) to encourage students to become effective written and oral communicators by preparing a manuscript of their…

  8. Engaging Undergraduates in Social Science Research: The Taking the Pulse of Saskatchewan Project

    ERIC Educational Resources Information Center

    Berdahl, Loleen

    2014-01-01

    Although student involvement in research and inquiry can advance undergraduate learning, there are limited opportunities for undergraduate students to be directly involved in social science research. Social science faculty members typically work outside of laboratory settings, with the limited research assistance work being completed by graduate…

  9. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    ERIC Educational Resources Information Center

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  10. Designing Undergraduate Research Experiences: A Multiplicity of Options

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2001-12-01

    Research experiences for undergraduate students can serve many goals including: developing student understanding of the process of science; providing opportunities for students to develop professional skills or test career plans; completing publishable research; enabling faculty professional development; or enhancing the visibility of a science program. The large range of choices made in the design of an undergraduate research program or opportunity must reflect the goals of the program, the needs and abilities of the students and faculty, and the available resources including both time and money. Effective program design, execution, and evaluation can all be enhanced if the goals of the program are clearly articulated. Student research experiences can be divided into four components: 1) defining the research problem; 2) developing the research plan or experiment design; 3) collecting and interpreting data, and 4) communicating results. In each of these components, the program can be structured in a wide variety of ways and students can be given more or less guidance or freedom. While a feeling of ownership of the research project appears to be very important, examples of successful projects displaying a wide range of design decisions are available. Work with the Keck Geology Consortium suggests that four strategies can enhance the likelihood of successful student experiences: 1) students are well-prepared for research experience (project design must match student preparation); 2) timelines and events are structured to move students through intermediate goals to project completion; 3) support for the emotional, financial, academic and technical challenges of a research project is in place; 4) strong communications between students and faculty set clear expectations and enable mid-course corrections in the program or project design. Creating a research culture for the participants or embedding a project in an existing research culture can also assist students in

  11. Inquiry-Based Early Undergraduate Research Using High-Altitude Ballooning

    NASA Astrophysics Data System (ADS)

    Sibbernsen, K.; Sibbernsen, M.

    2012-12-01

    One common objective for undergraduate science classes is to have students learn how to do scientific inquiry. However, often in science laboratory classes, students learn to take data, analyze the data, and come to conclusions, but they are told what to study and do not have the opportunity to ask their own research questions, a crucial part of scientific inquiry. A special topics class in high-altitude ballooning (HAB) was offered at Metropolitan Community College, a large metropolitan two-year college in Omaha, Nebraska to focus on scientific inquiry for the participants through support of NASA Nebraska Space Grant. A weather balloon with payloads attached (balloonSAT) was launched to near space where the balloon burst and fell back to the ground with a parachute. Students worked in small groups to ask their research questions, they designed their payloads, participated in the launch and retrieval of equipment, analyzed data, and presented the results of their research. This type of experience has potential uses in physics, physical science, engineering, electronics, computer programming, meteorology, astronomy, and chemistry classes. The balloonSAT experience can act as a stepping-stone to designing sounding rocket payloads and it can allow students the opportunity to participate in regional competitions and present at HAB conferences. Results from the workshop are shared, as well as student responses to the experience and suggestions for administering a high-altitude ballooning program for undergraduates or extending inquiry-based ballooning experiences into high-school or middle-school.

  12. Mentoring Undergraduate Scholars: A Pathway to Interdisciplinary Research?

    ERIC Educational Resources Information Center

    Davis, Shannon N.; Mahatmya, Duhita; Garner, Pamela W.; Jones, Rebecca M.

    2015-01-01

    Interdisciplinary research is a valuable approach to addressing complex real-world problems. However, undergraduate research mentoring is discussed as an activity that happens in disciplinary silos where the mentor and student scholar share a disciplinary background. By transcending traditional academic divisions, we argue that mentors can train a…

  13. Preparation and participation of undergraduate students to inform culturally sensitive research.

    PubMed

    Wells, Jo Nell; Cagle, Carolyn Spence

    2009-07-01

    Most student work as research assistants occurs at the graduate level of nursing education, and little is known about the role of undergraduate students as research assistants (RAs) in major research projects. Based on our desire to study Mexican American (MA) cancer caregivers, we needed bilingual and bicultural RAs to serve as data collectors with women who spoke Spanish and possessed cultural beliefs that influenced their caregiving. Following successful recruitment, orientation, and mentoring based on Bandura's social learning theory [Bandura, A., 2001. Social learning theory: an agentic perspective. Annual Review of Psychology 52, 1-26] and accepted teaching-learning principles, RAs engaged in various behaviors that facilitated study outcomes. Faculty researchers, RAs, and study participants benefitted greatly from the undergraduate student involvement in this project. This article describes successful student inclusion approaches, ongoing faculty-RA interactions, and lessons learned from the research team experience. Guidelines discussed support the potential for making the undergraduate RA role a useful and unique learning experience.

  14. Research Experience for Undergraduates: A Non-Traditional Approach

    NASA Astrophysics Data System (ADS)

    Carrick, T. L.; Miller, K. C.; Hagedorn, E.; Velasco, A. A.

    2012-12-01

    Research experiences for undergraduates (REUs) have been documented to be an effective way to increase student retention in the Science, Technology, Engineering and Mathematics (STEM) by exposing students to research. REUs typically run during the summer months, allowing students to travel to different universities away from their home institutions. We created an REU program, Pathways Research Experience for undergraduates Program (PREP) that ran during the fall and spring academic semesters and focused on the geosciences. These students were provided with a monthly stipend to work with a research mentor, and they were required to attend a weekly professional development meeting led by the Pathways PIs and the program coordinator. The weekly training program focused on research skills, presentation skills, and graduate school preparation. Since a majority of students at University of Texas at El Paso (a Hispanic Serving Institution with 70% Hispanic and 10% Mexican students) must work outside the university while attending college, the stipends enabled students to remain on campus to "work", with the hope that this may contribute to their overall academic success. By spending more time on campus, the participants were able to interact more with faculty and other students, both at the undergraduate and graduate levels. Participants were chosen on a basis of GPA and the contents of an application that included a statement of purpose, a resume, a transcript, and at least one letter of recommendation. Once the student was selected, they were required to find a mentor and research project. Through an analysis of surveys, we have found that participants enjoy the meetings, which gave them a sense of belonging to a group, and an additional source of academic support. Participants were also expected to take part in outreach activities as part of our goal to create a geosciences network in El Paso. With this REU approach, we believe that our success rate suggests that this

  15. A Research Preparatory Program for First-Year College Students: Student Selection and Preparation Lead to Persistence in Research

    ERIC Educational Resources Information Center

    Baiduc, Rachael R.; Drane, Denise; Beitel, Greg J.; Flores, Luke C.

    2017-01-01

    Undergraduate research experiences may increase persistence in STEM majors. We describe a research program that targets first-year students selected for their curiosity and attitudes towards science. We explain the implementation of the program over 3 years and present evaluation data using a group of matched controls. Participants and controls…

  16. Becoming a Scientist: Research Findings on STEM Students' Gains from Conducting Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Hunter, A.; Laursen, S.; Thiry, H.; Seymour, E.

    2006-12-01

    Undergraduate research is widely believed to enhance STEM students' education and increase their persistence to graduate education and careers in the sciences. Yet until very recently, little evidence from research and evaluation studies was available to substantiate such claims and document what students gain from doing undergraduate research or how these gains come about. We have conducted a three-year qualitative research study of STEM students participating in UR at four liberal arts colleges with a strong tradition of faculty-led summer research apprenticeships. Benefits to students reported by both students and their faculty advisors are categorized into six main categories of gains in skills, knowledge, "thinking like a scientist," career preparation, career development, and personal and professional growth. Student and faculty observations are strongly corroborative, but also differ in interesting ways that reflect the distinct perspectives of each group: students are still in the midst of discovering their own career paths while faculty advisors have observed the later career development of their past research students. While not all students find UR to heighten their interest in graduate school, they do find it a powerful growth experience that clarifies their career ambitions by providing a "real world" experience of science. For students whose interest in science is reinforced, UR has a significant role in their professional socialization into the culture and norms of science, which we call "becoming a scientist," through interactions that draw them into the scientific community and experiences that deepen their understanding of the nature of research. Cumulatively, the qualitative data set of nearly 350 interviews offers a rich portrayal of the UR enterprise from a variety of perspectives. Longitudinal data enable us to track the influence of UR on students' career and education trajectories in the years after college, and comparative data from a group

  17. The Undergraduate ALFALFA Team: Outcomes for Over 250 Undergraduate Participants

    NASA Astrophysics Data System (ADS)

    Troischt, Parker; Koopmann, Rebecca A.; Haynes, Martha P.; ALFALFA Team

    2016-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 19 institutions founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. In this talk we present outcomes for the more than 250 undergraduate students who have who have participated in the program during the 8 years of funding. 40% of these students have been women and members of underrepresented groups. To date 148 undergraduate students have attended annual workshops at Arecibo Observatory, interacting with faculty, graduate students, their peers, and Arecibo staff in lectures, group activities, tours, and observing runs. Team faculty have supervised 159 summer research projects and 120 academic year (e.g., senior thesis) projects. 68 students have traveled to Arecibo Observatory for observing runs and 55 have presented their results at national meetings such as the AAS. Through participation in the UAT, students are made aware of career paths they may not have previously considered. More than 90% of alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women. This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, and AST-1211005

  18. Using US Tuning to Effect: the American Historical Association's Tuning Project and the First Year Research Paper

    ERIC Educational Resources Information Center

    Belanger, Elizabeth

    2017-01-01

    While research has long been recognized as a high impact practice in undergraduate education, much of the scholarship on undergraduate research has focused on students in the final years of their degree. This article describes a study of the ability of first year students to undertake historical research in an introductory level course at a small…

  19. Summer Undergraduate Research Program: Environmental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, J.

    1994-12-31

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United Statesmore » were accepted into the program.« less

  20. Development and pilot evaluation of Native CREST-a Cancer Research Experience and Student Training program for Navajo undergraduate students.

    PubMed

    Hughes, Christine A; Bauer, Mark C; Horazdovsky, Bruce F; Garrison, Edward R; Patten, Christi A; Petersen, Wesley O; Bowman, Clarissa N; Vierkant, Robert A

    2013-03-01

    The Mayo Clinic Cancer Center and Diné College received funding for a 4-year collaborative P20 planning grant from the National Cancer Institute in 2006. The goal of the partnership was to increase Navajo undergraduates' interest in and commitment to biomedical coursework and careers, especially in cancer research. This paper describes the development, pilot testing, and evaluation of Native CREST (Cancer Research Experience and Student Training), a 10-week cancer research training program providing mentorship in a Mayo Clinic basic science or behavioral cancer research lab for Navajo undergraduate students. Seven Native American undergraduate students (five females, two males) were enrolled during the summers of 2008-2011. Students reported the program influenced their career goals and was valuable to their education and development. These efforts may increase the number of Native American career scientists developing and implementing cancer research, which will ultimately benefit the health of Native American people.

  1. Teaming introductory biology and research labs in support of undergraduate education.

    PubMed

    Heitz, Jean G; Giffen, Cynthia J

    2010-09-01

    Numerous studies have indicated the need to improve the general level of science literacy among students and to increase the number of students electing science as a career. One mechanism for doing this is to involve undergraduates in research. This article reports how our Introductory Biology 152 course has worked synergistically with mentors in research labs on the University of Wisconsin-Madison campus to increase undergraduate retention in research and at the same time improve their higher order inquiry and communication skills.

  2. The 2013 Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Barker, T.

    2014-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the EMC Corporation, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 10 funded students participated. Mentors for the interns include PARI’s Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Students are encouraged to present their research at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors.

  3. The Quantitative Effect of Students Using Podcasts in a First Year Undergraduate Exercise Physiology Module

    ERIC Educational Resources Information Center

    Abt, Grant; Barry, Tim

    2007-01-01

    This study reports the quantitative effect of students using podcasts in a 1st year undergraduate exercise physiology module. From a cohort of 70 students, 50 volunteered and completed the study. Using a pre-post random allocation research design, students were allocated to either a podcast group (PG) or control group (CG) based on a 32-question…

  4. Developing Dialogic Learning Space: The Case of Online Undergraduate Research Journals

    ERIC Educational Resources Information Center

    Walkington, Helen

    2012-01-01

    This paper explores the learning spaces associated with two geography undergraduate research journals. Wikis provide dedicated spaces for postgraduate reviewers to collaboratively develop constructive feedback to authors creating a supportive online learning environment. In becoming published authors, undergraduates reported that they gained not…

  5. An Investigation into Mentoring Practices of Faculty Who Mentor Undergraduate Researchers at a Hispanic Serving Institution

    ERIC Educational Resources Information Center

    Estepp, Christopher M.; Velasco, Joseph G.; Culbertson, Avery L.; Conner, Nathan W.

    2017-01-01

    Research has shown the benefits of undergraduate research; however, few studies have examined mentors of undergraduate researchers. The purpose of this study was to investigate the practices of mentors who have successfully mentored Hispanic undergraduate researchers. Findings from this study suggested that mentors should focus on interacting with…

  6. Undergraduate Student Teachers' Views and Experiences of a Compulsory Course in Research Methods

    ERIC Educational Resources Information Center

    Lombard, B. J. J.

    2015-01-01

    In comparison to attention given to research methods for education students at postgraduate level, the offering of research methods for education students at undergraduate level is less often considered. Yet, it is agreed that research methods for undergraduate level students is important for shaping student attitudes, learning and achievement in…

  7. A Combination Course and Lab-Based Approach to Teaching Research Skills to Undergraduates

    ERIC Educational Resources Information Center

    Danowitz, Amy M.; Brown, Ronald C.; Jones, Clinton D.; Diegelman-Parente, Amy; Taylor, Christopher E.

    2016-01-01

    Undergraduate research is an important capstone experience that provides students with the conceptual and technical aptitude for graduate or industrial research. However, this experience is often compressed into a single term in a course-based undergraduate research experience (CURE) or run by individual faculty members for select students on an…

  8. Engaging Undergraduates through Interdisciplinary Research in Nanotechnology

    ERIC Educational Resources Information Center

    Goonewardene, Anura U.; Offutt, Christine; Whitling, Jacqueline; Woodhouse, Donald

    2012-01-01

    To recruit and retain more students in all science disciplines at our small (5,000 student) public university, we implemented an interdisciplinary strategy focusing on nanotechnology and enhanced undergraduate research. Inherently interdisciplinary, the novelty of nanotechnology and its growing career potential appeal to students. To engage…

  9. A Workbook for Scaffolding Mentored Undergraduate Research Experiences in the Social and Behavioral Sciences

    ERIC Educational Resources Information Center

    Colbert-White, Erin; Simpson, Elizabeth

    2017-01-01

    Research mentors strive to ensure that undergraduates gain research skills and develop professionally during mentored research experiences in the sciences. We created the SURE (Specialized Undergraduate Research Experience) Workbook, a freely-available, interactive guide to scaffold student learning during this process. The Workbook: (1)…

  10. [Research-oriented experimental course of plant cell and gene engineering for undergraduates].

    PubMed

    Xiaofei, Lin; Rong, Zheng; Morigen, Morigen

    2015-04-01

    Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.

  11. A Correlation Analysis of the Relationship between Research Administrators at Predominately Undergraduate Institutions and Faculty Funding for Undergraduate Research

    ERIC Educational Resources Information Center

    Waite, Joann

    2012-01-01

    The National Science Foundation data provided the necessary information for the investigation into the top 45 funded predominately undergraduate institutions. These funded institutions sponsored research office staff members were sent surveys regarding the servant leadership characteristics of their managers. The Results showed two areas of the…

  12. Benefits of Undergraduate Research in Family and Consumer Sciences

    ERIC Educational Resources Information Center

    Morris, Nancy; Labhard, Lezlie

    2005-01-01

    Faculty and graduate students traditionally have conducted most research in higher education. Recently, the benefits of undergraduate research have been acknowledged. The Boyer Commission (1988) called for research-based learning including a thesis that would demonstrate a student's ability to think clearly and to communicate ideas in an…

  13. Research-Teaching Linkages: Beyond the Divide in Undergraduate Medicine

    ERIC Educational Resources Information Center

    MacDougall, Margaret

    2012-01-01

    This survey-based study investigates the plausibility of the existence of a research-teaching nexus specifically within the context of supervised senior undergraduate medical student research. This particular nexus is defined in terms of benefits to teaching arising a) directly, through the supervisor designing the research environment as a…

  14. Engaging First-Year University Students in Research: Promise, Potentials, and Pitfalls

    ERIC Educational Resources Information Center

    Sangster, Sarah L.; Loy, Kara L.; Mills, Sheryl D.; Lawson, Karen L.

    2016-01-01

    In 2014, the Undergraduate Research Initiative at the University of Saskatchewan implemented a pilot project to organize, support, and promote curriculum-based research experience as an integral aspect of participating first-year courses. The framework for the course-based initiative was the research arc; usually in groups, students in these…

  15. The Apprentice Researcher: Using Undergraduate Researchers' Personal Essays to Shape Instruction and Services

    ERIC Educational Resources Information Center

    Bonnet, Jennifer L.; Cordell, Sigrid Anderson; Cordell, Jeffrey; Duque, Gabriel J.; MacKintosh, Pamela J.; Peters, Amanda

    2013-01-01

    Little is known about the intellectual journey of advanced undergraduates engaged in the research process. Moreover, few studies of this population of library users include students' personal essays as a point of analysis in their scholarly pursuits. To gain insights into the research trajectory of apprentice researchers at the University of…

  16. Defining Quality in Undergraduate Education: Directions for Future Research Informed by a Literature Review

    ERIC Educational Resources Information Center

    Bowers, Alison W.; Ranganathan, Shyam; Simmons, Denise R.

    2018-01-01

    Objectives: This research brief explores the literature addressing quality in undergraduate education to identify what previous research has said about quality and to offer future directions for research on quality in undergraduate education. Method: We conducted a scoping review to provide a broad overview of existing research. Using targeted…

  17. Undergraduate Students' Development of Social, Cultural, and Human Capital in a Networked Research Experience

    ERIC Educational Resources Information Center

    Thompson, Jennifer Jo; Conaway, Evan; Dolan, Erin L.

    2016-01-01

    Recent calls for reform in undergraduate biology education have emphasized integrating research experiences into the learning experiences of all undergraduates. Contemporary science research increasingly demands collaboration across disciplines and institutions to investigate complex research questions, providing new contexts and models for…

  18. Faculty as Undergraduate Research Mentors for Students of Color: Taking into Account the Costs

    ERIC Educational Resources Information Center

    Schwartz, Joni

    2012-01-01

    This article is based on the findings of a 2-year study that examined the nature of effective faculty/student undergraduate research (UR) science, technology, engineering, and mathematics (STEM) relationships. The study site was a large urban public college where three fourths of all incoming freshmen receive need-based aid; and although not a…

  19. A Teaching Strategy with a Focus on Argumentation to Improve Undergraduate Students' Ability to Read Research Articles

    ERIC Educational Resources Information Center

    Van Lacum, Edwin B.; Ossevoort, Miriam A.; Goedhart, Martin J.

    2014-01-01

    The aim of this study is to evaluate a teaching strategy designed to teach first-year undergraduate life sciences students at a research university how to learn to read authentic research articles. Our approach--based on the work done in the field of genre analysis and argumentation theory--means that we teach students to read research articles by…

  20. Leading Undergraduate Research Projects in Mathematical Modeling

    ERIC Educational Resources Information Center

    Seshaiyer, Padmanabhan

    2017-01-01

    In this article, we provide some useful perspectives and experiences in mentoring students in undergraduate research (UR) in mathematical modeling using differential equations. To engage students in this topic, we present a systematic approach to the creation of rich problems from real-world phenomena; present mathematical models that are derived…

  1. Binomial Coefficients Modulo a Prime--A Visualization Approach to Undergraduate Research

    ERIC Educational Resources Information Center

    Bardzell, Michael; Poimenidou, Eirini

    2011-01-01

    In this article we present, as a case study, results of undergraduate research involving binomial coefficients modulo a prime "p." We will discuss how undergraduates were involved in the project, even with a minimal mathematical background beforehand. There are two main avenues of exploration described to discover these binomial…

  2. Assessment Study of an Undergraduate Research Training Abroad Program

    ERIC Educational Resources Information Center

    Nieto-Fernandez, Fernando; Race, Kathryn; Quarless, Duncan A.

    2013-01-01

    The Old Westbury Neuroscience International Research Program (OWNIP) encourages undergraduate students from health disparities populations and underrepresented minorities to pursue careers in basic science, biomedical, clinical, and behavioral health research fields. To evaluate this program, several measures were used tracked through an online…

  3. SAGE as a Source for Undergraduate Research Projects

    ERIC Educational Resources Information Center

    Hutz, Benjamin

    2017-01-01

    This article examines the use of the computer algebra system SAGE for undergraduate student research projects. After reading this article, the reader should understand the benefits of using SAGE as a source of research projects and how to commence working with SAGE. The author proposes a tiered working group model to allow maximum benefit to the…

  4. The Contribution of Qualitative Research Towards the Issues Affecting Female Undergraduate Engineering Students

    ERIC Educational Resources Information Center

    Duggan, Louise Maria

    2015-01-01

    This article explores the use of qualitative research methods towards our understanding of the issues affecting female undergraduate engineers. As outlined in this article female engineering students face many challenges during their undergraduate studies. Qualitative research methods provide an opportunity to gain a deeper understanding of the…

  5. Toward a Holistic View of Undergraduate Research Experiences: An Exploratory Study of Impact on Graduate/Postdoctoral Mentors

    ERIC Educational Resources Information Center

    Dolan, Erin; Johnson, Deborah

    2009-01-01

    Involvement in research has become a fixture in undergraduate science education across the United States. Graduate and postdoctoral students are often called upon to mentor undergraduates at research universities, yet mentoring relationships in undergraduate-graduate/postdoctoral student dyads and undergraduate-graduate/postdoctoral…

  6. Making a Difference in Science Education: The Impact of Undergraduate Research Programs

    PubMed Central

    Eagan, M. Kevin; Hurtado, Sylvia; Chang, Mitchell J.; Garcia, Gina A.; Herrera, Felisha A.; Garibay, Juan C.

    2014-01-01

    To increase the numbers of underrepresented racial minority students in science, technology, engineering, and mathematics (STEM), federal and private agencies have allocated significant funding to undergraduate research programs, which have been shown to students’ intentions of enrolling in graduate or professional school. Analyzing a longitudinal sample of 4,152 aspiring STEM majors who completed the 2004 Freshman Survey and 2008 College Senior Survey, this study utilizes multinomial hierarchical generalized linear modeling (HGLM) and propensity score matching techniques to examine how participation in undergraduate research affects STEM students’ intentions to enroll in STEM and non-STEM graduate and professional programs. Findings indicate that participation in an undergraduate research program significantly improved students’ probability of indicating plans to enroll in a STEM graduate program. PMID:25190821

  7. Enhancing Student Learning of Research Methods through the Use of Undergraduate Teaching Assistants

    ERIC Educational Resources Information Center

    Crowe, Jessica; Ceresola, Ryan; Silva, Tony

    2014-01-01

    By using a quasi-experimental design, in this study, we test the effect of undergraduate teaching assistants on student learning. Data were collected from 170 students enrolled in four sections of a quantitative research methods course, two sections without undergraduate teaching assistants and two sections with undergraduate teaching assistants,…

  8. Students' Perspective (Age Wise, Gender Wise and Year Wise) of Parameters Affecting the Undergraduate Engineering Education

    ERIC Educational Resources Information Center

    Kumari, Neeraj

    2014-01-01

    The objective of the study is to examine the students' perspective (age wise, gender wise and year wise) of parameters affecting the undergraduate engineering education system present in a private technical institution in NCR [National Capital Region], Haryana. It is a descriptive type of research in nature. The data has been collected with the…

  9. How well do final year undergraduate medical students master practical clinical skills?

    PubMed Central

    Störmann, Sylvère; Stankiewicz, Melanie; Raes, Patricia; Berchtold, Christina; Kosanke, Yvonne; Illes, Gabrielle; Loose, Peter; Angstwurm, Matthias W.

    2016-01-01

    Introduction: The clinical examination and other practical clinical skills are fundamental to guide diagnosis and therapy. The teaching of such practical skills has gained significance through legislative changes and adjustments of the curricula of medical schools in Germany. We sought to find out how well final year undergraduate medical students master practical clinical skills. Methods: We conducted a formative 4-station objective structured clinical examination (OSCE) focused on practical clinical skills during the final year of undergraduate medical education. Participation was voluntary. Besides the examination of heart, lungs, abdomen, vascular system, lymphatic system as well as the neurological, endocrinological or orthopaedic examination we assessed other basic clinical skills (e.g. interpretation of an ECG, reading a chest X-ray). Participants filled-out a questionnaire prior to the exam, inter alia to give an estimate of their performance. Results: 214 final year students participated in our study and achieved a mean score of 72.8% of the total score obtainable. 9.3% of participants (n=20) scored insufficiently (<60%). We found no influence of sex, prior training in healthcare or place of study on performance. Only one third of the students correctly estimated their performance (35.3%), whereas 30.0% and 18.8% over-estimated their performance by 10% and 20% respectively. Discussion: Final year undergraduate medical students demonstrate considerable deficits performing practical clinical skills in the context of a formative assessment. Half of the students over-estimate their own performance. We recommend an institutionalised and frequent assessment of practical clinical skills during undergraduate medical education, especially in the final year. PMID:27579358

  10. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  11. Introducing Ethics to Chemistry Students in a "Research Experiences for Undergraduates" (REU) Program

    ERIC Educational Resources Information Center

    Hanson, Mark J.

    2015-01-01

    A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and…

  12. Forging Faculty-Student Relationships at the College Level Using a First-Year Research Experience

    ERIC Educational Resources Information Center

    Forbes, David C.; Davis, Patricia M.

    2008-01-01

    Coupling the scholarly activities of the chemistry research faculty with that of the first-year honors general chemistry laboratory has resulted in additional research experience for undergraduate students and a rise of productivity within the chemistry department. For seven years, first-year university honors students enrolled in the honors…

  13. Undergraduate Research Collaborations with Government Agencies Involving the Effects of Climate Change

    NASA Astrophysics Data System (ADS)

    Gurtler, G.

    2017-12-01

    We discuss the challenges and achievements that a small HSI college had integrating undergraduate research experiences into an existing natural sciences program. Like most introductory college science courses, our natural science courses used textbooks, PowerPoint presentations, and lectures to illustrate basic scientific concepts. Though a collective decision was made by our science faculty to incorporate undergraduate research projects into various STEM courses, our greatest challenge was incorporating mandatory research courses into the degree plans of our Natural Science program. We found that students made considerable progress in understanding natural science by critically evaluating primary research articles and undertaking small research projects. Many of these student projects were conducted in cooperation with the Albuquerque District of the US Army Corps of Engineers, United States Geological Survey in Denver, and the National Ice Core Laboratory. These projects illustrated the effects of climate change on the water quality, sediment buildup, and biodiversity at local reservoirs. Other projects involved the analysis of ice core samples from Greenland and Antarctica. Students presented research posters at various research venues, including Community College Undergraduate Research Initiative colloquiums.

  14. Undergraduate students' development of social, cultural, and human capital in a networked research experience

    NASA Astrophysics Data System (ADS)

    Thompson, Jennifer Jo; Conaway, Evan; Dolan, Erin L.

    2016-12-01

    Recent calls for reform in undergraduate biology education have emphasized integrating research experiences into the learning experiences of all undergraduates. Contemporary science research increasingly demands collaboration across disciplines and institutions to investigate complex research questions, providing new contexts and models for involving undergraduates in research. In this study, we examined the experiences of undergraduates participating in a multi-institution and interdisciplinary biology research network. Unlike the traditional apprenticeship model of research, in which a student participates in research under the guidance of a single faculty member, students participating in networked research have the opportunity to develop relationships with additional faculty and students working in other areas of the project, at their own and at other institutions. We examined how students in this network develop social ties and to what extent a networked research experience affords opportunities for students to develop social, cultural, and human capital. Most studies of undergraduate involvement in science research have focused on documenting student outcomes rather than elucidating how students gain access to research experiences or how elements of research participation lead to desired student outcomes. By taking a qualitative approach framed by capital theories, we have identified ways that undergraduates utilize and further develop various forms of capital important for success in science research. In our study of the first 16 months of a biology research network, we found that undergraduates drew upon a combination of human, cultural, and social capital to gain access to the network. Within their immediate research groups, students built multidimensional social ties with faculty, peers, and others, yielding social capital that can be drawn upon for information, resources, and support. They reported developing cultural capital in the form of learning to

  15. Open Innovation Labs for Physics Undergraduate Independent Research

    NASA Astrophysics Data System (ADS)

    Carlsmith, Duncan

    2014-03-01

    The open undergraduate laboratory Garage Physics at the University of Wisconsin-Madison is home to a variety of independent physics and multidisciplinary research projects. Its maker-style environment encourages innovation and entrepreneurship. Experience establishing and staffing the laboratory will be described.

  16. Cultivating a Culture of Undergraduate Research at a Public Comprehensive University

    ERIC Educational Resources Information Center

    Abernathy, Kristen; Abernathy, Zachary; Costner, Beth; Rusinko, Joseph; Westover, Kristi

    2017-01-01

    Winthrop University is a public comprehensive university of about 6000 students, 5000 of whom are undergraduates. The Department of Mathematics offers a baccalaureate degree in mathematics, but has no graduate degree programs. As late as 2009, there was essentially no undergraduate research in the department. At this time, faculty made efforts to…

  17. A Research Based Sport Management Curricular Model: Undergraduate and Graduate Programs.

    ERIC Educational Resources Information Center

    Kelley, Dennie R.; And Others

    This paper brings to closure a series of evaluation/action research studies on needs assessment by: (1) sport management personnel in sport business/agencies; (2) faculty in charge of curriculum in all known undergraduate and graduate sport management programs in higher education; and (3) undergraduate and graduate majors in sport management from…

  18. Interdisciplinary training in mathematical biology through team-based undergraduate research and courses.

    PubMed

    Miller, Jason E; Walston, Timothy

    2010-01-01

    Inspired by BIO2010 and leveraging institutional and external funding, Truman State University built an undergraduate program in mathematical biology with high-quality, faculty-mentored interdisciplinary research experiences at its core. These experiences taught faculty and students to bridge the epistemological gap between the mathematical and life sciences. Together they created the infrastructure that currently supports several interdisciplinary courses, an innovative minor degree, and long-term interdepartmental research collaborations. This article describes how the program was built with support from the National Science Foundation's Interdisciplinary Training for Undergraduates in Biology and Mathematics program, and it shares lessons learned that will help other undergraduate institutions build their own program.

  19. Preparation of CdS Nanoparticles by First-Year Undergraduates

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Noviello, Thomas; Brooks, Stephen

    2007-01-01

    The first year undergraduates use a simple method to synthesize 5-nm CdS nanoparticles in a water-in-oil microemulsion. The quantum size effect, the relationship between colors, optical absorbance, band-gap energy and the CdS particles affected by the formation of micelles are observed.

  20. Scientific Visualization Tools for Enhancement of Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Rodriguez, W. J.; Chaudhury, S. R.

    2001-05-01

    Undergraduate research projects that utilize remote sensing satellite instrument data to investigate atmospheric phenomena pose many challenges. A significant challenge is processing large amounts of multi-dimensional data. Remote sensing data initially requires mining; filtering of undesirable spectral, instrumental, or environmental features; and subsequently sorting and reformatting to files for easy and quick access. The data must then be transformed according to the needs of the investigation(s) and displayed for interpretation. These multidimensional datasets require views that can range from two-dimensional plots to multivariable-multidimensional scientific visualizations with animations. Science undergraduate students generally find these data processing tasks daunting. Generally, researchers are required to fully understand the intricacies of the dataset and write computer programs or rely on commercially available software, which may not be trivial to use. In the time that undergraduate researchers have available for their research projects, learning the data formats, programming languages, and/or visualization packages is impractical. When dealing with large multi-dimensional data sets appropriate Scientific Visualization tools are imperative in allowing students to have a meaningful and pleasant research experience, while producing valuable scientific research results. The BEST Lab at Norfolk State University has been creating tools for multivariable-multidimensional analysis of Earth Science data. EzSAGE and SAGE4D have been developed to sort, analyze and visualize SAGE II (Stratospheric Aerosol and Gas Experiment) data with ease. Three- and four-dimensional visualizations in interactive environments can be produced. EzSAGE provides atmospheric slices in three-dimensions where the researcher can change the scales in the three-dimensions, color tables and degree of smoothing interactively to focus on particular phenomena. SAGE4D provides a navigable

  1. Defining the Problem: Mathematical Errors and Misconceptions Exhibited by First-Year Bioscience Undergraduates

    ERIC Educational Resources Information Center

    Tariq, V. N.

    2008-01-01

    This study extends the debate concerning the mathematical skills deficit of bioscience undergraduates towards a deeper understanding of their mathematics learning, since only through the latter can appropriate and effective explicit teaching be implemented. Three hundred and twenty-six first-year bioscience undergraduates, from three pre- and four…

  2. The Influence of Materials Science and Engineering Undergraduate Research Experiences on Public Communication Skills

    ERIC Educational Resources Information Center

    Ing, Marsha; Fung, Wenson W.; Kisailus, David

    2013-01-01

    Communicating research findings with others is a skill essential to the success of future STEM professionals. However, little is known about how this skill can be nurtured through participating in undergraduate research. The purpose of this study is to quantify undergraduate participation in research in a materials science and engineering…

  3. Fostering Undergraduate Research Experiences in Management Information Systems through the "Research Group" Framework

    ERIC Educational Resources Information Center

    Bartkus, Ken; Mills, Robert; Olsen, David

    2010-01-01

    The purpose of this paper is to propose an innovative approach to engaged learning. Founded on the principles of a scholarly think-tank and administered along the lines of a consulting organization, the proposed "Research Group" framework is designed to facilitate effective and efficient undergraduate research experiences in Management…

  4. Ethics and Undergraduate Research in the Study of Religion: Place-Based Pedagogy and Reciprocal Research Relations

    ERIC Educational Resources Information Center

    Prideaux, Mel

    2016-01-01

    In the undergraduate religious studies classroom at the University of Leeds students are introduced to the complexity of religion in locality. One of the most engaging ways to do this is through a place-based pedagogy utilizing independent fieldwork as part of the learning process. However, undergraduates, like seasoned researchers, must learn to…

  5. A Survey of Final-year Undergraduate Laboratory Projects in Biochemistry and Related Degrees in Great Britain.

    ERIC Educational Resources Information Center

    Austin, Caroline A.

    1997-01-01

    Analyzes undergraduate research projects in biochemistry and related subjects at British universities. Discusses the trend toward students doing less research as part of their undergraduate study. Reasons cited for this trend include increased student numbers and costs. (DDR)

  6. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  7. Engaging undergraduate students in hadron physics research and instrumentation

    NASA Astrophysics Data System (ADS)

    Horn, Tanja

    2017-09-01

    Nuclear physics research is fundamental to our understanding of the visible universe and at the same time intertwined with our daily life. Nuclear physics studies the origin and structure of the atomic nuclei in terms of their basic constituents, the quarks and gluons. Atoms and molecules would not exist without underlying quark-gluon interactions, which build nearly all the mass of the visible universe from an assembly of massless gluons and nearly-massless quarks. The study of hadron structure with electromagnetic probes through exclusive and semi-inclusive scattering experiments carried out at the 12 GeV Jefferson Laboratory plays an important role in this effort. In particular, planned precision measurements of pion and kaon form factors and longitudinal-transverse separated deep exclusive pion and kaon electroproduction cross sections to the highest momentum transfers achievable play an important role in understanding hadron structure and masses and provide essential constraints for 3D hadron imaging. While a growing fraction of nuclear physics research is carried out at large international laboratories, individual university research groups play critical roles in the success of that research. These include data analysis projects and the development of state-of-the-art instrumentation demanded by increasingly sophisticated experiments. These efforts are empowered by the creativity of university faculty, staff, postdocs, and provide students with unique hands-on experience. As an example, an aerogel Cherenkov detector enabling strangeness physics research in Hall C at Jefferson Lab was constructed at the Catholic University of America with the help of 16 undergraduate and high school students. The ''Conference Experience for Undergraduates'' (CEU) provides a venue for these students who have conducted research in nuclear physics. This presentation will present the experiences of one of the participants in the first years of the CEU, her current research program

  8. Integrating Undergraduate Students in Faculty-Driven Motor Behavior Research

    ERIC Educational Resources Information Center

    Robinson, Leah E.

    2013-01-01

    This article described the faculty-sponsored, faculty-driven approach to undergraduate research (UGR) at Auburn University. This approach is centered around research in the Pediatric Movement and Physical Activity Laboratory, and students can get elective course credit for their participation in UGR. The article also describes how students' roles…

  9. Integrated Laboratories: Laying the Foundation for Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Dillner, Debra K.; Ferrante, Robert F.; Fitzgerald, Jeffrey P.; Schroeder, Maria J.

    2011-01-01

    Interest in undergraduate student research has grown in response to initiatives from various professional societies and educational organizations. Participation in research changes student attitudes towards courses as they realize the utility and relevance of what they are learning. At the U.S. Naval Academy, the chemistry majors' curriculum was…

  10. Leveraging Online Learning Resources to Teach Core Research Skills to Undergraduates at a Diverse Research University.

    PubMed

    McFARLIN, Brian K; Breslin, Whitney L; Carpenter, Katie C; Strohacker, Kelley; Weintraub, Randi J

    2010-01-01

    Today's students have unique learning needs and lack knowledge of core research skills. In this program report, we describe an online approach that we developed to teach core research skills to freshman and sophomore undergraduates. Specifically, we used two undergraduate kinesiology (KIN) courses designed to target students throughout campus (KIN1304: Public Health Issues in Physical Activity and Obesity) and specifically kinesiology majors (KIN1252: Foundations of Kinesiology). Our program was developed and validated at the 2 nd largest ethnically diverse research university in the United States, thus we believe that it would be effective in a variety of student populations.

  11. Effect of Time on Perceived Gains from an Undergraduate Research Program

    PubMed Central

    Adedokun, Omolola A.; Parker, Loran C.; Childress, Amy; Burgess, Wilella; Adams, Robin; Agnew, Christopher R.; Leary, James; Knapp, Deborah; Shields, Cleveland; Lelievre, Sophie; Teegarden, Dorothy

    2014-01-01

    The current study examines the trajectories of student perceived gains as a result of time spent in an undergraduate research experience (URE). Data for the study come from a survey administered at three points over a 1-yr period: before participation in the program, at the end of a Summer segment of research, and at the end of the year. Repeated-measures analysis of variance was used to examine the effect of time on perceived gains in student research skills, research confidence, and understanding of research processes. The results suggest that the students experienced different gains/benefits at developmentally different stages of their UREs. Participants reported gains in fewer areas at the end of the Summer segment compared with the end of the yearlong experience, thus supporting the notion that longer UREs offer students more benefit. PMID:24591512

  12. Merits of Undergraduate and High School Research

    NASA Astrophysics Data System (ADS)

    Kenney, John

    2016-06-01

    When it comes to sports, everyone gets it; you have to play to really understand, experience, and learn what the game is all about. It would be ludicrous to teach basketball by practicing basketball fundamentals in the gym (layups, free throws, jump shots, dribbling, defense), reading about and attending professional basketball games, but never playing in a game. As important as classes and teaching laboratories may be in science education, there is simply no substitute for active engagement in scientific research to show students what science is all about and, perhaps even more importantly, to inspire and motivate them to become scientists or at least appreciate science. It is a widely held misconception that a student cannot really do meaningful, publishable scientific research until he/she is in graduate school. In actual fact, college undergraduates and even high school students can make original and significant scientific research contributions. Astronomical research, in particular, is very well suited to engage the beginning high school or college undergraduate researcher. The night sky’s inherent accessibility and also its inherent grandeur are natural draws for the curious student’s mind. And much can be learned and discovered using small telescopes. In sports, joining a team is a key aspect of the sports experience. Similarly in science, joining a research team and thereby entering a “community of scientific practice” is fundamental and transformational. As important as working with equipment and acquiring data happen to be in scientific research, this is only the beginning of the research process. Student researchers of all ages—particularly high school students and college undergraduates—have much to gain by giving presentations on their research, writing up their results for publication, and going through the peer review process. But this only works if the student researchers are imbedded within the community of practice.

  13. Impact of the INBRE summer student mentored research program on undergraduate students in Arkansas.

    PubMed

    McSweeney, Jean C; Hudson, Teresa J; Prince, Latrina; Beneš, Helen; Tackett, Alan J; Miller Robinson, Caroline; Koeppe, Roger; Cornett, Lawrence E

    2018-03-01

    The Institutional Development Award (IDeA) program, housed within the National Institute for General Medical Sciences, administers the Networks of Biomedical Research Excellence (INBRE) as a strategic mission to broaden the geographic distribution of National Institutes of Health (NIH) funding within the United States. Undergraduate summer student mentored research programs (SSMRP) are a common feature of INBRE programs and are designed to increase undergraduate student interest in research careers in the biomedical sciences. Little information is available about student perspectives on how these programs impact their choices relative to education and careers. Therefore, we conducted qualitative interviews with 20 participants from the Arkansas INBRE SSMRP in the years 2002-2012. Each telephone interview lasted 30-45 min. An interview guide with a broad "grand tour" question was used to elicit student perspectives on SSMRP participation. Interviews were digitally recorded, then transcribed verbatim, and the transcript checked for accuracy. Content analysis and constant comparison were used to identify nine themes that were grouped into three temporal categories: before, during, and after the SSMRP experience. Students viewed the experience as positive and felt it impacted their career choices. They emphasized the value of mentoring in the program, and some reported maintaining a relationship with the mentor after the summer experience ended. Students also valued learning new laboratory and presentation skills and felt their research experience was enhanced by meeting students and scientists with a wide range of career interests. These data suggest that the Arkansas INBRE and the NIH IDeA program are successfully meeting the goal of increasing interest in research among undergraduates.

  14. ChE Undergraduate Research Projects in Biomedical Engineering.

    ERIC Educational Resources Information Center

    Stroeve, Pieter

    1981-01-01

    Describes an undergraduate research program in biomedical engineering at the State University of New York at Buffalo. Includes goals and faculty comments on the program. Indicates that 58 percent of projects conducted between 1976 and 1980 have been presented at meetings or published. (SK)

  15. Maximizing Undergraduate Success By Combining Research Experiences with Outreach, Peer Mentoring and Professional Development

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.

    2014-12-01

    The C-MORE Scholars Program provides hands-on, closely mentored research experiences to University of Hawaii (UH) undergraduates during the academic year. Students majoring in the geosciences, especially underrepresented students, from all campuses are encouraged to apply. The academic-year research is complemented by outreach, professional development and summer internships. Combined, these experiences help students develop the skills, confidence and passion that are essential to success in a geoscience career. Research. All students enter the program as trainees, where they learn lab and field research methods, computer skills and science principles. After one year, they are encouraged to reapply as interns, where they work on their own research project. Students who have successfully completed their intern year can reapply as fellows, where they conduct an independent research project such as an honors thesis. Students present their research at a Symposium through posters (trainees) or talks (interns and fellows). Interns and fellows help organize program activities and serve as peer mentors to trainees.Multi-tiered programs that build a pathway toward graduation have been shown to increase student retention and graduation success. Outreach. Undergraduate researchers rarely feel like experts when working with graduate students and faculty. For students to develop their identity as scientists, it is essential that they be given the opportunity to assume the role as expert. Engaging students in outreach is a win-win situation. Students gain valuable skills and confidence in sharing their research with their local community, and the public gets to learn about exciting research happening at UH. Professional Development. Each month, the Scholars meet to develop their professional skills on a particular topic, such as outreach, scientific presentations, interviewing, networking, and preparing application materials for jobs, scholarships and summer REUs. Students are

  16. Academics' Perceptions of the Purpose of Undergraduate Research Experiences in a Research-Intensive Degree

    ERIC Educational Resources Information Center

    Wilson, Anna; Howitt, Susan; Wilson, Kate; Roberts, Pam

    2012-01-01

    The inclusion of research experiences as core components of undergraduate curricula implies that students will be exposed to and situated within the research activities of their university. Such experiences thus provide a new prism through which to view the relations between teaching, research and learning. The intentions and actions of academics…

  17. The Role of Student-Advisor Interactions in Apprenticing Undergraduate Researchers into a Scientific Community of Practice

    NASA Astrophysics Data System (ADS)

    Thiry, Heather; Laursen, Sandra L.

    2011-12-01

    Among science educators, current interest in undergraduate research (UR) is influenced both by the traditional role of the research apprenticeship in scientists' preparation and by concerns about replacing the current scientific workforce. Recent research has begun to demonstrate the range of personal, professional, and intellectual benefits for STEM students from participating in UR, yet the processes by which student-advisor interactions contribute to these benefits are little understood. We employ situated learning theory (Lave and Wenger, Situated learning: legitimate peripheral participation, Cambridge University Press, Cambridge in 1991) to examine the role of student-advisor interactions in apprenticing undergraduate researchers, particularly in terms of acculturating students to the norms, values, and professional practice of science. This qualitative study examines interviews with a diverse sample of 73 undergraduate research students from two research-extensive institutions. From these interviews, we articulate a continuum of practices that research mentors employed in three domains to support undergraduate scientists-in-training: professional socialization, intellectual support, and personal/emotional support. The needs of novice students differed from those of experienced students in each of these areas. Novice students needed clear expectations, guidelines, and orientation to their specific research project, while experienced students needed broader socialization in adopting the traits, habits, and temperament of scientific researchers. Underrepresented minority students, and to a lesser extent, women, gained confidence from their interactions with their research mentors and broadened their future career and educational possibilities. Undergraduate research at research-extensive universities exemplifies a cycle of scientific learning and practice where undergraduate researchers are mentored by graduate students and postdoctoral researchers, who are

  18. Bioengineering and Bioinformatics Summer Institutes: Meeting Modern Challenges in Undergraduate Summer Research

    PubMed Central

    Dong, Cheng; Snyder, Alan J.; Jones, A. Daniel; Sheets, Erin D.

    2008-01-01

    Summer undergraduate research programs in science and engineering facilitate research progress for faculty and provide a close-ended research experience for students, which can prepare them for careers in industry, medicine, and academia. However, ensuring these outcomes is a challenge when the students arrive ill-prepared for substantive research or if projects are ill-defined or impractical for a typical 10-wk summer. We describe how the new Bioengineering and Bioinformatics Summer Institutes (BBSI), developed in response to a call for proposals by the National Institutes of Health (NIH) and the National Science Foundation (NSF), provide an impetus for the enhancement of traditional undergraduate research experiences with intense didactic training in particular skills and technologies. Such didactic components provide highly focused and qualified students for summer research with the goal of ensuring increased student satisfaction with research and mentor satisfaction with student productivity. As an example, we focus on our experiences with the Penn State Biomaterials and Bionanotechnology Summer Institute (PSU-BBSI), which trains undergraduates in core technologies in surface characterization, computational modeling, cell biology, and fabrication to prepare them for student-centered research projects in the role of materials in guiding cell biology. PMID:18316807

  19. Embedding Research-Based Learning Early in the Undergraduate Geography Curriculum

    ERIC Educational Resources Information Center

    Walkington, Helen; Griffin, Amy L.; Keys-Mathews, Lisa; Metoyer, Sandra K.; Miller, Wendy E.; Baker, Richard; France, Derek

    2011-01-01

    This article considers the rationale for embedding research and enquiry skills early in the undergraduate geography curriculum and for making these skills explicit to students. A survey of 52 international geography faculty identified critical thinking, framing research questions, reflectivity and creativity as the most challenging research skills…

  20. Incorporating Applied Undergraduate Research in Senior to Graduate Level Remote Sensing Courses

    ERIC Educational Resources Information Center

    Henley, Richard B.; Unger, Daniel R.; Kulhavy, David L.; Hung, I-Kuai

    2016-01-01

    An Arthur Temple College of Forestry and Agriculture (ATCOFA) senior spatial science undergraduate student engaged in a multi-course undergraduate research project to expand his expertise in remote sensing and assess the applied instruction methodology employed within ATCOFA. The project consisted of performing a change detection…

  1. Multilevel approach to mentoring in the Research Experiences for Undergraduates programs

    NASA Astrophysics Data System (ADS)

    Bonine, K. E.; Dontsova, K.; Pavao-Zuckerman, M.; Paavo, B.; Hogan, D.; Oberg, E.; Gay, J.

    2015-12-01

    This presentation focuses on different types of mentoring for students participating in Research Experiences for Undergraduates programs with examples, including some new approaches, from The Environmental and Earth Systems Research Experiences for Undergraduates Program at Biosphere 2. While traditional faculty mentors play essential role in students' development as researchers and professionals, other formal and informal mentoring can be important component of the REU program and student experiences. Students receive mentoring from program directors, coordinators, and on site undergraduate advisors. While working on their research projects, REU students receive essential support and mentoring from undergraduate and graduate students and postdoctoral scientists in the research groups of their primary mentors. Cohort living and group activities give multiple opportunities for peer mentoring where each student brings their own strengths and experiences to the group. Biosphere 2 REU program puts strong emphasis on teaching students to effectively communicate their research to public. In order to help REUs learn needed skills the outreach personnel at Biosphere 2 mentor and advise students both in groups and individually, in lecture format and by personal example, on best outreach approaches in general and on individual outreach projects students develop. To further enhance and strengthen outreach mentoring we used a novel approach of blending cohort of REU students with the Cal Poly STAR (STEM Teacher And Researcher) Program fellows, future K-12 STEM teachers who are gaining research experience at Biosphere 2. STAR fellows live together with the REU students and participate with them in professional development activities, as well as perform research side by side. Educational background and experiences gives these students a different view and better preparation and tools to effectively communicate and adapt science to lay audiences, a challenge commonly facing

  2. Teaching Research Integrity and Bioethics to Science Undergraduates

    ERIC Educational Resources Information Center

    Turrens, Julio F.

    2005-01-01

    Undergraduate students in the Department of Biomedical Sciences at the University of South Alabama, Mobile, are required to take a course entitled "Issues in Biomedical Sciences," designed to increase students' awareness about bioethical questions and issues concerning research integrity. This paper describes the main features of this…

  3. Research Projects and Undergraduate Retention at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Walker-LaFollette, Amanda; Hardegree-Ullman, K.; Towner, A. P.; McGraw, A. M.; Biddle, L. I.; Robertson, A.; Turner, J.; Smith, C.

    2013-06-01

    The University of Arizona’s Astronomy Club utilizes its access to the many telescopes in and around Tucson, Arizona, to allow students to fully participate in a variety of research projects. Three current projects - the exoplanet project, the radio astronomy project, and the Kepler project - all work to give undergraduates who are interested in astronomy the opportunity to explore practical astronomy outside the classroom and in a peer-supported environment. The exoplanet project strives to teach students about the research process, including observing exoplanet transits on the Steward Observatory 61” Kuiper telescope on Mt. Bigelow in Tucson, AZ, reducing the data into lightcurves with the Image Reduction and Analysis Facility (IRAF), modeling the lightcurves using the Interactive Data Language (IDL), and writing and publishing a professional paper, and does it all with no faculty involvement. The radio astronomy project is designed to provide students with an opportunity to work with a professor on a radio astronomy research project, and to learn about the research process, including observing molecules in molecular clouds using the Arizona Radio Observatory 12-meter radio telescope on Kitt Peak in Arizona. The Kepler project is a new project designed in part to facilitate graduate-undergraduate interaction in the Astronomy Department, and in part to allow students (both graduate and undergraduate) to participate in star-spot cycle research using data from the Kepler Mission. All of these research projects and structures provide students with unique access to telescopes, peer mentoring, networking, and understanding the entire process of astronomical research.

  4. The Undergraduate ALFALFA Team

    NASA Astrophysics Data System (ADS)

    Koopmann, Rebecca A.; Higdon, S.; Balonek, T. J.; Haynes, M. P.; Giovanelli, R.

    2010-01-01

    The Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team is a consortium of 16 institutions engaged in an NSF-sponsored program to promote undergraduate research within the extragalactic ALFALFA HI blind survey project. In the first two years of the program, more than three dozen undergraduate students have been closely involved in ALFALFA science, observing, and data analysis. A total of 34 students have attended the annual undergraduate workshops at Arecibo Observatory, interacting with faculty, their peers, ALFALFA experts, and Arecibo staff in lectures, group activities, tours, and observing runs. Team faculty have supervised 26 summer research projects and 14 academic year (e.g., senior thesis) projects. Students and faculty have traveled to Arecibo Observatory for observing runs and to national meetings to present their results. Eight Team schools have joined to work collaboratively to analyze HI properties of galaxy groups within the ALFALFA volume. (See O'Brien et al., O'Malley et al., and Odekon et al. posters, this meeting.) Students involved in this program are learning how science is accomplished in a large collaboration while contributing to the scientific goals of a major legacy survey. This work has been supported by NSF grants AST-0724918, AST-0725267, and AST-0725380.

  5. The C-MORE Scholars Program: Engaging minority students in STEM through undergraduate research

    NASA Astrophysics Data System (ADS)

    Gibson, B. A.; Bruno, B. C.

    2010-12-01

    There have been several studies that show how undergraduate research experiences (REU) have a positive impact on a student’s academic studies and career path, including being a positive influence toward improving the student's lab skills and ability to work independently. Moreover, minority students appear to relate to science, technology, engineering, and mathematics (STEM) concepts better when they are linked with (1) a service learning component, and (2) STEM courses that include a cultural and social aspect that engages the student in a way that does not distract from the student’s technical learning. It is also known that a “place-based” approach that incorporates traditional (indigenous) knowledge can help engage underrepresented minority groups in STEM disciplines and increase science literacy. Based on the methods and best practices used by other minority serving programs and described in the literature, the Center for Microbial Oceanography: Research and Education (C-MORE) has successfully developed an academic-year REU to engage and train the next generation of scientists. The C-MORE Scholars Program provides undergraduate students majoring in an ocean or earth science-related field, especially underrepresented students such as Native Hawaiians and Pacific Islanders, the opportunity to participate in unique and cutting edge hands-on research experiences. The program appoints awardees at one of three levels based on previous research and academic experience, and students can progress through the various tiers as their skills and STEM content knowledge develop. All awardees receive guidance on a research project from a mentor who is a scientist at the university and/or industry. A key component of the program is the inclusion of professional development activities to help the student continue towards post graduation education or prepare for career opportunities after they receive their undergraduate STEM degree.

  6. Harvard Observing Project (HOP): Involving Undergraduates in Research Projects

    NASA Astrophysics Data System (ADS)

    Bieryla, Allyson

    2017-01-01

    The Harvard Observing Project (HOP) is designed to get students excited about observational astronomy while collecting data valuable to the scientific community. The primary goal is to give undergraduates a chance to try out observing with “no strings attached”. Observations are led by experienced observers, mostly graduate students. This not only gives graduate students extra opportunities to interact and teach undergraduates, but also a chance for them to get more observing experience. Each semester, we choose an interesting target and monitor it each week over the course of the semester using Harvard University’s 16-inch DFM Clay Telescope. These observing projects often produce large amounts of data. This provides an excellent dataset for a young undergraduate to analyze. Some successful semester-long observing projects have included variable stars, supernova and binary systems. Short-term projects have included exoplanet candidate followup, asteroid and comet followup and collaborating with the Pro-Am White Dwarf Monitoring (PAWM) project in attempts to detect a transiting Earth-sized planet orbiting a white dwarf. Each dataset is an opportunity for an undergraduate to be introduced to scientific research and present the results to the community.

  7. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

  8. The Undergraduate as Researcher: Selected Studies in Mass Communication.

    ERIC Educational Resources Information Center

    Felsenthal, Norman A.

    Reporting on a group of class projects undertaken by a series of his college-level "Broadcasting and Society" courses, the author concludes that there is great value in encouraging undergraduates to do their own original research. Among the topics researched by the students are the effect of television on nuns, television news viewing habits of…

  9. Undergraduate Peer Learning and Public Digital Humanities Research

    ERIC Educational Resources Information Center

    Draxler, Bridget; Hsieh, Haowei; Dudley, Nicole; Winet, Jon

    2012-01-01

    In conjunction with Iowa City's 2008 designation as a UNESCO City of Literature, an interdisciplinary team of University of Iowa faculty, graduate and undergraduate student researchers formed UCOL--the University of Iowa UNESCO City of Literature Mobile Application Development Team. The project brings together community partners, faculty, students…

  10. Students' Perceptions of an Applied Research Experience in an Undergraduate Exercise Science Course.

    PubMed

    Pearson, Regis C; Crandall, K Jason; Dispennette, Kathryn; Maples, Jill M

    2017-01-01

    Applied research experiences can provide numerous benefits to undergraduate students, however few studies have assessed the perceptions of Exercise Science (EXS) students to an applied research experience. The purpose of this study was two-fold: 1) to describe the rationale and implementation of an applied research experience into an EXS curriculum and 2) to evaluate EXS undergraduate students' perceptions of an applied research experience. An EXS measurement course was chosen for implementation of an applied research experience. The applied research experience required groups of students to design, implement, and evaluate a student-led research project. Fourteen questions were constructed, tailored to EXS undergraduate students, to assess students' perceptions of the experience. Qualitative analysis was used for all applicable data, with repeated trends noted; quantitative data were collapsed to determine frequencies. There was an overall positive student perception of the experience and 85.7% of students agreed an applied research experience should be continued. 84.7% of students perceived the experience as educationally enriching, while 92.8% reported the experience was academically challenging. This experience allowed students to develop comprehensive solutions to problems that arose throughout the semester; while facilitating communication, collaboration, and problem solving. Students believed research experiences were beneficial, but could be time consuming when paired with other responsibilities. Results suggest an applied research experience has the potential to help further the development of EXS undergraduate students. Understanding student perceptions of an applied research experience may prove useful to faculty interested in engaging students in the research process.

  11. Students’ Perceptions of an Applied Research Experience in an Undergraduate Exercise Science Course

    PubMed Central

    PEARSON, REGIS C.; CRANDALL, K. JASON; DISPENNETTE, KATHRYN; MAPLES, JILL M.

    2017-01-01

    Applied research experiences can provide numerous benefits to undergraduate students, however few studies have assessed the perceptions of Exercise Science (EXS) students to an applied research experience. The purpose of this study was two-fold: 1) to describe the rationale and implementation of an applied research experience into an EXS curriculum and 2) to evaluate EXS undergraduate students’ perceptions of an applied research experience. An EXS measurement course was chosen for implementation of an applied research experience. The applied research experience required groups of students to design, implement, and evaluate a student-led research project. Fourteen questions were constructed, tailored to EXS undergraduate students, to assess students’ perceptions of the experience. Qualitative analysis was used for all applicable data, with repeated trends noted; quantitative data were collapsed to determine frequencies. There was an overall positive student perception of the experience and 85.7% of students agreed an applied research experience should be continued. 84.7% of students perceived the experience as educationally enriching, while 92.8% reported the experience was academically challenging. This experience allowed students to develop comprehensive solutions to problems that arose throughout the semester; while facilitating communication, collaboration, and problem solving. Students believed research experiences were beneficial, but could be time consuming when paired with other responsibilities. Results suggest an applied research experience has the potential to help further the development of EXS undergraduate students. Understanding student perceptions of an applied research experience may prove useful to faculty interested in engaging students in the research process. PMID:29170695

  12. NSF Programs That Support Research in the Two-Year College Classroom

    NASA Astrophysics Data System (ADS)

    Carter, V.; Ryan, J. G.; Singer, J.

    2011-12-01

    The National Science Foundation recognizes the significant role provided by two-year institutions in providing high quality STEM courses to large numbers of students. For some students the STEM courses completed while attending a two-year institution represent the only STEM courses a student may take; for others the courses serve as the foundation to continue on into a STEM major at a four-year institution; and some students complete STEM courses that lead directly into the workforce. Several programs in the Division of Undergraduate Research, including the Advanced Technological Education (ATE) program, STEM Talent Expansion Program (STEP), and the Transforming Undergraduate Education in STEM (TUES) program, support the inclusion of student research experiences at two-year institutions. Information about these programs and examples of successful funded projects will be provided. Resources for faculty considering applying for support will be shared with special attention to a faculty development program designed to help faculty learn about funding opportunities and prepare proposals for submission to the TUES and ATE programs.

  13. Base rate of performance invalidity among non-clinical undergraduate research participants.

    PubMed

    Silk-Eglit, Graham M; Stenclik, Jessica H; Gavett, Brandon E; Adams, Jason W; Lynch, Julie K; Mccaffrey, Robert J

    2014-08-01

    Neuropsychological research frequently uses non-clinical undergraduate participants to evaluate neuropsychological tests. However, a recent study by An and colleagues (2012, Archives of Clinical Neuropsychology, 27, 849-857) called into question that the extent to which the interpretation of these participants' performance on neuropsychological tests is valid. This study found that in a sample of 36 participants, 55.6% exhibited performance invalidity at an initial session and 30.8% exhibited performance invalidity at a follow-up session. The current study attempted to replicate these findings in a larger, more representative sample using a more rigorous methodology. Archival data from 133 non-clinical undergraduate research participants were analyzed. Participants were classified as performance invalid if they failed any one PVT. In the current sample, only 2.26% of participants exhibited performance invalidity. Thus, concerns regarding insufficient effort and performance invalidity when using undergraduate research participants appear to be overstated. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Promoting Diversity in Undergraduate Research in Robotics-Based Seismic

    NASA Astrophysics Data System (ADS)

    Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.

    2006-12-01

    The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006

  15. Undergraduate Research as Chemical Education--A Symposium: An Undergraduate Laboratory Experiment: The Total Synthesis of Maytansine.

    ERIC Educational Resources Information Center

    Goodwin, Thomas E.

    1984-01-01

    An undergraduate research program in natural product synthesis was established at a small liberal arts college. Discusses program goals (including the total synthesis of maytansine), objectives, and accomplishments to date. Guidelines for establishing such programs are offered. (JN)

  16. Our Campus, Our Health: A Model for Undergraduate Health Education Research Engagement

    ERIC Educational Resources Information Center

    Merten, Julie Williams; Johnson, Dana

    2014-01-01

    Research experience prepares undergraduate students for graduate school, a competitive job market, and their future as the next generation of leaders in public health education. This article describes a model, Our Campus, Our Health, to engage undergraduate students in the delivery of a college health behavior assessment. Through this project,…

  17. An international model for staffing maternal and child health research: the use of undergraduate students.

    PubMed

    Wallis, Anne Baber; Chereches, Răzvan; Oprescu, Florin; Brînzaniuc, Alexandra; Dungy, Claibourne I

    2007-09-01

    Constrained resources in Central and Eastern Europe limit the capacity of local and national health ministries to study breastfeeding practices or implement evidence-based breastfeeding support programs. This paper describes an innovative model for studying an important maternal and child health (MCH) problem by training undergraduate students to strengthen local capacity for research. An international team of researchers from Romania and the United States designed a study conducted at Babeş-Bolyai University and two academic maternity hospitals in Cluj-Napoca, Romania. The objectives were to (1) spark interest in breastfeeding research among undergraduates, (2) develop empirical knowledge about breastfeeding, and (3) train a team of undergraduate students to collect, manage, and enter study data. A team of carefully selected undergraduate students was trained in survey design, data collection, data entry, and interviewing skills. Internet technology was used to facilitate communication and to transfer data. The project resulted in a trained cadre of undergraduate students able to conduct survey research on breastfeeding practices with skills ranging from questionnaire design and implementation to descriptive data analysis. Empirical data obtained from the study will be used for student projects, to stimulate new breastfeeding support policies and programs, and to apply for research grants. Undergraduate students in developing countries in Central and Eastern Europe are a valuable, untapped resource for expanding MCH capacity. We recommend adoption of this cost-effective approach to foster high-quality MCH research.

  18. Knowledge, attitudes, and barriers toward research: The perspectives of undergraduate medical and dental students.

    PubMed

    Kyaw Soe, Htoo Htoo; Than, Nan Nitra; Lwin, Htay; Nu Htay, Mila Nu Nu; Phyu, Khine Lynn; Abas, Adinegara Lutfi

    2018-01-01

    Scientific research not only promotes health and combats diseases of an individual, but also it can strengthen the effectiveness of health systems. Hence, understanding of scientific methods becomes a crucial component in the medical profession. This study was conducted to assess the knowledge, attitudes, and barriers toward research among undergraduate medical and dental students. This cross-sectional study was conducted among 295 undergraduate Bachelor of Medicine and Bachelor of Surgery (MBBS) and Bachelor of Dental Surgery (BDS) students from a private medical college in Malaysia. We purposively selected 360 students attending the 3 rd , 4 th , and 5 th year in MBBS course and BDS course in September 2015. A total of 295 students who were willing to provide written informed consent were included in this study. We collected data using a validated, self-administered, structured questionnaire which included 20 questions about knowledge toward scientific research, 21 attitude items in regard to scientific research, a list of 10 barriers toward conducting medical research, and 5 questions of confidence to conduct the medical research. Data were analyzed using descriptive statistics, independent t-test, ANOVA, and multiple linear regression. Among the students, 56.9% had moderate knowledge while the majority (83.3%) had moderate attitude toward scientific research. The majorly cited barriers were the lack of time (79.9%), lack of knowledge and skills (72.1%), lack of funding (72.0%) and facilities (63.6%), and lack of rewards (55.8%). There was a significant association between age, academic year, and knowledge of research as the older age group, and 4 th - and 5 th -year students had higher knowledge score. The students of higher attitude score had better-perceived barriers score toward research with regression coefficient 0.095 (95% confidence interval 0.032-0.159). Even though the students had the positive attitudes toward scientific research, a supportive and

  19. Service Learning in an Undergraduate Social Work Research Course

    ERIC Educational Resources Information Center

    Postlethwait, Ariana

    2012-01-01

    The current study examined student experiences (n = 111) in an undergraduate social work (BSW) research seminar in which a service learning (SL) project was the primary focus. Student groups of approximately six or seven worked with local agencies to develop a research plan for the agency. Students found the SL project to be a positive experience.…

  20. Undergraduate Research as a Fate Accompli: Innovation and Evolution of a Student Conference in Business

    ERIC Educational Resources Information Center

    Buff, Cheryl L.; Devasagayam, Raj

    2016-01-01

    The benefits of undergraduate research continue to receive academic attention and it is becoming an engaged learning practice present on many college campuses today. As research participation grows, an opportunity exists to showcase the work being accomplished and to use this public presentation to foster a culture of undergraduate research on…

  1. Independent Study: The Culture of Mentored Undergraduate Research at The College of Wooster (Invited)

    NASA Astrophysics Data System (ADS)

    Pollock, M.; Judge, S.; Wiles, G. C.; Wilson, M. A.

    2013-12-01

    The foundation of a Wooster education is the Independent Study (I.S.) program. Established in 1947, the I.S. program is widely recognized as an exemplary undergraduate research experience (AAC&U; US News and World Report; College that Change Lives by Loren Pope). I.S. requires every Wooster student to complete an original research project. This presentation describes the details of the Wooster I.S. and, based on our experiences, gives strategies for a successful mentored undergraduate research program. Overall, the I.S. process resembles a graduate research project. Students typically begin their work in the spring of their junior year when they review the literature, learn techniques, and write a proposal for their Senior I.S. research. Many students conduct field and lab work over the following summer, although this is not a requirement of the program. In their senior year, students work one-on-one with faculty members and sometimes in small (~4 person) research groups to drive their projects forward with an increasing sense of independence. I.S. culminates in a written thesis and oral defense. Most of our students present their work at national meetings and many projects are published in peer-reviewed journals. The success of the I.S. program is largely the result of two key components: (1) the integration of undergraduate research into the curriculum, and (2) the focus on student mentoring. We have thoughtfully structured our courses so that, as students move toward I.S., they progress from concrete to abstract concepts, and from simple to complex skills. The College also recognizes the value of I.S by assigning it credit; Students earn a full course credit for each semester of I.S. (3 courses total) and there is some credit in the faculty teaching load for I.S. advising. Advisors are really mentors who are invested in their students' academic and scholarly success. As mentors, we emphasize collaboration, provide guidance and support, and hold students

  2. Research Experiences for Undergraduates in Estuarine and Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.

    2009-12-01

    Our program in the School of Marine and Atmospheric Sciences at Stony Brook University is unique in emphasizing the interdisciplinary study of coastal ocean and atmospheric processes. We attract a large number of both male and female undergraduate applicants representing diverse ethnic groups from across the country. Many are multi-discipline majors merging geology, biology, chemistry, or physics with engineering, and/or mathematics and welcome the opportunity to combine their academic training to examine environmental problems. Our goal is a program reflective of today’s world and environmental challenges, one that provides a ‘hands-on’ research experience which illustrates the usefulness of scientific research for understanding real-world problems or phenomena, and one in which students are challenged to apply their academic backgrounds to develop intuition about natural systems and processes. Projects this past summer focused on assessing climate change and its effects on coastal environments and processes. Projects addressed the implications of a changing global climate over the next 50 years on hydrologic cycles and coastal environments like barrier islands and beaches, on seasonal weather conditions and extreme events, on aerosols and the Earth’s radiative balance, and on aquatic habitats and biota. Collaborative field and laboratory or computer-based projects involving two or three REU students, graduate students, and several mentors, enable undergraduate students appreciate the importance of teamwork in addressing specific scientific questions or gaining maximum insight into a particular phenomenon or process. We believe that our approach allows students to understand what their role will be as scientists in the next phase of our earth’s evolution.

  3. International Students on an American Campus: An Undergraduate Research Study.

    ERIC Educational Resources Information Center

    Matthews, Judith; Quattrocki, Carolyn

    1981-01-01

    Describes a seminar in which undergraduate students in home economics were provided with research training and the opportunity to work together on a research project which included housing, clothing, nutrition, consumer services, child development, and family relations. Students also explored difficulties international students encounter in…

  4. Introducing ethics to chemistry students in a "Research Experiences for Undergraduates" (REU) program.

    PubMed

    Hanson, Mark J

    2015-01-01

    A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and class discussion on a variety of issues. Students learned about the relevance of ethics to research, skills in moral reasoning, and the array of ethical issues facing various aspects of scientific research. © 2015 The International Union of Biochemistry and Molecular Biology.

  5. Integration of NASA Research into Undergraduate Education in Math, Science, Engineering and Technology at North Carolina A&T State University

    NASA Technical Reports Server (NTRS)

    Monroe, Joseph; Kelkar, Ajit

    2003-01-01

    The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.

  6. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    PubMed

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  7. A Teaching Strategy with a Focus on Argumentation to Improve Undergraduate Students’ Ability to Read Research Articles

    PubMed Central

    Lacum, Edwin B. Van; Goedhart, Martin J.

    2014-01-01

    The aim of this study is to evaluate a teaching strategy designed to teach first-year undergraduate life sciences students at a research university how to learn to read authentic research articles. Our approach—based on the work done in the field of genre analysis and argumentation theory—means that we teach students to read research articles by teaching them which rhetorical moves occur in research articles and how they can identify these. Because research articles are persuasive by their very nature, we focused on the rhetorical moves that play an important role in authors’ arguments. We designed a teaching strategy using cognitive apprenticeship as the pedagogical approach. It was implemented in a first-year compulsory course in the life sciences undergraduate program. Comparison of the results of a pretest with those of the posttest showed that students’ ability to identify these moves had improved. Moreover, students themselves had also perceived that their ability to read and understand a research article had increased. The students’ evaluations demonstrated that they appreciated the pedagogical approach used and experienced the assignments as useful. On the basis of our results, we concluded that students had taken a first step toward becoming expert readers. PMID:26086657

  8. Teaching nursing research to undergraduates: a text analysis of instructors' intentions.

    PubMed

    Porter, Eileen J; Mansour, Tamam B

    2003-04-01

    Reviews of teaching strategies for undergraduate nursing research have been organized according to (a) the type of learning to be achieved, such as learning by doing, or (b) the specific teaching strategy, such as a poster session. For this text analysis, a new tack was taken to reveal the intentions of undergraduate nursing research instructors for student learning. Giorgi's (1985) descriptive phenomenological method was used to analyze 77 narrative reports of instructors about research teaching strategies. Seven intentions were identified, including desensitizing negative perceptions about research and stimulating collaborative learning about research. The intentions were contrasted in scope and relevance to frameworks organized according to learning goals or teaching techniques. The relevance of the intentions was considered in relation to critical trends influencing nursing education. Copyright 2003 Wiley Periodicals, Inc. Res Nurs Health 26:128-142, 2003

  9. Meeting Report: Incorporating Genomics Research into Undergraduate Curricula

    ERIC Educational Resources Information Center

    Dyer, Betsey Dexter; LeBlanc, Mark D.

    2002-01-01

    In the first of two National Science Foundation (NSF)-funded workshops, 30 professors of biology and computer science from 18 institutions met at Wheaton College in Norton, Massachusetts, on June 6-7, 2002, to share ideas on how to incorporate genomics research into undergraduate curricula. The participants included nine pairs or trios of…

  10. Demand for Interdisciplinary Laboratories for Physiology Research by Undergraduate Students in Biosciences and Biomedical Engineering

    ERIC Educational Resources Information Center

    Clase, Kari L.; Hein, Patrick W.; Pelaez, Nancy J.

    2008-01-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary…

  11. The Beer and Biofuels Laboratory: A Report on Implementing and Supporting A Large, Interdisciplinary, Yeast-Focused Course-Based Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Pedwell, Rhianna K.; Fraser, James A.; Wang, Jack T. H.; Clegg, Jack K.; Chartres, Jy D.; Rowland, Susan L.

    2018-01-01

    Course-integrated Undergraduate Research Experiences (CUREs) involve large numbers of students in real research. We describe a late-year microbiology CURE in which students use yeast to address a research question around beer brewing or synthesizing biofuel; the interdisciplinary student-designed project incorporates genetics, bioinformatics,…

  12. Projects Using a Computer Algebra System in First-Year Undergraduate Mathematics

    ERIC Educational Resources Information Center

    Rosenzweig, Martin

    2007-01-01

    This paper illustrates the use of computer-based projects in two one-semester first-year undergraduate mathematics classes. Developed over a period of years, the approach is one in which the classes are organised into work-groups, with computer-based projects being undertaken periodically to illustrate the class material. These projects are…

  13. Peer Mentoring for Undergraduates in a Research-Focused Diversity Initiative

    ERIC Educational Resources Information Center

    Keller, Thomas E.; Logan, Kay; Lindwall, Jennifer; Beals, Caitlyn

    2017-01-01

    To provide multi-dimensional support for undergraduates from traditionally underrepresented backgrounds who aspire to careers in research, the BUILD EXITO project, part of a major NIH-funded diversity initiative, matches each scholar with three mentors: peer mentor (advanced student), career mentor (faculty adviser), and research mentor (research…

  14. Does the positive influence of an undergraduate rural placement persist into postgraduate years?

    PubMed

    Williamson, M I; Wilson, R; McKechnie, R; Ross, J

    2012-01-01

    Medical schools worldwide are playing a role in addressing the shortage of rural health practitioners. Selection of rural-origin students and long-term rural undergraduate placements have been shown to have a positive influence on a subsequent career choice of rural health. Evidence for the impact of short-term rural placements is less clear. In New Zealand, the Otago University Faculty of Medicine introduced a 7 week rural undergraduate placement at the Dunedin School Of Medicine, one of its three clinical schools, in 2000. A study of the first two annual cohorts showed a positive influence of the course on student attitudes to rural health and their intention to practise in a rural setting. The purpose of this study was to test whether or not these effects persisted into postgraduate years. The original study cohorts were posted a questionnaire (questions worded identically to the original survey) in 2009 (5th and 6th postgraduate years). Non-responders were followed up after 2 months. Graduates from the same year cohort at the two other Otago clinical schools (Christchurch and Wellington) were also surveyed. In addition to analysis by question, principal component analysis (PCA) identified 3 questions which represented the influence of the medical undergraduate program on students' attitudes towards rural general practice. This was used as an index of influence of the undergraduate curriculum. There was a statistically significant difference among graduates from Dunedin and the other two schools in reporting a positive influence towards rural practice from the undergraduate course.When asked how the medical undergraduate program influenced their attitude towards a career in rural practice, 56% of respondents from Dunedin reported a positive influence compared with 24% from Christchurch and 15% Wellington. This effect was less strong than that obtained immediately after the rural placement where 70% of Dunedin based students reported a positive influence. The

  15. A Literature Review Analysing Current Research into Undergraduate Interprofessional Learning in the Health and Social Care Context

    ERIC Educational Resources Information Center

    Yearsley, Shirley

    2007-01-01

    This literature review analyses current health and social care literature regarding interprofessional learning in undergraduate curricula. It is based on search of academic data bases for published research written in English over the last ten years. It also includes review of government policy documents regarding interprofessional learning in…

  16. Compendium of student papers : 2008 Undergraduate Transportation Scholars Program.

    DOT National Transportation Integrated Search

    2008-08-01

    This report is a compilation of research papers written by students participating in the 2008 Undergraduate : Transportation Scholars Program. The ten-week summer program, now in its eighteenth year, provides : undergraduate students in Civil Enginee...

  17. Modern Process Studies in Kongsfjord, Svalbard: Arctic Geoscience Research Experience for U.S. Undergraduates (Svalbard REU)

    NASA Astrophysics Data System (ADS)

    Powell, R. D.; Brigham-Grette, J.

    2011-12-01

    The Svalbard REU (Research Experience for Undergraduates) program focuses on understanding how high latitude glaciers, meltwater streams, and sedimentation in lakes and fjords respond to changing climate. Since summer of 2004, six under-graduate students have been selected to participate in the summer field program. Students work on individual projects and in close conjunction with faculty advisors and other student researchers. They formulate their own research questions, develop their project, and complete their field research during a five-week program on Svalbard, Norway. Following the summer program, students complete their projects at their home institution during the following academic year as a senior thesis. A spring symposium brings all participants back together again with their final results. The most recent field season was completed in Kongsfjord (79N) showing that the contemporary studies of tidewater glacier margins provide an unparalleled opportunity for introducing motivated third year undergraduate students to the challenges and rewards of polar geoscientific field research. Rates of rapid change in this high-latitude Arctic environment emphasize the complexity of the Earth System at the interface of the ocean, atmosphere and cryosphere. Given background information in glacial and marine geology, glaciology, hydrology, climatology and fjord oceanography not routinely offered in undergraduate curricula, students develop the science questions to be addressed and establish a field plan for instrumentation and sampling. Working together in small boats in one of the most challenging natural environments, the students expand their leadership skills, learn the value of teamwork and collaborative data sharing while maintaining a strong sense of ownership over their individual science projects. The rigors of studying an actively calving tidewater glacier also builds on their outdoor skills, especially when it is necessary to improvise and become

  18. Leniency and halo effects in marking undergraduate short research projects

    PubMed Central

    McKinstry, Brian H; Cameron, Helen S; Elton, Robert A; Riley, Simon C

    2004-01-01

    Background Supervisors are often involved in the assessment of projects they have supervised themselves. Previous research suggests that detailed marking sheets may alleviate leniency and halo effects. We set out to determine if, despite using such a marking schedule, leniency and halo effects were evident in the supervisors' marking of undergraduate short research projects (special study modules (SSM)). Methods Review of grades awarded by supervisors, second markers and control markers to the written reports of 4th year medical students who had participated in an SSM during two full academic years (n = 399). Paired t-tests were used to compare mean marks, Pearson correlation to look at agreement between marks and multiple linear regression to test the prediction of one mark from several others adjusted for one another. Results There was a highly significant difference of approximately half a grade between supervisors and second markers with supervisors marking higher. (t = 3.12, p < 0.01, difference in grade score = 0.42, 95% CI for mean difference 0.18–0.80). There was a high correlation between the two marks awarded for performance of the project and the written report by the supervisor (r = 0.75), but a low-modest correlation between supervisor and second marker (r = 0.28). Linear regression analysis of the influence of the supervisors' mark for performance on their mark for the report gave a non-significant result. This suggests a leniency effect but no halo effect. Conclusions This study shows that with the use of structured marking sheet for assessment of undergraduate medical students, supervisors marks are not associated with a halo effect, but leniency does occur. As supervisor assessment is becoming more common in both under graduate and postgraduate teaching new ways to improve objectivity in marking and to address the leniency of supervisors should be sought. PMID:15569395

  19. Leniency and halo effects in marking undergraduate short research projects.

    PubMed

    McKinstry, Brian H; Cameron, Helen S; Elton, Robert A; Riley, Simon C

    2004-11-29

    Supervisors are often involved in the assessment of projects they have supervised themselves. Previous research suggests that detailed marking sheets may alleviate leniency and halo effects. We set out to determine if, despite using such a marking schedule, leniency and halo effects were evident in the supervisors' marking of undergraduate short research projects (special study modules (SSM)). Review of grades awarded by supervisors, second markers and control markers to the written reports of 4th year medical students who had participated in an SSM during two full academic years (n = 399). Paired t-tests were used to compare mean marks, Pearson correlation to look at agreement between marks and multiple linear regression to test the prediction of one mark from several others adjusted for one another. There was a highly significant difference of approximately half a grade between supervisors and second markers with supervisors marking higher. (t = 3.12, p < 0.01, difference in grade score = 0.42, 95% CI for mean difference 0.18-0.80). There was a high correlation between the two marks awarded for performance of the project and the written report by the supervisor (r = 0.75), but a low-modest correlation between supervisor and second marker (r = 0.28). Linear regression analysis of the influence of the supervisors' mark for performance on their mark for the report gave a non-significant result. This suggests a leniency effect but no halo effect. This study shows that with the use of structured marking sheet for assessment of undergraduate medical students, supervisors marks are not associated with a halo effect, but leniency does occur. As supervisor assessment is becoming more common in both under graduate and postgraduate teaching new ways to improve objectivity in marking and to address the leniency of supervisors should be sought.

  20. A Social Capital Perspective on the Mentoring of Undergraduate Life Science Researchers: An Empirical Study of Undergraduate–Postgraduate–Faculty Triads

    PubMed Central

    Aikens, Melissa L.; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Eby, Lillian T.; Dolan, Erin L.

    2016-01-01

    Undergraduate researchers at research universities are often mentored by graduate students or postdoctoral researchers (referred to collectively as “postgraduates”) and faculty, creating a mentoring triad structure. Triads differ based on whether the undergraduate, postgraduate, and faculty member interact with one another about the undergraduate’s research. Using a social capital theory framework, we hypothesized that different triad structures provide undergraduates with varying resources (e.g., information, advice, psychosocial support) from the postgraduates and/or faculty, which would affect the undergraduates’ research outcomes. To test this, we collected data from a national sample of undergraduate life science researchers about their mentoring triad structure and a range of outcomes associated with research experiences, such as perceived gains in their abilities to think and work like scientists, science identity, and intentions to enroll in a PhD program. Undergraduates mentored by postgraduates alone reported positive outcomes, indicating that postgraduates can be effective mentors. However, undergraduates who interacted directly with faculty realized greater outcomes, suggesting that faculty interaction is important for undergraduates to realize the full benefits of research. The “closed triad,” in which undergraduates, postgraduates, and faculty all interact directly, appeared to be uniquely beneficial; these undergraduates reported the highest gains in thinking and working like a scientist. PMID:27174583

  1. A Course-Based Undergraduate Research Experience Investigating p300 Bromodomain Mutations

    ERIC Educational Resources Information Center

    Shanle, Erin K.; Tsun, Ian K.; Strahl, Brian D.

    2016-01-01

    Course-based undergraduate research experiences (CUREs) provide an opportunity for students to engage in experiments with outcomes that are unknown to both the instructor and students. These experiences allow students and instructors to collaboratively bridge the research laboratory and classroom, and provide research experiences for a large…

  2. Astrobites: The Online Astronomy Research Digest for Undergraduates

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Astrobites Collaboration

    2013-06-01

    Astrobites (http://astrobites.org) is an innovative science education initiative developed by graduate students in astrophysics for an undergraduate audience. Our goal is to help undergraduates make the transition from the classroom to careers in research by introducing them to the astronomical literature in a pedagogical, approachable, and comprehensible way. Every day we select one new journal article posted to the astrophysics preprint server (http://arXiv.org/astro-ph) and prepare a brief summary describing methods and results, explaining jargon, and providing context. We also write regular blog posts containing career advice, such as tips for applying for graduate school, how to install astronomical software, or demystifying the publishing process. The articles are written by a team of about 30 graduate students in astrophysics from throughout the US and Europe. Since its founding in 2010, Astrobites has grown dramatically, now reaching more than 1000 daily readers in over 100 countries worldwide. Our audience includes not only undergraduates, but also interested non-scientists, educators, and professional researchers. More broadly, Astrobites is interested in fostering the development of vital communication skills that are crucial to a successful science career, yet not formally taught in most astronomy PhD programs. In addition to providing our graduate student authors with valuable opportunities to practice these skills through writing and editing articles, we organize events such as the upcoming workshop Communicating Science 2013, at which graduate students in all science fields from around the country will learn from and interact with panelists who are experts in science communication.

  3. Evaluation of a Research Experiences for Undergraduates Program in ChE Indicates Benefit from a Collaborative Model

    ERIC Educational Resources Information Center

    Follmer, D. Jake; Gomez, Esther; Zappe, Sarah; Kumar, Manish

    2017-01-01

    This study examined how a collaborative research environment in a structured research experience impacts undergraduate student outcomes. Students demonstrated significant gains in research skills and provided positive appraisals of their collaborative experiences. Emphasis on collaboration among students in an undergraduate research program…

  4. The Contribution of Academics' Engagement in Research to Undergraduate Education

    ERIC Educational Resources Information Center

    Hajdarpasic, Ademir; Brew, Angela; Popenici, Stefan

    2015-01-01

    Can current trends to develop teaching-only academic positions be reconciled with the notion of the interrelationship of teaching and research as a defining characteristic of universities? In particular, what does academics' engagement in research add to students' learning? A study of 200 undergraduates' perceptions of the role of staff research…

  5. Anxiety in Undergraduate Research Methods Courses: Its Nature and Implications

    ERIC Educational Resources Information Center

    Papanastasiou, Elena C.; Zembylas, Michalinos

    2008-01-01

    The study reported in this article examines the nature of anxiety that undergraduate students experience in a research methods course and explores some of the factors that influence their anxiety levels. Two questionnaires measuring the attitudes towards research and the anxiety level were administered to 472 students enrolled in a research…

  6. Development of a Structured Undergraduate Research Experience: Framework and Implications

    ERIC Educational Resources Information Center

    Brown, Anne M.; Lewis, Stephanie N.; Bevan, David R.

    2016-01-01

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.…

  7. Compendium of student papers : 2010 undergraduate transportation scholars program.

    DOT National Transportation Integrated Search

    2011-06-01

    This report is a compilation of research papers written by students participating in the 2010 Undergraduate : Transportation Scholars Program. The 10-week summer program, now in its 20th year, provides : undergraduate students in Civil Engineering th...

  8. Compendium of student papers : 2012 undergraduate transportation scholars program.

    DOT National Transportation Integrated Search

    2013-05-01

    This report is a compilation of research papers written by students participating in the 2012 Undergraduate : Transportation Scholars Program. The 10-week summer program, now in its 22nd year, provides : undergraduate students in Civil Engineering th...

  9. Compendium of student papers : 2011 undergraduate transportation scholars program.

    DOT National Transportation Integrated Search

    2012-05-01

    This report is a compilation of research papers written by students participating in the 2011 Undergraduate : Transportation Scholars Program. The 10-week summer program, now in its 21st year, provides : undergraduate students in Civil Engineering th...

  10. Research Not Foreign to Two-Year Colleges

    NASA Astrophysics Data System (ADS)

    Whipple-Vanpatter, Georgianna

    1998-10-01

    Why is research a word not usually found in the two-year college vocabulary? At a 2YC3 conference held in New York in 1995, it appeared that undergraduate research in two-year colleges tended to be a very regional and limited undertaking. Webster defines research as: "1. Careful or diligent search; 2. Studious inquiry or examination; and 3. The collecting of information about a particular subject." These are things performed in our laboratories, so why not do them in a formal setting, making the students more aware that they are performing research? The challenge is to develop an investigative spirit in ourselves and thus in our students. This does not mean that we have to be inventing new procedures or making profound discoveries. Instructors, however, hesitate to implement a research program, claiming a lack of equipment, time, interest, training, or support. By sharing my experience, I hope it will make it easier for you to overcome some of these obstacles and enjoy the experiences of student research.

  11. Profile of Undergraduate Students: Trends from Selected Years, 1995-96 to 2007-08. Web Tables. NCES 2010-220

    ERIC Educational Resources Information Center

    Staklis, Sandra; Chen, Xianglei

    2010-01-01

    From 1995-96 to 2007-08, the number of students enrolled in undergraduate education in the United States grew from about 16.7 million to 21 million. These Web Tables provide information on undergraduates during the 1995-96, 1999-2000, 2003-04, and 2007-08 academic years. Estimates are presented for all undergraduates and for undergraduates who…

  12. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    ERIC Educational Resources Information Center

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically,…

  13. Biomedical Science Undergraduate Major: A New Pathway to Advance Research and the Health Professions.

    PubMed

    Gunn, John S; Ledford, Cynthia H; Mousetes, Steven J; Grever, Michael R

    2018-01-01

    Many students entering professional degree programs, particularly M.D., Ph.D., and M.D./Ph.D., are not well prepared regarding the breadth of scientific knowledge required, communication skills, research experience, reading and understanding the scientific literature, and significant shadowing (for M.D.-related professions). In addition, physician scientists are a needed and necessary part of the academic research environment but are dwindling in numbers. In response to predictions of critical shortages of clinician investigators and the lack of proper preparation as undergraduates for these professions, the Biomedical Science (BMS) undergraduate major was created at The Ohio State University to attract incoming college freshmen with interests in scientific research and the healthcare professions. The intent of this major was to graduate an elite cohort of highly talented individuals who would pursue careers in the healthcare professions, biomedical research, or both. Students were admitted to the BMS major through an application and interview process. Admitted cohorts were small, comprising 22 to 26 students, and received a high degree of individualized professional academic advising and mentoring. The curriculum included a minimum of 4 semesters (or 2 years) of supervised research experience designed to enable students to gain skills in clinical and basic science investigation. In addition to covering the prerequisites for medicine and advanced degrees in health professions, the integrated BMS coursework emphasized research literacy as well as skills related to work as a healthcare professional, with additional emphasis on independent learning, teamwork to solve complex problems, and both oral and written communication skills. Supported by Ohio State's Department of Internal Medicine, a unique clinical internship provided selected students with insights into potential careers as physician scientists. In this educational case report, we describe the BMS

  14. Promoting Learning by Inquiry Among Undergraduates in Soil Sciences: Scaffolding From Project-based Courses to Student-Staff Research Grants by the National Research Agency in Oman

    NASA Astrophysics Data System (ADS)

    Al-Ismaily, Said; Kacimov, Anvar; Al-Maktoumi, Ali

    2016-04-01

    Three strategies in a soil science undergraduate programme with inquiry-based learning (IBL) principles at Sultan Qaboos University, Oman, are presented. The first strategy scaffolds courses into three phases: with direct instructional guidance, structured IBL, and finally, guided to open IBL. The second strategy involves extra-curricular activities of undergraduates, viz. conducting workshops on soils for pupils in grades 7-9 with their teachers. The third strategy promotes the teaching-research nexus through collaboration between the undergraduates and faculty within a student-supporting, government-funded programme through 1-year long research grants of up to 5,500 US/project. The efficiency of the strategies was evaluated by students' evaluations of courses and instructors and questionnaire-based surveys. Statistics of students' responses in teaching evaluations of IBL courses showed a significantly higher level of satisfaction compared with regular courses taught in the department and college. In surveys of other constituencies of the program, viz. the secondary schools, more than 90% of respondents "agreed" or "strongly agreed" that they had learned new information/secrets about soils. The indicators of success in the third strategy are: winning a highly competitive grant and, moreover, earning an even more competitive annual national award for the best executed research project. The two top graduates of the IBL soil programme progressed into the MSc programme with the university and national scholarships. Key words: inquiry based learning, soil science undergraduate program, scaffold of courses, outreach activities, teaching-research nexus, evaluation of program's efficiency

  15. Compendium of student papers : 2013 undergraduate transportation scholars program.

    DOT National Transportation Integrated Search

    2013-11-01

    This report is a compilation of research papers written by students participating in the 2013 Undergraduate Transportation Scholars Program. The 10-week summer program, now in its 23nd year, provides undergraduate students in Civil Engineering the op...

  16. Undergraduate Research and Economic Development: A Systems Approach in Wisconsin

    ERIC Educational Resources Information Center

    Van Galen, Dean; Schneider-Rebozo, Lissa; Havholm, Karen; Andrews, Kris

    2015-01-01

    This chapter presents the state of Wisconsin and the University of Wisconsin System as an ongoing case study for best practices in systematic, intentional, statewide programming and initiatives connecting undergraduate research and economic development.

  17. [Development of advanced educational programs, including research programs, for undergraduate students in National Universities: the facts in 2010].

    PubMed

    Kurosaki, Yuji; Tomioka, Yoshihisa; Santa, Tomofumi; Kitamura, Yoshihisa

    2012-01-01

    This article summarizes detailed facts obtained from the questionnaire conducted in 2010 at about 14 National Universities on the topic of "Research programs and advanced educational programs for undergraduate students". The contents of the questionnaire included: (1) Research programs based on the coalition of university and hospital and/or community pharmacy, other Graduate Schools, such as School of Medicine etc., and the University Hospital, (2) Educational systems for the achievement of research programs and their research outcomes, (3) Research programs based on pharmacist practices, (4) Ongoing advanced educational programs for undergraduate students, taking advantage of the coalition with Graduate School, School of Medicine (and Dentistry), and University Hospital. Some of the advanced educational programs outlined in this questionnaire will be carried out by our group in the coming years and the educational benefits together with associated problems shall as well be clarified. This approach will be informative for the development of the leader-oriented pharmacist programs for the college of Pharmacy.

  18. A New Model for Transitioning Students from the Undergraduate Teaching Laboratory to the Research Laboratory

    ERIC Educational Resources Information Center

    Hollenbeck, Jessica J.; Wixson, Emily N.; Geske, Grant D.; Dodge, Matthew W.; Tseng, T. Andrew; Clauss, Allen D.; Blackwell, Helen E.

    2006-01-01

    The transformation of 346 chemistry courses into a training experience that could provide undergraduate students with a skill set essential for a research-based chemistry career is presented. The course has an innovative structure that connects undergraduate students with graduate research labs at the semester midpoint and also includes new,…

  19. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    ERIC Educational Resources Information Center

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  20. Undergraduate research: an innovative student-centered committee from the Kingdom of Saudi Arabia.

    PubMed

    Alamodi, Abdulhadi A; Abu-Zaid, Ahmed; Anwer, Lucman A; Khan, Tehreem A; Shareef, Mohammad Abrar; Shamia, Ahmed A; Nazmi, Salman M; Alshammari, Abdullah M; Rahmatullah, Hassan; Alsheikh, Ammar J; Chamseddin, Ranim A; Dweik, Loai M; Yaqinuddin, Ahmed

    2014-04-01

    Concern has been expressed in recent times whether medical schools have adapted sufficiently to cater for the increasing demand of physician-scientists. Studies have shown that research involvement at the undergraduate level is vital to accommodate this growing need. Enhanced communication skills, improved problem-solving abilities and better future employment opportunities are among the other many benefits of undergraduate research (UR). Herein, we report projects run by a unique student driven undergraduate research committee (URC) at Alfaisal University, Riyadh, Saudi Arabia aimed at providing the future generation of physicians training opportunities for pursuing a research intensive career. The article describes the unique structure of the URC and provides an in-depth description of the various programs and activities used in promoting students' research activities. We analyzed students' perception of URC activities via a questionnaire and analyzed research-output of the first graduating batches through their publication record. Overall, more than 60% of the graduating students were involved in the various research programs offered by the URC and around 50% published in peer-reviewed journals with an average impact factor of 2.4. Research involvement by medical students is an essential need of the twenty-first century and models like URC could provide crucial platform for research training to the new generation of physician-scientists.

  1. Realizing Student, Faculty, and Institutional Outcomes at Scale: Institutionalizing Undergraduate Research, Scholarship, and Creative Activity within Systems and Consortia

    ERIC Educational Resources Information Center

    Malachowski, Mitchell; Osborn, Jeffrey M.; Karukstis, Kerry K.; Ambos, Elizabeth L.

    2015-01-01

    This chapter reviews the evidence for the effectiveness of undergraduate research as a student, faculty, and institutional success pathway, and provides the context for the Council on Undergraduate Research's support for developing and enhancing undergraduate research in systems and consortia. The chapter also provides brief introductions to each…

  2. Supervisors' Perceptions of Research Competencies in the Final-Year Project

    ERIC Educational Resources Information Center

    Reguant, Mercedes; Martínez-Olmo, Francesc; Contreras-Higuera, Williams

    2018-01-01

    Background: This paper analyses the development of research competencies in higher education students, particularly with regard to the undergraduate Final-Year Project (FYP). The FYP is understood as an assignment that requires the integration of learning outcomes and demonstration of competencies for the successful completion of the degree.…

  3. Measurement of gravitational time dilation: An undergraduate research project

    NASA Astrophysics Data System (ADS)

    Burns, M. Shane; Leveille, Michael D.; Dominguez, Armand R.; Gebhard, Brian B.; Huestis, Samuel E.; Steele, Jeffrey; Patterson, Brian; Sell, Jerry F.; Serna, Mario; Gearba, M. Alina; Olesen, Robert; O'Shea, Patrick; Schiller, Jonathan

    2017-10-01

    General relativity predicts that clocks run more slowly near massive objects. The effect is small—a clock at sea level lags behind one 1000 m above sea level by only 9.4 ns/day. Here, we demonstrate that a measurement of this effect can be done by undergraduate students. Our paper describes an experiment conducted by undergraduate researchers at Colorado College and the United States Air Force Academy to measure gravitational time dilation. The measurement was done by comparing the signals generated by a GPS frequency standard (sea-level time) to a Cs-beam frequency standard at seven different altitudes above sea level. We found that our measurements are consistent with the predictions of general relativity.

  4. An ET-CURE pilot project supporting undergraduate training in cancer research, emerging technology, and health disparities.

    PubMed

    Wilson, Danyell S; Fang, Bin; Dalton, William S; Meade, Cathy D; Koomen, John M

    2012-06-01

    The National Cancer Institute's Center to Reduce Cancer Health Disparities has created pilot training opportunities under the "Continuing Umbrella of Research Experiences" program that focus on emerging technologies. In this pilot project, an 18-month cancer biology research internship was reinforced with: instruction in an emerging technology (proteomics), a transition from the undergraduate laboratory to a research setting, education in cancer health disparities, and community outreach activities. A major goal was to provide underrepresented undergraduates with hands-on research experiences that are rarely encountered at the undergraduate level, including mentoring, research presentations, and participation in local and national meetings. These opportunities provided education and career development for the undergraduates, and they have given each student the opportunity to transition from learning to sharing their knowledge and from being mentored to mentoring others. Here, we present the concepts, curriculum, infrastructure, and challenges for this training program along with evaluations by both the students and their mentors.

  5. An ET-CURE Pilot Project Supporting Undergraduate Training in Cancer Research, Emerging Technology, and Health Disparities

    PubMed Central

    Wilson, Danyell S.; Fang, Bin; Dalton, William S.; Meade, Cathy; Koomen, John M.

    2012-01-01

    The National Cancer Institute’s Center to Reduce Cancer Health Disparities has created pilot training opportunities under the “Continuing Umbrella of Research Experiences” (CURE) program that focus on emerging technologies (ET). In this pilot project, an eighteen month cancer biology research internship was reinforced with: instruction in an emerging technology (proteomics), a transition from the undergraduate laboratory to a research setting, education in cancer health disparities, and community outreach activities. A major goal was to provide underrepresented undergraduates with hands-on research experiences that are rarely encountered at the undergraduate level, including mentoring, research presentations, and participation in local and national meetings. These opportunities provided education and career development for the undergraduates, and they have given each student the opportunity to transition from learning to sharing their knowledge and from being mentored to mentoring others. Here, we present the concepts, curriculum, infrastructure, and challenges for this training program along with evaluations by both the students and their mentors. PMID:22528637

  6. Teaching Research Integrity and Bioethics to Science Undergraduates

    PubMed Central

    2005-01-01

    Undergraduate students in the Department of Biomedical Sciences at the University of South Alabama, Mobile, are required to take a course entitled “Issues in Biomedical Sciences,” designed to increase students' awareness about bioethical questions and issues concerning research integrity. This paper describes the main features of this course and summarizes the results of a survey designed to evaluate the students' perceptions about the course. A summary of this study was presented at the 2002 Conference on Research Integrity in Potomac, MD, sponsored by the Office of Research Integrity of the National Institutes of Health. PMID:16341260

  7. A Twenty-Year Survey of Science Literacy among College Undergraduates

    ERIC Educational Resources Information Center

    Impey, Chris; Buxner, Sanlyn; Antonellis, Jessie; Johnson, Elizabeth; King, Courtney

    2011-01-01

    First results from a 20-year survey of science knowledge and attitudes toward science among undergraduates are presented. Nearly 10,000 students taking astronomy as part of a general education requirement answered a set of questions that overlap a science literacy instrument administered to the general public by the National Science Foundation.…

  8. Teaching Social Justice Research to Undergraduate Students in Puerto Rico: Using Personal Experiences to Inform Research

    ERIC Educational Resources Information Center

    Ginwright, Shawn A.; Cammarota, Julio

    2015-01-01

    This article explores the process of teaching undergraduate students to conduct social justice research. We were interested in understanding how to develop a social justice perspective among students while training them in conventional research methods. The following questions guided our research activities. How can the principles of social…

  9. Geoscience Education Research Project: Student Benefits and Effective Design of a Course-Based Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Kortz, Karen M.; van der Hoeven Kraft, Katrien J.

    2016-01-01

    Undergraduate research has been shown to be an effective practice for learning science. While this is a popular discussion topic, there are few full examples in the literature for introductory-level students. This paper describes the Geoscience Education Research Project, an innovative course-based research experience designed for…

  10. Undergraduate Research From Start to Finish in a SEA Semester

    NASA Astrophysics Data System (ADS)

    Lavender, K.; Joyce, P.; Graziano, L.; Harris, S.; Jaroslow, G.; Lea, C.; Schell, J.; Witting, J.

    2005-12-01

    Undergraduates in the 12-week SEA Semester program at the Sea Education Association (SEA) carry out the entire scientific research process, from conception of a testable scientific question to final presentation of results from data they collect on a six-week research cruise. SEA is uniquely positioned to direct undergraduates in oceanography research projects as diverse as the students that propose them, from the curious non-science major to the student wishing to continue their research at their home institution (i.e. for a senior thesis project). Upon arrival at SEA''s campus in Woods Hole, MA, students are challenged to design a research project they will carry out at sea. They are guided by faculty in reading and discussing primary scientific literature, formulating a research question, and describing a specific data collection and analysis plan to be carried out at sea, culminating in a written research proposal that is defended orally. In developing their project students have access not only to the SEA faculty, but also to the many resources of the larger scientific community of Woods Hole. During the six-week sea component students participate in all aspects of data collection, analysis, and interpretation aboard one of SEA's state-of-the-art oceanographic research vessels. Before the end of the program each student presents their final results in both an oral presentation and a written research paper. The SEA Semester model gives students the opportunity to take complete ownership of a research project, and provides access to cutting-edge research capabilities both onshore and at sea. Examples of recent student research projects will be presented. SEA has been simultaneously developing its undergraduate research program and collecting an extensive historical oceanographic database since 1971. Students are encouraged to incorporate these data in long time series analysis projects, and data are also available to outside researchers. Collaborations with

  11. Alliances for Undergraduate Research in the Geosciences Through Collaborative Recruitment

    NASA Astrophysics Data System (ADS)

    Pandya, R.; Eriksson, S.; Haacker-Santos, R.; Calhoun, A.

    2006-12-01

    Undergraduate research is a key strategy for encouraging students to pursue graduate school and careers in science end engineering. In the geosciences, where participation by members of underrepresented groups is among the lowest of any science field, these programs must continue and strengthen their efforts to engage students from historically underrepresented groups. A significant limitation on our ability to engage students from historically underrepresented groups comes from the expense, in terms of time and resources, of promoting these career options to talented undergraduates considering a host of STEM careers. Another hurdle is our ability to match students with research projects tailored to their interests. Further complicating this is the challenge of matching students who have culturally motivated geographic constraints—for example, Native students who seek to serve their local community—to relevant opportunities. As a result, we believe that a number of highly qualified students never fully consider careers in the geosciences. To address these obstacles, we propose an alliance of undergraduate research programs in the geosciences. In this model, all members of the alliance would share recruiting, and students would submit a single application forwarded to all alliance members. The Alliance could offer applicants multiple research opportunities, from across the alliance, tailored to fit the applicant's needs and interests. This strategy has proven very effective in other fields; for example, the Leadership Alliance allows 32 member institutions to offer internships and fellowships through one central application process. SOARS and RESESS, programs in atmospheric science and geophysics, respectively, have done this co-recruiting for two years. There are many benefits to this type of alliance. First, it would allow programs to leverage and coordinate their recruiting investments. From our experience with SOARS and RESESS, much of the effort in

  12. Undergraduate study in psychology: Curriculum and assessment.

    PubMed

    Norcross, John C; Hailstorks, Robin; Aiken, Leona S; Pfund, Rory A; Stamm, Karen E; Christidis, Peggy

    2016-01-01

    The undergraduate curriculum in psychology profoundly reflects and shapes the discipline. Yet, reliable information on the undergraduate psychology curriculum has been difficult to acquire due to insufficient research carried out on unrepresentative program samples with disparate methods. In 2014, APA launched the first systematic effort in a decade to gather national data on the psychology major and program outcomes. We surveyed a stratified random sample of department chairs/coordinators of accredited colleges and universities in the United States that offer undergraduate courses and programs in psychology. A total of 439 undergraduate psychology programs (45.2%) completed the survey. This article summarizes, for both associate and baccalaureate programs, the results of the Undergraduate Study in Psychology. Current practices concerning the introductory course, the courses offered, core requirements, the psychology minor, and tracks/concentrations are presented. The frequency of formal program reviews and program-level assessment methods are also addressed. By extending prior research on the undergraduate curriculum, we chronicle longitudinal changes in the psychology major over the past 20 years. (c) 2016 APA, all rights reserved).

  13. Knowledge, attitudes, and barriers toward research: The perspectives of undergraduate medical and dental students

    PubMed Central

    Kyaw Soe, Htoo Htoo; Than, Nan Nitra; Lwin, Htay; Nu Htay, Mila Nu Nu; Phyu, Khine Lynn; Abas, Adinegara Lutfi

    2018-01-01

    CONTEXT: Scientific research not only promotes health and combats diseases of an individual, but also it can strengthen the effectiveness of health systems. Hence, understanding of scientific methods becomes a crucial component in the medical profession. AIMS: This study was conducted to assess the knowledge, attitudes, and barriers toward research among undergraduate medical and dental students. SETTINGS AND DESIGN: This cross-sectional study was conducted among 295 undergraduate Bachelor of Medicine and Bachelor of Surgery (MBBS) and Bachelor of Dental Surgery (BDS) students from a private medical college in Malaysia. MATERIALS AND METHODS: We purposively selected 360 students attending the 3rd, 4th, and 5th year in MBBS course and BDS course in September 2015. A total of 295 students who were willing to provide written informed consent were included in this study. We collected data using a validated, self-administered, structured questionnaire which included 20 questions about knowledge toward scientific research, 21 attitude items in regard to scientific research, a list of 10 barriers toward conducting medical research, and 5 questions of confidence to conduct the medical research. STATISTICAL ANALYSIS USED: Data were analyzed using descriptive statistics, independent t-test, ANOVA, and multiple linear regression. RESULTS: Among the students, 56.9% had moderate knowledge while the majority (83.3%) had moderate attitude toward scientific research. The majorly cited barriers were the lack of time (79.9%), lack of knowledge and skills (72.1%), lack of funding (72.0%) and facilities (63.6%), and lack of rewards (55.8%). There was a significant association between age, academic year, and knowledge of research as the older age group, and 4th- and 5th-year students had higher knowledge score. The students of higher attitude score had better-perceived barriers score toward research with regression coefficient 0.095 (95% confidence interval 0.032–0.159). CONCLUSIONS

  14. Compendium of student papers : 2009 undergraduate transportation engineering fellows program.

    DOT National Transportation Integrated Search

    2009-10-01

    This report is a compilation of research papers written by students participating in the 2009 Undergraduate : Transportation Scholars Program. The ten-week summer program, now in its nineteenth year, provides : undergraduate students in Civil Enginee...

  15. Integrating Opportunities: Applied Interdisciplinary Research in Undergraduate Geography and Geology Education

    ERIC Educational Resources Information Center

    Viertel, David C.; Burns, Diane M.

    2012-01-01

    Unique integrative learning approaches represent a fundamental opportunity for undergraduate students and faculty alike to combine interdisciplinary methods with applied spatial research. Geography and geoscience-related disciplines are particularly well-suited to adapt multiple methods within a holistic and reflective mentored research paradigm.…

  16. Faculty Motivation to Mentor Students through Undergraduate Research Programs: A Study of Enabling and Constraining Factors

    ERIC Educational Resources Information Center

    Morales, Danielle X.; Grineski, Sara E.; Collins, Timothy W.

    2017-01-01

    Undergraduate research experiences are a "high impact" educational practice that confer benefits to students. However, little attention has been paid to understanding faculty motivation to mentor undergraduate students through research training programs, even as the number of programs has grown, requiring increasing numbers of faculty…

  17. The "art" of science communication in undergraduate research training

    NASA Astrophysics Data System (ADS)

    Fatemi, F. R.; Stockwell, J.; Pinheiro, V.; White, B.

    2016-12-01

    Student creation of well-designed and engaging visuals in science communication can enhance their deep learning while streamlining the transmission of information to their audience. However, undergraduate research training does not frequently emphasize the design aspect of science communication. We devised and implemented a new curricular component to the Lake Champlain NSF Research Experiences for Undergraduates (REU) program in Vermont. We took a holistic approach to communication training, with a targeted module in "art and science". Components to the module included: 1) an introduction to environmental themes in fine art, 2) a photography assignment in research documentation, 3) an overview of elements of design (e.g., color, typography, hierarchy), 4) a graphic design workshop using tools in Powerpoint, and 5) an introduction to scientific illustration. As part of the REU program, students were asked to document their work through photographs, and develop an infographic or scientific illustration complementary to their research. The "art and science" training culminated with a display and critique of their visual work. We report on student responses to the "art and science" training from exit interviews and survey questions. Based on our program, we identify a set of tools that mentors can use to enhance their student's ability to engage with a broad audience.

  18. Bringing Students out of the Classroom and into Research Projects: An Undergraduate Team Research (UTR) Program at the University of Southern California

    NASA Astrophysics Data System (ADS)

    Cox, I. V.; Quirk, M.; Culbert, K. N.; Whitesides, A. S.; Sun, H.; Black, C. J.; Cao, W.; Zhang, T.; Paterson, S. R.; Memeti, V.; Anderson, J. L.

    2010-12-01

    In 2006, USC Earth Sciences professors Paterson and Anderson created the Undergraduate Team Research (UTR) program, a year-long, multidisciplinary, learner-centered, student research experience. This program is open to all USC undergraduate students, but has also involved a few outstanding undergraduate students from other universities. Since its inception the 47 participants have been a diverse group: 53% women, ~17% minorities, and 43% non-Earth Science majors. To date, 15 abstracts written by UTR participants have been presented at national GSA and AGU meetings and several research papers for publication are in preparation. 12 presentations have been produced at University-sponsored research symposia and culminated in a number of senior theses. The central component of this program is a field-based research experience which involves several weeks of geologic mapping in various locations around the world. During the summer expedition, participants organize themselves into 3-4 person mapping teams consisting of a mix of undergraduate geology majors, non-majors, and mentors (professors and graduate students). At the end of each day, student researchers (with limited mentoring) work together to draft a geologic map while discussing their findings, formulating hypotheses about possible geologic histories, and planning research goals and organizing mapping teams for the next day. Throughout the following academic year, the student researchers continue to work in teams to digitize their geologic map, decide which analyses need to be done, and prepare collected rock samples for various structural, geochemical, and geochronologic studies. Most student researchers agree that they learned more in a few weeks than they often did in an entire semester course. What aspects of the UTR program elicit these high-yield results, even for non-majors that can be applied to other learning environments? We speculate that three critical elements are important: (1) The most notable is

  19. The Python Project: A Unique Model for Extending Research Opportunities to Undergraduate Students

    PubMed Central

    Harvey, Pamela A.; Wall, Christopher; Luckey, Stephen W.; Langer, Stephen

    2014-01-01

    Undergraduate science education curricula are traditionally composed of didactic instruction with a small number of laboratory courses that provide introductory training in research techniques. Research on learning methodologies suggests this model is relatively ineffective, whereas participation in independent research projects promotes enhanced knowledge acquisition and improves retention of students in science. However, availability of faculty mentors and limited departmental budgets prevent the majority of students from participating in research. A need therefore exists for this important component in undergraduate education in both small and large university settings. A course was designed to provide students with the opportunity to engage in a research project in a classroom setting. Importantly, the course collaborates with a sponsor's laboratory, producing a symbiotic relationship between the classroom and the laboratory and an evolving course curriculum. Students conduct a novel gene expression study, with their collective data being relevant to the ongoing research project in the sponsor's lab. The success of this course was assessed based on the quality of the data produced by the students, student perception data, student learning gains, and on whether the course promoted interest in and preparation for careers in science. In this paper, we describe the strategies and outcomes of this course, which represents a model for efficiently providing research opportunities to undergraduates. PMID:25452492

  20. Teaching Undergraduates to Think Like Scientists

    ERIC Educational Resources Information Center

    Caccavo, Frank, Jr.

    2009-01-01

    The author discusses the importance of incorporating research into undergraduate curricula. Pedagogical approaches include faculty-directed research projects, off-campus internships, and research-oriented courses (R-courses). Examples of R-courses are reviewed, and an introductory microbiology course that teaches first year students "how to do…

  1. Growing a Science Internship One Year at a Time: Updates to the Science Undergraduate Laboratory Internship Program D. Ortiz-Arias, A. Dominguez, A. Zwicker, S. Greco

    NASA Astrophysics Data System (ADS)

    Ortiz, Deedee; Dominguez, Arturo; Zwicker, Andrew; Greco, Shannon

    2016-10-01

    Between 1993-2014, the National Undergraduate Fellowship (NUF) program, sponsored by the DOE Office of Fusion Energy Sciences, provided summer research internships for outstanding undergraduate students from around the country. Since then, the NUF program was merged into the Science Undergraduate Laboratory Internship (SULI) program, sponsored by the DOE Office of Workforce Development for Teachers and Students. While there were many similarities between the two programs, the SULI program did not include the one-week introductory course in plasma physics or the opportunity for participants to present their summer research results at this meeting. In the past two years, working with representatives from both OFES and WDTS, we have again implemented some of the most important components of the NUF program. The week-long, introductory course in plasma physics is included and streamed live- especially important since most undergraduate physics students have not taken a plasma physics course before they begin their research. Students are again able to present their research to our community, a critical component of a full research experience and plans are underway to obtain additional funding to once again include universities as eligible host sites.

  2. Why Work with Undergraduate Researchers? Differences in Research Advisors' Motivations and Outcomes by Career Stage

    ERIC Educational Resources Information Center

    Hayward, Charles N.; Laursen, Sandra L.; Thiry, Heather

    2017-01-01

    Undergraduate research is often hailed as a solution to increasing the number and quality of science, technology, engineering, and mathematics graduates needed to fill the high-tech jobs of the future. Student benefits of research are well documented but the emerging literature on advisors' perspectives is incomplete: only a few studies have…

  3. Medical Research Volunteer Program (MRVP): innovative program promoting undergraduate research in the medical field.

    PubMed

    Dagher, Michael M; Atieh, Jessica A; Soubra, Marwa K; Khoury, Samia J; Tamim, Hani; Kaafarani, Bilal R

    2016-06-06

    Most educational institutions lack a structured system that provides undergraduate students with research exposure in the medical field. The objective of this paper is to describe the structure of the Medical Research Volunteer Program (MRVP) which was established at the American University of Beirut, Lebanon, as well as to assess the success of the program. The MRVP is a program that targets undergraduate students interested in becoming involved in the medical research field early on in their academic career. It provides students with an active experience and the opportunity to learn from and support physicians, clinical researchers, basic science researchers and other health professionals. Through this program, students are assigned to researchers and become part of a research team where they observe and aid on a volunteer basis. This paper presents the MRVP's four major pillars: the students, the faculty members, the MRVP committee, and the online portal. Moreover, details of the MRVP process are provided. The success of the program was assessed by carrying out analyses using information gathered from the MRVP participants (both students and faculty). Satisfaction with the program was assessed using a set of questions rated on a Likert scale, ranging from 1 (lowest satisfaction) to 5 (highest satisfaction). A total of 211 students applied to the program with a total of 164 matches being completed. Since the beginning of the program, three students have each co-authored a publication in peer-reviewed journals with their respective faculty members. The majority of the students rated the program positively. Of the total number of students who completed the program period, 35.1 % rated the effectiveness of the program with a 5, 54.8 % rated 4, and 8.6 % rated 3. A small number of students gave lower ratings of 2 and 1 (1.1 % and 0.4 %, respectively). The MRVP is a program that provides undergraduate students with the opportunity to learn about research firsthand

  4. PRIME: An Integrated and Sustainable Undergraduate International Research Program

    ERIC Educational Resources Information Center

    Arzberger, Peter; Wienhausen, Gabriele; Abramson, David; Galvin, Jim; Date, Susumu; Lin, Fang-Pang; Nan, Kai; Shimojo, Shinji

    2010-01-01

    Recently we have seen an increase in the calls for universities and the education community to re-think undergraduate education and create opportunities that prepare students as effective global professionals. The key motivator is the need to build a research and industrial workforce that works collaboratively across cultures and disciplines to…

  5. A Successful Model of Collaborative Undergraduate Research: A Multi-Faculty, Multi-Project, Multi-Institution Team Approach

    ERIC Educational Resources Information Center

    Woodzicka, Julie A.; Ford, Thomas E.; Caudill, Abbie; Ohanmamooreni, Alyna

    2015-01-01

    A collaborative research grant from the National Science Foundation allowed the first two authors to provide students at primarily undergraduate institutions with a multi-faculty, multi-institution team research experience. Teams of undergraduate students at Western Carolina University and Washington and Lee University collaborated with one…

  6. An Engineering Degree Does Not (Necessarily) an Engineer Make: Career Decision Making among Undergraduate Engineering Majors. Research Brief

    ERIC Educational Resources Information Center

    Lichtenstein, Gary; Loshbaugh, Heidi G.; Claar, Brittany; Chen, Helen L.; Jackson, Kristyn; Sheppard, Sheri

    2009-01-01

    This paper explores the career-related decision making of seniors enrolled in undergraduate engineering programs at two nationally recognized institutions. This strand of the Academic Pathways Study (APS) research revealed that many engineering students were undecided about their career plans, even late into their senior years and that many were…

  7. Changes in Approaches to Learning over Three Years of University Undergraduate Study

    ERIC Educational Resources Information Center

    McDonald, Fiona J.; Reynolds, John N. J.; Bixley, Ann; Spronken-Smith, Rachel A.

    2017-01-01

    This study aimed to evaluate and compare approaches to learning by a longitudinal cohort of undergraduate students as they progressed from their first to third years of study in anatomy and physiology. "The Approaches and Study Skills Inventory for Students" (ASSIST) was completed at the beginning and end of their first year of…

  8. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    NASA Astrophysics Data System (ADS)

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  9. NASA's Planetary Geology and Geophysics Undergraduate Research Program (PGGURP): The Value of Undergraduate Geoscience Internships

    NASA Astrophysics Data System (ADS)

    Gregg, T. K.

    2008-12-01

    NASA's Planetary Geology and Geophysics Program began funding PGGURP in 1978, in an effort to help planetary scientists deal with what was then seen as a flood of Viking Orbiter data. Each subsequent year, PGGURP has paired 8 - 15 undergraduates with NASA-funded Principal Investigators (PIs) around the country for approximately 8 weeks during the summer. Unlike other internship programs, the students are not housed together, but are paired, one-on-one, with a PI at his or her home institution. PGGURP interns have worked at sites ranging from the Jet Propulsion Laboratory to the University of Alaska, Fairbanks. Through NASA's Planetary Geology and Geophysics Program, the interns' travel and lodging costs are covered, as are a cost-of-living stipend. Approximately 30% of the undergraduate PGGURP participants continue on to graduate school in the planetary sciences. We consider this to be an enormous success, because the participants are among the best and brightest undergraduates in the country with a wide range of declared majors (e.g., physics, chemistry, biology, as well as geology). Furthermore, those students that do continue tend to excel, and point to the internship as a turning point in their scientific careers. The NASA PIs who serve as mentors agree that this is a valuable experience for them, too, and many of them have been hosting interns annually for well over a decade. The PI obtains enthusiastic and intelligent undergraduate, free of charge, for a summer, while having the opportunity to work closely with today's students who are the future of planetary science. The Lunar and Planetary Institute (LPI) in Houston, TX, also sponsors a summer undergraduate internship. Approximately 12 students are selected to live together in apartments located near the Lunar and Planetary Institute and the Johnson Space Center. Similar to PGGURP, the LPI interns are carefully selected to work one-on-one for ~10 weeks during the summer with one of the LPI staff scientists

  10. WebGURU: The Web-Based Guide to Research for Undergraduates

    ERIC Educational Resources Information Center

    Mabrouk, Patricia; McIntyre, Ryan; Virrankoski, Milena; Jeliffe, Kirsten

    2007-01-01

    Undergraduate research (UR) is widely promoted by faculty, administrators, institutions of higher learning, government laboratories, private industry, professional associations, and funding agencies as an effective method of training college students pursuing careers in science, technology, engineering, and mathematics (STEM) disciplines at…

  11. Undergraduate Research and Its Impact on Student Success for Underrepresented Students

    ERIC Educational Resources Information Center

    O'Donnell, Ken; Botelho, Judy; Brown, Jessica; González, Gerardo M.; Head, William

    2015-01-01

    This chapter captures the mission and spirit of the California State University in its efforts to institutionalize undergraduate research and support the success of students traditionally underrepresented in higher education.

  12. Pharmacy students' anxiety towards research during their undergraduate degree; How to reduce it?

    PubMed Central

    Tam, Ai May; Chaw, Siew Ling; Ang, May Jing; Yong, Mei Wan

    2017-01-01

    Objective To measure pharmacy students' anxiety towards research and how academic support, academic effort, attitude and self-efficacy influence their research anxiety. Methods A cross-sectional study was conducted with undergraduate final year students of pharmacy using a convenient sampling method. A validated self-administered questionnaire was used. Results Response rate for this study was 85.9% (128 students from a population of 149). The participants agreed that they read literature to understand research, but did not attend research-related coursework. Most participants (91.4%) felt that they were under stress while doing research. Almost all participants (97.6%) felt that they were doing very badly during their data analysis or they may fail their research projects. The majority of participants agreed that help from the lecturers' and friends in research give emotional support for their research activities. Conclusion Academic support for pharmacy students, along with their additional academic effort will improve the students' self-efficacy and reduce research anxiety. PMID:28419167

  13. Pharmacy students' anxiety towards research during their undergraduate degree; How to reduce it?

    PubMed

    Maharajan, Mari Kannan; Rajiah, Kingston; Tam, Ai May; Chaw, Siew Ling; Ang, May Jing; Yong, Mei Wan

    2017-01-01

    To measure pharmacy students' anxiety towards research and how academic support, academic effort, attitude and self-efficacy influence their research anxiety. A cross-sectional study was conducted with undergraduate final year students of pharmacy using a convenient sampling method. A validated self-administered questionnaire was used. Response rate for this study was 85.9% (128 students from a population of 149). The participants agreed that they read literature to understand research, but did not attend research-related coursework. Most participants (91.4%) felt that they were under stress while doing research. Almost all participants (97.6%) felt that they were doing very badly during their data analysis or they may fail their research projects. The majority of participants agreed that help from the lecturers' and friends in research give emotional support for their research activities. Academic support for pharmacy students, along with their additional academic effort will improve the students' self-efficacy and reduce research anxiety.

  14. The Tips, Tricks, and Challenges of Teaching Undergraduate Kinesiology Students Research Methodology through a Programmatic Lens

    ERIC Educational Resources Information Center

    Beller, Jennifer M.

    2013-01-01

    This article describes a programmatic approach to undergraduate research (UGR) at Washington State University. In a programmatic approach, UGR is woven throughout the curriculum, with the expressed intent of producing undergraduate students who have at least a moderate ability to read, use, conduct, and present research. Washington State…

  15. How Does Undergraduate Research Experience Impact Career Trajectories and Level of Career Satisfaction: A Comparative Survey

    ERIC Educational Resources Information Center

    Yaffe, Kirsten; Bender, Carol; Sechrest, Lee

    2014-01-01

    The immediate benefits of research experiences for undergraduates have been documented. However, little has appeared about the long-term impacts of these experiences on participants' career trajectories and their level of career satisfaction. In addition, many studies of undergraduate research lack a comparison group. This article reports a…

  16. Outcomes of a Research-Driven Laboratory and Literature Course Designed to Enhance Undergraduate Contributions to Original Research

    ERIC Educational Resources Information Center

    Rasche, Madeline E.

    2004-01-01

    This work describes outcomes of a research-driven advanced microbiology laboratory and literature research course intended to enhance undergraduate preparation for and contributions to original research. The laboratory section was designed to teach fundamental biochemistry and molecular biology techniques in the context of an original research…

  17. Lakota Undergraduates as Partners in Aging Research in American Indian Communities

    ERIC Educational Resources Information Center

    Anagnopoulos, Cheryl

    2006-01-01

    Studies have established the beneficial role of engaging students in research at both the graduate and undergraduate level. Authentic research experiences serve as a tool for instruction where students are actively involved in the process of discovery, the scientific method, and advancing existing fields with scientific data. Further, students…

  18. Lessons Learned from Introducing Social Media Use in Undergraduate Economics Research

    ERIC Educational Resources Information Center

    O'Brien, Martin; Freund, Katarina

    2018-01-01

    The research process and associated literacy requirements are often unfamiliar and daunting obstacles for undergraduate students. The use of social media has the potential to assist research training and encourage active learning, social inclusion and student engagement. This paper documents the lessons learned from developing a blended learning…

  19. An Exploratory Study on the Purpose, Structure, Format and Use of Syllabi at a Midwest Four-Year Undergraduate Private University

    ERIC Educational Resources Information Center

    Fink, Susan Jo Breakenridge

    2011-01-01

    The purpose of this study was to explore how instructors at a mid-sized Midwest four-year undergraduate private university view the purpose, structure, format and use of their course syllabi. The theory of structural functionalism and a quantitative research approach were employed. A group administration approach was used to distribute the paper…

  20. Chasing Carbon Down the Colorado River: Mid-Stream Challenges to Engaging Undergraduates in Field-Based Research

    NASA Astrophysics Data System (ADS)

    Hartnett, H. E.

    2011-12-01

    Many undergraduates express strong interests in research and in interdisciplinary sciences and yet, when it comes down to learning interdisciplinary material they are either unprepared for or overwhelmed by the complex interactions and relationships inherent in studying biogeochemical systems. My NSF-CAREER project "Transformation and transport of Organic Carbon in the Colorado River-Reservoir System" (EAR #0846188) combines field research with state-of-the-art analytical techniques to explore the source, fate and transport of terrestrial and riverine organic carbon in a heavily managed river system. In an effort to get undergraduates involved in research where they can really get their feet wet, I have been engaging undergraduates in a variety of field research projects that examine carbon biogeochemistry in the Colorado River watershed. The goal is to provide opportunities for students in Chemistry and in the Earth Sciences to directly experience the complexity of an environmental system, and to begin to ask manageable research questions that can be answered through field and lab work. These students are involved either as undergraduate research assistants, or as participants in my Field Geochemistry course which is offered through both the Dept. of Chemistry and the School of Earth and Space Exploration. There have been some unexpected challenges to getting these field-research projects started, but students are now successfully developing independent questions related to the larger scientific goals of the project and executing experimental and analytical research projects. To date, the PI has mentored 6 undergraduates and 2 graduate students as part of this project.

  1. Cultivating Minority Scientists: Undergraduate Research Increases Self-Efficacy and Career Ambitions for Underrepresented Students in STEM

    ERIC Educational Resources Information Center

    Carpi, Anthony; Ronan, Darcy M.; Falconer, Heather M.; Lents, Nathan H.

    2017-01-01

    In this study, Social Cognitive Career Theory (SCCT) is used to explore changes in the career intentions of students in an undergraduate research experience (URE) program at a large public minority-serving college. Our URE model addresses the challenges of establishing an undergraduate research program within an urban, commuter, underfunded,…

  2. Undergraduate Research in Agriculture: Constructivism and the Scholarship of Discovery

    ERIC Educational Resources Information Center

    Splan, Rebecca K.; Porr, C. A. Shea; Broyles, Thomas W.

    2011-01-01

    Experiential learning is a hallmark of undergraduate education programs in the agricultural sciences, and is aligned with constructivist learning theory. This interpretivist qualitative study used historical research methodology to analyze the epistemological underpinnings of constructivism and explore the construct's relationship to undergraduate…

  3. A Tool for Mapping Research Skills in Undergraduate Curricula

    ERIC Educational Resources Information Center

    Fraser, Gillian A.; Crook, Anne C.; Park, Julian R.

    2007-01-01

    There has been considerable interest recently in the teaching of skills to undergraduate students. However, existing methods for collating data on how much, where and when students are taught and assessed skills have often been shown to be time-consuming and ineffective. Here, we outline an electronic research skills audit tool that has been…

  4. What Is Geography? Perceptions of First Year Undergraduates in South Africa

    ERIC Educational Resources Information Center

    Knight, Jasper; Robinson, Kirsten

    2017-01-01

    Disciplines such as Geography are well placed to respond to the changing needs of society and the effective application of geographical knowledge to real-world problems. This project surveyed first year Geography undergraduates' understanding of "What is Geography?", both before and after an exercise in which geographic topics were…

  5. Partners in Research: Developing a Model for Undergraduate Faculty-Student Collaboration.

    PubMed

    Reitmaier Koehler, Amy; Reveling Smith, Linda; Davies, Susan; Mangan-Danckwart, Deborah

    2015-10-09

    Maintaining scholarship while delivering an undergraduate nursing program is a challenge for nursing faculty. In this paper, we describe an approach that involves undergraduate nursing students in a program of faculty research, which evaluates new approaches to teaching and learning. Students work with faculty to develop a research proposal, identifying specific questions and exploring relevant literature. Projects may include original data collection with faculty supervision, or secondary analysis of existing datasets. Foci have included partnership learning between nursing students and older adults, models of sustainability for a traveling health clinic, and experiences of aging. Findings and recommendations feed into the broader faculty research agenda, provide a foundation for subsequent projects, and inform further development of educational programs. Students have presented at local and national conferences and developed papers for publication based on this joint work. We describe the benefits and challenges of these partnerships, drawing upon student and faculty reflections.

  6. A Preliminary Theoretical Analysis of a Research Experience for Undergraduates Community Model

    ERIC Educational Resources Information Center

    Castillo-Garsow, Carlos; Castillo-Chavez, Carlos; Woodley, Sherry

    2013-01-01

    The Mathematical and Theoretical Biology Institute (MTBI) is a successful summer research experience for undergraduates, with a strong record of mentoring Ph.D. graduates, particularly, underrepresented minority students. However, the MTBI program was designed for education in research, not for research in education, and the mechanisms of the…

  7. Bioengineering and Bioinformatics Summer Institutes: Meeting Modern Challenges in Undergraduate Summer Research

    ERIC Educational Resources Information Center

    Butler, Peter J.; Dong, Cheng; Snyder, Alan J.; Jones, A. Daniel; Sheets, Erin D.

    2008-01-01

    Summer undergraduate research programs in science and engineering facilitate research progress for faculty and provide a close-ended research experience for students, which can prepare them for careers in industry, medicine, and academia. However, ensuring these outcomes is a challenge when the students arrive ill-prepared for substantive research…

  8. Undergraduate Medical Research Programme: A Cross-Sectional Study of Students' Satisfactions, Perceived Challenges, and Attitudes.

    PubMed

    Althubaiti, Alaa

    2015-02-24

    Implementing an undergraduate Medical Research Programme (MRP) in medical colleges may not only improve the subsequent career of medical students but also benefit the health system in general. If not designed effectively, however, such a programme could have the opposite impact. Therefore, the quality of a MRP should be evaluated continuously. This study aims to evaluate the MRP from medical students' perspective. A cross-sectional survey study was conducted from March to April 2014 amongst undergraduate medical students at the College of Medicine, King Saud University for Health Sciences, Riyadh, Saudi Arabia. Satisfaction, perceived challenges, and attitudes towards the MRP were evaluated. A total of 154 responses were collected from the students; 81(52.6%) were in the 2nd year and 73 (47.4%) were in the 3rd year of the MRP, 97(63%) were males. The mean±SD age was 21.5±0.82 years. Overall, most students were satisfied with the MRP (51.3%). The majority of students were of the opinion that there was a shortage of time to complete their work (57.6%) and a lack of motivation to do research (53.3%). Significant differences were found in the satisfaction levels and perceived challenges between students in the 2nd and 3rd year of the MRP (P≤.013). Assessment of medical students' perspective towards the MRP is an important aspect of the educative process. We recommend more evaluation studies, because they ensure that programmes effectively meet their goals and continue to be improved. A solid MRP is essential and will increase the university's profile.

  9. Media Exposure on Student Work: Spotlight on Undergraduate Research

    ERIC Educational Resources Information Center

    Klyve, Dominic

    2017-01-01

    This paper describes efforts by the author to engage and motivate students in undergraduate research by giving them a large audience and engaging the media in disseminating their work. I provide an introduction to public relations from the point of view of a mathematics professor, and describe some lessons I have learned in my own attempts to…

  10. Broadening Participation in Geosciences with Academic Year and Summer Research Experiences

    NASA Astrophysics Data System (ADS)

    Austin, S. A.; Howard, A.; Johnson, L. P.; Gutierrez, R.; Chow, Y.

    2013-12-01

    Medgar Evers College, City University of New York, has initiated a multi-tiered strategy aimed at increasing the number of under-represented minority and female students pursuing careers in the Geosciences, especially Earth and Atmospheric Sciences and related areas. The strategy incorporates research on the persistence of minority and female under-represented students in STEM disciplines. The initiatives include NASA and NSF-funded team-based undergraduate research activities during the summer and academic year as well as academic support (clustering, PTLT workshops for gatekeeper courses), curriculum integration modules, and independent study/special topics courses. In addition, high school students are integrated into summer research activities working with undergraduate and graduate students as well as faculty and other scientist mentors. An important initial component was the building of an infrastructure to support remote sensing, supported by NASA. A range of academic year and summer research experiences are provided to capture student interest in the geosciences. NYC-based research activities include urban impacts of global climate change, the urban heat island, ocean turbulence and general circulation models, and space weather: magnetic rope structure, solar flares and CMEs. Field-based investigations include atmospheric observations using BalloonSat sounding vehicles, observations of tropospheric ozone using ozonesondes, and investigations of the ionosphere using a CubeSat. This presentation provides a description of the programs, student impact, challenges and observations.

  11. An exploration of fourth-year undergraduate nurses' knowledge of and attitude towards pressure ulcer prevention.

    PubMed

    Cullen Gill, E; Moore, Z

    2013-11-01

    To determine undergraduate nurses' knowledge of and attitudes towards pressure ulcer prevention. A quantitative, cross-sectional survey design was used for this study. Ethical approval was received. A convenience sample of fourth-year undergraduate nurses was selected to participate (n=60). Data were collected using a pre-designed questionnaire. Overall, the participants showed a positive attitude towards pressure ulcer prevention but displayed poor knowledge of pressure ulcer prevention. Interestingly, having a high level of competency corresponded with having a positive attitude towards pressure ulcer prevention, but did not equate to possessing knowledge of pressure ulcer prevention. The findings of this study suggest that fourth-year undergraduates have a positive attitude but lack adequate knowledge on the prevention of pressure ulcers. There were no external sources of funding for this study. The authors have no conflicts of interest to declare.

  12. Adjustment Differences Between Married and Single Undergraduate University Students: An Historical Perspective

    ERIC Educational Resources Information Center

    Busselen, Harry J., Jr.; Busselen, Carroll Kincaid

    1975-01-01

    Prior to 1940, the presence of married undergraduate students on the majority of college and university campuses was an unusual occurance. Today, approximately 21 percent of the undergraduate population is married. Reviews over 30 years of research dealing with the adjustment differences of married and single undergraduate students. (Author)

  13. "In Practice It Doesn't Always Work out Like That." Undergraduate Experiences in a Research Community of Practice

    ERIC Educational Resources Information Center

    John, Joanna; Creighton, John

    2013-01-01

    This paper examines the extent to which a structured undergraduate research intervention, UROP, permits undergraduate students early access to legitimate peripheral participation (LPP) in a research community of practice. Accounts of placement experiences suggest that UROP affords rich possibilities for engagement with research practice.…

  14. Partnerships for building strong internship and research experiences for undergraduates

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Haacker-Santos, R.; Dutilly, E.

    2013-12-01

    REU and internship site directors often operate in geographic and institutional isolation from each other, unable to share best practices or resources. When collaboration is possible, benefits for both the students and leaders of these programs can be achieved. In 2013, the SOARS REU program, hosted at the National Center for Atmospheric Research (NCAR), supported the National Ecological Observatory Network (NEON) in creating a new internship program aimed at engaging undergraduate science and engineering students in NEON's work. Both student programs share the objective of reaching underrepresented groups in STEM. The year long collaboration allowed NEON to learn best practices in recruitment and support of students, mentor training, and program development, and to customize its internship according to its organization i.e., a science/engineering observatory under construction. Both programs shared several elements: students were housed together so that interns could tap into a larger cohort of supportive peers; students participated in a joint leadership training to strengthen cross program mentoring; and students met weekly for a scientific communications workshop. Having multiple science disciplines represented enhanced the workshop as students learned about writing styles and cultures of each other's fields, fostering an appreciation of different scientific disciplines and interdisciplinary thinking. Finally, at the end of the summer, students presented their findings in a joint poster session. We found that collaboration between programs led to increased recruitment of students from diverse backgrounds and support of students through stronger cohorts, shared trainings, and enhanced program content. In this presentation we share findings of our programs' evaluations and make recommendations on building collaborative partnerships for internships and research experiences for undergraduates.

  15. Applying a Proposal Guideline in Mentoring English Major Undergraduate Researchers in Taiwan

    ERIC Educational Resources Information Center

    Kuo, Ya-Hui

    2011-01-01

    Many colleges and universities in Taiwan have implemented research courses into the school curriculum in an effort to meet the demands of higher education and requirements of graduation. However, not many researchers have proposed a guideline in mentoring English major undergraduates in their research proposal writing in Taiwan. Furthermore, to…

  16. The Two-Semester Thesis Model: Emphasizing Research in Undergraduate Technical Communication Curricula

    ERIC Educational Resources Information Center

    Ford, Julie Dyke; Bracken, Jennifer L.; Wilson, Gregory D.

    2009-01-01

    This article addresses previous arguments that call for increased emphasis on research in technical communication programs. Focusing on the value of scholarly-based research at the undergraduate level, we present New Mexico Tech's thesis model as an example of helping students develop familiarity with research skills and methods. This two-semester…

  17. Bridging the Undergraduate Curriculum Using an Integrated Course-Embedded Undergraduate Research Experience (ICURE)

    ERIC Educational Resources Information Center

    Russell, James E.; D'Costa, Allison R.; Runck, Clay; Barnes, David W.; Barrera, Alessandra L.; Hurst-Kennedy, Jennifer; Sudduth, Elizabeth B.; Quinlan, Erin L.; Schlueter, Mark

    2015-01-01

    The traditional undergraduate program of study incorporates a selection of classes that represent a broad spectrum of subdisciplines. Unfortunately, few curricula successfully integrate concepts in all subdisciplines, giving undergraduates the misconception that there is a lack of application or connectedness between class subjects. An integrated…

  18. Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study.

    PubMed

    Mellis, Birgit; Soto, Patricia; Bruce, Chrystal D; Lacueva, Graciela; Wilson, Anne M; Jayasekare, Rasitha

    2018-01-01

    For undergraduate students, involvement in authentic research represents scholarship that is consistent with disciplinary quality standards and provides an integrative learning experience. In conjunction with performing research, the communication of the results via presentations or publications is a measure of the level of scientific engagement. The empirical study presented here uses generalized linear mixed models with hierarchical bootstrapping to examine the factors that impact the means of dissemination of undergraduate research results. Focusing on the research experiences in physics and chemistry of undergraduates at four Primarily Undergraduate Institutions (PUIs) from 2004-2013, statistical analysis indicates that the gender of the student does not impact the number and type of research products. However, in chemistry, the rank of the faculty advisor and the venue of the presentation do impact the number of research products by undergraduate student, whereas in physics, gender match between student and advisor has an effect on the number of undergraduate research products. This study provides a baseline for future studies of discipline-based bibliometrics and factors that affect the number of research products of undergraduate students.

  19. Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study

    PubMed Central

    Soto, Patricia; Bruce, Chrystal D.; Lacueva, Graciela; Wilson, Anne M.; Jayasekare, Rasitha

    2018-01-01

    For undergraduate students, involvement in authentic research represents scholarship that is consistent with disciplinary quality standards and provides an integrative learning experience. In conjunction with performing research, the communication of the results via presentations or publications is a measure of the level of scientific engagement. The empirical study presented here uses generalized linear mixed models with hierarchical bootstrapping to examine the factors that impact the means of dissemination of undergraduate research results. Focusing on the research experiences in physics and chemistry of undergraduates at four Primarily Undergraduate Institutions (PUIs) from 2004–2013, statistical analysis indicates that the gender of the student does not impact the number and type of research products. However, in chemistry, the rank of the faculty advisor and the venue of the presentation do impact the number of research products by undergraduate student, whereas in physics, gender match between student and advisor has an effect on the number of undergraduate research products. This study provides a baseline for future studies of discipline-based bibliometrics and factors that affect the number of research products of undergraduate students. PMID:29698502

  20. Georgetown University and Hampton University Prostate Cancer Undergraduate Fellowship Program

    DTIC Science & Technology

    2018-01-01

    discover the molecular causes of prostate cancer and the population-wide impact of the disease. Their research is grouped into several thematic areas...undergraduate training, underrepresented minorities OVERALL PROJECT SUMMARY Throughout the years of funding, we successfully recruited four very talented...2017 Nadia Holness (Dr. Christopher Albanese) and four third year undergraduate students from the Department of Biological Sciences at Hampton

  1. Teaching research: a programme to develop research capacity in undergraduate medical students at the University of KwaZulu-Natal, South Africa.

    PubMed

    Knight, Stephen E; Van Wyk, Jacqueline M; Mahomed, Saajida

    2016-02-16

    Improved research ability is a core competency to achieve in health professionals. The Selectives is a three-year, longitudinal, community-based programme within the undergraduate curriculum which aims to develop research capacity in all medical students during the prescribed curriculum. In relation to the programme, the authors describe the types of studies conducted by students, conditions that facilitated their learning, how the experience improved students' knowledge of research and public health and their development of reflective learning practices. A cohort of 212 students completed the Selectives Programme in 2014, and 69 (32 %) completed an anonymous online evaluation thereafter. Data collected include students' perceptions of the research component of Selectives; its impact on their knowledge of research and a documentary analysis of their research protocols and posters. Ethical approval for the ongoing evaluation of the Selectives was sought and obtained from the institutional Biomedical Research Ethics Committee. During Selectives, 75 groups of 2-4 students conducted research studies of primary health care problems in community settings. Each group is assessed on their presentation of research findings as a scientific poster. The Selectives facilitated learning for the majority of the cohort. Students reported positive learning experiences about the research process, including ethics; protocol writing; data processing; dissemination of findings and results; and their use in informing a health promotion intervention. Students reported having gained a better understanding of their strengths and weaknesses through reflective learning from this academic activity. The Selectives is scheduled adjacent to the students' mid-year vacation. This scheduling together with the placement in the students' home community minimizes travel and accommodation costs associated with working outside the academic teaching platform and therefore makes it a cost-effective model

  2. Using local research sites to engage undergraduates in environmental science research

    NASA Astrophysics Data System (ADS)

    Varner, R. K.

    2016-12-01

    For the first time in their undergraduate experience, students in the University of New Hampshire's Techniques in Environmental Science course are immersed in learning approaches to scientific investigation that they can implement as part of their senior capstone research experience or other REU type programs. The course begins with an understanding of the value of note taking in the field and working collaboratively in groups. The students then embark upon a series of field experiences that include using both simple and complex tools for mapping elevation, species composition and above ground biomass estimates in a forest and wetland, carbon cycling through measurement of greenhouse gas exchange at both a wetland and at an organic dairy farm, assessing hydrology and water quality through both ground and surface water measurements at locations on campus, and finally analysis of atmospheric chemistry data collected locally. Over the course of a semester the students learn how to describe their methodology and the importance of their work concisely. Eventually the students are given instrumentation and a field site and learn to ask their own research question and develop their approach to answering it. This course model provides a foundation for students to pursue their capstone research experiences but also for understanding complex environmental questions such as the impact of land use change on water and air quality and carbon cycling and its role in our climate system. Students are provided a unique opportunity to address questions at field sites that are local and are part of larger research programs which allows for a larger context to place their work. This course has also been a framework for the NSF funded REU program- Northern Ecosystems Research for Undergraduates (EAR#1063037). Sallie's Fen, a wetland research site, is used as an initial field setting for students to learn techniques, build their ability to ask research questions and to plan research

  3. Extra-Curricular Undergraduate Research Training: Notes on the Pedagogical Practices behind the Sydney Undergraduate Journal of Musicology

    ERIC Educational Resources Information Center

    Coady, Christopher; Nelson, Kathleen

    2013-01-01

    Although there is a clear body of evidence supporting the idea that undergraduate students benefit from participation in original research projects, many units of study--particularly in the creative arts and humanities--have been slow to embrace curriculum renewal along these lines. In this paper, we detail a pragmatic approach to meeting this…

  4. Fostering Sustained Learning among Undergraduate Students: Emerging Research and Opportunities

    ERIC Educational Resources Information Center

    Chemosit, Caroline; Rugutt, John; Rugutt, Joseph K.

    2017-01-01

    Keeping students engaged and receptive to learning can, at times, be a challenge. However, by the implementation of new methods and pedagogies, instructors can strengthen the drive to learn among their students. "Fostering Sustained Learning Among Undergraduate Students: Emerging Research and Opportunities" is an essential publication…

  5. Undergraduate research internships: veterinary students' experiences and the relation with internship quality.

    PubMed

    Jaarsma, Debbie A D C; Muijtjens, Arno M M; Dolmans, Diana H J M; Schuurmans, Eva M; Van Beukelen, Peter; Scherpbier, Albert J J A

    2009-05-01

    The learning environment of undergraduate research internships has received little attention, compared to postgraduate research training. This study investigates students' experiences with research internships, particularly the quality of supervision, development of research skills, the intellectual and social climate, infrastructure support, and the clarity of goals and the relationship between the experiences and the quality of students' research reports and their overall satisfaction with internships. A questionnaire (23 items, a 5-point Likert scale) was administered to 101 Year five veterinary students after completion of a research internship. Multiple linear regression analyses were conducted with quality of supervision, development of research skills, climate, infrastructure and clarity of goals as independent variables and the quality of students' research reports and students' overall satisfaction as dependent variables. The response rate was 79.2%. Students' experiences are generally positive. Students' experiences with the intellectual and social climate are significantly correlated with the quality of research reports whilst the quality of supervision is significantly correlated with both the quality of research reports and students' overall satisfaction with the internship. Both the quality of supervision and the climate are found to be crucial factors in students' research learning and satisfaction with the internship.

  6. A Structured Approach to Honours Undergraduate Research Course, Evaluation Rubrics and Assessment

    NASA Astrophysics Data System (ADS)

    Khoukhi, Amar

    2013-10-01

    This paper presents a new approach to the Honours Undergraduate Research Course design and implementation. The course design process, assessment and evaluation rubrics are provided. Lessons learned and the experience of the faced challenges and opportunities for two cohort offerings of the course during the winter terms of 2011 and 2012 are highlighted. Assessments show that major benefits include increasing interaction with the faculty and increasing intellectual maturity, skills, knowledge and confidence for the students and for the faculty, the furthering of research projects by the participation of undergraduate students. The course can serve as a model that can be easily adapted for use across the disciplines of science, technology, engineering and mathematics.

  7. Influences on Faculty Willingness to Mentor Undergraduate Students from Another University as Part of an Interinstitutional Research Training Program

    PubMed Central

    Morales, Danielle X.; Grineski, Sara E.; Collins, Timothy W.

    2016-01-01

    In 2014, the National Institutes of Health invested $31 million in 10 primary institutions across the United States through the Building Undergraduate Infrastructure Leading to Diversity (BUILD) program; one requirement of BUILD is sending undergraduate trainees from those primary institutions to partner institutions for research experiences. Mechanisms like BUILD are designed to broaden research opportunities for students, especially those from underrepresented backgrounds. However, to our knowledge, no studies have examined faculty willingness to mentor undergraduates from other institutions through structured training programs. Survey data from 536 faculty members at 13 institutions were collected in Fall 2013 and analyzed using multiple statistical techniques. Results show that faculty who valued the opportunity to increase diversity in the academy and those who believed that mentoring undergraduates benefited their own research expressed greater willingness to serve as research mentors to visiting undergraduates, and faculty who perceived that they did not have the ability to accommodate additional students expressed less willingness to do so. Most respondents viewed student and faculty incentives as motivating factors in their willingness to mentor, but their perspectives on different types of incentives varied based on faculty career stage, discipline, and research funding status. Results have important implications for designing multi-institutional undergraduate research training programs. PMID:27521237

  8. Scaling Up: Adapting a Phage-Hunting Course to Increase Participation of First-Year Students in Research

    ERIC Educational Resources Information Center

    Staub, Nancy L.; Poxleitner, Marianne; Braley, Amanda; Smith-Flores, Helen; Pribbenow, Christine M.; Jaworski, Leslie; Lopatto, David; Anders, Kirk R.

    2016-01-01

    Authentic research experiences are valuable components of effective undergraduate education. Research experiences during the first years of college are especially critical to increase persistence in science, technology, engineering, and mathematics fields. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science…

  9. Teaching Global Change in Local Places: The HERO Research Experiences for Undergraduates Program

    ERIC Educational Resources Information Center

    Yarnal, Brent; Neff, Rob

    2007-01-01

    The Human-Environment Research Observatory (HERO) Research Experience for Undergraduates (REU) program aimed to develop the next generation of researchers working on place-based human-environment problems. The program followed a cooperative learning model to foster an integrated approach to geographic research and to build collaborative research…

  10. Development and Pilot Evaluation of Native CREST – a Cancer Research Experience and Student Training Program for Navajo Undergraduate Students

    PubMed Central

    Hughes, Christine A.; Bauer, Mark C.; Horazdovsky, Bruce F.; Garrison, Edward R.; Patten, Christi A.; Petersen, Wesley O.; Bowman, Clarissa N.; Vierkant, Robert A.

    2012-01-01

    The Mayo Clinic Cancer Center and Diné College received funding for a 4-year collaborative P20 planning grant from the National Cancer Institute in 2006. The goal of the partnership was to increase Navajo undergraduates’ interest in and commitment to biomedical coursework and careers, especially in cancer research. This paper describes the development, pilot testing and evaluation of Native CREST (Cancer Research Experience & Student Training), a 10-week cancer research training program providing mentorship in a Mayo Clinic basic science or behavioral cancer research lab for Navajo undergraduate students. Seven Native American undergraduate students (5 females, 2 males) were enrolled during the summers of 2008 - 2011. Students reported the program influenced their career goals and was valuable to their education and development. These efforts may increase the number of Native American career scientists developing and implementing cancer research, which will ultimately benefit the health of Native American people. PMID:23001889

  11. Lessons Learned in Developing Research Opportunities for Native American Undergraduate Students: The GEMscholars Project

    NASA Astrophysics Data System (ADS)

    Zurn-Birkhimer, S. M.; Filley, T. R.; Kroeger, T. J.

    2008-12-01

    Interventions for the well-documented national deficiency of underrepresented students in higher education have focused primarily on the undergraduate student population with significantly less attention given to issues of diversity within graduate programs. As a result, we have made little progress in transforming faculty composition to better reflect the nation's diversity resulting in relatively few minority mentors joining faculty ranks and schools falling short of the broader representation to create an enriched, diverse academic environment. The GEMscholars (Geology, Environmental Science and Meteorology scholars) Program began in the summer of 2006 with the goal of increasing the number of Native American students pursuing graduate degrees in the geosciences. We drew on research from Native American student education models to address three key themes of (a) mentoring, (b) culturally relevant valuations of geosciences and possible career paths, and (c) connections to community and family. A collaboration between Purdue University, West Lafayette, IN and three institutions in northern Minnesota; Bemidji State University, Red Lake Nation College and Leech Lake Tribal College, is structured to develop research opportunities and a support network for Native American undergraduate students (called GEMscholars) to participate in summer geoscience research projects in their home communities. Research opportunities were specifically chosen to have cultural relevance and yield locally important findings. The GEMscholars work on projects that directly link to their local ecosystems and permit them to engage in long term monitoring and cohesive interaction among each successive year's participants. For example, the GEMscholars have established and now maintain permanent field monitoring plots to assess the impacts of invasive European earthworm activity on forest ecosystem health. The culmination of the summer project is the GEMscholars Symposium at Purdue University

  12. Testing the Impact of a Multi-year, Curriculum-based Undergraduate Research Experience (MY-CURE) in the Geosciences: Baseline Observations

    NASA Astrophysics Data System (ADS)

    Allen, J. L.; Creamer, E. G.; Kuehn, S. C.

    2016-12-01

    Short-term undergraduate research experiences (URE's) provide skill and confidence enhancement to students, but it is unclear how effective they are in comparison to a dedicated, longer-term URE. This study examines the impact of a long-term URE embedded in a sequence of five courses in the geology curriculum. It begins with a sophomore course in environmental geology, and continues through mineralogy, structural geology, and petrology, before concluding at our summer geology field camp. In this sequence, they build upon individual URE's related to the structure and petrology of fault rocks from a mid-crustal shear zone. Rather than have students engage in one or more short-term URE's, they retain the same project for two calendar years so that we can assess when and how different gains, including a more sophisticated understanding of the nature of science, begin to emerge and mature. As each student progresses, we document the longitudinal development of a diverse suite of gains including: (1) Technical and higher-order research skills, (2) personal gains such as self-identity as a scientist, and (3) communication skills. In this presentation, we describe the framework of the study and baseline observations recorded during the first year of a 2-year cohort. Using a Q-sort method, students were given a deck of 16 index cards with an educational outcome listed on each. They sorted the cards into three piles: Those that encouraged an interest in geology, those that deterred an interest, and those with no impact. Participants discussed the top cards from the negative and positive piles. The top attractors to geology are collegial relationships with faculty, the opportunity to use scientific equipment, field work, the concreteness of geology, and the availability of jobs. Factors that deter interest include hours of tedious homework, math courses, and time invested in wrong answers or failed experiments/sample preparation. Factors not yet evident include confidence in

  13. Evaluating the Development of Chemistry Undergraduate Researchers' Scientific Thinking Skills Using Performance-Data: First Findings from the Performance Assessment of Undergraduate Research (PURE) Instrument

    ERIC Educational Resources Information Center

    Harsh, Joseph; Esteb, John J.; Maltese, Adam V.

    2017-01-01

    National calls in science, technology, engineering, and technology education reform efforts have advanced the wide-scale engagement of students in undergraduate research for the preparation of a workforce and citizenry able to attend to the challenges of the 21st century. Awareness of the potential benefits and costs of these experiences has led…

  14. Life's Lessons in the Lab: A Summer of Learning from Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Warner, Don; Brown, Eric

    2015-01-01

    Research experiences for undergraduates (REUs) seek to increase the participating students' knowledge and perceptions of scientific research through engagement in laboratory research and related activities. Various REU outcomes have been investigated including influence on participants' content knowledge, career plans, and general perceptions of…

  15. The Python Project: A Unique Model for Extending Research Opportunities to Undergraduate Students

    ERIC Educational Resources Information Center

    Harvey, Pamela A.; Wall, Christopher; Luckey, Stephen W.; Langer, Stephen; Leinwand, Leslie A.

    2014-01-01

    Undergraduate science education curricula are traditionally composed of didactic instruction with a small number of laboratory courses that provide introductory training in research techniques. Research on learning methodologies suggests this model is relatively ineffective, whereas participation in independent research projects promotes enhanced…

  16. "Hands-On" Undergraduate Research Opportunities in the Life Sciences: Preparing the Next Generation of Biological Researchers

    ERIC Educational Resources Information Center

    Levis-Fitzgerald, Marc; Denson, Nida; Kerfeld, Cheryl A.

    2004-01-01

    Over the past decade, a number of scholars have publicly criticized large research universities for failing to provide undergraduate students with the skills and abilities needed to succeed both in life and in the workforce. At the heart of this criticism is the concern that research institutions have de-emphasized teaching by increasing the size…

  17. Undergraduate Research-Methods Training in Political Science: A Comparative Perspective

    ERIC Educational Resources Information Center

    Parker, Jonathan

    2010-01-01

    Unlike other disciplines in the social sciences, there has been relatively little attention paid to the structure of the undergraduate political science curriculum. This article reports the results of a representative survey of 200 political science programs in the United States, examining requirements for quantitative methods, research methods,…

  18. Women in STEM: The Effect of Undergraduate Research on Persistence

    ERIC Educational Resources Information Center

    Wilker, Jodi Christine

    2017-01-01

    The underrepresentation of women in science, technology, engineering, and math (STEM) careers constitutes a major issue in postsecondary science education. Perseverance of women in STEM is linked to a strong science identity. Experiential learning activities, such as undergraduate research, increase science identity and thus should help keep women…

  19. A Course-Based Undergraduate Research Experience Investigating p300 Bromodomain Mutations#

    PubMed Central

    Shanle, Erin K.; Tsun, Ian K.; Strahl, Brian D.

    2016-01-01

    Course-based undergraduate research experiences (CUREs) provide an opportunity for students to engage in experiments with outcomes that are unknown to both the instructor and students. These experiences allow students and instructors to collaboratively bridge the research laboratory and classroom, and provide research experiences for a large number of students relative to traditional individual mentored research. Here, we describe a molecular biology CURE investigating the impact of clinically relevant mutations found in the bromodomain of the p300 transcriptional regulator on acetylated histone interaction. In the CURE, students identified missense mutations in the p300 bromo-domain using the Catalogue of Somatic Mutations in Cancer (COSMIC) database and hypothesized the effects of the mutation on the acetyl-binding function of the domain. They cloned and purified the mutated bromodomain and performed peptide pulldown assays to define its potential to bind to acetylated histones. Upon completion of the course, students showed increased confidence performing molecular techniques and reported positively on doing a research project in class. In addition, results generated in the classroom were further validated in the research laboratory setting thereby providing a new model for faculty to engage in both course-based and individual undergraduate research experiences. PMID:26537758

  20. A course-based undergraduate research experience investigating p300 bromodomain mutations.

    PubMed

    Shanle, Erin K; Tsun, Ian K; Strahl, Brian D

    2016-01-01

    Course-based undergraduate research experiences (CUREs) provide an opportunity for students to engage in experiments with outcomes that are unknown to both the instructor and students. These experiences allow students and instructors to collaboratively bridge the research laboratory and classroom, and provide research experiences for a large number of students relative to traditional individual mentored research. Here, we describe a molecular biology CURE investigating the impact of clinically relevant mutations found in the bromodomain of the p300 transcriptional regulator on acetylated histone interaction. In the CURE, students identified missense mutations in the p300 bromodomain using the Catalogue of Somatic Mutations in Cancer (COSMIC) database and hypothesized the effects of the mutation on the acetyl-binding function of the domain. They cloned and purified the mutated bromodomain and performed peptide pulldown assays to define its potential to bind to acetylated histones. Upon completion of the course, students showed increased confidence performing molecular techniques and reported positively on doing a research project in class. In addition, results generated in the classroom were further validated in the research laboratory setting thereby providing a new model for faculty to engage in both course-based and individual undergraduate research experiences. © 2015 The International Union of Biochemistry and Molecular Biology.

  1. Real Problems, Real Research, Real Students: Authentic Research with Undergraduates as a Win-Win-Win Collaboration

    ERIC Educational Resources Information Center

    Bank, Carl-Georg; Ryan, Anne Marie

    2009-01-01

    Authentic research, in which students pose original questions and attempt to find the unknown answers, addresses principles of undergraduate education in an ideal way. With careful planning and reasoned considerations it will benefit students, faculty, and institutions.

  2. The Language Lessons around Us: Undergraduate English Pedagogy and Linguistic Landscape Research

    ERIC Educational Resources Information Center

    Chesnut, MIchael; Lee, Vivian; Schulte, Jenna

    2013-01-01

    This narrative article analyses three Korean undergraduate students' experiences conducting a linguistic landscape research project. Linguistic landscape research, the study of publicly displayed language such as billboards and other signs, is a relatively new area of scholarly interest. However, there has been only limited study of using…

  3. Approaching Undergraduate Research with Students Who Are Deaf and Hard-of-Hearing

    ERIC Educational Resources Information Center

    Gehret, Austin U.; Trussell, Jessica W.; Michel, Lea V.

    2017-01-01

    An undergraduate research experience can provide a unique opportunity for students to learn and grow as scientists; when positive, this experience is often transformative and motivates students to pursue science, technology, engineering and mathematics (STEM) graduate degrees or careers. Conversely, negative research experiences can sour a…

  4. A survey on faculty perspectives on the transition to a biochemistry course-based undergraduate research experience laboratory.

    PubMed

    Craig, Paul A

    2017-09-01

    It will always remain a goal of an undergraduate biochemistry laboratory course to engage students hands-on in a wide range of biochemistry laboratory experiences. In 2006, our research group initiated a project for in silico prediction of enzyme function based only on the 3D coordinates of the more than 3800 proteins "of unknown function" in the Protein Data Bank, many of which resulted from the Protein Structure Initiative. Students have used the ProMOL plugin to the PyMOL molecular graphics environment along with BLAST, Pfam, and Dali to predict protein functions. As young scientists, these undergraduate research students wanted to see if their predictions were correct and so they developed an approach for in vitro testing of predicted enzyme function that included literature exploration, selection of a suitable assay and the search for commercially available substrates. Over the past two years, a team of faculty members from seven different campuses (California Polytechnic San Luis Obispo, Hope College, Oral Roberts University, Rochester Institute of Technology, St. Mary's University, Ursinus College, and Purdue University) have transferred this approach to the undergraduate biochemistry teaching laboratory as a Course-based Undergraduate Research Experience. A series of ten course modules and eight instructional videos have been created (www.promol.org/home/basil-modules-1) and the group is now expanding these resources, creating assessments and evaluating how this approach helps student to grow as scientists. The focus of this manuscript will be the logistical implications of this transition on campuses that have different cultures, expectations, schedules, and student populations. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):426-436, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  5. A new model in teaching undergraduate research: A collaborative approach and learning cooperatives.

    PubMed

    O'Neal, Pamela V; McClellan, Lynx Carlton; Jarosinski, Judith M

    2016-05-01

    Forming new, innovative collaborative approaches and cooperative learning methods between universities and hospitals maximize learning for undergraduate nursing students in a research course and provide professional development for nurses on the unit. The purpose of this Collaborative Approach and Learning Cooperatives (CALC) Model is to foster working relations between faculty and hospital administrators, maximize small group learning of undergraduate nursing students, and promote onsite knowledge of evidence based care for unit nurses. A quality improvement study using the CALC Model was implemented in an undergraduate nursing research course at a southern university. Hospital administrators provided a list of clinical concerns based on national performance outcome measures. Undergraduate junior nursing student teams chose a clinical question, gathered evidence from the literature, synthesized results, demonstrated practice application, and developed practice recommendations. The student teams developed posters, which were evaluated by hospital administrators. The administrators selected several posters to display on hospital units for continuing education opportunity. This CALC Model is a systematic, calculated approach and an economically feasible plan to maximize personnel and financial resources to optimize collaboration and cooperative learning. Universities and hospital administrators, nurses, and students benefit from working together and learning from each other. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Critical Components of a Successful Undergraduate Research Experience in the Geosciences for Minority Students

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Chukuigwe, C.

    2013-12-01

    For the past five years, the New York City College of Technology has administered a successful National Science Foundation (NSF) Research Experience for Undergraduates (REU) program. The program provides rich, substantive, academic and life-transformative STEM educational experiences for students who would otherwise not pursue STEM education altogether or would not pursue STEM education through to the graduate school level. The REU Scholars are provided with an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST). Candidates for the program are recruited from the City University of New York's twenty-three separate campuses. These students engage in a research experience that spans the summer and the fall and spring semesters. Eighty-four percent (84%) of the program participants are underrepresented minorities in STEM, and they are involved in a plethora of undergraduate research best practice activities that include: training courses in MATLAB programming, Geographic Information Systems, and Remote Sensing; workshops in Research Ethics, Scientific Writing, and Oral and Poster Research Presentations; national, regional, and local conference presentations; graduate school support; and geoscience exposure events at national laboratories, agencies, and research facilities. To enhance their success in the program, the REU Scholars are also provided with a comprehensive series of safety nets that include a multi-tiered mentoring design specifically to address critical issues faced by this diverse population. Since the inception of the REU program in 2008, a total of 61 undergraduate students have finished or are continuing with their research or are pursuing their STEM endeavors. All the REU Scholars conducted individual satellite and ground-based remote sensing research projects that ranged from the study of

  7. Students' perspectives of undergraduate research methods education at three public medical schools in Uganda.

    PubMed

    Munabi, Ian Guyton; Buwembo, William; Joseph, Ruberwa; Peter, Kawungezi; Bajunirwe, Francis; Mwaka, Erisa Sabakaki

    2016-01-01

    In this study we used a model of adult learning to explore undergraduate students' views on how to improve the teaching of research methods and biostatistics. This was a secondary analysis of survey data of 600 undergraduate students from three medical schools in Uganda. The analysis looked at student's responses to an open ended section of a questionnaire on their views on undergraduate teaching of research methods and biostatistics. Qualitative phenomenological data analysis was done with a bias towards principles of adult learning. Students appreciated the importance of learning research methods and biostatistics as a way of understanding research problems; appropriately interpreting statistical concepts during their training and post-qualification practice; and translating the knowledge acquired. Stressful teaching environment and inadequate educational resource materials were identified as impediments to effective learning. Suggestions for improved learning included: early and continuous exposure to the course; more active and practical approach to teaching; and a need for mentorship. The current methods of teaching research methods and biostatistics leave most of the students in the dissonance phase of learning resulting in none or poor student engagement that results in a failure to comprehend and/or appreciate the principles governing the use of different research methods.

  8. A Teaching Strategy with a Focus on Argumentation to Improve Undergraduate Students' Ability to Read Research Articles.

    PubMed

    Van Lacum, Edwin B; Ossevoort, Miriam A; Goedhart, Martin J

    2014-01-01

    The aim of this study is to evaluate a teaching strategy designed to teach first-year undergraduate life sciences students at a research university how to learn to read authentic research articles. Our approach-based on the work done in the field of genre analysis and argumentation theory-means that we teach students to read research articles by teaching them which rhetorical moves occur in research articles and how they can identify these. Because research articles are persuasive by their very nature, we focused on the rhetorical moves that play an important role in authors' arguments. We designed a teaching strategy using cognitive apprenticeship as the pedagogical approach. It was implemented in a first-year compulsory course in the life sciences undergraduate program. Comparison of the results of a pretest with those of the posttest showed that students' ability to identify these moves had improved. Moreover, students themselves had also perceived that their ability to read and understand a research article had increased. The students' evaluations demonstrated that they appreciated the pedagogical approach used and experienced the assignments as useful. On the basis of our results, we concluded that students had taken a first step toward becoming expert readers. © 2014 E. B. Van Lacum et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. The Importance of Search as Intertextual Practice for Undergraduate Research

    ERIC Educational Resources Information Center

    Bodemer, Brett B.

    2012-01-01

    By first reassessing the role of search in the literacy event of the lower division undergraduate paper, this article argues that searching is not a lower-order mental activity but a concurrent, integral component of the research-writing process. This conclusion has large implications for information literacy instructional design, and several…

  10. Toward a Holistic View of Undergraduate Research Experiences: An Exploratory Study of Impact on Graduate/Postdoctoral Mentors

    NASA Astrophysics Data System (ADS)

    Dolan, Erin; Johnson, Deborah

    2009-12-01

    Involvement in research has become a fixture in undergraduate science education across the United States. Graduate and postdoctoral students are often called upon to mentor undergraduates at research universities, yet mentoring relationships in undergraduate—graduate/postdoctoral student dyads and undergraduate—graduate/postdoctoral student—faculty triads have been largely unexamined. Here, we present findings of an exploratory case study framed by relational theory that identifies the motives, gains, and challenges reported by graduate/postdoctoral students who mentored undergraduates in research. Graduate/postdoctoral mentors experienced a wide range of gains, including improved qualifications and career preparation, cognitive and socioemotional growth, improved teaching and communication skills, and greater enjoyment of their own apprenticeship experience. Notably, graduate/postdoctoral mentors reported twice as many gains as challenges, neither of which were limited by their motives for mentoring. Indeed, their motives were fairly narrow and immediate, focusing on how mentoring would serve as a means to an end, while the gains and challenges they reported indicated a longer-term vision of how mentoring influenced their personal, cognitive, and professional growth. We propose that understanding the impact of mentoring undergraduates on the education and training of graduate/postdoctoral students may uncover new ideas about the benefits reaped through undergraduate research experiences.

  11. An Authentic Research Experience for Undergraduates on a Budget: Using Data from Simple Experiments to Develop Mini-Research Proposals

    ERIC Educational Resources Information Center

    Robertson, Katherine

    2016-01-01

    The benefits of undergraduate research are well documented, and many colleges and universities include a senior research requirement for graduation. In addition, most science curricula attempt to include discoverystyle, laboratory components to prepare students for their research experiences and to expose them to research methods in different…

  12. Undergraduate Medical Research Programme: A Cross-Sectional Study of Students’ Satisfactions, Perceived Challenges, and Attitudes

    PubMed Central

    Althubaiti, Alaa

    2015-01-01

    Background: Implementing an undergraduate Medical Research Programme (MRP) in medical colleges may not only improve the subsequent career of medical students but also benefit the health system in general. If not designed effectively, however, such a programme could have the opposite impact. Therefore, the quality of a MRP should be evaluated continuously. This study aims to evaluate the MRP from medical students’ perspective. Methods: A cross-sectional survey study was conducted from March to April 2014 amongst undergraduate medical students at the College of Medicine, King Saud University for Health Sciences, Riyadh, Saudi Arabia. Satisfaction, perceived challenges, and attitudes towards the MRP were evaluated. Results: A total of 154 responses were collected from the students; 81(52.6%) were in the 2nd year and 73 (47.4%) were in the 3rd year of the MRP, 97(63%) were males. The mean ± SD age was 21.5 ± 0.82 years. Overall, most students were satisfied with the MRP (51.3%). The majority of students were of the opinion that there was a shortage of time to complete their work (57.6%) and a lack of motivation to do research (53.3%). Significant differences were found in the satisfaction levels and perceived challenges between students in the 2nd and 3rd year of the MRP (P≤ .013). Discussion: Assessment of medical students’ perspective towards the MRP is an important aspect of the educative process. We recommend more evaluation studies, because they ensure that programmes effectively meet their goals and continue to be improved. A solid MRP is essential and will increase the university’s profile. PMID:26156916

  13. Transition, Induction and Goal Achievement: First-Year Experiences of Hong Kong Undergraduates

    ERIC Educational Resources Information Center

    Webster, Beverley J.; Yang, Min

    2012-01-01

    Educators worldwide are faced with challenges of understanding how undergraduates are making their school-to-university transition and becoming inducted into their academic discipline. A recent study investigated Hong Kong first-year Chinese students' experiences of transition from school to university and induction into their discipline in…

  14. Exploring the Research Mindset and Information-Seeking Behaviors of Undergraduate Music Students

    ERIC Educational Resources Information Center

    Clark, Joe C.; Johnstone, Jennifer

    2018-01-01

    This article examines the mindset and process of undergraduate music majors conducting research in their discipline. While working with students in a writing-intensive music history class, the authors conducted several surveys, focus groups, and task-based assessments. Results indicated that most were overconfident in their research abilities,…

  15. Undergraduates and Their Use of Social Media: Assessing Influence on Research Skills

    ERIC Educational Resources Information Center

    Nwangwa, Kanelechi C. K.; Yonlonfoun, Ebun; Omotere, Tope

    2014-01-01

    This research investigates the influence of social media usage on research skills of undergraduates offering Educational Management at six different universities randomly selected from the six geo-political zones in Nigeria. Various studies on the effects of social media on students have concentrated mainly on academic performance (Kirschner &…

  16. Journal of Undergraduate Research, Volume I, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faletra, P.; Beavis, W.; Franz, K.

    This is our first volume of the Undergraduate Journal. It is an approbation of the impressive research performed by summer interns under the guidance of their dedicated mentors. The full-length publications were chosen from a pool of submissions that were reviewed by many of the excellent scientists at our National Laboratories. Most of these students will pursue careers in science, engineering and technology and, hopefully, some of this talent will remain with our labs. We have also included about 125 abstracts that survived the review process. These were submitted from all of our participating National Laboratories.

  17. Race and Research Methods Anxiety in an Undergraduate Sample: The Potential Effects of Self-Perception

    ERIC Educational Resources Information Center

    Eckberg, Deborah A.

    2015-01-01

    This study explores race as a potential predictor of research methods anxiety among a sample of undergraduates. While differences in academic achievement based on race and ethnicity have been well documented, few studies have examined racial differences in anxiety with regard to specific subject matter in undergraduate curricula. This exploratory…

  18. Student Learning Outcomes, Perceptions and Beliefs in the Context of Strengthening Research Integration into the First Year of Medical School

    ERIC Educational Resources Information Center

    Vereijken, Mayke W. C.; van der Rijst, Roeland M.; van Driel, Jan H.; Dekker, Friedo W.

    2018-01-01

    Research integrated into undergraduate education is important in order for medical students to understand and value research for later clinical practice. Therefore, attempts are being made to strengthen the integration of research into teaching from the first year onwards. First-year students may interpret attempts made to strengthen research…

  19. Combining research-enhanced and technology-enhanced teaching approaches in module design: A case study of an undergraduate course in Solar Physics

    NASA Astrophysics Data System (ADS)

    Tong, V.

    2011-12-01

    There is a growing emphasis on the research-teaching nexus, and there are many innovative ways to incorporate research materials and methods in undergraduate teaching. Solar Physics is a cross-disciplinary subject and offers the ideal opportunity for research-enhanced teaching (1). In this presentation, I outline i) how student-led teaching of research content and methods is introduced in an undergraduate module in Solar Physics, and ii) how electronic learning and teaching can be used to improve students' learning of mathematical concepts in Solar Physics. More specifically, I discuss how research literature reviewing and reporting methods can be embedded and developed systematically throughout the module with aligned assessments. Electronic feedback and feedforward (2) are given to the students in order to enhance their understanding of the subject and improve their research skills. Other technology-enhanced teaching approaches (3) are used to support students' learning of the more quantitative components of the module. This case study is particularly relevant to a wide range of pedagogical contexts (4) as the Solar Physics module is taught to students following undergraduate programs in Geology, Earth Sciences, Environmental Geology as well as Planetary Science with Astronomy in the host Department. Related references: (1) Tong, C. H., Let interdisciplinary research begin in undergraduate years, Nature (2010) v. 463, p. 157. (2) Tong, V. C. H., Linking summative assessments? Electronic feedback and feedforward in module design, British Journal of Educational Technology (2011), accepted for publication. (3) Tong, V. C. H., Using asynchronous electronic surveys to help in-class revision: A case study, British Journal of Educational Technology (2011), doi:10.1111/j.1467-8535.2011.01207.x (4) Tong, V. C. H. (ed.), Geoscience Research and Education, Springer, Dordrecht (2012)

  20. Contributions to Educational Structures that Promote Undergraduate Research

    NASA Technical Reports Server (NTRS)

    Sepikas, John; Mijic, Milan; Young, Don; Gillam, Steve

    1997-01-01

    The opportunities for community college and traditionally underrepresented minority students to participate in research experiences are typically rare. Further, what research experiences that are available often underutilizes the students' potential and do not have follow-up programs. The Physics Outreach Program (POP) working in conjunction with the Jet Propulsion Laboratory is designed to reach out to this segment of the student population and encourage them to consider careers in physics and astronomy. The program is special in that it creates a "vertical" consortium or pipeline of schools whereby students graduating from one participating institution will then transfer to another. This helps to insure that participating students will experience continuity and, with the assistance of JPL equipment and staff, a quality of instruction that they would otherwise not be able to afford. Key words. educational outreach, undergraduate research, community college research, underrepresented minority student research