Sample records for years areas covered

  1. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let

  2. Areas of Indian Country Covered by the EPA Plan

    EPA Pesticide Factsheets

    Areas of Indian country covered by the EPA Plan for certification are those that are not covered by another EPA-approved certification plan.Most areas are NOT covered by an EPA-approved plan, so this new plan would apply to most locations.

  3. Status of vegetation cover after 25 years since the last wildfire (Río Verde, Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2016-04-01

    Climatic conditions play an important role in the post-fire vegetation recovery as well as other factors like topography, soil, and pre and post-fire land use (Shakesby, 2011; Robichaud et al., 2013). This study deals with the characterization of the vegetation cover status in an area affected by a wildfire 25 years ago. Namely, the objectives are to: i) compare the current and previous vegetation cover to wildfire; and ii) evaluate whether the current vegetation has recovered the previous cover to wildfire. The study area is mainly located in the Rio Verde watershed (Sierra de las Nieves, South of Spain). It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8,156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1700 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. The Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover maps were obtained by means of object-oriented classifications. Also, NDVI index were calculated and mapped for both years in order to compare the status of vegetation cover. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that

  4. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    PubMed

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 40 CFR 80.70 - Covered areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Covered areas. 80.70 Section 80.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF...) Hopewell; (xvii) Richmond; (xviii) Chesapeake; (xix) Hampton; (xx) James City County; (xxi) Newport News...

  6. 40 CFR 80.70 - Covered areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Covered areas. 80.70 Section 80.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF...) Hopewell; (xvii) Richmond; (xviii) Chesapeake; (xix) Hampton; (xx) James City County; (xxi) Newport News...

  7. 40 CFR 80.70 - Covered areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Covered areas. 80.70 Section 80.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF...) Hopewell; (xvii) Richmond; (xviii) Chesapeake; (xix) Hampton; (xx) James City County; (xxi) Newport News...

  8. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data

    NASA Astrophysics Data System (ADS)

    Zhang, Jixian; Zhengjun, Liu; Xiaoxia, Sun

    2009-12-01

    The eco-environment in the Three Gorges Reservoir Area (TGRA) in China has received much attention due to the construction of the Three Gorges Hydropower Station. Land use/land cover changes (LUCC) are a major cause of ecological environmental changes. In this paper, the spatial landscape dynamics from 1978 to 2005 in this area are monitored and recent changes are analyzed, using the Landsat TM (MSS) images of 1978, 1988, 1995, 2000 and 2005. Vegetation cover fractions for a vegetation cover analysis are retrieved from MODIS/Terra imagery from 2000 to 2006, being the period before and after the rising water level of the reservoir. Several analytical indices have been used to analyze spatial and temporal changes. Results indicate that cropland, woodland, and grassland areas reduced continuously over the past 30 years, while river and built-up area increased by 2.79% and 4.45% from 2000 to 2005, respectively. The built-up area increased at the cost of decreased cropland, woodland and grassland. The vegetation cover fraction increased slightly. We conclude that significant changes in land use/land cover have occurred in the Three Gorges Reservoir Area. The main cause is a continuous economic and urban/rural development, followed by environmental management policies after construction of the Three Gorges Dam.

  9. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A. A.

    2016-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  10. Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year

    NASA Astrophysics Data System (ADS)

    Klein, A. G.; Thapa, S.

    2017-12-01

    The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.

  11. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada?

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A.

    2017-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  12. Global Snow-Cover Evolution from Twenty Years of Satellite Passive Microwave Data

    USGS Publications Warehouse

    Mognard, N.M.; Kouraev, A.V.; Josberger, E.G.

    2003-01-01

    Starting in 1979 with the SMMR (Scanning Multichannel Microwave Radiometer) instrument onboard the satellite NIMBUS-7 and continuing since 1987 with the SSMI (Special Sensor Microwave Imager) instrument on board the DMSP (Defence Meteorological Satellite Program) series, more then twenty years of satellite passive microwave data are now available. This dataset has been processed to analyse the evolution of the global snow cover. This work is part of the AICSEX project from the 5th Framework Programme of the European Community. The spatio-temporal evolution of the satellite-derived yearly snow maximum extent and the timing of the spring snow melt were estimated and analysed over the Northern Hemisphere. Significant differences between the evolution of the yearly maximum snow extent in Eurasia and in North America were found. A positive correlation between the maximum yearly snow cover extent and the ENSO index was obtained. High interannual spatio-temporal variability characterises the timing of snow melt in the spring. Twenty-year trends in the timing of spring snow melt have been computed and compared with spring air temperature trends for the same period and the same area. In most parts of Eurasia and in the central and western parts of North America the tendency has been for earlier snow melt. In northeastern Canada, a large area of positive trends, where snow melt timing starts later than in the early 1980s, corresponds to a region of positive trends of spring air temperature observed over the same period.

  13. [Cover motifs of the Tidsskrift. A 14-year cavalcade].

    PubMed

    Nylenna, M

    1998-12-10

    In 1985 the Journal of the Norwegian Medical Association changed its cover policy, moving the table of contents inside the Journal and introducing cover illustrations. This article provides an analysis of all cover illustrations published over this 14-year period, 420 covers in all. There is a great variation in cover motifs and designs and a development towards more general motifs. The initial emphasis on historical and medical aspects is now less pronounced, while the use of works of art and nature motifs has increased, and the cover now more often has a direct bearing on the specific contents of the issue. Professor of medical history Oivind Larsen has photographed two thirds of the covers and contributed 95% of the inside essay-style reflections on the cover motif. Over the years, he has expanded the role of the historian of medicine disseminating knowledge to include that of the raconteur with a personal tone of voice. The Journal's covers are now one of its most characteristic features, emblematic of the Journal's ambition of standing for quality and timelessness vis-à-vis the news media, and of its aim of bridging the gap between medicine and the humanities.

  14. Comparing Minnesota land cover/use area estimates using NRI and FIA data

    Treesearch

    Veronica C. Lessard; Mark H. Hansen; Mark D. Nelson

    2002-01-01

    Areas for land cover/use categories on non-Federal land in Minnesota were estimated from Forest Inventory and Analysis (FIA) data and National Resources Inventory (NRI) data. Six common land cover/use categories were defined, and the NRI and FIA land cover/use categories were assigned to them. Area estimates for these categories were calculated from the FIA and NRI...

  15. Estimation of Subpixel Snow-Covered Area by Nonparametric Regression Splines

    NASA Astrophysics Data System (ADS)

    Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2016-10-01

    Measurement of the areal extent of snow cover with high accuracy plays an important role in hydrological and climate modeling. Remotely-sensed data acquired by earth-observing satellites offer great advantages for timely monitoring of snow cover. However, the main obstacle is the tradeoff between temporal and spatial resolution of satellite imageries. Soft or subpixel classification of low or moderate resolution satellite images is a preferred technique to overcome this problem. The most frequently employed snow cover fraction methods applied on Moderate Resolution Imaging Spectroradiometer (MODIS) data have evolved from spectral unmixing and empirical Normalized Difference Snow Index (NDSI) methods to latest machine learning-based artificial neural networks (ANNs). This study demonstrates the implementation of subpixel snow-covered area estimation based on the state-of-the-art nonparametric spline regression method, namely, Multivariate Adaptive Regression Splines (MARS). MARS models were trained by using MODIS top of atmospheric reflectance values of bands 1-7 as predictor variables. Reference percentage snow cover maps were generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also employed to estimate the percentage snow-covered area on the same data set. The results indicated that the developed MARS model performed better than th

  16. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ching; Huang, Thomas C. C.

    2014-02-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.

  17. A foraminiferal δ(18)O record covering the last 2,200 years.

    PubMed

    Taricco, Carla; Alessio, Silvia; Rubinetti, Sara; Vivaldo, Gianna; Mancuso, Salvatore

    2016-06-21

    Thanks to the precise core dating and the high sedimentation rate of the drilling site (Gallipoli Terrace, Ionian Sea) we were able to measure a foraminiferal δ(18)O series covering the last 2,200 years with a time resolution shorter than 4 years. In order to support the quality of this data-set we link the δ(18)O values measured in the foraminifera shells to temperature and salinity measurements available for the last thirty years covered by the core. Moreover, we describe in detail the dating procedures based on the presence of volcanic markers along the core and on the measurement of (210)Pb and (137)Cs activity in the most recent sediment layers. The high time resolution allows for detecting a δ(18)O decennial-scale oscillation, together with centennial and multicentennial components. Due to the dependence of foraminiferal δ(18)O on environmental conditions, these oscillations can provide information about temperature and salinity variations in past millennia. The strategic location of the drilling area makes this record a unique tool for climate and oceanographic studies of the Central Mediterranean.

  18. Snow cover monitoring model and change over both time and space in pastoral area of northern China

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Li, Suju; Wang, Ping; Zhang, Wei; Nie, Juan; Wen, Qi

    2014-11-01

    Snow disaster is a natural phenomenon owning to widespread snowfall for a long time and usually affect people's life, property and economic. During the whole disaster management circle, snow disaster in pastoral area of northern china which including Xinjiang, Inner Mongolia, Qinghai, Tibet has been paid more attention. Thus do a good job in snow cover monitoring then found snow disaster in time can help the people in disaster area to take effective rescue measures, which always been the central and local government great important work. Remote sensing has been used widely in snow cover monitoring for its wide range, high efficiency, less conditions, more methods and large information. NOAA/AVHRR data has been used for wide range, plenty bands information and timely acquired and act as an import data of Snow Cover Monitoring Model (SCMM). SCMM including functions list below: First after NOAA/AVHRR data has been acquired, geometric calibration, radiometric calibration and other pre-processing work has been operated. Second after band operation, four threshold conditions are used to extract snow spectrum information among water, cloud and other features in NOAA/AVHRR image. Third snow cover information has been analyzed one by one and the maximum snow cover from about twenty images in a week has been selected. Then selected image has been mosaic which covered the pastoral area of China. At last both time and space analysis has been carried out through this operational model ,such as analysis on the difference between this week and the same period of last year , this week and last week in three level regional. SCMM have been run successfully for three years, and the results have been take into account as one of the three factors which led to risk warning of snow disaster and analysis results from it always play an important role in disaster reduction and relief.

  19. Ten Years of Forest Cover Change in the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2014-01-01

    A detailed geographic record of recent vegetation regrowth and disturbance patterns in forests of the Sierra Nevada remains a gap that can be filled with remote sensing data. Landsat (TM) imagery was analyzed to detect 10 years of recent changes (between 2000 and 2009) in forest vegetation cover for areas burned by wildfires between years of 1995 to 1999 in the region. Results confirmed the prevalence of regrowing forest vegetation during the period 2000 and 2009 over 17% of the combined burned areas.

  20. Ten Years of Land Cover Change on the California Coast Detected using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2013-01-01

    Landsat satellite imagery was analyzed to generate a detailed record of 10 years of vegetation disturbance and regrowth for Pacific coastal areas of Marin and San Francisco Counties. The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology, a transformation of Tasseled-Cap data space, was applied to detected changes in perennial coastal shrubland, woodland, and forest cover from 1999 to 2009. Results showed several principal points of interest, within which extensive contiguous areas of similar LEDAPS vegetation change (either disturbed or restored) were detected. Regrowth areas were delineated as burned forest areas in the Point Reyes National Seashore (PRNS) from the 1995 Vision Fire. LEDAPS-detected disturbance patterns on Inverness Ridge, PRNS in areas observed with dieback of tanoak and bay laurel trees was consistent with defoliation by sudden oak death (Phytophthora ramorum). LEDAPS regrowth pixels were detected over much of the predominantly grassland/herbaceous cover of the Olema Valley ranchland near PRNS. Extensive restoration of perennial vegetation cover on Crissy Field, Baker Beach and Lobos Creek dunes in San Francisco was identified. Based on these examples, the LEDAPS methodology will be capable of fulfilling much of the need for continual, low-cost monitoring of emerging changes to coastal ecosystems.

  1. Estimation of the spatiotemporal dynamics of snow covered area by using cellular automata models

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Collados-Lara, Antonio-Juan; Pulido-Velazquez, David

    2017-07-01

    Given the need to consider the cryosphere in water resources management for mountainous regions, the purpose of this paper is to model the daily spatially distributed dynamics of snow covered area (SCA) by using calibrated cellular automata models. For the operational use of the calibrated model, the only data requirements are the altitude of each cell of the spatial discretization of the area of interest and precipitation and temperature indexes for the area of interest. For the calibration step, experimental snow covered area data are needed. Potential uses of the model are to estimate the snow covered area when satellite data are absent, or when they provide a temporal resolution different from the operational resolution, or when the satellite images are useless because they are covered by clouds or because there has been a sensor failure. Another interesting application is the simulation of SCA dynamics for the snow covered area under future climatic scenarios. The model is applied to the Sierra Nevada mountain range, in southern Spain, which is home to significant biodiversity, contains important water resources in its snowpack, and contains the most meridional ski resort in Europe.

  2. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece.

    PubMed

    Mallinis, Giorgos; Koutsias, Nikos; Arianoutsou, Margarita

    2014-08-15

    The aims of this study were to map and analyze land use/land cover transitions and landscape changes in the Parnitha and Penteli mountains, which surround the Athens metropolitan area of Attica, Greece over a period of 62 years. In order to quantify the changes between land categories through time, we computed the transition matrices for three distinct periods (1945-1960, 1960-1996, and 1996-2007), on the basis of available aerial photographs used to create multi-temporal maps. We identified systematic and stationary transitions with multi-level intensity analysis. Forest areas in Parnitha remained the dominant class of land cover throughout the 62 years studied, while transitional woodlands and shrublands were the main classes involved in LULC transitions. Conversely, in Penteli, transitional woodlands, along with shrublands, dominated the study site. The annual rate of change was faster in the first and third time intervals, compared to the second (1960-1996) time interval, in both study areas. The category level analysis results indicated that in both sites annual crops avoided to gain while discontinuous urban fabric avoided to lose areas. At the transition level of analysis, similarities as well as distinct differences existed between the two areas. In both sites the gaining pattern of permanent crops with respect to annual crops and the gain of forest with respect to transitional woodland/shrublands were stationary across the three time intervals. Overall, we identified more systematic transitions and stationary processes in Penteli. We discussed these LULC changes and associated them with human interference (activity) and other major socio-economic developments that were simultaneously occurring in the area. The different patterns of change of the areas, despite their geographical proximity, throughout the period of analysis imply that site-specific studies are needed in order to comprehensively assess the driving forces and develop models of landscape

  3. 45 CFR 2522.720 - How many years must my evaluation cover?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false How many years must my evaluation cover? 2522.720 Section 2522.720 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR... Evaluating Programs: Requirements and Procedures § 2522.720 How many years must my evaluation cover? (a) If...

  4. Polyurethane-covered mammary implants: a 12-year experience.

    PubMed

    Gasperoni, C; Salgarello, M; Gargani, G

    1992-10-01

    Polyurethane-covered mammary implants are the implants of choice in aesthetic and reconstructive mammary surgery. These implants give very good results in regard to breast contour and consistency, and have a very low complication rate. We present our 12-year experience using polyurethane-covered prostheses. We place the implant mostly in the subglandular or subcutaneous site, and their capsular contracture rate is extremely low (3.3%). Based on our experience, we also review the other complications and side effects occurring with polyurethane prostheses and discuss them in detail.

  5. [Characteristics of chemical pollution of snow cover in Aktobe areas].

    PubMed

    Iskakov, A Zh

    2010-01-01

    The paper gives data on the nature of snow cover pollution in the urbanized areas in relation to the remoteness from the basic sources of ambient air pollution. The total snow content of carcinogens has been estimated.

  6. Evaluation of Data Applicability for D-Insar in Areas Covered by Abundant Vegetation

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Zhao, Z.

    2018-04-01

    In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.

  7. Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA

    USGS Publications Warehouse

    Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.

    2001-01-01

    The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.

  8. Development of large Area Covering Height Model

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.

    2014-04-01

    Height information is a basic part of topographic mapping. Only in special areas frequent update of height models is required, usually the update cycle is quite lower as for horizontal map information. Some height models are available free of charge in the internet; for commercial height models a fee has to be paid. Mostly digital surface models (DSM) with the height of the visible surface are given and not the bare ground height, as required for standard mapping. Nevertheless by filtering of DSM, digital terrain models (DTM) with the height of the bare ground can be generated with the exception of dense forest areas where no height of the bare ground is available. These height models may be better as the DTM of some survey administrations. In addition several DTM from national survey administrations are classified, so as alternative the commercial or free of charge available information from internet can be used. The widely used SRTM DSM is available also as ACE-2 GDEM corrected by altimeter data for systematic height errors caused by vegetation and orientation errors. But the ACE-2 GDEM did not respect neighbourhood information. With the worldwide covering TanDEM-X height model, distributed starting 2014 by Airbus Defence and Space (former ASTRIUM) as WorldDEM, higher level of details and accuracy is reached as with other large area covering height models. At first the raw-version of WorldDEM will be available, followed by an edited version and finally as WorldDEM-DTM a height model of the bare ground. With 12 m spacing and a relative standard deviation of 1.2 m within an area of 1° x 1° an accuracy and resolution level is reached, satisfying also for larger map scales. For limited areas with the HDEM also a height model with 6 m spacing and a relative vertical accuracy of 0.5 m can be generated on demand. By bathymetric LiDAR and stereo images also the height of the sea floor can be determined if the water has satisfying transparency. Another method of getting

  9. A 350 Year Cloud Cover Reconstruction Deduced from Caribbean Coral Proxies

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Sammarco, Paul; Mikolajewicz, Uwe; Jury, Mark; Zanchettin, Davide

    2015-04-01

    Clouds are a major factor contributing to climate change with respect to a variety of effects on the earth's climates, primarily radiative effects, amelioration of heating, and regional changes in precipitation patterns. There have been very few studies of decadal and longer term changes in cloud cover in the tropics and sub-tropics, both over land and the ocean. In the tropics, there is great uncertainty regarding how global warming will affect cloud cover. Observational satellite data is so short that it is difficult to discern any temporal trends. The skeletons of scleractinian corals are considered to contain among the best records of high-resolution (sub-annual) environmental variability in the tropical and sub-tropical oceans. Corals generally live in well-mixed coastal regions and can often record environmental conditions of large areas of the upper ocean. This is particularly the case at low latitudes. Scleractinian corals are sessile, epibenthic fauna, and the type of environmental information recorded at the location where the coral has been living is dependent upon the species of coral considered and proxy index of interest. Zooxanthellate hermatypic corals in tropical and sub-tropical seas precipitate CaCO3 skeletons as they grow. This growth is made possible through the manufacture of CaCO3 crystals, facilitated by the zooxanthellae. During the process of crystallization, the holobiont binds carbon of different isotopes into the crystals. Stable carbon isotope concentrations vary with a variety of environmental conditions. In the Caribbean, δ13C in corals of the species Montastraea faveolata can be used as a proxy for changes in cloud cover. In this contribution, we will demonstrate that the stable isotope 13C varies concomitantly with cloud cover and present a new reconstruction of cloud cover over the Caribbean Sea that extends back to the year 1760. We will show that there is good agreement between the main features of our coral proxy record of

  10. Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia

    2012-08-01

    In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.

  11. Multitemporal analysis of Landsat images to detect land use land cover changes for monitoring soil sealing in the Nola area (Naples, Italy)

    NASA Astrophysics Data System (ADS)

    De Giglio, Michaela; Allocca, Maria; Franci, Francesca

    2016-10-01

    Land Use Land Cover Changes (LULCC) data provide objective information to support environmental policy, urban planning purposes and sustainable land development. Understanding of past land use/cover practices and current landscape patterns is critical to assess the effects of LULCC on the Earth system. Within the framework of soil sealing in Italy, the present study aims to assess the LULCC of the Nola area (Naples metropolitan area, Italy), relating to a thirty year period from 1984 to 2015. The urban sprawl affects this area causing the impervious surface increase, the loss in rural areas and landscape fragmentation. Located near Vesuvio volcano and crossed by artificial filled rivers, the study area is subject to landslide, hydraulic and volcanic risks. Landsat time series has been processed by means of the supervised per-pixel classification in order to produce multitemporal Land Use Land Cover maps. Then, post-classification comparison approach has been applied to quantify the changes occurring between 1984 and 2015, also analyzing the intermediate variations in 1999, namely every fifteen years. The results confirm the urban sprawl. The increase of the built-up areas mainly causes the habitat fragmentation and the agricultural land conversion of the Nola area that is already damaged by unauthorized disposal of urban waste. Moreover, considering the local risk maps, it was verified that some of the new urban areas were built over known hazardous sites. In order to limit the soil sealing, urgent measures and sustainable urban planning are required.

  12. LARGE AREA LAND COVER MAPPING THROUGH SCENE-BASED CLASSIFICATION COMPOSITING

    EPA Science Inventory

    Over the past decade, a number of initiatives have been undertaken to create definitive national and global data sets consisting of precision corrected Landsat MSS and TM scenes. One important application of these data is the derivation of large area land cover products spanning ...

  13. Thirty Years of Change in Subalpine Forest Cover from Landsat Image Analysis in the Sierra Nevada Mountains of California

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat imagery was analyzed to understand changes in subalpine forest stands since the mid-1980s in the Sierra-Nevada region of California. At locations where long-term plot measurements have shown that stands are becoming denser in the number of small tree stems (compared to the early 1930s), the 30-year analysis of Landsat greenness index (NDVI) indicated that no consistent increases in canopy leaf cover have occurred at these same locations since the mid-1980s. Interannual variations in stand NDVI closely followed snow accumulation amounts recorded at nearby stations. In contrast, at eastern Sierra whitebark pine stand locations where it has been observed that widespread tree mortality has occurred, decreasing NDVI trends over the past 5-10 years were consistent with rapid loss of forest canopy cover. Landsat imagery was further analyzed to understand patterns of post-wildfire vegetation recovery, focusing on high burn severity (HBS) patches within burned areas dating from the late 1940s. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.

  14. Sensitivity of the snowmelt runoff model to underestimates of remotely sensed snow covered area

    USDA-ARS?s Scientific Manuscript database

    Three methods for estimating snow covered area (SCA) from Terra MODIS data were used to derive conventional depletion curves for input to the Snowmelt Runoff Model (SRM). We compared the MOD10 binary and fractional snow cover products and a method for estimating sub-pixel snow cover using spectral m...

  15. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2014-07-01 2014-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  16. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2013-07-01 2013-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  17. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2011-07-01 2011-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  18. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2012-07-01 2012-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  19. 40 CFR 51.25 - What geographic area must my state's inventory cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions Reporting Requirements Specific Reporting Requirements § 51.25 What geographic area must my state... 40 Protection of Environment 2 2010-07-01 2010-07-01 false What geographic area must my state's inventory cover? 51.25 Section 51.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  20. Two-year performance by evapotranspiration covers for municipal solid waste landfills in northwest Ohio.

    PubMed

    Barnswell, Kristopher D; Dwyer, Daryl F

    2012-12-01

    Evapotranspiration (ET) covers have gained interest as an alternative to conventional covers for the closure of municipal solid waste (MSW) landfills because they are less costly to construct and are expected to have a longer service life. Whereas ET covers have gained acceptance in arid and semi-arid regions (defined by a precipitation (P) to potential evapotranspiration (PET) ratio less than 0.75) by meeting performance standards (e.g. rate of percolation), it remains unclear whether they are suitable for humid regions (P:PET greater than 0.75). The goal of this project is to extend their application to northwest Ohio (P:PET equals 1.29) by designing covers that produce a rate of percolation less than 32 cm yr(-1), the maximum acceptable rate by the Ohio Environmental Protection Agency (OEPA). Test ET covers were constructed in drainage lysimeters (1.52 m diameter, 1.52 m depth) using dredged sediment amended with organic material and consisted of immature (I, plants seeded onto soil) or mature (M, plants transferred from a restored tall-grass prairie) plant mixtures. The water balance for the ET covers was monitored from June 2009 to June 2011, which included measured precipitation and percolation, and estimated soil water storage and evapotranspiration. Precipitation was applied at a rate of 94 cm yr(-1) in the first year and at rate of 69 cm yr(-1) in the second year. During the first year, covers with the M plant mixture produced noticeably less percolation (4 cm) than covers with the I plant mixture (17 cm). However, during the second year, covers with the M plant mixture produced considerably more percolation (10 cm) than covers with the I plant mixture (3 cm). This is likely due to a decrease in the aboveground biomass for the M plant mixture from year 1 (1008 g m(-2)) to year 2 (794 g m(-2)) and an increase for the I plant mixture from year 1 (644 g m(-2)) to year 2 (1314 gm(-2)). Over the 2-year period, the mean annual rates of percolation for the covers

  1. Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.

    PubMed

    Alig, Ralph J; Butler, Brett J

    2004-04-01

    One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest is a crucial disturbance affecting planted pine area, as other forest types are converted to planted pine after harvest. Conversely, however, many harvested pine plantations revert to other forest types, mainly due to passive regeneration behavior on nonindustrial private timberlands. We model land use and land cover changes as a basis for projecting future changes in planted pine area, to aid policy analysts concerned with mitigation activities for global climate change. Projections are prepared in two stages. Projected land use changes include deforestation due to pressures to develop rural land as the human population expands, which is a larger area than that converted from other rural lands (e.g., agriculture) to forestry. In the second stage, transitions among forest types are projected on land allocated to forestry. We consider reforestation, influences of timber harvest, and natural succession and disturbance processes. Baseline projections indicate a net increase of about 5.6 million ha in planted pine area in the South over the next 50 years, with a notable increase in sequestered carbon. Additional opportunities to expand pine plantation area warrant study of landowner behavior to aid in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change and attain other goals.

  2. Ten Years of Forest Cover Change in the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2014-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in forest vegetation cover for areas burned by wildfires in the Sierra Nevada Mountains of California between the periods of 1975- 79 and 1995-1999. Results for areas burned by wildfire between 1995 and 1999 confirmed the importance of regrowing forest vegetation over 17% of the combined burned areas. A notable fraction (12%) of the entire 5-km (unburned) buffer area outside the 1995-199 fires perimeters showed decline in forest cover, and not nearly as many regrowing forest areas, covering only 3% of all the 1995-1999 buffer areas combined. Areas burned by wildfire between 1975 and 1979 confirmed the importance of disturbed (or declining evergreen) vegetation covering 13% of the combined 1975- 1979 burned areas. Based on comparison of these results to ground-based survey data, the LEDAPS methodology should be capable of fulfilling much of the need for consistent, low-cost monitoring of changes due to climate and biological factors in western forest regrowth following stand-replacing disturbances.

  3. Two-year performance by evapotranspiration covers for municipal solid waste landfills in northwest Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnswell, Kristopher D., E-mail: kristopher.barnswell2@rockets.utoledo.edu; Dwyer, Daryl F., E-mail: daryl.dwyer@utoledo.edu

    Highlights: Black-Right-Pointing-Pointer All ET covers produced rates of percolation less than 32 cm yr{sup -1}, the maximum allowable rate by the Ohio EPA. Black-Right-Pointing-Pointer Dredged sediment provided sufficient water storage and promoted growth by native plant species. Black-Right-Pointing-Pointer Native plant mixtures attained acceptable rates of evapotranspiration throughout the growing season. - Abstract: Evapotranspiration (ET) covers have gained interest as an alternative to conventional covers for the closure of municipal solid waste (MSW) landfills because they are less costly to construct and are expected to have a longer service life. Whereas ET covers have gained acceptance in arid and semi-arid regionsmore » (defined by a precipitation (P) to potential evapotranspiration (PET) ratio less than 0.75) by meeting performance standards (e.g. rate of percolation), it remains unclear whether they are suitable for humid regions (P:PET greater than 0.75). The goal of this project is to extend their application to northwest Ohio (P:PET equals 1.29) by designing covers that produce a rate of percolation less than 32 cm yr{sup -1}, the maximum acceptable rate by the Ohio Environmental Protection Agency (OEPA). Test ET covers were constructed in drainage lysimeters (1.52 m diameter, 1.52 m depth) using dredged sediment amended with organic material and consisted of immature (I, plants seeded onto soil) or mature (M, plants transferred from a restored tall-grass prairie) plant mixtures. The water balance for the ET covers was monitored from June 2009 to June 2011, which included measured precipitation and percolation, and estimated soil water storage and evapotranspiration. Precipitation was applied at a rate of 94 cm yr{sup -1} in the first year and at rate of 69 cm yr{sup -1} in the second year. During the first year, covers with the M plant mixture produced noticeably less percolation (4 cm) than covers with the I plant mixture (17 cm). However

  4. Solar energy development impacts on land cover change and protected areas.

    PubMed

    Hernandez, Rebecca R; Hoffacker, Madison K; Murphy-Mariscal, Michelle L; Wu, Grace C; Allen, Michael F

    2015-11-03

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥ 1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km(2) of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km(2) of change. Less than 15% of USSE installations are sited in "Compatible" areas. The majority of "Incompatible" USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  5. Solar Energy Development Impacts on Land-Cover Change and Protected Areas

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Murphy-Mariscal, M. L.; Wu, G. C.; Allen, M. F.

    2015-12-01

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE; i.e., ≥ 1 megawatt [MW]) development requires large quantities of space and land; however, studies quantifying the effect of USSE on land-cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type (photovoltaic [PV] vs. concentrating solar power [CSP]), area (km2), and capacity (MW) within the global solar hotspot of the state of California (USA). Additionally, we utilized the Carnegie Energy and Environmental Compatibility Model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Lastly, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrub- and scrublands, comprising 375 km2 of land-cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in compatible areas. The majority of incompatible USSE power plants are sited far from existing transmission infrastructure and all USSE installations average at most seven and five km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

  6. Male Texas Horned Lizards increase daily movements and area covered in spring: A mate searching strategy?

    USGS Publications Warehouse

    Stark, Richard C.; Fox, S. F.; David, M.L.

    2005-01-01

    Texas Horned Lizards, Phrynosoma cornutum, were tracked using fluorescent powder to determine exact daily movements. Daily linear movements and daily space use were compared between adult males and females. Lizards that traveled the greatest linear distances also covered the largest areas. In Oklahoma, adults emerge from hibernation in late April and early May and mate soon afterward. Males traveled significantly greater distances (and covered significantly larger areas in a day) than females in May but not after May. We propose that males move more and cover more area than females early in the mating season to intercept receptive females. Copyright 2005 Society for the Study of Amphibians and Reptiles.

  7. [Effect of different snow depth and area on the snow cover retrieval using remote sensing data].

    PubMed

    Jiang, Hong-bo; Qin, Qi-ming; Zhang, Ning; Dong, Heng; Chen, Chao

    2011-12-01

    For the needs of snow cover monitoring using multi-source remote sensing data, in the present article, based on the spectrum analysis of different depth and area of snow, the effect of snow depth on the results of snow cover retrieval using normalized difference snow index (NDSI) is discussed. Meanwhile, taking the HJ-1B and MODIS remote sensing data as an example, the snow area effect on the snow cover monitoring is also studied. The results show that: the difference of snow depth does not contribute to the retrieval results, while the snow area affects the results of retrieval to some extents because of the constraints of spatial resolution.

  8. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improvedmore » designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the

  9. Generating local scale land use/cover change scenarios: case studies of high-risk mountain areas

    NASA Astrophysics Data System (ADS)

    Malek, Žiga; Glade, Thomas; Boerboom, Luc

    2014-05-01

    The relationship between land use/cover changes and consequences to human well-being is well acknowledged and has led to higher interest of both researchers and decision makers in driving forces and consequences of such changes. For example, removal of natural vegetation cover or urban expansion resulting in new elements at risk can increase hydro-meteorological risk. This is why it is necessary to study how the land use/cover could evolve in the future. Emphasis should especially be given to areas experiencing, or expecting, high rates of socio-economic change. A suitable approach to address these changes is scenario development; it offers exploring possible futures and the corresponding environmental consequences, and aids decision-making, as it enables to analyse possible options. Scenarios provide a creative methodology to depict possible futures, resulting from existing decisions, based on different assumptions of future socio-economic development. They have been used in various disciplines and on various scales, such as flood risk and soil erosion. Several studies have simulated future scenarios of land use/cover changes at a very high success rate, however usually these approaches are tailor made for specific case study areas and fit to available data. This study presents a multi-step scenario generation framework, which can be transferable to other local scale case study areas, taking into account the case study specific consequences of land use/cover changes. Through the use of experts' and decision-makers' knowledge, we aimed to develop a framework with the following characteristics: (1) it enables development of scenarios that are plausible, (2) it can overcome data inaccessibility, (3) it can address intangible and external driving forces of land use/cover change, and (4) it ensures transferability to other local scale case study areas with different land use/cover change processes and consequences. To achieve this, a set of different methods is applied

  10. Solar energy development impacts on land cover change and protected areas

    PubMed Central

    Hernandez, Rebecca R.; Hoffacker, Madison K.; Murphy-Mariscal, Michelle L.; Wu, Grace C.; Allen, Michael F.

    2015-01-01

    Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km2 of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km2 of change. Less than 15% of USSE installations are sited in “Compatible” areas. The majority of “Incompatible” USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions. PMID:26483467

  11. Methods for projecting large-scale area changes for U.S. land uses and land covers: the past and the future.

    Treesearch

    Ralph J. Alig

    2004-01-01

    Over the past 25 years, renewable resource assessments have addressed demand, supply, and inventory of various renewable resources in increasingly sophisticated fashion, including simulation and optimization analyses of area changes in land uses (e.g., urbanization) and land covers (e.g., plantations vs. naturally regenerated forests). This synthesis reviews related...

  12. Estimating The Effect of Biofuel on Land Cover Change Using Multi-Year Modis Land Cover Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Bhaduri, Budhendra L

    2010-01-01

    There has been a growing debate on the effects of the increase in demands of biofuels on land use land cover (LULC) change with apprehension in some quarters that the growing demand for bioenergy as a clean fuel will result in widespread direct and indirect LULC change. However estimating both direct and indirect LULC change is challenging and will require development of accurate high frequency, high resolution (temporal and spatial) land use land cover data as well as new LULC models which can be used to locate, quantify and predict these changes. To assess whether the demand for biofuel hasmore » caused significant LULC we used MODIS land cover data (MCD12Q1) from 2001 to 2008 along with cropland data layer (CDL) to estimate cropland and grassland changes in United States for the years 2002-2008 as well as its correlation with biofuel growth.« less

  13. 24 CFR 203.43e - Eligibility of mortgages covering houses in federally impacted areas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Eligibility of mortgages covering houses in federally impacted areas. 203.43e Section 203.43e Housing and Urban Development Regulations... Requirements and Underwriting Procedures Eligible Properties § 203.43e Eligibility of mortgages covering houses...

  14. 24 CFR 203.43e - Eligibility of mortgages covering houses in federally impacted areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Eligibility of mortgages covering houses in federally impacted areas. 203.43e Section 203.43e Housing and Urban Development Regulations... Requirements and Underwriting Procedures Eligible Properties § 203.43e Eligibility of mortgages covering houses...

  15. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets

    USGS Publications Warehouse

    Giri, C.; Zhu, Z.; Reed, B.

    2005-01-01

    Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level. We compared the recently available Global Land Cover 2000 (GLC-2000) and MODerate resolution Imaging Spectrometer (MODIS) global land cover data to evaluate the similarities and differences in methodologies and results, and to identify areas of spatial agreement and disagreement. These two global land cover data sets were prepared using different data sources, classification systems, and methodologies, but using the same spatial resolution (i.e., 1 km) satellite data. Our analysis shows a general agreement at the class aggregate level except for savannas/shrublands, and wetlands. The disagreement, however, increases when comparing detailed land cover classes. Similarly, percent agreement between the two data sets was found to be highly variable among biomes. The identified areas of spatial agreement and disagreement will be useful for both data producers and users. Data producers may use the areas of spatial agreement for training area selection and pay special attention to areas of disagreement for further improvement in future land cover characterization and mapping. Users can conveniently use the findings in the areas of agreement, whereas users might need to verify the informaiton in the areas of disagreement with the help of secondary information. Learning from past experience and building on the existing infrastructure (e.g., regional networks), further research is necessary to (1) reduce ambiguity in land cover definitions, (2) increase availability of improved spatial, spectral, radiometric, and geometric resolution satellite data, and (3) develop advanced

  16. Continental estimates of forest cover and forest cover changes in the dry ecosystems of Africa between 1990 and 2000

    PubMed Central

    Bodart, Catherine; Brink, Andreas B; Donnay, François; Lupi, Andrea; Mayaux, Philippe; Achard, Frédéric

    2013-01-01

    Aim This study provides regional estimates of forest cover in dry African ecoregions and the changes in forest cover that occurred there between 1990 and 2000, using a systematic sample of medium-resolution satellite imagery which was processed consistently across the continent. Location The study area corresponds to the dry forests and woodlands of Africa between the humid forests and the semi-arid regions. This area covers the Sudanian and Zambezian ecoregions. Methods A systematic sample of 1600 Landsat satellite imagery subsets, each 20 km × 20 km in size, were analysed for two reference years: 1990 and 2000. At each sample site and for both years, dense tree cover, open tree cover, other wooded land and other vegetation cover were identified from the analysis of satellite imagery, which comprised multidate segmentation and automatic classification steps followed by visual control by national forestry experts. Results Land cover and land-cover changes were estimated at continental and ecoregion scales and compared with existing pan-continental, regional and local studies. The overall accuracy of our land-cover maps was estimated at 87%. Between 1990 and 2000, 3.3 million hectares (Mha) of dense tree cover, 5.8 Mha of open tree cover and 8.9 Mha of other wooded land were lost, with a further 3.9 Mha degraded from dense to open tree cover. These results are substantially lower than the 34 Mha of forest loss reported in the FAO's 2010 Global Forest Resources Assessment for the same period and area. Main conclusions Our method generates the first consistent and robust estimates of forest cover and change in dry Africa with known statistical precision at continental and ecoregion scales. These results reduce the uncertainty regarding vegetation cover and its dynamics in these previously poorly studied ecosystems and provide crucial information for both science and environmental policies. PMID:23935237

  17. Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes.

    PubMed

    Dangles, Olivier; Rabatel, Antoine; Kraemer, Martin; Zeballos, Gabriel; Soruco, Alvaro; Jacobsen, Dean; Anthelme, Fabien

    2017-01-01

    While the impacts of climate change on individual species and communities have been well documented there is little evidence on climate-mediated changes for entire ecosystems. Pristine alpine environments can provide unique insights into natural, physical and ecological response to climate change yet broad scale and long-term studies on these potential 'ecosystem sentinels' are scarce. We addressed this issue by examining cover changes of 1689 high-elevation wetlands (temporarily or perennial water-saturated grounds) in the Bolivian Cordillera Real, a region that has experienced significant warming and glacier melting over the last 30 years. We combined high spatial resolution satellite images from PLEIADES with the long-term images archive from LANDSAT to 1) examine environmental factors (e.g., glacier cover, wetland and watershed size) that affected wetland cover changes, and 2) identify wetlands' features that affect their vulnerability (using habitat drying as a proxy) in the face of climate change. Over the (1984-2011) period, our data showed an increasing trend in the mean wetland total area and number, mainly related to the appearance of wet grassland patches during the wetter years. Wetland cover also showed high inter-annual variability and their area for a given year was positively correlated to precipitation intensities in the three months prior to the image date. Also, round wetlands located in highly glacierized catchments were less prone to drying, while relatively small wetlands with irregularly shaped contours suffered the highest rates of drying over the last three decades. High Andean wetlands can therefore be considered as ecosystem sentinels for climate change, as they seem sensitive to glacier melting. Beyond the specific focus of this study, our work illustrates how satellite-based monitoring of ecosystem sentinels can help filling the lack of information on the ecological consequences of current and changing climate conditions, a common and

  18. Evaluation of the satellite derived snow cover area - Runoff forecasting models for the inaccessible basins of western Himalayas

    NASA Technical Reports Server (NTRS)

    Dey, B.

    1985-01-01

    In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.

  19. Testing the Enemies Hypothesis in Peach Orchards in Two Different Geographic Areas in Eastern China: The Role of Ground Cover Vegetation

    PubMed Central

    Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian

    2014-01-01

    Many studies have supported the enemies hypothesis, which suggests that natural enemies are more efficient at controlling arthropod pests in polyculture than in monoculture agro-ecosystems. However, we do not yet have evidence as to whether this hypothesis holds true in peach orchards over several geographic locations. In the two different geographic areas in eastern China (Xinchang a town in the Shanghai municipality, and Hudai, a town in Jiangsu Province) during a continuous three-year (2010–2012) investigation, we sampled arthropod pests and predators in Trifolium repens L. and in tree canopies of peach orchards with and without the ground cover plant T. repens. No significant differences were found in the abundances of the main groups of arthropod pests and predators in T. repens between Hudai and Xinchang. The abundance, richness, Simpson's index, Shannon-Wiener index, and Pielou evenness index of canopy predators in ground cover areas increased by 85.5, 27.5, 3.5, 16.7, and 7.9% in Xinchang, and by 87.0, 27.6, 3.5, 17.0 and 8.0% in Hudai compared to those in the controls, respectively. The average abundance of Lepidoptera, Coleoptera, Homoptera, true bugs and Acarina canopy pests in ground cover areas decreased by 9.2, 10.2, 17.2, 19.5 and 14.1% in Xinchang, and decreased by 9.5, 8.2, 16.8, 20.1 and 16.6% in Hudai compared to that in control areas, respectively. Our study also found a higher density of arthropod species resources in T. repens, as some omnivorous pests and predators residing in T. repens could move between the ground cover and the orchard canopy. In conclusion, ground cover in peach orchards supported the enemies hypothesis, as indicated by the fact that ground cover T. repens promoted the abundance and diversity of predators and reduced the number of arthropod pests in tree canopies in both geographical areas. PMID:24963719

  20. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30years.

    PubMed

    Zhang, Zengxin; Chang, Juan; Xu, Chong-Yu; Zhou, Yang; Wu, Yanhong; Chen, Xi; Jiang, Shanshan; Duan, Zheng

    2018-09-01

    Lakes and vegetation are important factors of the Earth's hydrological cycle and can be called an "indicator" of climate change. In this study, long-term changes of lakes' area and vegetation coverage in the Qinghai-Tibetan Plateau (QTP) and their relations to the climate change were analyzed by using Mann-Kendall method during the past 30years. Results showed that: 1) the lakes' area of the QTP increased significantly during the past 30years as a whole, and the increasing rates have been dramatically sped up since the year of 2000. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, which increased from 618km 2 in the 1980s to 983km 2 in the 2010s; 2) overall, the Normalized Difference Vegetation Index (NDVI) increased in the QTP during the past 30years. Above 79% of the area in the QTP showed increasing trend of NDVI before the year of 2000; 3) the air temperature increased significantly, the precipitation increased slightly, and the pan evaporation decreased significantly during the past 30years. The lake area and vegetation coverage changes might be related to the climate change. The shifts in the temporal climate trend occurred around the year 2000 had led the lake area and vegetation coverage increasing. This study is of importance in further understanding the environmental changes under global warming over the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Estimation of daily Snow Cover Area combining MODIS and LANDSAT information by using cellular automata

    NASA Astrophysics Data System (ADS)

    Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David

    2016-04-01

    The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.

  2. Assessing multi-decadal land-cover – land-use change in two wildlife protected areas in Tanzania using Landsat imagery

    PubMed Central

    Mtui, Devolent T.; Lepczyk, Christopher A.; Chen, Qi; Miura, Tomoaki; Cox, Linda J.

    2017-01-01

    Landscape change in and around protected areas is of concern worldwide given the potential impacts of such change on biodiversity. Given such impacts, we sought to understand the extent of changes in different land-cover types at two protected areas, Tarangire and Katavi National Parks in Tanzania, over the past 27 years. Using Maximum Likelihood classification procedures we derived eight land-cover classes from Landsat TM and ETM+ images, including: woody savannah, savannah, grassland, open and closed shrubland, swamp and water, and bare land. We determined the extent and direction of changes for all land-cover classes using a post-classification comparison technique. The results show declines in woody savannah and increases in barren land and swamps inside and outside Tarangire National Park and increases in woody savannah and savannah, and declines of shrubland and grassland inside and outside Katavi National Park. The decrease of woody savannah was partially due to its conversion into grassland and barren land, possibly caused by human encroachment by cultivation and livestock. Based upon these changes, we recommend management actions to prevent detrimental effects on wildlife populations. PMID:28957397

  3. Analysis of urban area land cover using SEASAT Synthetic Aperture Radar data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M. (Principal Investigator)

    1980-01-01

    Digitally processed SEASAT synthetic aperture raar (SAR) imagery of the Denver, Colorado urban area was examined to explore the potential of SAR data for mapping urban land cover and the compatability of SAR derived land cover classes with the United States Geological Survey classification system. The imagery is examined at three different scales to determine the effect of image enlargement on accuracy and level of detail extractable. At each scale the value of employing a simplistic preprocessing smoothing algorithm to improve image interpretation is addressed. A visual interpretation approach and an automated machine/visual approach are employed to evaluate the feasibility of producing a semiautomated land cover classification from SAR data. Confusion matrices of omission and commission errors are employed to define classification accuracies for each interpretation approach and image scale.

  4. Land use/ land cover and ecosystem functions change in the grassland restoration program areas in China from 2000 to 2010

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fan, J.

    2015-12-01

    The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 g

  5. Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987-2016) case study of Hamoun Wetland, Iran.

    PubMed

    Kharazmi, Rasoul; Tavili, Ali; Rahdari, Mohammad Reza; Chaban, Lyudmila; Panidi, Evgeny; Rodrigo-Comino, Jesús

    2018-05-23

    The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987-2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R 2  = 0.94) than fall and spring (R 2  = 0.58) seasons. Before 2000, ~ 50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun

  6. Classification and area estimation of land covers in Kansas using ground-gathered and LANDSAT digital data

    NASA Technical Reports Server (NTRS)

    May, G. A.; Holko, M. L.; Anderson, J. E.

    1983-01-01

    Ground-gathered data and LANDSAT multispectral scanner (MSS) digital data from 1981 were analyzed to produce a classification of Kansas land areas into specific types called land covers. The land covers included rangeland, forest, residential, commercial/industrial, and various types of water. The analysis produced two outputs: acreage estimates with measures of precision, and map-type or photo products of the classification which can be overlaid on maps at specific scales. State-level acreage estimates were obtained and substate-level land cover classification overlays and estimates were generated for selected geographical areas. These products were found to be of potential use in managing land and water resources.

  7. Twenty-four year record of Northern Hemisphere snow cover derived from passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Armstrong, Richard L.; Brodzik, Mary Jo

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm

  8. Thirty Years of Cloud Cover Patterns from Satellite Data: Fog in California's Central Valley and Coast

    NASA Astrophysics Data System (ADS)

    Waller, E.; Baldocchi, D. D.

    2012-12-01

    In an effort to assess long term trends in winter fog in the Central Valley of California, custom maps of daily cloud cover from an approximately 30 year record of AVHRR (1981-1999) and MODIS (2000-2012) satellite data were generated. Spatial rules were then used to differentiate between fog and general cloud cover. Differences among the sensors (e.g., spectral content, spatial resolution, overpass time) presented problems of consistency, but concurrent climate station data were used to resolve systematic differences in products, and to confirm long term trends. The frequency and extent of Central Valley ("Tule") fog appear to have some periodic oscillation, but also appear to be on the decline, especially in the Sacramento Valley and in the "shoulder" months of November and February. These results may have strong implications for growers of fruit and nut trees in the Central Valley dependent on winter chill hours that are augmented by the foggy daytime conditions. Conclusions about long term trends in fog are limited to daytime patterns, as results are primarily derived from reflectance-based products. Similar analyses of daytime cloud cover are performed on other areas of concern, such as the coastal fog belt of California. Large area and long term patterns here appear to have periodic oscillation similar to that for the Central Valley. However, the relatively coarse spatial resolution of the AVHRR LTDR (Long Term Data Record) data (~5-km) may be limiting for fine-scale analysis of trends.

  9. Canopy cover and leaf area index relationships for wheat, triticale, and corn

    USDA-ARS?s Scientific Manuscript database

    The AquaCrop model requires canopy cover (CC) measurements to define crop growth and development. Some previously collected data sets that would be useful for calibrating and validating AquaCrop contain only leaf area index (LAI) data, but could be used if relationships were available relating LAI t...

  10. Land use/cover changes in European mountain areas: identifying links between global driving forces and local consequences

    NASA Astrophysics Data System (ADS)

    Malek, Žiga; Schröter, Dagmar; Glade, Thomas

    2013-04-01

    Minor land use/cover changes in mountain areas can aggravate the consequences of hydro-meteorological hazards such as landslides, avalanches, rockfall and flash floods. What is more, they change the provisioning of ecosystem services; also as their recovery after anthropogenic induced changes in mountains are slower or not occurring at all due to harsh climate and soil conditions. Examples of these changes are urbanization in high risk areas or deforestation on slopes. To understand the driving forces behind land use/cover changes in European mountain areas, the focus is on the two case study areas: The Val Canale valley in the Italian Alps and the Buzau valley in the Romanian Carpathians. Land use/cover changes were analyzed in the recent decades applying various remote sensing techniques, such as satellite imagery classification and visual interpretation, as well as integration of various databases (e.g. forestry, spatial planning and cadaster plans). Instead of identifying the statistical significance of particular variables (e.g. population change), the links between different driving forces of global change (e.g. political and policy changes, infrastructural plans) and local socio-economic variables were investigated further through interviewing local and regional stakeholders. The results show how both areas differ in the consequences of global changes in terms of land use/cover change. The Italian area witnessed a trajectory from a commercially active and competitive area, to an area with a large portion of abandoned commercial, customs, industrial and mining zones. These processes were accompanied by the expansion of settlements comprised mostly of secondary housing on areas with high risk, resulting in catastrophic consequences in recent flash floods and debris flows events. The Romanian site also witnessed a breakdown of local commercial and industrial activities. Together with land ownership reforms, this has resulted in the emergence of subsistence

  11. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.

    This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP)more » for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical

  12. Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes

    PubMed Central

    Dangles, Olivier; Rabatel, Antoine; Kraemer, Martin; Zeballos, Gabriel; Soruco, Alvaro; Jacobsen, Dean; Anthelme, Fabien

    2017-01-01

    While the impacts of climate change on individual species and communities have been well documented there is little evidence on climate-mediated changes for entire ecosystems. Pristine alpine environments can provide unique insights into natural, physical and ecological response to climate change yet broad scale and long-term studies on these potential ‘ecosystem sentinels’ are scarce. We addressed this issue by examining cover changes of 1689 high-elevation wetlands (temporarily or perennial water-saturated grounds) in the Bolivian Cordillera Real, a region that has experienced significant warming and glacier melting over the last 30 years. We combined high spatial resolution satellite images from PLEIADES with the long-term images archive from LANDSAT to 1) examine environmental factors (e.g., glacier cover, wetland and watershed size) that affected wetland cover changes, and 2) identify wetlands’ features that affect their vulnerability (using habitat drying as a proxy) in the face of climate change. Over the (1984–2011) period, our data showed an increasing trend in the mean wetland total area and number, mainly related to the appearance of wet grassland patches during the wetter years. Wetland cover also showed high inter-annual variability and their area for a given year was positively correlated to precipitation intensities in the three months prior to the image date. Also, round wetlands located in highly glacierized catchments were less prone to drying, while relatively small wetlands with irregularly shaped contours suffered the highest rates of drying over the last three decades. High Andean wetlands can therefore be considered as ecosystem sentinels for climate change, as they seem sensitive to glacier melting. Beyond the specific focus of this study, our work illustrates how satellite-based monitoring of ecosystem sentinels can help filling the lack of information on the ecological consequences of current and changing climate conditions, a

  13. Effect of land cover change on runoff curve number estimation in Iowa, 1832-2001

    USGS Publications Warehouse

    Wehmeyer, Loren L.; Weirich, Frank H.; Cuffney, Thomas F.

    2011-01-01

    Within the first few decades of European-descended settlers arriving in Iowa, much of the land cover across the state was transformed from prairie and forest to farmland, patches of forest, and urbanized areas. Land cover change over the subsequent 126 years was minor in comparison. Between 1832 and 1859, the General Land Office conducted a survey of the State of Iowa to aid in the disbursement of land. In 1875, an illustrated atlas of the State of Iowa was published, and in 2001, the US Geological Survey National Land Cover Dataset was compiled. Using these three data resources for classifying land cover, the hydrologic impact of the land cover change at three points in time over a period of 132+ years is presented in terms of the effect on the area-weighted average curve number, a term commonly used to predict peak runoff from rainstorms. In the four watersheds studied, the area-weighted average curve number associated with the first 30 years of settlement increased from 61·4 to 77·8. State-wide mapped forest area over this same period decreased 19%. Over the next 126 years, the area-weighted average curve number decreased to 76·7, despite an additional forest area reduction of 60%. This suggests that degradation of aquatic resources (plants, fish, invertebrates, and habitat) arising from hydrologic alteration was likely to have been much higher during the 30 years of initial settlement than in the subsequent period of 126 years in which land cover changes resulted primarily from deforestation and urbanization. 

  14. Improvement of Operational Streamflow Prediction with MODIS-derived Fractional Snow Covered Area Observations

    NASA Astrophysics Data System (ADS)

    Bender, S.; Burgess, A.; Goodale, C. E.; Mattmann, C. A.; Miller, W. P.; Painter, T. H.; Rittger, K. E.; Stokes, M.; Werner, K.

    2013-12-01

    Water managers in the western United States depend heavily on the timing and magnitude of snowmelt-driven runoff for municipal supply, irrigation, maintenance of environmental flows, and power generation. The Colorado Basin River Forecast Center (CBRFC) of the National Weather Service issues operational forecasts of snowmelt-driven streamflow for watersheds within the Colorado River Basin (CRB) and eastern Great Basin (EGB), across a wide variety of scales. Therefore, the CBRFC and its stakeholders consider snowpack observations to be highly valuable. Observations of fractional snow covered area (fSCA) from satellite-borne instrumentation can better inform both forecasters and water users with respect to subsequent snowmelt runoff, particularly when combined with observations from ground-based station networks and/or airborne platforms. As part of a multi-year collaborative effort, CBRFC has partnered with the Jet Propulsion Laboratory (JPL) under funding from NASA to incorporate observations of fSCA from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) into the operational CBRFC hydrologic forecasting and modeling process. In the first year of the collaboration, CBRFC and NASA/JPL integrated snow products into the forecasting and decision making processes of the CBRFC and showed preliminary improvement in operational streamflow forecasts. In late 2012, CBRFC and NASA/JPL began retrospective analysis of relationships between the MODIS Snow Covered Area and Grain size (MODSCAG) fSCA and streamflow patterns for several watersheds within the CRB and the EGB. During the 2013 snowmelt runoff season, CBRFC forecasters used MODIS-derived fSCA semi-quantitatively as a binary indicator of the presence or lack of snow. Indication of the presence or lack of snow by MODIS assisted CBRFC forecasters in determining the cause of divergence between modeled and recently observed streamflow. Several examples of improved forecasts from across the CRB and EGB, informed by

  15. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows

    NASA Astrophysics Data System (ADS)

    Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.

    2018-02-01

    The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable

  16. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    NASA Astrophysics Data System (ADS)

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  17. Coupling of Markov chains and cellular automata spatial models to predict land cover changes (case study: upper Ci Leungsi catchment area)

    NASA Astrophysics Data System (ADS)

    Marko, K.; Zulkarnain, F.; Kusratmoko, E.

    2016-11-01

    Land cover changes particular in urban catchment area has been rapidly occur. Land cover changes occur as a result of increasing demand for built-up area. Various kinds of environmental and hydrological problems e.g. floods and urban heat island can happen if the changes are uncontrolled. This study aims to predict land cover changes using coupling of Markov chains and cellular automata. One of the most rapid land cover changes is occurs at upper Ci Leungsi catchment area that located near Bekasi City and Jakarta Metropolitan Area. Markov chains has a good ability to predict the probability of change statistically while cellular automata believed as a powerful method in reading the spatial patterns of change. Temporal land cover data was obtained by remote sensing satellite imageries. In addition, this study also used multi-criteria analysis to determine which driving factor that could stimulate the changes such as proximity, elevation, and slope. Coupling of these two methods could give better prediction model rather than just using it separately. The prediction model was validated using existing 2015 land cover data and shown a satisfactory kappa coefficient. The most significant increasing land cover is built-up area from 24% to 53%.

  18. [Evaluation of pollution of an urban area by level of heavy metals in snow cover].

    PubMed

    Stepanova, N V; Khamitova, R Ia; Petrova, R S

    2003-01-01

    The goal of this study was to systematize various methodological approaches to evaluating the contamination of the snow cover with heavy metals (HM) by using Kazan, an industrial city with diversified industry, as an example. The findings suggest that it is necessary to characterize the contamination of the snow cover by the actual entrance of an element per area unit of the snow cover for a definite period of time rather than by the concentration of TM in the volume unit of snow water (mg/l), which minimizes the uncertainties with spatial and temporary snow cover variations. The index of the maximum allowable entrance, which is of practical value, may be used to objectively calibrate the pollution of the snow cover, by estimating the amount of a coming element and its toxicity.

  19. Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2014-09-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.

  20. Tree and impervious cover change in U.S

    Treesearch

    David J. Nowak; Eric J. Greenfield

    2012-01-01

    Paired aerial photographs were interpreted to assess recent changes in tree, impervious and other cover types in 20 U.S. cities as well as urban land within the conterminous United States. National results indicate that tree cover in urban areas of the United States is on the decline at a rate of about 7900 ha/yr or 4.0 million trees per year. Tree cover in 17 of the...

  1. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits, Area 5 Waste Management Division, Nevada National Security Site, Final CQA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management; The Delphi Groupe, Inc.; J. A. Cesare and Associates, Inc.

    The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03more » and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.« less

  2. GENERATING HIGH QUALITY IMPERVIOUS COVER DATA

    EPA Science Inventory

    Nonpoint source pollution (NPS) from urban/ suburban areas is rapidly increasing as the population increases in the United States. Research in recent years has consistently shown a strong relationship between the percentage of impervious cover in a drainage basin and the health...

  3. Notice of Final Rulemaking: Regulation of Fuel and Fuel Additives: Reformulated Gasoline Requirements for the Atlanta Covered Area

    EPA Pesticide Factsheets

    This page summaries the final rule determining that the Atlanta metro area is no longer a federal reformulated gasoline (RFG) covered area and there is no requirement to use federal RFG in the Atlanta area.

  4. Estimation of Land Surface Temperature for the Quantitative Analysis of Land Cover of Lower Areas of Sindh to Assess the Impacts of Climate Variability

    NASA Astrophysics Data System (ADS)

    Qaisar, Maha

    2016-07-01

    Due to the present land use practices and climate variability, drastic shifts in regional climate and land covers are easily seen and their future reduction and gain are too well predicted. Therefore, there is an increasing need for data on land-cover changes at narrow and broad spatial scales. In this study, a remote sensing-based technique for land-cover-change analysis is applied to the lower Sindh areas for the last decade. Landsat satellite products were analyzed on an alternate yearly basis, from 1990 to 2016. Then Land-cover-change magnitudes were measured and mapped for alternate years. Land Surface Temperature (LST) is one of the critical elements in the natural phenomena of surface energy and water balance at local and global extent. However, LST was computed by using Landsat thermal bands via brightness temperature and a vegetation index. Normalized difference vegetation index (NDVI) was interpreted and maps were achieved. LST reflected NDVI patterns with complexity of vegetation patterns. Along with this, Object Based Image Analysis (OBIA) was done for classifying 5 major classes of water, vegetation, urban, marshy lands and barren lands with significant map layouts. Pakistan Meteorological Department provided the climate data in which rainfall, temperature and air temperature are included. Once the LST and OBIA are performed, overlay analysis was done to correlate the results of LST with OBIA and LST with meteorological data to ascertain the changes in land covers due to increasing centigrade of LST. However, satellite derived LST was also correlated with climate data for environmental analysis and to estimate Land Surface Temperature for assessing the inverse impacts of climate variability. This study's results demonstrate the land-cover changes in Lower Areas of Sindh including the Indus Delta mostly involve variations in land-cover conditions due to inter-annual climatic variability and temporary shifts in seasonality. However it is too concluded

  5. Land cover characterization and mapping of South America for the year 2010 using Landsat 30 m satellite data

    USGS Publications Warehouse

    Giri, Chandra; Long, Jordan

    2014-01-01

    Detailed and accurate land cover and land cover change information is needed for South America because the continent is in constant flux, experiencing some of the highest rates of land cover change and forest loss in the world. The land cover data available for the entire continent are too coarse (250 m to 1 km) for resource managers, government and non-government organizations, and Earth scientists to develop conservation strategies, formulate resource management options, and monitor land cover dynamics. We used Landsat 30 m satellite data of 2010 and prepared the land cover database of South America using state-of-the-science remote sensing techniques. We produced regionally consistent and locally relevant land cover information by processing a large volume of data covering the entire continent. Our analysis revealed that in 2010, 50% of South America was covered by forests, 2.5% was covered by water, and 0.02% was covered by snow and ice. The percent forest area of South America varies from 9.5% in Uruguay to 96.5% in French Guiana. We used very high resolution (<5 m) satellite data to validate the land cover product. The overall accuracy of the 2010 South American 30-m land cover map is 89% with a Kappa coefficient of 79%. Accuracy of barren areas needs to improve possibly using multi-temporal Landsat data. An update of land cover and change database of South America with additional land cover classes is needed. The results from this study are useful for developing resource management strategies, formulating biodiversity conservation strategies, and regular land cover monitoring and forecasting.

  6. Development of a 30 m Spatial Resolution Land Cover of Canada: Contribution to the Harmonized North America Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Pouliot, D.; Latifovic, R.; Olthof, I.

    2017-12-01

    Land cover is needed for a large range of environmental applications regarding climate impacts and adaption, emergency response, wildlife habitat, air quality, water yield, etc. In Canada a 2008 user survey revealed that the most practical scale for provision of land cover data is 30 m, nationwide, with an update frequency of five years (Ball, 2008). In response to this need the Canada Centre for Remote Sensing has generated a 30 m land cover of Canada for the base year 2010 as part of a planned series of maps at the recommended five year update frequency. This land cover is the Canadian contribution to the North American Land Change Monitoring System initiative, which seeks to provide harmonized land cover across Canada, the United States, and Mexico. The methodology developed in this research utilized a combination of unsupervised and machine learning techniques to map land cover, blend results between mapping units, locally optimize results, and process some thematic attributes with specific features sets. Accuracy assessment with available field data shows it was on average 75% for the five study areas assessed. In this presentation an overview of the unique processing aspects, example results, and initial accuracy assessment will be discussed.

  7. Spatially quantifying and attributing 17 years of land cover change to examine post-agricultural forest transition in Hawai`i

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Trauernicht, C.; Carlson, K. M.; Miura, T.; Giambelluca, T. W.; Chen, Q.

    2017-12-01

    The past decades in Hawaii have seen large scale land use change and land cover shifts. However, much these dynamics are only described anecdotally or studied at a single locale, with little information on the extent, rate, or direction of change. This lack of data hinders any effort to assess, plan, and prioritize land management. To improve assessments of statewide vegetation and land cover change, this project developed high resolution, sub-pixel, percent cover maps of forest, grassland and bare earth at annual time steps from 1999 to 2016. Vegetation cover was quantified using archived LANDSAT imagery and a custom remote-sensing algorithm developed in the Google Earth Engine platform. A statistical trend analysis of annual maps of the these three proportional land covers were then used to detect land cover transitions across the archipelago. The aim of this work focused on quantifying the total area of change, annual rates of change and final vegetation cover outcomes statewide. Additionally these findings were attributed to past and current land uses and management history by compiling spatial datasets of development, agriculture, forest restoration sites and burned areas statewide. Results indicated that nearly 10% of the state's land surfaces are suspected to have transitioned between the three cover classes during the study period. Total statewide net change resulted in a gain in forest cover with largest areas of change occurring in unmanaged areas, current and past pastoral land, commercial forestry and abandoned cultivated land. The fastest annual rates of change were forest increases that occurred in restoration areas and commercial forestry. These findings indicate that Hawaii is going through a forest transition, primarily driven by agricultural abandonment with likely feedbacks from invasive species, but also influenced by the establishment of forestry production on former agricultural lands that show potential for native forest restoration. These

  8. Forest cover loss and urban area expansion in the Conterminous Unites States in the first decade of the third millennium

    NASA Astrophysics Data System (ADS)

    Huo, L. Z.; Boschetti, L.

    2016-12-01

    Remote sensing has been successfully used for global mapping of changes in forest cover, but further analysis is needed to characterize those changes - and in particular to classify the total loss of forest loss (Gross Forest Cover Loss, GFCL) based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest) (Kurtz et al., 2010). While natural forest disturbances (fires, insect outbreaks) and timber harvest generally involve a temporary change of land cover (vegetated to non-vegetated), they generally do not involve a change in land use, and it is expected that the forest cover loss is followed by recovery. Change of land use, such as the conversion of forest to agricultural or urban areas, is instead generally irreversible. The proper classification of forest cover loss is therefore necessary to properly model the long term effects of the disturbances on the carbon budget. The present study presents a spatial and temporal analysis of the forest cover loss due to urban expansion in the Conterminous United States. The Landsat-derived University of Maryland Global Forest Change product (Hansen et al, 2013) is used to identify all the areas of gross forest cover loss, which are subsequently classified into disturbance type (deforestation, stand-replacing natural disturbances, industrial forest clearcuts) using an object-oriented time series analysis (Huo and Boschetti, 2015). A further refinement of the classification is conducted to identify the areas of transition from forest land use to urban land use based on ancillary datasets such as the National Land Cover Database (Homer et al., 2015) and contextual image analysis techniques (analysis of object proximity, and detection of shapes). Results showed that over 4000 km2of forest were lost to urban area expansion in CONUS over the 2001 to 2010 period (1.8% of the gross forest cover loss). Most of the urban growth was concentrated in large urban areas: Atlanta, GA

  9. Determining Distributed Ablation over Dirty Ice Areas of Debris-covered Glaciers Using a UAV-SfM Approach

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.

    2017-12-01

    Dirty ice areas (where debris cover is discontinuous) are often found on debris-covered glaciers above the limit of continuous debris and are important because they are areas of high melt and have been recognized as the locus of the identified upglacier increase in debris cover. The modelling of glacial ablation in areas of dirty ice is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the ice. However, in areas of dirty ice, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the area surrounding the stake - making these measurements unsuitable for the validation of models of dirty ice ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty ice characteristics with a view to informing the construction of dirty ice melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an area of dirty ice on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris cover, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study area, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty ice

  10. Large Decadal Decline of the Arctic Multiyear Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2011-01-01

    The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic ice cover means a reduction in average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007 suggesting a strong role of second year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear ice record which could explain in part the slight recovery in the last three years.

  11. Land cover trends dataset, 1973-2000

    USGS Publications Warehouse

    Soulard, Christopher E.; Acevedo, William; Auch, Roger F.; Sohl, Terry L.; Drummond, Mark A.; Sleeter, Benjamin M.; Sorenson, Daniel G.; Kambly, Steven; Wilson, Tamara S.; Taylor, Janis L.; Sayler, Kristi L.; Stier, Michael P.; Barnes, Christopher A.; Methven, Steven C.; Loveland, Thomas R.; Headley, Rachel; Brooks, Mark S.

    2014-01-01

    The U.S. Geological Survey Land Cover Trends Project is releasing a 1973–2000 time-series land-use/land-cover dataset for the conterminous United States. The dataset contains 5 dates of land-use/land-cover data for 2,688 sample blocks randomly selected within 84 ecological regions. The nominal dates of the land-use/land-cover maps are 1973, 1980, 1986, 1992, and 2000. The land-use/land-cover maps were classified manually from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery using a modified Anderson Level I classification scheme. The resulting land-use/land-cover data has a 60-meter resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. The files are labeled using a standard file naming convention that contains the number of the ecoregion, sample block, and Landsat year. The downloadable files are organized by ecoregion, and are available in the ERDAS IMAGINETM (.img) raster file format.

  12. Forecasting land-cover growth using remotely sensed data: a case study of the Igneada protection area in Turkey.

    PubMed

    Bozkaya, A Gonca; Balcik, Filiz Bektas; Goksel, Cigdem; Esbah, Hayriye

    2015-03-01

    Human activities in many parts of the world have greatly affected natural areas. Therefore, monitoring and forecasting of land-cover changes are important components for sustainable utilization, conservation, and development of these areas. This research has been conducted on Igneada, a legally protected area on the northwest coast of Turkey, which is famous for its unique, mangrove forests. The main focus of this study was to apply a land use and cover model that could quantitatively and graphically present the changes and its impacts on Igneada landscapes in the future. In this study, a Markov chain-based, stochastic Markov model and cellular automata Markov model were used. These models were calibrated using a time series of developed areas derived from Landsat Thematic Mapper (TM) imagery between 1990 and 2010 that also projected future growth to 2030. The results showed that CA Markov yielded reliable information better than St. Markov model. The findings displayed constant but overall slight increase of settlement and forest cover, and slight decrease of agricultural lands. However, even the slightest unsustainable change can put a significant pressure on the sensitive ecosystems of Igneada. Therefore, the management of the protected area should not only focus on the landscape composition but also pay attention to landscape configuration.

  13. Built-Up Area and Land Cover Extraction Using High Resolution Pleiades Satellite Imagery for Midrand, in Gauteng Province, South Africa

    NASA Astrophysics Data System (ADS)

    Fundisi, E.; Musakwa, W.

    2017-09-01

    Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.

  14. Plastic-covered agriculture forces the regional climate to change

    NASA Astrophysics Data System (ADS)

    Yang, D.; Chen, J.; Chen, X.; Cao, X.

    2016-12-01

    The practice of plastic-covered agriculture as a solution to moderate the dilemma of global food shortage, meanwhile, brings great pressure to the local environment. This research was conducted to reveal the impacts of plastic-covered agritulture on regional climate change by experimenting in a plastic greenhouse (PG) dominated area - Weifang district, Shandong province, China. Based on a new plastic greenhouse index (PGI) proposed in this study, we reconstructed the spatial distribution of PG across 1995-2015 in the study area. With that, land surface temperature (LST) dataset combined with surface evapotranspiration, surface reflectance and precipitation data, was applied to the probe of PG's climatic impacts. Results showed that PG, in the study area, has experienced a striking spatial expansion during the past 20 years, and more important, the expansion correlated strongly to the local climate change. It showed that the annual precipitation, in the study area, decreased during these years, which constrasts to a slightly increasing trend of the adjacent districts without PG construction. In addition, resulting from the greenhouse effect, PG area presented a harsher increase of surface temperature compared to the non-PG areas. Our study also telled that the evapotranspiration of PG area has been largely cutted down ascribing to the gas tightness of plastic materials, showing a decline around 40%. This indicates a way that the development of plastic-covered agriculture may contribute to the change of the local climate.

  15. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss

    USGS Publications Warehouse

    Potapov, P.; Hansen, Matthew C.; Stehman, S.V.; Loveland, Thomas R.; Pittman, K.

    2008-01-01

    Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5 km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss.

  16. How well do route survey areas represent landscapes at larger spatial extents? An analysis of land cover composition along Breeding Bird Survey routes

    USGS Publications Warehouse

    Veech, Joseph A.; Pardieck, Keith L.; Ziolkowski, David

    2017-01-01

    The occurrence of birds in a survey unit is partly determined by the habitat present. Moreover, some bird species preferentially avoid some land cover types and are attracted to others. As such, land cover composition within the 400 m survey areas along a Breeding Bird Survey (BBS) route clearly influences the species available to be detected. Ideally, to extend survey results to the larger landscape, land cover composition within the survey area should be similar to that at larger spatial extents defining the landscape. Such representativeness helps minimize possible roadside effects (bias), here defined as differences in bird species composition and abundance along a roadside as compared to a larger surrounding landscape. We used land cover data from the 2011 National Land Cover Database to examine representativeness of land cover composition along routes. Using ArcGIS, the percentages of each of 15 land cover types within 400 m buffers along 2,696 U.S. BBS routes were calculated and compared to percentages in 2 km, 5 km, and 10 km buffers surrounding each route. This assessment revealed that aquatic cover types and highly urbanized land tend to be slightly underrepresented in the survey areas. Two anthropogenic cover types (pasture/hay and cropland) may be slightly overrepresented in the survey areas. Over all cover types, 92% of the 2,696 routes exhibited “good” representativeness, with <5 percentage points per cover type difference in proportional cover between the 400 m and 10 km buffers. This assessment further supports previous research indicating that any land-cover-based roadside bias in the bird data of the BBS is likely minimal.

  17. Changes in Andes snow cover from MODIS data, 2000-2016

    NASA Astrophysics Data System (ADS)

    Saavedra, Freddy A.; Kampf, Stephanie K.; Fassnacht, Steven R.; Sibold, Jason S.

    2018-03-01

    The Andes span a length of 7000 km and are important for sustaining regional water supplies. Snow variability across this region has not been studied in detail due to sparse and unevenly distributed instrumental climate data. We calculated snow persistence (SP) as the fraction of time with snow cover for each year between 2000 and 2016 from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors (500 m, 8-day maximum snow cover extent). This analysis is conducted between 8 and 36° S due to high frequency of cloud (> 30 % of the time) south and north of this range. We ran Mann-Kendall and Theil-Sens analyses to identify areas with significant changes in SP and snowline (the line at lower elevation where SP = 20 %). We evaluated how these trends relate to temperature and precipitation from Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) and University of Delaware datasets and climate indices as El Niño-Southern Oscillation (ENSO), Southern Annular Mode (SAM), and Pacific Decadal Oscillation (PDO). Areas north of 29° S have limited snow cover, and few trends in snow persistence were detected. A large area (34 370 km2) with persistent snow cover between 29 and 36° S experienced a significant loss of snow cover (2-5 fewer days of snow year-1). Snow loss was more pronounced (62 % of the area with significant trends) on the east side of the Andes. We also found a significant increase in the elevation of the snowline at 10-30 m year-1 south of 29-30° S. Decreasing SP correlates with decreasing precipitation and increasing temperature, and the magnitudes of these correlations vary with latitude and elevation. ENSO climate indices better predicted SP conditions north of 31° S, whereas the SAM better predicted SP south of 31° S.

  18.  A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012

    Treesearch

    Kurt Riitters; James Wickham; Jennifer K. Costanza; Peter Vogt

    2016-01-01

    Context Published maps of global tree cover derived from Landsat data have indicated substantial changes in forest area from 2000 to 2012. The changes can be arranged in different patterns, with different consequences for forest fragmentation. Thus, the changes in forest area do not necessarily equate to changes in...

  19. Hydrologic monitoring in the area of the Tennessee-Tombigbee Waterway, Mississippi-Alabama, fiscal year 1985

    USGS Publications Warehouse

    Morris, Fred

    1986-01-01

    This report, the twelfth in a series of annual reports presenting hydrologic data collected from the area of the Tennessee-Tombigbee Waterway, covers the fiscal year ending September 30, 1985. The Waterway, under construction since the early 1970s, was completed in January 1985. Included are data on groundwater levels and quality; surface water stage, discharge, and quality; and disposal area water levels, water quality, and rainfall. These data were obtained at the request of the U.S. Army Corps of Engineers, Mobile and Nashville Districts, as part of comprehensive programs to monitor the hydrologic effects of construction and operation of the Waterway. (Author 's abstract)

  20. The effects of dust on Colorado mountain snow cover albedo and compositional links to dust-source areas

    NASA Astrophysics Data System (ADS)

    Goldstein, H. L.; Reynolds, R. L.; Landry, C.; Derry, J. E.; Kokaly, R. F.; Breit, G. N.

    2016-12-01

    Dust deposited on mountain snow cover (DOS) changes snow albedo, enhances absorption of solar radiation, and effectively increases rates of snow melt, leading to earlier-than-normal runoff and overall smaller late-season water supplies for tens of millions of people and industries in the American West. Visible-spectrum reflectance of DOS samples is on the order of 0.2 (80% absorption), in stark contrast to the high reflectivity of pure snow which approaches 1.0. Samples of DOS were collected from 12 high-elevation Colorado mountain sites near the end of spring from 2013 through 2016 prior to complete snow melt, when most dust layers had merged into one layer. These samples were analyzed to measure dust properties that affect snow albedo and to link DOS to dust-source areas. Dust mass loadings to snow during water year 2014 varied from 5 to 30 g/m2. Median particle sizes centered around 20 micrometers with more than 80% of the dust <63 micrometers. Dark minerals, carbonaceous matter, and iron oxides, including nano-sized hematite and goethite, together diminished reflectance according to their variable concentrations. Documenting variations in dust-particle masses, sizes, and compositions helps determine their influences on snow-melt and may be useful for modeling snow-melt effects from future dust. Furthermore, variations in dust components and particle sizes lead to new ways to recognize sources of dust by comparison with properties of fine-grained sediments in dust-source areas. Much of the DOS in the San Juan Mountains, Colorado can be linked to southern Colorado Plateau source areas by compositional similarities and satellite imagery. Understanding dust properties that affect snow albedo and recognizing the sources of dust deposited on snow cover may guide mitigation of dust emission that affects water resources of the Colorado River basin.

  1. Land cover change monitoring within the east central Louisiana study site: A case for large area surveys with LANDSAT multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Burns, G. S.

    1983-01-01

    Results established for four digital procedures developed for characterizing the radiometric changes between multidate LANDSAT spectral data sets into meaningful measures of land cover/use dynamics are documented. Each technique's performance was contrasted against digitized land use change maps, which were produced from contemporaneous, retrospective aerophoto coverage, in a cell by cell comparison over a one half by one degree area in east central Louisiana as a standard for comparison. The four techniques identify from 10.5 to 13.0% loss in area of forestland in a five year period; however, they differ more by how accurately this amount of change is distributed, the need for ancillary ground truth, and amount of usable information that is extractable. All require some method of digitally co-registering the two data sets. All are capable of providing tabular statistics as well as map products. Two are capable of detecting changes and identifying their locations. The other two, in addition to this, provide information to qualify land cover conditions at each end of the study interval.

  2. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010)

    EPA Pesticide Factsheets

    The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  3. Land Cover Mapping using GEOBIA to Estimate Loss of Salacca zalacca Trees in Landslide Area of Clapar, Madukara District of Banjarnegara

    NASA Astrophysics Data System (ADS)

    Permata, Anggi; Juniansah, Anwar; Nurcahyati, Eka; Dimas Afrizal, Mousafi; Adnan Shafry Untoro, Muhammad; Arifatha, Na'ima; Ramadhani Yudha Adiwijaya, Raden; Farda, Nur Mohammad

    2016-11-01

    Landslide is an unpredictable natural disaster which commonly happens in highslope area. Aerial photography in small format is one of acquisition method that can reach and obtain high resolution spatial data faster than other methods, and provide data such as orthomosaic and Digital Surface Model (DSM). The study area contained landslide area in Clapar, Madukara District of Banjarnegara. Aerial photographs of landslide area provided advantage in objects visibility. Object's characters such as shape, size, and texture were clearly seen, therefore GEOBIA (Geography Object Based Image Analysis) was compatible as method for classifying land cover in study area. Dissimilar with PPA (PerPixel Analyst) method that used spectral information as base object detection, GEOBIA could use spatial elements as classification basis to establish a land cover map with better accuracy. GEOBIA method used classification hierarchy to divide post disaster land cover into three main objects: vegetation, landslide/soil, and building. Those three were required to obtain more detailed information that can be used in estimating loss caused by landslide and establishing land cover map in landslide area. Estimating loss in landslide area related to damage in Salak (Salacca zalacca) plantations. This estimation towards quantity of Salak tree that were drifted away by landslide was calculated in assumption that every tree damaged by landslide had same age and production class with other tree that weren't damaged. Loss calculation was done by approximating quantity of damaged trees in landslide area with data of trees around area that were acquired from GEOBIA classification method.

  4. E-Area Low-Level Waste Facility Cover Overhang Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, T.; Flach, G. P.

    2016-05-18

    PORFLOW related analyses were performed with a focus on Slit and Engineered Trenches to evaluate the minimum required cover overhang size that would prevent any adverse impact on the ELLWF overall performance. Cover overhang is defined as the lateral distance that a low-infiltration cover extends beyond the edge of the trench unit in any direction. Analyses were carried out for H-3 (short half-life), I-129 (very long half-life), and Sr-90 (moderate half-life with intermediate K d) at different overhang sizes (5ft, 10ft, 20ft, 50ft, and infinite), cover timing (0yr, 10yr, 20yr, and 30yr), and scenarios (Intact and a limited Dynamic Compactionmore » Case). H-3, I-129 and Sr-90 are representative of nuclides that typically drive the sum-of-fractions for a trench disposal unit.« less

  5. Landsat continuity: Issues and opportunities for land cover monitoring

    USGS Publications Warehouse

    Wulder, M.A.; White, Joanne C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, Thomas R.; Woodcock, C.E.

    2008-01-01

    Initiated in 1972, the Landsat program has provided a continuous record of earth observation for 35 years. The assemblage of Landsat spatial, spectral, and temporal resolutions, over a reasonably sized image extent, results in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is absolutely unique and indispensable for monitoring, management, and scientific activities. Recent technical problems with the two existing Landsat satellites, and delays in the development and launch of a successor, increase the likelihood that a gap in Landsat continuity may occur. In this communication, we identify the key features of the Landsat program that have resulted in the extensive use of Landsat data for large area land cover mapping and monitoring. We then augment this list of key features by examining the data needs of existing large area land cover monitoring programs. Subsequently, we use this list as a basis for reviewing the current constellation of earth observation satellites to identify potential alternative data sources for large area land cover applications. Notions of a virtual constellation of satellites to meet large area land cover mapping and monitoring needs are also presented. Finally, research priorities that would facilitate the integration of these alternative data sources into existing large area land cover monitoring programs are identified. Continuity of the Landsat program and the measurements provided are critical for scientific, environmental, economic, and social purposes. It is difficult to overstate the importance of Landsat; there are no other systems in orbit, or planned for launch in the short-term, that can duplicate or approach replication, of the measurements and information conferred by Landsat. While technical and political options are being pursued, there is no satellite image data stream poised to enter the National Satellite Land Remote Sensing Data Archive should system failures

  6. Large area mapping of land-cover change in Rondônia using multitemporal spectral mixture analysis and decision tree classifiers

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Numata, I.; Holmes, K.; Batista, G.; Krug, T.; Monteiro, A.; Powell, B.; Chadwick, O. A.

    2002-10-01

    We describe spatiotemporal variation in land cover over 80,000 km2 in central Rondônia. We use a multistage process to map primary forest, pasture, second growth, urban, rock/savanna, and water using 33 Landsat scenes acquired over three contiguous areas between 1975 and 1999. Accuracy of the 1999 classified maps was assessed as exceeding 85% based on digital airborne videography. Rondônia is highly fragmented, in which forests outside of restricted areas consist of numerous, small irregular patches. Pastures in Rondônia persist over many years and are not typically abandoned to second growth, which when present rarely remains unchanged longer than 8 years. Within the state, annual deforestation rates, pasture area, and ratio of second growth to cleared area varied spatially. Highest initial deforestation rates occurred in the southeast (Luiza), at over 2%, increasing to 3% by the late 1990s. In this area, the percentage of cleared land in second growth averaged 18% and few pastures were abandoned. In central Rondônia (Ji-Paraná), deforestation rates rose from 1.2% between 1978 and 1986 to a high of 4.2% in 1999. In the northwest (Ariquemes), initial deforestation rates were lowest at 0.5% but rose substantially in the late 1990s, peaking at 3% in 1998. The ratio of second growth to cleared area was more than double the ratio in Luiza and few pastures remained unchanged beyond 8 years. Land clearing was most intense close to the major highway, BR364, except in Ariquemes. Intense forest clearing extended at least 50 km along the margins of BR364 in Ji-Paraná and Luiza. Spatial differences in land use are hypothesized to result from a combination of economic factors and soil fertility.

  7. Spatio-temporal patterns of ptarmigan occupancy relative to shrub cover in the Arctic

    USGS Publications Warehouse

    Schmutz, Joel A.

    2014-01-01

    Rock and willow ptarmigan are abundant herbivores that require shrub habitats in arctic and alpine areas. Shrub expansion is likely to increase winter habitat availability for ptarmigan, which in turn influence shrub architecture and growth through browsing. Despite their ecological role in the Arctic, the distribution and movement patterns of ptarmigan are not well known, particularly in northern Alaska where shrub expansion is occurring. We used multi-season occupancy models to test whether ptarmigan occupancy varied within and among years, and the degree to which colonization and extinction probabilities were related to shrub cover and latitude. Aerial surveys were conducted from March to May in 2011 and April to May 2012 in a 21,230 km2 area in northeastern Alaska. In areas with at least 30 % shrub cover, the probability of colonization by ptarmigan was >0.90, indicating that moderate to extensive patches of shrubs (typically associated with riparian areas) had a high probability of becoming occupied by ptarmigan. Occupancy increased throughout the spring in both years, providing evidence that ptarmigan migrated from southern wintering areas to breeding areas north of the Brooks Range. Occupancy was higher in the moderate snow year than the high snow year, and this was likely due to higher shrub cover in the moderate snow year. Ptarmigan distribution and migration in the Arctic are linked to expanding shrub communities on a wide geographic scale, and these relationships may be shaping ptarmigan population dynamics, as well as rates and patterns of shrub expansion.

  8. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011

    USGS Publications Warehouse

    Jin, Suming; Yang, Limin; Zhu, Zhe; Homer, Collin G.

    2017-01-01

    Monitoring and mapping land cover changes are important ways to support evaluation of the status and transition of ecosystems. The Alaska National Land Cover Database (NLCD) 2001 was the first 30-m resolution baseline land cover product of the entire state derived from circa 2001 Landsat imagery and geospatial ancillary data. We developed a comprehensive approach named AKUP11 to update Alaska NLCD from 2001 to 2011 and provide a 10-year cyclical update of the state's land cover and land cover changes. Our method is designed to characterize the main land cover changes associated with different drivers, including the conversion of forests to shrub and grassland primarily as a result of wildland fire and forest harvest, the vegetation successional processes after disturbance, and changes of surface water extent and glacier ice/snow associated with weather and climate changes. For natural vegetated areas, a component named AKUP11-VEG was developed for updating the land cover that involves four major steps: 1) identify the disturbed and successional areas using Landsat images and ancillary datasets; 2) update the land cover status for these areas using a SKILL model (System of Knowledge-based Integrated-trajectory Land cover Labeling); 3) perform decision tree classification; and 4) develop a final land cover and land cover change product through the postprocessing modeling. For water and ice/snow areas, another component named AKUP11-WIS was developed for initial land cover change detection, removal of the terrain shadow effects, and exclusion of ephemeral snow changes using a 3-year MODIS snow extent dataset from 2010 to 2012. The overall approach was tested in three pilot study areas in Alaska, with each area consisting of four Landsat image footprints. The results from the pilot study show that the overall accuracy in detecting change and no-change is 90% and the overall accuracy of the updated land cover label for 2011 is 86%. The method provided a robust

  9. ACCURACY OF THE 1992 NATIONAL LAND COVER DATASET AREA ESTIMATES: AN ANALYSIS AT MULTIPLE SPATIAL EXTENTS

    EPA Science Inventory

    Abstract for poster presentation:

    Site-specific accuracy assessments evaluate fine-scale accuracy of land-use/land-cover(LULC) datasets but provide little insight into accuracy of area estimates of LULC

    classes derived from sampling units of varying size. Additiona...

  10. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiel, Elizabeth Chilcote

    2002-05-01

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas andmore » nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).« less

  11. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas andmore » nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).« less

  12. Low-cost computer classification of land cover in the Portland area, Oregon, by signature extension techniques

    USGS Publications Warehouse

    Gaydos, Leonard

    1978-01-01

    The cost of classifying 5,607 square kilometers (2,165 sq. mi.) in the Portland area was less than 8 cents per square kilometer ($0.0788, or $0.2041 per square mile). Besides saving in costs, this and other signature extension techniques may be useful in completing land use and land cover mapping in other large areas where multispectral and multitemporal Landsat data are available in digital form but other source materials are generally lacking.

  13. High spatial resolution mapping of land cover types in a priority area for conservation in the Brazilian savanna

    NASA Astrophysics Data System (ADS)

    Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.

    2017-12-01

    Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post

  14. Snow cover and snow goose Anser caerulescens caerulescens distribution during spring migration

    USGS Publications Warehouse

    Hupp, Jerry W.; Zacheis, Amy B.; Anthony, R. Michael; Robertson, Donna G.; Erickson, Wallace P.; Palacios, Kelly C.

    2001-01-01

    Arctic geese often use spring migration stopover areas when feeding habitats are partially snow covered. Melting of snow during the stopover period causes spatial and temporal variability in distribution and abundance of feeding habitat. We recorded changes in snow cover and lesser snow goose Anser caerulescens caerulescens distribution on a spring migration stopover area in south-central Alaska during aerial surveys in 1993-1994. Our objectives were to determine whether geese selected among areas with different amounts of snow cover and to assess how temporal changes in snow cover affected goose distribution. We also measured temporal changes in chemical composition of forage species after snow melt. We divided an Arc/Info coverage of the approximately 210 km2 coastal stopover area into 2-km2 cells, and measured snow cover and snow goose use of cells. Cells that had 10-49.9% snow cover were selected by snow geese, whereas cells that lacked snow cover were avoided. In both years, snow cover diminished along the coast between mid-April and early May. Flock distribution changed as snow geese abandoned snow-free areas in favour of cells where snow patches were interspersed with bare ground. Snow-free areas may have been less attractive to geese because available forage had been quickly exploited as bare ground was exposed, and because soils became drier making extraction of underground forage more difficult. Fiber content of two forage species increased whereas non-structural carbohydrate concentrations of forage plants appeared to diminish after snow melt, but changes in nutrient concentrations likely occurred too slowly to account for abandonment of snow-free areas by snow geese.

  15. Snow cover correlation between Mt. Villarrica and Mt. Lliama in Chile

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Cheol; Park, Sung-Hwan; Jung, Hyung-Sup

    2014-11-01

    The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, and all of the volcanoes are covered with snow at the top of mountain. Monitoring snow cover variations in these regions can give us a key parameter in order to understand the mechanisms of volcanic activity. In this study, we investigate on the volcanic activity and snow cover interaction from snow cover area mapping, snow-line extraction. The study areas cover Mt. Villarrica and Mt. Llaima, Chile. Both of them are most active volcanos in SVZ. Sixty Landsat TM and Landsat ETM+ images are used for observing snow cover variations of Mt. Villarrica and Mt. Llaima, spanning the 25 years from September 1986 to February 2011. Results show that snow cover area between volcanic activity and non-activity are largely changed from 42.84 km2 to 13.41 km2, temporarily decreased 79% at the Mt. Villarrica and from 28.98 km2 to 3.82 km2, temporarily decreased 87% at the Mt. Villarrica. The snow line elevation of snow cover retreated by approximately 260 m from 1,606m to 1,871 m at the Mt. Villarrica, approximately 266m from 1,741m to 2,007m at the Mt. Llaima. The results show that there are definitely correlations between snow cover and volcanic activity.

  16. An Automated Algorithm for Producing Land Cover Information from Landsat Surface Reflectance Data Acquired Between 1984 and Present

    NASA Astrophysics Data System (ADS)

    Rover, J.; Goldhaber, M. B.; Holen, C.; Dittmeier, R.; Wika, S.; Steinwand, D.; Dahal, D.; Tolk, B.; Quenzer, R.; Nelson, K.; Wylie, B. K.; Coan, M.

    2015-12-01

    Multi-year land cover mapping from remotely sensed data poses challenges. Producing land cover products at spatial and temporal scales required for assessing longer-term trends in land cover change are typically a resource-limited process. A recently developed approach utilizes open source software libraries to automatically generate datasets, decision tree classifications, and data products while requiring minimal user interaction. Users are only required to supply coordinates for an area of interest, land cover from an existing source such as National Land Cover Database and percent slope from a digital terrain model for the same area of interest, two target acquisition year-day windows, and the years of interest between 1984 and present. The algorithm queries the Landsat archive for Landsat data intersecting the area and dates of interest. Cloud-free pixels meeting the user's criteria are mosaicked to create composite images for training the classifiers and applying the classifiers. Stratification of training data is determined by the user and redefined during an iterative process of reviewing classifiers and resulting predictions. The algorithm outputs include yearly land cover raster format data, graphics, and supporting databases for further analysis. Additional analytical tools are also incorporated into the automated land cover system and enable statistical analysis after data are generated. Applications tested include the impact of land cover change and water permanence. For example, land cover conversions in areas where shrubland and grassland were replaced by shale oil pads during hydrofracking of the Bakken Formation were quantified. Analytical analysis of spatial and temporal changes in surface water included identifying wetlands in the Prairie Pothole Region of North Dakota with potential connectivity to ground water, indicating subsurface permeability and geochemistry.

  17. Urban green land cover changes and their relation to climatic variables in an anthropogenically impacted area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Dida, Adrian I.

    2017-10-01

    Urban green areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Vegetation index time series provide a useful way to monitor urban vegetation phenological variations. This study quantitatively describes Normalized Difference Vegetation Index NDVI) /Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI) temporal changes for Bucharest metropolitan region land cover in Romania from the perspective of vegetation phenology and its relation with climate changes and extreme climate events. The time series from 2000 to 2016 of the NOAA AVHRR and MODIS Terra/Aqua satellite data were analyzed to extract anomalies. Time series of climatic variables were also analyzed through anomaly detection techniques and the Fourier Transform. Correlations between NDVI/EVI time series and climatic variables were computed. Temperature, rainfall and radiation were significantly correlated with almost all land-cover classes for the harmonic analysis amplitude term. However, vegetation phenology was not correlated with climatic variables for the harmonic analysis phase term suggesting a delay between climatic variations and vegetation response. Training and validation were based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2000- 2016 was assessed to be of 87%, with a reasonable balance between change commission errors (19.3%), change omission errors (24.7%), and Kappa coefficient of 0.73. This paper demonstrates the potential of moderate - and high resolution, multispectral imagery to map and monitor the evolution of the physical urban green land cover under climate and anthropogenic pressure.

  18. Chinese literatures of radiation oncology covered by PubMed over the past five years.

    PubMed

    Niu, Dao-Li; Zhen, Jun-Jie; He, Fen

    2010-04-01

    PubMed is generally acknowledged for its scientificity in literature coverage and authority of literature retrieval . In recent years, many studies have been published in China about radiation oncology. We aimed to investigate the literatures about radiation oncology in China covered by PubMed over the past five years. We collected primary data by searching the PubMed database using the related subject words. The collected data were analyzed and evaluated by bibliometric methods. In the past five years, 550 articles by Chinese authors related to radiotherapy were indexed in PubMed. These articles were published in 160 journals among 26 Chinese provinces/cities. These articles mainly focused on radiation dose and computer-aided radiation therapy. Sixty-four articles were published by Chinese Journal of Cancer , which ranked the top. Forty-four articles were published by the International Journal of Radiation Oncology Biology Physics (IF=4.29), with the largest number among SCI journals. One hundred and sixteen articles from Guangdong Province were covered, accounting for 21.09%. Over the past five years, the discipline of radiation oncology has been greatly developed. The literatures mainly focus on clinical radiation oncology and their regional distribution is uneven.

  19. Impact of land cover change on the environmental hydrology characteristics in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah

    2016-09-01

    Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.

  20. Land cover change interacts with drought severity to change fire regimes in Western Amazonia.

    PubMed

    Gutiérrez-Vélez, Víctor H; Uriarte, María; DeFries, Ruth; Pinedo-Vásquez, Miguel; Fernandes, Katia; Ceccato, Pietro; Baethgen, Walter; Padoch, Christine

    Fire is becoming a pervasive driver of environmental change in Amazonia and is expected to intensify, given projected reductions in precipitation and forest cover. Understanding of the influence of post-deforestation land cover change on fires in Amazonia is limited, even though fires in cleared lands constitute a threat for ecosystems, agriculture, and human health. We used MODIS satellite data to map burned areas annually between 2001 and 2010. We then combined these maps with land cover and climate information to understand the influence of land cover change in cleared lands and dry-season severity on fire occurrence and spread in a focus area in the Peruvian Amazon. Fire occurrence, quantified as the probability of burning of individual 232-m spatial resolution MODIS pixels, was modeled as a function of the area of land cover types within each pixel, drought severity, and distance to roads. Fire spread, quantified as the number of pixels burned in 3 × 3 pixel windows around each focal burned pixel, was modeled as a function of land cover configuration and area, dry-season severity, and distance to roads. We found that vegetation regrowth and oil palm expansion are significantly correlated with fire occurrence, but that the magnitude and sign of the correlation depend on drought severity, successional stage of regrowing vegetation, and oil palm age. Burning probability increased with the area of nondegraded pastures, fallow, and young oil palm and decreased with larger extents of degraded pastures, secondary forests, and adult oil palm plantations. Drought severity had the strongest influence on fire occurrence, overriding the effectiveness of secondary forests, but not of adult plantations, to reduce fire occurrence in severely dry years. Overall, irregular and scattered land cover patches reduced fire spread but irregular and dispersed fallows and secondary forests increased fire spread during dry years. Results underscore the importance of land cover

  1. Climatological determinants of woody cover in Africa.

    PubMed

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  2. Land-Cover and Imperviousness Data for Regional Areas near Denver, Colorado; Dallas-Fort Worth, Texas; and Milwaukee-Green Bay, Wisconsin - 2001

    USGS Publications Warehouse

    Falcone, James A.; Pearson, Daniel K.

    2006-01-01

    This report describes the processing and results of land-cover and impervious surface derivation for parts of three metropolitan areas being studied as part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program Effects of Urbanization on Stream Ecosystems (EUSE). The data were derived primarily from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery from the period 1999-2002, and are provided as 30-meter resolution raster datasets. Data were produced to a standard consistent with data being produced as part of the USGS National Land Cover Database 2001 (NLCD01) Program, and were derived in cooperation with, and assistance from, NLCD01 personnel. The data were intended as surrogates for NLCD01 data because of the EUSE Program's time-critical need for updated land-cover for parts of the United States that would not be available in time from the NLCD01 Program. Six datasets are described in this report: separate land-cover (15-class categorical data) and imperviousness (0-100 percent continuous data) raster datasets for parts of the general Denver, Colorado area (South Platte River Basin), Dallas-Fort Worth, Texas area (Trinity River Basin), and Milwaukee-Green Bay, Wisconsin area (Western Lake Michigan Drainages).

  3. Declining urban and community tree cover in the United States

    Treesearch

    David J. Nowak; Eric J. Greenfield

    2018-01-01

    Paired aerial photographs were interpreted to assess recent changes (c. 2009–2014) in tree, impervious and other cover types within urban/community and urban land in all 50 United States and the District of Columbia. National results indicate that tree cover in urban/community areas of the United States is on the decline at a rate of about 175,000 acres per year, which...

  4. An automated approach for mapping persistent ice and snow cover over high latitude regions

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly

  5. Evaluation of multiband, multitemporal, and transformed LANDSAT MSS data for land cover area estimation. [North Central Missouri

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; May, G. A.; Kalcic, M. T. (Principal Investigator)

    1981-01-01

    Sample segments of ground-verified land cover data collected in conjunction with the USDA/ESS June Enumerative Survey were merged with LANDSAT data and served as a focus for unsupervised spectral class development and accuracy assessment. Multitemporal data sets were created from single-date LANDSAT MSS acquisitions from a nominal scene covering an eleven-county area in north central Missouri. Classification accuracies for the four land cover types predominant in the test site showed significant improvement in going from unitemporal to multitemporal data sets. Transformed LANDSAT data sets did not significantly improve classification accuracies. Regression estimators yielded mixed results for different land covers. Misregistration of two LANDSAT data sets by as much and one half pixels did not significantly alter overall classification accuracies. Existing algorithms for scene-to scene overlay proved adequate for multitemporal data analysis as long as statistical class development and accuracy assessment were restricted to field interior pixels.

  6. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014

    NASA Astrophysics Data System (ADS)

    Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.

    2017-10-01

    A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.

  7. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Wagnon, Patrick; Vincent, Christian; Shea, Joseph M.; Immerzeel, Walter W.; Kraaijenbrink, Philip; Shrestha, Dibas; Soruco, Alvaro; Arnaud, Yves; Brun, Fanny; Berthier, Etienne; Futi Sherpa, Sonam

    2017-04-01

    Approximately 25% of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is -0.93 m year-1 or -0.84 m water equivalent per year (w.e. a-1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37mw.e. a-1. The debris-covered portion of the glacier thus has an area averaged mass balance of -1.21+/-0.2mw.e. a-1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8mw.e. a-1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.

  8. The potential of cover crops for improving soil function

    NASA Astrophysics Data System (ADS)

    Stoate, Chris; Crotty, Felicity

    2017-04-01

    Cover crops can be grown over the autumn and winter ensuring green cover throughout the year. They have been described as improving soil structure, reducing soil erosion and potentially even a form of grass weed control. These crops retain nutrients within the plant, potentially making them available for future crops, as well as increasing soil organic matter. Over the last three years, we have investigated how different cover crop regimes affect soil quality. Three separate experiments over each autumn/winter period have investigated how different cover crops affect soil biology, physics and chemistry, with each experiment building on the previous one. There have been significant effects of cover crops on soil structure, as well as significantly lower weed biomass and increased yields in the following crop - in comparison to bare stubble. For example, the effect of drilling the cover crops on soil structure in comparison to a bare stubble control that had not been driven on by machinery was quantified, and over the winter period the soil structure of the cover crop treatments changed, with compaction reduced in the cover crop treatments, whilst the bare stubble control remained unchanged. Weeds were found in significantly lower biomass in the cover crop mixes in comparison to the bare stubble control, and significantly lower weed biomass continued to be found in the following spring oat crop where the cover crops had been, indicating a weed suppressive effect that has a continued legacy in the following crop. The following spring oats have shown similar results in the last two years, with higher yields in the previous cover crop areas compared to the bare stubble controls. Overall, these results are indicating that cover crops have the potential to provide improvements to soil quality, reduce weeds and improve yields. We discuss the economic implications.

  9. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    USGS Publications Warehouse

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana

  10. Analysis of land cover/use changes using Landsat 5 TM data and indices.

    PubMed

    Ettehadi Osgouei, Paria; Kaya, Sinasi

    2017-04-01

    Urban expansion and unprecedented rural to urban transition, along with a huge population growth, are major driving forces altering land cover/use in metropolitan areas. Many of the land cover classes such as farmlands, wetlands, forests, and bare soils have been transformed during the past years into human settlements. Identification of the city growth trends and the impact of it on the vegetation cover of an area is essential for a better understanding of the sustainability of urban development processes, both planned and unplanned. Analyzing the causes and consequences of land use dynamics helps local government, urban planners, and managers for the betterment of future plans and minimizing the negative effects.This study determined temporal changes in vegetation cover and built-up area in Istanbul (Turkey) using the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and built-up area index (BUAI). The temporal data were based on Landsat 5 Thematic Mapper (TM) images acquired in June of 1984, 2002, 2007, 2009, and 2011. The NDVI was applied to all the Landsat images, and the resulting NDVI images were overlaid to generate an NDVI layer stack image. The same procedure was repeated using the SAVI and BUAI images. The layer stack images revealed those areas that had changed in terms of the different indices over the years. To determine temporal change trends, the values of 150 randomly selected control points were extracted from the same locations in the NDVI, SAVI, and BUAI layer stack images. The results obtained from these control points showed that vegetation cover decreased considerably because of a remarkable increase in the built-up area.

  11. Recovery of biological soil crust richness and cover 12-16 years after wildfires in Idaho, USA

    NASA Astrophysics Data System (ADS)

    Root, Heather T.; Brinda, John C.; Dodson, E. Kyle

    2017-09-01

    Changing fire regimes in western North America may impact biological soil crust (BSC) communities that influence many ecosystem functions, such as soil stability and C and N cycling. However, longer-term effects of wildfire on BSC abundance, species richness, functional groups, and ecosystem functions after wildfire (i.e., BSC resilience) are still poorly understood. We sampled BSC lichen and bryophyte communities at four sites in Idaho, USA, within foothill steppe communities that included wildfires from 12 to 16 years old. We established six plots outside each burn perimeter and compared them with six plots of varying severity within each fire perimeter at each site. BSC cover was most strongly negatively impacted by wildfire at sites that had well-developed BSC communities in adjacent unburned plots. BSC species richness was estimated to be 65 % greater in unburned plots compared with burned plots, and fire effects did not vary among sites. In contrast, there was no evidence that vascular plant functional groups or fire severity (as measured by satellite metrics differenced normalized burn ratio (dNBR) or relativized differenced normalized burn ratio (RdNBR)) significantly affected longer-term BSC responses. Three large-statured BSC functional groups that may be important in controlling wind and water erosion (squamulose lichens, vagrant lichens, and tall turf mosses) exhibited a significant decrease in abundance in burned areas relative to adjacent unburned areas. The decreases in BSC cover and richness along with decreased abundance of several functional groups suggest that wildfire can negatively impact ecosystem function in these semiarid ecosystems for at least 1 to 2 decades. This is a concern given that increased fire frequency is predicted for the region due to exotic grass invasion and climate change.

  12. Cover design for radioactive and AMD-producing mine waste in the Ronneburg area, eastern Thuringia.

    PubMed

    Gatzweiler, R; Jahn, S; Neubert, G; Paul, M

    2001-01-01

    At the former uranium mining site of Ronneburg, large scale underground and open pit mining for nearly 40 years resulted in a production of about 113,000 tonnes of uranium and about 200 million cubic metres of mine waste. In their present state, these materials cause risks to human health and strong environmental impacts and therefore demand remedial action. The remediation options available are relocation of mine spoil into the open pit and on site remediation by landscaping/contouring, placement of a cover and revegetation. A suitable vegetated cover system combined with a surface water drainage system provides long-term stability against erosion and reduces acid generation thereby meeting the main remediation objectives which are long-term reduction of radiological exposure and contaminant emissions and recultivation. The design of the cover system includes the evaluation of geotechnical, radiological, hydrological, geochemical and ecological criteria and models. The optimized overall model for the cover system has to comply with general conditions as, e.g. economic efficiency, public acceptance and sustainability. Most critical elements for the long-term performance of the cover system designed for the Beerwalde dump are the barrier system and its long-term integrity and a largely self-sustainable vegetation.

  13. Development of multi-year land cover data to assess wildfire impacts to coastal watersheds and the nearshore environment

    NASA Astrophysics Data System (ADS)

    Morrison, Katherine D.

    In the Mediterranean ecosystems of coastal California, wildfire is a common disturbance that can significantly alter vegetation in watersheds that transport sediment and nutrients to the adjacent nearshore oceanic environment. We assess the impact of two wildfires that burned in 2008 on land cover and to the nearshore environment along the Big Sur coast in central California. We created a multi-year land cover dataset to assess changes to coastal watersheds as a result of fire. This land cover dataset was then used to model changes in nonpoint source pollutants transported to the nearshore environment. Results indicate post-fire increases in percent export compared to pre-fire years and also link wildfire severity to the specific land cover changes that subsequently increase exports of pollutants and sediment to the nearshore environment. This approach is a replicable across watersheds and also provides a framework for including the nearshore environment as a value at risk terrestrial land management revolving around wildfire, including suppression, thinning, and other activities that change land cover at a landscape scale.

  14. Forest cover change and fragmentation using Landsat data in Maçka State Forest Enterprise in Turkey.

    PubMed

    Cakir, Günay; Sivrikaya, Fatih; Keleş, Sedat

    2008-02-01

    Monitoring forest cover change and understanding the dynamic of forest cover is increasingly important in sustainable development and management of forest ecosystems. This paper uses remote sensing (RS) techniques to monitor forest cover change in Maçka State Forest Enterprise (MSFE) located in NE of Turkey through 1975 to 2000 and then analyses spatial and temporal changes in forest cover by Geographical Information Systems (GIS) and FRAGSTATStrade mark. Forest cover changes were detected from a time series of satellite images of Landsat MSS in 1975, Landsat TM in 1987, and Landsat ETM+ in 2000 using RS and GIS. The results showed that total forest area, productive forest area and degraded forest area increased while broadleaf forest area and non forest area decreased. Mixed forest and degraded forest increased during the first (1975-1987) period, but decreased during the second (1987-2000) period. During the whole study period, the annual forestation rate was 152 ha year(-1), equivalent to 0.27% year(-1) using the compound-interest-rate formula. The total number of patches increased from 36,204 to 48,092 (33%), and mean size of forest patch (MPS) decreased from 2.8 ha to 2.1 ha during a 25 year period. Number of smaller patches (patches in 0-100 ha size class) increased, indicating more fragmented landscape over time that might create a risk for the maintenance of biodiversity of the area. While total population increased from 1975 to 2000 (3.7%), rural population constantly decreased. The increase of forest areas may well be explained by the fact that demographic movement of rural areas concentrated into Maçka City Center. These figures also indicated that decrease in the rural population might likely lead to the release of human pressure to forest areas, probably resulting in a positive development of forest areas.

  15. Case study of a full-scale evapotranspiration cover

    USGS Publications Warehouse

    McGuire, Patrick E.; Andraski, Brian J.; Archibald, Ryan E.

    2009-01-01

    The design, construction, and performance analyses of a 6.1ha evapotranspiration (ET) landfill cover at the semiarid U.S. Army Fort Carson site, near Colorado Springs, Colo. are presented. Initial water-balance model simulations, using literature reported soil hydraulic data, aided selection of borrow-source soil type(s) that resulted in predictions of negligible annual drainage (⩽1mm∕year). Final construction design was based on refined water-balance simulations using laboratory determined soil hydraulic values from borrow area natural soil horizons that were described with USDA soil classification methods. Cover design components included a 122cmthick clay loam (USDA), compaction ⩽80% of the standard Proctor maximum dry density (dry bulk density ∼1.3Mg∕m3), erosion control measures, top soil amended with biosolids, and seeding with native grasses. Favorable hydrologic performance for a 5year period was documented by lysimeter-measured and Richards’-based calculations of annual drainage that were all <0.4mm∕year. Water potential data suggest that ET removed water that infiltrated the cover and contributed to a persistent driving force for upward flow and removal of water from below the base of the cover.

  16. Temporal assessment on land use land cover of Somalia after the effect of the civil war using remote sensing

    NASA Astrophysics Data System (ADS)

    Abdulle, Abdinur; Tan, Adhwa Amir; Pradhan, Biswajeet; Abdullahi, Saleh

    2016-06-01

    The aim of this study is to analyse land use and cover changes for the studied area during 1992-2015 and particularly evaluate the effect of civil war on these changes. Three Landsat images were used; Landsat 4 (1992), Landsat 7 (2000) and Landsat 8 (2015). Assessment of changes has been applied through three supervised classification algorithms, support vector machine, minimum classifier, and mahalanobis classifier. The result shows that SVM is providing highest overall accuracy of 98.5% for the years 2000 and 2015 with kappa coefficient of 0.9803 in year 2015. The change detection result show that the higher changes is between year 1992-2000 where vegetation land cover has dropped down to 11.1% and undeveloped area has increased to 11.4%. Whereas for year 2000-2015, higher changes belongs to build up area by 3.30% while undeveloped area and vegetation land cover keep decreasing by 2.64% and 1.93% respectively.

  17. Mapping Surface Cover Parameters Using Aggregation Rules and Remotely Sensed Cover Classes. Version 1.9

    NASA Technical Reports Server (NTRS)

    Arain, Altaf M.; Shuttleworth, W. James; Yang, Z-Liang; Michaud, Jene; Dolman, Johannes

    1997-01-01

    A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules for BATS-specific surface cover parameters. The model was initialized and tested with observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The aggregation rules are shown to estimate parameters which give area-average surface fluxes similar to those calculated with explicit representation of forest and pasture patches for a range of meteorological and surface conditions relevant to this site, but the agreement deteriorates somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules, validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-average values of BATS vegetation parameters for 2.8 deg x 2.8 deg and 1 deg x 1 deg grids within the conterminous United States. There are significant differences in key vegetation parameters (aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate parameters are compared to parameters for the single, dominant cover within the grid. However, the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing, data from the International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably similar using aggregate-vegetation parameters and dominant-cover parameters, but there were some significant differences, particularly in the western USA.

  18. Land cover mapping of the National Park Service northwest Alaska management area using Landsat multispectral and thematic mapper satellite data

    USGS Publications Warehouse

    Markon, C.J.; Wesser, Sara

    1998-01-01

    A land cover map of the National Park Service northwest Alaska management area was produced using digitally processed Landsat data. These and other environmental data were incorporated into a geographic information system to provide baseline information about the nature and extent of resources present in this northwest Alaskan environment.This report details the methodology, depicts vegetation profiles of the surrounding landscape, and describes the different vegetation types mapped. Portions of nine Landsat satellite (multispectral scanner and thematic mapper) scenes were used to produce a land cover map of the Cape Krusenstern National Monument and Noatak National Preserve and to update an existing land cover map of Kobuk Valley National Park Valley National Park. A Bayesian multivariate classifier was applied to the multispectral data sets, followed by the application of ancillary data (elevation, slope, aspect, soils, watersheds, and geology) to enhance the spectral separation of classes into more meaningful vegetation types. The resulting land cover map contains six major land cover categories (forest, shrub, herbaceous, sparse/barren, water, other) and 19 subclasses encompassing 7 million hectares. General narratives of the distribution of the subclasses throughout the project area are given along with vegetation profiles showing common relationships between topographic gradients and vegetation communities.

  19. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Fry, Joyce

    2009-01-01

    The recent release of the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for national land cover conditions. To enable the updating of this land cover information in a consistent and continuous manner, a prototype method was developed to update land cover by an individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, land cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls, South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show that the vast majority of land cover change was captured and updated with overall land cover classification accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping efficiency and has the potential to provide users a flexible method to generate updated land cover at national and regional scales by using NLCD 2001 as the baseline.

  20. No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000-2015.

    PubMed

    Wang, Xiaoyue; Wu, Chaoyang; Wang, Huanjiong; Gonsamo, Alemu; Liu, Zhengjia

    2017-11-07

    Understanding the changes in snow cover is essential for biological and hydrological processes in the Tibetan Plateau (TP) and its surrounding areas. However, the changes in snow cover phenology over the TP have not been well documented. Using Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data, we reported daily cloud-free snow cover product over the Tibetan Plateau (TP) for 2000-2015. Snow cover start (SCS), melt (SCM) and duration (SCD) dates were calculated for each hydrological year, and their spatial and temporal variations were analyzed with elevation variations. Our results show no widespread decline in snow cover over the past fifteen years and the trends of snow cover phenology over the TP has high spatial heterogeneity. Later SCS, earlier SCM, and thus decreased SCD mainly occurred in the areas with elevation below 3500 m a.s.l., while regions in central and southwestern edges of the TP showed advanced SCS, delayed SCM and consequently longer SCD. The roles of temperature and precipitation on snow cover penology varied in different elevation zones, and the impact of both temperature and precipitation strengthened as elevation increases.

  1. 40 CFR 80.70 - Covered areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Philadelphia. (f) The Chicago-Gary-Lake County, Illinois-Indiana-Wisconsin area, comprised of: (1) The...; and (8) Chambers. (i) The Milwaukee-Racine, Wisconsin area, comprised of the following Wisconsin...

  2. Changes in vegetation cover and composition in the Swedish mountain region.

    PubMed

    Hedenås, Henrik; Christensen, Pernilla; Svensson, Johan

    2016-08-01

    Climate change, higher levels of natural resource demands, and changing land use will likely lead to changes in vegetation configuration in the mountain regions. The aim of this study was to determine if the vegetation cover and composition have changed in the Swedish region of the Scandinavian Mountain Range, based on data from the long-term landscape biodiversity monitoring program NILS (National Inventory of Landscapes in Sweden). Habitat type and vegetation cover were assessed in 1740 systematically distributed permanent field plots grouped into 145 sample units across the mountain range. Horvitz-Thompson estimations were used to estimate the present areal extension of the alpine and the mountain birch forest areas of the mountain range, the cover of trees, shrubs, and plants, and the composition of the bottom layer vegetation. We employed the data from two subsequent 5-year monitoring periods, 2003-2007 and 2008-2012, to determine if there have been any changes in these characteristics. We found that the extension of the alpine and the mountain birch forest areas has not changed between the inventory phases. However, the total tree canopy cover increased in the alpine area, the cover of graminoids and dwarf shrubs and the total cover of field vegetation increased in both the alpine area and the mountain birch forest, the bryophytes decreased in the alpine area, and the foliose lichens decreased in the mountain birch forest. The observed changes in vegetation cover and composition, as assessed by systematic data in a national and regional monitoring scheme, can validate the results of local studies, experimental studies, and models. Through benchmark assessments, monitoring data also contributes to governmental policies and land-management strategies as well as to directed cause and effect analyses.

  3. Digital cover photography for estimating leaf area index (LAI) in apple trees using a variable light extinction coefficient.

    PubMed

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-28

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAI(D)), which was compared with LAI estimated by the proposed digital photography method (LAI(M)). Results showed that the LAI(M) was able to estimate LAI(D) with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (f(f)) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions.

  4. Digital Cover Photography for Estimating Leaf Area Index (LAI) in Apple Trees Using a Variable Light Extinction Coefficient

    PubMed Central

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-01

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAID), which was compared with LAI estimated by the proposed digital photography method (LAIM). Results showed that the LAIM was able to estimate LAID with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (ff) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions. PMID:25635411

  5. Forest Cover Change Analysis in Inner Mongolia Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Xie, S.; Gong, J.; Huang, X.

    2018-04-01

    Forest is the lung of the earth, and it has important effect on maintaining the ecological balance of the whole earth. This study was conducted in Inner Mongolia during the year 1990-2015. Land use and land cover data were used to obtain forest cover change of Inner Mongolia. In addition, protected area data, road data, ASTER GDEM data were combined with forest cover change data to analyze the relationship between them. Moreover, patch density and landscape shape index were calculated to analyze forest change in perspective of landscape aspect. The results indicated that forest area increased overall during the study period. However, a few cities still had a phenomenon of reduced forest area. Results also demonstrated that the construction of protected area had positive effect on protecting forest while roads may disturbed forest due to human activities. In addition, forest patches in most of cities of Inner Mongolia tended to be larger and less fragmented. This paper reflected forest change in Inner Mongolia objectively, which is helpful for policy making by government.

  6. An evaluation of terrain-based downscaling of fractional snow covered area data sets based on LiDAR-derived snow data and orthoimagery

    NASA Astrophysics Data System (ADS)

    Cristea, Nicoleta C.; Breckheimer, Ian; Raleigh, Mark S.; HilleRisLambers, Janneke; Lundquist, Jessica D.

    2017-08-01

    Reliable maps of snow-covered areas at scales of meters to tens of meters, with daily temporal resolution, are essential to understanding snow heterogeneity, melt runoff, energy exchange, and ecological processes. Here we develop a parsimonious downscaling routine that can be applied to fractional snow covered area (fSCA) products from satellite platforms such as the Moderate Resolution Imaging Spectroradiometer (MODIS) that provide daily ˜500 m data, to derive higher-resolution snow presence/absence grids. The method uses a composite index combining both the topographic position index (TPI) to represent accumulation effects and the diurnal anisotropic heat (DAH, sun exposure) index to represent ablation effects. The procedure is evaluated and calibrated using airborne-derived high-resolution data sets across the Tuolumne watershed, CA using 11 scenes in 2014 to downscale to 30 m resolution. The average matching F score was 0.83. We then tested our method's transferability in time and space by comparing against the Tuolumne watershed in water years 2013 and 2015, and over an entirely different site, Mt. Rainier, WA in 2009 and 2011, to assess applicability to other topographic and climatic conditions. For application to sites without validation data, we recommend equal weights for the TPI and DAH indices and close TPI neighborhoods (60 and 27 m for downscaling to 30 and 3 m, respectively), which worked well in both our study areas. The method is less effective in forested areas, which still requires site-specific treatment. We demonstrate that the procedure can even be applied to downscale to 3 m resolution, a very fine scale relevant to alpine ecohydrology research.

  7. Spatiotemporal Change Detection in Forest Cover Dynamics Along Landslide Susceptible Region of Karakoram Highway, Pakistan

    NASA Astrophysics Data System (ADS)

    Rashid, Barira; Iqbal, Javed

    2018-04-01

    Forest Cover dynamics and its understanding is essential for a country's social, environmental, and political engagements. This research provides a methodical approach for the assessment of forest cover along Karakoram Highway. It has great ecological and economic significance because it's a part of China-Pakistan Economic Corridor. Landsat 4, 5 TM, Landsat 7 ETM and Landsat 8 OLI imagery for the years 1990, 2000, 2010 and 2016 respectively were subjected to supervised classification in ArcMap 10.5 to identify forest change. The study area was categorized into five major land use land cover classes i.e., Forest, vegetation, urban, open land and snow cover. Results from post classification forest cover change maps illustrated notable decrease of almost 26 % forest cover over the time period of 26 years. The accuracy assessment revealed the kappa coefficients 083, 0.78, 0.77 and 0.85, respectively. Major reason for this change is an observed replacement of native forest cover with urban areas (12.5 %) and vegetation (18.6 %) However, there is no significant change in the reserved forests along the study area that contributes only 2.97 % of the total forest cover. The extensive forest degradation and risk prone topography of the region has increased the environmental risk of landslides. Hence, effective policies and forest management is needed to protect not only the environmental and aesthetic benefits of the forest cover but also to manage the disaster risks. Apart from the forest assessment, this research gives an insight of land cover dynamics, along with causes and consequences, thereby showing the forest degradation hotspots.

  8. Effect of partial covering of the visitor viewing area window on positioning and orientation of zoo orangutans: A preference test.

    PubMed

    Bloomfield, Rachel C; Gillespie, Graeme R; Kerswell, Keven J; Butler, Kym L; Hemsworth, Paul H

    2015-01-01

    The window of the visitor viewing area adjacent to an animal platform in an orangutan enclosure was altered to produce three viewing treatments in a randomized controlled experiment. These treatments were window uncovered, left side of the window covered or right side of the window covered. Observations were conducted on the orangutans present on the platform, and on their location (left or right side), and orientation (towards or away from the window) while on the platform. The partial covering of the window had little effect on the proportion of time orangutans spent on the viewing platform, or on the direction they faced when on the platform. When the orangutans were facing towards the window, and the right side was uncovered, irrespective of whether the left side was covered, they spent about three quarters of the time on the right side, suggesting a preference for the right side of the platform. However, when the right side was covered and the left side uncovered, the animals facing towards the window spent only about a quarter of the time on the right side, that is, they spent more time on the uncovered side. The results suggest that the orangutans have a preference to position themselves to face the window of the visitor viewing area. © 2015 Wiley Periodicals, Inc.

  9. Relationships between Characteristics of Urban Green Land Cover and Mental Health in U.S. Metropolitan Areas.

    PubMed

    Tsai, Wei-Lun; McHale, Melissa R; Jennings, Viniece; Marquet, Oriol; Hipp, J Aaron; Leung, Yu-Fai; Floyd, Myron F

    2018-02-14

    Urbanization increases risk for depression and other mental disorders. A growing body of research indicates the natural environment confers numerous psychological benefits including alleviation of mental distress. This study examined land cover types and landscape metrics in relation to mental health for 276 U.S. counties within metropolitan areas having a population of 1 million or more. County Health Rankings and Behavioral Risk and Factor Surveillance System (BRFSS) provided a measure of mental health. The 2011 National Land Cover Database (NLCD) provided data on green land cover types, from which seven landscape metrics were generated to characterize landscape patterns. Spearman's rho correlation and stepwise logistic regression models, respectively, were employed to examine bivariate and multivariate relationships. Models were adjusted for county population and housing density, region, race, and income to account for potential confounding. Overall, individual measures of landscape patterns showed stronger associations with mental health than percent total cover alone. Greater edge contrast was associated with 3.81% lower odds of Frequent Mental Distress (FMD) (Adjusted Odd's Ratio (AOR) = 0.9619, 95% CI = 0.9371, 0.9860). Shrubland cohesion was associated with greater odds of FMD (AOR = 1.0751, 95% CI = 1.0196, 1.1379). In addition, distance between shrubland cover was associated with greater odds of FMD (AOR = 1.0027, 95% CI = 1.0016, 1.0041). Although effect sizes were small, findings suggest different types of landscape characteristics may have different roles in improving mental health.

  10. Land-cover mapping of Red Rock Canyon National Conservation Area and Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern, Clark County, Nevada

    USGS Publications Warehouse

    Smith, J. LaRue; Damar, Nancy A.; Charlet, David A.; Westenburg, Craig L.

    2014-01-01

    DigitalGlobe’s QuickBird satellite high-resolution multispectral imagery was classified by using Visual Learning Systems’ Feature Analyst feature extraction software to produce land-cover data sets for the Red Rock Canyon National Conservation Area and the Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern in Clark County, Nevada. Over 1,000 vegetation field samples were collected at the stand level. The field samples were classified to the National Vegetation Classification Standard, Version 2 hierarchy at the alliance level and above. Feature extraction models were developed for vegetation on the basis of the spectral and spatial characteristics of selected field samples by using the Feature Analyst hierarchical learning process. Individual model results were merged to create one data set for the Red Rock Canyon National Conservation Area and one for each of the Areas of Critical Environmental Concern. Field sample points and photographs were used to validate and update the data set after model results were merged. Non-vegetation data layers, such as roads and disturbed areas, were delineated from the imagery and added to the final data sets. The resulting land-cover data sets are significantly more detailed than previously were available, both in resolution and in vegetation classes.

  11. Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing

    PubMed Central

    Mahmoud, Shereif H.; Alazba, A. A.

    2015-01-01

    The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712

  12. Profiling agricultural land cover change in the North Central U.S. using ten years of the Cropland Data Layer

    NASA Astrophysics Data System (ADS)

    Sandborn, A.; Ebinger, L.

    2016-12-01

    The Cropland Data Layer (CDL), produced by the USDA/National Agricultural Statistics Service, provides annual, georeferenced crop specific land cover data over the contiguous United States. Several analyses were performed on ten years (2007-2016) of CDL data in order to visualize and quantify agricultural change over the North Central region (North Dakota, South Dakota, and Minnesota). Crop masks were derived from the CDL and layered to produce a ten-year time stack of corn, soybeans, and spring wheat at 30m spatial resolution. Through numerous image analyses, a temporal profile of each crop type was compiled and portrayed cartographically. For each crop, analyses included calculating the mean center of crop area over the ten year sequence, identifying the first and latest year the crop was grown on each pixel, and distinguishing crop rotation patterns and replacement statistics. Results show a clear north-western expansion trend for corn and soybeans, and a western migration trend for spring wheat. While some change may be due to commonly practiced crop rotation, this analysis shows that crop footprints have extended into areas that were previously other crops, idle cropland, and pasture/rangeland. Possible factors contributing to this crop migration pattern include profit advantages of row crops over small grains, improved crop genetics, climate change, and farm management program changes. Identifying and mapping these crop planting differences will better inform agricultural best practices, help to monitor the latest crop migration patterns, and present researchers with a way to quantitatively measure and forecast future agricultural trends.

  13. Use of lodgepole pine cover types by Yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.

    1997-01-01

    Lodgepole pine (Pinus contorta) forests are a large and dynamic part of grizzly bear (Ursus arctos) habitat in the Yellowstone ecosystem. Research in other areas suggests that grizzly bears select for young open forest stands, especially for grazing and feeding on berries. Management guidelines accordingly recommend timber harvest as a technique for improving habitat in areas potentially dominated by lodgepole pine. In this paper I examine grizzly bear use of lodgepole pine forests in the Yellowstone area, and test several hypotheses with relevance to a new generation of management guidelines. Differences in grizzly bear selection of lodgepole pine cover types (defined on the basis of stand age and structure) were not pronounced. Selection furthermore varied among years, areas, and individuals. Positive selection for any lodgepole pine type was uncommon. Estimates of selection took 5-11 years or 4-12 adult females to stabilize, depending upon the cover type. The variances of selection estimates tended to stabilize after 3-5 sample years, and were more-or-less stable to slightly increasing with progressively increased sample area. There was no conclusive evidence that Yellowstone's grizzlies favored young (<40 yr) stands in general or for their infrequent use of berries. On the other hand, these results corroborated previous observations that grizzlies favored open and/or young stands on wet and fertile sites for grazing. These results also supported the proposition that temporally and spatially robust inferences require extensive, long-duration studies, especially for wide-ranging vertebrates like grizzly bears.

  14. The evaluation of alternate methodologies for land cover classification in an urbanizing area

    NASA Technical Reports Server (NTRS)

    Smekofski, R. M.

    1981-01-01

    The usefulness of LANDSAT in classifying land cover and in identifying and classifying land use change was investigated using an urbanizing area as the study area. The question of what was the best technique for classification was the primary focus of the study. The many computer-assisted techniques available to analyze LANDSAT data were evaluated. Techniques of statistical training (polygons from CRT, unsupervised clustering, polygons from digitizer and binary masks) were tested with minimum distance to the mean, maximum likelihood and canonical analysis with minimum distance to the mean classifiers. The twelve output images were compared to photointerpreted samples, ground verified samples and a current land use data base. Results indicate that for a reconnaissance inventory, the unsupervised training with canonical analysis-minimum distance classifier is the most efficient. If more detailed ground truth and ground verification is available, the polygons from the digitizer training with the canonical analysis minimum distance is more accurate.

  15. Assimilation of snow covered area information into hydrologic and land-surface models

    USGS Publications Warehouse

    Clark, M.P.; Slater, A.G.; Barrett, A.P.; Hay, L.E.; McCabe, G.J.; Rajagopalan, B.; Leavesley, G.H.

    2006-01-01

    This paper describes a data assimilation method that uses observations of snow covered area (SCA) to update hydrologic model states in a mountainous catchment in Colorado. The assimilation method uses SCA information as part of an ensemble Kalman filter to alter the sub-basin distribution of snow as well as the basin water balance. This method permits an optimal combination of model simulations and observations, as well as propagation of information across model states. Sensitivity experiments are conducted with a fairly simple snowpack/water-balance model to evaluate effects of the data assimilation scheme on simulations of streamflow. The assimilation of SCA information results in minor improvements in the accuracy of streamflow simulations near the end of the snowmelt season. The small effect from SCA assimilation is initially surprising. It can be explained both because a substantial portion of snowmelts before any bare ground is exposed, and because the transition from 100% to 0% snow coverage occurs fairly quickly. Both of these factors are basin-dependent. Satellite SCA information is expected to be most useful in basins where snow cover is ephemeral. The data assimilation strategy presented in this study improved the accuracy of the streamflow simulation, indicating that SCA is a useful source of independent information that can be used as part of an integrated data assimilation strategy. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Controls on Arctic sea ice from first-year and multi-year survival rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Jes

    2009-01-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi year ice. The transition to an Arctic that is populated by thinner first year sea ice has important implications for future trends in area and volume. Here we develop a reduced model for Arctic sea ice with which we investigate how the survivability of first year and multi year ice control the mean state, variability, and trends in ice area and volume.

  17. "Proximal Sensing" capabilities for snow cover monitoring

    NASA Astrophysics Data System (ADS)

    Valt, Mauro; Salvatori, Rosamaria; Plini, Paolo; Salzano, Roberto; Giusti, Marco; Montagnoli, Mauro; Sigismondi, Daniele; Cagnati, Anselmo

    2013-04-01

    The seasonal snow cover represents one of the most important land cover class in relation to environmental studies in mountain areas, especially considering its variation during time. Snow cover and its extension play a relevant role for the studies on the atmospheric dynamics and the evolution of climate. It is also important for the analysis and management of water resources and for the management of touristic activities in mountain areas. Recently, webcam images collected at daily or even hourly intervals are being used as tools to observe the snow covered areas; those images, properly processed, can be considered a very important environmental data source. Images captured by digital cameras become a useful tool at local scale providing images even when the cloud coverage makes impossible the observation by satellite sensors. When suitably processed these images can be used for scientific purposes, having a good resolution (at least 800x600x16 million colours) and a very good sampling frequency (hourly images taken through the whole year). Once stored in databases, those images represent therefore an important source of information for the study of recent climatic changes, to evaluate the available water resources and to analyse the daily surface evolution of the snow cover. The Snow-noSnow software has been specifically designed to automatically detect the extension of snow cover collected from webcam images with a very limited human intervention. The software was tested on images collected on Alps (ARPAV webcam network) and on Apennine in a pilot station properly equipped for this project by CNR-IIA. The results obtained through the use of Snow-noSnow are comparable to the one achieved by photo-interpretation and could be considered as better as the ones obtained using the image segmentation routine implemented into image processing commercial softwares. Additionally, Snow-noSnow operates in a semi-automatic way and has a reduced processing time. The analysis

  18. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011

    NASA Astrophysics Data System (ADS)

    Tang, Zhiguang; Wang, Jian; Li, Hongyi; Yan, Lili

    2013-01-01

    Snow cover changes over the Tibetan plateau (TP) are examined using moderate resolution imaging spectroradiometer (MODIS) daily fractional snow cover (FSC) data from 2001 to 2011 as well as in situ temperature data. First, the accuracy of the MODIS FSC data under clear sky conditions is evaluated by comparing with Landsat 30-m observations. Then we describe a cloud-gap-filled (CGF) method using cubic spline interpolation algorithm to fill in data gaps caused by clouds. Finally, the spatial and temporal changes of snow cover are analyzed on the basis of the MODIS-derived snow-covered area and snow-covered days (SCD) data. Results show that the mean absolute error of MODIS FSC data under clear sky condition is about 0.098 over the TP. The CGF method is efficient in cloud reduction (overall mean absolute error of the retrieved FSC data is 0.092). There is a very high inter-annual and intra-seasonal variability of snow cover in the 11 years. The higher snow cover corresponds well with the huge mountains. The accumulation and melt periods of snow cover vary in different elevation zones. About 34.14% (5.56% with a significant decline) and 24.75% (3.9% with a significant increase) of the study area presents declining and increasing trend in SCD, respectively. The inter-annual fluctuation of snow cover can be explained by the high negative correlations observed between the snow cover and the in situ temperature, especially in some elevations of February, April, May, August, and September.

  19. 40-years of fires in a touristic area from South of Spain.

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Aranda-Gómez, Francisco; Damián Ruiz-Sinoga, José

    2014-05-01

    Costa del Sol in the Province of Malaga is one of the major touristic region in Spain. Its develop started in the 1960s of the XXth century at the same time as other regions in Mediterranean Europe. Since then, this area has become a holiday touristic centre for different countries and regions from Europe (United Kingdom, Escandinavia, Germany, Netherlands, Russia, etc.). Likewise, Costa del Sol has been characterised by a constant grow of the residence tourism rendering in an extreme increment of urban areas, especially in those municipalities located in the coast. This expansión of urban áreas was carried out against rural and natural vegetated areas. The region is characterised by very montanious topography, predominant impermeable rocks (shales, schists and peridotites) and abundant rainfalls from October to May, especially, in the western area (where a climatic gradient is observed from humid to dry conditions). All of these features, joined a very spread and intense occupation by urban, infrastructures and touristic land uses, renders in a very high vulnerability to fires and their consequences. As fire removes vegetation cover and accelerate water erosion, local relief and climatic conditions induce to extreme high risk of soil loss and floodings. During the last 40 years, in the study area, the number of fires increased as weell as the affected area, following the similar trend for the rest of Spain and other Mediterranean countries. This situation increases the exposition to fire risk for more than one-million of people, which become at least two-millions during the summer months when fire conditions are expected.

  20. Decadal land cover change dynamics in Bhutan.

    PubMed

    Gilani, Hammad; Shrestha, Him Lal; Murthy, M S R; Phuntso, Phuntso; Pradhan, Sudip; Bajracharya, Birendra; Shrestha, Basanta

    2015-01-15

    Land cover (LC) is one of the most important and easily detectable indicators of change in ecosystem services and livelihood support systems. This paper describes the decadal dynamics in LC changes at national and sub-national level in Bhutan derived by applying object-based image analysis (OBIA) techniques to 1990, 2000, and 2010 Landsat (30 m spatial resolution) data. Ten LC classes were defined in order to give a harmonized legend land cover classification system (LCCS). An accuracy of 83% was achieved for LC-2010 as determined from spot analysis using very high resolution satellite data from Google Earth Pro and limited field verification. At the national level, overall forest increased from 25,558 to 26,732 km(2) between 1990 and 2010, equivalent to an average annual growth rate of 59 km(2)/year (0.22%). There was an overall reduction in grassland, shrubland, and barren area, but the observations were highly dependent on time of acquisition of the satellite data and climatic conditions. The greatest change from non-forest to forest (277 km(2)) was in Bumthang district, followed by Wangdue Phodrang and Trashigang, with the least (1 km(2)) in Tsirang. Forest and scrub forest covers close to 75% of the land area of Bhutan, and just over half of the total area (51%) has some form of conservation status. This study indicates that numerous applications and analyses can be carried out to support improved land cover and land use (LCLU) management. It will be possible to replicate this study in the future as comparable new satellite data is scheduled to become available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Use of MODIS Snow-Cover Maps for Detecting Snowmelt Trends in North America

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; Riggs, George A.; Robinson, David A.; Hoon-Starr, Jody A.

    2012-01-01

    Research has shown that the snow season in the Northern Hemisphere has been getting shorter in recent decades, consistent with documented global temperature increases. Specifically, the snow is melting earlier in the spring allowing for a longer growing season and associated land-cover changes. Here we focus on North America. Using the Moderate-Resolution Imaging Radiometer (MODIS) cloud-gap-filled standard snow-cover data product we can detect a trend toward earlier spring snowmelt in the approx 12 years since the MODIS launch. However, not all areas in North America show earlier spring snowmelt over the study period. We show examples of springtime snowmelt over North America, beginning in March 2000 and extending through the winter of 2012 for all of North America, and for various specific areas such as the Wind River Range in Wyoming and in the Catskill Mountains in New York. We also compare our approx 12-year trends with trends derived from the Rutgers Global Snow Lab snow cover climate-data record.

  2. Responses of Herbivorous Fishes and Benthos to 6 Years of Protection at the Kahekili Herbivore Fisheries Management Area, Maui

    PubMed Central

    Williams, Ivor D.; White, Darla J.; Sparks, Russell T.; Lino, Kevin C.; Zamzow, Jill P.; Kelly, Emily L. A.; Ramey, Hailey L.

    2016-01-01

    In response to concerns about declining coral cover and recurring macroalgal blooms, in 2009 the State of Hawaii established the Kahekili Herbivore Fisheries Management Area (KHFMA). Within the KHFMA, herbivorous fishes and sea urchins are protected, but other fishing is allowed. As part of a multi-agency monitoring effort, we conducted surveys at KHFMA and comparison sites around Maui starting 19 months before closure, and over the six years since implementation of herbivore protection. Mean parrotfish and surgeonfish biomass both increased within the KHFMA (by 139% [95%QR (quantile range): 98–181%] and 28% [95%QR: 3–52%] respectively). Most of those gains were of small-to-medium sized species, whereas large-bodied species have not recovered, likely due to low levels of poaching on what are preferred fishery targets in Hawaii. Nevertheless, coincident with greater biomass of herbivores within the KHFMA, cover of crustose coralline algae (CCA) has increased from ~2% before closure to ~ 15% in 2015, and macroalgal cover has remained low throughout the monitoring period. Strong evidence that changes in the KHFMA were a consequence of herbivore management are that (i) there were no changes in biomass of unprotected fish families within the KHFMA; and that (ii) there were no similar changes in parrotfish or CCA at comparison sites around Maui. It is not yet clear how effective herbivore protection might eventually be for the KHFMA’s ultimate goal of coral recovery. Coral cover declined over the first few years of surveys–from 39.6% (SE 1.4%) in 2008, to 32.9% (SE 0.8%) in 2012, with almost all of that loss occurring by 2010 (1 year after closure), i.e. before meaningful herbivore recovery had occurred. Coral cover subsequently stabilized and may have slightly increased from 2012 through early 2015. However, a region-wide bleaching event in 2015 had already led to some coral mortality by the time surveys were conducted in late 2015, at which time cover had

  3. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    NASA Astrophysics Data System (ADS)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  4. Observational evidence for cloud cover enhancement over western European forests

    PubMed Central

    Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-01

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840

  5. Observational evidence for cloud cover enhancement over western European forests.

    PubMed

    Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-11

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.

  6. Mapping Mountain Front Recharge Areas in Arid Watersheds Based on a Digital Elevation Model and Land Cover Types

    DOE PAGES

    Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.

    2014-06-01

    Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to

  7. Mapping Mountain Front Recharge Areas in Arid Watersheds Based on a Digital Elevation Model and Land Cover Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.

    Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to

  8. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  9. Hydropedology of a mildly-arid loess covered area, southern Israel

    NASA Astrophysics Data System (ADS)

    Yair, Aaron; Goldshleger, Naftali

    2016-04-01

    Extensive loess covered areas characterize the mildly arid areas of western Israel, where average annual rainfall is 280 mm. Hydrological data available point to a peculiar hydrological behavior of the ephemeral streams. The frequency of channel flow is very high. Four to eight flows are recorded annually. However, even in extreme rain events peak discharges are extremely low representing 0.002-0.005% of the rain amount received by the basin at peak flow. In addition, hydrographs are usually characterized by very steep rising and falling limbs, representative of saturated or nearly saturated areas, extending over a limited part of the watershed. Following this observation we advanced the hypothesis that storm channel runoff originated in the channel itself, with negligible contribution from the adjoining hillslopes. The study was based on two complementary approaches. The hydrological approach was based on the detailed analysis of rainfall-runoff relationships in a small watershed (11 km2). The second approach was based on the toposequence concept. According to this concept soil's properties are closely related to the position of a soil along a slope. Constituents and water lost by the upper part of the slope accumulate in its lower part, which is richer in clay and better leached. Several boreholes were dug along a hillslope 400 m long. Soil samples were collected for chemical and particle size analysis. In addition, samples for soil moisture data were taken following each major rain event. Chemical data obtained show no significant observable difference in the downslope direction. Similar results were also obtained for the particle size distribution and soil moisture content. However, particle size distribution in the active channel reveals very high clay content down to 60 cm. Data obtained lead to two main conclusions. 1. Data presented perfectly fit the concept of "Partial Area Contribution", in its narrow sense, as it presents an extreme case of hydrological

  10. MODIS Vegetative Cover Conversion and Vegetation Continuous Fields

    NASA Astrophysics Data System (ADS)

    Carroll, Mark; Townshend, John; Hansen, Matthew; DiMiceli, Charlene; Sohlberg, Robert; Wurster, Karl

    Land cover change occurs at various spatial and temporal scales. For example, large-scale mechanical removal of forests for agro-industrial activities contrasts with the small-scale clearing of subsistence farmers. Such dynamics vary in spatial extent and rate of land conversion. Such changes are attributable to both natural and anthropogenic factors. For example, lightning- or human-ignited fires burn millions of acres of land surface each year. Further, land cover conversion requires ­contrasting with the land cover modification. In the first instance, the dynamic represents extensive categorical change between two land cover types. Land cover modification mechanisms such as selective logging and woody encroachment depict changes within a given land cover type rather than a conversion from one land cover type to another. This chapter describes the production of two standard MODIS land products used to document changes in global land cover. The Vegetative Cover Conversion (VCC) product is designed primarily to serve as a global alarm for areas where land cover change occurs rapidly (Zhan et al. 2000). The Vegetation Continuous Fields (VCF) product is designed to continuously ­represent ground cover as a proportion of basic vegetation traits. Terra's launch in December 1999 afforded a new opportunity to observe the entire Earth every 1.2 days at 250-m spatial resolution. The MODIS instrument's appropriate spatial and ­temporal resolutions provide the opportunity to substantially improve the characterization of the land surface and changes occurring thereupon (Townshend et al. 1991).

  11. Global warming in the context of 2000 years of Australian alpine temperature and snow cover.

    PubMed

    McGowan, Hamish; Callow, John Nikolaus; Soderholm, Joshua; McGrath, Gavan; Campbell, Micheline; Zhao, Jian-Xin

    2018-03-13

    Annual resolution reconstructions of alpine temperatures are rare, particularly for the Southern Hemisphere, while no snow cover reconstructions exist. These records are essential to place in context the impact of anthropogenic global warming against historical major natural climate events such as the Roman Warm Period (RWP), Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Here we show for a marginal alpine region of Australia using a carbon isotope speleothem reconstruction, warming over the past five decades has experienced equivalent magnitude of temperature change and snow cover decline to the RWP and MCA. The current rate of warming is unmatched for the past 2000 years and seasonal snow cover is at a minimum. On scales of several decades, mean maximum temperatures have undergone considerable change ≈ ± 0.8 °C highlighting local scale susceptibility to rapid temperature change, evidence of which is often masked in regional to hemisphere scale temperature reconstructions.

  12. Monitoring urban land cover change by updating the national land cover database impervious surface products

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.

    2009-01-01

    The U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 is widely used as a baseline for national land cover and impervious conditions. To ensure timely and relevant data, it is important to update this base to a more recent time period. A prototype method was developed to update the land cover and impervious surface by individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season from both 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, impervious surface was estimated for areas of change by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain a variety of metropolitan areas. Results from the five study areas show that the vast majority of impervious surface changes associated with urban developments were accurately captured and updated. The approach optimizes mapping efficiency and can provide users a flexible method to generate updated impervious surface at national and regional scales.

  13. Urban Rail Supporting Technology Program - Fiscal Year 1973 - Year-End Summary

    DOT National Transportation Integrated Search

    1974-01-01

    The Urban Rail Supporting Technology Program, being conducted for the Department of Transportation Urban Mass Transportation Administration (UMTA) is described for the 1973 Fiscal Year period. Major areas covered include program management, technical...

  14. The Impact of Anthropogenic Land Cover Change on Continental River Flow

    NASA Astrophysics Data System (ADS)

    Sterling, S. M.; Ducharne, A.; Polcher, J.

    2006-12-01

    The 2003 World Water Forum highlighted a water crisis that forces over one billion people to drink contaminated water and leaves countless millions with insufficient supplies for agriculture industry. This crisis has spurred numerous recent calls for improved science and understanding of how we alter the water cycle. Here we investigate how this global water crisis is affected by human-caused land cover change. We examine the impact of the present extent of land cover change on the water cycle, in particular on evapotranspiration and streamflow, through numerical experiments with the ORCHIDEE land surface model. Using Geographic Information Systems, we characterise land cover change by assembling and modifying existing global-scale maps of land cover change. To see how the land cover change impacts river runoff streamflow, we input the maps into ORCHIDEE and run 50-year "potential vegetation" and "current land cover" simulations of the land surface and energy fluxes, forced by the 50-year NCC atmospheric forcing data set. We present global maps showing the "hotspot" areas with the largest change in ET and streamflow due to anthropogenic land cover change. The results of this project enhance scientific understanding of the nature of human impact on the global water cycle.

  15. Large Decadal Decline of the Arctic Multiyear Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and area remained strongly negative at -12.2% and -13.5% decade (sup -1), respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data during the winters of 1979-2011 was studied, and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2% decade(sup -1), respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic ice cover means a reduction in the average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007, suggesting a strong role of second-year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8-9-yr cycle is apparent in the multiyear ice record, which could explain, in part, the slight recovery in the last 3 yr.

  16. Landsat continuity: issues and opportunities for land cover monitoring

    Treesearch

    Michael A. Wulder; Joanne C. White; Samuel N. Goward; Jeffrey G. Masek; James R. Irons; Martin Herold; Warren B. Cohen; Thomas R. Loveland; Curtis E. Woodcock

    2008-01-01

    Initiated in 1972, the Landsat program has provided a continuous record of Earth observation for 35 years. The assemblage of Landsat spatial, spectral, and temporal resolutions, over a reasonably sized image extent, results in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is absolutely unique and...

  17. Modeling tropical land-use and land-cover change related to sugarcane crops using remote sensing and soft computing techniques

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.

    2013-12-01

    Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.

  18. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses.

    PubMed

    Estes, Lyndon; Chen, Peng; Debats, Stephanie; Evans, Tom; Ferreira, Stefanus; Kuemmerle, Tobias; Ragazzo, Gabrielle; Sheffield, Justin; Wolf, Adam; Wood, Eric; Caylor, Kelly

    2018-01-01

    Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high-resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel-wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative "downstream" (map-based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps' spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ∼45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National-scale maps derived from higher-resolution imagery were most accurate, followed by multi-map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland-adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%-500% greater than in input cropland maps, but ∼40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land

  19. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data

    NASA Astrophysics Data System (ADS)

    Churches, Christopher E.; Wampler, Peter J.; Sun, Wanxiao; Smith, Andrew J.

    2014-08-01

    This study uses 2010-2011 Landsat Thematic Mapper (TM) imagery to estimate total forested area in Haiti. The thematic map was generated using radiometric normalization of digital numbers by a modified normalization method utilizing pseudo-invariant polygons (PIPs), followed by supervised classification of the mosaicked image using the Food and Agriculture Organization (FAO) of the United Nations Land Cover Classification System. Classification results were compared to other sources of land-cover data produced for similar years, with an emphasis on the statistics presented by the FAO. Three global land cover datasets (GLC2000, Globcover, 2009, and MODIS MCD12Q1), and a national-scale dataset (a land cover analysis by Haitian National Centre for Geospatial Information (CNIGS)) were reclassified and compared. According to our classification, approximately 32.3% of Haiti's total land area was tree covered in 2010-2011. This result was confirmed using an error-adjusted area estimator, which predicted a tree covered area of 32.4%. Standardization to the FAO's forest cover class definition reduces the amount of tree cover of our supervised classification to 29.4%. This result was greater than the reported FAO value of 4% and the value for the recoded GLC2000 dataset of 7.0%, but is comparable to values for three other recoded datasets: MCD12Q1 (21.1%), Globcover (2009) (26.9%), and CNIGS (19.5%). We propose that at coarse resolutions, the segmented and patchy nature of Haiti's forests resulted in a systematic underestimation of the extent of forest cover. It appears the best explanation for the significant difference between our results, FAO statistics, and compared datasets is the accuracy of the data sources and the resolution of the imagery used for land cover analyses. Analysis of recoded global datasets and results from this study suggest a strong linear relationship (R2 = 0.996 for tree cover) between spatial resolution and land cover estimates.

  20. Assessing uncertainties in land cover projections.

    PubMed

    Alexander, Peter; Prestele, Reinhard; Verburg, Peter H; Arneth, Almut; Baranzelli, Claudia; Batista E Silva, Filipe; Brown, Calum; Butler, Adam; Calvin, Katherine; Dendoncker, Nicolas; Doelman, Jonathan C; Dunford, Robert; Engström, Kerstin; Eitelberg, David; Fujimori, Shinichiro; Harrison, Paula A; Hasegawa, Tomoko; Havlik, Petr; Holzhauer, Sascha; Humpenöder, Florian; Jacobs-Crisioni, Chris; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Lavalle, Carlo; Lenton, Tim; Liu, Jiayi; Meiyappan, Prasanth; Popp, Alexander; Powell, Tom; Sands, Ronald D; Schaldach, Rüdiger; Stehfest, Elke; Steinbuks, Jevgenijs; Tabeau, Andrzej; van Meijl, Hans; Wise, Marshall A; Rounsevell, Mark D A

    2017-02-01

    Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. © 2016 John Wiley & Sons Ltd.

  1. Area changes for forest cover types in the United States, 1952 to 1997, with projections to 2050.

    Treesearch

    Ralph J. Alig; Brett J. Butler

    2004-01-01

    The United States has a diverse array of forest cover types on its 747 million acres of forest land. Forests in the United States have been shaped by many natural and human-caused forces, including climate, physiography, geology, soils, water, fire, land use changes, timber harvests, and other human interventions. The major purpose of this document is to describe area...

  2. Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework: A case study of the Southwest Regional Gap Analysis Project (SWReGAP)

    USGS Publications Warehouse

    Lowry, J.; Ramsey, R.D.; Thomas, K.; Schrupp, D.; Sajwaj, T.; Kirby, J.; Waller, E.; Schrader, S.; Falzarano, S.; Langs, L.; Manis, G.; Wallace, C.; Schulz, K.; Comer, P.; Pohs, K.; Rieth, W.; Velasquez, C.; Wolk, B.; Kepner, W.; Boykin, K.; O'Brien, L.; Bradford, D.; Thompson, B.; Prior-Magee, J.

    2007-01-01

    Land-cover mapping efforts within the USGS Gap Analysis Program have traditionally been state-centered; each state having the responsibility of implementing a project design for the geographic area within their state boundaries. The Southwest Regional Gap Analysis Project (SWReGAP) was the first formal GAP project designed at a regional, multi-state scale. The project area comprises the southwestern states of Arizona, Colorado, Nevada, New Mexico, and Utah. The land-cover map/dataset was generated using regionally consistent geospatial data (Landsat ETM+ imagery (1999-2001) and DEM derivatives), similar field data collection protocols, a standardized land-cover legend, and a common modeling approach (decision tree classifier). Partitioning of mapping responsibilities amongst the five collaborating states was organized around ecoregion-based "mapping zones". Over the course of 21/2 field seasons approximately 93,000 reference samples were collected directly, or obtained from other contemporary projects, for the land-cover modeling effort. The final map was made public in 2004 and contains 125 land-cover classes. An internal validation of 85 of the classes, representing 91% of the land area was performed. Agreement between withheld samples and the validated dataset was 61% (KHAT = .60, n = 17,030). This paper presents an overview of the methodologies used to create the regional land-cover dataset and highlights issues associated with large-area mapping within a coordinated, multi-institutional management framework. ?? 2006 Elsevier Inc. All rights reserved.

  3. EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  4. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979-2009) in China.

    PubMed

    Yin, Jie; Yin, Zhane; Zhong, Haidong; Xu, Shiyuan; Hu, Xiaomeng; Wang, Jun; Wu, Jianping

    2011-06-01

    This study explored the spatio-temporal dynamics and evolution of land use/cover changes and urban expansion in Shanghai metropolitan area, China, during the transitional economy period (1979-2009) using multi-temporal satellite images and geographic information systems (GIS). A maximum likelihood supervised classification algorithm was employed to extract information from four landsat images, with the post-classification change detection technique and GIS-based spatial analysis methods used to detect land-use and land-cover (LULC) changes. The overall Kappa indices of land use/cover change maps ranged from 0.79 to 0.89. Results indicated that urbanization has accelerated at an unprecedented scale and rate during the study period, leading to a considerable reduction in the area of farmland and green land. Findings further revealed that water bodies and bare land increased, obviously due to large-scale coastal development after 2000. The direction of urban expansion was along a north-south axis from 1979 to 2000, but after 2000 this growth changed to spread from both the existing urban area and along transport routes in all directions. Urban expansion and subsequent LULC changes in Shanghai have largely been driven by policy reform, population growth, and economic development. Rapid urban expansion through clearing of vegetation has led to a wide range of eco-environmental degradation.

  5. A priori evaluation of two-stage cluster sampling for accuracy assessment of large-area land-cover maps

    USGS Publications Warehouse

    Wickham, J.D.; Stehman, S.V.; Smith, J.H.; Wade, T.G.; Yang, L.

    2004-01-01

    Two-stage cluster sampling reduces the cost of collecting accuracy assessment reference data by constraining sample elements to fall within a limited number of geographic domains (clusters). However, because classification error is typically positively spatially correlated, within-cluster correlation may reduce the precision of the accuracy estimates. The detailed population information to quantify a priori the effect of within-cluster correlation on precision is typically unavailable. Consequently, a convenient, practical approach to evaluate the likely performance of a two-stage cluster sample is needed. We describe such an a priori evaluation protocol focusing on the spatial distribution of the sample by land-cover class across different cluster sizes and costs of different sampling options, including options not imposing clustering. This protocol also assesses the two-stage design's adequacy for estimating the precision of accuracy estimates for rare land-cover classes. We illustrate the approach using two large-area, regional accuracy assessments from the National Land-Cover Data (NLCD), and describe how the a priorievaluation was used as a decision-making tool when implementing the NLCD design.

  6. Impacts of the Variability of Ice Types on the Decline of the Arctic Perennial Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2005-01-01

    The observed rapid decline in the Arctic perennial ice cover is one of the most remarkable signal of change in the Arctic region. Updated data now show an even higher rate of decline of 9.8% per decade than the previous report of 8.9% per decade mainly because of abnormally low values in the last 4 years. To gain insights into this decline, the variability of the second year ice, which is the relatively thin component of the perennial ice cover, and other ice types is studied. The perennial ice cover in the 1990s was observed to be highly variable which might have led to higher production of second year ice and may in part explain the observed ice thinning during the period and triggered further decline. The passive microwave signature of second year ice is also studied and results show that while the signature is different from that of the older multiyear ice, it is surprisingly more similar to that of first year ice. This in part explains why previous estimates of the area of multiyear ice during the winter period are considerably lower than the area of the perennial ice cover during the preceding summer. Four distinct clusters representing radiometrically different types have been identified using multi-channel cluster analysis of passive microwave data. Data from two of these clusters, postulated to come from second year and older multiyear ice regions are also shown to have average thicknesses of 2.4 and 4.1 m, respectively, indicating that the passive microwave data may contain some ice thickness information that can be utilized for mass balance studies. The yearly anomaly maps indicate high gains of first year ice cover in the Arctic during the last decade which means higher production of second year ice and fraction of this type in the declining perennial ice cover. While not the only cause, the rapid decline in the perennial ice cover is in part caused by the increasing fractional component of the thinner second year ice cover that is very vulnerable to

  7. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed

    Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover

  8. Unusually Low Snow Cover in the U.S.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New maps of snow cover produced by NASA's Terra satellite show that this year's snow line stayed farther north than normal. When combined with land surface temperature measurements, the observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. The above map shows snow cover over the continental United States from February 2002 and is based on data acquired by the Moderate-Resolution Imaging Spectroradiometer (MODIS). The amount of land covered by snow during this period was much lower than usual. With the exception of the western mountain ranges and the Great Lakes region, the country was mostly snow free. The solid red line marks the average location of the monthly snow extent; white areas are snow-covered ground. Snow was mapped at approximately 5 kilometer pixel resolution on a daily basis and then combined, or composited, every eight days. If a pixel was at least 50 percent snow covered during all of the eight-day periods that month, it was mapped as snow covered for the whole month. For more information, images, and animations, read: Terra Satellite Data Confirm Unusually Warm, Dry U.S. Winter Image by Robert Simmon, based on data from the MODIS Snow/Ice Global Mapping Project

  9. Land cover mapping of the upper Kuskokwim Resource Managment Area using LANDSAT and a digital data base approach

    USGS Publications Warehouse

    Markon, Carl J.

    1988-01-01

    Digital land cover and terrain data for the Upper Kuskokwim Resource Hanagement Area (UKRMA) were produced by the U.S. Geological Survey, Earth Resources Observation Systems Field Office, Anchorage, Alaska for the Bureau of Land Management. These and other environmental data, were incorporated into a digital data base to assist in the management and planning of the UKRMA. The digital data base includes land cover classifications, elevation, slope, and aspect data centering on the UKRMA boundaries. The data are stored on computer compatible tapes at a 50-m pixel size. Additional digital data in the data base include: (a) summer and winter Landsat multispectral scanner (MSS) data registered to a 50-m Universal Transverse Mercator grid; (b) elevation, slope, aspect, and solar illumination data; (c) soils and surficial geology; and (e) study area boundary. The classification of Landsat MSS data resulted in seven major classes and 24 subclasses. Major classes include: forest, shrubland, dwarf scrub, herbaceous, barren, water, and other. The final data base will be used by resource personnel for management and planning within the UKRMA.

  10. Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa.

    PubMed

    Munga, Stephen; Yakob, Laith; Mushinzimana, Emmanuel; Zhou, Guofa; Ouna, Tom; Minakawa, Noboru; Githeko, Andrew; Yan, Guiyun

    2009-12-01

    Spatial and temporal variations in the distribution of anopheline larval habitats and land use and land cover (LULC) changes can influence malaria transmission intensity. This information is important for understanding the environmental determinants of malaria transmission heterogeneity, and it is critical to the study of the effects of environmental changes on malaria transmission. In this study, we investigated the spatial and temporal variations in the distribution of anopheline larval habitats and LULC changes in western Kenya highlands over a 4-year period. Anopheles gambiae complex larvae were mainly confined to valley bottoms during both the dry and wet seasons. Although An. gambiae larvae were located in man-made habitats where riparian forests and natural swamps had been cleared, Anopheles funestus larvae were mainly found in permanent habitats in pastures. The association between land cover type and occurrence of anopheline larvae was statistically significant. The distribution of anopheline positive habitats varied significantly between months, during the survey. In 2004, the mean density of An. gambiae was significantly higher during the month of May, whereas the density of An. funestus peaked significantly in February. Over the study period, major LULC changes occurred mostly in the valley bottoms. Overall, farmland increased by 3.9%, whereas both pastures and natural swamps decreased by 8.9% and 20.9%, respectively. The area under forest cover was decreased by 5.8%. Land-use changes in the study area are favorable to An. gambiae larval development, thereby risking a more widespread distribution of malaria vector habitats and potentially increasing malaria transmission in western Kenya highlands.

  11. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England

    PubMed Central

    Senapathi, Deepa; Carvalheiro, Luísa G.; Biesmeijer, Jacobus C.; Dodson, Cassie-Ann; Evans, Rebecca L.; McKerchar, Megan; Morton, R. Daniel; Moss, Ellen D.; Roberts, Stuart P. M.; Kunin, William E.; Potts, Simon G.

    2015-01-01

    Change in land cover is thought to be one of the key drivers of pollinator declines, and yet there is a dearth of studies exploring the relationships between historical changes in land cover and shifts in pollinator communities. Here, we explore, for the first time, land cover changes in England over more than 80 years, and relate them to concurrent shifts in bee and wasp species richness and community composition. Using historical data from 14 sites across four counties, we quantify the key land cover changes within and around these sites and estimate the changes in richness and composition of pollinators. Land cover changes within sites, as well as changes within a 1 km radius outside the sites, have significant effects on richness and composition of bee and wasp species, with changes in edge habitats between major land classes also having a key influence. Our results highlight not just the land cover changes that may be detrimental to pollinator communities, but also provide an insight into how increases in habitat diversity may benefit species diversity, and could thus help inform policy and practice for future land management. PMID:25833861

  12. Coupled Environmental Processes in the Mojave Desert and Implications for ET Covers as Stable Landforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Shafer; M. Y oung; S. Zitzer

    2006-01-18

    Monolayer evapotranspiration (ET) covers are the baseline method for closure of disposal sites for low-level radioactive waste (LLW), mixed LLW, and transuranic (TRU) waste at the Nevada Test Site (NTS). The regulatory timeline is typically 1,000 years for LLW and 10,000 years for TRU waste. Covers for such waste have different technical considerations than those with shorter timelines because they are subject to environmental change for longer periods of time, and because the environmental processes are often coupled. To evaluate these changes, four analog sites (approximately 30, 1,000 to 2,000, 7,000 to 12,500, and 125,000 years in age) on themore » NTS were analyzed to address the early post-institutional control period (the youngest site), the 1,000-year compliance period for disposal of LLW, and the 10,000-year period for TRU waste. Tests included soil texture, structure, and morphology; surface soil infiltration and hydraulic conductivity; vegetation and faunal surveys; and literature reviews. Separate measurements were made in plant undercanopy and intercanopy areas. The results showed a progressive increase in silt and clay content of surface soils with age. Changes in soil texture and structure led to a fivefold decline in saturated hydraulic conductivity in intercanopy areas, but no change in undercanopies, which were subject to bioturbation. These changes may have been responsible for the reduction in total plant cover, most dramatically in intercanopy areas, primarily because more precipitation either runs off the site or is held nearer to the surface where plant roots are less common. The results suggest that covers may evolve over longer timeframes to stable landforms that minimize the need for active maintenance.« less

  13. Going beyond the green: senesced vegetation material predicts basal area and biomass in remote sensing of tree cover conditions in an African tropical dry forest (miombo woodland) landscape

    NASA Astrophysics Data System (ADS)

    Mayes, Marc; Mustard, John; Melillo, Jerry; Neill, Christopher; Nyadzi, Gerson

    2017-08-01

    In sub-Saharan Africa (SSA), tropical dry forests and savannas cover over 2.5 million km2 and support livelihoods for millions in fast-growing nations. Intensifying land use pressures have driven rapid changes in tree cover structure (basal area, biomass) that remain poorly characterized at regional scales. Here, we posed the hypothesis that tree cover structure related strongly to senesced and non-photosynthetic (NPV) vegetation features in a SSA tropical dry forest landscape, offering improved means for satellite remote sensing of tree cover structure compared to vegetation greenness-based methods. Across regrowth miombo woodland sites in Tanzania, we analyzed relationships among field data on tree structure, land cover, and satellite indices of green and NPV features based on spectral mixture analyses and normalized difference vegetation index calculated from Landsat 8 data. From satellite-field data relationships, we mapped regional basal area and biomass using NPV and greenness-based metrics, and compared map performances at landscape scales. Total canopy cover related significantly to stem basal area (r 2 = 0.815, p < 0.01) and biomass (r 2 = 0.635, p < 0.01), and NPV dominated ground cover (> 60%) at all sites. From these two conditions emerged a key inverse relationship: skyward exposure of NPV ground cover was high at sites with low tree basal area and biomass, and decreased with increasing stem basal area and biomass. This pattern scaled to Landsat NPV metrics, which showed strong inverse correlations to basal area (Pearson r = -0.85, p < 0.01) and biomass (r = -0.86, p < 0.01). Biomass estimates from Landsat NPV-based maps matched field data, and significantly differentiated landscape gradients in woody biomass that greenness metrics failed to track. The results suggest senesced vegetation metrics at Landsat scales are a promising means for improved monitoring of tree structure across disturbance and ecological gradients

  14. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging

    NASA Astrophysics Data System (ADS)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.

    2017-06-01

    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  15. Monitoring and mapping leaf area index of rubber and oil palm in small watershed area

    NASA Astrophysics Data System (ADS)

    Rusli, N.; Majid, M. R.

    2014-02-01

    Existing conventional methods to determine LAI are tedious and time consuming for implementation in small or large areas. Thus, raster LAI data which are available free were downloaded for 4697.60 km2 of Sungai Muar watershed area in Johor. The aim of this study is to monitor and map LAI changes of rubber and oil palm throughout the years from 2002 to 2008. Raster datasets of LAI value were obtained from the National Aeronautics and Space Administration (NASA) website of available years from 2002 to year 2008. These data, were mosaicked and subset utilizing ERDAS Imagine 9.2. Next, the LAI raster dataset was multiplied by a scale factor of 0.1 to derive the final LAI value. Afterwards, to determine LAI values of rubber and oil palms, the boundaries of each crop from land cover data of the years 2002, 2006 and 2008 were exploited to overlay with LAI raster dataset. A total of 5000 sample points were generated utilizing the Hawths Tool (extension in ARcGIS 9.2) within these boundaries area and utilized for extracting LAI value of oil palm and rubber. In integration, a wide range of literature review was conducted as a guideline to derive LAI value of oil palm and rubber which range from 0 to 6. The results show, an overall mean LAI value from year 2002 to 2008 as decremented from 4.12 to 2.5 due to land cover transition within these years. In 2002, the mean LAI value of rubber and oil palm is 2.65 and 2.53 respectively. Meanwhile in 2006, the mean LAI value for rubber and oil palm is 2.54 and 2.82 respectively. In 2008, the mean LAI value for both crops is 0.85 for rubber and 1.04 for oil palm. In conclusion, apart from the original function of LAI which is related to the growth and metabolism of vegetation, the changes of LAI values from year 2002 to 2008 also capable to explain the process of land cover changes in a watershed area.

  16. Cover crops do not increase C sequestration in production crops: evidence from 12 years of continuous measurements

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    The numerous reports on carbon (C) loss from cropland soils have recently raised awareness on the climate change mitigation potential of these ecosystems, and on the necessity to improve C sequestration in these soils. Among the multiple solutions that are proposed, several field measurement and modelling studies reported that growing cover crops over fall and winter time could appear as an efficient solution. However, while the large majority of these studies are based on SOC stock inventories and very few information exists from the CO2 flux dynamics perspective. In the present work, we use the results from long-term (12 years) eddy-covariance measurements performed at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site, Belgium) and focus on six intercrop periods managed with (3) and without (3) cover crops after winter wheat main crops, in order to compare their response to environmental factors and to investigate the impact of cover crops on Net Ecosystem Exchange (NEE). Our results showed that cumulated NEE was not significantly affected by the presence of cover crops. Indeed, while larger CO2 assimilation occurred during cover crop growth, this carbon gain was later lost by larger respiration rates due to larger crop residue amounts brought to the soil. As modelled by a Q10-like relationship, significantly larger R10 values were indeed observed during the three intercrop periods cultivated with cover crops. These CO2 flux-based results therefore tend to moderate the generally acknowledged positive impact of cover crops on net C sequestration by croplands. Our results indicate that the effect of growing cover crops on C sequestration could be less important than announced, at least at certain sites.

  17. The effect of year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff

    NASA Astrophysics Data System (ADS)

    Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.

    2015-09-01

    This study assessed the effect of using observed monthly leaf area index (LAI) on hydrological model performance and the simulation of runoff using the Variable Infiltration Capacity (VIC) hydrological model in the Goulburn-Broken catchment of Australia, which has heterogeneous vegetation, soil and climate zones. VIC was calibrated with both observed monthly LAI and long-term mean monthly LAI, which were derived from the Global Land Surface Satellite (GLASS) leaf area index dataset covering the period from 1982 to 2012. The model performance under wet and dry climates for the two different LAI inputs was assessed using three criteria, the classical Nash-Sutcliffe efficiency, the logarithm transformed flow Nash-Sutcliffe efficiency and the percentage bias. Finally, the deviation of the simulated monthly runoff using the observed monthly LAI from simulated runoff using long-term mean monthly LAI was computed. The VIC model predicted monthly runoff in the selected sub-catchments with model efficiencies ranging from 61.5% to 95.9% during calibration (1982-1997) and 59% to 92.4% during validation (1998-2012). Our results suggest systematic improvements, from 4% to 25% in Nash-Sutcliffe efficiency, in sparsely forested sub-catchments when the VIC model was calibrated with observed monthly LAI instead of long-term mean monthly LAI. There was limited systematic improvement in tree dominated sub-catchments. The results also suggest that the model overestimation or underestimation of runoff during wet and dry periods can be reduced to 25 mm and 35 mm respectively by including the year-to-year variability of LAI in the model, thus reflecting the responses of vegetation to fluctuations in climate and other factors. Hence, the year-to-year variability in LAI should not be neglected; rather it should be included in model calibration as well as simulation of monthly water balance.

  18. Computational Short-cutting the Big Data Classification Bottleneck: Using the MODIS Land Cover Product to Derive a Consistent 30 m Landsat Land Cover Product of the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Roy, D. P.

    2016-12-01

    Classification is a fundamental process in remote sensing used to relate pixel values to land cover classes present on the surface. The state of the practice for large area land cover classification is to classify satellite time series metrics with a supervised (i.e., training data dependent) non-parametric classifier. Classification accuracy generally increases with training set size. However, training data collection is expensive and the optimal training distribution over large areas is unknown. The MODIS 500 m land cover product is available globally on an annual basis and so provides a potentially very large source of land cover training data. A novel methodology to classify large volume Landsat data using high quality training data derived automatically from the MODIS land cover product is demonstrated for all of the Conterminous United States (CONUS). The known misclassification accuracy of the MODIS land cover product and the scale difference between the 500 m MODIS and 30 m Landsat data are accommodated for by a novel MODIS product filtering, Landsat pixel selection, and iterative training approach to balance the proportion of local and CONUS training data used. Three years of global Web-enabled Landsat data (WELD) data for all of the CONUS are classified using a random forest classifier and the results assessed using random forest `out-of-bag' training samples. The global WELD data are corrected to surface nadir BRDF-Adjusted Reflectance and are defined in 158 × 158 km tiles in the same projection and nested to the MODIS land cover products. This reduces the need to pre-process the considerable Landsat data volume (more than 14,000 Landsat 5 and 7 scenes per year over the CONUS covering 11,000 million 30 m pixels). The methodology is implemented in a parallel manner on WELD tile by tile basis but provides a wall-to-wall seamless 30 m land cover product. Detailed tile and CONUS results are presented and the potential for global production using the

  19. Environmental and climatic variables as potential drivers of post-fire cover of cheatgrass (Bromus tectorum) in seeded and unseeded semiarid ecosystems

    USGS Publications Warehouse

    Shinneman, D.J.; Baker, W.L.

    2009-01-01

    Cheatgrass, a non-native annual grass, dominates millions of hectares in semiarid ecosystems of the Intermountain West (USA). Post-fire invasions can reduce native species diversity and alter ecological processes. To curb cheatgrass invasion, land managers often seed recently burned areas with perennial competitor species. We sampled vegetation within burned (19 years post-fire) and nearby unburned (representing pre-fire) pionjuniper (Pinus edulisJuniperus osteosperma) woodland and sagebrush (Artemisia sp.) in western Colorado to analyze variables that might explain cheatgrass cover after fire. A multiple regression model suggests higher cheatgrass cover after fire with: (1) sagebrush v. pionjuniper; (2) higher pre-fire cover of annual forbs; (3) increased time since fire; (4) lower pre-fire cover of biological soil crust; and (5) lower precipitation the year before fire. Time since fire, which coincided with higher precipitation, accounts for most of the variability in cheatgrass cover. No significant difference was found in mean cheatgrass cover between seeded and unseeded plots over time. However, negative relationships with pre-fire biological soil crust cover and native species richness suggest livestock-degraded areas are more susceptible to post-fire invasion. Proactive strategies for combating cheatgrass should include finding effective native competitors and restoring livestock-degraded areas. ?? 2009 IAWF.

  20. Snow cover monitoring over French Alps based on Spot-Vegetation S-10 products. Application to the Vercors area for the time period 1998-2008.

    NASA Astrophysics Data System (ADS)

    Bigot, S.; Dedieu, Jp.; Rome, S.

    2009-04-01

    Sylvain.bigot@ujf-grenoble.fr Jean-pierre.dedieu@hmg.inpg.fr Sandra.rome@ujf-grenoble.fr Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the SPOT-4 and -5 VEGETATION sensors are used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas. However, as the pixel size is 1km x 1km, a VGT pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the sub-pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Application of this approach in the French Alps is presented over the Vercors Natural Park area (N 44°.50' / E 05°.30'), based on 10-day Synthetic products for the 1998-2008 time period, and using the NDSII (Normalized Difference Snow/Ice Index) as numerical threshold. This work performs an analysis of climate impact on snow cover spatial and temporal variability, at mid-elevation mountain range (1500 m asl) under temperate climate conditions. The results indicates (i) a increasing temporal and spatial variability of snow coverage, and (ii) a high sensitivity to low variation of air temperature, often close to 1° C. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric

  1. Developed land cover of Puerto Rico

    Treesearch

    William A. Gould; Sebastian Martinuzzi; Olga M. Ramos Gonzalez

    2008-01-01

    This map shows the distribution of developed land cover in Puerto Rico (Martinuzzi et al. 2007). Developed land cover refers to urban, built-up and non-vegetated areas that result from human activity. These typically include built structures, concrete, asphalt, and other infrastructure. The developed land cover was estimated using Landsat 7 ETM+ satellite images pan...

  2. Land Use and Land Cover Change Modeling Using Remote Sensing and Soft Computing Approach to Assess Sugarcane Expansion Impacts in Tropical Agriculture

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Victoria, D.; Zullo, J., Jr.; Gomes, D.; Bayma-Silva, G.

    2014-12-01

    Agriculture is related with land-use/cover changes (LUCC) over large areas and, in recent years, increase in demand of ethanol fuel has been influence in expansion of areas occupied with corn and sugar cane, raw material for ethanol production. Nevertheless, there´s a concern regarding the impacts on food security, such as, decrease in areas planted with food crops. Considering that the LUCC is highly dynamic, the use of Remote Sensing is a tool for monitoring changes quickly and precisely in order to provide information for agricultural planning. In this work, Remote Sensing techniques were used to monitor the LUCC occurred in municipalities of São Paulo state- Brazil related with sugarcane crops expansion in order to (i) evaluate and quantify the previous land cover in areas of sugarcane crop expansion, and (ii) provide information to elaborate a future land cover scenario based on Self Organizing Map (SOM) approach. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey. The Landsat images were then segmented into homogeneous objects, with represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. The segmentation procedure resulted in polygons over the three time periods along twenty years (1990-2010). The land cover for each object was visually identified, based on its shape, texture and spectral characteristics. Land cover types considered were: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. SOM technique was used to estimate the values for the future land cover scenarios for the selected municipalities, using the information of land change provided by the remote sensing and data from official sources.

  3. Multi-scale 46-year remote sensing change detection of diamond mining and land cover in a conflict and post-conflict setting

    USGS Publications Warehouse

    Dewitt, Jessica D.; Chirico, Peter G.; Bergstresser, Sarah E.; Warner, Timothy A.

    2017-01-01

    -scale mining. These different-scale analyses were then integrated to create a record of 46 years of mining activity and land cover change in Tortiya. While similar in spatial extent, the mining/ bare class in the integrated analysis exhibits a substantially different spatial distribution than in the original classifications. This additional information regarding the locations of ASM activity in the Tortiya area is important from a policy and planning perspective. The results of this study also suggest that LULC classifications of Landsat imagery do not consistently capture areas of ASM in the Côte d′Ivoire landscape.

  4. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed Central

    Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Background Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans (Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. Methods In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha−1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. Results The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Discussion Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect

  5. Vegetation Cover Affects Mammal Herbivory on Planted Oaks and Success of Reforesting Missouri River Bottomland Fields

    Treesearch

    Shannon Dugger; Daniel C. Dey; Joshua J. Millspaugh

    2004-01-01

    We are evaluating oak regeneration methods at Plowboy Bend and Smoky Waters Conservation Areas in the Missouri River floodplain by planting oak seedlings in different cover types (redtop grass vs. natural vegetation) on four 40- acre fields. After 1 year, survival of planted oaks was high; however, herbivory from rabbits was intense depending on cover type. Damage to...

  6. An integrated approach for automated cover-type mapping of large inaccessible areas in Alaska

    USGS Publications Warehouse

    Fleming, Michael D.

    1988-01-01

    The lack of any detailed cover type maps in the state necessitated that a rapid and accurate approach to be employed to develop maps for 329 million acres of Alaska within a seven-year period. This goal has been addressed by using an integrated approach to computer-aided analysis which combines efficient use of field data with the only consistent statewide spatial data sets available: Landsat multispectral scanner data, digital elevation data derived from 1:250 000-scale maps, and 1:60 000-scale color-infrared aerial photographs.

  7. Evolution of the soil cover of soccer fields

    NASA Astrophysics Data System (ADS)

    Belobrov, V. P.; Zamotaev, I. V.

    2014-04-01

    A soccer field can be considered a soil-like technogenic formation (STF). According to the theory of soil cover patterns, the artificially constructed (anthropogenic) soil cover of a soccer field is an analogue of a relatively homogeneous elementary soil area. However, the spatial homogeneity of the upper part (50-80 cm) of the STF of soccer fields is unstable and is subjected to gradual transformation under the impact of pedogenetic processes, agrotechnical loads, and mechanical loads during the games. This transformation is favored by the initial heterogeneity of the deep (buried) parts of the STF profile. The technogenic factors and elementary pedogenetic processes specify the dynamic functioning regime of the STF. In 50-75 years, the upper part of the STF is transformed into soil-like bodies with properties close to those in zonal soils. Certain micro- and nanopatterns of the soil cover are developed within the field creating its spatial heterogeneity.

  8. Potential reciprocal effect between land use / land cover change and climate change

    NASA Astrophysics Data System (ADS)

    Daham, Afrah; Han, Dawei; Rico-Ramirez, Miguel

    2016-04-01

    Land use/land cover (LULC) activity influences climate change and one way to explore climate change is to analyse the change in LULC patterns. Modelling the Spatio-temporal pattern of LULC change requires the use of satellite remote sensing data and aerial photographs with different pre-processing steps. The aim of this research is to analyse the reciprocal effects of LUCC (Land Use and Cover Change) and the climate change on each other in the study area which covers part of Bristol, South Gloucestershire, Bath and Somerset in England for the period (1975-2015). LUCC is assessed using remote sensing data. Three sets of remotely sensed data, LanSAT-1 Multispectral Scanner (MSS) data obtained in (1975 and 1976), LanSAT-5 Thematic Mapper (TM) data obtained in (1984 and 1997), and LandSAT-7 Enhanced Thematic Mapper Plus (ETM+) acquired in (2003 and 2015), with a time span of forty years were used in the study. One of the most common problems in the satellite images is the presence of cloud covers. In this study, the cloud cover problem is handled using a novel algorithm, which is capable of reducing the cloud coverage in the classified images significantly. This study also examines a suite of possible photogrammetry techniques applicable to detect the change in LULC. At the moment photogrammertic techniques are used to derive the ground truth for supervised classification from the high resolution aerial photos which were provided by Ordnance Survey (contract number: 240215) and global mapper for the years in (2001 and 2014). After obtaining the classified images almost free of clouds, accuracy assessment is implemented with the derived classified images using confusion matrix at some ground truth points. Eight classes (Improved grassland, Built up areas and gardens, Arable and horticulture, Broad-leaved / mixed woodland, Coniferous woodland, Oceanic seas, Standing open water and reservoir, and Mountain; heath; bog) have been classified in the chosen study area. Also

  9. Detailed geomorphological mapping of debris-covered and rock glaciers in the Hólar area, Tröllaskagi Peninsula (northern Iceland).

    NASA Astrophysics Data System (ADS)

    Tanarro, Luis M.; Palacios, David; Zamorano, Jose J.; Andres, Nuria

    2017-04-01

    Most studies conducted on rock and debris-covered glaciers only include simplified geomorphological maps representing main units (ridges, furrows, front, and thermokarst depressions). The aim of this study is to develop a detailed geomorphological mapping of the Hóladalsjökull debris-covered glacier (65°42' N; 18°57' W) and the Fremri-Grjótárdalur rock glacier (65°43' N 19° W), located near Hólar, a village in the central area of the Trolläskagi peninsula (northern Iceland). The mapping process has been conducted using standard stereo-photointerpretation of aerial photographs and stereo-plotting of a topographic map at 1:2000 scale. Also, landforms have been represented in different transects. Lastly, the geomorphological map has been designed using the elevation digital model, and a 3D pdf file has been generated, allowing for better viewing and understanding the different units and their modelling. The geomorphological mapping of the Hóladalsjökull debris-covered glacier and the Fremri-Grjótárdalur rock glacier represents the prominent walls of their valley heads and their summits, which form a flat highland at 1,200-1,330 metres above sea level, covered by blockfield and patterned ground features. Rockfall and slide landforms are common processes at the foot of these 100-170 metre-high cirque-walls. Debris-covered glaciers and rock glaciers are born right under these walls, building up a spoon-shaped hollow around glacial ice, surrounded by young moraine ridges at their fronts. The dominant features in the Hóladalsjökull debris-covered glacier are large longitudinal ridges and furrows, stretching over 1.5 km in length in the central and western areas. Medium-sized thermokarst depressions (between 15-40 metres in diameter), often running parallel to the furrows, dot the surface of the debris-covered glacier. Parallel alternate ridges and furrows can be seen near the snout. Ridges are rugged and fall around 30-40 metres, with over 30 degree slopes

  10. Assessing the impact of urban land cover composition on CO2 flux

    NASA Astrophysics Data System (ADS)

    Becker, K.; Hinkle, C.

    2013-12-01

    Urbanization is an ever increasing trend in global land use change, and has been identified as a key driver of CO2 emissions. Therefore, understanding how urbanization affects CO2 flux across a range of climatic zones and development patterns is critical to projecting the impact of future land use on CO2 flux dynamics. A growing number of studies are applying the eddy covariance method to urban areas to quantify the CO2 flux dynamics of these systems. However, interpretation of eddy covariance data in these urban systems presents a challenge, particularly in areas with high heterogeneity due to a mixing of built and green space. Here we present a study aimed at establishing a relationship between land cover composition and CO2 flux for a heterogeneous urban area of Orlando, FL. CO2 flux has been measured at this site for > 4 years using an open path eddy covariance system. Land cover at this site was classified into built and green space, and relative weight of both land covers were calculated for each 30 min CO2 flux measurement using the Schuepp model and a source area based on +/- one standard deviation of wind direction. The results of this analysis established a relationship between built land cover and CO2 flux within the measured footprint of this urban area. These results, in combination with future projected land use data, will be a valuable resource for providing insight into the impact of future urbanization on CO2 flux dynamics in this region.

  11. USING CLASSIFICATION CONSISTENCY IN INTER-SCENE OVERLAP AREAS TO MODEL SPATIAL VARIATIONS IN LAND-COVER ACCURACY OVER LARGE GEOGRAPHIC REGIONS

    EPA Science Inventory

    During the last decade, a number of initiatives have been undertaken to create systematic national and global data sets of processed satellite imagery. An important application of these data is the derivation of large area (i.e. multi-scene) land cover products. Such products, ho...

  12. The Change in the area of various land covers on the Tibetan Plateau during 1957-2015

    NASA Astrophysics Data System (ADS)

    Cuo, Lan; Zhang, Yongxin

    2017-04-01

    With average elevation of 4000 m and area of 2.5×106 km2, Tibetan Plateau hosts various fragile ecosystems such as perennial alpine meadow, perennial alpine steppe, temperate evergreen needleleaf trees, temperate deciduous trees, temperate shrub grassland, and barely vegetated desert. Perennial alpine meadow and steppe are the two dominant vegetation types on the heartland of the plateau. MODIS Leaf Area Index (LAI) ranges from 0 to 2 in most part of the plateau. With climate change, these ecosystems are expected to undergo alteration. This study uses a dynamic vegetation model - Lund-Potsdam-Jena (LPJ) to investigate the change of the barely vegetated area and other vegetation types caused by climate change during 1957-2015 on the Tibetan Plateau. Model simulated foliage projective coverage (FPC) and plant functional types (PFTs) are selected for the investigation. The model is evaluated first using both field surveyed land cover map and MODIS LAI images. Long term trends of vegetation FPC is examined. Decadal variations of vegetated and barely vegetated land are compared. The impacts of extreme precipitation, air temperature and CO2 on the expansion and contraction of barely vegetated and vegetated areas are shown. The study will identify the dominant climate factors in affecting the desert area in the region.

  13. Snow cover dynamics in Andean watersheds of Chile (32.0-39.5° S) during the years 2000-2016

    NASA Astrophysics Data System (ADS)

    Stehr, Alejandra; Aguayo, Mauricio

    2017-10-01

    Andean watersheds present important snowfall accumulation mainly during the winter, which melts during the spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, hydropower generation, urban water supplies and wildlife. In Chile, 25 % of the territory between the region of Valparaiso and Araucanía comprises areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, there is a lack of hydrological data of the Chilean Andes related to discharge, snow courses, and snow depths, which complicates the analysis of important hydrological processes (e.g. water availability). Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, such as the snow cover area (SCA) and snow cover dynamic (SCD). With regards to the foregoing questions, the objective of the study is to evaluate the spatiotemporal dynamics of the SCA at five watersheds (Aconcagua, Rapel, Maule, Biobío and Toltén) located in the Chilean Andes, between latitude 32.0 and 39.5° S, and to analyse its relationship with the precipitation regime/pattern and El Niño-Southern Oscillation (ENSO) events. Those watersheds were chosen because of their importance in terms of their number of inhabitants, and economic activities depending on water resources. The SCA area was obtained from MOD10A2 for the period 2000-2016, and the SCD was analysed through a number of statistical tests to explore observed trends. In order to verify the SCA for trend analysis, a validation of the MOD10A2 product was done, consisting of the comparison of snow presence predicted by MODIS with ground observations. Results indicate that there is an overall agreement of 81 to 98 % between SCA determined from ground observations and MOD10A2, showing that the MODIS snow product can be taken as a feasible remote sensing tool for SCA estimation in

  14. Remote sensing and GIS-based integrated analysis of land cover change in Duzce plain and its surroundings (north western Turkey).

    PubMed

    Ikiel, Cercis; Ustaoglu, Beyza; Dutucu, Ayse Atalay; Kilic, Derya Evrim

    2013-02-01

    The aim of this study is to research natural land cover change caused by the permanent effects of human activities in Duzce plain and its surroundings, and to determine the current status of the land cover. For this purpose, two Landsat TM images were used in the study for the years 1987 and 2010. These images are analysed by using data image processing techniques in ERDAS Imagine©10.0 and ArcGIS©10.0 software. Land cover change nomenclature is classified according to the Coordination of Information on the Environment Level 2 Classification (1--urban fabric, 2--industrial, commercial and transport units, 3--heterogeneous agricultural areas, 4--forests, and 5--inland wetlands). Furthermore, the image analysis results are confirmed by the field research. According to the results, a decrease of 33.5 % was recorded in forest areas from 24,840.7 to 16,529.0 ha; an increase of 11.2 % was recorded in heterogeneous agricultural areas from 47,702.7 to 53,051.7 ha. Natural vegetation, which is the large part of land cover in the research area, has been changing rapidly because of rapid urbanisation and agricultural activities. As a result, it is concluded that significant changes have occurred on the natural land cover between the years 1987 and 2010 in the Duzce plain and its surroundings.

  15. Emerging factors associated with the decline of a gray fox population and multi-scale land cover associations of mesopredators in the Chicago metropolitan area.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willingham, Alison N.; /Ohio State U.

    Statewide surveys of furbearers in Illinois indicate gray (Urocyon cinereoargenteus) and red (Vulpes vulpes) foxes have experienced substantial declines in relative abundance, whereas other species such as raccoons (Procyon lotor) and coyotes (Canis latrans) have exhibited dramatic increases during the same time period. The cause of the declines of gray and red foxes has not been identified, and the current status of gray foxes remains uncertain. Therefore, I conducted a large-scale predator survey and tracked radiocollared gray foxes from 2004 to 2007 in order to determine the distribution, survival, cause-specific mortality sources and land cover associations of gray foxes inmore » an urbanized region of northeastern Illinois, and examined the relationships between the occurrence of gray fox and the presence other species of mesopredators, specifically coyotes and raccoons. Although generalist mesopredators are common and can reach high densities in many urban areas their urban ecology is poorly understood due to their secretive nature and wariness of humans. Understanding how mesopredators utilize urbanized landscapes can be useful in the management and control of disease outbreaks, mitigation of nuisance wildlife issues, and gaining insight into how mesopredators shape wildlife communities in highly fragmented areas. I examined habitat associations of raccoons, opossums (Didelphis virginiana), domestic cats (Felis catus), coyotes, foxes (gray and red), and striped skunks (Mephitis mephitis) at multiple spatial scales in an urban environment. Gray fox occurrence was rare and widely dispersed, and survival estimates were similar to other studies. Gray fox occurrence was negatively associated with natural and semi-natural land cover types. Fox home range size increased with increasing urban development suggesting that foxes may be negatively influenced by urbanization. Gray fox occurrence was not associated with coyote or raccoon presence. However, spatial

  16. Assessment of land use/land cover dynamics of Tso Moriri Lake, a Ramsar site in India.

    PubMed

    Gupta, Sharad Kumar; Shukla, Dericks Praise

    2016-12-01

    Wetlands accounts for 6% area of the Earth's land cover and nearly 17% of the Hindu Kush Himalayan region. They are of utmost importance to climate dynamics and are critical links between terrestrial and aquatic ecosystems. Despite the need of high attention towards conserving and managing wetland resources, mapping them is a least practiced activity. This study shows the temporal change in land use and land cover pattern of Tso Moriri Lake, the highest altitude lake in India and designated as Ramsar site in year 2002, using multi-sensor and multi-date imagery. Due to change in hydro-meteorological conditions of the region, this lake area has been reduced. Since the lake recharge is dependent on snowmelt, hence change in climatic conditions (less snowfall in winters), to a certain extent, is also responsible for the decrease in water level and water spread of the lake. The result shows that the lake area has reduced approximately 2 km 2 in the last 15 years, and also, agriculture, grasslands, and vegetation cover have increased to a significant extent. Agricultural land and grasslands have doubled while the vegetation cover has increased more than six times, showing the coupled effect of climate change and anthropogenic activities. Trend of temperature and precipitation corroborates the effects of climate change in this region.

  17. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga.

    PubMed

    Ribeiro, Kelly; Sousa-Neto, Eráclito Rodrigues de; Carvalho, João Andrade de; Sousa Lima, José Romualdo de; Menezes, Rômulo Simões Cezar; Duarte-Neto, Paulo José; da Silva Guerra, Glauce; Ometto, Jean Pierre Henry Baulbaud

    2016-11-15

    The Caatinga biome covers an area of 844,453km(2) and has enormous endemic biodiversity, with unique characteristics that make it an exclusive Brazilian biome. It falls within the earth's tropical zone and is one of the several important ecoregions of Brazil. This biome undergoes natural lengthy periods of drought that cause losses in crop and livestock productivity, having a severe impact on the population. Due to the vulnerability of this ecosystem to climate change, livestock has emerged as the main livelihood of the rural population, being the precursor of the replacement of native vegetation by grazing areas. This study aimed to measure GHG emissions from two different soil covers: native forest (Caatinga) and pasture in the municipality of São João, Pernambuco State, in the years 2013 and 2014. GHG measurements were taken by using static chamber techniques in both soil covers. According to a previous search, so far, this is the first study measuring GHG emissions using the static chamber in the Caatinga biome. N2O emissions ranged from -1.0 to 4.2mgm(-2)d(-1) and -1.22 to 3.4mgm(-2)d(-1) in the pasture and Caatinga, respectively, and they did not significantly differ from each other. Emissions were significantly higher during dry seasons. Carbon dioxide ranged from -1.1 to 14.1 and 1.2 to 15.8gm(-2)d(-1) in the pasture and Caatinga, respectively. CO2 emissions were higher in the Caatinga in 2013, and they were significantly influenced by soil temperature, showing an inverse relation. Methane emission ranged from 6.6 to 6.8 and -6.0 to 4.8mgm(-2)d(-1) in the pasture and Caatinga, respectively, and was significantly higher only in the Caatinga in the rainy season of 2014. Soil gas fluxes seemed to be influenced by climatic and edaphic conditions as well as by soil cover in the Caatinga biome. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing

    PubMed Central

    Zanon, Marco; Davis, Basil A. S.; Marquer, Laurent; Brewer, Simon; Kaplan, Jed O.

    2018-01-01

    Characterization of land cover change in the past is fundamental to understand the evolution and present state of the Earth system, the amount of carbon and nutrient stocks in terrestrial ecosystems, and the role played by land-atmosphere interactions in influencing climate. The estimation of land cover changes using palynology is a mature field, as thousands of sites in Europe have been investigated over the last century. Nonetheless, a quantitative land cover reconstruction at a continental scale has been largely missing. Here, we present a series of maps detailing the evolution of European forest cover during last 12,000 years. Our reconstructions are based on the Modern Analog Technique (MAT): a calibration dataset is built by coupling modern pollen samples with the corresponding satellite-based forest-cover data. Fossil reconstructions are then performed by assigning to every fossil sample the average forest cover of its closest modern analogs. The occurrence of fossil pollen assemblages with no counterparts in modern vegetation represents a known limit of analog-based methods. To lessen the influence of no-analog situations, pollen taxa were converted into plant functional types prior to running the MAT algorithm. We then interpolate site-specific reconstructions for each timeslice using a four-dimensional gridding procedure to create continuous gridded maps at a continental scale. The performance of the MAT is compared against methodologically independent forest-cover reconstructions produced using the REVEALS method. MAT and REVEALS estimates are most of the time in good agreement at a trend level, yet MAT regularly underestimates the occurrence of densely forested situations, requiring the application of a bias correction procedure. The calibrated MAT-based maps draw a coherent picture of the establishment of forests in Europe in the Early Holocene with the greatest forest-cover fractions reconstructed between ∼8,500 and 6,000 calibrated years BP. This

  19. European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing.

    PubMed

    Zanon, Marco; Davis, Basil A S; Marquer, Laurent; Brewer, Simon; Kaplan, Jed O

    2018-01-01

    Characterization of land cover change in the past is fundamental to understand the evolution and present state of the Earth system, the amount of carbon and nutrient stocks in terrestrial ecosystems, and the role played by land-atmosphere interactions in influencing climate. The estimation of land cover changes using palynology is a mature field, as thousands of sites in Europe have been investigated over the last century. Nonetheless, a quantitative land cover reconstruction at a continental scale has been largely missing. Here, we present a series of maps detailing the evolution of European forest cover during last 12,000 years. Our reconstructions are based on the Modern Analog Technique (MAT): a calibration dataset is built by coupling modern pollen samples with the corresponding satellite-based forest-cover data. Fossil reconstructions are then performed by assigning to every fossil sample the average forest cover of its closest modern analogs. The occurrence of fossil pollen assemblages with no counterparts in modern vegetation represents a known limit of analog-based methods. To lessen the influence of no-analog situations, pollen taxa were converted into plant functional types prior to running the MAT algorithm. We then interpolate site-specific reconstructions for each timeslice using a four-dimensional gridding procedure to create continuous gridded maps at a continental scale. The performance of the MAT is compared against methodologically independent forest-cover reconstructions produced using the REVEALS method. MAT and REVEALS estimates are most of the time in good agreement at a trend level, yet MAT regularly underestimates the occurrence of densely forested situations, requiring the application of a bias correction procedure. The calibrated MAT-based maps draw a coherent picture of the establishment of forests in Europe in the Early Holocene with the greatest forest-cover fractions reconstructed between ∼8,500 and 6,000 calibrated years BP. This

  20. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem

    PubMed Central

    Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems. PMID:29624606

  1. Urban heat island impacts on plant phenology: intra-urban variability and response to land cover

    NASA Astrophysics Data System (ADS)

    Zipper, Samuel C.; Schatz, Jason; Singh, Aditya; Kucharik, Christopher J.; Townsend, Philip A.; Loheide, Steven P., II

    2016-05-01

    Despite documented intra-urban heterogeneity in the urban heat island (UHI) effect, little is known about spatial or temporal variability in plant response to the UHI. Using an automated temperature sensor network in conjunction with Landsat-derived remotely sensed estimates of start/end of the growing season, we investigate the impacts of the UHI on plant phenology in the city of Madison WI (USA) for the 2012-2014 growing seasons. Median urban growing season length (GSL) estimated from temperature sensors is ˜5 d longer than surrounding rural areas, and UHI impacts on GSL are relatively consistent from year-to-year. Parks within urban areas experience a subdued expression of GSL lengthening resulting from interactions between the UHI and a park cool island effect. Across all growing seasons, impervious cover in the area surrounding each temperature sensor explains >50% of observed variability in phenology. Comparisons between long-term estimates of annual mean phenological timing, derived from remote sensing, and temperature-based estimates of individual growing seasons show no relationship at the individual sensor level. The magnitude of disagreement between temperature-based and remotely sensed phenology is a function of impervious and grass cover surrounding the sensor, suggesting that realized GSL is controlled by both local land cover and micrometeorological conditions.

  2. A prototype for automation of land-cover products from Landsat Surface Reflectance Data Records

    NASA Astrophysics Data System (ADS)

    Rover, J.; Goldhaber, M. B.; Steinwand, D.; Nelson, K.; Coan, M.; Wylie, B. K.; Dahal, D.; Wika, S.; Quenzer, R.

    2014-12-01

    Landsat data records of surface reflectance provide a three-decade history of land surface processes. Due to the vast number of these archived records, development of innovative approaches for automated data mining and information retrieval were necessary. Recently, we created a prototype utilizing open source software libraries for automatically generating annual Anderson Level 1 land cover maps and information products from data acquired by the Landsat Mission for the years 1984 to 2013. The automated prototype was applied to two target areas in northwestern and east-central North Dakota, USA. The approach required the National Land Cover Database (NLCD) and two user-input target acquisition year-days. The Landsat archive was mined for scenes acquired within a 100-day window surrounding these target dates, and then cloud-free pixels where chosen closest to the specified target acquisition dates. The selected pixels were then composited before completing an unsupervised classification using the NLCD. Pixels unchanged in pairs of the NLCD were used for training decision tree models in an iterative process refined with model confidence measures. The decision tree models were applied to the Landsat composites to generate a yearly land cover map and related information products. Results for the target areas captured changes associated with the recent expansion of oil shale production and agriculture driven by economics and policy, such as the increase in biofuel production and reduction in Conservation Reserve Program. Changes in agriculture, grasslands, and surface water reflect the local hydrological conditions that occurred during the 29-year span. Future enhancements considered for this prototype include a web-based client, ancillary spatial datasets, trends and clustering algorithms, and the forecasting of future land cover.

  3. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in Grassland establishment

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.; Ball, L.O.; Hyberg, S.

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat-fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area of

  4. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment

    USGS Publications Warehouse

    Milchunas, Daniel G.; Vandever, Mark W.; Ball, Leonard O.; Hyberg, Skip

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat–fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area

  5. [Difference of Karst Carbon Sink Under Different Land Use and Land Cover Areas in Dry Season].

    PubMed

    Zhao, Rui-yi; Liang, Zuo-bing; Wang, Zun-bo; Yu, Zheng-liang; Jiang, Ze-li

    2015-05-01

    In order to identify the distinction of soil CO2 consumed by carbonate rock dissolution, Baishuwan spring, Lanhuagou spring and Hougou spring were selected as objects to monitor the hydrochemistry from November 2013 to May 2014. The results showed that the highest HCO3- concentration was observed in Baishuwan spring which is covered by pine forest, while the lowest HCO3- concentration was observed in Hougou spring which is mainly covered by cultivated land. In Baishuwan spring, HCO3- was mainly derived from carbonic acid dissolving carbonate rock and the molar ratio between Ca(2+) + Mg2+ and HCO3- was close to 0. 5; while the molar ratio between Ca(2+) + Mg2+ and HCO3- exceeded 0.5 because the carbonate rock in Lanhuagou spring and Hougou spring was mainly dissolved by nitric acid and sulfuric acid. Because of the input of litter and the fact that gas-permeability of soil was limited in Baishuwan spring catchment, most of soil CO2 was dissolved in infiltrated water and reacted with bedrock. However, in Lanhuagou spring catchment and Hougou spring catchment, porous soil made soil CO2 easier to return to the atmosphere in the form of soil respiration. Therefore, in order to accurately estimate karst carbon sink, it was required to clarify the distinction of CO2 consumption by carbonate rock dissolution under different land use and land cover areas.

  6. Land cover changes in central Sonora Mexico

    Treesearch

    Diego Valdez-Zamudio; Alejandro Castellanos-Villegas; Stuart Marsh

    2000-01-01

    Remote sensing techniques have been demonstrated to be very effective tools to help detect, analyze, and evaluate land cover changes in natural areas of the world. Changes in land cover can generally be attributed to either natural or anthropogenic forces. Multitemporal satellite imagery and airborne videography were used to detect, analyze, and evaluate land cover...

  7. The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaoliang; Zhou, Yuyu; Liu, Yaling

    Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interactions within the terrestrial ecosystem model (TEM). We found that intensive LULCC occurred in the conterminous United States from 1700 to 2005. More than 3 million km2 of forest, grassland and shrublands were converted into agricultural lands, which caused 10,607 Tg C release from land ecosystems to atmosphere. PAs had experiencedmore » little LULCC as they were generally established in the 20th century after most of the agricultural expansion had occurred. PAs initially acted as a carbon source due to land use legacies, but their accumulated carbon budget switched to a carbon sink in the 1960s, sequestering an estimated 1,642 Tg C over 1700–2005, or 13.4% of carbon losses in non-PAs. We also find that PAs maintain larger carbon stocks and continue sequestering carbon in recent years (2001–2005), but at a lower rate due to increased heterotrophic respiration as well as lower productivity associated to aging ecosystems. It is essential to continue efforts to maintain resilient, biodiverse ecosystems and avoid large-scale disturbances that would release large amounts of carbon in PAs.« less

  8. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992-2015)

    NASA Astrophysics Data System (ADS)

    Li, Wei; MacBean, Natasha; Ciais, Philippe; Defourny, Pierre; Lamarche, Céline; Bontemps, Sophie; Houghton, Richard A.; Peng, Shushi

    2018-01-01

    Land-use and land-cover change (LULCC) impacts local energy and water balance and contributes on global scale to a net carbon emission to the atmosphere. The newly released annual ESA CCI (climate change initiative) land cover maps provide continuous land cover changes at 300 m resolution from 1992 to 2015, and can be used in land surface models (LSMs) to simulate LULCC effects on carbon stocks and on surface energy budgets. Here we investigate the absolute areas and gross and net changes in different plant functional types (PFTs) derived from ESA CCI products. The results are compared with other datasets. Global areas of forest, cropland and grassland PFTs from ESA are 30.4, 19.3 and 35.7 million km2 in the year 2000. The global forest area is lower than that from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) or Houghton and Nassikas (2017) while cropland area is higher than LUH2v2h (Hurtt et al., 2011), in which cropland area is from HYDE 3.2 (Klein Goldewijk et al., 2016). Gross forest loss and gain during 1992-2015 are 1.5 and 0.9 million km2 respectively, resulting in a net forest loss of 0.6 million km2, mainly occurring in South and Central America. The magnitudes of gross changes in forest, cropland and grassland PFTs in the ESA CCI are smaller than those in other datasets. The magnitude of global net cropland gain for the whole period is consistent with HYDE 3.2 (Klein Goldewijk et al., 2016), but most of the increases happened before 2004 in ESA and after 2007 in HYDE 3.2. Brazil, Bolivia and Indonesia are the countries with the largest net forest loss from 1992 to 2015, and the decreased areas are generally consistent with those from Hansen et al. (2013) based on Landsat 30 m resolution images. Despite discrepancies compared to other datasets, and uncertainties in converting into PFTs, the new ESA CCI products provide the first detailed long-term time series of land-cover change and can be implemented in LSMs to characterize recent carbon dynamics

  9. Effects of tourism and globalization on land cover and the influence on the quality of life of Paphos area in Cyprus

    NASA Astrophysics Data System (ADS)

    Italos, Chrysostomos; Akylas, Evangelos; Hadjimitsis, Diofantos G.

    2014-08-01

    Since 1960 most of the coastal area cites across the Mediterranean Sea concentrates people due mass immigration of people from the rural to urban areas. The extensive tourism development especially across the coastal areas, create demand of infrastructures and new work positions and intensive pressure to the environment. The new spirit of the globalization creates movability of people and goods around the word. The free transfer of people from countries with big population and low economical wealth, which are moved to areas where they can work. All the above generate demands of labor and Paphos is one of these areas where during the last decades was transformed from a small agriculture village in one excellent tourist destination. Across the coastal areas big tourist infrastructure was built and lot of different people travel from all areas around the word especially during the summer months. All these generate continuous changes to the environment, to the people and the society. The globalization of the universe commerce and the free transfer of goods and people modify the community stratification. The inflow of agricultures products from third countries reduces the local production and generates degradation and desertification of the rural areas. The periodical variation of the population of the area during the summer and winter periods affect to the environment. The increment demand of sources (water, energy and food) during the summer months pressurize the coastal strip area. By estimating a ratio of inflows by the outflows of goods, people and services of the study area and a ratio of the tourists by the local population, a general index can by arise which will clarify the effects on the environment on the study area. This paper presents the results obtained by this study by examining the effects of tourism on land cover and effects on quality of life for the Paphos area in Cyprus. The authors explores the potential of blending in the sustainability study the

  10. Land cover and climate change in Koshi River Basin, the Third Pole

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Gao, J. G.; Liu, L.; Nie, Y.; Wang, Z.; Yang, X.

    2011-12-01

    Koshi River Basin (KRB) is an important part of trans-boundary river basins in the Himalaya region, shared between China and Nepal. The Koshi River, originating from the snowy mountains, glaciers and permafrost melt in the Tibetan Plateau and the northern areas of Nepal, with heavily glaciated and snow covered catchments, has three sub-tributaries. Total area is 53955.57 km2. It is being under the risk of glacier lakes outburst and extreme climate events in many place in the KRB. The basin contains many important ecosystems and protected areas which provide a wide range of biodiversity and related ecosystem services, so it sustains different kinds of livelihood styles. Air temperature data from 1901 to 2009 with spatial resolution of 0.5° were obtained by the Climatic Research Unit of the University of East Anglia, named as CRU-TS 3.1. The change significant was inspected by Mann-Kendall method. Vegetation coverage is calculated by Spot vegetation dataset provided by ten day global syntheses data, which produced by VITO.The land cover data was provided by ICIMOD and IGSNRR. Results show that:1. The main land-cover types are alpine meadow in northern slope of Mt. Himalaya, while main types in southern slope of the mountain are forest and cultivated land. Snow and ice are broadly distributed on the boundary between two countries. 2. From the data, we found that there happened a little change for vegetation coverage in most part of the KRB. But the regions with change is striped in a north-south orientation, more interesting phenomenon is that, the areas vegetation increasing is distributed along the river, that decreasing is mountain ridge. 3. The mean temperature in the KRB is increasing in recent more than 100 years at a rate of 0.87 Celsius Degree per hundred of years, while annual precipitation is decreasing at a rate of 120.9 mm pre hundred years at the same period and fluctuation range is gradually widened. The change rate of temperature ranges from 0.4 to 0

  11. An assessment of forest cover trends in South and North Korea, from 1980 to 2010.

    PubMed

    Engler, Robin; Teplyakov, Victor; Adams, Jonathan M

    2014-01-01

    It is generally believed that forest cover in North Korea has undergone a substantial decrease since 1980, while in South Korea, forest cover has remained relatively static during that same period of time. The United Nations Food and Agriculture Organization (FAO) Forest Resources Assessments--based on the reported forest inventories from North and South Korea--suggest a major forest cover decrease in North Korea, but only a slight decrease in South Korea during the last 30 years. In this study, we seek to check and validate those assessments by comparing them to independently derived forest cover maps compiled for three time intervals between 1990 and 2010, as well as to provide a spatially explicit view of forest cover change in the Korean Peninsula since the 1990s. We extracted tree cover data for the Korean Peninsula from existing global datasets derived from satellite imagery. Our estimates, while qualitatively supporting the FAO results, show that North Korea has lost a large number of densely forested areas, and thus in this sense has suffered heavier forest loss than the FAO assessment suggests. Given the limited time interval studied in our assessment, the overall forest loss from North Korea during the whole span of time since 1980 may have been even heavier than in our estimate. For South Korea, our results indicate that the forest cover has remained relatively stable at the national level, but that important variability in forest cover evolution exists at the regional level: While the northern and western provinces show an overall decrease in forested areas, large areas in the southeastern part of the country have increased their forest cover.

  12. Automated Burned Area Delineation Using IRS AWiFS satellite data

    NASA Astrophysics Data System (ADS)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

    2014-12-01

    India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi

  13. Multispectral LiDAR Data for Land Cover Classification of Urban Areas

    PubMed Central

    Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed

    2017-01-01

    Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy. PMID:28445432

  14. Multispectral LiDAR Data for Land Cover Classification of Urban Areas.

    PubMed

    Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed

    2017-04-26

    Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy.

  15. Modeling percent tree canopy cover: a pilot study

    Treesearch

    John W. Coulston; Gretchen G. Moisen; Barry T. Wilson; Mark V. Finco; Warren B. Cohen; C. Kenneth Brewer

    2012-01-01

    Tree canopy cover is a fundamental component of the landscape, and the amount of cover influences fire behavior, air pollution mitigation, and carbon storage. As such, efforts to empirically model percent tree canopy cover across the United States are a critical area of research. The 2001 national-scale canopy cover modeling and mapping effort was completed in 2006,...

  16. Effect of scrub oak and associated ground cover on soil moisture

    Treesearch

    Arthur R. Eschner

    1960-01-01

    Planting experiments have been conducted for the past 10 years in the scrub oak type at the Delaware-Lehigh Experimental Forest in eastern Pennsylvania. The object of these experiments is to find a practical method of establishing a high forest of greater value than the area's present cover. In the course of these studies it was suggested that soil moisture might...

  17. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Treesearch

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  18. A Quantitative Method to Identify Lithology Beneath Cover

    NASA Astrophysics Data System (ADS)

    Gettings, M. E.

    2008-12-01

    Geophysical terranes (map areas of similar potential field data response) can be used in the estimation of geological map units beneath cover (bedrock, alluvium, or tectonic block). Potential field data over nearby bedrock terranes defines "candidate terranes". Geophysical anomaly dimensions, shapes, amplitudes, trends/structural grain, and fractal measures yield a vector of measures characterizing the terrane. To compare candidate terranes fields with those for covered areas, the effect of depth of cover must be taken into account. Gravity anomaly data yields depth estimates by which the aeromagnetic data of candidate terranes are then upward continued. Comparison of characteristics of the upward continued fields from the candidate terranes to those of covered areas rank the candidates. Because of signal loss in upward continuation and overlap of physical properties, the vectors of measures for the candidate terranes are usually not unique. Possibility theory offers a relatively objective and robust method that can be used to rank terrane types that includes uncertainty. The strategy is to prepare membership functions for each measure of each candidate terrane and the covered area, based on observed values and degree of knowledge, and then form the fuzzy-logical combination of these to estimate the possibility and its uncertainty for each candidate terrane. Membership functions include uncertainty by the degree of membership for various possibility values. With no other information, uncertainty is based on information content from survey specifications and geologic features dimensions. Geologic data can also be included, such as structural trends, proximity, and tectonic history. Little knowledge implies wide membership functions; perfect knowledge, a delta function. This and the combination rules in fuzzy logic yield a robust estimation method. An uncertain membership function of a characteristic contributes much less to the possibility than a precise one. The

  19. Intercomparison of Satellite-Derived Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Tait, Andrew B.; Foster, James L.; Chang, Alfred T. C.; Allen, Milan

    1999-01-01

    In anticipation of the launch of the Earth Observing System (EOS) Terra, and the PM-1 spacecraft in 1999 and 2000, respectively, efforts are ongoing to determine errors of satellite-derived snow-cover maps. EOS Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer-E (AMSR-E) snow-cover products will be produced. For this study we compare snow maps covering the same study area acquired from different sensors using different snow- mapping algorithms. Four locations are studied: 1) southern Saskatchewan; 2) a part of New England (New Hampshire, Vermont and Massachusetts) and eastern New York; 3) central Idaho and western Montana; and 4) parts of North and South Dakota. Snow maps were produced using a prototype MODIS snow-mapping algorithm used on Landsat Thematic Mapper (TM) scenes of each study area at 30-m and when the TM data were degraded to 1 -km resolution. National Operational Hydrologic Remote Sensing Center (NOHRSC) 1 -km resolution snow maps were also used, as were snow maps derived from 1/2 deg. x 1/2 deg. resolution Special Sensor Microwave Imager (SSM/1) data. A land-cover map derived from the International Geosphere-Biosphere Program (IGBP) land-cover map of North America was also registered to the scenes. The TM, NOHRSC and SSM/I snow maps, and land-cover maps were compared digitally. In most cases, TM-derived maps show less snow cover than the NOHRSC and SSM/I maps because areas of incomplete snow cover in forests (e.g., tree canopies, branches and trunks) are seen in the TM data, but not in the coarser-resolution maps. The snow maps generally agree with respect to the spatial variability of the snow cover. The 30-m resolution TM data provide the most accurate snow maps, and are thus used as the baseline for comparison with the other maps. Comparisons show that the percent change in amount of snow cover relative to the 3 0-m resolution TM maps is lowest using the TM I -km resolution maps, ranging from 0 to 40

  20. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) dramatically changes shrub steppe ecosystems in the Northern Great Basin, United States.Current-season cheatgrass location and percent cover are difficult to estimate rapidly.We explain the development of a near-real-time cheatgrass percent cover dataset and map in the Northern Great Basin for the current year (2015), display the current year’s map, provide analysis of the map, and provide a website link to download the map (as a PDF) and the associated dataset.The near-real-time cheatgrass percent cover dataset and map were consistent with non-expedited, historical cheatgrass percent cover datasets and maps.Having cheatgrass maps available mid-summer can help land managers, policy makers, and Geographic Information Systems personnel as they work to protect socially relevant areas such as critical wildlife habitats.

  1. Protection reduces loss of natural land-cover at sites of conservation importance across Africa.

    PubMed

    Beresford, Alison E; Eshiamwata, George W; Donald, Paul F; Balmford, Andrew; Bertzky, Bastian; Brink, Andreas B; Fishpool, Lincoln D C; Mayaux, Philippe; Phalan, Ben; Simonetti, Dario; Buchanan, Graeme M

    2013-01-01

    There is an emerging consensus that protected areas are key in reducing adverse land-cover change, but their efficacy remains difficult to quantify. Many previous assessments of protected area effectiveness have compared changes between sets of protected and unprotected sites that differ systematically in other potentially confounding respects (e.g. altitude, accessibility), have considered only forest loss or changes at single sites, or have analysed changes derived from land-cover data of low spatial resolution. We assessed the effectiveness of protection in reducing land-cover change in Important Bird Areas (IBAs) across Africa using a dedicated visual interpretation of higher resolution satellite imagery. We compared rates of change in natural land-cover over a c. 20-year period from around 1990 at a large number of points across 45 protected IBAs to those from 48 unprotected IBAs. A matching algorithm was used to select sample points to control for potentially confounding differences between protected and unprotected IBAs. The rate of loss of natural land-cover at sample points within protected IBAs was just 42% of that at matched points in unprotected IBAs. Conversion was especially marked in forests, but protection reduced rates of forest loss by a similar relative amount. Rates of conversion increased from the centre to the edges of both protected and unprotected IBAs, but rates of loss in 20-km buffer zones surrounding protected IBAs and unprotected IBAs were similar, with no evidence of displacement of conversion from within protected areas to their immediate surrounds (leakage).

  2. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  3. Land Cover Changes between 1974 and 2008 in Ulaanbaatar, Mongolia

    NASA Astrophysics Data System (ADS)

    Bagan, H.; Kinoshita, T.; Yamagata, Y.

    2009-12-01

    In the past 35 years, a combination of human actions and natural causes has led to a significant decline in land quality in Ulaanbaatar, the capital city of Mongolia. Human causes include changes in conventional livestock husbandry, overgrazing, and exploitation for traditional uses. Natural causes include a harsh, dry climate, short growing seasons, and thin soils. Since 1995, many herders left the countryside to come to the city in search of new opportunities, the Ger areas (wooden houses and Ger) have expended, resulting in urban sprawl. Since urbanization usually advance in an uncontrolled or unorganized way in Mongolia, they have destructive effects on the environment, particularly on basic ecosystems, wildlife habitat, and pollution of natural resources (e.g. air and water). Land use and land cover changes occurred in the region are investigated using satellite images acquired in 1974 (Landsat MSS), 1990 (Landsat TM), 2000 (ASTER), 2006 (IKONOS), and 2008 (ALOS). Pre-processing of all data included orthorectification and registration to precisely geolocated imagery. In the detection of changes, classification approaches were employed using a self-organizing map (SOM) neural network classifier (Fig. 1a) and new developed subspace classification method (Fig. 1b). From the time-series classified remote sensing images, we extract the land cover and land cover temporal changes from 1974 to 2008. The results show some important findings regarding the size and nature of the change occurred in the study area. A significant amount of steppe and forest lands have been destroyed or replaced by residential areas; as a result, the total area of urban region doubled in the 35-year period with a higher urbanization rate between 2000 and 2008. Key words: Environment; Land Cover; Urban; Change detection; Classification. References Chinbat,B., Bayantur,M., & Amarsaikhan.D. (2006). Investigation of the internal structure changes of ulaanbaatar city using RS and GIS. ISPRS

  4. The Thermal Collector With Varied Glass Covers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luminosu, I.; Pop, N.

    2010-08-04

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collectionmore » area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.« less

  5. The Thermal Collector With Varied Glass Covers

    NASA Astrophysics Data System (ADS)

    Luminosu, I.; Pop, N.

    2010-08-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  6. MODIS-based Snow Cover Variability of the Upper River Grande Basin

    NASA Astrophysics Data System (ADS)

    Yu, B.; Wang, X.; Xie, H.

    2007-12-01

    Snow cover and its spring melting in the Upper Rio Grande Basin provides a major water source for the Upper to Middle Rio Grande valley and Elephant Butte Reservoir. Thus understanding the snowpack and its variability in the context of global climate change is crucial to the sustainable water resources for the region. MODIS instruments (on Terra and Aqua) have provided time series of snow cover products since 2000, but suffering with cloud contaminations. In this study, we evaluated four newly developed cloudless snow cover products (less than 10%) and four standard products: daily (MOD10A1, MYD10A1) and 8-day (MOD10A2, MYD10A2), in comparison with in situ Snowpack Telemetry (SNOTEL) measurements for the hydrological year 2003-2004. The four new products are daily composite of Terra and Aqua (MODMYD10DC), multi-day composites of Terra (MOD10MC), Aqua (MYD10MC), and Terra and Aqua (MODMYD10MC). The standard daily and 8-day products can classify land correctly, but had fairly low accuracy in snow classification due to cloud contamination (a average of 39.4% for Terra and 45% for Aqua in the year 2003-2004). All the new multi-day composite products tended to have high accuracy in classifying both snow and land (over 90%), as the cloud cover has been reduced to less than 10% (~5% for the year) under the new algorithm . This result is consistent with a previous study in the Xinjiang area, China (Wang and Xie, 2007). Therefore, MOD10MC (before the Aqua data available) and MODMYD10MC products are used to get the mean snow cover of the Upper Rio Grande Basin from 2000 to 2007. The snow depletion curve derived from the new cloud-free snow cover map will be used to examine its effect on stream discharge.

  7. Modeled impact of anthropogenic land cover change on climate

    USGS Publications Warehouse

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  8. Consequences of land use and land cover change

    USGS Publications Warehouse

    Slonecker, E. Terrence; Barnes, Christopher; Karstensen, Krista; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    The U.S. Geological Survey (USGS) Climate and Land Use Change Mission Area is one of seven USGS mission areas that focuses on making substantial scientific "...contributions to understanding how Earth systems interact, respond to, and cause global change". Using satellite and other remotely sensed data, USGS scientists monitor patterns of land cover change over space and time at regional, national, and global scales. These data are analyzed to understand the causes and consequences of changing land cover, such as economic impacts, effects on water quality and availability, the spread of invasive species, habitats and biodiversity, carbon fluctuations, and climate variability. USGS scientists are among the leaders in the study of land cover, which is a term that generally refers to the vegetation and artificial structures that cover the land surface. Examples of land cover include forests, grasslands, wetlands, water, crops, and buildings. Land use involves human activities that take place on the land. For example, "grass" is a land cover, whereas pasture and recreational parks are land uses that produce a cover of grass.

  9. Global Impacts of Long-Term Land Cover Changes Within China's Densely Populated Rural Regions

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2006-12-01

    Long-term changes in land cover are usually investigated in terms of large-scale change processes such as urban expansion, deforestation and land conversion to agriculture. Yet China's densely populated agricultural regions, which cover more than 2 million square kilometers of Monsoon Asia, have been transformed profoundly over the past fifty years by fine-scale changes in land cover caused by unprecedented changes in population, technology and social conditions. Using a regional sampling and upscaling design coupled with high-resolution landscape change measurements at five field sites, we investigated long-term changes in land cover and ecological processes, circa 1945 to 2002, within and across China's densely populated agricultural regions. As expected, the construction of buildings and roads increased impervious surface area over time, but the total net increase was surprising, being similar in magnitude to the total current extent of China's cities. Agricultural land area declined over the same period, while tree cover increased, by about 10%, driven by tree planting and regrowth around new buildings, the introduction of perennial agriculture, improved forestry, and declines in annual crop cultivation. Though changes in impervious surface areas were closely related to changes in population density, long-term changes in agricultural land and tree cover were unrelated to populated density and required explanation by more complex models with strong regional and biophysical components. Moreover, most of these changes occurred primarily at fine spatial scales (< 30 m), under the threshold for conventional global and regional land cover change measurements. Given that these changes in built structures and vegetation cover have the potential to contribute substantially to regional and global changes in biogeochemistry, hydrology, and land-atmosphere interactions, future investigations of these changes and their impacts across Monsoon Asia would benefit from models

  10. [Monitoring on spatial and temporal changes of snow cover in the Heilongjiang Basin based on remote sensing].

    PubMed

    Yu, Ling-Xue; Zhang, Shu-Wen; Guan, Cong; Yan, Feng-Qin; Yang, Chao-Bin; Bu, Kun; Yang, Jiu-Chun; Chang, Li-Ping

    2014-09-01

    This paper extracted and verified the snow cover extent in Heilongjiang Basin from 2003 to 2012 based on MODIS Aqua and Terra data, and the seasonal and interannual variations of snow cover extent were analyzed. The result showed that the double-star composite data reduced the effects of clouds and the overall accuracy was more than 91%, which could meet the research requirements. There existed significant seasonal variation of snow cover extent. The snow cover area was almost zero in July and August while in January it expanded to the maximum, which accounted for more than 80% of the basin. According to the analysis on the interannual variability of snow cover, the maximum winter snow cover areas in 2003-2004 and 2009-2010 (>180 x 10(4) km2) were higher than that of 2011 (150 x 10(4) km2). Meanwhile, there were certain correlations between the interannual fluctuations of snow cover and the changes of average annual temperature and precipitation. The year with the low snow cover was corresponding to less annual rainfall and higher average temperature, and vice versa. The spring snow cover showed a decreasing trend from 2003 to 2012, which was closely linked with decreasing precipitation and increasing temperature.

  11. Applications systems verification and transfer project. Volume 5: Operational applications of satellite snow-cover observations, northwest United States

    NASA Technical Reports Server (NTRS)

    Dillard, J. P.

    1981-01-01

    The study objective was to develop or modify methods in an operational framework that would allow incorporation of satellite derived snow cover observations for prediction of snowmelt derived runoff. Data were reviewed and verified for five basins in the Pacific Northwest. The data were analyzed for up to a 6-year period ending July 1978, and in all cases cover a low, average, and high snow cover/runoff year. Cloud cover is a major problem in these springtime runoff analyses and have hampered data collection for periods of up to 52 days. Tree cover and terrain are sufficiently dense and rugged to have caused problems. The interpretation of snowlines from satellite data was compared with conventional ground truth data and tested in operational streamflow forecasting models. When the satellite snow-covered area (SCA) data are incorporated in the SSARR (Streamflow Synthesis and Reservoir Regulation) model, there is a definite but minor improvement.

  12. OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1983

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  13. Dimer covering and percolation frustration.

    PubMed

    Haji-Akbari, Amir; Haji-Akbari, Nasim; Ziff, Robert M

    2015-09-01

    Covering a graph or a lattice with nonoverlapping dimers is a problem that has received considerable interest in areas, such as discrete mathematics, statistical physics, chemistry, and materials science. Yet, the problem of percolation on dimer-covered lattices has received little attention. In particular, percolation on lattices that are fully covered by nonoverlapping dimers has not evidently been considered. Here, we propose a procedure for generating random dimer coverings of a given lattice. We then compute the bond percolation threshold on random and ordered coverings of the square and the triangular lattices on the remaining bonds connecting the dimers. We obtain p_{c}=0.367713(2) and p_{c}=0.235340(1) for random coverings of the square and the triangular lattices, respectively. We observe that the percolation frustration induced as a result of dimer covering is larger in the low-coordination-number square lattice. There is also no relationship between the existence of long-range order in a covering of the square lattice and its percolation threshold. In particular, an ordered covering of the square lattice, denoted by shifted covering in this paper, has an unusually low percolation threshold and is topologically identical to the triangular lattice. This is in contrast to the other ordered dimer coverings considered in this paper, which have higher percolation thresholds than the random covering. In the case of the triangular lattice, the percolation thresholds of the ordered and random coverings are very close, suggesting the lack of sensitivity of the percolation threshold to microscopic details of the covering in highly coordinated networks.

  14. Variations in the Arctic's multiyear sea ice cover: A neural network analysis of SMMR-SSM/I data, 1979-2004

    USGS Publications Warehouse

    Belchansky, G.I.; Douglas, David C.; Eremeev, V.A.; Platonov, Nikita G.

    2005-01-01

    A 26-year (1979-2004) observational record of January multiyear sea ice distributions, derived from neural network analysis of SMMR-SSM/I passive microwave satellite data, reveals dense and persistent cover in the central Arctic basin surrounded by expansive regions of highly fluctuating interannual cover. Following a decade of quasi equilibrium, precipitous declines in multiyear ice area commenced in 1989 when the Arctic Oscillation shifted to a pronounced positive phase. Although extensive survival of first-year ice during autumn 1996 fully replenished the area of multiyear ice, a subsequent and accelerated decline returned the depletion to record lows. The most dramatic multiyear sea ice declines occurred in the East Siberian, Chukchi, and Beaufort Seas.

  15. On the impact of snow cover on daytime pollution dispersion

    NASA Astrophysics Data System (ADS)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Hildebrand, P.; Rogers, F. A.; Cramer, J.; Schanot, A.

    A preliminary evaluation of the impact of snow cover on daytime pollutant dispersion conditions is made by using conceptual, scaling, and observational analyses. For uniform snow cover and synoptically unperturbed sunny conditions, observations indicate a considerate suppression of the surface sensible heat flux, the turbulence, and the development of the daytime atmospheric boundary layer (ABL) when compared to snow-free conditions. However, under conditions of non-uniform snow cover, as in urban areas, or associated with vegetated areas or bare ground patches, a milder effect on pollutant dispersion conditions would be expected. Observed concentrations of atmospheric particles within the ABL, and surface pollutant concentrations in urban areas, reflect the impact of snow cover on the modification of ABL characteristics.

  16. Continental-scale Sensitivity of Water Yield to Changes in Impervious Cover

    NASA Astrophysics Data System (ADS)

    Caldwell, P.; Sun, G.; McNulty, S.; Cohen, E.; Moore Myers, J.

    2012-12-01

    Projected land conversion from native forest, grassland, and shrubland to urban impervious cover will alter watershed water balances by reducing groundwater recharge and evapotranspiration, increasing surface runoff, and potentially altering regional weather patterns. These hydrologic changes have important ecohydrological implications to local watersheds, including stream channel habitat degradation and the loss of aquatic biodiversity. Many observational studies have evaluated the impact of urbanization on water yield in small catchments downstream of specific urban areas. However it is often difficult to separate the impact of impervious cover from other impacts of urbanization such as leaking water infrastructure, irrigation runoff, water supply withdrawals, and effluent discharge. In addition, the impact of impervious cover has not been evaluated at scales large enough to assess spatial differences in water yield sensitivity to changes in impervious cover. The objective of this study was to assess the sensitivity of water yield to impervious cover across the conterminous U.S., and to identify locations where water yield will be most impacted by future urbanization. We used the Water Supply Stress Index (WaSSI) model to simulate monthly water yield as impacted by impervious cover for the approximately 82,000 12-digit HUC watersheds across the conterminous U.S. WaSSI computed infiltration, surface runoff, soil moisture, and baseflow processes explicitly for ten vegetative land cover classes and impervious cover in each watershed using the 2006 National Land Cover Dataset estimates of impervious cover. Our results indicate that impervious cover has increased total water yield in urban areas (relative to native vegetation), and that the increase was most significant during the growing season. The proportion of stream flow that occurred as baseflow decreased, even though total water yield increased as a result of impervious cover. Water yield was most sensitive to

  17. Modeling Land Use/Cover Changes in an African Rural Landscape

    NASA Astrophysics Data System (ADS)

    Kamusoko, C.; Aniya, M.

    2006-12-01

    Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further

  18. Spatial and temporal variability of grass cover in two olive grove catchments on contrasting soil types

    NASA Astrophysics Data System (ADS)

    Aguilera, Laura; Taguas, Encarnación V.; Gimeno, Enrique; Gómez, José A.

    2013-04-01

    mechanically killed by several tractor passes. Ground cover was evaluated by a field surveys (4 per year) in which the same areas were measured at an approximate density of 4 samples/ha. In each point, over a 0.25 m2 area ground cover was measured using photographs, then point measurements were interpolated using method of Inverse Distance Weighting methods, to generate continuous distribution maps. The spatial and temporal evolution of ground cover in both farms presented a notably different patterns in both farms. In "La Conchuela", maximum values of cover can be reached in winter (61%, Dec-2011) while in "Arroyo Blanco", the maximum values were observed during the spring (50% May-2011) and are dramatically lower in the seasons of summer and autumn. These differences are justified by the influence of the management, the precipitation regime and the soil qualities such as the depth. On the other hand, the large spatial variability of ground cover measurements in both catchments, with coefficients of variation between 41 and 167%, was mainly led by the topography. In both farms the highest values of ground cover were found in those areas with deeper soils located in also in converging areas where surface runoff is concentrated. In the highest and shallowest area, soil management operations might improve the establishment of the vegetation as well as to address the growing in the most erosive periods. Finally, the impact of grass cover on the hydrological and erosive responses in the catchment is also discussed. References Aguilera, L. 2012. Estudio de cubiertas vegetales para el control de la erosión en olivar. Evaluación espacio-temporal en dos fincas comerciales, y exploración de nuevas opciones de cubiertas. Master Thesis. University of Cordoba. Gómez, J.A., Giráldez, J.V. Erosión y degradación de suelos. In: Sostenibilidad de la producción de olivar en Andalucía. Gómez, J.A. (Editor). Junta de Andalucía. Sevilla, p. 45-86. Gómez, J.A., Sobrinho, T.A., Gir

  19. Reduced Duration of Ice Cover in Swedish Lakes and Rivers

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Hallerback, S. A. M.; Stensen, K.; David, G.; Persson, M.

    2016-12-01

    The worlds freshwater systems are one of the most altered ecosystems on earth. Climate change introduces additional stresses on such systems, and this study presents an example of such change in an investigation of ice cover duration in Swedish lakes and rivers. In situ observations from over 750 lakes and rivers in Sweden were analyzed, with some records dating back to the beginning of the 18th century. Results show that ice duration significantly decreased over the last century. Change in ice duration is affected by later freeze as well as (more dominantly) earlier breakup dates. Additionally, since the late 1980's there has been an increase of extreme events, meaning years with extremely short duration of ice cover. The affect of temperature on the system was also examined. Using 113 years of temperature data, we empirically show how temperature changes affect the ice duration in lakes at different latitudes as well as dependent on lake area, volume and depth.

  20. The Role of Vegetation Cover in Interactions between Climate and Erosion

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Torres-Acosta, V.; Düsing, W.; Garcin, Y.; Strecker, M. R.

    2016-12-01

    Interactions between tectonics, climate and erosion during mountain building are often considered to include a positive feedback between precipitation and erosion, with the onset of orographic rainfall inducing greater erosion, which in turn may drive faster deformation. Here, we consider two different case studies that explore specifically the relationship between climate and erosion. Within the Kenya Rift of East Africa, spatial variations in 10Be derived erosion rates show no clear dependency on yearly precipitation. Instead, we find that the data fall into two categories. In areas that are sparsely vegetated, erosion rates increase rapidly with slope, whereas in areas that are densely vegetated, erosion rates increase slowly with slope. These data imply that vegetation cover plays a major role in stabilizing hillslopes. From these results, we hypothesize that in a sparsely vegetated region, the onset of greater precipitation will lead to faster erosion, but only until vegetation becomes denser, after which erosion rates will strongly decrease. Initial results from an ongoing study that reconstruct paleo-erosion rates from a sedimentary archive support this hypothesis. Hence, we infer that in this region, vegetation cover acts as a negative feedback in the interactions between climate and erosion. Compared to East Africa, we find a very different relationship between climate and 10Be derived erosion rates in the Toro intermontane basin in NW Argentina. There, the fastest erosion rates occur in the wettest areas with dense vegetation cover, implying a positive feedback between increased precipitation and erosion rates. Also, paleo-erosion rates from the nearby Humahuaca Basin derived from fluvial terraces point to faster erosion during wetter periods in the past. In this region, the stabilizing effects of vegetation cover may be muted. Ultimately, whether increased precipitation leads to faster or slower erosion could hinge on the dominant erosion processes

  1. Soil cover of gas-bearing areas

    NASA Astrophysics Data System (ADS)

    Mozharova, N. V.

    2010-08-01

    Natural soils with disturbed functioning parameters compared to the background soils with conservative technogenic-pedogenic features were distinguished on vast areas above the artificial underground gas storages in the zones of spreading and predominant impact of hydrocarbon gases. The disturbance of the functioning parameters is related to the increase in the methane concentration, the bacterial oxidation intensity and destruction, and the complex microbiological and physicochemical synthesis of iron oxides. The technogenic-pedogenic features include neoformations of bacteriomorphic microdispersed iron oxides. The impurity components consist of elements typical for biogenic structures. New soil layers, horizons, specific anthropogenically modified soils, and soil-like structures were formed on small areas in the industrial zones of underground gas storages due to the mechanical disturbance, the deposition of drilling sludge, and the chemical contamination. Among the soils, postlithogenic formations were identified—chemotechnosols (soddy-podzolic soils and chernozems), as well as synlithogenic ones: strato-chemotechnosols and stratochemoembryozems. The soil-like bodies included postlithogenic soil-like structures (chemotechnozems) and synlithogenic ones (strato-chemotechnozems). A substantive approach was used for the soil diagnostics. The morphological and magnetic profiles and the physical, chemical, and physicochemical properties of the soils were analyzed. The micromorphological composition of the soil magnetic fraction was used as a magnetic label.

  2. Nitrogen deposition, land cover conversion, climate, and contemporary carbon balance of Europe (Invited)

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Zahle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Ramankutty, N.; Roedenbeck, C.; Heimann, M.; Jones, C.

    2009-12-01

    In Europe, atmospheric nitrogen deposition has more than doubled, air temperature was rising, forest cover was steadily increasing, while agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, rising CO2, land cover conversion and climate change. We use results from three ecosystem process models such as BIOME-BGC, JULES, and ORCHIDEE (-CN) to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been affected by anthropogenic changes the most. We also analyze ecosystems carbon pools which were affected by the abovementioned environmental changes.

  3. Land Use and Land Cover (LULC) Change Detection in Islamabad and its Comparison with Capital Development Authority (CDA) 2006 Master Plan

    NASA Astrophysics Data System (ADS)

    Hasaan, Zahra

    2016-07-01

    Remote sensing is very useful for the production of land use and land cover statistics which can be beneficial to determine the distribution of land uses. Using remote sensing techniques to develop land use classification mapping is a convenient and detailed way to improve the selection of areas designed to agricultural, urban and/or industrial areas of a region. In Islamabad city and surrounding the land use has been changing, every day new developments (urban, industrial, commercial and agricultural) are emerging leading to decrease in vegetation cover. The purpose of this work was to develop the land use of Islamabad and its surrounding area that is an important natural resource. For this work the eCognition Developer 64 computer software was used to develop a land use classification using SPOT 5 image of year 2012. For image processing object-based classification technique was used and important land use features i.e. Vegetation cover, barren land, impervious surface, built up area and water bodies were extracted on the basis of object variation and compared the results with the CDA Master Plan. The great increase was found in built-up area and impervious surface area. On the other hand vegetation cover and barren area followed a declining trend. Accuracy assessment of classification yielded 92% accuracies of the final land cover land use maps. In addition these improved land cover/land use maps which are produced by remote sensing technique of class definition, meet the growing need of legend standardization.

  4. Using Gridded Snow Covered Area and Snow-Water Equivalence Spatial Data Sets to Improve Snow-Pack Depletion Simulation in a Continental Scale Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Risley, J. C.; Tracey, J. A.; Markstrom, S. L.; Hay, L.

    2014-12-01

    Snow cover areal depletion curves were used in a continuous daily hydrologic model to simulate seasonal spring snowmelt during the period between maximum snowpack accumulation and total melt. The curves are defined as the ratio of snow-water equivalence (SWE) divided by the seasonal maximum snow-water equivalence (Ai) (Y axis) versus the percent snow cover area (SCA) (X axis). The slope of the curve can vary depending on local watershed conditions. Windy sparsely vegetated high elevation watersheds, for example, can have a steeper slope than lower elevation forested watersheds. To improve the accuracy of simulated runoff at ungaged watersheds, individual snow cover areal depletion curves were created for over 100,000 hydrologic response units (HRU) in the continental scale U.S. Geological Survey (USGS) National Hydrologic Model (NHM). NHM includes the same components of the USGS Precipitation-Runoff-Modeling System (PRMS), except it uses consistent land surface characterization and model parameterization across the U.S. continent. Weighted-mean daily time series of 1-kilometer gridded SWE, from Snow Data Assimilation System (SNODAS), and 500-meter gridded SCA, from Moderate Resolution Imaging Spectroradiometer (MODIS), for 2003-2014 were computed for each HRU using the USGS Geo Data Portal. Using a screening process, pairs of SWE/Ai and SCA from the snowmelt period of each year were selected. SCA values derived from imagery that did not have any cloud cover and were >0 and <100 percent were selected. Unrealistically low and high SCA values that were paired with high and low SWE/Ai ratios, respectively, were removed. Second order polynomial equations were then fit to the remaining pairs of SWE/Ai and SCA to create a unique curve for each HRU. Simulations comparing these new curves with an existing single default curve in NHM will be made to determine if there are significant improvements in runoff.

  5. Forest Cover Mapping in Iskandar Malaysia Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.

    2016-09-01

    Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.

  6. Global land-cover and land-use change of the last 6000 years for climate modelling studies: the PAGES LandCover6k initiative and its first achievements

    NASA Astrophysics Data System (ADS)

    Gaillard, Marie-Jose; Morrison, Kathleen; Madella, Marco; Whitehouse, Nicki J.; Pages Landcover6k Sub-Coordinators

    2016-04-01

    as such (i and ii above), and/or the revised HYDE and KK ALCCs. The LandCover6k working group focuses on regions of the world where humans have had a significant impact on land cover during the last 6000 (6k) calendar years (in some regions earlier than 6k ago) through deforestation and diverse agricultural practices, i.e. the Americas, Western and Eastern Africa, Europe, and Asia. In Asia, the emphasis has been placed so far on China, India and Japan. References: Kaplan JO et al. (2009) Quaternary Science Reviews 28(27-28): 3016-3034. doi: 10.1016/j.quascirev. 2009.09.028; Klein Goldewijk K et al. (2011) Global Ecology and Biogeography 20: 73-86. doi: 10.1111/j.1466-8238.2010.00587.x; Pirzamanbein B et al. (2014) Ecol Complex 20:127-141; Trondman A-K et al. (2015) Glob Chang Biol 21:676-697. doi:10.1111/gcb.12737.

  7. "MEJ" Covers from the First 100 Years: Designing to Unite a Profession

    ERIC Educational Resources Information Center

    Freer, Patrick K.

    2014-01-01

    Each of the covers designed for the 638 issues of "Music Educators Journal" and her predecessors conveys a bit of our history. These covers are analogous to single frames from a motion picture in that they each tell a piece of the story about how NAfME grew as an association and how we developed as a profession. But many of the…

  8. Dual Durameter Blow Molded Rocker Cover Design With Unique Isolation Strategy

    DOEpatents

    Freese, V, Charles Edwin

    2000-07-11

    The rocker arm cover on a diesel engine can be formed of a rigid molded plastic material to minimize the transmission of noise into the atmosphere. Sonic vibration of the cover can be reduced by reducing the cover material stiffness. The reduced stiffness of the cover material allows the roof area of the cover to be momentarily displaced away from the cylinder head in the presence of an acoustic wave, so that the roof area is not able to develop the restoring force that is necessary for vibrational motion.

  9. Managed Clearings: an Unaccounted Land-cover in Urbanizing Regions

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Madden, M.; Meentemeyer, R. K.

    2016-12-01

    Managed clearings (MC), such as lawns, public parks and grassy transportation medians, are a common and ecologically important land cover type in urbanizing regions, especially those characterized by sprawl. We hypothesize that MC is underrepresented in land cover classification schemes and data products such as NLCD (National Land Cover Database) data, which may impact environmental assessments and models of urban ecosystems. We visually interpreted and mapped fine scale land cover with special attention to MC using 2012 NAIP (National Agriculture Imagery Program) images and compared the output with NLCD data. Areas sampled were 50 randomly distributed 1*1km blocks of land in three cities of the Char-lanta mega-region (Atlanta, Charlotte, and Raleigh). We estimated the abundance of MC relative to other land cover types, and the proportion of land-cover types in NLCD data that are similar to MC. We also assessed if the designations of recreation, transportation, and utility in MC inform the problem differently than simply tallying MC as a whole. 610 ground points, collected using the Google Earth, were used to evaluate accuracy of NLCD data and visual interpretation for consistency. Overall accuracy of visual interpretation and NLCD data was 78% and 58%, respectively. NLCD data underestimated forest and MC by 14.4km2 and 6.4km2, respectively, while overestimated impervious surfaces by 10.2km2 compared to visual interpretation. MC was the second most dominant land cover after forest (40.5%) as it covered about 28% of the total area and about 13% higher than impervious surfaces. Results also suggested that recreation in MC constitutes up to 90% of area followed by transportation and utility. Due to the prevalence of MC in urbanizing regions, the addition of MC to the synthesis of land-cover data can help delineate realistic cover types and area proportions that could inform ecologic/hydrologic models, and allow for accurate prediction of ecological phenomena.

  10. Geomorphology and dynamics of supraglacial debris covers in the Western Alps

    NASA Astrophysics Data System (ADS)

    Deline, P.; Gardent, M.; Kirkbride, M. P.; Le Roy, M.; Martin, B.

    2012-04-01

    In the alpine regions of France and NW Italy, many glaciers of a variety of sizes are at least partly debris-covered, but these have received less scientific research than clean glaciers. During the present period of glacier shrinkage - the area of glacier cover in France has reduced by 26% over the last 40 years -, growing debris cover needs to be understood as an influence on continuing retreat, with consequences for natural hazards, water resources and tourism. We present the results of a combined ongoing study of an inventory of debris-covered glaciers in France with site-specific studies of c. 12 glaciers of contrasting types, in order to understand spatial and temporal changes in supraglacial debris cover. Our specific aims are: 1. To understand the geomorphology of debris-covers and their formation, investigating the types of debris cover in relation to formative processes including extraglacial supply and development during transport. 2. To document the changing extents of supraglacial debris covers, using historical documents and aerial photographs. 3. To interpret areal changes in terms of glaciological and topographical controls on different glacier and debris cover types (catchment morphology, glacier structure, mass balance history, and rock wall collapse magnitude and frequency). 4. To understand the effect of debris cover on glacier dynamics and geomorphological evolution, related to insulation-related modifications to AAR, long profiles, and length changes on both short and long timescales. This includes investigation of the characteristics of debris-covered glacier depositional systems resulting from their modified dynamics.

  11. Forest cover of Champaign County, Illinois in 1993

    Treesearch

    Jesus Danilo Chinea; Louis R. Iverson

    1997-01-01

    The forest cover of Champaign County, in east-central Illinois, was mapped from 1993 aerial photography and entered in a geographical information system database. One hundred and six forest patches cover 3,380 ha. These patches have a mean area of 32 ha, a mean perimeter of 4,851 m, a mean perimeter to area ratio of 237, a fractal dimension of 1.59, and a mean nearest...

  12. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean

  13. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2017-02-15

    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  14. The Tionesta Scenic and Research Natural Areas

    Treesearch

    John C. Bjorkbom; Rodney G. Larson

    1977-01-01

    Hemlock-beech forests once covered 6 million acres of the Allegheny Plateau in Pennsylvania and New York. To preserve a remnant of this forest, the Federal Government purchased the last remaining uncut hemlock-beech forest in 1936. Four years later, half of this area was set aside in the Tionesta Scenic Area, primarily for public enjoyment; the other half was set...

  15. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa.

    PubMed

    Aleman, Julie C; Blarquez, Olivier; Staver, Carla A

    2016-09-01

    Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub-Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R(2)  = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century. © 2016 John Wiley & Sons Ltd.

  16. Effects of spatial resolution and landscape structure on land cover characterization

    NASA Astrophysics Data System (ADS)

    Yang, Wenli

    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different

  17. Development of 2010 national land cover database for the Nepal.

    PubMed

    Uddin, Kabir; Shrestha, Him Lal; Murthy, M S R; Bajracharya, Birendra; Shrestha, Basanta; Gilani, Hammad; Pradhan, Sudip; Dangol, Bikash

    2015-01-15

    Land cover and its change analysis across the Hindu Kush Himalayan (HKH) region is realized as an urgent need to support diverse issues of environmental conservation. This study presents the first and most complete national land cover database of Nepal prepared using public domain Landsat TM data of 2010 and replicable methodology. The study estimated that 39.1% of Nepal is covered by forests and 29.83% by agriculture. Patch and edge forests constituting 23.4% of national forest cover revealed proximate biotic interferences over the forests. Core forests constituted 79.3% of forests of Protected areas where as 63% of area was under core forests in the outside protected area. Physiographic regions wise forest fragmentation analysis revealed specific conservation requirements for productive hill and mid mountain regions. Comparative analysis with Landsat TM based global land cover product showed difference of the order of 30-60% among different land cover classes stressing the need for significant improvements for national level adoption. The online web based land cover validation tool is developed for continual improvement of land cover product. The potential use of the data set for national and regional level sustainable land use planning strategies and meeting several global commitments also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. SPECIAL ANALYSIS OF OPERATIONAL STORMWATER RUNOFF COVERS OVER SLIT TRENCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collard, L; Luther Hamm, L

    2008-12-18

    Solid Waste Management (SWM) commissioned this Special Analysis (SA) to determine the effects of placing operational stormwater runoff covers (referred to as covers in the remainder of this document) over slit trench (ST) disposal units ST1 through ST7 (the center set of slit trenches). Previously the United States Department of Energy (DOE) entered into an agreement with the United States Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC) to place covers over Slit Trenches 1 and 2 to be able to continue disposing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) solid wastemore » (see USDOE 2008). Because the covers changed the operating conditions, DOE Order 435.1 (DOE 1999) required that an SA be performed to assess the impact. This Special Analysis has been prepared to determine the effects of placing covers over slit trenches at about years 5, 10 and 15 of the 30-year operational period. Because some slit trenches have already been operational for about 15 years, results from analyzing covers at 5 years and 10 years provide trend analysis information only. This SA also examined alternatives of covering Slit Trenches 1 and 2 with one cover and Slit Trenches 3 and 4 with a second cover versus covering them all with a single cover. Based on modeling results, minimal differences exist between covering Slit Trench groups 1-2 and 3-4 with two covers or one large cover. This SA demonstrates that placement of covers over slit trenches will slow the subsequent release and transport of radionuclides in the vadose zone in the early time periods (from time of placement until about 100 years). Release and transport of some radionuclides in the vadose zone beyond 100 years were somewhat higher than for the case without covers. The sums-of-fractions (SOFs) were examined for the current waste inventory in ST1 and ST2 and for estimated inventories at closure for ST3 through ST7. In

  19. Generating a National Land Cover Dataset for Mexico at 30m Spatial Resolution in the Framework of the NALCMS Project.

    NASA Astrophysics Data System (ADS)

    Llamas, R. M.; Colditz, R. R.; Ressl, R.; Jurado Cruz, D. A.; Argumedo, J.; Victoria, A.; Meneses, C.

    2017-12-01

    The North American Land Change Monitoring System (NALCMS) is a tri-national initiative for mapping land cover across Mexico, United States and Canada, integrating efforts of institutions from the three countries. At the continental scale the group released land cover and change maps derived from MODIS image mosaics at 250m spatial resolution for 2005 and 2010. Current efforts are based on 30m Landsat images for 2010 ± 1 year. Each country uses its own mapping approach and sources for ancillary data, while ensuring that maps are produced in a coherent fashion across the continent. This paper presents the methodology and final land cover map of Mexico for the year 2010 that was later integrated into a continental map. The principal input for Mexico was the Monitoring Activity Data for Mexico (MAD-MEX) land cover map (version 4.3), derived from all available mostly cloud-free images for the year 2010. A total of 35 classes were regrouped to 15 classes of the NALCMS legend present in Mexico. Next, various issues of the automatically generated MAD-MEX land cover mosaic were corrected, such as: filling areas of no data due no cloud-free observation or gaps in Landsat 7 ETM+ images, filling inland water bodies which were left unclassified due to masking issues, relabeling isolated unclassified of falsely classified pixels, structural mislabeling due to data gaps, reclassifying areas of adjacent scenes with significant class disagreements and correcting obvious misclassifications, mostly of water and urban areas. In a second step minor missing areas and rare class snow and ice were digitized and a road network was added. A product such as NALCMS land cover map at 30m for North America is an unprecedented effort and will be without doubt an important source of information for many users around the world who need coherent land cover data over a continental domain as an input for a wide variety of environmental studies. The product release to the general public is expected

  20. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  1. Development of deforestation and land cover database for Bhutan (1930-2014).

    PubMed

    Reddy, C Sudhakar; Satish, K V; Jha, C S; Diwakar, P G; Murthy, Y V N Krishna; Dadhwal, V K

    2016-12-01

    Bhutan is a mountainous country located in the Himalayan biodiversity hotspot. This study has quantified the total area under land cover types, estimated the rate of forest cover change, analyzed the changes across forest types, and modeled forest cover change hotpots in Bhutan. The topographical maps and satellite remote sensing images were analyzed to get the spatial patterns of forest and associated land cover changes over the past eight decades (1930-1977-1987-1995-2005-2014). Forest is the largest land cover in Bhutan and constitutes 68.3% of the total geographical area in 2014. Subtropical broad leaved hill forest is predominant type occupies 34.1% of forest area in Bhutan, followed by montane dry temperate (20.9%), montane wet temperate (18.9%), Himalayan moist temperate (10%), and tropical moist sal (8.1%) in 2014. The major forest cover loss is observed in subtropical broad leaved hill forest (64.5 km 2 ) and moist sal forest (9.9 km 2 ) from 1977 to 2014. The deforested areas have mainly been converted into agriculture and contributed for 60.9% of forest loss from 1930 to 2014. In spite of major decline of forest cover in time interval of 1930-1977, there is no net rate of deforestation is recorded in Bhutan since 1995. Forest cover change analysis has been carried out to evaluate the conservation effectiveness in "Protected Areas" of Bhutan. Hotspots that have undergone high transformation in forest cover for afforestation and deforestation were highlighted in the study for conservation prioritisation. Forest conservation policies in Bhutan are highly effective in controlling deforestation as compared to neighboring Asian countries and such service would help in mitigating climate change.

  2. All Conservation Opportunity Areas (ECO.RES.ALL_OP_AREAS)

    EPA Pesticide Factsheets

    The All_OP_Areas GIS layer are all the Conservation Opportunity Areas identified by MoRAP (produced for EPA Region 7). They designate areas with potential for forest, grassland and forest/grassland mosaic conservation. These are areas of natural or semi-natural forest land cover that are at least 75 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER roads files.

  3. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Gong, Peng; Giri, Chandra

    2015-05-01

    Land cover is an important variable for many studies involving the Earth surface, such as climate, food security, hydrology, soil erosion, atmospheric quality, conservation biology, and plant functioning. Land cover not only changes with human caused land use changes, but also changes with nature. Therefore, the state of land cover is highly dynamic. In winter snow shields underneath various other land cover types in higher latitudes. Floods may persist for a long period in a year over low land areas in the tropical and subtropical regions. Forest maybe burnt or clear cut in a few days and changes to bare land. Within several months, the coverage of crops may vary from bare land to nearly 100% crops and then back to bare land following harvest. The highly dynamic nature of land cover creates a challenge in mapping and monitoring which remains to be adequately addressed. As economic globalization continues to intensify, there is an increasing trend of land cover/land use change, environmental pollution, land degradation, biodiversity loss at the global scale, timely and reliable information on global land cover and its changes is urgently needed to mitigate the negative impact of global environment change.

  4. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas

    NASA Astrophysics Data System (ADS)

    Balthazar, Vincent; Vanacker, Veerle; Lambin, Eric F.

    2012-08-01

    A topographic correction of optical remote sensing data is necessary to improve the quality of quantitative forest cover change analyses in mountainous terrain. The implementation of semi-empirical correction methods requires the calibration of model parameters that are empirically defined. This study develops a method to improve the performance of topographic corrections for forest cover change detection in mountainous terrain through an iterative tuning method of model parameters based on a systematic evaluation of the performance of the correction. The latter was based on: (i) the general matching of reflectances between sunlit and shaded slopes and (ii) the occurrence of abnormal reflectance values, qualified as statistical outliers, in very low illuminated areas. The method was tested on Landsat ETM+ data for rough (Ecuadorian Andes) and very rough mountainous terrain (Bhutan Himalayas). Compared to a reference level (no topographic correction), the ATCOR3 semi-empirical correction method resulted in a considerable reduction of dissimilarities between reflectance values of forested sites in different topographic orientations. Our results indicate that optimal parameter combinations are depending on the site, sun elevation and azimuth and spectral conditions. We demonstrate that the results of relatively simple topographic correction methods can be greatly improved through a feedback loop between parameter tuning and evaluation of the performance of the correction model.

  5. How is the chlorophyll count affected by burned and unburned marsh areas?

    NASA Astrophysics Data System (ADS)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  6. Archaeological Survey at Fort Hood, Texas. Fiscal Year 1990: The Northeastern Perimeter Area

    DTIC Science & Technology

    1994-01-01

    sands, silty clays, conglomerates, and saline or gypsiferous sediments; (2) neuritic marls, clays, shales, and lknestones; and (3) reef (zoogenic...sense in this area; however, those terms might be used to designate the shelly marl, the soft nodular limestone, and the rudistid reef facies, for in...features such as cisterns, wells, or corrals . Once a quadrant has been covered by the six surveyors. tentative site boundaries are drawn for the sites

  7. Land cover mapping of North and Central America—Global Land Cover 2000

    USGS Publications Warehouse

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  8. Evaluation of DGVMs in tropical areas: linking patterns of vegetation cover, climate and fire to ecological processes

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara

    2017-04-01

    Many current Dynamic Global Vegetation Models (DGVMs), including those incorporated into Earth System Models (ESMs), are able to realistically reproduce the distribution of the most worldwide biomes. However, they display high uncertainty in predicting the forest, savanna and grassland distributions and the transitions between them in tropical areas. These biomes are the most productive terrestrial ecosystems, and owing to their different biogeophysical and biogeochemical characteristics, future changes in their distributions could have also impacts on climate states. In particular, expected increasing temperature and CO2, modified precipitation regimes, as well as increasing land-use intensity could have large impacts on global biogeochemical cycles and precipitation, affecting the land-climate interactions. The difficulty of the DGVMs in simulating tropical vegetation, especially savanna structure and occurrence, has been associated with the way they represent the ecological processes and feedbacks between biotic and abiotic conditions. The inclusion of appropriate ecological mechanisms under present climatic conditions is essential for obtaining reliable future projections of vegetation and climate states. In this work we analyse observed relationships of tree and grass cover with climate and fire, and the current ecological understanding of the mechanisms driving the forest-savanna-grassland transition in Africa to evaluate the outcomes of a current state-of-the-art DGVM and to assess which ecological processes need to be included or improved within the model. Specifically, we analyse patterns of woody and herbaceous cover and fire return times from MODIS satellite observations, rainfall annual average and seasonality from TRMM satellite measurements and tree phenology information from the ESA global land cover map, comparing them with the outcomes of the LPJ-GUESS DGVM, also used by the EC-Earth global climate model. The comparison analysis with the LPJ

  9. Tree and impervious cover in the United States

    Treesearch

    David J. Nowak; Eric J. Greenfield

    2012-01-01

    Using aerial photograph interpretation of circa 2005 imagery, percent tree canopy and impervious surface cover in the conterminous United States are estimated at 34.2% (standard error (SE) = 0.2%) and 2.4% (SE = 0.1%), respectively. Within urban/community areas, percent tree cover (35.1%, SE = 0.4%) is similar to the national value, but percent impervious cover is...

  10. A stochastic Forest Fire Model for future land cover scenarios assessment

    NASA Astrophysics Data System (ADS)

    Fiorucci, P.; Holmes, T.; Gaetani, F.; D'Andrea, M.

    2009-04-01

    Land cover change and forest fire interaction under climate and socio-economics changes, is one of the main issues of the 21th century. The capability of defining future scenarios of land cover and fire regime allow forest managers to better understand the best actions to be carried out and their long term effects. In this paper a new methodology for land cover change simulations under climate change and fire disturbance is presented and discussed. The methodology is based on the assumption that forest fires exhibits power law frequency-area distribution. The well known Forest Fire Model (FFM), which is an example of self organized criticality, is able to reproduce this behavior. Starting from this observation, a modified version of the FFM has been developed. The new model, called Modified Forest Fire Model (MFFM) introduces several new features. A stochastic model for vegetation growth and regrowth after fire occurrence has been implemented for different kind of vegetations. In addition, a stochastic fire propagation model taking into account topography and vegetation cover has been introduced. The MFFM has been developed with the purpose of estimating vegetation cover changes and fire regimes over a time windows of many years for a given spatial region. Two different case studies have been carried out. The first case study is related with Liguria (Italy), a region of 5400 km2 lying between the Cote d'Azur, France, and Tuscany, Italy, on the northwest coast of the Tyrrhenian Sea. This region is characterized by Mediterranean fire regime. The second case study has been carried out in California (Florida) on a region having similar area and characterized by similar climate conditions. In both cases the model well represents the actual fire regime in terms of power law parameters proving interesting results about future land cover scenarios under climate, land use and socio-economics change.

  11. Comparison of U.S. Forest Land AreaEstimates From Forest Inventory and Analysis, National Resources Inventory, and Four Satellite Image-Derived Land Cover Data Sets

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Veronica C. Lessard

    2005-01-01

    Our objective was to test one application of remote sensing technology for complementing forest resource assessments by comparing a variety of existing satellite image-derived land cover maps with national inventory-derived estimates of United States forest land area. National Resources Inventory (NRI) 1997 estimates of non-Federal forest land area differed by 7.5...

  12. Improving Running Times for the Determination of Fractional Snow-Covered Area from Landsat TM/ETM+ via Utilization of the CUDA® Programming Paradigm

    NASA Astrophysics Data System (ADS)

    McGibbney, L. J.; Rittger, K.; Painter, T. H.; Selkowitz, D.; Mattmann, C. A.; Ramirez, P.

    2014-12-01

    As part of a JPL-USGS collaboration to expand distribution of essential climate variables (ECV) to include on-demand fractional snow cover we describe our experience and implementation of a shift towards the use of NVIDIA's CUDA® parallel computing platform and programming model. In particular the on-demand aspect of this work involves the improvement (via faster processing and a reduction in overall running times) for determination of fractional snow-covered area (fSCA) from Landsat TM/ETM+. Our observations indicate that processing tasks associated with remote sensing including the Snow Covered Area and Grain Size Model (SCAG) when applied to MODIS or LANDSAT TM/ETM+ are computationally intensive processes. We believe the shift to the CUDA programming paradigm represents a significant improvement in the ability to more quickly assert the outcomes of such activities. We use the TMSCAG model as our subject to highlight this argument. We do this by describing how we can ingest a LANDSAT surface reflectance image (typically provided in HDF format), perform spectral mixture analysis to produce land cover fractions including snow, vegetation and rock/soil whilst greatly reducing running time for such tasks. Within the scope of this work we first document the original workflow used to assert fSCA for Landsat TM and it's primary shortcomings. We then introduce the logic and justification behind the switch to the CUDA paradigm for running single as well as batch jobs on the GPU in order to achieve parallel processing. Finally we share lessons learned from the implementation of myriad of existing algorithms to a single set of code in a single target language as well as benefits this ultimately provides scientists at the USGS.

  13. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1984

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  14. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1987

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  15. AsMA journal covers, a history.

    PubMed

    Day, Pamela C

    2014-01-01

    The cover of our journal has changed quite often over the years. As we look forward to changing the name and design of the journal, it seems appropriate to reflect on the previous journal titles and covers. A brief history follows.

  16. A Look at Seasonal Snow Cover and Snow Mass in the Southern Hemisphere from 1979-2006 Using SMMR and SSM/I Passive Microwave Data

    NASA Technical Reports Server (NTRS)

    Foster, James

    2009-01-01

    Seasonal snow cover in extra-tropical areas of South America was examined in this study using passive microwave satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7 satellite and from the Special Sensor Microwave Imagers (SSM/I) on board the Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1979-2006, both snow cover extent and snow mass were estimated for the months of May-September. Most of the seasonal snow in South America occurs in the Patagonia region of Argentina. The average snow cover extent for July, the month with the greatest average extent during the 28-year period of record, is 321,674 sq km. The seasonal (May-September) 2 average snow cover extent was greatest in 1984 (464,250 sq km) and least in 1990 (69,875 sq km). In terms of snow mass, 1984 was also the biggest year (1.19 x 10(exp 13) kg) and 1990 was the smallest year (0.12 X 10(exp 13) kg). A strong relationship exists between the snow cover area and snow mass, correlated at 0.95, though no significant trend was found over the 28 year record for either snow cover extent or snow mass. For this long term climatology, snow mass and snow cover extent are shown to vary considerably from month to month and season to season. This analysis presents a consistent approach to mapping and measuring snow in South America utilizing an appropriate and readily available long term snow satellite dataset. This is the optimal dataset available, thus far, for deriving seasonal snow cover and snow mass in this region. Nonetheless, shallow snow, wet snow, snow beneath forests, as well as snow along coastal areas all may confound interpretation using passive microwave approaches. More work needs to be done to reduce the uncertainties in the data and hence, increase the confidence of the interpretation

  17. Walrus areas of use in the Chukchi Sea during sparse sea ice cover

    USGS Publications Warehouse

    Jay, Chadwick V.; Fischbach, Anthony S.; Kochnev, Anatoly A.

    2012-01-01

    The Pacific walrus Odobenus rosmarus divergens feeds on benthic invertebrates on the continental shelf of the Chukchi and Bering Seas and rests on sea ice between foraging trips. With climate warming, ice-free periods in the Chukchi Sea have increased and are projected to increase further in frequency and duration. We radio-tracked walruses to estimate areas of walrus foraging and occupancy in the Chukchi Sea from June to November of 2008 to 2011, years when sea ice was sparse over the continental shelf in comparison to historical records. The earlier and more extensive sea ice retreat in June to September, and delayed freeze-up of sea ice in October to November, created conditions for walruses to arrive earlier and stay later in the Chukchi Sea than in the past. The lack of sea ice over the continental shelf from September to October caused walruses to forage in nearshore areas instead of offshore areas as in the past. Walruses did not frequent the deep waters of the Arctic Basin when sea ice retreated off the shelf. Walruses foraged in most areas they occupied, and areas of concentrated foraging generally corresponded to regions of high benthic biomass, such as in the northeastern (Hanna Shoal) and southwestern Chukchi Sea. A notable exception was the occurrence of concentrated foraging in a nearshore area of northwestern Alaska that is apparently depauperate in walrus prey. With increasing sea ice loss, it is likely that walruses will increase their use of coastal haul-outs and nearshore foraging areas, with consequences to the population that are yet to be understood.

  18. Monitoring cover crops using radar remote sensing in southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Shang, J.; Huang, X.; Liu, J.; Wang, J.

    2016-12-01

    Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.

  19. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  20. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  1. Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran

    PubMed Central

    Sameni, Abdolmajid; Fallah Shamsi, Seyed Rashid; Bartholomeus, Harm

    2016-01-01

    Wind erosion is a complex process influenced by different factors. Most of these factors are stable over time, but land use/cover and land management practices are changing gradually. Therefore, this research investigates the impact of changing land use/cover and land management on wind erosion potential in southern Iran. We used remote sensing data (Landsat ETM+ and Landsat 8 imagery of 2004 and 2013) for land use/cover mapping and employed the Iran Research Institute of Forest and Rangeland (IRIFR) method to estimate changes in wind erosion potential. For an optimal mapping, the performance of different classification algorithms and input layers was tested. The amount of changes in wind erosion and land use/cover were quantified using cross-tabulation between the two years. To discriminate land use/cover related to wind erosion, the best results were obtained by combining the original spectral bands with synthetic bands and using Maximum Likelihood classification algorithm (Kappa Coefficient of 0.8 and 0.9 for Landsat ETM+ and Landsat 8, respectively). The IRIFR modelling results indicate that the wind erosion potential has increased over the last decade. The areas with a very high sediment yield potential have increased, whereas the areas with a low, medium, and high sediment yield potential decreased. The area with a very low sediment yield potential have remained constant. When comparing the change in erosion potential with land use/cover change, it is evident that soil erosion potential has increased mostly in accordance with the increase of the area of agricultural practices. The conversion of rangeland to agricultural land was a major land-use change which lead to more agricultural practices and associated soil loss. Moreover, results indicate an increase in sandification in the study area which is also a clear evidence of increasing in soil erosion. PMID:27547511

  2. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    vegetation height, shrub cover, or other parameters, which are known to provide life history requisites for mitigation species. Habitat Suitability Indices range from 0 to 1, with an HSI of 1 providing optimum habitat conditions for the selected species. One acre of optimum habitat provides one Habitat Unit. The objective of continued management of the Wanaket Wildlife Mitigation Area, including protection and enhancement of upland and wetland/wetland associated cover types, is to provide and maintain 2,334 HU's of protection credit and generate 2,495 HU's of enhancement credit by the year 2004.« less

  3. Snow cover retrieval over Rhone and Po river basins from MODIS optical satellite data (2000-2009).

    NASA Astrophysics Data System (ADS)

    Dedieu, Jean-Pierre, ,, Dr.; Boos, Alain; Kiage, Wiliam; Pellegrini, Matteo

    2010-05-01

    retrieve (i) Fractional Snow cover at sub-pixel scale, and (ii) maximum snow cover. All products were retrieved at 8-days over a complete time period of 10 years (2000-2009), giving 500 images for each river basin. Digital Model Elevation was given by NASA/SRTM database at 90-m resolution and used (i) for illumination versus topography correction on snow cover, (ii) geometric rectification of images. Geographic projection is WGS84, UTM 32. Fractional Snow cover mapping was derived from the NDSI linear regression method (Salomonson et al., 2004). Cloud mask was given by MODIS-NASA library (radiometric threshold) and completed by inverse slope regression to avoid lowlands fog confusing with thin snow cover (Po river basin). Maximum Snow Cover mapping was retrieved from the NSIDC database classification (Hall et al., 2001). Validation step was processed using comparison between MODIS Snow maps outputs and meteorological data provided by network of 87 meteorological stations: temperature, precipitation, snow depth measurement. A 0.92 correlation was observed for snow/non snow cover and can be considered as quite satisfactory, given the radiometric problems encountered in mountainous areas, particularly in snowmelt season. The 10-years time period results indicates a main difference between (i) regular snow accumulation and depletion in Rhone and (ii) the high temporal and spatial variability of snow cover for Po. Then, a high sensitivity to low variation of air temperature, often close to 1° C was observed. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s, particularly for Po river basin. Results will be combined with two hydrological models: Topkapi and Fest.

  4. Megabenthic Community Structure Within and Surrounding the DISCOL Experimental Area 26 Years After Simulated Manganese Nodule Mining Disturbance.

    NASA Astrophysics Data System (ADS)

    Purser, A.; Marcon, Y.; Boetius, A.

    2016-02-01

    The current supplies of many high technology elements from land-based sources are at capacity, such as copper, nickel and yttrium. Potential future sources of some of these elements include the deep sea manganese nodule fields of the Atlantic, Indian and Pacific oceans. Large swathes of deep-sea seafloor are covered with high densities of 5 - 25 cm diameter nodules - agglomerations of manganese, iron and trace metals. In the 1980's these manganese fields were first seriously considered as mining targets, and the ''DISturbance and reCOLonization (DISCOL) experiment was started in the South Pacific, to simulate the likely environmental impacts of mining. In September 1989, 'RV Sonne', deploying a custom-built plough device, removed manganese nodules from the seafloor surface by ploughing them down into the sediment. This removal of nodules (and therefore hard substrate) was considered to likely be the most significant environmental impact of any future mining efforts. 78 plough tracks of 8 - 16m width were made across a 10.8 km diameter circular area centered on 7°04.4´S 88°27.6´W. Megafauna abundances were assessed prior and post ploughing, both within the disturbed area and at reference stations 6 km from the disturbed area. Research cruises in the 1990s investigated the short-term temporal impact ploughing had on the faunal community in the DISCOL area. Cruises conducted 3 and 7 years after disturbance showed that megafaunal communities within ploughed areas remained quite distinct from those observed pre-disturbance or in the reference areas. In 2016 the 'RV Sonne' revisited the DISCOL site with two research cruises, as part of the 'JPI-Oceans' programme. Here we report the current megafaunal community structures observed by SO242-2 within the DISCOL area, and the slow recovery rates of many taxa 26 years after the initial experimental disturbance, and provide images of the long term impact of experimental disturbances at the seafloor.

  5. A cloud cover model based on satellite data

    NASA Technical Reports Server (NTRS)

    Somerville, P. N.; Bean, S. J.

    1980-01-01

    A model for worldwide cloud cover using a satellite data set containing infrared radiation measurements is proposed. The satellite data set containing day IR, night IR and incoming and absorbed solar radiation measurements on a 2.5 degree latitude-longitude grid covering a 45 month period was converted to estimates of cloud cover. The global area was then classified into homogeneous cloud cover regions for each of the four seasons. It is noted that the developed maps can be of use to the practicing climatologist who can obtain a considerable amount of cloud cover information without recourse to large volumes of data.

  6. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Through Geo-Informatics Approach

    NASA Astrophysics Data System (ADS)

    Koppad, A. G.; Janagoudar, B. S.

    2017-05-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non-vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  7. Multispectral determination of vegetative cover in corn crop canopy

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1972-01-01

    The relationship between different amounts of vegetative ground cover and the energy reflected by corn canopies was investigated. Low altitude photography and an airborne multispectral scanner were used to measure this reflected energy. Field plots were laid out, representing four growth stages of corn. Two plot locations were chosen-on a very dark and a very light surface soil. Color and color infrared photographs were taken from a vertical distance of 10 m. Estimates of ground cover were made from these photographs and were related to field measurements of leaf area index. Ground cover could be predicted from leaf area index measurements by a second order equation. Microdensitometry and digitzation of the three separated dye layers of color infrared film showed that the near infrared dye layer is most valuable in ground cover determinations. Computer analysis of the digitized photography provided an accurate method of determining precent ground cover.

  8. Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.

    2017-12-01

    The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.

  9. Evaluation of three techniques for classifying urban land cover patterns using LANDSAT MSS data. [New Orleans, Louisiana

    NASA Technical Reports Server (NTRS)

    Baumann, P. R. (Principal Investigator)

    1979-01-01

    Three computer quantitative techniques for determining urban land cover patterns are evaluated. The techniques examined deal with the selection of training samples by an automated process, the overlaying of two scenes from different seasons of the year, and the use of individual pixels as training points. Evaluation is based on the number and type of land cover classes generated and the marks obtained from an accuracy test. New Orleans, Louisiana and its environs form the study area.

  10. Lake Michigan Diversion Accounting land cover change estimation by use of the National Land Cover Dataset and raingage network partitioning analysis

    USGS Publications Warehouse

    Sharpe, Jennifer B.; Soong, David T.

    2015-01-01

    This study used the National Land Cover Dataset (NLCD) and developed an automated process for determining the area of the three land cover types, thereby allowing faster updating of future models, and for evaluating land cover changes by use of historical NLCD datasets. The study also carried out a raingage partitioning analysis so that the segmentation of land cover and rainfall in each modeled unit is directly applicable to the HSPF modeling. Historical and existing impervious, grass, and forest land acreages partitioned by percentages covered by two sets of raingages for the Lake Michigan diversion SCAs, gaged basins, and ungaged basins are presented.

  11. Consequences of land-cover misclassification in models of impervious surface

    USGS Publications Warehouse

    McMahon, G.

    2007-01-01

    Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.

  12. Replacing fallow by cover crops: economic sustainability

    NASA Astrophysics Data System (ADS)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  13. The managed clearing: An overlooked land-cover type in urbanizing regions?

    PubMed

    Singh, Kunwar K; Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type-semi-natural, vegetated land surfaces with varying degrees of management practices-for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area- 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and

  14. Operational monitoring of land-cover change using multitemporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Rogan, John

    2005-11-01

    Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation

  15. COVER Project and Earth resources research transition

    NASA Technical Reports Server (NTRS)

    Botkin, D. B.; Estes, J. E. (Principal Investigator)

    1986-01-01

    Results of research in the remote sensing of natural boreal forest vegetation (the COVER project) are summarized. The study objectives were to establish a baseline forest test site; develop transforms of LANDSAT MSS and TM data for forest composition, biomass, leaf area index, and net primary productivity; and perform tasks required for testing hypotheses regarding observed spectral responses to changes in leaf area index in aspen. In addition, the transfer and documentation of data collected in the COVER project (removed from the Johnson Space Center following the discontinuation of Earth resources research at that facility) is described.

  16. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  17. COVER (cover of vaccination evaluated rapidly): description of the England and Wales scheme.

    PubMed

    Begg, N T; Gill, O N; White, J M

    1989-03-01

    The COVER scheme, a method for the rapid evaluation of vaccine coverage in England and Wales, is described. The primary aim of the scheme is to improve cover by providing health district vaccination programme coordinators with relevant timely information. Quarterly data were obtained from, analysed and promptly fed back to, 126 health districts on cohorts of children who had recently attained the target ages for receiving the selected sentinel vaccines; 18 months for third diphtheria and third pertussis and 2 years for measles. Although the data suggested that vaccination cover is improving, national performance still falls well short of 90%, the 1990 target set by the World Health Organisation for countries in Europe.

  18. Implication of relationship between natural impacts and land use/land cover (LULC) changes of urban area in Mongolia

    NASA Astrophysics Data System (ADS)

    Gantumur, Byambakhuu; Wu, Falin; Zhao, Yan; Vandansambuu, Battsengel; Dalaibaatar, Enkhjargal; Itiritiphan, Fareda; Shaimurat, Dauryenbyek

    2017-10-01

    Urban growth can profoundly alter the urban landscape structure, ecosystem processes, and local climates. Timely and accurate information on the status and trends of urban ecosystems is critical to develop strategies for sustainable development and to improve the urban residential environment and living quality. Ulaanbaatar city was urbanized very rapidly caused by herders and farmers, many of them migrating from rural places, have played a big role in this urban expansion (sprawl). Today, 1.3 million residents for about 40% of total population are living in the Ulaanbaatar region. Those human activities influenced stronger to green environments. Therefore, the aim of this study is determined to change detection of land use/land cover (LULC) and estimating their areas for the trend of future by remote sensing and statistical methods. The implications of analysis were provided by change detection methods of LULC, remote sensing spectral indices including normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and normalized difference built-up index (NDBI). In addition, it can relate to urban heat island (UHI) provided by Land surface temperature (LST) with local climate issues. Statistical methods for image processing used to define relations between those spectral indices and change detection images and regression analysis for time series trend in future. Remote sensing data are used by Landsat (TM/ETM+/OLI) satellite images over the period between 1990 and 2016 by 5 years. The advantages of this study are very useful remote sensing approaches with statistical analysis and important to detecting changes of LULC. The experimental results show that the LULC changes can image on the present and after few years and determined relations between impacts of environmental conditions.

  19. MODIS land cover uncertainty in regional climate simulations

    NASA Astrophysics Data System (ADS)

    Li, Xue; Messina, Joseph P.; Moore, Nathan J.; Fan, Peilei; Shortridge, Ashton M.

    2017-12-01

    MODIS land cover datasets are used extensively across the climate modeling community, but inherent uncertainties and associated propagating impacts are rarely discussed. This paper modeled uncertainties embedded within the annual MODIS Land Cover Type (MCD12Q1) products and propagated these uncertainties through the Regional Atmospheric Modeling System (RAMS). First, land cover uncertainties were modeled using pixel-based trajectory analyses from a time series of MCD12Q1 for Urumqi, China. Second, alternative land cover maps were produced based on these categorical uncertainties and passed into RAMS. Finally, simulations from RAMS were analyzed temporally and spatially to reveal impacts. Our study found that MCD12Q1 struggles to discriminate between grasslands and croplands or grasslands and barren in this study area. Such categorical uncertainties have significant impacts on regional climate model outputs. All climate variables examined demonstrated impact across the various regions, with latent heat flux affected most with a magnitude of 4.32 W/m2 in domain average. Impacted areas were spatially connected to locations of greater land cover uncertainty. Both biophysical characteristics and soil moisture settings in regard to land cover types contribute to the variations among simulations. These results indicate that formal land cover uncertainty analysis should be included in MCD12Q1-fed climate modeling as a routine procedure.

  20. A new NASA/MSFC mission analysis global cloud cover data base

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Jeffries, W. R., III

    1985-01-01

    A global cloud cover data set, derived from the USAF 3D NEPH Analysis, was developed for use in climate studies and for Earth viewing applications. This data set contains a single parameter - total sky cover - separated in time by 3 or 6 hr intervals and in space by approximately 50 n.mi. Cloud cover amount is recorded for each grid point (of a square grid) by a single alphanumeric character representing each 5 percent increment of sky cover. The data are arranged in both quarterly and monthly formats. The data base currently provides daily, 3-hr observed total sky cover for the Northern Hemisphere from 1972 through 1977 less 1976. For the Southern Hemisphere, there are data at 6-hr intervals for 1976 through 1978 and at 3-hr intervals for 1979 and 1980. More years of data are being added. To validate the data base, the percent frequency of or = 0.3 and or = 0.8 cloud cover was compared with ground observed cloud amounts at several locations with generally good agreement. Mean or other desired cloud amounts can be calculated for any time period and any size area from a single grid point to a hemisphere. The data base is especially useful in evaluating the consequence of cloud cover on Earth viewing space missions. The temporal and spatial frequency of the data allow simulations that closely approximate any projected viewing mission. No adjustments are required to account for cloud continuity.

  1. Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information

    EPA Science Inventory

    The National Land Cover Database (NLCD) provides nationwide data on land cover and land cover change at the native 30-m spatial resolution of the Landsat Thematic Mapper (TM). The database is designed to provide five-year cyclical updating of United States land cover and associat...

  2. Land use, population dynamics, and land-cover change in eastern Puerto Rico: Chapter B in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    USGS Publications Warehouse

    Gould, William A.; Martinuzzi, Sebastián; Pares-Ramos, Isabel K.; Murphy, Sheila F.; Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land in Puerto Rico. Closed forests occupy about 37 percent of the area, woodlands and shrublands 7 percent, nonforest vegetation 43 percent, urban development 10 percent, and water and natural barrens total less than 2 percent. The area has been classified into three main land-use categories by integrating recent census information (population density per barrio in the year 2000) with satellite image analyses (degree of developed area versus natural land cover). Urban land use (in this analysis, land with more than 20 percent developed cover within a 1-square-kilometer area and population density greater than 500 people per square kilometer) covered 16 percent of eastern Puerto Rico. Suburban land use (more than 80 percent natural land cover, more than 500 people per square kilometer, and primarily residential) covers 50 percent of the area. Rural land use (more than 80 percent natural land cover, less than 500 people per square kilometer, and primarily active or abandoned agricultural, wetland, steep slope, or protected conservation areas) covered 34 percent of the area. Our analysis of land-cover change indicates that in the 1990s, forest cover increased at the expense of woodlands and grasslands. Urban development increased by 16 percent during that time. The most pronounced change in the last seven decades has been the shift from a nonforested to a forested landscape and the intensification of the ring of urbanization that surrounds the long-protected Luquillo Experimental Forest.

  3. Monitoring the performance of an alternative cover using caisson lysimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, W.J.; Smith, G.M.; Mushovic, P.S.

    2004-02-29

    The U.S. Department of Energy (DOE) office in Grand Junction, Colorado, and the U.S. Environmental Protection Agency (EPA), Region 8, collaborated on a series of field lysimeter studies to design and monitor the performance of an alternative cover for a uranium mill tailings disposal cell at the Monticello, Utah, Superfund Site. Because groundwater recharge is naturally limited at Monticello in areas with thick loess soils, DOE and EPA chose to design a cover for Monticello using local soils and a native plant community to mimic this natural soilwater balance. Two large drainage lysimeters fabricated of corrugated steel culvert lined withmore » high-density polyethylene were installed to evaluate the hydrological and ecological performance of an alternative cover design constructed in 2000 on the disposal cell. Unlike conventional, lowpermeability designs, this cover relies on (1) the water storage capacity of a 163-cm soil “sponge” layer overlying a sand-and-gravel capillary barrier to retain precipitation while plants are dormant and (2) native vegetation to remove precipitation during the growing season. The sponge layer consists of a clay loam subsoil compacted to 1.65 g/cm2 in one lysimeter and a loam topsoil compacted to 1.45 g/cm2 in the other lysimeter, representing the range of as-built conditions constructed in the nearby disposal cell cover. About 0.1 mm of drainage occurred in both lysimeters during an average precipitation year and before they were planted, an amount well below the EPA target of <3.0 mm/yr. However, the cover with less compacted loam topsoil sponge had a 40% greater water storage capacity than the cover with overly compacted clay loam subsoil sponge. The difference is attributable in part to higher green leaf area and water extraction by plants in the loam topsoil. The lesson learned is that seemingly subtle differences in soil types, sources, and compaction can result in salient differences in performance. Diverse, seeded

  4. The Land Cover Dynamics and Conversion of Agricultural Land in Northwestern Bangladesh, 1973-2003.

    NASA Astrophysics Data System (ADS)

    Pervez, M.; Seelan, S. K.; Rundquist, B. C.

    2006-05-01

    The importance of land cover information describing the nature and extent of land resources and changes over time is increasing; this is especially true in Bangladesh, where land cover is changing rapidly. This paper presents research into the land cover dynamics of northwestern Bangladesh for the period 1973-2003 using Landsat satellite images in combination with field survey data collected in January and February 2005. Land cover maps were produced for eight different years during the study period with an average 73 percent overall classification accuracy. The classification results and post-classification change analysis showed that agriculture is the dominant land cover (occupying 74.5 percent of the study area) and is being reduced at a rate of about 3,000 ha per year. In addition, 6.7 percent of the agricultural land is vulnerable to temporary water logging annually. Despite this loss of agricultural land, irrigated agriculture increased substantially until 2000, but has since declined because of diminishing water availability and uncontrolled extraction of groundwater driven by population pressures and the extended need for food. A good agreement (r = 0.73) was found between increases in irrigated land and the depletion of the shallow groundwater table, a factor affecting widely practiced small-scale irrigation in northwestern Bangladesh. Results quantified the land cover change patterns and the stresses placed on natural resources; additionally, they demonstrated an accurate and economical means to map and analyze changes in land cover over time at a regional scale, which can assist decision makers in land and natural resources management decisions.

  5. Coopers Rock Crop Tree Demonstration Area—20-year results

    Treesearch

    Arlyn W. Perkey; Gary W. Miller; David L. Feicht

    2011-01-01

    During the 1988/1989 dormant season, the Coopers Rock Crop Tree Demonstration Area was established in a 55-year-old central Appalachian hardwood forest in north-central West Virginia. After treatment, 89 northern red oak (Quercus rubra L.) and 147 yellow-poplar (Liriodentron tulipifera L.) crop trees were monitored for 20 years....

  6. Cover crop frequency and compost effects on a legume-rye cover crop during 8 years of organic vegetables

    USDA-ARS?s Scientific Manuscript database

    Organic matter inputs from compost or cover crops (CC) are important to maintain or improve soil quality, but their impact in high-value vegetable production systems are not well understood. Therefore, we evaluated the effects of CC frequency (every winter versus every 4th winter) and yard-waste co...

  7. Creating high-resolution time series land-cover classifications in rapidly changing forested areas with BULC-U in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Cardille, J. A.; Lee, J.

    2017-12-01

    With the opening of the Landsat archive, there is a dramatically increased potential for creating high-quality time series of land use/land-cover (LULC) classifications derived from remote sensing. Although LULC time series are appealing, their creation is typically challenging in two fundamental ways. First, there is a need to create maximally correct LULC maps for consideration at each time step; and second, there is a need to have the elements of the time series be consistent with each other, without pixels that flip improbably between covers due only to unavoidable, stray classification errors. We have developed the Bayesian Updating of Land Cover - Unsupervised (BULC-U) algorithm to address these challenges simultaneously, and introduce and apply it here for two related but distinct purposes. First, with minimal human intervention, we produced an internally consistent, high-accuracy LULC time series in rapidly changing Mato Grosso, Brazil for a time interval (1986-2000) in which cropland area more than doubled. The spatial and temporal resolution of the 59 LULC snapshots allows users to witness the establishment of towns and farms at the expense of forest. The new time series could be used by policy-makers and analysts to unravel important considerations for conservation and management, including the timing and location of past development, the rate and nature of changes in forest connectivity, the connection with road infrastructure, and more. The second application of BULC-U is to sharpen the well-known GlobCover 2009 classification from 300m to 30m, while improving accuracy measures for every class. The greatly improved resolution and accuracy permits a better representation of the true LULC proportions, the use of this map in models, and quantification of the potential impacts of changes. Given that there may easily be thousands and potentially millions of images available to harvest for an LULC time series, it is imperative to build useful algorithms

  8. National Level Assessment of Mangrove Forest Cover in Pakistan

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Qamer, F. M.; Hussain, N.; Saleem, R.; Nitin, K. T.

    2011-09-01

    . GIS and Remote Sensing based technologies and methods are in use to map forest cover since the last two decades in Pakistan. The national level forest cover studies based upon satellite images include, Forestry Sector Master Plan (FSMP) and National Forest & Range Resources Assessment Study (NFRRAS). In FSMP, the mangrove forest extent was visually determined from Landsat images of 1988 - 1991, and was estimated to be 155,369 ha; whereas, in NFRRAS, Landsat images of 1997 - 2001 were automated processed and the mangroves areas was estimated to be 158,000 ha. To our knowledge, a comprehensive assessment of current mangroves cover of Pakistan has not been made over the last decade, although the mangroves ecosystems have become the focus of intention in context of recent climate change scenarios. This study was conducted to support the informed decision making for sustainable development in coastal areas of Pakistan by providing up-todate mangroves forest cover assessment of Pakistan. Various types of Earth Observation satellite images and processing methods have been tested in relation to mangroves mapping. Most of the studies have applied classical pixel - based approached, there are a few studies which used object - based methods of image analysis to map the mangroves ecosystems. Object - based methods have the advantage of incorporating spatial neighbourhood properties and hierarchical structures into the classification process to produce more accurate surface patterns recognition compared with classical pixel - based approaches. In this research, we applied multi-scale hierarchical approach of object-based methods of image analysis to ALOS - AVNIR-2 images of the year 2008-09 to map the land cover in the mangroves ecosystems of Pakistan. Considering the tide height and phonological effects of vegetation, particularly the algal mats, these data sets were meticulously chosen. Incorporation of multi-scale hierarchical structures made it easy to effectively discriminate

  9. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    NASA Astrophysics Data System (ADS)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land

  10. Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    NASA Technical Reports Server (NTRS)

    Huning, J. R.; Logan, T. L.; Smith, J. H.

    1982-01-01

    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.

  11. Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia

    NASA Astrophysics Data System (ADS)

    Zhang, Yinsheng; Ma, Ning

    2018-04-01

    Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of the continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972-2006 and the Global Monthly EASE-Grid SWE data for 1979-2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972-2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as partial area of Central Asia and northwestern Russia, but varied little in other parts of Eurasia. "Snow-free breaks" (SFBs) with intermittent snow cover in the cold season were principally observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1-14 weeks during the study period and the maximum intermittence could even reach 25 weeks in certain years. At a seasonal scale, SWE usually peaked in February or March, but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979-2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China. The possible cross-platform inconsistencies between two passive microwave radiometers may cause uncertainties in the detected trends of SWE here, suggesting an urgent need of producing a long-term, more homogeneous SWE

  12. Assessment of land use and land cover change using spatiotemporal analysis of landscape: case study in south of Tehran.

    PubMed

    Sabr, Abutaleb; Moeinaddini, Mazaher; Azarnivand, Hossein; Guinot, Benjamin

    2016-12-01

    In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.

  13. MODIS Tree Cover Validation for the Circumpolar Taiga-Tundra Transition Zone

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Nelson, R.; Sun, G.; Margolis, H.; Kerber, A.; Ranson, K. J.

    2009-01-01

    A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel

  14. Variability and trends in the Arctic Sea ice cover: Results from different techniques

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert

    2017-08-01

    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.Plain Language SummaryThe declining Arctic sea ice <span class="hlt">cover</span>, especially in the summer, has been the center of attention in recent <span class="hlt">years</span>. Reports on the sea ice <span class="hlt">cover</span> have been provided by different institutions using basically the same set of satellite data but different techniques for estimating key parameters such as ice</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23504894','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23504894"><span>National forest <span class="hlt">cover</span> change in Congo Basin: deforestation, reforestation, degradation and regeneration for the <span class="hlt">years</span> 1990, 2000 and 2005.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Céline, Ernst; Philippe, Mayaux; Astrid, Verhegghen; Catherine, Bodart; Musampa, Christophe; Pierre, Defourny</p> <p>2013-04-01</p> <p>This research refers to an object-based automatic method combined with a national expert validation to produce regional and national forest <span class="hlt">cover</span> change statistics over Congo Basin. A total of 547 sampling sites systematically distributed over the whole humid forest domain are required to <span class="hlt">cover</span> the six Central African countries containing tropical moist forest. High resolution imagery is used to accurately estimate not only deforestation and reforestation but also degradation and regeneration. The overall method consists of four steps: (i) image automatic preprocessing and preinterpretation, (ii) interpretation by national expert, (iii) statistic computation and (iv) accuracy assessment. The annual rate of net deforestation in Congo Basin is estimated to 0.09% between 1990 and 2000 and of net degradation to 0.05%. Between 2000 and 2005, this unique exercise estimates annual net deforestation to 0.17% and annual net degradation to 0.09%. An accuracy assessment reveals that 92.7% of tree <span class="hlt">cover</span> (TC) classes agree with independent expert interpretation. In the discussion, we underline the direct causes and the drivers of deforestation. Population density, small-scale agriculture, fuelwood collection and forest's accessibility are closely linked to deforestation, whereas timber extraction has no major impact on the reduction in the canopy <span class="hlt">cover</span>. The analysis also shows the efficiency of protected <span class="hlt">areas</span> to reduce deforestation. These results are expected to contribute to the discussion on the reduction in CO2 emissions from deforestation and forest degradation (REDD+) and serve as reference for the period. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21448277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21448277"><span>Spatial analysis of land <span class="hlt">cover</span> determinants of malaria incidence in the Ashanti Region, Ghana.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krefis, Anne Caroline; Schwarz, Norbert Georg; Nkrumah, Bernard; Acquah, Samuel; Loag, Wibke; Oldeland, Jens; Sarpong, Nimako; Adu-Sarkodie, Yaw; Ranft, Ulrich; May, Jürgen</p> <p>2011-03-23</p> <p>Malaria belongs to the infectious diseases with the highest morbidity and mortality worldwide. As a vector-borne disease malaria distribution is strongly influenced by environmental factors. The aim of this study was to investigate the association between malaria risk and different land <span class="hlt">cover</span> classes by using high-resolution multispectral Ikonos images and Poisson regression analyses. The association of malaria incidence with land <span class="hlt">cover</span> around 12 villages in the Ashanti Region, Ghana, was assessed in 1,988 children <15 <span class="hlt">years</span> of age. The median malaria incidence was 85.7 per 1,000 inhabitants and <span class="hlt">year</span> (range 28.4-272.7). Swampy <span class="hlt">areas</span> and banana/plantain production in the proximity of villages were strong predictors of a high malaria incidence. An increase of 10% of swampy <span class="hlt">area</span> coverage in the 2 km radius around a village led to a 43% higher incidence (relative risk [RR] = 1.43, p<0.001). Each 10% increase of <span class="hlt">area</span> with banana/plantain production around a village tripled the risk for malaria (RR = 3.25, p<0.001). An increase in forested <span class="hlt">area</span> of 10% was associated with a 47% decrease of malaria incidence (RR = 0.53, p = 0.029). Distinct cultivation in the proximity of homesteads was associated with childhood malaria in a rural <span class="hlt">area</span> in Ghana. The analyses demonstrate the usefulness of satellite images for the prediction of malaria endemicity. Thus, planning and monitoring of malaria control measures should be assisted by models based on geographic information systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25692604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25692604"><span>Quantifying environmental limiting factors on tree <span class="hlt">cover</span> using geospatial data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L</p> <p>2015-01-01</p> <p>Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree <span class="hlt">cover</span> across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree <span class="hlt">cover</span>? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree <span class="hlt">cover</span>. We found that the study <span class="hlt">area</span> showed system-wide limitations on tree <span class="hlt">cover</span>, and each of the factors showed evidence of being limiting on tree <span class="hlt">cover</span>. However, only 1.2% of the total <span class="hlt">area</span> appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree <span class="hlt">cover</span> in the study <span class="hlt">area</span>. Where sites were near their theoretical maximum, non-forest sites (tree <span class="hlt">cover</span> < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree <span class="hlt">cover</span> between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC23A0891M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC23A0891M"><span>Spatial Patterns of Forest <span class="hlt">Cover</span> Loss in the Democratic Republic of Congo</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molinario, G.; Hansen, M.; Potapov, P.; Justice, C. O.</p> <p>2013-12-01</p> <p>Three groups of metrics of spatial patterns of forest <span class="hlt">cover</span> loss were calculated for the Democratic Republic of Congo (DRC). While other studies had previously assessed landscape patterns in the Congo Basin, they had done so for small <span class="hlt">areas</span> due to data limitations. The input data for this study, the Forets d;Afrique Central Evaluee par Teledetection(FACET), allowed the analysis to be performed at the national level. FACET is a landsat-scale dataset giving an unprecedented synoptic view of forest <span class="hlt">cover</span> and forest <span class="hlt">cover</span> loss for the DRC for three time periods: 2000, 2005 and 2010. The three groups of metrics evaluated the following spatial characteristics of forest <span class="hlt">cover</span> loss for the same standard 1.5km unit of <span class="hlt">area</span>: proportions of typologies of forest lost, forest fragmentation and proximity of forest loss patches from other land <span class="hlt">cover</span> types. Results indicate that there are several different typologies of forest <span class="hlt">cover</span> loss in the DRC, and offer quantitative explanations of these differences, providing a valuable locally-relevant tool for land use planning, available at the national level. Spatial patterns of forest <span class="hlt">cover</span> loss highlight differences between <span class="hlt">areas</span> of high primary forest loss due to agriculture conversion in frontier deforestation, such as in the east of the country, <span class="hlt">areas</span> of equivalent primary and secondary forest loss emanating from the rural complex and <span class="hlt">areas</span> of variable proportions of primary and secondary forest loss but important ecological repercussions of forest fragmentation due to isolated, but systematic forest perforations. Typologies of spatial patterns of forest <span class="hlt">cover</span> loss are presented as well as their correlated drivers, and ecological, conservation and land use planning considerations are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..815L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..815L"><span>Land <span class="hlt">Cover</span> Change Monitoring of Typical Functional Communities of Sichuan Province Based on ZY-3 Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, G. M.; Li, S.; Ying, G. W.; Wu, X. P.</p> <p>2018-04-01</p> <p>According to the function, land space types are divided into key development <span class="hlt">areas</span>, restricted development <span class="hlt">areas</span> and forbidden development <span class="hlt">areas</span> in Sichuan Province. This paper monitors and analyses the changes of land <span class="hlt">cover</span> in different typical functional <span class="hlt">areas</span> from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land <span class="hlt">cover</span> types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total <span class="hlt">area</span> of land <span class="hlt">cover</span> 87 %. The land <span class="hlt">cover</span> types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total <span class="hlt">area</span> of the surface coverage. The land <span class="hlt">cover</span> types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total <span class="hlt">area</span> of land <span class="hlt">cover</span> 99.31 %.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70074779','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70074779"><span>Land-<span class="hlt">cover</span> change in the conterminous United States from 1973 to 2000</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sleeter, Benjamin M.; Sohl, Terry L.; Loveland, Thomas R.; Auch, Roger F.; Acevedo, William; Drummond, Mark A.; Sayler, Kristi L.; Stehman, Stephen V.</p> <p>2013-01-01</p> <p>Land-<span class="hlt">cover</span> change in the conterminous United States was quantified by interpreting change from satellite imagery for a sample stratified by 84 ecoregions. Gross and net changes between 11 land-<span class="hlt">cover</span> classes were estimated for 5 dates of Landsat imagery (1973, 1980, 1986, 1992, and 2000). An estimated 673,000 km2(8.6%) of the United States’ land <span class="hlt">area</span> experienced a change in land <span class="hlt">cover</span> at least one time during the study period. Forest <span class="hlt">cover</span> experienced the largest net decline of any class with 97,000 km2 lost between 1973 and 2000. The large decline in forest <span class="hlt">cover</span> was prominent in the two regions with the highest percent of overall change, the Marine West Coast Forests (24.5% of the region experienced a change in at least one time period) and the Eastern Temperate Forests (11.4% of the region with at least one change). Agriculture declined by approximately 90,000 km2 with the largest annual net loss of 12,000 km2 yr−1 occurring between 1986 and 1992. Developed <span class="hlt">area</span> increased by 33% and with the rate of conversion to developed accelerating rate over time. The time interval with the highest annual rate of change of 47,000 km2 yr−1 (0.6% per <span class="hlt">year</span>) was 1986–1992. This national synthesis documents a spatially and temporally dynamic era of land change between 1973 and 2000. These results quantify land change based on a nationally consistent monitoring protocol and contribute fundamental estimates critical to developing understanding of the causes and consequences of land change in the conterminous United States.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191343','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191343"><span>Differences in breeding bird assemblages related to reed canary grass <span class="hlt">cover</span> <span class="hlt">cover</span> and forest structure on the Upper Mississippi River</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kirsch, Eileen M.; Gray, Brian R.</p> <p>2017-01-01</p> <p>Floodplain forest of the Upper Mississippi River provides habitat for an abundant and diverse breeding bird community. However, reed canary grass Phalaris arundinacea invasion is a serious threat to the future condition of this forest. Reed canary grass is a well-known aggressive invader of wetland systems in the northern tier states of the conterminous United States. Aided by altered flow regimes and nutrient inputs from agriculture, reed canary grass has formed dense stands in canopy gaps and forest edges, retarding tree regeneration. We sampled vegetation and breeding birds in Upper Mississippi River floodplain forest edge and interior <span class="hlt">areas</span> to 1) measure reed canary grass <span class="hlt">cover</span> and 2) evaluate whether the breeding bird assemblage responded to differences in reed canary grass <span class="hlt">cover</span>. Reed canary grass was found far into forest interiors, and its <span class="hlt">cover</span> was similar between interior and edge sites. Bird assemblages differed between <span class="hlt">areas</span> with more or less reed canary grass <span class="hlt">cover</span> (.53% <span class="hlt">cover</span> breakpoint). Common yellowthroat Geothlypis trichas, black-capped chickadee Parus atricapillus, and rose-breasted grosbeak Pheucticus ludovicianus were more common and American redstart Setophaga ruticilla, great crested flycatcher Myiarchus crinitus, and Baltimore oriole Icterus galbula were less common in sites with more reed canary grass <span class="hlt">cover</span>. Bird diversity and abundance were similar between sites with different reed canary grass <span class="hlt">cover</span>. A stronger divergence in bird assemblages was associated with ground <span class="hlt">cover</span> ,15%, resulting from prolonged spring flooding. These sites hosted more prothonotary warbler Protonotaria citrea, but they had reduced bird abundance and diversity compared to other sites. Our results indicate that frequently flooded sites may be important for prothonotary warblers and that bird assemblages shift in response to reed canary grass invasion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.2205Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.2205Y"><span>Vegetation <span class="hlt">Cover</span> Analysis in Shaanxi Province of China Based on Grid Pixel Ternd Analysis and Stability Evaluation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yue, H.; Liu, Y.</p> <p>2018-04-01</p> <p>As a key factor affecting the biogeochemical cycle of human existence, terrestrial vegetation is vulnerable to natural environment and human activities, with obvious temporal and spatial characteristics. The change of vegetation <span class="hlt">cover</span> will affect the ecological balance and environmental quality to a great extent. Therefore, the research on the causes and influencing factors of vegetation <span class="hlt">cover</span> has become the focus of attention of scholars at home and abroad. In the evolution of human activities and natural environment, the vegetation coverage in Shaanxi has changed accordingly. Using MODIS/NDVI 2000-2014 time series data, using the method of raster pixel trend analysis, stability evaluation, rescaled range analysis and correlation analysis, the climatic factors in Shaanxi province were studied in the near 15 <span class="hlt">years</span> vegetation spatial and temporal variation and influence of vegetation NDVI changes. The results show that NDVI in Shaanxi province in the near 15 <span class="hlt">years</span> increased by 0.081, the increase of NDVI in Northern Shaanxi was obvious, and negative growth was found in some <span class="hlt">areas</span> of Guanzhong, southern Shaanxi NDVI overall still maintained at a high level; the trend of vegetation change in Shaanxi province has obvious spatial differences, most of the province is a slight tendency to improve vegetation, there are many obvious improvement <span class="hlt">areas</span> in Northern Shaanxi Province. Guanzhong <span class="hlt">area</span> vegetation <span class="hlt">area</span> decreased, the small range of variation of vegetation in Shaanxi province; the most stable <span class="hlt">areas</span> are mainly concentrated in the southern, southern Yanan, Yulin, Xi'an <span class="hlt">area</span> of Weinan changed greatly; Shaanxi Province in recent 15 a, the temperature and precipitation have shown an increasing trend, and the vegetation NDVI is more closely related to the average annual rainfall, with increase of 0.48 °C/10 <span class="hlt">years</span> and 69.5 mm per <span class="hlt">year</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26927963','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26927963"><span>Vegetation <span class="hlt">cover</span> and species richness after recurrent forest fires in the Eastern Mediterranean ecosystem of Mount Carmel, Israel.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tessler, Naama; Wittenberg, Lea; Greenbaum, Noam</p> <p>2016-12-01</p> <p>Fire is a common disturbance in Mediterranean ecosystems, and can have a destructive, influential, and even essential, effect on vegetation and wildlife. In recent decades there has been a general increase in the number of fires in the Mediterranean Basin, including in Mount Carmel, Israel. The effects of recurrent forest fires on vegetation <span class="hlt">cover</span> and species richness were determined in the spring of 2009 and 2010 by field surveys. The results of this study showed that the vegetation <span class="hlt">cover</span> changes after recurrent forest fires, and can serve as a good indicator of the influence of fire and the resulting ecosystem rehabilitation. The dominant <span class="hlt">cover</span> in most fire-damaged <span class="hlt">areas</span> was composed of shrubs and dwarf-shrubs, especially Cistus salviifolius and Calicotome villosa. Tree <span class="hlt">cover</span> was severely damaged after recurrent fires, and in those <span class="hlt">areas</span> there was a drastic decrease of the total plant <span class="hlt">cover</span>. Species richness increased mainly in the first decade after the recurrent fires, and decreased when the forest canopy began to close. Fire recurrence with short intervals (4-6<span class="hlt">years</span>) between fires may lower the rehabilitated processes of the ecosystem and change its equilibrium. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B32D..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B32D..02D"><span>Urban <span class="hlt">Area</span> Monitoring using MODIS Time Series Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devadiga, S.; Sarkar, S.; Mauoka, E.</p> <p>2015-12-01</p> <p>Growing urban sprawl and its impact on global climate due to urban heat island effects has been an active <span class="hlt">area</span> of research over the recent <span class="hlt">years</span>. This is especially significant in light of rapid urbanization that is happening in some of the first developing nations across the globe. But so far study of urban <span class="hlt">area</span> growth has been largely restricted to local and regional scales, using high to medium resolution satellite observations, taken at distinct time periods. In this presentation we propose a new approach to detect and monitor urban <span class="hlt">area</span> expansion using long time series of MODIS data. This work characterizes data points using a vector of several annual metrics computed from the MODIS 8-day and 16-day composite L3 data products, at 250M resolution and over several <span class="hlt">years</span> and then uses a vector angle mapping classifier to detect and segment the urban <span class="hlt">area</span>. The classifier is trained using a set of training points obtained from a reference vector point and polygon pre-filtered using the MODIS VI product. This work gains additional significance, given that, despite unprecedented urban growth since 2000, the <span class="hlt">area</span> <span class="hlt">covered</span> by the urban class in the MODIS Global Land <span class="hlt">Cover</span> (MCD12Q1, MCDLCHKM and MCDLC1KM) product hasn't changed since the launch of Terra and Aqua. The proposed approach was applied to delineate the urban <span class="hlt">area</span> around several cities in Asia known to have maximum growth in the last 15 <span class="hlt">years</span>. Results were verified using high resolution Landsat data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17164169','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17164169"><span>UV hazard on Italian Apennines under different shading and ground <span class="hlt">cover</span> conditions during peak tourist seasons of the <span class="hlt">year</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grifoni, Daniele; Carreras, Giulia; Sabatini, Francesco; Zipoli, Gaetano</p> <p>2006-12-01</p> <p>In solar UV irradiance monitoring and forecasting services UV information is generally expressed in terms of its effect on erythema and referred to horizontal surface. In this work we define the UV radiative regime, in terms of biologically effective UV irradiance (UVBE) for skin and eye, under full sun and shaded conditions, over a mountainous tourist <span class="hlt">area</span> of central Italy by means of two all-day measurements (summer and early spring) with different ground albedo (grass and snow <span class="hlt">cover</span> respectively). UV irradiance was monitored on tilted surfaces (the most frequent for people standing and walking). Results show the significant contribution of ground albedo and sun position in determining the incident UVBE irradiance. On early spring days the UVBE irradiance measured on horizontal surface was much lower than on tilted ones; the opposite condition was observed in summer. The highest UVBE irradiance values, in particular conditions of sun elevation and ground <span class="hlt">cover</span>, were reached in periods different from the summer both in full sun and shaded condition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B8e426180-b263-48b0-ac28-514adc076f03%7D','PESTICIDES'); return false;" href="https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B8e426180-b263-48b0-ac28-514adc076f03%7D"><span>EnviroAtlas - Minneapolis/St. Paul, MN - One Meter Resolution Urban <span class="hlt">Area</span> Land <span class="hlt">Cover</span> Map (MULC) (2010)</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>The Minneapolis-St. Paul, MN EnviroAtlas Meter-scale Urban Land <span class="hlt">Cover</span> (MULC) data were generated from four-band (red, green, blue, and near infrared) aerial photography provided by the United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP). The NAIP imagery for the state of Minnesota was collected during the summer and fall of 2010. Lidar data and relevant ancillary datasets contributed to the classification. Eight land <span class="hlt">cover</span> types were classified: water, impervious surface, soil and barren land, trees and forest, grass and herbaceous, agriculture, woody wetland, and emergent wetland. An accuracy assessment of 644 completely random and 62 stratified random photointerpreted reference points yielded an overall User's Accuracy of 83 percent. The boundary of this data layer is delineated by the US Census Bureau's 2010 Urban Statistical <span class="hlt">Area</span> for Minneapolis-St. Paul, MN plus a 1-km buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associat</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B41E0340H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B41E0340H"><span>Quantifying Structural and Compositional Changes in Forest <span class="hlt">Cover</span> in NW Yunnan, China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hakkenberg, C.</p> <p>2012-12-01</p> <p>NW Yunnan, China is a region renowned for high levels of biodiversity, endemism and genetically distinct refugial plant populations. It is also a focal <span class="hlt">area</span> for China's national reforestation efforts like the Natural Forest Protection Program (NFPP), intended to control erosion in the Upper Yangtze watershed. As part of a larger project to investigate the role of reforestation programs in facilitating the emergence of increasingly species-rich forest communities on a previously degraded and depauperate land mosaic in montane SW China, this study uses a series of Landsat TM images to quantify the spatial pattern and rate of structural and compositional change in forests recovering from medium to large-scale disturbances in the <span class="hlt">area</span> over the past 25 <span class="hlt">years</span>. Beyond the fundamental need to assess the outcomes of one of the world's largest reforestation programs, this research offers approaches to confronting two critical methodological issues: (1) techniques for characterizing subtle changes in the nature of vegetation <span class="hlt">cover</span>, and (2) reducing change detection uncertainty due to persistent cloud <span class="hlt">cover</span> and shadow. To address difficulties in accurately assessing the structure and composition of vegetative regrowth, a biophysical model was parameterized with over 300 ground-truthed canopy <span class="hlt">cover</span> assessment points to determine pattern and rate of long-term vegetation changes. To combat pervasive shadow and cloud <span class="hlt">cover</span>, an interactive generalized additive model (GAM) model based on topographic and spatial predictors was used to overcome some of the constraints of satellite image analysis in Himalayan regions characterized by extreme topography and extensive cloud <span class="hlt">cover</span> during the summer monsoon. The change detection is assessed for accuracy using ground-truthed observations in a variety of forest <span class="hlt">cover</span> types and topographic positions. Results indicate effectiveness in reducing the areal extent of unclassified regions and increasing total change detection accuracy. In addition</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23220605','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23220605"><span>Effects of grazing on leaf <span class="hlt">area</span> index, fractional <span class="hlt">cover</span> and evapotranspiration by a desert phreatophyte community at a former uranium mill site on the Colorado Plateau.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bresloff, Cynthia J; Nguyen, Uyen; Glenn, Edward P; Waugh, Jody; Nagler, Pamela L</p> <p>2013-01-15</p> <p>This study employed ground and remote sensing methods to monitor the effects of grazing on leaf <span class="hlt">area</span> index (LAI), fractional <span class="hlt">cover</span> (f(c)) and evapotranspiration (ET) of a desert phreatophyte community over an 11 <span class="hlt">year</span> period at a former uranium mill site on the Colorado Plateau, U.S. Nitrate, ammonium and sulfate are migrating away from the mill site in a shallow alluvial aquifer. The phreatophyte community, consisting of Atriplex canescens (ATCA) and Sarcobatus vermiculatus (SAVE) shrubs, intercepts groundwater and could potentially slow the movement of the contaminant plume through evapotranspiration (ET). However, the site has been heavily grazed by livestock, reducing plant <span class="hlt">cover</span> and LAI. We used livestock exclosures and revegetation plots to determine the effects of grazing on LAI, f(c) and ET, then projected the findings over the whole site using multi-platform remote sensing methods. We show that ET is approximately equal to annual precipitation at the site, but when ATCA and SAVE are protected from grazing they can develop high f(c) and LAI values, and ET can exceed annual precipitation, with the excess coming from groundwater discharge. Therefore, control of grazing could be an effective method to slow migration of contaminants at this and similar sites in the western U.S. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70045257','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70045257"><span>Effects of grazing on leaf <span class="hlt">area</span> index, fractional <span class="hlt">cover</span> and evapotranspiration by a desert phreatophyte community at a former uranium mill site on the Colorado Plateau</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bresloff, Cynthia J.; Nguyen, Uyen; Glenn, Edward P.; Waugh, Jody; Nagler, Pamela L.</p> <p>2013-01-01</p> <p>This study employed ground and remote sensing methods to monitor the effects of grazing on leaf <span class="hlt">area</span> index (LAI), fractional <span class="hlt">cover</span> (fc) and evapotranspiration (ET) of a desert phreatophyte community over an 11 <span class="hlt">year</span> period at a former uranium mill site on the Colorado Plateau, U.S. Nitrate, ammonium and sulfate are migrating away from the mill site in a shallow alluvial aquifer. The phreatophyte community, consisting of Atriplex canescens (ATCA) and Sarcobatus vermiculatus (SAVE) shrubs, intercepts groundwater and could potentially slow the movement of the contaminant plume through evapotranspiration (ET). However, the site has been heavily grazed by livestock, reducing plant <span class="hlt">cover</span> and LAI. We used livestock exclosures and revegetation plots to determine the effects of grazing on LAI, fc and ET, then projected the findings over the whole site using multi-platform remote sensing methods. We show that ET is approximately equal to annual precipitation at the site, but when ATCA and SAVE are protected from grazing they can develop high fc and LAI values, and ET can exceed annual precipitation, with the excess coming from groundwater discharge. Therefore, control of grazing could be an effective method to slow migration of contaminants at this and similar sites in the western U.S.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1030562-overstory-understory-relationships-longleaf-pine-plantations-years-after-thinning-woody-control','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1030562-overstory-understory-relationships-longleaf-pine-plantations-years-after-thinning-woody-control"><span>Overstory and understory relationships in longleaf pine plantations 14 <span class="hlt">years</span> after thinning and woody control.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Harrington, Timothy, B.</p> <p>2011-09-09</p> <p>To develop silvicultural strategies for restoring longleaf pine (Pinus palustris Mill.) savannas, mortality and growth of overstory pines and midstory hardwoods and abundance and species richness of herbs were studied for 14 <span class="hlt">years</span> after pine thinning and nonpine woody control. Pine <span class="hlt">cover</span> in thinned stands was about half of that in nonthinned stands through <span class="hlt">year</span> 5, but it lagged by only 8% and 3% in <span class="hlt">years</span> 9 and 14, respectively, because of vigorous crown responses. Despite a cumulative mortality of 64% of hardwood stems from prescribed fires in <span class="hlt">years</span> 0, 4, and 9, hardwood basal <span class="hlt">area</span> in thinned stands (2.1more » m2/ha) was three times that in nonthinned stands (0.7 m2/ha) in <span class="hlt">year</span> 14. Thinning was associated with 13%-22% more <span class="hlt">cover</span> and six to eight more species of herbs in <span class="hlt">years</span> 3-8 but only 6% more <span class="hlt">cover</span> and two more species in <span class="hlt">year</span> 14 because of accelerated growth of pine <span class="hlt">cover</span> and hardwood basal <span class="hlt">area</span>. However, similar increases in <span class="hlt">cover</span> and richness of herb species in the woody control treatment were retained through <span class="hlt">year</span> 14 because it had sustained reductions in hardwood and shrub abundance. Silvicultural strategies that substantially delay encroachment by pines, hardwoods, and shrubs will be those most effective at retaining herb species in longleaf pine savannas, including planting pines at wide spacing, periodic thinning and woody control, and frequent burning.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H31D1443L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H31D1443L"><span>Hydrological Responses of Climate and Land Use/<span class="hlt">Cover</span> Changes in Tao'er River Basin Based on the SWAT Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J.; Kou, L.</p> <p>2015-12-01</p> <p>Abstract: The changes of both climate and land use/<span class="hlt">cover</span> have some impact on the water resources. For Tao'er River Basin, these changes have a direct impact on the land use pattern adjustment, wetland protection, connection project between rivers and reservoirs, local social and economic development, etc. Therefore, studying the impact of climate and land use/<span class="hlt">cover</span> changes is of great practical significance. The Soil and Water Assessment Tool (SWAT) is used as the research method. With historical actual measured runoff data and the <span class="hlt">yearly</span> land use classification caught by satellite remote sensing maps, analyze the impact of climate change on the runoff of Tao'er River. And according to the land use/<span class="hlt">cover</span> classification of 1990, 2000 and 2010, analyze the land use/<span class="hlt">cover</span> change in the recent 30 <span class="hlt">years</span>, the impact of the land use/<span class="hlt">cover</span> change on the river runoff and the contribution coefficient of farmland, woodland, grassland and other major land-use types to the runoff. These studies can provide some references to the rational allocation of water resource and adjustment of land use structure in this <span class="hlt">area</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810332R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810332R"><span>Trends in annual minimum exposed snow and ice <span class="hlt">cover</span> in High Mountain Asia from MODIS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Racoviteanu, Adina; Armstrong, Richard; Dozier, Jeff</p> <p>2016-04-01</p> <p>Though a relatively short record on climatological scales, data from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000-2014 can be used to evaluate changes in the cryosphere and provide a robust baseline for future observations from space. We use the MODIS Snow <span class="hlt">Covered</span> <span class="hlt">Area</span> and Grain size (MODSCAG) algorithm, based on spectral mixture analysis, to estimate daily fractional snow and ice <span class="hlt">cover</span> and the MODICE Persistent Ice (MODICE) algorithm to estimate the annual minimum snow and ice fraction (fSCA) for each <span class="hlt">year</span> from 2000 to 2014 in High Mountain Asia. We have found that MODSCAG performs better than other algorithms, such as the Normalized Difference Index (NDSI), at detecting snow. We use MODICE because it minimizes false positives (compared to maximum extents), for example, when bright soils or clouds are incorrectly classified as snow, a common problem with optical satellite snow mapping. We analyze changes in <span class="hlt">area</span> using the annual MODICE maps of minimum snow and ice <span class="hlt">cover</span> for over 15,000 individual glaciers as defined by the Randolph Glacier Inventory (RGI) Version 5, focusing on the Amu Darya, Syr Darya, Upper Indus, Ganges, and Brahmaputra River basins. For each glacier with an <span class="hlt">area</span> of at least 1 km2 as defined by RGI, we sum the total minimum snow and ice <span class="hlt">covered</span> <span class="hlt">area</span> for each <span class="hlt">year</span> from 2000 to 2014 and estimate the trends in <span class="hlt">area</span> loss or gain. We find the largest loss in annual minimum snow and ice extent for 2000-2014 in the Brahmaputra and Ganges with 57% and 40%, respectively, of analyzed glaciers with significant losses (p-value<0.05). In the Upper Indus River basin, we see both gains and losses in minimum snow and ice extent, but more glaciers with losses than gains. Our analysis shows that a smaller proportion of glaciers in the Amu Darya and Syr Darya are experiencing significant changes in minimum snow and ice extent (3.5% and 12.2%), possibly because more of the glaciers in this region are smaller than 1 km2 than in the Indus</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5809043','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5809043"><span>The managed clearing: An overlooked land-<span class="hlt">cover</span> type in urbanizing regions?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.</p> <p>2018-01-01</p> <p>Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land <span class="hlt">Cover</span> Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-<span class="hlt">cover</span> change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land <span class="hlt">areas</span> that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-<span class="hlt">cover</span> type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing <span class="hlt">areas</span> of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land <span class="hlt">cover</span> with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land <span class="hlt">Cover</span> Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land <span class="hlt">cover</span> types, and the proportion of land-<span class="hlt">cover</span> types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land <span class="hlt">cover</span> type in these cities, <span class="hlt">covering</span> 28% of the total sampled land area– 6.2% higher than the total <span class="hlt">area</span> of impervious surfaces. Managed clearings, when combined with forest <span class="hlt">cover</span>, constitutes 69% of pervious surfaces in the sampled region. We observed variability in <span class="hlt">area</span> estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26ES...18a2055W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26ES...18a2055W"><span>Study on resources and environmental data integration towards data warehouse construction <span class="hlt">covering</span> trans-boundary <span class="hlt">area</span> of China, Russia and Mongolia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, J.; Song, J.; Gao, M.; Zhu, L.</p> <p>2014-02-01</p> <p>The trans-boundary <span class="hlt">area</span> between Northern China, Mongolia and eastern Siberia of Russia is a continuous geographical <span class="hlt">area</span> located in north eastern Asia. Many common issues in this region need to be addressed based on a uniform resources and environmental data warehouse. Based on the practice of joint scientific expedition, the paper presented a data integration solution including 3 steps, i.e., data collection standards and specifications making, data reorganization and process, data warehouse design and development. A series of data collection standards and specifications were drawn up firstly <span class="hlt">covering</span> more than 10 domains. According to the uniform standard, 20 resources and environmental survey databases in regional scale, and 11 in-situ observation databases were reorganized and integrated. North East Asia Resources and Environmental Data Warehouse was designed, which included 4 layers, i.e., resources layer, core business logic layer, internet interoperation layer, and web portal layer. The data warehouse prototype was developed and deployed initially. All the integrated data in this <span class="hlt">area</span> can be accessed online.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title45-vol4/pdf/CFR-2010-title45-vol4-sec1211-1-5.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title45-vol4/pdf/CFR-2010-title45-vol4-sec1211-1-5.pdf"><span>45 CFR 1211.1-5 - Matters not <span class="hlt">covered</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... 45 Public Welfare 4 2010-10-01 2010-10-01 false Matters not <span class="hlt">covered</span>. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not <span class="hlt">covered</span>. Matters not within the definition... following are specific examples of excluded <span class="hlt">areas</span> and are not intended as a complete listing of the matters...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title45-vol4/pdf/CFR-2014-title45-vol4-sec1211-1-5.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title45-vol4/pdf/CFR-2014-title45-vol4-sec1211-1-5.pdf"><span>45 CFR 1211.1-5 - Matters not <span class="hlt">covered</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... 45 Public Welfare 4 2014-10-01 2014-10-01 false Matters not <span class="hlt">covered</span>. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not <span class="hlt">covered</span>. Matters not within the definition... following are specific examples of excluded <span class="hlt">areas</span> and are not intended as a complete listing of the matters...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title45-vol4/pdf/CFR-2013-title45-vol4-sec1211-1-5.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title45-vol4/pdf/CFR-2013-title45-vol4-sec1211-1-5.pdf"><span>45 CFR 1211.1-5 - Matters not <span class="hlt">covered</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... 45 Public Welfare 4 2013-10-01 2013-10-01 false Matters not <span class="hlt">covered</span>. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not <span class="hlt">covered</span>. Matters not within the definition... following are specific examples of excluded <span class="hlt">areas</span> and are not intended as a complete listing of the matters...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title45-vol4/pdf/CFR-2012-title45-vol4-sec1211-1-5.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title45-vol4/pdf/CFR-2012-title45-vol4-sec1211-1-5.pdf"><span>45 CFR 1211.1-5 - Matters not <span class="hlt">covered</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... 45 Public Welfare 4 2012-10-01 2012-10-01 false Matters not <span class="hlt">covered</span>. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not <span class="hlt">covered</span>. Matters not within the definition... following are specific examples of excluded <span class="hlt">areas</span> and are not intended as a complete listing of the matters...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title45-vol4/pdf/CFR-2011-title45-vol4-sec1211-1-5.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title45-vol4/pdf/CFR-2011-title45-vol4-sec1211-1-5.pdf"><span>45 CFR 1211.1-5 - Matters not <span class="hlt">covered</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... 45 Public Welfare 4 2011-10-01 2011-10-01 false Matters not <span class="hlt">covered</span>. 1211.1-5 Section 1211.1-5... SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-5 Matters not <span class="hlt">covered</span>. Matters not within the definition... following are specific examples of excluded <span class="hlt">areas</span> and are not intended as a complete listing of the matters...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817310M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817310M"><span>Multi Satellites Monitoring of Land Use/<span class="hlt">Cover</span> Change and Its Driving Forces in Kashgar Region, China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maimaitiaili, Ayisulitan; Aji, xiaokaiti; Kondoh, Akihiko</p> <p>2016-04-01</p> <p> has two peaks in 2005 and 2009. With increasing population from 2,324,375 in 1984 to 4,228,200 in 2014 and crop land reclamation from 6031.4 km2 in 1972 to 16549km2 in 2014 at the study <span class="hlt">area</span>. Water resources consumption increased with support to large population and irrigate whole crop land <span class="hlt">area</span>, caused the water shortages that the surface water bodies decreased from 2531.43km2 in the 1972s to 1067.05km2 in the 2014. The grass land with an acreage larger than 6749km2 in 1972 decreased to 922.6 km2 in 2014. The transformations between water bodies, garss land and bare land are remarkbale. The results also suggested high linearity between the LUCC and socioeconomic changes that specific land <span class="hlt">cover</span> change be cause of the fact that socioeconomic development. In the recent 42 <span class="hlt">years</span>, average annual temperature have been increasing significantly, although, precipitation have increased but partly weaken effect of the rising temperature, in addition snow <span class="hlt">cover</span> more sensitive to precipitation than temperature. Results the change of climate showed a nagitive relationship between the NDSI with decrased of the snow <span class="hlt">cover</span> and climate with increasing of the tempreature. Morover, the relationship between the LUCC and snow <span class="hlt">cover</span> recorded higher linearity, because the temperature have increased, consequence influence on snow <span class="hlt">cover</span> that provides melt water for study <span class="hlt">area</span> which expanding crop land.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5739513','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5739513"><span>Optimal shortening of uniform <span class="hlt">covering</span> arrays</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rangel-Valdez, Nelson; Avila-George, Himer; Carrizalez-Turrubiates, Oscar</p> <p>2017-01-01</p> <p>Software test suites based on the concept of interaction testing are very useful for testing software components in an economical way. Test suites of this kind may be created using mathematical objects called <span class="hlt">covering</span> arrays. A <span class="hlt">covering</span> array, denoted by CA(N; t, k, v), is an N × k array over Zv={0,…,v-1} with the property that every N × t sub-array <span class="hlt">covers</span> all t-tuples of Zvt at least once. <span class="hlt">Covering</span> arrays can be used to test systems in which failures occur as a result of interactions among components or subsystems. They are often used in <span class="hlt">areas</span> such as hardware Trojan detection, software testing, and network design. Because system testing is expensive, it is critical to reduce the amount of testing required. This paper addresses the Optimal Shortening of <span class="hlt">Covering</span> ARrays (OSCAR) problem, an optimization problem whose objective is to construct, from an existing <span class="hlt">covering</span> array matrix of uniform level, an array with dimensions of (N − δ) × (k − Δ) such that the number of missing t-tuples is minimized. Two applications of the OSCAR problem are (a) to produce smaller <span class="hlt">covering</span> arrays from larger ones and (b) to obtain quasi-<span class="hlt">covering</span> arrays (<span class="hlt">covering</span> arrays in which the number of missing t-tuples is small) to be used as input to a meta-heuristic algorithm that produces <span class="hlt">covering</span> arrays. In addition, it is proven that the OSCAR problem is NP-complete, and twelve different algorithms are proposed to solve it. An experiment was performed on 62 problem instances, and the results demonstrate the effectiveness of solving the OSCAR problem to facilitate the construction of new <span class="hlt">covering</span> arrays. PMID:29267343</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/27346','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/27346"><span>Snow-<span class="hlt">cover</span> condition in Japan and damage of the Sugi (Cryptomeria Japonica D. Don)</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Taira Hideaki</p> <p>1991-01-01</p> <p>Japan is one of the most snowiest regions in the world. Particularly the mountainous <span class="hlt">area</span> of Honshu (the main island), along the Japan Sea has heavy snow in winter. In some places, snow piles up more than four meters and the ground is <span class="hlt">covered</span> with snow about one hundred and forty days a <span class="hlt">year</span>. The sugi tree is widely planted in snowy regions, and snow-pressure damages,...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESSD..1110515T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESSD..1110515T"><span>Effect of <span class="hlt">year-to-year</span> variability of leaf <span class="hlt">area</span> index on variable infiltration capacity model performance and simulation of streamflow during drought</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.</p> <p>2014-09-01</p> <p>This study assessed the effect of using observed monthly leaf <span class="hlt">area</span> index (LAI) on hydrologic model performance and the simulation of streamflow during drought using the variable infiltration capacity (VIC) hydrological model in the Goulburn-Broken catchment of Australia, which has heterogeneous vegetation, soil and climate zones. VIC was calibrated with both observed monthly LAI and long-term mean monthly LAI, which were derived from the Global Land Surface Satellite (GLASS) observed monthly LAI dataset <span class="hlt">covering</span> the period from 1982 to 2012. The model performance under wet and dry climates for the two different LAI inputs was assessed using three criteria, the classical Nash-Sutcliffe efficiency, the logarithm transformed flow Nash-Sutcliffe efficiency and the percentage bias. Finally, the percentage deviation of the simulated monthly streamflow using the observed monthly LAI from simulated streamflow using long-term mean monthly LAI was computed. The VIC model predicted monthly streamflow in the selected sub-catchments with model efficiencies ranging from 61.5 to 95.9% during calibration (1982-1997) and 59 to 92.4% during validation (1998-2012). Our results suggest systematic improvements from 4 to 25% in the Nash-Sutcliffe efficiency in pasture dominated catchments when the VIC model was calibrated with the observed monthly LAI instead of the long-term mean monthly LAI. There was limited systematic improvement in tree dominated catchments. The results also suggest that the model overestimation or underestimation of streamflow during wet and dry periods can be reduced to some extent by including the <span class="hlt">year-to-year</span> variability of LAI in the model, thus reflecting the responses of vegetation to fluctuations in climate and other factors. Hence, the <span class="hlt">year-to-year</span> variability in LAI should not be neglected; rather it should be included in model calibration as well as simulation of monthly water balance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC42C..11G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC42C..11G"><span>Accuracy Assessment of Satellite Derived Forest <span class="hlt">Cover</span> Products in South and Southeast Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gilani, H.; Xu, X.; Jain, A. K.</p> <p>2017-12-01</p> <p>South and Southeast Asia (SSEA) region occupies 16 % of worlds land <span class="hlt">area</span>. It is home to over 50% of the world's population. The SSEA's countries are experiencing significant land-use and land-<span class="hlt">cover</span> changes (LULCCs), primarily in agriculture, forest, and urban land. For this study, we compiled four existing global forest <span class="hlt">cover</span> maps for <span class="hlt">year</span> 2010 by Gong et al.(2015), Hansen et al. (2013), Sexton et al.(2013) and Shimada et al. (2014), which were all medium resolution (≤30 m) products based on Landsat and/or PALSAR satellite images. To evaluate the accuracy of these forest products, we used three types of information: (1) ground measurements, (2) high resolution satellite images and (3) forest <span class="hlt">cover</span> maps produced at the national scale. The stratified random sampling technique was used to select a set of validation data points from the ground and high-resolution satellite images. Then the confusion matrix method was used to assess and rank the accuracy of the forest <span class="hlt">cover</span> products for the entire SSEA region. We analyzed the spatial consistency of different forest <span class="hlt">cover</span> maps, and further evaluated the consistency with terrain characteristics. Our study suggests that global forest <span class="hlt">cover</span> mapping algorithms are trained and tested using limited ground measurement data. We found significant uncertainties in mountainous <span class="hlt">areas</span> due to the topographical shadow effect and the dense tree canopies effects. The findings of this study will facilitate to improve our understanding of the forest <span class="hlt">cover</span> dynamics and their impacts on the quantities and pathways of terrestrial carbon and nitrogen fluxes. Gong, P., et al. (2012). "Finer resolution observation and monitoring of global land <span class="hlt">cover</span>: first mapping results with Landsat TM and ETM+ data." International Journal of Remote Sensing 34(7): 2607-2654. Hansen, M. C., et al. (2013). "High-Resolution Global Maps of 21st-Century Forest <span class="hlt">Cover</span> Change." Science 342(6160): 850-853. Sexton, J. O., et al. (2013). "Global, 30-m resolution</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030162','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030162"><span>A land-<span class="hlt">cover</span> map for South and Southeast Asia derived from SPOT-VEGETATION data</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.</p> <p>2007-01-01</p> <p>Aim  Our aim was to produce a uniform ‘regional’ land-<span class="hlt">cover</span> map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land <span class="hlt">Cover</span> 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-<span class="hlt">cover</span> map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the <span class="hlt">years</span> 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land <span class="hlt">Cover</span> Classification System (LCCS) for coding the sub-regional land-<span class="hlt">cover</span> classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-<span class="hlt">cover</span> <span class="hlt">area</span> estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-<span class="hlt">cover</span> classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-<span class="hlt">cover</span> classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional <span class="hlt">area</span> estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-<span class="hlt">cover</span> map of South and Southeast Asia provides a synoptic view of the distribution of land <span class="hlt">cover</span> of tropical and sub</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980018320','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980018320"><span>Land <span class="hlt">Cover</span> Analysis of Temperate Asia</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justice, Chris</p> <p>1998-01-01</p> <p>Satellite data from the advanced very high resolution radiometer (AVHRR) instrument were used to produce a general land <span class="hlt">cover</span> distribution of temperate Asia (referred to hence as Central Asia) from 1982, starting with the NOAA-7 satellite, and continuing through 1991, ending with the NOAA-11 satellite. Emphasis was placed upon delineating the and and semi-arid zones of Central Asia (largely Mongolia and adjacent <span class="hlt">areas</span>), mapping broad categories of aggregated land <span class="hlt">cover</span>, and upon studying photosynthetic capacity increases in Central Asia from 1982 to 1991.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMGC21A0139S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMGC21A0139S"><span>Regional Climate Modeling over the Marmara Region, Turkey, with Improved Land <span class="hlt">Cover</span> Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sertel, E.; Robock, A.</p> <p>2007-12-01</p> <p>Land surface controls the partitioning of available energy at the surface between sensible and latent heat,and controls partitioning of available water between evaporation and runoff. Current land <span class="hlt">cover</span> data available within the regional climate models such as Regional Atmospheric Modeling System (RAMS), the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and Weather Research and Forecasting (WRF) was obtained from 1- km Advanced Very High Resolution Radiometer satellite images spanning April 1992 through March 1993 with an unsupervised classification technique. These data are not up-to-date and are not accurate for all regions and some land <span class="hlt">cover</span> types such as urban <span class="hlt">areas</span>. Here we introduce new, up-to-date and accurate land <span class="hlt">cover</span> data for the Marmara Region, Turkey derived from Landsat Enhanced Thematic Mapper images into the WRF regional climate model. We used several image processing techniques to create accurate land <span class="hlt">cover</span> data from Landsat images obtained between 2001 and 2005. First, all images were atmospherically and radiometrically corrected to minimize contamination effects of atmospheric particles and systematic errors. Then, geometric correction was performed for each image to eliminate geometric distortions and define images in a common coordinate system. Finally, unsupervised and supervised classification techniques were utilized to form the most accurate land <span class="hlt">cover</span> data yet for the study <span class="hlt">area</span>. Accuracy assessments of the classifications were performed using error matrix and kappa statistics to find the best classification results. Maximum likelihood classification method gave the most accurate results over the study <span class="hlt">area</span>. We compared the new land <span class="hlt">cover</span> data with the default WRF land <span class="hlt">cover</span> data. WRF land <span class="hlt">cover</span> data cannot represent urban <span class="hlt">areas</span> in the cities of Istanbul, Izmit, and Bursa. As an example, both original satellite images and new land <span class="hlt">cover</span> data showed the expansion of urban <span class="hlt">areas</span> into the Istanbul metropolitan <span class="hlt">area</span>, but in the WRF</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-00PP-0305&hterms=algae&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dalgae','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-00PP-0305&hterms=algae&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dalgae"><span>An algae-<span class="hlt">covered</span> alligator rests warily</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p>An algae-<span class="hlt">covered</span> alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering <span class="hlt">areas</span> for 23 species of migratory waterfowl, as well as a <span class="hlt">year</span>-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRD..11721107S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRD..11721107S"><span>A new fractional snow-<span class="hlt">covered</span> <span class="hlt">area</span> parameterization for the Community Land Model and its effect on the surface energy balance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swenson, S. C.; Lawrence, D. M.</p> <p>2011-11-01</p> <p>One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow <span class="hlt">cover</span> and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-<span class="hlt">covered</span> <span class="hlt">area</span>, or snow-<span class="hlt">covered</span> fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow <span class="hlt">cover</span>. To more realistically simulate environments having patchy snow <span class="hlt">cover</span>, we modify the model by computing the surface fluxes separately for snow-free and snow-<span class="hlt">covered</span> fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..11721107S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..11721107S"><span>A new fractional snow-<span class="hlt">covered</span> <span class="hlt">area</span> parameterization for the Community Land Model and its effect on the surface energy balance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swenson, S. C.; Lawrence, D. M.</p> <p>2012-11-01</p> <p>One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow <span class="hlt">cover</span> and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-<span class="hlt">covered</span> <span class="hlt">area</span>, or snow-<span class="hlt">covered</span> fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow <span class="hlt">cover</span>. To more realistically simulate environments having patchy snow <span class="hlt">cover</span>, we modify the model by computing the surface fluxes separately for snow-free and snow-<span class="hlt">covered</span> fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910064G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910064G"><span>Multi-decadal evolution of ice/snow <span class="hlt">covers</span> in the Mont-Blanc massif (France)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guillet, Grégoire; Ravanel, Ludovic</p> <p>2017-04-01</p> <p>Dynamics and evolution of the major glaciers of the Mont-Blanc massif have been vastly studied since the XXth century. Ice/snow <span class="hlt">covers</span> on steep rock faces as part of the cryosphere however remain poorly studied with only qualitative descriptions existing. The study of ice/snow <span class="hlt">covers</span> is primordial to further understand permafrost degradation throughout the Mont-Blanc massif and to improve safety and prevention for mountain sports practitioners. This study focuses on quantifying the evolution of ice/snow <span class="hlt">covers</span> surface during the past century using a specially developed monoplotting tool using Bayesian statistics and Markov Chain Monte Carlo algorithms. Combining digital elevation models and photographs <span class="hlt">covering</span> a time-span of 110 <span class="hlt">years</span>, we calculated the ice/snow <span class="hlt">cover</span> surface for 3 study sites — North faces of the Tour Ronde (3792 m a.s.l.) and the Grandes Jorasses (4208 m a.s.l.) and Triangle du Tacul (3970 m a.s.l.) — and deduced the evolution of their <span class="hlt">area</span> throughout the XXth century. First results are showing several increase/decrease periods. The first decrease in ice/snow <span class="hlt">cover</span> surface occurs between the 1940's and the 1950's. It is followed by an increase up to the 1980's. Since then, ice/snow <span class="hlt">covers</span> show a general decrease in surface which is faster since the 2010's. Furthermore, the gain/loss during the increase/decrease periods varies with the considered ice/snow <span class="hlt">cover</span>, making it an interesting cryospheric entity of its own.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..126a2027S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..126a2027S"><span>Land <span class="hlt">cover</span> change impact on urban flood modeling (case study: Upper Citarum watershed)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siregar, R. I.</p> <p>2018-03-01</p> <p>The upper Citarum River watershed utilizes remote sensing technology in Geographic Information System to provide information on land coverage by interpretation of objects in the image. Rivers that pass through urban <span class="hlt">areas</span> will cause flooding problems causing disadvantages, and it disrupts community activities in the urban <span class="hlt">area</span>. Increased development in a city is related to an increase in the number of population growth that added by increasing quality and quantity of life necessities. Improved urban lifestyle changes have an impact on land <span class="hlt">cover</span>. The impact in over time will be difficult to control. This study aims to analyze the condition of flooding in urban <span class="hlt">areas</span> caused by upper Citarum watershed land-use change in 2001 with the land <span class="hlt">cover</span> change in 2010. This modeling analyzes with the help of HEC-RAS to describe flooded inundation urban <span class="hlt">areas</span>. Land <span class="hlt">cover</span> change in upper Citarum watershed is not very significant; it based on the results of data processing of land <span class="hlt">cover</span> has the difference of <span class="hlt">area</span> that changed is not enormous. Land <span class="hlt">cover</span> changes for the floods increased dramatically to a flow coefficient for 2001 is 0.65 and in 2010 at 0.69. In 2001, the inundation <span class="hlt">area</span> about 105,468 hectares and it were about 92,289 hectares in 2010.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=34650&Lab=NERL&keyword=Nuclear+AND+Radiation&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=34650&Lab=NERL&keyword=Nuclear+AND+Radiation&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST <span class="hlt">AREAS</span>, CALENDAR <span class="hlt">YEAR</span> 1981</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), <span class="hlt">covers</span> the program activities conducted around Nevada Test Site (NTS) for calendar <span class="hlt">year</span> 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/15653','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/15653"><span>Ground <span class="hlt">cover</span> in old-growth forests of the central hardwood region</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Martin A. Spetich; Stephen R. Shifley; George R. Parker; Felix, Jr. Ponder</p> <p>1997-01-01</p> <p>Differences in ground <span class="hlt">cover</span> (percent <span class="hlt">cover</span> of litter, percent <span class="hlt">cover</span> of vegetation and litter weight) in old-growth forests across this region are not well understood. We initiated a long-term study in a three-state region to enhance knowledge in this <span class="hlt">area</span>. We present baseline results for ground <span class="hlt">cover</span> and compare these data across productivity regions. Thirty 0.25-ac (0...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=209766&Lab=NERL&keyword=Clustering&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=209766&Lab=NERL&keyword=Clustering&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Estimating Accuracy of Land-<span class="hlt">Cover</span> Composition From Two-Stage Clustering Sampling</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Land-<span class="hlt">cover</span> maps are often used to compute land-<span class="hlt">cover</span> composition (i.e., the proportion or percent of <span class="hlt">area</span> <span class="hlt">covered</span> by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003708&hterms=remote+sensing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dremote%2Bsensing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003708&hterms=remote+sensing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dremote%2Bsensing"><span>Deriving Snow-<span class="hlt">Cover</span> Depletion Curves for Different Spatial Scales from Remote Sensing and Snow Telemetry Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.</p> <p>2015-01-01</p> <p>During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-<span class="hlt">covered</span> <span class="hlt">area</span> (SCA) once snow-free <span class="hlt">areas</span> appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-<span class="hlt">cover</span> depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight <span class="hlt">yearly</span> snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-<span class="hlt">cover</span> depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1187/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1187/"><span>A landscape indicator approach to the identification and articulation of the consequences of land-<span class="hlt">cover</span> change in the Mid-Atlantic Region, 1973-2001</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Slonecker, E. Terrence; Milheim, Lesley E.; Claggett, Peter</p> <p>2009-01-01</p> <p>Landscape indicators, derived from land-use and land-<span class="hlt">cover</span> data, hydrology, nitrate deposition, and elevation data, were used by Jones and others (2001a) to calculate the ecological consequences of land-<span class="hlt">cover</span> change. Nitrate loading and physical bird habitat were modeled from 1973 and 1992 land-<span class="hlt">cover</span> and other spatial data for the Mid-Atlantic region. Utilizing the same methods, this study extends the analysis another decade with the use of the 2001 National Land <span class="hlt">Cover</span> Dataset. Land-<span class="hlt">cover</span> statistics and trends are calculated for three time periods: 1973-1992, 1992-2001 and 1973-2001. In addition, high-resolution aerial photographs (1 meter or better ground-sample distance) were acquired and analyzed for thirteen pairs of adjacent USGS 7.5 minute quadrangle maps in <span class="hlt">areas</span> where distinct positive or negative changes to nitrogen loading and bird habitat were previously calculated. During the entire 30 <span class="hlt">year</span> period, the data show that there was extensive loss of agriculture and forest <span class="hlt">area</span> and a major increase in urban land-<span class="hlt">cover</span> classes. However, the majority of the conversion of other classes to urban occurred during the 1992-2001 period. During the 1973-1992 period, there was only moderate increase in urban <span class="hlt">area</span>, while there was an inverse relationship between agricultural change and forest change. In general, forest gain and agricultural loss was found in <span class="hlt">areas</span> of improving landscape indicators, and forest loss and agricultural gain was found to occur in <span class="hlt">areas</span> of declining indicators related to habitat and nitrogen loadings, which was generally confirmed by the aerial photographic analysis. In terms of the specific model results, bird habitat, which is mainly related to the extent of forest <span class="hlt">cover</span>, declined overall with forest extent, but was also affected more in the decline of habitat quality. Nitrate loading, which is mainly related to agricultural land <span class="hlt">cover</span> actually improved from 1992-2001, and in the overall study, mainly due to the conversion of agriculture to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1351172','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1351172"><span>Annual Report for Los Alamos National Laboratory Technical <span class="hlt">Area</span> 54, <span class="hlt">Area</span> G Disposal Facility - Fiscal <span class="hlt">Year</span> 2016</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Birdsell, Kay Hanson; Stauffer, Philip H.; Atchley, Adam Lee</p> <p></p> <p>As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical <span class="hlt">Area</span> 54, <span class="hlt">Area</span> G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal <span class="hlt">year</span> (FY) 2016 annual review for <span class="hlt">Area</span> G.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=270974&Lab=NHEERL&keyword=health+AND+care&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=270974&Lab=NHEERL&keyword=health+AND+care&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Near Road Tree <span class="hlt">Cover</span> in the Portland, ME EnviroAtlas Community <span class="hlt">Area</span></span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Internationally, local air pollution from busy roadways is a significant issue for public health. Recent studies have shown that having tree <span class="hlt">cover</span> between highly-traveled roads and people living, working, and going to school nearby can help to mitigate pollution and potentially r...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6831789-five-year-battery-forecast','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6831789-five-year-battery-forecast"><span>1992 five <span class="hlt">year</span> battery forecast</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Amistadi, D.</p> <p>1992-12-01</p> <p>Five-<span class="hlt">year</span> trends for automotive and industrial batteries are projected. Topic <span class="hlt">covered</span> include: SLI shipments; lead consumption; automotive batteries (5-<span class="hlt">year</span> annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by <span class="hlt">area</span>/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13d4030C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13d4030C"><span>What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of <span class="hlt">cover</span> crops</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrer, Dominique; Pique, Gaétan; Ferlicoq, Morgan; Ceamanos, Xavier; Ceschia, Eric</p> <p>2018-04-01</p> <p>Land <span class="hlt">cover</span> management in agricultural <span class="hlt">areas</span> is a powerful tool that could play a role in the mitigation of climate change and the counterbalance of global warming. First, we attempted to quantify the radiative forcing that would increase the surface albedo of croplands in Europe following the inclusion of <span class="hlt">cover</span> crops during the fallow period. This is possible since the albedo of bare soil in many <span class="hlt">areas</span> of Europe is lower than the albedo of vegetation. By using satellite data, we demonstrated that the introduction of <span class="hlt">cover</span> crops into the crop rotation during the fallow period would increase the albedo over 4.17% of Europe’s surface. According to our study, the effect resulting from this increase in the albedo of the croplands would be equivalent to a mitigation of 3.16 MtCO2-eq.year‑1 over a 100 <span class="hlt">year</span> time horizon. This is equivalent to a mitigation potential per surface unit (m2) of introduced <span class="hlt">cover</span> crop over Europe of 15.91 gCO2-eq.year‑1.m‑2. This value, obtained at the European scale, is consistent with previous estimates. We show that this mitigation potential could be increased by 27% if the <span class="hlt">cover</span> crop is maintained for a longer period than 3 months and reduced by 28% in the case of no irrigation. In the second part of this work, based on recent studies estimating the impact of <span class="hlt">cover</span> crops on soil carbon sequestration and the use of fertilizer, we added the albedo effect to those estimates, and we argued that, by considering <span class="hlt">areas</span> favourable to their introduction, <span class="hlt">cover</span> crops in Europe could mitigate human-induced agricultural greenhouse gas emissions by up to 7% per <span class="hlt">year</span>, using 2011 as a reference. The impact of the albedo change per <span class="hlt">year</span> would be between 10% and 13% of this total impact. The countries showing the greatest mitigation potentials are France, Bulgaria, Romania, and Germany.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24338054','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24338054"><span>Analyzing riparian forest <span class="hlt">cover</span> changes along the Firniz River in the Mediterranean City of Kahramanmaras in Turkey.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akay, Abdullah E; Sivrikaya, Fatih; Gulci, Sercan</p> <p>2014-05-01</p> <p>Riparian forests adjacent to surface water are important transitional zones which maintain and enrich biodiversity and ensure the sustainability in a forest ecosystem. Also, riparian forests maintain water quality, reduce sediment delivery, enhance habitat <span class="hlt">areas</span> for aquatic life and wildlife, and provide ecological corridors between the upland and the downstream. However, the riparian ecosystems have been degraded mainly due to human development, forest operations, and agricultural activities. In order to evaluate the impacts of these factors on riparian forests, it is necessary to estimate trends in forest <span class="hlt">cover</span> changes. This study aims to analyze riparian forest <span class="hlt">cover</span> changes along the Firniz River located in Mediterranean city of Kahramanmaras in Turkey. Changes in riparian forest <span class="hlt">cover</span> from 1989 to 2010 have been determined by implementing supervised classification method on a series of Landsat TM imagery of the study <span class="hlt">area</span>. The results indicated that the classification process applied on 1989 and 2010 images provided overall accuracy of 80.08 and 75 %, respectively. It was found that the most common land use class within the riparian zone was productive forest, followed by degraded forest, agricultural <span class="hlt">areas</span>, and other land use classes. The results also indicated that the <span class="hlt">areas</span> of degraded forest and forest openings increased, while productive forest and agricultural <span class="hlt">areas</span> decreased between the <span class="hlt">years</span> of 1989 and 2010. The amount of agricultural <span class="hlt">areas</span> decreased due to the reduction in the population of rural people. According to these results, it can be concluded that special forest management and operation techniques should be implemented to restore the forest ecosystem in riparian <span class="hlt">areas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PCE....35..730K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PCE....35..730K"><span>Integrated assessment of land use and <span class="hlt">cover</span> changes in the Malagarasi river catchment in Tanzania</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kashaigili, J. J.; Majaliwa, A. M.</p> <p></p> <p>Malagarasi river catchment represents one of the largest and most significant transboundary natural ecosystems in Africa. The catchment constitutes about one third of the catchment <span class="hlt">area</span> of Lake Tanganyika and contains ecosystems of both national and international importance (i.e. Muyovozi Wetland Ramsar site). It has been increasingly said that increased anthropogenic activities have had negative impacts on the Muyovozi wetland in particular and other catchment resources. Nevertheless, these beliefs are little supported by quantitative data. A study on the dynamics of land use and <span class="hlt">cover</span> in the Malagarasi river catchment therefore investigated long-term and seasonal changes that have occurred as a result of human activities in the <span class="hlt">area</span> for the periods between 1984 and 2001. Landsat TM and ETM+ images were used to locate and quantify the changes. Perceptions of local people on historical changes and drivers for the changes were also collected and integrated in the assessment. The study revealed a significant change in land use and <span class="hlt">cover</span> within a period of 18 <span class="hlt">year</span>. Between 1984 and 2001, the woodland and wetland vegetation <span class="hlt">covers</span> declined by 0.09% and 2.51% per <span class="hlt">year</span>. <span class="hlt">Areas</span> with settlements and cultivation increased by 1.05% annually while bushed grassland increased at 1.93% annually. The perceived principal drivers for the changes were found to include fire, cultivation along rivers and lake shores, overgrazing, poor law enforcement, insufficient knowledge on environmental issues, increasing poverty, deforestation and population growth. The human population growth rate stands at 4.8% against a national figure of 2.9%. The most perceived environmental problems include drying of streams and rivers, change in rainfall, loss of soil fertility, soil erosion and reduced crop yield. The study concludes that, there has been significant changes in land use and <span class="hlt">cover</span> in the catchment and these require concerted actions to reverse the changes. The study highlights the importance</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...91a2002K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...91a2002K"><span>Land Use <span class="hlt">Cover</span> Changes and Run Off Potention of Cipunten Agung Watershed Banten</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karima, A.; Kaswanto, R. L.</p> <p>2017-10-01</p> <p>The changes of landscape form such as Land Use <span class="hlt">Cover</span> Changes (LUCC) of Cipunten Agung watershed could be identified periodically in 1995, 2005, and 2015. In general, land utilization in Cipunten Agung classified into protected region and cultivated region. In 2011, total of protected <span class="hlt">area</span> is 885.80 ha or 22.54% of watershed <span class="hlt">area</span>. Those conditions affected both positively to the community development and negatively to the water quantity condition in Cipunten Agung such as flooding, run off, and erosion. Therefore, the purpose of this research is to analyze LUCC impacts to run off potential in Cipunten Agung watershed. Supervised classification method and Soil Conservation Services (Qscs) approach were correlated to determine the figure out an optimal solution to reduce the rate of LUCC. Cipunten Agung watershed imagery was classified into five classes, namely water bodies, forest, cultivated tree, settlement and paddy field. The result shows that <span class="hlt">area</span> of cultivation tree and paddy fields are larger than others in midstream, and settlement is denser in downstream, particularly at riparian landscapes. The LUCC into paddy field often occur at two period 1995 to 2005 and 2005 to 2015 with several <span class="hlt">area</span> are 530.92 ha and 388.17 ha. The Qscs method calculation result for 1995 until 2015 was affected by land use <span class="hlt">cover</span> composition in each <span class="hlt">year</span> and it was defined by Curve Number (CN). High rainfall in 1995 was generating high run off potential volume. Nevertheless, curve number value was increase get near to 100, which indicate the potential of run off volume increases along with LUCC in each <span class="hlt">year</span>, those are 70.95; 72.47; and 72.81.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9998E..1TR','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9998E..1TR"><span>Carbon sequestration associated to the land-use and land-<span class="hlt">cover</span> changes in the forestry sector in Southern Brazil</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ronquim, Carlos C.; Silva, Ramon F. B.; de Figueiredo, Eduardo B.; Bordonal, Ricardo O.; de C. Teixeira, Antônio H.; Cochasrk, Thomas C. D.; Leivas, Janice F.</p> <p>2016-10-01</p> <p>We studied the Paraíba do Sul river watershed, São Paulo state (PSWSP), Southeastern Brazil, in order to assess the land use and <span class="hlt">cover</span> (LULC) and their implications to the amount of carbon (C) stored in the forest <span class="hlt">cover</span> between the <span class="hlt">years</span> 1985 and 2015. The region <span class="hlt">covers</span> an <span class="hlt">area</span> of 1,395,975 ha. We used images made by the Operational Land Imager (OLI) sensor (OLI/Landsat-8) to produce mappings, and image segmentation techniques to produce vectors with homogeneous characteristics. The training samples and the samples used for classification and validation were collected from the segmented image. To quantify the C stocked in aboveground live biomass (AGLB), we used an indirect method and applied literature-based reference values. The recovery of 205,690 ha of a secondary Native Forest (NF) after 1985 sequestered 9.7 Tg (Teragram) of C. Considering the whole NF <span class="hlt">area</span> (455,232 ha), the amount of C accumulated along the whole watershed was 35.5 Tg, and the whole Eucalyptus crop (EU) <span class="hlt">area</span> (113,600 ha) sequestered 4.4 Tg of C. Thus, the total amount of C sequestered in the whole watershed (NF + EU) was 39.9 Tg of C or 145.6 Tg of CO2, and the NF <span class="hlt">areas</span> were responsible for the largest C stock at the watershed (89%). Therefore, the increase of the NF <span class="hlt">cover</span> contributes positively to the reduction of CO2 concentration in the atmosphere, and Reducing Emissions from Deforestation and Forest Degradation (REDD+) may become one of the most promising compensation mechanisms for the farmers who increased forest <span class="hlt">cover</span> at their farms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990092374','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990092374"><span>Utilizing Multiple Datasets for Snow <span class="hlt">Cover</span> Mapping</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.</p> <p>1999-01-01</p> <p>Snow-<span class="hlt">cover</span> maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow <span class="hlt">cover</span> is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud <span class="hlt">cover</span>. Passive microwave (PM) data is unaffected by clouds, however, the snow-<span class="hlt">cover</span> signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-<span class="hlt">Cover</span> Product (MDSCP). Comparisons with current snow-<span class="hlt">cover</span> products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-<span class="hlt">covered</span> <span class="hlt">area</span> are derived through the addition of two snow-<span class="hlt">cover</span> classes ("thin or patchy" and "high elevation" snow <span class="hlt">cover</span>) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/27728','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/27728"><span>Mapping and measuring land-<span class="hlt">cover</span> characteristics of New River Basin, Tennessee, using Landsat digital tapes</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hollyday, E.F.; Sauer, S.P.</p> <p>1976-01-01</p> <p>Land-<span class="hlt">cover</span> information is needed to select subbasins within the New River basin, Tennessee, for the study of hydrologic processes and also is needed to transfer study results to other sites affected by coal mining. It was believed that data recorded by the first Earth Resources Technology Satellite (Landsat-1) could be processed to yield the needed land-<span class="hlt">cover</span> information. This study demonstrates that digital computer processing of the spectral information contained in each picture element (pixel) of 1.1 acres (4,500 m2) can produce maps and tables of the areal extent of selected land-<span class="hlt">cover</span> categories.The distribution of water, rock, agricultural <span class="hlt">areas</span>, evergreens, bare earth, hardwoods, and uncategorized <span class="hlt">areas</span>, is portrayed on a map of the entire New River basin (1:62,500 scale) and on 15 quadrangles (1:24,000 scale). Although some categories are a mixture of land-<span class="hlt">cover</span> types, they portray the predominant component named. Tables quantify the <span class="hlt">area</span> of each category and indicate that agriculture <span class="hlt">covers</span> 5 percent of the basin, evergreens <span class="hlt">cover</span> 7 percent, bare earth <span class="hlt">covers</span> 6 percent, three categories of hardwoods <span class="hlt">cover</span> 81 percent, and water, rock, and uncategorized <span class="hlt">areas</span> each <span class="hlt">cover</span> less than 1 percent of the basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W5..121K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W5..121K"><span>Vegetation Analysis and Land Use Land <span class="hlt">Cover</span> Classification of Forest in Uttara Kannada District India Using Remote Sensign and GIS Techniques</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koppad, A. G.; Janagoudar, B. S.</p> <p>2017-10-01</p> <p>The study was conducted in Uttara Kannada districts during the <span class="hlt">year</span> 2012-2014. The study <span class="hlt">area</span> lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an <span class="hlt">area</span> of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land <span class="hlt">cover</span> classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land <span class="hlt">cover</span> classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest <span class="hlt">covered</span> an <span class="hlt">area</span> of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together <span class="hlt">cover</span> about 4.26 percent of the <span class="hlt">area</span>. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest <span class="hlt">area</span> in some places was due to anthropogenic activities. The thematic map of land use land <span class="hlt">cover</span> classes was prepared using Arc GIS Software.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26262681','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26262681"><span>Forest <span class="hlt">Cover</span> Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest <span class="hlt">Cover</span> Assessment Methodologies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O Halloran, John</p> <p>2015-01-01</p> <p>Quantification of spatial and temporal changes in forest <span class="hlt">cover</span> is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-<span class="hlt">cover</span>. However, few studies have investigated the use of SAR for forest <span class="hlt">cover</span> estimation in landscapes with highly sparse and fragmented forest <span class="hlt">cover</span>. In this study, the potential use of L-band SAR for forest <span class="hlt">cover</span> estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest <span class="hlt">cover</span> estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest <span class="hlt">cover</span> (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest <span class="hlt">area</span> and an increase in overall accuracy of SAR-derived forest <span class="hlt">cover</span> maps. All forest <span class="hlt">cover</span> products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest <span class="hlt">cover</span> in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest <span class="hlt">cover</span> maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4532497','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4532497"><span>Forest <span class="hlt">Cover</span> Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest <span class="hlt">Cover</span> Assessment Methodologies</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John</p> <p>2015-01-01</p> <p>Quantification of spatial and temporal changes in forest <span class="hlt">cover</span> is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-<span class="hlt">cover</span>. However, few studies have investigated the use of SAR for forest <span class="hlt">cover</span> estimation in landscapes with highly sparse and fragmented forest <span class="hlt">cover</span>. In this study, the potential use of L-band SAR for forest <span class="hlt">cover</span> estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest <span class="hlt">cover</span> estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest <span class="hlt">cover</span> (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest <span class="hlt">area</span> and an increase in overall accuracy of SAR-derived forest <span class="hlt">cover</span> maps. All forest <span class="hlt">cover</span> products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest <span class="hlt">cover</span> in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest <span class="hlt">cover</span> maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187151','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187151"><span>Development of the USGS national land-<span class="hlt">cover</span> database over two decades</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Xian, George Z.; Homer, Collin G.; Yang, Limin; Weng, Qihao</p> <p>2011-01-01</p> <p>Land-<span class="hlt">cover</span> composition and change have profound impacts on terrestrial ecosystems. Land-<span class="hlt">cover</span> and land-use (LCLU) conditions and their changes can affect social and physical environments by altering ecosystem conditions and services. Information about LCLU change is often used to produce landscape-based metrics and evaluate landscape conditions to monitor LCLU status and trends over a specific time interval (Loveland et al. 2002; Coppin et al. 2004; Lunetta et al. 2006). Continuous, accurate, and up-to-date land-<span class="hlt">cover</span> data are important for natural resource and ecosystem management and are needed to support consistent monitoring of landscape attributes over time. Large-<span class="hlt">area</span> land-<span class="hlt">cover</span> information at regional, national, and global scales is critical for monitoring landscape variations over large <span class="hlt">areas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3314V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3314V"><span>Monitoring of reforestation on burnt <span class="hlt">areas</span> in Western Russia using Landsat time series</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorobev, Oleg; Kurbanov, Eldar</p> <p>2017-04-01</p> <p>Forest fires are main disturbance factor for the natural ecosystems, especially in boreal forests. Monitoring for the dynamic of forest <span class="hlt">cover</span> regeneration in the post-fire period of ecosystem recovery is crucial to both estimation of forest stands and forest management. In this study, on the example of burnt <span class="hlt">areas</span> of 2010 wildfires in Republic Mari El of Russian Federation we estimated post-fire dynamic of different classes of vegetation <span class="hlt">cover</span> between 2011-2016 <span class="hlt">years</span> with the use of time series Landsat satellite images. To validate the newly obtained thematic maps we used 80 test sites with independent field data, as well Canopus-B images of high spatial resolution. For the analysis of the satellite images we referred to Normalized Differenced Vegetation Index (NDVI) and Tasseled Cap transformation. The research revealed that at the post-fire period the <span class="hlt">area</span> of thematic classes "Reforestation of the middle and low density" has maximum <span class="hlt">cover</span> (44%) on the investigated burnt <span class="hlt">area</span>. On the burnt <span class="hlt">areas</span> of 2010 there is ongoing active process of grass overgrowing (up to 20%), also there are thematic classes of deadwood (15%) and open spaces (10%). The results indicate that there is mostly natural regeneration of tree species pattern corresponding to the pre-fire condition. Forest plantations <span class="hlt">cover</span> only 2% of the overall burnt <span class="hlt">area</span>. By the 2016 <span class="hlt">year</span> the NDVI parameters of young vegetation <span class="hlt">cover</span> were recovered to the pre-fire level as well. The overall unsupervised classification accuracy of more than 70% shows high degree of agreement between the thematic map and the ground truth data. The research results can be applied for the long term succession monitoring and management plan development for the reforestation activities on the lands disturbed by fire.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7131522-crown-cover-chart-oak-savannas-forest-service-technical-brief','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7131522-crown-cover-chart-oak-savannas-forest-service-technical-brief"><span>Crown <span class="hlt">cover</span> chart for oak savannas. Forest Service technical brief</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Law, J.R.; Johnson, P.S.; Houf, G.</p> <p>1994-07-01</p> <p>Although oak savannas have been defined in many ways, they are characterized by scattered trees, largely comprised of oaks, and a sparse ground layer rich in grasses and forbs. The crown <span class="hlt">cover</span> chart can be used to estimate the crown <span class="hlt">cover</span> of trees as a percent of total <span class="hlt">area</span>. Potential applications of the chart include monitoring changes in savanna crown <span class="hlt">cover</span>, determining needed reductions in crown <span class="hlt">cover</span>, and defining the savanna state. in restoring savannas that have grown into closed canopy stands, one can use the chart to estimate initial crown <span class="hlt">cover</span> before restoration work is begun and again aftermore » crown <span class="hlt">cover</span> has been reduced.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/4524','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/4524"><span>Stratifying FIA Ground Plots Using A 3-<span class="hlt">Year</span> Old MRLC Forest <span class="hlt">Cover</span> Map and Current TM Derived Variables Selected By "Decision Tree" Classification</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Michael Hoppus; Stan Arner; Andrew Lister</p> <p>2001-01-01</p> <p>A reduction in variance for estimates of forest <span class="hlt">area</span> and volume in the state of Connecticut was accomplished by stratifying FIA ground plots using raw, transformed and classified Landsat Thematic Mapper (TM) imagery. A US Geological Survey (USGS) Multi-Resolution Landscape Characterization (MRLC) vegetation <span class="hlt">cover</span> map for Connecticut was used to produce a forest/non-...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013478','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013478"><span>Variability and Anomalous Trends in the Global Sea Ice <span class="hlt">Cover</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2012-01-01</p> <p>The advent of satellite data came fortuitously at a time when the global sea ice <span class="hlt">cover</span> has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea ice <span class="hlt">cover</span>. The extent of the sea ice in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea ice <span class="hlt">area</span>, which is the ice that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three <span class="hlt">years</span> from an abrupt decline in 2007, the perennial ice extent was almost as low as in 2007 in 2011. The multiyear ice, which is the thick component of the perennial ice and regarded as the mainstay of the Arctic sea ice <span class="hlt">cover</span> is declining at an even higher rate of -19% per decade. The more rapid decline of the extent of this thicker ice type means that the volume of the ice is also declining making the survival of the Arctic ice in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial ice in summer was likely associated with an apparent cycle in the time series with a period of about 8 <span class="hlt">years</span>. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other <span class="hlt">years</span>. Meanwhile, the Antarctic sea ice <span class="hlt">cover</span>, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in ice extent is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the extent of the sea ice <span class="hlt">cover</span> in the Ross Sea region. The results of analysis of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5244362','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5244362"><span>Leads in Arctic pack ice enable early phytoplankton blooms below snow-<span class="hlt">covered</span> sea ice</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.</p> <p>2017-01-01</p> <p>The Arctic icescape is rapidly transforming from a thicker multiyear ice <span class="hlt">cover</span> to a thinner and largely seasonal first-<span class="hlt">year</span> ice <span class="hlt">cover</span> with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-<span class="hlt">covered</span> Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the <span class="hlt">area</span> indicated that the bloom developed in situ despite the snow-<span class="hlt">covered</span> sea ice. Leads in the dynamic ice <span class="hlt">cover</span> provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-<span class="hlt">covered</span> ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScI...88f5102D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScI...88f5102D"><span>Full <span class="hlt">area</span> <span class="hlt">covered</span> 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu</p> <p>2017-06-01</p> <p>A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full <span class="hlt">area</span> <span class="hlt">covered</span> 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full <span class="hlt">area</span> by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting <span class="hlt">area</span>. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28667981','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28667981"><span>Full <span class="hlt">area</span> <span class="hlt">covered</span> 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu</p> <p>2017-06-01</p> <p>A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full <span class="hlt">area</span> <span class="hlt">covered</span> 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full <span class="hlt">area</span> by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting <span class="hlt">area</span>. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/32549','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/32549"><span>Site preparation + 1 <span class="hlt">year</span>: effect on plant <span class="hlt">cover</span> and soil properties</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Raymond D Ratliff; Renee G. Denton</p> <p>1991-01-01</p> <p>Preparing for planting conifer seedlings reduces competition for site resources but creates poor range conditions. bare soil, low plant <span class="hlt">cover</span>, adn little forage do not support forest grazing programs. At Boyd Hill on the Modoc National Forest, in California, several regeneration sites were prepared in 1988. Early in 1989 they were planted with ponderosa pine (...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990063644&hterms=modis+snow+cover&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmodis%2Bsnow%2Bcover','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990063644&hterms=modis+snow+cover&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmodis%2Bsnow%2Bcover"><span>Theoretical Accuracy of Global Snow-<span class="hlt">Cover</span> Mapping Using Satellite Data in the Earth Observing System (EOS) Era</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, D. K.; Foster, J. L.; Salomonson, V. V.; Klein, A. G.; Chien, J. Y. L.</p> <p>1998-01-01</p> <p>Following the launch of the Earth Observing System first morning (EOS-AM1) satellite, daily, global snow-<span class="hlt">cover</span> mapping will be performed automatically at a spatial resolution of 500 m, cloud-<span class="hlt">cover</span> permitting, using Moderate Resolution Imaging Spectroradiometer (MODIS) data. A technique to calculate theoretical accuracy of the MODIS-derived snow maps is presented. Field studies demonstrate that under cloud-free conditions when snow <span class="hlt">cover</span> is complete, snow-mapping errors are small (less than 1%) in all land <span class="hlt">covers</span> studied except forests where errors are greater and more variable. The theoretical accuracy of MODIS snow-<span class="hlt">cover</span> maps is largely determined by percent forest <span class="hlt">cover</span> north of the snowline. Using the 17-class International Geosphere-Biosphere Program (IGBP) land-<span class="hlt">cover</span> maps of North America and Eurasia, the Northern Hemisphere is classified into seven land-<span class="hlt">cover</span> classes and water. Snow-mapping errors estimated for each of the seven land-<span class="hlt">cover</span> classes are extrapolated to the entire Northern Hemisphere for <span class="hlt">areas</span> north of the average continental snowline for each month. Average monthly errors for the Northern Hemisphere are expected to range from 5 - 10%, and the theoretical accuracy of the future global snow-<span class="hlt">cover</span> maps is 92% or higher. Error estimates will be refined after the first full <span class="hlt">year</span> that MODIS data are available.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H51H0704B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H51H0704B"><span>Quantifying widespread canopy <span class="hlt">cover</span> decline through the course of a beetle kill epidemic in Colorado with remote sensing of snow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, E. H.; Raleigh, M. S.; Molotch, N. P.</p> <p>2014-12-01</p> <p>Since the mid-1990s, outbreaks of aggressive bark beetle species have caused extensive forest morality across 600,000 km2 of North-American forests, killing over 17,800 km2 of forest in Colorado alone. This mortality has resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack. In the Western United States, where approximately 70-80% of total annual runoff originates as mountain snowmelt, it is important to monitor and quantify changes in forest canopy in snow-dominated catchments. To quantify annual values of forest canopy <span class="hlt">cover</span>, this research develops a metric from time series of daily fractional snow <span class="hlt">covered</span> <span class="hlt">area</span> (FSCA) from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow <span class="hlt">covered</span> <span class="hlt">area</span> and grain size (MODSCAG) algorithm. In <span class="hlt">areas</span> where soil and rock are completely snow-<span class="hlt">covered</span>, a land pixel is composed only of forest canopy and snow. Following a snowfall event, FSCA initially rises rapidly, as snow is intercepted in the canopy, and then declines, as snow unloads from the canopy. The lower of these local minima form a threshold representative of snow-free canopy conditions, which serves as a spatially explicit metric of forest canopy. Investigation of a site in southern Colorado with over 40% spruce beetle mortality shows a statistically significant decrease of canopy <span class="hlt">cover</span>, from 76 (±4)% pre-infestation to 55 (±8)% post-infestation (t=-5.1, p<0.01). Additionally, this <span class="hlt">yearly</span> parameterization of forest canopy is well correlated (ρ=0.76, p<0.01) with an independent product of <span class="hlt">yearly</span> crown mortality derived from U.S. Forest Service Aerial Detection Surveys. Future work will examine this relationship across varied ecologic settings and geographic locations, and incorporate field measurements of species-specific canopy change after beetle kill.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10198E..15S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10198E..15S"><span>Globally scalable generation of high-resolution land <span class="hlt">cover</span> from multispectral imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.</p> <p>2017-05-01</p> <p>We present an automated method of generating high resolution ( 2 meter) land <span class="hlt">cover</span> using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key <span class="hlt">areas</span>. First, we describe our land <span class="hlt">cover</span> generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land <span class="hlt">cover</span> to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land <span class="hlt">cover</span> derivative products and their impact in the <span class="hlt">areas</span> of region reduction and object detection. Finally, we discuss the process of globally scaling land <span class="hlt">cover</span> generation using cloud computing via Amazon Web Services (AWS).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036234','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036234"><span>Fire frequency, <span class="hlt">area</span> burned, and severity: A quantitative approach to defining a normal fire <span class="hlt">year</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.</p> <p>2011-01-01</p> <p>Fire frequency, <span class="hlt">area</span> burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire <span class="hlt">year</span>. Although <span class="hlt">area</span> burned is often used to summarize a fire season, burned <span class="hlt">area</span> may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual <span class="hlt">area</span> burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual <span class="hlt">area</span> burned, and cumulative severity were consistent in only 13 of 26 <span class="hlt">years</span> (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 <span class="hlt">year</span> means of fire frequency, annual <span class="hlt">area</span> burned, and the <span class="hlt">area</span> under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by <span class="hlt">year</span> compared to aggregation by <span class="hlt">area</span>. Cumulative severity distributions for each <span class="hlt">year</span> were best modeled with Weibull functions (all 26 <span class="hlt">years</span>, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and <span class="hlt">area</span>-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire <span class="hlt">year</span> than any single metric.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title12-vol10/pdf/CFR-2014-title12-vol10-sec1227-4.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title12-vol10/pdf/CFR-2014-title12-vol10-sec1227-4.pdf"><span>12 CFR 1227.4 - Regulated entity reports on <span class="hlt">covered</span> misconduct.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Regulated entity reports on <span class="hlt">covered</span> misconduct... COUNTERPARTY PROGRAM General § 1227.4 Regulated entity reports on <span class="hlt">covered</span> misconduct. (a) General. A regulated... the past three (3) <span class="hlt">years</span> has engaged in <span class="hlt">covered</span> misconduct. A regulated entity is aware of <span class="hlt">covered</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31G1582B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31G1582B"><span>Land <span class="hlt">Cover</span> Change Detection using Neural Network and Grid Cells Techniques</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagan, H.; Li, Z.; Tangud, T.; Yamagata, Y.</p> <p>2017-12-01</p> <p>In recent <span class="hlt">years</span>, many advanced neural network methods have been applied in land <span class="hlt">cover</span> classification, each of which has both strengths and limitations. In which, the self-organizing map (SOM) neural network method have been used to solve remote sensing data classification problems and have shown potential for efficient classification of remote sensing data. In SOM, both the distribution and the topology of features of the input layer are identified by using an unsupervised, competitive, neighborhood learning method. The high-dimensional data are then projected onto a low-dimensional map (competitive layer), usually as a two-dimensional map. The neurons (nodes) in the competitive layer are arranged by topological order in the input space. Spatio-temporal analyses of land <span class="hlt">cover</span> change based on grid cells have demonstrated that gridded data are useful for obtaining spatial and temporal information about <span class="hlt">areas</span> that are smaller than municipal scale and are uniform in size. Analysis based on grid cells has many advantages: grid cells all have the same size allowing for easy comparison; grids integrate easily with other scientific data; grids are stable over time and thus facilitate the modelling and analysis of very large multivariate spatial data sets. This study chose time-series MODIS and Landsat images as data sources, applied SOM neural network method to identify the land utilization in Inner Mongolia Autonomous Region of China. Then the results were integrated into grid cell to get the dynamic change maps. Land <span class="hlt">cover</span> change using MODIS data in Inner Mongolia showed that urban <span class="hlt">area</span> increased more than fivefold in recent 15 <span class="hlt">years</span>, along with the growth of mining <span class="hlt">area</span>. In terms of geographical distribution, the most obvious place of urban expansion is Ordos in southwest Inner Mongolia. The results using Landsat images from 1986 to 2014 in northeastern part of the Inner Mongolia show degradation in grassland from 1986 to 2014. Grid-cell-based spatial correlation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B53D..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B53D..04L"><span>Long Term Land <span class="hlt">Cover</span> and Seagrass Mapping using Landsat and Object-based Image Analysis from 1972 - 2010 in the Coastal Environment of South East Queensland, Australia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lyons, M. B.; Phinn, S. R.; Roelfsema, C. M.</p> <p>2011-12-01</p> <p>Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based approach to map land <span class="hlt">cover</span> and seagrass distribution in an Australian coastal environment for a 38 <span class="hlt">year</span> Landsat image time-series archive. Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in-situ field data input to produce land and seagrass <span class="hlt">cover</span> maps every <span class="hlt">year</span> data was available, resulting in over 60 individual map products over the 38 <span class="hlt">year</span> archive. Land <span class="hlt">cover</span> was mapped annually and included several vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some <span class="hlt">years</span> monthly, via horizontal projective foliage <span class="hlt">cover</span> classes, sand and deepwater. Land <span class="hlt">cover</span> products were validated using aerial photography and seagrass was validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 81% was reported for seagrass and land <span class="hlt">cover</span> respectively, which is consistent with other studies in the <span class="hlt">area</span>. This study is the first to show moderate spatial resolution, long term annual changes in land <span class="hlt">cover</span> and seagrass in an Australian environment, without the use of in-situ data; and only one of a few similar studies globally. The land <span class="hlt">cover</span> products identify several long term trends; such as significant increases in South East Queensland's urban density, vegetation clearing in rural and rural-residential <span class="hlt">areas</span>, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass <span class="hlt">cover</span> products show that there has been a minimal overall change in seagrass extent, but that seagrass <span class="hlt">cover</span> level distribution is extremely dynamic; evidenced by large scale</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5572777','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5572777"><span>Changes of forest <span class="hlt">cover</span> and disturbance regimes in the mountain forests of the Alps☆</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D.</p> <p>2017-01-01</p> <p>Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest <span class="hlt">cover</span>, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest <span class="hlt">cover</span> across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest <span class="hlt">cover</span> and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest <span class="hlt">cover</span> maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest <span class="hlt">cover</span>. More recently, forest <span class="hlt">cover</span> has increased again across the entire Alps (on average +4% per decade over the past 25–115 <span class="hlt">years</span>). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15–40 <span class="hlt">years</span> in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest <span class="hlt">cover</span>. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28860675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28860675"><span>Changes of forest <span class="hlt">cover</span> and disturbance regimes in the mountain forests of the Alps.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bebi, P; Seidl, R; Motta, R; Fuhr, M; Firm, D; Krumm, F; Conedera, M; Ginzler, C; Wohlgemuth, T; Kulakowski, D</p> <p>2017-03-15</p> <p>Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest <span class="hlt">cover</span>, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest <span class="hlt">cover</span> across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest <span class="hlt">cover</span> and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest <span class="hlt">cover</span> maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest <span class="hlt">cover</span>. More recently, forest <span class="hlt">cover</span> has increased again across the entire Alps (on average +4% per decade over the past 25-115 <span class="hlt">years</span>). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15-40 <span class="hlt">years</span> in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest <span class="hlt">cover</span>. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more strongly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192852','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192852"><span>Historical <span class="hlt">cover</span> trends in a sagebrush steppe ecosystem from 1985 to 2013: Links with climate, disturbance, and management</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shi, Hua; Rigge, Matthew B.; Homer, Collin G.; Xian, George Z.; Meyer, Debbie; Bunde, Brett</p> <p>2017-01-01</p> <p>Understanding the causes and consequences of component change in sagebrush steppe is crucial for evaluating ecosystem sustainability. The sagebrush (Artemisia spp.) steppe ecosystem of the northwest USA has been impacted by the invasion of exotic grasses, increasing fire return intervals, changing land management practices, and fragmentation, often lowering the overall resilience to change. We utilized contemporary and historical Landsat imagery, field data, and regression tree models to produce fractional <span class="hlt">cover</span> maps of rangeland components (shrub, sagebrush, herbaceous, bare ground, and litter) through the last 30 <span class="hlt">years</span>. Our main goals were to (1) investigate rangeland component trends over 30 <span class="hlt">years</span>, (2) evaluate the magnitude and direction of trends in components and climate drivers and their relationship, and (3) assess component trends influenced by climate. Results indicated that over the study period, shrub, sage, herbaceous, and litter <span class="hlt">cover</span> decreased, while bare ground <span class="hlt">cover</span> increased. Measured rates of change ranged from − 0.14% decade−1 for shrub <span class="hlt">cover</span> to 0.05% decade−1 for bare ground, whereas herbaceous and litter <span class="hlt">cover</span> trends were negligible. Net landscape <span class="hlt">cover</span> changes were consistent with expectations of climate change and disturbance producing a loss of biotic <span class="hlt">cover</span>, and converting a portion of shrub and sagebrush to herbaceous <span class="hlt">cover</span>. Overall, fire and related successional recovery was the greatest change agent for all components in terms of <span class="hlt">area</span> and <span class="hlt">cover</span> change, while increasing minimum temperature, at a rate of 0.66°C decade−1, was found to be the most significant climate driver.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B51D0429W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B51D0429W"><span>Effects of Land <span class="hlt">Cover</span> Change on Soil Greenhouse Gas Fluxes in Subtropical Hong Kong</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong, C. N.; Lai, D. Y. F.</p> <p>2016-12-01</p> <p>Nowadays, over 50% of the world's population live in urbanized <span class="hlt">areas</span> and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biochemical processes in urban <span class="hlt">areas</span>, which subsequently affect the provision of ecosystem services and functions. Soil greenhouse gas (GHG) exchange plays an important role in governing future climate change. Yet, the effects of urbanization on soil GHG exchange remain uncertain and not well understood. This study aims to examine the effects of urbanization on GHG fluxes among four land <span class="hlt">covers</span>- natural forest, urban forest, farmland and roadside planter in Hong Kong based on closed chamber measurements for one full <span class="hlt">year</span>. CO2 emission significantly varied among land <span class="hlt">covers</span> (p<0.05), with the highest and lowest CO2 emissions being recorded in roadside planter and farmland, respectively. The N2O flux was highest in roadside planter whereas the lowest flux was recorded in urban forest, though the difference in N2O fluxes was only statistically significant at a level of 0.1. No significant difference of CH4 emission was found among all the land <span class="hlt">covers</span>. Emission of CO2 increased markedly with soil organic matter content, while N2O flux increased markedly with total Kjeldahl nitrogen content. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban <span class="hlt">areas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870006081','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870006081"><span>Estimation of vegetation <span class="hlt">cover</span> at subpixel resolution using LANDSAT data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jasinski, Michael F.; Eagleson, Peter S.</p> <p>1986-01-01</p> <p>The present report summarizes the various approaches relevant to estimating canopy <span class="hlt">cover</span> at subpixel resolution. The approaches are based on physical models of radiative transfer in non-homogeneous canopies and on empirical methods. The effects of vegetation shadows and topography are examined. Simple versions of the model are tested, using the Taos, New Mexico Study <span class="hlt">Area</span> database. Emphasis has been placed on using relatively simple models requiring only one or two bands. Although most methods require some degree of ground truth, a two-band method is investigated whereby the percent <span class="hlt">cover</span> can be estimated without ground truth by examining the limits of the data space. Future work is proposed which will incorporate additional surface parameters into the canopy <span class="hlt">cover</span> algorithm, such as topography, leaf <span class="hlt">area</span>, or shadows. The method involves deriving a probability density function for the percent canopy <span class="hlt">cover</span> based on the joint probability density function of the observed radiances.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED215792.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED215792.pdf"><span>Child Health and Human Development: An Overview and Strategy for a Five-<span class="hlt">Year</span> Research Plan.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>National Inst. of Child Health and Human Development (NIH), Bethesda, MD.</p> <p></p> <p>The first five-<span class="hlt">year</span> research plans developed by the National Institute of Child Health and Human Development (NICHD), <span class="hlt">covering</span> fiscal <span class="hlt">years</span> 1983-1987 and 10 program <span class="hlt">areas</span>, are published in this volume. Present knowledge is reviewed and research opportunities are indicated in the <span class="hlt">areas</span> of reproduction, fetal development, the birth process, the…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010157','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010157"><span>Forest <span class="hlt">Cover</span> Associated with Improved Child Health and Nutrition: Evidence from the Malawi Demographic and Health Survey and Satellite Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Kiersten B.; Jacob, Anila; Brown, Molly Elizabeth</p> <p>2013-01-01</p> <p>Healthy forests provide human communities with a host of important ecosystem services, including the provision of food, clean water, fuel, and natural medicines. Yet globally, about 13 million hectares of forests are lost every <span class="hlt">year</span>, with the biggest losses in Africa and South America. As biodiversity loss and ecosystem degradation due to deforestation continue at unprecedented rates, with concomitant loss of ecosystem services, impacts on human health remain poorly understood. Here, we use data from the 2010 Malawi Demographic and Health Survey, linked with satellite remote sensing data on forest <span class="hlt">cover</span>, to explore and better understand this relationship. Our analysis finds that forest <span class="hlt">cover</span> is associated with improved health and nutrition outcomes among children in Malawi. Children living in <span class="hlt">areas</span> with net forest <span class="hlt">cover</span> loss between 2000 and 2010 were 19% less likely to have a diverse diet and 29% less likely to consume vitamin A-rich foods than children living in <span class="hlt">areas</span> with no net change in forest <span class="hlt">cover</span>. Conversely, children living in communities with higher percentages of forest <span class="hlt">cover</span> were more likely to consume vitamin A-rich foods and less likely to experience diarrhea. Net gain in forest <span class="hlt">cover</span> over the 10-<span class="hlt">year</span> period was associated with a 34% decrease in the odds of children experiencing diarrhea (P5.002). Given that our analysis relied on observational data and that there were potential unknown factors for which we could not account, these preliminary findings demonstrate only associations, not causal relationships, between forest <span class="hlt">cover</span> and child health and nutrition outcomes. However, the findings raise concerns about the potential short- and long-term impacts of ongoing deforestation and ecosystem degradation on community health in Malawi, and they suggest that preventing forest loss and maintaining the ecosystems services of forests are important factors in improving human health and nutrition outcomes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........78R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........78R"><span>Connectivity and distant drivers of land change: A case study of land use, land <span class="hlt">cover</span>, and livelihood changes in Quang Tri, Vietnam</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rounds, Eric</p> <p></p> <p>The urban lowland <span class="hlt">areas</span> of Vietnam have been at the forefront of economic liberalization over the last 30 <span class="hlt">years</span>, while the more remote mountainous <span class="hlt">areas</span> of the country have lagged behind. Upland <span class="hlt">areas</span> in the Northern and Central portions of Vietnam in particular remain largely impoverished and disconnected from broader national and regional markets. To address this economic inequality in the uplands, recent economic development efforts such as the East-West Economic Corridor (EWEC) have aimed at expanding road infrastructure to remote <span class="hlt">areas</span> in Central Vietnam. This study examines the impact of road expansion in the EWEC on a single village in Quang Tri, Vietnam. It draws from social economic data gathered during fieldwork and a historical land <span class="hlt">cover</span> analysis to address how land use, land <span class="hlt">cover</span>, and livelihoods have changed in recent decades. Moreover, the paper discusses the distal and proximate drivers of these changes. Findings show that the improved road connectivity provided by new roads has facilitated the transmission of distant market-related drivers into the study <span class="hlt">area</span>, and that these drivers have fostered significant changes in land use, land <span class="hlt">cover</span>, and livelihoods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9998E..0VS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9998E..0VS"><span>Impact of dynamically changing land <span class="hlt">cover</span> on runoff process: the case of Iligan river basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salcedo, Stephanie Mae B.; Suson, Peter D.; Milano, Alan E.; Ignacio, Ma. Teresa T.</p> <p>2016-10-01</p> <p>Iligan river basin located in Northern Mindanao, Philippines <span class="hlt">covers</span> 165.7 km2 of basin <span class="hlt">area</span>. In December 2011, tropical storm Sendong (Washi) hit Iligan City, leaving a trail of wrecked infrastructures and about 490 persons reported dead. What transpired was a wake up call to mitigate future flood disasters. Fundamental to mitigation is understanding runoff behavior inside a basin considering that this is the main source of flooding. For this reason, the present study evaluated total runoff volume, peak discharge and lag time given land <span class="hlt">cover</span> scenarios in four different <span class="hlt">years</span>- 1973, 1989, 1998 and 2008. IFSAR and LIDAR DEM were integrated to generate the basin model in ArcGIS. HEC-HMS was used in simulating models for each scenario with Soil Conservation Service Curve Number (SCS CN) as the loss parameter method. Four simulation models of the runoff with varying CN values were established using RIDF as rainfall input with 5 <span class="hlt">year</span>, 10 <span class="hlt">year</span>, 25 <span class="hlt">year</span>, 50 <span class="hlt">year</span> and 100 <span class="hlt">year</span> Rainfall Return Period (RRP). Total Runoff volume, peak discharge and lag time were progressively higher from 1973 to 2008 with 1989 land <span class="hlt">cover</span> as exception where runoff parameters was its lowest. The total runoff volume, peak discharge and lag time is governed by vegetation type. When vegetation is characterized predominantly with woody perennials, runoff volume and peak time is lower. Conversely, when the presence of woody perennials is minimal, these parameters are higher. This study shows that an important way to mitigate flooding is to reduce surface runoff by maintaining vegetation predominantly composed of woody perennials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024299','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024299"><span>AVHRR channel selection for land <span class="hlt">cover</span> classification</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.</p> <p>2002-01-01</p> <p>Mapping land <span class="hlt">cover</span> of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land <span class="hlt">cover</span> map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating <span class="hlt">cover</span> types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-<span class="hlt">year</span> analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 <span class="hlt">years</span> of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for <span class="hlt">cover</span> type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen <span class="hlt">cover</span> types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets <span class="hlt">covering</span> the entire growing season for each of 5 <span class="hlt">years</span>. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate <span class="hlt">cover</span> types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/18820','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/18820"><span>Urban <span class="hlt">cover</span> mapping using digital, high-resolution aerial imagery</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock</p> <p>2003-01-01</p> <p>High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land <span class="hlt">cover</span> classifications for an urban <span class="hlt">area</span>. Five <span class="hlt">cover</span> types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26057621','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26057621"><span>Correlations between land <span class="hlt">covers</span> and honey bee colony losses in a country with industrialized and rural regions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clermont, Antoine; Eickermann, Michael; Kraus, François; Hoffmann, Lucien; Beyer, Marco</p> <p>2015-11-01</p> <p>High levels of honey bee colony losses were recently reported from Canada, China, Europe, Israel, Turkey and the United States, raising concerns of a global pollinator decline and questioning current land use practices, in particular intense agricultural cropping systems. Sixty-seven crops (data from the <span class="hlt">years</span> 2010-2012) and 66 mid-term stable land <span class="hlt">cover</span> classes (data from 2007) were analysed for statistical relationships with the honey bee colony losses experienced over the winters 2010/11-2012/13 in Luxembourg (Western Europe). The <span class="hlt">area</span> <span class="hlt">covered</span> by each land <span class="hlt">cover</span> class, the shortest distance between each land <span class="hlt">cover</span> class and the respective apiary, the number of plots <span class="hlt">covered</span> by each land use class and the size of the biggest plot of each land <span class="hlt">cover</span> class within radii of 2 km and 5 km around 166 apiaries (2010), 184 apiaries (2011) and 188 apiaries (2012) were tested for correlations with honey bee colony losses (% per apiary) experienced in the winter following the season when the crops were grown. Artificial water bodies, open urban <span class="hlt">areas</span>, large industrial facilities including heavy industry, railways and associated installations, buildings and installations with socio-cultural purpose, camping-, sports-, playgrounds, golf courts, oilseed crops other than oilseed rape like sunflower or linseed, some spring cereals and former forest clearcuts or windthrows were the land <span class="hlt">cover</span> classes most frequently associated with high honey bee colony losses. Grain maize, mixed forest and mixed coniferous forest were the land <span class="hlt">cover</span> classes most frequently associated with low honey bee colony losses. The present data suggest that land <span class="hlt">covers</span> related to transport, industry and leisure may have made a more substantial contribution to winter honey bee colony losses in developed countries than anticipated so far. Recommendations for the positioning of apiaries are discussed. Copyright © 2015. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=340246','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=340246"><span>Indirect determination of leaf <span class="hlt">area</span> index to calculate evapotranspiration</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The plant integrates soil and environmental factors. The purpose of this study was to use nadir photos from 4.9 m height to determine ground <span class="hlt">cover</span>, leaf <span class="hlt">area</span> index (LAI), and plant water use (along with micrometeorology measurements). Measurements were completed on plots comparing a four-<span class="hlt">year</span> organi...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27432782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27432782"><span>Evidence of extensive reef development and high coral <span class="hlt">cover</span> in nearshore environments: implications for understanding coral adaptation in turbid settings.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morgan, Kyle M; Perry, Chris T; Smithers, Scott G; Johnson, Jamie A; Daniell, James J</p> <p>2016-07-19</p> <p>Mean coral <span class="hlt">cover</span> has reportedly declined by over 15% during the last 30 <span class="hlt">years</span> across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore <span class="hlt">areas</span> (<10 m depth), and show that coral <span class="hlt">cover</span> on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor <span class="hlt">area</span>, 11% had distinct reef or coral community <span class="hlt">cover</span>. Although the survey <span class="hlt">area</span> represents a small subset of the nearshore zone (15.5 km(2)), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral <span class="hlt">cover</span> declines with distance from the coast (R(2) = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41012','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41012"><span>Comparison of LiDAR- and photointerpretation-based estimates of canopy <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Demetrios Gatziolis</p> <p>2012-01-01</p> <p>An evaluation of the agreement between photointerpretation- and LiDARbased estimates of canopy <span class="hlt">cover</span> was performed using 397 90 x 90 m reference <span class="hlt">areas</span> in Oregon. It was determined that at low canopy <span class="hlt">cover</span> levels LiDAR estimates tend to exceed those from photointerpretation and that this tendency reverses at high canopy <span class="hlt">cover</span> levels. Characteristics of the airborne...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159366','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159366"><span>Ecoregions and land <span class="hlt">cover</span> trends in Senegal</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tappan, G. Gray; Sall, M.; Wood, E.C.; Cushing, Matthew</p> <p>2004-01-01</p> <p>This study examines long-term changes in Senegal's natural resources. We monitor and quantify land use and land <span class="hlt">cover</span> changes occurring across Senegal using nearly 40 <span class="hlt">years</span> of satellite imagery, aerial surveys, and fieldwork. We stratify Senegal into ecological regions and present land use and land <span class="hlt">cover</span> trends for each region, followed by a national summary. Results aggregated to the national level show moderate change, with a modest decrease in savannas from 74 to 70 percent from 1965 to 2000, and an expansion of cropland from 17 to 21 percent. However, at the ecoregion scale, we observed rapid change in some and relative stability in others. One particular concern is the decline in Senegal's biodiverse forests. However, in the <span class="hlt">year</span> 2000, Senegal's savannas, woodlands, and forests still <span class="hlt">cover</span> more than two-thirds of the country, and the rate of agricultural expansion has slowed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESS...18.5239Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESS...18.5239Y"><span>Assessing winter <span class="hlt">cover</span> crop nutrient uptake efficiency using a water quality simulation model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.</p> <p>2014-12-01</p> <p>Winter <span class="hlt">cover</span> crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter <span class="hlt">cover</span> crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of <span class="hlt">cover</span> crop establishment. The objective of this study was to assess the long-term effect of planting winter <span class="hlt">cover</span> crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source <span class="hlt">areas</span> of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter <span class="hlt">cover</span> crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf <span class="hlt">area</span> development curve using multitemporal satellite-based measurements of species-specific winter <span class="hlt">cover</span> crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter <span class="hlt">cover</span> crops and to investigate how nitrate loading could change under different winter <span class="hlt">cover</span> crop planting scenarios, including different species, planting dates, and implementation <span class="hlt">areas</span>. The simulation results indicate that winter <span class="hlt">cover</span> crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter <span class="hlt">cover</span> crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with <span class="hlt">cover</span> crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of <span class="hlt">cover</span> crops (~ 30</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23274629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23274629"><span>SEM and EDS investigation of a pyrolytic carbon <span class="hlt">covered</span> C/C composite maxillofacial implant retrieved from the human body after 8 <span class="hlt">years</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sebők, Béla; Kiss, Gábor; Szabó, Péter J; Rigler, Dániel; Molnár, Milán L; Dobos, Gábor; Réti, Ferenc; Szőcs, Hajnal; Joób, Arpád F; Bogdán, Sándor; Szabó, György</p> <p>2013-03-01</p> <p>The long term effect of the human body on a pyrolytic carbon <span class="hlt">covered</span> C/C composite maxillofacial implant (CarBulat(Tm)) was investigated by comparing the structure, the surface morphology and composition of an implant retrieved after 8 <span class="hlt">years</span> to a sterilized, but not implanted one. Although the thickness of the carbon fibres constituting the implants did not change during the 8 <span class="hlt">year</span> period, the surface of the implant retrieved was <span class="hlt">covered</span> with a thin surface layer not present on the unimplanted implant. The composition of this layer is identical to the composition of the underlying carbon fibres. Calcium can only be detected on the surface as a trace element implying that the new layer is not formed by bone tissue. Residual soft tissue penetrating the bulk material between the carbon fibre bunches was found on the retrieved implant indicating the importance of the surface morphology in tissue growth and adhering to implants.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19496006','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19496006"><span>Monitoring land use/land <span class="hlt">cover</span> changes using CORINE land <span class="hlt">cover</span> data: a case study of Silivri coastal zone in Metropolitan Istanbul.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yilmaz, Rüya</p> <p>2010-06-01</p> <p>The objective of the present study was to assess changes in land use/land <span class="hlt">cover</span> patterns in the coastal town of Silivri, a part of greater Istanbul administratively. In the assessment, remotely sensed data, in the form of satellite images, and geographic information systems were used. Types of land use/land <span class="hlt">cover</span> were designated as the percentage of the total <span class="hlt">area</span> studied. Results calculated from the satellite data for land <span class="hlt">cover</span> classification were compared successfully with the database Coordination of Information on the Environment (CORINE). This served as a reference to appraise the reliability of the study presented here. The CORINE Program was established by the European Commission to create a harmonized Geographical Information System on the state of the environment in the European Community. Unplanned urbanization is causing land use changes mainly in developing countries such as Turkey. This situation in Turkey is frequently observed in the city of Istanbul. There are only a few studies of land use-land <span class="hlt">cover</span> changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Istanbul. The research <span class="hlt">area</span> comprised greater Silivri Town which is situated by the coast of Marmara Sea, and it is located approximately 60 km west of Istanbul. The city of Istanbul is one of the largest metropolises in Europe with ca. 15 million inhabitants. Additionally, greater Silivri is located near the terminal point of the state highway connecting Istanbul with Europe. Measuring of changes occurring in land use would help control future planning of settlements; hence, it is of importance for the Greater Silivri and Silivri Town. Following our evaluations, coastal zone of Silivri was classified into the land use groups of artificial surfaces agricultural <span class="hlt">areas</span> and forests and seminatural <span class="hlt">areas</span> with 47.1%, 12.66%, and 22.62%, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.2026G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.2026G"><span>Salt and N leaching and soil accumulation due to <span class="hlt">cover</span> cropping practices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gabriel, J. L.; Quemada, M.</p> <p>2012-04-01</p> <p>Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. <span class="hlt">Cover</span> crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. <span class="hlt">Cover</span> crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many <span class="hlt">areas</span> of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of <span class="hlt">cover</span> cropping. A study of the soil salinity and nitrate leaching was conducted during 4 <span class="hlt">years</span> in a semiarid irrigated agricultural <span class="hlt">area</span> of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. <span class="hlt">Cover</span> crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and <span class="hlt">cover</span> crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1378/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1378/"><span>Mapping Land Use/Land <span class="hlt">Cover</span> in the Ambos Nogales Study <span class="hlt">Area</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Norman, Laura M.; Wallace, Cynthia S.A.</p> <p>2008-01-01</p> <p>The Ambos Nogales watershed, which surrounds the twin cities of Nogales, Arizona, United States and Nogales, Sonora, Mexico, has a history of problems related to flooding. This paper describes the process of creating a high-resolution, binational land-<span class="hlt">cover</span> dataset to be used in modeling the Ambos Nogales watershed. The Automated Geospatial Watershed Assessment tool will be used to model the Ambos Nogales watershed to identify focal points for planning efforts and to anticipate ramifications of implementing detention reservoirs at certain watershed planes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1239921','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1239921"><span>Annual Report for Los Alamos National Laboratory Technical <span class="hlt">Area</span> 54, <span class="hlt">Area</span> G Disposal Facility – Fiscal <span class="hlt">Year</span> 2015</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>French, Sean B.; Stauffer, Philip H.; Birdsell, Kay H.</p> <p></p> <p>As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical <span class="hlt">Area</span> 54, <span class="hlt">Area</span> G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal <span class="hlt">year</span> (FY) 2015 annual review for <span class="hlt">Area</span> G.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JPRS...71...34L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JPRS...71...34L"><span>Long term land <span class="hlt">cover</span> and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lyons, Mitchell B.; Phinn, Stuart R.; Roelfsema, Chris M.</p> <p>2012-07-01</p> <p>Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land <span class="hlt">cover</span> and seagrass distribution in an Australian coastal environment for a 38 <span class="hlt">year</span> Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass <span class="hlt">cover</span> maps every <span class="hlt">year</span> data were available, resulting in over 60 map products over the 38 <span class="hlt">year</span> archive. Land <span class="hlt">cover</span> was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some <span class="hlt">years</span> monthly, via horizontal projected foliage <span class="hlt">cover</span> classes, sand and deep water. Land <span class="hlt">cover</span> products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land <span class="hlt">cover</span> products respectively, which is consistent with other studies in the <span class="hlt">area</span>. This study is the first to show moderate spatial resolution, long term annual changes in land <span class="hlt">cover</span> and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land <span class="hlt">cover</span> products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential <span class="hlt">areas</span>, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass <span class="hlt">cover</span> products show that there has been a minimal overall change in seagrass extent, but that seagrass <span class="hlt">cover</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMIN22A..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMIN22A..06C"><span>Large-<span class="hlt">area</span> Mapping of Forest <span class="hlt">Cover</span> and Biomass using ALOS PALSAR</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cartus, O.; Kellndorfer, J. M.; Walker, W. S.; Goetz, S. J.; Laporte, N.; Bishop, J.; Cormier, T.; Baccini, A.</p> <p>2011-12-01</p> <p>In the frame of a Pantropical mapping project, we aim at producing high-resolution forest <span class="hlt">cover</span> maps from ALOS PALSAR. The ALOS data was obtained through the Americas ALOS Data Node (AADN) at ASF. For the forest <span class="hlt">cover</span> classification, a pan-tropical network of calibrated reference data was generated from ancillary satellite data (ICESAT GLAS). These data are used to classify PALSAR swath data to be combined to continental forest probability maps. The maps are validated with withheld training data for testing, as well as through independent operator verification with very high-resolution image. In addition, we aim at developing robust algorithms for the mapping of forest biophysical parameters like stem volume or biomass using synergy of PALSAR, optical and Lidar data. Currently we are testing different approaches for the mapping of forest biophysical parameters. 1) For the showcase scenario of Mexico, where we have access to ~1400 PALSAR FBD images as well as the 30 m Landsat Vegetation Continuous Field product, VCF, we test a traditional ground-data based approach. The PALSAR HH/HV intensity data and VCF are used as predictor layers in RandomForest for predicting aboveground forest biomass. A network of 40000 in situ biomass plots is used for model development (for each PALSAR swath) as well as for validation. With this approach a first 30 m biomass map for entire Mexico was produced. An initial validation of the map resulted in an RMSE of 41 t/ha and an R2 of 0.42. Pronounced differences between different ecozones were observed. In some <span class="hlt">areas</span> the retrieval reached an R2 of 0.6 (e.g. pine-oak forests) whereas, for instance, in dry woodlands, the retrieval accuracy was much lower (R2 of 0.1). A major limitation of the approach was also represented by the fact that for the development of models for each ALOS swath, in some cases too few sample plots were available. 2) Chile: At a forest site in Central Chile, dominated by plantations of pinus radiata, synergy of ALOS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..149a2043R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..149a2043R"><span>The effect of land <span class="hlt">cover</span> change to the biomass value in the forest region of West Java province</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahayu, M. I.; Waryono, T.; Rokhmatullah; Shidiq, I. P. A.</p> <p>2018-05-01</p> <p>Due to the issue of climate change as a public concern, information of carbon stock availability play an important role to describe the condition of forest ecosystems in the context of sustainable forest management. This study has the objective to identify land <span class="hlt">cover</span> change during 2 decades (1996 – 2016) in the forest region and estimate the value of forest carbon stocks in west Java Province using remote sensing imagery. The land <span class="hlt">cover</span> change information was obtained by visually interpreting the Landsat image, while the estimation of the carbon stock value was performed using the transformation of the NDVI (Normalized Difference Vegetation Index) which extracted from Landsat image. Biomass value is calculated by existing allometric equations. The results of this study shows that the forest <span class="hlt">area</span> in the forest region of West Java Province have decreased from <span class="hlt">year</span> to <span class="hlt">year</span>, and the estimation value of forest carbon stock in the forest region of West Java Province also decreased from <span class="hlt">year</span> to <span class="hlt">year</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC12C..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC12C..03C"><span>Multidecadal Land <span class="hlt">Cover</span> Change in the Los Angeles Basin and its Water Consumption Implications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colombi, N. K.; Lettenmaier, D. P.; Marlier, M. E.</p> <p>2017-12-01</p> <p>Urban irrigation is an important component of the hydrologic cycle in <span class="hlt">areas</span> with arid and semi-arid climates. In Los Angeles, outdoor irrigation has the largest potential for water conservation. However, there are significant uncertainties in predicting and quantifying irrigated water use due to unavailability of crucial landcover data. Irrigated vegetation must first be identified and mapped before irrigated water use can be modeled, and steps can be taken towards conservation. We utilized Landsat data at 30m spatial resolution from 1985 to present to quantify temporal dynamics of vegetation <span class="hlt">cover</span> on a seasonal basis in the Los Angeles Basin based on the Normalized Difference Vegetation Index (NDVI). Previous vegetation surveys have estimated tree <span class="hlt">cover</span> and other vegetation types as isolated "snapshots", but are of limited use in monitoring fine-scale temporal variations, and their implications for municipal water consumption in particular. When the temporal resolution of images is low, it becomes more difficult to distinguish between natural, as contrasted with irrigated, vegetation. Our work therefore should provide a better basis for identifying irrigated vegetation. In addition, we quantified NDVI changes within specific land <span class="hlt">cover</span> classifications including, but not limited to, grassland, shrub, and developed land classes. These results will be useful in comparing natural and irrigated vegetation within urban and partially urban <span class="hlt">areas</span>. They will also help us to understand relationships between NDVI and irrigated water use at fine temporal resolutions. Finally, we have created land <span class="hlt">cover</span> change maps that allow us to examine the impact of historical urban ecosystem changes on the water balance of the Los Angeles Basin (LAB) over the last 30 <span class="hlt">years</span>. Understanding historical changes is a first step in determining the most practical ways of improving water use sustainability in the Los Angeles urban <span class="hlt">area</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28963653','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28963653"><span>Five-<span class="hlt">year</span> performance monitoring of a high-density polyethylene (HDPE) <span class="hlt">cover</span> system at a reclaimed mine waste rock pile in the Sydney Coalfield (Nova Scotia, Canada).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Power, Christopher; Ramasamy, Murugan; MacAskill, Devin; Shea, Joseph; MacPhee, Joseph; Mayich, David; Baechler, Fred; Mkandawire, Martin</p> <p>2017-12-01</p> <p><span class="hlt">Cover</span> systems are commonly placed over waste rock piles (WRPs) to limit atmospheric water and oxygen ingress and control the generation and release of acid mine drainage (AMD) to the receiving environment. Although <span class="hlt">covers</span> containing geomembranes such as high-density polyethylene (HDPE) exhibit the attributes to be highly effective, there are few, if any, published studies monitoring their performance at full-scale WRPs. In 2011, a HDPE <span class="hlt">cover</span> was installed over the Scotchtown Summit WRP in Nova Scotia, Canada, and extensive field performance monitoring was conducted over the next five <span class="hlt">years</span>. A range of parameters within the atmosphere, <span class="hlt">cover</span>, waste rock, groundwater and surface water, were monitored and integrated into a comprehensive hydrogeochemical conceptual model to assess (i) atmospheric ingress to the waste rock, (ii) waste rock acidity and depletion and (iii) evolution of groundwater and surface water quality. Results demonstrate that the <span class="hlt">cover</span> is effective and meeting site closure objectives. Depletion in oxygen influx resulted in slower sulphide oxidation and AMD generation, while a significant reduction in water influx (i.e. 512 to 50 mm/<span class="hlt">year</span>) resulted in diminished AMD release. Consistent improvements in groundwater quality (decrease in sulphate and metals; increase in pH) beneath and downgradient of the WRP were observed. Protection and/or significant improvement in surface water quality was evident in all surrounding watercourses due to the improved groundwater plume and elimination of contaminated runoff over previously exposed waste rock. A variably saturated flow and contaminant transport model is currently being developed to predict long-term <span class="hlt">cover</span> system performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC51H..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC51H..03K"><span>From forest to farmland and moraine to meadow: Integrated modeling of Holocene land <span class="hlt">cover</span> change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaplan, J. O.</p> <p>2012-12-01</p> <p>Did humans affect global climate over the before the Industrial Era? While this question is hotly debated, the co-evolution of humans and the natural environment over the last 11,700 <span class="hlt">years</span> had an undisputed role in influencing the development and present state of terrestrial ecosystems, many of which are highly valued today as economic, cultural, and ecological resources. Yet we still have a very incomplete picture of human-environment interactions over the Holocene, both spatially and temporally. In order to address this problem, we combined a global dynamic vegetation model with a new model of preindustrial anthropogenic land <span class="hlt">cover</span> change. We drive these integrated models with paleoclimate from GCM scenarios, a new synthesis of global demographic, technological, and economic development over preindustrial time, and a global database of historical urbanization <span class="hlt">covering</span> the last 8000 <span class="hlt">years</span>. We simulate land <span class="hlt">cover</span> and land use change, fire, soil erosion, and emissions of CO2 and methane (CH4) from 11,700 <span class="hlt">years</span> before present to AD 1850. We evaluate our simulations in part with a new set of continental-scale reconstructions of land <span class="hlt">cover</span> based on records from the Global Pollen Database. Our model results show that climate and tectonic change controlled global land <span class="hlt">cover</span> in the early Holocene, e.g., shifts in forest biomes in northern continents show an expansion of temperate tree types far to the north of their present day limits, but that by the early Iron Age (1000 BC), humans in Europe, east Asia, and Mesoamerica had a larger influence than natural processes on the landscape. 3000 <span class="hlt">years</span> before present, anthropogenic deforestation was widespread with most <span class="hlt">areas</span> of temperate Europe and southwest Asia, east-central China, northern India, and Mesoamerica occupied by a matrix of natural vegetation, cropland and pastures. Burned <span class="hlt">area</span> and emissions of CO2 and CH4 from wildfires declined slowly over the entire Holocene, as landscape fragmentation and changing agricultural</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186253','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186253"><span>Seasonal land-<span class="hlt">cover</span> regions of the United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Loveland, Thomas R.; Merchant, James W.; Brown, Jesslyn F.; Ohlen, Donald O.; Reed, Bradley C.; Olson, Paul; Hutchinson, John</p> <p>1995-01-01</p> <p>Global-change investigations have been hindered by deficiencies in the availability and quality of land-<span class="hlt">cover</span> data. The U.S. Geological Survey and the University of Nebraska-Lincoln have collaborated on the development of a new approach to land-<span class="hlt">cover</span> characterization that attempts to address requirements of the global-change research community and others interested in regional patterns of land <span class="hlt">cover</span>. An experimental 1 -kilometer-resolution database of land-<span class="hlt">cover</span> characteristics for the coterminous U.S. has been prepared to test and evaluate the approach. Using multidate Advanced Very High Resolution Radiometer (AVHRR) satellite data complemented by elevation, climate, ecoregions, and other digital spatial datasets, the authors define 152, seasonal land-<span class="hlt">cover</span> regions. The regionalization is based on a taxonomy of <span class="hlt">areas</span> with respect to data on land <span class="hlt">cover</span>, seasonality or phenology, and relative levels of primary production. The resulting database consists of descriptions of the vegetation, land <span class="hlt">cover</span>, and seasonal, spectral, and site characteristics for each region. These data are used in the construction of an illustrative 1:7,500,000-scaIe map of the seasonal land-<span class="hlt">cover</span> regions as well as of smaller-scale maps portraying general land <span class="hlt">cover</span> and seasonality. The seasonal land-<span class="hlt">cover</span> characteristics database can also be tailored to provide a broad range of other landscape parameters useful in national and global-scale environmental modeling and assessment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014348','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014348"><span>Determining Trends in Impervious <span class="hlt">Cover</span> for the Mobile Bay, AL Region for 1974-2008, Based on a Landsat Time Series</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph P.; Smoot, James; Ellis, Jean; Swann, Roberta</p> <p>2011-01-01</p> <p>This presentation will discuss the development and use of Landsat-based impervious <span class="hlt">cover</span> products in conjunction with land use land <span class="hlt">cover</span> change products to assess multi-decadal urbanization across the Mobile Bay region at regional and watershed scales. This nationally important coastal region has undergone a variety of ephemeral and permanent land use land <span class="hlt">cover</span> change since the mid-1970s, including gradual but consequential increases in urban surface <span class="hlt">cover</span>. This urban sprawl corresponds with increased regional percent impervious <span class="hlt">cover</span>. The region s coastal zone managers are concerned about the increasing percent impervious <span class="hlt">cover</span>, since it can negatively influence water quality and is an important consideration for coastal conservation and restoration work. In response, we processed multi-temporal Landsat data to compute maps of percent impervious <span class="hlt">cover</span> for multiple dates from 1974 through 2008, roughly at 5-<span class="hlt">year</span> intervals. Each <span class="hlt">year</span> of product was classified using one single date of leaf-on and leaf-off Landsat data in conjunction with Cubist software. We are assessing Landsat impervious <span class="hlt">cover</span> product accuracy through comparisons to available reference data, including available NLCD impervious <span class="hlt">cover</span> products from the USGS, raw Landsat data, plus higher spatial resolution aerial and satellite data. In particular, we are quantitatively comparing the 2008 Landsat impervious <span class="hlt">cover</span> products to those from QuickBird 2.4-meter multispectral data. Initial visual comparisons with the QuickBird impervious <span class="hlt">cover</span> product suggest that the 2008 Landsat product tends to underestimate impervious <span class="hlt">cover</span> for high density urban <span class="hlt">areas</span> and to overestimate impervious <span class="hlt">cover</span> in established residential subdivisions mixed with forested <span class="hlt">cover</span>. Landsat TM and ETM data appears to produce more accurate impervious <span class="hlt">cover</span> products compared to those using lower resolution Landsat MSS data. Although imperfect, these Landsat impervious <span class="hlt">cover</span> products have helped the Mobile Bay National Estuary</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Any+AND+year&pg=7&id=ED534870','ERIC'); return false;" href="https://eric.ed.gov/?q=Any+AND+year&pg=7&id=ED534870"><span>Mathematics in Early <span class="hlt">Years</span> Education. 3rd Edition</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Montague-Smith, Ann; Price, Alison</p> <p>2012-01-01</p> <p>This third edition of the best-selling "Mathematics in Nursery Education" provides an accessible introduction to the teaching of mathematics in the early <span class="hlt">years</span>. <span class="hlt">Covering</span> all <span class="hlt">areas</span> of mathematics learning--number and counting, calculation, pattern, shape, measures and data handling--it summarises the research findings and underlying key concepts…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPRS..130..277M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPRS..130..277M"><span>A review of supervised object-based land-<span class="hlt">cover</span> image classification</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue</p> <p>2017-08-01</p> <p>Object-based image classification for land-<span class="hlt">cover</span> mapping purposes using remote-sensing imagery has attracted significant attention in recent <span class="hlt">years</span>. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-<span class="hlt">cover</span> classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study <span class="hlt">area</span> or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-<span class="hlt">cover</span> types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study <span class="hlt">area</span>, and Random Forest (RF) shows the best performance in object-based classification. The <span class="hlt">area</span>-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......459K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......459K"><span>Forest <span class="hlt">cover</span> type analysis of New England forests using innovative WorldView-2 imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kovacs, Jenna M.</p> <p></p> <p>For many <span class="hlt">years</span>, remote sensing has been used to generate land <span class="hlt">cover</span> type maps to create a visual representation of what is occurring on the ground. One significant use of remote sensing is the identification of forest <span class="hlt">cover</span> types. New England forests are notorious for their especially complex forest structure and as a result have been, and continue to be, a challenge when classifying forest <span class="hlt">cover</span> types. To most accurately depict forest <span class="hlt">cover</span> types occurring on the ground, it is essential to utilize image data that have a suitable combination of both spectral and spatial resolution. The WorldView-2 (WV2) commercial satellite, launched in 2009, is the first of its kind, having both high spectral and spatial resolutions. WV2 records eight bands of multispectral imagery, four more than the usual high spatial resolution sensors, and has a pixel size of 1.85 meters at the nadir. These additional bands have the potential to improve classification detail and classification accuracy of forest <span class="hlt">cover</span> type maps. For this reason, WV2 imagery was utilized on its own, and in combination with Landsat 5 TM (LS5) multispectral imagery, to evaluate whether these image data could more accurately classify forest <span class="hlt">cover</span> types. In keeping with recent developments in image analysis, an Object-Based Image Analysis (OBIA) approach was used to segment images of Pawtuckaway State Park and nearby private lands, an <span class="hlt">area</span> representative of the typical complex forest structure found in the New England region. A Classification and Regression Tree (CART) analysis was then used to classify image segments at two levels of classification detail. Accuracies for each forest <span class="hlt">cover</span> type map produced were generated using traditional and <span class="hlt">area</span>-based error matrices, and additional standard accuracy measures (i.e., KAPPA) were generated. The results from this study show that there is value in analyzing imagery with both high spectral and spatial resolutions, and that WV2's new and innovative bands can be useful</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9642E..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9642E..04P"><span>Large <span class="hlt">area</span> robust identification of snow <span class="hlt">cover</span> from multitemporal COSMO-SkyMed images</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pettinato, S.; Santi, E.; Paloscia, S.; Aiazzi, B.; Baronti, S.; Palchetti, E.; Garzelli, A.</p> <p>2015-10-01</p> <p>This paper investigates the ability of the Information Theoretic Snow Detection Algorithm (ITSDA) in detecting changes due to snow <span class="hlt">cover</span> between summer and winter seasons on large <span class="hlt">area</span> images acquired by COSMO-SkyMed constellation. ITSDA is a method for change detection in multitemporal SAR images, which has been recently applied by the authors to a subset of Cosmo-SkyMed data. The proposed technique is based on a nonparametric approach in the framework of Shannon's information theory, and in particular it features the conditional probability of the local means between the two images taken at different times. Such an unsupervised approach does not require any preliminary despeckling procedure to be performed before the calculation of the change map. In the case of a low quantity of anomalous changes in relatively small-size images, a mean shift procedure can be utilized for refining the map. However, in the present investigation, the changes to be identified are pervasive in large size images. Consequently, for computational issues, the mean shift refinement has been omitted in the present work. However, a simplified implementation of mean shift procedure to save time will be possibly considered in future submissions. In any case, the present version of ITSDA method preserve its characteristics of flexibility and sensibility to backscattering changes, thanks to the possibility of setting up the number of quantization levels in the estimation of the conditional probability between the amplitude values at the two acquisition dates.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B13E1808F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B13E1808F"><span>Annual global tree <span class="hlt">cover</span> estimated by fusing optical and SAR satellite observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.</p> <p>2017-12-01</p> <p>Tree <span class="hlt">cover</span> defined structurally as the proportional, vertically projected <span class="hlt">area</span> of vegetation (including leaves, stems, branches, etc.) of woody plants above a given height affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Tree <span class="hlt">cover</span> provides a measurable attribute upon which forest <span class="hlt">cover</span> may be defined. Changes in tree <span class="hlt">cover</span> over time can be used to monitor and retrieve site-specific histories of forest disturbance, succession, and degradation. Measurements of Earth's tree <span class="hlt">cover</span> have been produced at regional, national, and global extents. However, most representations are static, and those for which multiple time periods have been produced are neither intended nor adequate for consistent, long-term monitoring. Moreover, although a substantial proportion of change has been shown to occur at resolutions below 250 m, existing long-term, Landsat-resolution datasets are either produced as static layers or with annual, five- or ten-<span class="hlt">year</span> temporal resolution. We have developed an algorithms to retrieve seamless and consistent, sub-hectare resolution estimates of tree-canopy from optical and radar satellite data sources (e.g., Landsat, Sentinel-2, and ALOS-PALSAR). Our approach to estimation enables assimilation of multiple data sources and produces estimates of both <span class="hlt">cover</span> and its uncertainty at the scale of pixels. It has generated the world's first Landsat-based percent tree <span class="hlt">cover</span> dataset in 2013. Our previous algorithms are being adapted to produce prototype percent-tree and water-<span class="hlt">cover</span> layers globally in 2000, 2005, and 2010—as well as annually over North and South America from 2010 to 2015—from passive-optical (Landsat and Sentinel-2) and SAR measurements. Generating a global, annual dataset is beyond the scope of this support; however, North and South America represent all of the world's major biomes and so offer the complete global range of environmental sources of error and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5670H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5670H"><span>Linkages between Snow <span class="hlt">Cover</span> Seasonality, Terrain, and Land Surface Phenology in the Highland Pastures of Kyrgyzstan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henebry, Geoffrey; Tomaszewska, Monika; Kelgenbaeva, Kamilya</p> <p>2017-04-01</p> <p>In the highlands of Kyrgyzstan, vertical transhumance is the foundation of montane agropastoralism. Terrain attributes, such as elevation, slope, and aspect, affect snow <span class="hlt">cover</span> seasonality, which is a key influence on the timing of plant growth and forage availability. Our study <span class="hlt">areas</span> include the highland pastures in Central Tien Shan mountains, specifically in the rayons of Naryn and At-Bashy in Naryn oblast, and Alay and Chong-Alay rayons in Osh oblast. To explore the linkages between snow <span class="hlt">cover</span> seasonality and land surface phenology as modulated by terrain and variations in thermal time, we use 16 <span class="hlt">years</span> (2001-2016) of Landsat surface reflectance data at 30 m resolution with MODIS land surface temperature and snow <span class="hlt">cover</span> products at 1 km and 500 m resolution, respectively, and two digital elevation models, SRTM and ASTER GDEM. We model snow <span class="hlt">cover</span> seasonality using frost degree-days and land surface phenology using growing degree-days as quadratic functions of thermal time: a convex quadratic (CxQ) model for land surface phenology and a concave quadratic (CvQ) model for snow <span class="hlt">cover</span> seasonality. From the fitted parameter coefficients, we calculated phenometrics, including "peak height" and "thermal time to peak" for the CxQ models and "trough depth" and "thermal time to trough" for the CvQ models. We explore how these phenometrics change as a function of elevation and slope-aspect interactions and due to interannual variability. Further, we examine how snow <span class="hlt">cover</span> duration and timing affects the subsequent peak height and thermal time to peak in wetter, drier, and normal <span class="hlt">years</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17306858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17306858"><span>Effect of vegetal <span class="hlt">cover</span> on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marques, María José; Bienes, Ramón; Jiménez, Luis; Pérez-Rodríguez, Raquel</p> <p>2007-05-25</p> <p>The erosive power of frequent light rainfalls is studied in this paper. Field experiments of simulated rainfall (Intensity, 21 mm h(-1) and kinetic energy, 13.5 J m(-2) mm(-1)) were conducted over 8 bounded USLE plots (80 m(2) each) with a slope of 10%. In 4 plots the soil was almost bare (<4% vegetation <span class="hlt">cover</span>); the other 4 plots had almost full <span class="hlt">cover</span> with natural vegetation in one <span class="hlt">year</span>. Runoff and sediment yield was recorded. The results revealed the efficiency of vegetation <span class="hlt">cover</span> reducing runoff and sediments. Runoff and sediments were negligible in <span class="hlt">covered</span> plots. Therefore, in bare plots, although sediment yield was generally low, averaging 74+/-43 kg ha(-1), the mean of runoff achieved a coefficient of 35%, this magnitude has to be taken into consideration in this region verging on aridity. Rains around 13.5 J m(-2) mm(-1) of kinetic energy are quite frequent in the study <span class="hlt">area</span> (34% of recorded rains en 12 <span class="hlt">years</span>). If we would consider the usual lower limits from the literature, we would be ignoring an important percent of natural rainfall episodes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.2453H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.2453H"><span>Spatiotemporal dynamics of snow <span class="hlt">cover</span> based on multi-source remote sensing data in China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Xiaodong; Deng, Jie; Ma, Xiaofang; Wang, Yunlong; Feng, Qisheng; Hao, Xiaohua; Liang, Tiangang</p> <p>2016-10-01</p> <p>By combining optical remote sensing snow <span class="hlt">cover</span> products with passive microwave remote sensing snow depth (SD) data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer) cloudless binary snow <span class="hlt">cover</span> product and a 500 m snow depth product. The temporal and spatial variations of snow <span class="hlt">cover</span> from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 <span class="hlt">years</span>, (1) the mean snow-<span class="hlt">covered</span> <span class="hlt">area</span> (SCA) in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2) the snow-<span class="hlt">covered</span> days (SCDs) showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3) the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4) the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5) the regional differences in the variation of snow <span class="hlt">cover</span> in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010056685','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010056685"><span>A Study of the Role of Clouds in the Relationship Between Land Use/Land <span class="hlt">Cover</span> and the Climate and Air Quality of the Atlanta <span class="hlt">Area</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kidder, Stanley Q.; Hafner, Jan</p> <p>2001-01-01</p> <p>The goal of Project ATLANTA is to derive a better scientific understanding of how land <span class="hlt">cover</span> changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta <span class="hlt">area</span>, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural <span class="hlt">areas</span>; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land <span class="hlt">cover</span> change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188493','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188493"><span>Land <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jorgenson, Janet C.; Joria, Peter C.; Douglas, David C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.</p> <p>2002-01-01</p> <p>Documenting the distribution of land-<span class="hlt">cover</span> types on the Arctic National Wildlife Refuge coastal plain is the foundation for impact assessment and mitigation of potential oil exploration and development. Vegetation maps facilitate wildlife studies by allowing biologists to quantify the availability of important wildlife habitats, investigate the relationships between animal locations and the distribution or juxtaposition of habitat types, and assess or extrapolate habitat characteristics across regional <span class="hlt">areas</span>.To meet the needs of refuge managers and biologists, satellite imagery was chosen as the most cost-effective method for mapping the large, remote landscape of the 1002 <span class="hlt">Area</span>.Objectives of our study were the following: 1) evaluate a vegetation classification scheme for use in mapping. 2) determine optimal methods for producing a satellite-based vegetation map that adequately met the needs of the wildlife research and management objectives; 3) produce a digital vegetation map for the Arctic Refuge coastal plain using Lands at-Thematic Mapper(TM) satellite imagery, existing geobotanical classifications, ground data, and aerial photographs, and 4) perform an accuracy assessment of the map.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GPC...148..192Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GPC...148..192Z"><span>Seasonal snow <span class="hlt">cover</span> regime and historical change in Central Asia from 1986 to 2008</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Hang; Aizen, Elena; Aizen, Vladimir</p> <p>2017-01-01</p> <p>A series of statistics describing seasonal Snow <span class="hlt">Cover</span> Extent and timing in Central Asia (CA) have been derived from AVHRR satellite images for the time period from 1986 to 2008. Analysis of long term mean snow <span class="hlt">cover</span> statistics shows that the <span class="hlt">area</span> weighted mean of long term Snow <span class="hlt">Covering</span> Days (SCD) for the whole CA is 95.2 ± 65.7 days. High elevation mountainous <span class="hlt">areas</span> above 3000 m in Altai, Tien Shan and Pamir, which account for about 2.8% of total <span class="hlt">area</span> in CA, have SCD > 240 days. Deserts (Karakorum Desert, Taklamakan Desert, Kumtag Desert) and rain shadow <span class="hlt">areas</span> of major mountains, accounting for 27.0% of total <span class="hlt">area</span> in CA, have SCD in the range of 0-30 days. Factors affecting snow <span class="hlt">cover</span> distribution have been analyzed using simple linear regression and segmented regression. For plain regions and windward regions, the SCD rate is + 5.9 days/100 m, while for leeward regions, the rate jumps from + 0.7 days/100 m to + 10.0 days/100 m at about 2335 m. Latitude affects the SCD, especially in plain regions with insignificant change of elevation, with rates of 9-10 days/degree from south to north. The Mann-Kendal test and the Theil-Sen regression methods have been applied to analyze the spatial heterogeneous trends of change of SCD, Snow <span class="hlt">Cover</span> Onset Date (SCOD), and Snow <span class="hlt">Cover</span> Melt Date (SCMD). <span class="hlt">Area</span> weighed mean SCD in the whole CA does not exhibit significant trend of change from 1986 to 2008. Increase of SCD was observed in the northeastern Kazakh Steppe. Low elevation <span class="hlt">areas</span> below 2000 m in Central Tien Shan and Eastern Tien Shan, as well as mid-elevation <span class="hlt">areas</span> from 1000 m to 3000 m in Western Tien Shan, Pamiro-Alai and Western Pamir, also experienced increase of SCD, associated with both earlier SCOD and later SCMD. Decrease of SCD was observed in mountainous <span class="hlt">areas</span> of Altai, Tien Shan and Pamir, and vast <span class="hlt">areas</span> in plains surrounding the Aral Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187678','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187678"><span>Land <span class="hlt">cover</span> characterization and land surface parameterization research</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.</p> <p>1997-01-01</p> <p>The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land <span class="hlt">cover</span> characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land <span class="hlt">cover</span> characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land <span class="hlt">cover</span> type, land use, and many seasonally variable land <span class="hlt">cover</span> characteristics, such as albedo, leaf <span class="hlt">area</span> index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20527459','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20527459"><span>Spatial and temporal land <span class="hlt">cover</span> changes in Terminos Lagoon Reserve, Mexico.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soto-Galera, Ernesto; Piera, Jaume; López, Pilar</p> <p>2010-06-01</p> <p>Terminos Lagoon ecosystem is the largest fluvial-lagoon estuarine system in the country and one of the most important reserves of coastal flora and fauna in Mexico. Since the seventies, part of the main infrastructure for country's oil extraction is located in this <span class="hlt">area</span>. Its high biodiversity has motivated different type of studies including deforestation processes and land use planning. In this work we used satellite image analysis to determine land <span class="hlt">cover</span> changes in the <span class="hlt">area</span> from 1974 to 2001. Our results indicate that tropical forest and mangroves presented the most extensive losses in its coverage. In contrast, urban <span class="hlt">areas</span> and induced grassland increased considerably. In 2001 more than half of the ecosystem <span class="hlt">area</span> showed changes from its original land <span class="hlt">cover</span>, and a third part of it was deteriorated. The main causes of deforestation were both the increase in grassland and the growth of urban <span class="hlt">areas</span>. However, deforestation was attenuated by natural reforestation and plant canopy recovery. We conclude that the introduction of cattle and urban development were the main causes for the land <span class="hlt">cover</span> changes; however, the oil industry activity located in the ecosystem, has promoted indirectly to urban growth and rancher boom.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1067/ofr20161067.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1067/ofr20161067.pdf"><span>Tree <span class="hlt">Cover</span> Mapping Tool—Documentation and user manual</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cotillon, Suzanne E.; Mathis, Melissa L.</p> <p>2016-06-02</p> <p>The Tree <span class="hlt">Cover</span> Mapping (TCM) tool was developed by scientists at the U.S. Geological Survey Earth Resources Observation and Science Center to allow a user to quickly map tree <span class="hlt">cover</span> density over large <span class="hlt">areas</span> using visual interpretation of high resolution imagery within a geographic information system interface. The TCM tool uses a systematic sample grid to produce maps of tree <span class="hlt">cover</span>. The TCM tool allows the user to define sampling parameters to estimate tree <span class="hlt">cover</span> within each sample unit. This mapping method generated the first on-farm tree <span class="hlt">cover</span> maps of vast regions of Niger and Burkina Faso. The approach contributes to implementing integrated landscape management to scale up re-greening and restore degraded land in the drylands of Africa. The TCM tool is easy to operate, practical, and can be adapted to many other applications such as crop mapping, settlements mapping, or other features. This user manual provides step-by-step instructions for installing and using the tool, and creating tree <span class="hlt">cover</span> maps. Familiarity with ArcMap tools and concepts is helpful for using the tool.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.4037X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.4037X"><span><span class="hlt">Area</span>-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-<span class="hlt">cover</span> map and footprint analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru</p> <p>2017-08-01</p> <p>The determination of <span class="hlt">area</span>-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for <span class="hlt">area</span>-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-<span class="hlt">cover</span> map, this study focused on estimating the <span class="hlt">area</span>-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-<span class="hlt">cover</span> map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the <span class="hlt">area</span>-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the <span class="hlt">area</span>-averaged ET of the kernel experimental <span class="hlt">area</span> of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and <span class="hlt">area</span>-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of <span class="hlt">area</span>-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B31D2026S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B31D2026S"><span>Satellite assessment of increasing tree <span class="hlt">cover</span> 1982-2016</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, X. P.; Hansen, M.</p> <p>2017-12-01</p> <p>The Earth's vegetation has undergone dramatic changes as we enter the Anthropocene. Recent studies have quantified global forest <span class="hlt">cover</span> dynamics and resulting biogeochemical and biophysical impacts to the climate for the post-2000 time period. However, long-term gradual changes in undisturbed forests are less well quantified. We mapped annual tree <span class="hlt">cover</span> using satellite data and quantified tree <span class="hlt">cover</span> change during 1982-2016. The dataset was produced by combining optical observations from multiple satellite sensors, including the Advanced Very High Resolution Radiometer, the Moderate Resolution Imaging Spectroradiometer, the Landsat Enhanced Thematic Mapper Plus and various very high spatial resolution sensors. Contrary to current understanding of forest <span class="hlt">area</span> change, global tree <span class="hlt">cover</span> increased by 7%. The overall net gain in tree <span class="hlt">cover</span> is a result of net loss in the tropics overweighed by net gain in the subtropical, temperate and boreal zones. All mountain systems, regardless of climate domain, experienced increases in tree <span class="hlt">cover</span>. Regional patterns of tree <span class="hlt">cover</span> gain including eastern United States, eastern Europe and southern China, indicate profound influences of socioeconomic, political or land management changes in shaping long-term environmental change. Results provide the first comprehensive record of global tree <span class="hlt">cover</span> dynamics over the past four decades and may be used to reduce uncertainties in the quantification of the global carbon cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NHESS..15.1201S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NHESS..15.1201S"><span>Land <span class="hlt">cover</span> changes and forest landscape evolution (1985-2009) in a typical Mediterranean agroforestry system (high Agri Valley)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.</p> <p>2015-06-01</p> <p>The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (high Agri Valley - Basilicata region) that occurred over 24 <span class="hlt">years</span>. In this period, the valuable agricultural and natural <span class="hlt">areas</span> that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European onshore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest <span class="hlt">areas</span> and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land <span class="hlt">cover</span> classes) and the forest/non-forest arrangement. Our results indicate a net increase of 11% of forest <span class="hlt">areas</span> between 1985 and 2009. The major changes concern increase of all forest <span class="hlt">covers</span> at the expense of pastures and grasses, enlargement of riparian vegetation, and expansion of artificial <span class="hlt">areas</span>. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous <span class="hlt">areas</span>. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NHESD...2.5427S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NHESD...2.5427S"><span>Land <span class="hlt">cover</span> changes and forest landscape evolution (1985-2009) in a typical Mediterranean agroforestry system (High Agri Valley)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.</p> <p>2014-08-01</p> <p>The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (High Agri Valley - Basilicata region) occurred during 24 <span class="hlt">years</span>. In this period, the valuable agricultural and natural <span class="hlt">areas</span> that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European on-shore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest <span class="hlt">areas</span> and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land <span class="hlt">cover</span> classes) and the Forest/Non Forest arrangement. Our results indicate a net increase of 11% of forest <span class="hlt">areas</span> between 1985 and 2009. The major changes concern: increase of all forest <span class="hlt">covers</span> at the expense of pastures and grasses, enlargement of riparian vegetation, expansion of artificial <span class="hlt">areas</span>. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous <span class="hlt">areas</span>. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040090080&hterms=biology+physical&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbiology%2Bphysical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040090080&hterms=biology+physical&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbiology%2Bphysical"><span>Perennially ice-<span class="hlt">covered</span> Lake Hoare, Antarctica: physical environment, biology and sedimentation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wharton, R. A. Jr; Simmons, G. M. Jr; McKay, C. P.; Wharton RA, J. r. (Principal Investigator)</p> <p>1989-01-01</p> <p>Lake Hoare (77 degrees 38' S, 162 degrees 53' E) is a perennially ice-<span class="hlt">covered</span> lake at the eastern end of Taylor Valley in southern Victoria Land, Antarctica. The environment of this lake is controlled by the relatively thick ice <span class="hlt">cover</span> (3-5 m) which eliminates wind generated currents, restricts gas exchange and sediment deposition, and reduces light penetration. The ice <span class="hlt">cover</span> is in turn largely controlled by the extreme seasonality of Antarctica and local climate. Lake Hoare and other dry valley lakes may be sensitive indicators of short term (< 100 yr) climatic and/or anthropogenic changes in the dry valleys since the onset of intensive exploration over 30 <span class="hlt">years</span> ago. The time constants for turnover of the water column and lake ice are 50 and 10 <span class="hlt">years</span>, respectively. The turnover time for atmospheric gases in the lake is 30-60 <span class="hlt">years</span>. Therefore, the lake environment responds to changes on a 10-100 <span class="hlt">year</span> timescale. Because the ice <span class="hlt">cover</span> has a controlling influence on the lake (e.g. light penetration, gas content of water, and sediment deposition), it is probable that small changes in ice ablation, sediment loading on the ice <span class="hlt">cover</span>, or glacial meltwater (or groundwater) inflow will affect ice <span class="hlt">cover</span> dynamics and will have a major impact on the lake environment and biota.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPRS..117..126S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPRS..117..126S"><span>Automated mapping of persistent ice and snow <span class="hlt">cover</span> across the western U.S. with Landsat</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selkowitz, David J.; Forster, Richard R.</p> <p>2016-07-01</p> <p>We implemented an automated approach for mapping persistent ice and snow <span class="hlt">cover</span> (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial ice and perennial snow <span class="hlt">cover</span> for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s-1980s) or the National Land <span class="hlt">Cover</span> Database 2011 perennial ice and snow <span class="hlt">cover</span> class. Our 2010-2014 Landsat-derived dataset indicates 28% less glacier and perennial snow <span class="hlt">cover</span> than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC <span class="hlt">area</span>. Analysis of Landsat scenes from 1987-1988 and 2008-2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow <span class="hlt">cover</span> that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights <span class="hlt">areas</span> where decreases in PISC have been most significant over the past 25-50 <span class="hlt">years</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70182762','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70182762"><span>Automated mapping of persistent ice and snow <span class="hlt">cover</span> across the western U.S. with Landsat</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Selkowitz, David J.; Forster, Richard R.</p> <p>2016-01-01</p> <p>We implemented an automated approach for mapping persistent ice and snow <span class="hlt">cover</span> (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial ice and perennial snow <span class="hlt">cover</span> for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s–1980s) or the National Land <span class="hlt">Cover</span> Database 2011 perennial ice and snow <span class="hlt">cover</span> class. Our 2010–2014 Landsat-derived dataset indicates 28% less glacier and perennial snow <span class="hlt">cover</span> than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC <span class="hlt">area</span>. Analysis of Landsat scenes from 1987–1988 and 2008–2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow <span class="hlt">cover</span> that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights <span class="hlt">areas</span> where decreases in PISC have been most significant over the past 25–50 <span class="hlt">years</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830027197','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830027197"><span>Continental land <span class="hlt">cover</span> classification using meteorological satellite data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tucker, C. J.; Townshend, J. R. G.; Goff, T. E.</p> <p>1983-01-01</p> <p>The use of the National Oceanic and Atmospheric Administration's advanced very high resolution radiometer satellite data for classifying land <span class="hlt">cover</span> and monitoring of vegetation dynamics over an extremely large <span class="hlt">area</span> is demonstrated for the continent of Africa. Data from 17 imaging periods of 21 consecutive days each were composited by a technique sensitive to the in situ green-leaf biomass to provide cloud-free imagery for the whole continent. Virtually cloud-free images were obtainable even for equatorial <span class="hlt">areas</span>. Seasonal variation in the density and extent of green leaf vegetation corresponded to the patterns of rainfall associated with the inter-tropical convergence zone. Regional variations, such as the 1982 drought in east Africa, were also observed. Integration of the weekly satellite data with respect to time produced a remotely sensed assessment of biological activity based upon density and duration of green-leaf biomass. Two of the 21-day composited data sets were used to produce a general land <span class="hlt">cover</span> classification. The resultant land <span class="hlt">cover</span> distributions correspond well to those of existing maps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT........43B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT........43B"><span>Time series change detection: Algorithms for land <span class="hlt">cover</span> change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boriah, Shyam</p> <p></p> <p>The climate and earth sciences have recently undergone a rapid transformation from a data-poor to a data-rich environment. In particular, climate and ecosystem related observations from remote sensors on satellites, as well as outputs of climate or earth system models from large-scale computational platforms, provide terabytes of temporal, spatial and spatio-temporal data. These massive and information-rich datasets offer huge potential for advancing the science of land <span class="hlt">cover</span> change, climate change and anthropogenic impacts. One important <span class="hlt">area</span> where remote sensing data can play a key role is in the study of land <span class="hlt">cover</span> change. Specifically, the conversion of natural land <span class="hlt">cover</span> into humandominated <span class="hlt">cover</span> types continues to be a change of global proportions with many unknown environmental consequences. In addition, being able to assess the carbon risk of changes in forest <span class="hlt">cover</span> is of critical importance for both economic and scientific reasons. In fact, changes in forests account for as much as 20% of the greenhouse gas emissions in the atmosphere, an amount second only to fossil fuel emissions. Thus, there is a need in the earth science domain to systematically study land <span class="hlt">cover</span> change in order to understand its impact on local climate, radiation balance, biogeochemistry, hydrology, and the diversity and abundance of terrestrial species. Land <span class="hlt">cover</span> conversions include tree harvests in forested regions, urbanization, and agricultural intensification in former woodland and natural grassland <span class="hlt">areas</span>. These types of conversions also have significant public policy implications due to issues such as water supply management and atmospheric CO2 output. In spite of the importance of this problem and the considerable advances made over the last few <span class="hlt">years</span> in high-resolution satellite data, data mining, and online mapping tools and services, end users still lack practical tools to help them manage and transform this data into actionable knowledge of changes in forest ecosystems that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770016625','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770016625"><span>Detection of short-term changes in vegetation <span class="hlt">cover</span> by use of LANDSAT imagery. [Arizona</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Turner, R. M. (Principal Investigator); Wiseman, F. M.</p> <p>1975-01-01</p> <p>The author has identified the following significant results. By using a constant band 6 to band 5 radiance ratio of 1.25, the changing pattern of <span class="hlt">areas</span> of relatively dense vegetation <span class="hlt">cover</span> was detected for the semiarid region in the vicinity of Tucson, Arizona. Electronically produced binary thematic masks were used to map <span class="hlt">areas</span> with dense vegetation. The foliar <span class="hlt">cover</span> threshold represented by the ratio was not accurately determined but field measurements show that the threshold lies in the range of 10 to 25 percent foliage <span class="hlt">cover</span>. Montana evergreen forests with constant dense <span class="hlt">cover</span> were correctly shown to exceed the threshold on all dates. The summer active grassland exceeded the threshold in the summer unless rainfall was insufficient. Desert <span class="hlt">areas</span> exceeded the threshold during the spring of 1973 following heavy rains; the same <span class="hlt">areas</span> during the rainless spring of 1974 did not exceed threshold. Irrigated fields, parks, golf courses, and riparian communities were among the habitats most frequently surpassing the threshold.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308977&Lab=NHEERL&keyword=agriculture&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308977&Lab=NHEERL&keyword=agriculture&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Long-term impacts of land <span class="hlt">cover</span> changes on stream channel loss</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Land <span class="hlt">cover</span> change and stream channel loss are two related global environmental changes that are expanding and intensifying. Here, we examine how different types and transitions of land <span class="hlt">cover</span> change impact stream channel loss across a large urbanizing watershed with large <span class="hlt">areas</span> of...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhDT.......147P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhDT.......147P"><span>Vegetative soil <span class="hlt">covers</span> for hazardous waste landfills</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peace, Jerry L.</p> <p></p> <p>-prescribed technical equivalency criteria of 31.5 mm/<span class="hlt">year</span> and 1 x 10-7 cm/second for net annual percolation and average flux, respectively. Increasing <span class="hlt">cover</span> thickness to 1.2 m (4 ft) or 1.5 m (5 ft) results in limited additional improvement in <span class="hlt">cover</span> performance. Under historical climatic conditions, net annual percolation and average flux through a 1 m (3 ft) <span class="hlt">cover</span> is directed upward at 0.28 mm/<span class="hlt">year</span> and 9.03 x 10-10 cm/second, respectively, for a soil <span class="hlt">cover</span> with vegetation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED051683.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED051683.pdf"><span>NDEA Language and <span class="hlt">Area</span> Centers: A Report on the First Five <span class="hlt">Years</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bigelow, Donald N.; Legters, Lyman H.</p> <p></p> <p>This report documents a broad category of information concerning the first five <span class="hlt">years</span> of the National Defense Education Act of 1958. Included in the report are the following chapters: (1) concept and practice in non-western <span class="hlt">area</span> studies, (2) the language and <span class="hlt">area</span> centers program, (3) impact of the centers program, (4) outlook for the program, and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3652B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3652B"><span>The current evolution of complex high mountain debris-<span class="hlt">covered</span> glacier systems and its relation with ground ice nature and distribution: the case of Rognes and Pierre Ronde <span class="hlt">area</span> (Mont-Blanc range, France).</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosson, Jean-Baptiste; Lambiel, Christophe</p> <p>2014-05-01</p> <p>The current climate forcing, through negative glacier mass balance and rockfall intensification, is leading to the rapid burring of many small glacier systems. When the debris mantle exceeds some centimeters of thickness, the climate control on ice melt is mitigated and delayed. As well, debris-<span class="hlt">covered</span> glaciers respond to climate forcing in a complex way. This situation is emphasised in high mountain environments, where topo-climatic conditions, such as cold temperatures, amount of solid precipitation, duration of snow <span class="hlt">cover</span>, nebulosity or shadow effect of rockwalls, limit the influence of rising air temperatures in the ground. Beside, due to Holocene climate history, glacier-permafrost interactions are not rare within the periglacial belt. Glacier recurrence may have removed and assimilated former ice-cemented sediments, the negative mass balance may have led to the formation of ice-cored rock glaciers and neopermafrost may have formed recently under cold climate conditions. Hence, in addition to sedimentary ice, high mountain debris-<span class="hlt">covered</span> glacier systems can contain interstitial magmatic ice. Especially because of their position at the top of alpine cascade systems and of the amount of water and (unconsolidated) sediment involved, it is important to understand and anticipate the evolution of these complex landforms. Due to the continuous and thick debris mantle and to the common existence of dead ice in deglaciated <span class="hlt">areas</span>, the current extent of debris-<span class="hlt">covered</span> glacier can be difficult to point out. Thus, the whole system, according to Little Ice Age (LIA) extent, has sometimes to be investigated to understand the current response of glacier systems to the climate warming. In this context, two neighbouring sites, Rognes and Pierre Ronde systems (45°51'38''N, 6°48'40''E; 2600-3100m a.s.l), have been studied since 2011. These sites are almost completely debris-<span class="hlt">covered</span> and only few ice outcrops in the upper slopes still witness the existence of former glaciers</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40495','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40495"><span>Guide for In-Place Treatment of <span class="hlt">Covered</span> and Timber Bridges</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Stan Lebow; Grant Kirker; Robert White; Terry Amburgey; H. Michael Barnes; Michael Sanders; Jeff Morrell</p> <p>2012-01-01</p> <p>Historic <span class="hlt">covered</span> bridges and current timber bridges can be vulnerable to damage from biodeterioration or fire. This guide describes procedures for selecting and applying in-place treatments to prevent or arrest these forms of degradation. Vulnerable <span class="hlt">areas</span> for biodeterioration in <span class="hlt">covered</span> bridges include members contacting abutments, members near the ends of bridges...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15325873','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15325873"><span>Evaluation of landscape <span class="hlt">coverings</span> to reduce soil lead hazards in urban residential yards: The Safer Yards Project.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Binns, Helen J; Gray, Kimberly A; Chen, Tianyue; Finster, Mary E; Peneff, Nicholas; Schaefer, Peter; Ovsey, Victor; Fernandes, Joyce; Brown, Mavis; Dunlap, Barbara</p> <p>2004-10-01</p> <p>This study was designed primarily to evaluate the effectiveness of landscape <span class="hlt">coverings</span> to reduce the potential for exposure to lead-contaminated soil in an urban neighborhood. Residential properties were randomized in to three groups: application of ground <span class="hlt">coverings</span>/barriers plus placement of a raised garden bed (RB), application of ground <span class="hlt">coverings</span>/barriers only (no raised bed, NRB), and control. Outcomes evaluated soil lead concentration (employing a weighting method to assess acute hazard soil lead [<span class="hlt">areas</span> not fully <span class="hlt">covered</span>] and potential hazard soil lead [all soil surfaces regardless of <span class="hlt">covering</span> status]), density of landscape <span class="hlt">coverings</span> (6 = heavy, > 90% <span class="hlt">covered</span>; 1 = bare, < 10% <span class="hlt">covered</span>), lead tracked onto carpeted entryway floor mats, and entryway floor dust lead loadings. Over 1 <span class="hlt">year</span>, the intervention groups had significantly reduced acute hazard soil lead concentration (median change: RB, -478 ppm; NRB, -698 ppm; control, +52 ppm; Kruskal-Wallis, P = 0.02), enhanced landscape <span class="hlt">coverings</span> (mean change in score: RB, +0.6; NRB, +1.5; control, -0.6; ANOVA, P < 0.001), and a 50% decrease in lead tracked onto the floor mats. The potential hazard soil lead concentration and the entryway floor dust lead loading did not change significantly. Techniques evaluated by this study are feasible for use by property owners but will require continued maintenance. The long-term sustainability of the method needs further examination.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030064042&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dland%2Buse%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030064042&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dland%2Buse%2Bchange"><span>Land Use and Land <span class="hlt">Cover</span> Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lo, C. P.; Quattrochi, Dale A.</p> <p>2003-01-01</p> <p>Land use and land <span class="hlt">cover</span> maps of Atlanta Metropolitan <span class="hlt">Area</span> in Georgia were produced from Landsat MSS and TM images for 1973,1979,1983,1987,1992, and 1997, spanning a period of 25 <span class="hlt">years</span>. Dramatic changes in land use and land <span class="hlt">cover</span> have occurred with loss of forest and cropland to urban use. In particular, low-density urban use, which includes largely residential use, has increased by over 119% between 1973 and 1997. These land use and land <span class="hlt">cover</span> changes have drastically altered the land surface characteristics. An analysis of Landsat images revealed an increase in surface temperature and a decline in NDVI from 1973 to 1997. These changes have forced the development of a significant urban heat island effect and an increase in ground level ozone production to such an extent, that Atlanta has violated EPA's ozone level standard in recent <span class="hlt">years</span>. The urban heat island initiated precipitation events that were identified between 1996 and 2000 tended to occur near high-density urban <span class="hlt">areas</span> but outside the I-285 loop that traverses around the Central Business District, i.e. not in the inner city <span class="hlt">area</span>, but some in close proximity to the highways. The health implications were investigated by comparing the spatial patterns of volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions, the two ingredients that form ozone by reacting with sunlight, with those of rates of cardiovascular and chronic lower respiratory diseases. A clear core-periphery pattern was revealed for both VOC and NOx emissions, but the spatial pattern was more random in the cases of rates of cardiovascular and chronic lower respiratory diseases. Clearly, factors other than ozone pollution were involved in explaining the rates of these diseases. Further research is therefore needed to understand the health geography and its relationship to land use and land <span class="hlt">cover</span> change as well as urban heat island effect. This paper illustrates the usefulness of a remote sensing approach for this purpose.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23624425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23624425"><span>Using high-resolution radar images to determine vegetation <span class="hlt">cover</span> for soil erosion assessments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bargiel, D; Herrmann, S; Jadczyszyn, J</p> <p>2013-07-30</p> <p>Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk <span class="hlt">areas</span> for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation <span class="hlt">cover</span> and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation <span class="hlt">cover</span> data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and <span class="hlt">year</span> was assessed to occur on 13.6% (646 ha) of the agricultural <span class="hlt">areas</span> within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and <span class="hlt">year</span>. Such a spatial information about <span class="hlt">areas</span> of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.B24B..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.B24B..07B"><span>Cropland <span class="hlt">Area</span> Extraction in China with Multi-Temporal MODIS Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagan, H.; Baruah, P. J.; Wang, Q.; Yasuoka, Y.</p> <p>2007-12-01</p> <p>: extracting the <span class="hlt">area</span> of cropland in China is very important for agricultural management, land degradation and ecosystem assessment. In this study we investigate the potential and the methodology for the cropland <span class="hlt">area</span> extraction using multi-temporal MODIS EVI data and some ancillary data. A 16-day composite EVI time-series data for 2003 (6 March 2003 - 2 December 2003) with a spatial resolution of 500 m, and the ancillary data included Land-use GIS data, Landsat TM/ETM, ASTER data, and county-level cultivated land statistical data of <span class="hlt">year</span> 2000. The Self-Organizing Map (SOM) neural network classification algorithm was applied to the EVI data set. To focus on agricultural and desertification, we designed 9 land-<span class="hlt">cover</span> types: 1) water, 2) woodland, 3) grassland, 4) dry cropland, 5) sandy, 6) paddy, 7) wetland, 8) urban/bare, and 9) snow/ice. The overall classification accuracy was 85% with a kappa coefficient of 0.84. The EVI data sets were sensitive and performed well in distinguishing the majority of land <span class="hlt">cover</span> types. We also used county-level cultivated land statistical data from the <span class="hlt">year</span> 2000 to evaluate the accuracy of the agricultural <span class="hlt">area</span> from classification results, and found that the correlation coefficient was high in most counties. The result of this study shows that the methodology used in this study is, in general, feasible for cropland extraction in China. Keywords: MODIS, EVI, SOM, Cropland, land <span class="hlt">cover</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191099','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191099"><span>Combining NLCD and MODIS to create a land <span class="hlt">cover</span>-albedo database for the continental United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wickham, J.; Barnes, Christopher A.; Nash, M.S.; Wade, T.G.</p> <p>2015-01-01</p> <p>Land surface albedo is an essential climate variable that is tightly linked to land <span class="hlt">cover</span>, such that specific land <span class="hlt">cover</span> classes (e.g., deciduous broadleaf forest, cropland) have characteristic albedos. Despite the normative of land-<span class="hlt">cover</span> class specific albedos, there is considerable variability in albedo within a land <span class="hlt">cover</span> class. The National Land <span class="hlt">Cover</span> Database (NLCD) and the Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product were combined to produce a long-term (14 <span class="hlt">years</span>) integrated land <span class="hlt">cover</span>-albedo database for the continental United States that can be used to examine the temporal behavior of albedo as a function of land <span class="hlt">cover</span>. The integration identifies <span class="hlt">areas</span> of homogeneous land <span class="hlt">cover</span> at the nominal spatial resolution of the MODIS (MCD43A) albedo product (500 m × 500 m) from the NLCD product (30 m × 30 m), and provides an albedo data record per 500 m × 500 m pixel for 14 of the 16 NLCD land <span class="hlt">cover</span> classes. Individual homogeneous land <span class="hlt">cover</span> pixels have up to 605 albedo observations, and 75% of the pixels have at least 319 MODIS albedo observations (≥ 50% of the maximum possible number of observations) for the study period (2000–2013). We demonstrated the utility of the database by conducting a multivariate analysis of variance of albedo for each NLCD land <span class="hlt">cover</span> class, showing that locational (pixel-to-pixel) and inter-annual variability were significant factors in addition to expected seasonal (intra-annual) and geographic (latitudinal) effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.7144E..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.7144E..07W"><span>Land use/land <span class="hlt">cover</span> change geo-informative Tupu of Nujiang River in Northwest Yunnan Province</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Jin-liang; Yang, Yue-yuan; Huang, You-ju; Fu, Lei; Rao, Qing</p> <p>2008-10-01</p> <p> increased from 1974 to 2004, the increased <span class="hlt">area</span> of shrubbery land was the greatest, while the <span class="hlt">area</span> of forest, artificial forest, waters, glacier and snow <span class="hlt">covered</span> land decreased. The biggest decreased <span class="hlt">area</span> was forest land. The biggest LUCC was the transformation from forest land to shrubbery land, the transformation from forest land to rangeland and agriculture land was the second. The main <span class="hlt">area</span> of LUCC located at Nujiang River valley, between 2200-3700m of the east slope in the Gaoligong Mountain and 2800-3900m of the west slope of the Biluo Snow Mountain. From the valley to peak of mountain, the main land use type was transited from built-up land, agricultures land, artificial forest land to natural forest, shrubbery and grass land. The natural forest was the main land in the past 30 <span class="hlt">years</span>. The main driving forces were the increase of population of local <span class="hlt">area</span>, the governmental policies (Conversion of Farmland to Forests and Grass Land Projects, etc.) and urbanization. In order to accelerate the sustainable development of society economy and the ecological environment protection in this ecological fragile zone, strict management should be adopted to adjust the behaviors of human beings. Finally, VCM (variable clumping method) curve had been used to analyses the internal spatial distribution difference of land-use/land <span class="hlt">cover</span> which shown that the landscape fragmentation was increased, the number of patches was added, the distance between patches was diminished during the past thirty <span class="hlt">years</span> (1974-2004).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPRS..129..151M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPRS..129..151M"><span>Exploring diversity in ensemble classification: Applications in large <span class="hlt">area</span> land <span class="hlt">cover</span> mapping</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mellor, Andrew; Boukir, Samia</p> <p>2017-07-01</p> <p>Ensemble classifiers, such as random forests, are now commonly applied in the field of remote sensing, and have been shown to perform better than single classifier systems, resulting in reduced generalisation error. Diversity across the members of ensemble classifiers is known to have a strong influence on classification performance - whereby classifier errors are uncorrelated and more uniformly distributed across ensemble members. The relationship between ensemble diversity and classification performance has not yet been fully explored in the fields of information science and machine learning and has never been examined in the field of remote sensing. This study is a novel exploration of ensemble diversity and its link to classification performance, applied to a multi-class canopy <span class="hlt">cover</span> classification problem using random forests and multisource remote sensing and ancillary GIS data, across seven million hectares of diverse dry-sclerophyll dominated public forests in Victoria Australia. A particular emphasis is placed on analysing the relationship between ensemble diversity and ensemble margin - two key concepts in ensemble learning. The main novelty of our work is on boosting diversity by emphasizing the contribution of lower margin instances used in the learning process. Exploring the influence of tree pruning on diversity is also a new empirical analysis that contributes to a better understanding of ensemble performance. Results reveal insights into the trade-off between ensemble classification accuracy and diversity, and through the ensemble margin, demonstrate how inducing diversity by targeting lower margin training samples is a means of achieving better classifier performance for more difficult or rarer classes and reducing information redundancy in classification problems. Our findings inform strategies for collecting training data and designing and parameterising ensemble classifiers, such as random forests. This is particularly important in large <span class="hlt">area</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1159180','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1159180"><span>Consideration of liners and <span class="hlt">covers</span> in performance assessments</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Phifer, Mark A.; Seitz, Robert R.; Suttora, Linda C.</p> <p>2014-09-18</p> <p>On-site disposal cells are in use and being considered at several United States Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated <span class="hlt">areas</span> and facilities. These disposal cells are typically regulated by States and/or the U.S. Environmental Protection Agency under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management due to the radioactive waste. The USDOE-Environmental Management Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnelmore » associated with these CERCLA disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to CERCLA risk assessments and DOE Order 435.1 performance assessments in support of a Record of Decision and Disposal Authorization Statement, respectively. One of the issues considered by the working group, which is addressed in this report, was how to appropriately consider the performance of <span class="hlt">covers</span> and liners/leachate collections systems in the context of a DOE Order 435.1 performance assessment (PA). This same information may be appropriate for consideration within CERCLA risk assessments for these facilities. These OSDCs are generally developed to meet hazardous waste (HW) disposal design standards under the Resource Conservation and Recovery Act (RCRA) as well as the DOE Order 435.1 performance based standards for disposal of radioactive waste. To meet the standards for HW, the facilities typically include engineered <span class="hlt">covers</span> and liner/leachate collection systems. Thus, when considering such facilities in the context of a DOE Order 435.1 PA, there is a need to address the evolution of performance of <span class="hlt">covers</span> and liner/leachate collection systems in the context of meeting a performance standard considering</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7213G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7213G"><span>Has anthropogenic land-<span class="hlt">cover</span> change been a significant climate forcing in the past? - An assessment for the Baltic Sea catchment <span class="hlt">area</span> based on a literature review</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaillard, Marie-Jose; Kaplan, Jed O.; Kleinen, Thomas; Brigitte Nielsen, Anne; Poska, Anneli; Samuelsson, Patrick; Strandberg, Gustav; Trondman, Anna-Kari</p> <p>2015-04-01</p> <p>We reviewed the recent published scientific literature on land <span class="hlt">cover</span>-climate interactions at the global and regional spatial scales with the aim to assess whether it is convincingly demonstrated that anthropogenic land-<span class="hlt">cover</span> change (ALCC) has been (over the last centuries and millennia) a significant climate forcing at the global scale, and more specifically at the scale of the Baltic Sea catchment <span class="hlt">area</span>. The conclusions from this review are as follows: i) anthropogenic land-<span class="hlt">cover</span> change (ALCC) is one of the few climate forcings for which the net direction of the climate response in the past is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects, and to the biogeochemical vs biogeophysical effects; ii) there is no indication that deforestation in the Baltic Sea <span class="hlt">area</span> since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback; iii) several model studies suggest that boreal reforestation might not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes; iv) palaeoecological studies indicate a major transformation of the landscape by anthropogenic activities in the southern zone of the study region occurring between 6000 and 3000/2500 calendar <span class="hlt">years</span> before present (cal. BP) (1) ; v) the only modelling study so far of the biogeophysical effects of past ALCCs on regional climate in Europe suggests that a deforestation of the magnitude of that reconstructed for the past (between 6000 and 200 cal BP) can produce changes in winter and summer temperatures of +/- 1°, the sign of the change depending on the season and the region (2). Thus, if ALCC and their biogeophysical effects did matter in the past, they should matter today and in the future. A still prevailing idea is that planting trees will mitigate climate warming through biogeochemical effects. Therefore, there is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4949480','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4949480"><span>Evidence of extensive reef development and high coral <span class="hlt">cover</span> in nearshore environments: implications for understanding coral adaptation in turbid settings</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Morgan, Kyle M.; Perry, Chris T.; Smithers, Scott G.; Johnson, Jamie A.; Daniell, James J.</p> <p>2016-01-01</p> <p>Mean coral <span class="hlt">cover</span> has reportedly declined by over 15% during the last 30 <span class="hlt">years</span> across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore <span class="hlt">areas</span> (<10 m depth), and show that coral <span class="hlt">cover</span> on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor <span class="hlt">area</span>, 11% had distinct reef or coral community <span class="hlt">cover</span>. Although the survey <span class="hlt">area</span> represents a small subset of the nearshore zone (15.5 km2), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral <span class="hlt">cover</span> declines with distance from the coast (R2 = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances. PMID:27432782</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/26630','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/26630"><span>Variation in shrub and herb <span class="hlt">cover</span> and production on ungrazed pine and sagebrush sites in eastern Oregon: a 27-<span class="hlt">year</span> photomonitoring study.</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Frederick C. Hall</p> <p>2007-01-01</p> <p>Study objectives were to evaluate <span class="hlt">yearly</span> fluctuations in herbage canopy <span class="hlt">cover</span> and production to aid in defining characteristics of range condition guides. Sites are located in the forested Blue Mountains of central Oregon. They were selected from those used to develop range condition guides where soil, topographic, and vegetation parameters were measured as a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780015591','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780015591"><span>Land use and land <span class="hlt">cover</span> mapping: City of Palm Bay, Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barile, D. D.; Pierce, R.</p> <p>1977-01-01</p> <p>Two different computer systems were compared for use in making land use and land <span class="hlt">cover</span> maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban <span class="hlt">areas</span> were unclassified. The General Electric Image 100 produced a map depicting eight land <span class="hlt">cover</span> categories classifying 68 percent of the total <span class="hlt">area</span>. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test <span class="hlt">areas</span> compared and Image 100 was in agreement 70 percent and 80 percent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70045526','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70045526"><span>Ecosystem services from converted land: the importance of tree <span class="hlt">cover</span> in Amazonian pastures</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barrett, Kirsten; Valentim, Judson; Turner, B. L.</p> <p>2013-01-01</p> <p>Deforestation is responsible for a substantial fraction of global carbon emissions and changes in surface energy budgets that affect climate. Deforestation losses include wildlife and human habitat, and myriad forest products on which rural and urban societies depend for food, fiber, fuel, fresh water, medicine, and recreation. Ecosystem services gained in the transition from forests to pasture and croplands, however, are often ignored in assessments of the impact of land <span class="hlt">cover</span> change. The role of converted lands in tropical <span class="hlt">areas</span> in terms of carbon uptake and storage is largely unknown. Pastures represent the fastest-growing form of converted land use in the tropics, even in some <span class="hlt">areas</span> of rapid urban expansion. Tree biomass stored in these <span class="hlt">areas</span> spans a broad range, depending on tree <span class="hlt">cover</span>. Trees in pasture increase carbon storage, provide shade for cattle, and increase productivity of forage material. As a result, increasing fractional tree <span class="hlt">cover</span> can provide benefits land managers as well as important ecosystem services such as reducing conversion pressure on forests adjacent to pastures. This study presents an estimation of fractional tree <span class="hlt">cover</span> in pasture in a dynamic region on the verge of large-scale land use change. An appropriate sampling interval is established for similar studies, one that balances the need for independent samples of sufficient number to characterize a pasture in terms of fractional tree <span class="hlt">cover</span>. This information represents a useful policy tool for government organizations and NGOs interested in encouraging ecosystem services on converted lands. Using high spatial resolution remotely sensed imagery, fractional tree <span class="hlt">cover</span> in pasture is quantified for the municipality of Rio Branco, Brazil. A semivariogram and devolving spatial resolution are employed to determine the coarsest sampling interval that may be used, minimizing effects of spatial autocorrelation. The coarsest sampling interval that minimizes spatial dependence was about 22 m. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26291719','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26291719"><span>Students' unchanging smoking habits in urban and rural <span class="hlt">areas</span> in the last 15 <span class="hlt">years</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akca, Gulfer; Guner, Sukru Nail; Akca, Unal; Kilic, Mehtap; Sancak, Recep; Ozturk, Fadil</p> <p>2016-04-01</p> <p>Smoking is the main preventable public health problem particularly for youth worldwide. The aim of the present study was to determine the prevalence of smoking habits among students at secondary and high schools, and to compare the findings with those of a study conducted 15 <span class="hlt">years</span> ago in the same <span class="hlt">area</span>. In this cross-sectional study 6212 students (51.2% female; 48.8% male) were selected randomly from rural and urban <span class="hlt">areas</span> in Samsun. All students completed a face-to-face questionnaire. The overall prevalence of smoking was 13.0% (male students, 18.1%; female students, 8.2%). The mean starting age of smoking was 14.1 ± 1.5 <span class="hlt">years</span>. Prevalence of smoking was 15.7% in urban <span class="hlt">areas</span> and 8.1% in rural <span class="hlt">areas</span>. The most important factors for starting smoking were social group and families. Compared with a study conducted 15 <span class="hlt">years</span> previously in the same <span class="hlt">area</span> for male students, smoking prevalence was increased in rural, but decreased in urban <span class="hlt">areas</span>. Smoking prevalence in students in Samsun was similar to that in a study conducted 15 <span class="hlt">years</span> previously. It is important to use anti-smoking campaigns directly targeted at teenager and they should be fully informed of the harmful effects of smoking. © 2015 Japan Pediatric Society.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28961243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28961243"><span>Projecting range-wide sun bear population trends using tree <span class="hlt">cover</span> and camera-trap bycatch data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scotson, Lorraine; Fredriksson, Gabriella; Ngoprasert, Dusit; Wong, Wai-Ming; Fieberg, John</p> <p>2017-01-01</p> <p>Monitoring population trends of threatened species requires standardized techniques that can be applied over broad <span class="hlt">areas</span> and repeated through time. Sun bears Helarctos malayanus are a forest dependent tropical bear found throughout most of Southeast Asia. Previous estimates of global population trends have relied on expert opinion and cannot be systematically replicated. We combined data from 1,463 camera traps within 31 field sites across sun bear range to model the relationship between photo catch rates of sun bears and tree <span class="hlt">cover</span>. Sun bears were detected in all levels of tree <span class="hlt">cover</span> above 20%, and the probability of presence was positively associated with the amount of tree <span class="hlt">cover</span> within a 6-km2 buffer of the camera traps. We used the relationship between catch rates and tree <span class="hlt">cover</span> across space to infer temporal trends in sun bear abundance in response to tree <span class="hlt">cover</span> loss at country and global-scales. Our model-based projections based on this "space for time" substitution suggested that sun bear population declines associated with tree <span class="hlt">cover</span> loss between 2000-2014 in mainland southeast Asia were ~9%, with declines highest in Cambodia and lowest in Myanmar. During the same period, sun bear populations in insular southeast Asia (Malaysia, Indonesia and Brunei) were projected to have declined at a much higher rate (22%). Cast forward over 30-<span class="hlt">years</span>, from the <span class="hlt">year</span> 2000, by assuming a constant rate of change in tree <span class="hlt">cover</span>, we projected population declines in the insular region that surpassed 50%, meeting the IUCN criteria for endangered if sun bears were listed on the population level. Although this approach requires several assumptions, most notably that trends in abundance across space can be used to infer temporal trends, population projections using remotely sensed tree <span class="hlt">cover</span> data may serve as a useful alternative (or supplement) to expert opinion. The advantages of this approach is that it is objective, data-driven, repeatable, and it requires that all assumptions</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070017895','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070017895"><span>Abrupt Decline in the Arctic Winter Sea Ice <span class="hlt">Cover</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2007-01-01</p> <p>Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous <span class="hlt">years</span> starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice <span class="hlt">area</span>), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice <span class="hlt">cover</span> towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice <span class="hlt">cover</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730011671','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730011671"><span>Survey of the seasonal snow <span class="hlt">cover</span> in Alaska</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weller, G. E. (Principal Investigator)</p> <p>1973-01-01</p> <p>The author has identified the following significant results. ERTS-1 data are used together with synoptic-climatological data to describe the buildup of the seasonal snow and ice <span class="hlt">covers</span> in a north-south transect of a total length of about 1250 km across Alaska. It has been demonstrated that the ERTS-1 data may, under favorable conditions, be used for accurate mapping of snow lines in high mountain regions. The analysis shows that especially in the Brooks Range and on the Arctic Slope where snow <span class="hlt">covers</span> generally are relatively thin, the ERTS-1 scenes can be useful for qualitative descriptions of the snow and ice <span class="hlt">covers</span> over wide expanses. The onset and retreat of the seasonal snow <span class="hlt">cover</span> are sensitive indicators of climatic fluctuations and the ERTS-1 data offers a possibility to record variations of the snow and ice buildup from <span class="hlt">year</span> to <span class="hlt">year</span> in a practical and informative way, which should be especially useful for studies of climatic trends. This is particularly true in Alaska where the density of the station network is too low to permit interpolations between the stations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2580191','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2580191"><span>A Hospital Local <span class="hlt">Area</span> Communication Network—The First <span class="hlt">Year</span>'s Experience</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Simborg, D. W.; Chadwick, M.; Whiting-O'Keefe, Q. E.; Tolchin, S. G.; Stewart, R. L.; Kahn, S. A.; Bergan, E. S.; Gafke, G. P.</p> <p>1982-01-01</p> <p>A local <span class="hlt">area</span> communications network has been implemented at the University of California, San Francisco Hospital to integrate major components of the hospital's information system. This microprocessor-based network technology was developed by The Applied Physics Laboratory of the Johns Hopkins University. The first <span class="hlt">year</span>'s experience has demonstrated the basic feasibility of this technology in simplifying the integration of diverse hardware and software systems. Four minicomputer-based UCSF systems now use the network to synchronize key patient identification and registration information among the systems. Clinical uses of the network will begin during the second <span class="hlt">year</span> of the project.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=self+AND+management+AND+skill&pg=2&id=EJ1021187','ERIC'); return false;" href="https://eric.ed.gov/?q=self+AND+management+AND+skill&pg=2&id=EJ1021187"><span><span class="hlt">Cover</span>-Copy-Compare: A Method for Enhancing Evidence-Based Instruction</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Konrad, Moira; Joseph, Laurice M.</p> <p>2014-01-01</p> <p><span class="hlt">Cover</span>-copy-compare is a practical, low-cost, effective strategy for teachers to add to their repertoires of evidence-based practices. This article describes the <span class="hlt">cover</span>-copy-compare strategy and how it can be applied to teach both self-management and basic academic skills. A variety of ways this strategy can be used across content <span class="hlt">areas</span> are…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MAP...129..395C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MAP...129..395C"><span>Recent land <span class="hlt">cover</span> changes and sensitivity of the model simulations to various land <span class="hlt">cover</span> datasets for China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Liang; Ma, Zhuguo; Mahmood, Rezaul; Zhao, Tianbao; Li, Zhenhua; Li, Yanping</p> <p>2017-08-01</p> <p>Reliable land <span class="hlt">cover</span> data are important for improving numerical simulation by regional climate model, because the land surface properties directly affect climate simulation by partitioning of energy, water and momentum fluxes and by determining temperature and moisture at the interface between the land surface and atmosphere. China has experienced significant land <span class="hlt">cover</span> change in recent decades and accurate representation of these changes is, hence, essential. In this study, we used a climate model to examine the changes experienced in the regional climate because of the different land <span class="hlt">cover</span> data in recent decades. Three sets of experiments are performed using the same settings, except for the land use/<span class="hlt">cover</span> (LC) data for the <span class="hlt">years</span> 1990, 2000, 2009, and the model default LC data. Three warm season periods are selected, which represented a wet (1998), normal (2000) and a dry <span class="hlt">year</span> (2011) for China in each set of experiment. The results show that all three sets of land <span class="hlt">cover</span> experiments simulate a warm bias relative to the control with default LC data for near-surface temperature in summertime in most parts of China. It is especially noticeable in the southwest China and south of the Yangtze River, where significant changes of LC occurred. Deforestation in southwest China and to the south of Yangtze River in the experiment cases may have contributed to the negative precipitation bias relative to the control cases. Large LC changes in northwestern Tibetan Plateau for 2000 and 2009 datasets are also associated with changes in surface temperature, precipitation, and heat fluxes. Wind anomalies and energy budget changes are consistent with the precipitation and temperature changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013HESSD..1014229Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013HESSD..1014229Y"><span>Assessing winter <span class="hlt">cover</span> crop nutrient uptake efficiency using a water quality simulation model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.</p> <p>2013-11-01</p> <p>Winter <span class="hlt">cover</span> crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter <span class="hlt">cover</span> crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter <span class="hlt">cover</span> crop establishment. The objective of this study was to assess the long-term effect of planting winter <span class="hlt">cover</span> crops at the watershed scale and to identify critical source <span class="hlt">areas</span> of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter <span class="hlt">cover</span> crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991-2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter <span class="hlt">cover</span> crops planted and to investigate how nitrate loading could change with different winter <span class="hlt">cover</span> crop planting scenarios, including different species, planting times, and implementation <span class="hlt">areas</span>. The results indicate that winter <span class="hlt">cover</span> crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter <span class="hlt">cover</span> crops, annual nitrate loading was approximately 14 kg ha-1, but it decreased to 4.6-10.1 kg ha-1 with winter <span class="hlt">cover</span> crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter <span class="hlt">cover</span> crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha-1 when compared to late planting scenarios. The effectiveness of <span class="hlt">cover</span> cropping increased with increasing extent of winter <span class="hlt">cover</span> crop implementation. Agricultural fields with well-drained soils and those</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70136386','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70136386"><span>Assessing winter <span class="hlt">cover</span> crop nutrient uptake efficiency using a water quality simulation model</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.</p> <p>2013-01-01</p> <p>Winter <span class="hlt">cover</span> crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter <span class="hlt">cover</span> crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter <span class="hlt">cover</span> crop establishment. The objective of this study was to assess the long-term effect of planting winter <span class="hlt">cover</span> crops at the watershed scale and to identify critical source <span class="hlt">areas</span> of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter <span class="hlt">cover</span> crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter <span class="hlt">cover</span> crops planted and to investigate how nitrate loading could change with different winter <span class="hlt">cover</span> crop planting scenarios, including different species, planting times, and implementation <span class="hlt">areas</span>. The results indicate that winter <span class="hlt">cover</span> crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter <span class="hlt">cover</span> crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter <span class="hlt">cover</span> crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter <span class="hlt">cover</span> crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of <span class="hlt">cover</span> cropping increased with increasing extent of winter <span class="hlt">cover</span> crop implementation. Agricultural fields with well-drained soils</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1989/0128/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1989/0128/report.pdf"><span>Alaska Interim Land <span class="hlt">Cover</span> Mapping Program; final report</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fitzpatrick-Lins, Katherine; Doughty, E.F.; Shasby, Mark; Benjamin, Susan</p> <p>1989-01-01</p> <p>In 1985, the U.S. Geological Survey initiated a research project to develop an interim land <span class="hlt">cover</span> data base for Alaska as an alternative to the nationwide Land Use and Land <span class="hlt">Cover</span> Mapping Program. The Alaska Interim Land <span class="hlt">Cover</span> Mapping Program was subsequently created to develop methods for producing a series of land <span class="hlt">cover</span> maps that utilized the existing Landsat digital land <span class="hlt">cover</span> classifications produced by and for the major land management agencies for mapping the vegetation of Alaska. The program was successful in producing digital land <span class="hlt">cover</span> classifications and statistical summaries using a common statewide classification and in reformatting these data to produce l:250,000-scale quadrangle-based maps directly from the Scitex laser plotter. A Federal and State agency review of these products found considerable user support for the maps. Presently the Geological Survey is committed to digital processing of six to eight quadrangles each <span class="hlt">year</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..108c2057H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..108c2057H"><span>Study on Resources Assessment of Coal Seams <span class="hlt">covered</span> by Long-Distance Oil & Gas Pipelines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang</p> <p>2018-01-01</p> <p>The assessment of mineral resources <span class="hlt">covered</span> by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources <span class="hlt">covered</span> by linear projects are introduced. The <span class="hlt">areas</span> <span class="hlt">covered</span> by multiple coal seams are determined according to the linear projection method, and the resources <span class="hlt">covered</span> by pipelines directly and indirectly are estimated by using <span class="hlt">area</span> segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B8..789A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B8..789A"><span>Urban Land <span class="hlt">Cover</span>/use Change Detection Using High Resolution SPOT 5 and SPOT 6 Images and Urban Atlas Nomenclature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akay, S. S.; Sertel, E.</p> <p>2016-06-01</p> <p>Urban land <span class="hlt">cover</span>/use changes like urbanization and urban sprawl have been impacting the urban ecosystems significantly therefore determination of urban land <span class="hlt">cover</span>/use changes is an important task to understand trends and status of urban ecosystems, to support urban planning and to aid decision-making for urban-based projects. High resolution satellite images could be used to accurately, periodically and quickly map urban land <span class="hlt">cover</span>/use and their changes by time. This paper aims to determine urban land <span class="hlt">cover</span>/use changes in Gaziantep city centre between 2010 and 2105 using object based images analysis and high resolution SPOT 5 and SPOT 6 images. 2.5 m SPOT 5 image obtained in 5th of June 2010 and 1.5 m SPOT 6 image obtained in 7th of July 2015 were used in this research to precisely determine land changes in five-<span class="hlt">year</span> period. In addition to satellite images, various ancillary data namely Normalized Difference Vegetation Index (NDVI), Difference Water Index (NDWI) maps, cadastral maps, OpenStreetMaps, road maps and Land <span class="hlt">Cover</span> maps, were integrated into the classification process to produce high accuracy urban land <span class="hlt">cover</span>/use maps for these two <span class="hlt">years</span>. Both images were geometrically corrected to fulfil the 1/10,000 scale geometric accuracy. Decision tree based object oriented classification was applied to identify twenty different urban land <span class="hlt">cover</span>/use classes defined in European Urban Atlas project. Not only satellite images and satellite image-derived indices but also different thematic maps were integrated into decision tree analysis to create rule sets for accurate mapping of each class. Rule sets of each satellite image for the object based classification involves spectral, spatial and geometric parameter to automatically produce urban map of the city centre region. Total <span class="hlt">area</span> of each class per related <span class="hlt">year</span> and their changes in five-<span class="hlt">year</span> period were determined and change trend in terms of class transformation were presented. Classification accuracy assessment was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrICA...1...23C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrICA...1...23C"><span>Towards Seamless Validation of Land <span class="hlt">Cover</span> Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chuprikova, Ekaterina; Liebel, Lukas; Meng, Liqiu</p> <p>2018-05-01</p> <p>This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty patterns associated with the fusion of various land <span class="hlt">cover</span> data sets including GlobeLand30, CORINE (CLC2006, Germany) and land <span class="hlt">cover</span> data derived from Volunteered Geographic Information (VGI) such as Open Street Map (OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. Such an endeavor aims to pave a way towards a seamless validation of global land <span class="hlt">cover</span> data on the one hand and a targeted knowledge discovery in <span class="hlt">areas</span> with higher uncertainty values on the other hand.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013QSRv...79..122D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013QSRv...79..122D"><span>Reconstructing past sea ice <span class="hlt">cover</span> of the Northern Hemisphere from dinocyst assemblages: status of the approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Vernal, Anne; Rochon, André; Fréchette, Bianca; Henry, Maryse; Radi, Taoufik; Solignac, Sandrine</p> <p>2013-11-01</p> <p>Dinocysts occur in a wide range of environmental conditions, including polar <span class="hlt">areas</span>. We review here their use for the reconstruction of paleo sea ice <span class="hlt">cover</span> in such environments. In the Arctic Ocean and subarctic seas characterized by dense sea ice <span class="hlt">cover</span>, Islandinium minutum, Islandinium? cezare, Echinidinium karaense, Polykrikos sp. var. Arctic, Spiniferites elongatus-frigidus and Impagidinium pallidum are common and often occur with more cosmopolitan taxa such as Operculodinium centrocarpum sensu Wall & Dale, cyst of Pentapharsodinium dalei and Brigantedinium spp. Canonical correspondence analyses conducted on dinocyst assemblages illustrate relationships with sea surface parameters such as salinity, temperature, and sea ice <span class="hlt">cover</span>. The application of the modern analogue technique permits quantitative reconstruction of past sea ice <span class="hlt">cover</span>, which is expressed in terms of seasonal extent of sea ice <span class="hlt">cover</span> (months per <span class="hlt">year</span> with more than 50% of sea ice concentration) or mean annual sea ice concentration (in tenths). The accuracy of reconstructions or root mean square error of prediction (RMSEP) is ±1.1 over 10, which corresponds to perennial sea ice. Such an error is close to the interannual variability (standard deviation) of observed sea ice <span class="hlt">cover</span>. Mismatch between the time interval of instrumental data used as reference (1953-2000) and the time interval represented by dinocyst populations in surface sediment samples, which may <span class="hlt">cover</span> decades if not centuries, is another source of error. Despite uncertainties, dinocyst assemblages are useful for making quantitative reconstruction of seasonal sea ice <span class="hlt">cover</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://rparticle.web-p.cisti.nrc.ca/rparticle/AbstractTemplateServlet?calyLang=eng&journal=cjfas&volume=62&year=0&issue=10&msno=f05-135','USGSPUBS'); return false;" href="http://rparticle.web-p.cisti.nrc.ca/rparticle/AbstractTemplateServlet?calyLang=eng&journal=cjfas&volume=62&year=0&issue=10&msno=f05-135"><span>Reach-scale effects of riparian forest <span class="hlt">cover</span> on urban stream ecosystems</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Roy, A.H.; Faust, C.L.; Freeman, Mary C.; Meyer, J.L.</p> <p>2005-01-01</p> <p>We compared habitat and biota between paired open and forested reaches within five small streams (basin <span class="hlt">area</span> 10?20 km2) in suburban catchments (9%?49% urban land <span class="hlt">cover</span>) in the Piedmont of Georgia, USA. Stream reaches with open canopies were narrower than forested reaches (4.1 versus 5.0 m, respectively). There were no differences in habitat diversity (variation in velocity, depth, or bed particle size) between open and forested reaches. However, absence of local forest <span class="hlt">cover</span> corresponded to decreased large wood and increased algal chlorophyll a standing crop biomass. These differences in basal food resources translated into higher densities of fishes in open (9.0 individuals?m?2) versus forested (4.9 individuals?m?2) reaches, primarily attributed to higher densities of the herbivore Campostoma oligolepis. Densities of terrestrial invertebrate inputs were higher in open reaches; however, trends suggested higher biomass of terrestrial inputs in forested reaches and a corresponding higher density of terrestrial prey consumed by water column feeding fishes. Reach-scale biotic integrity (macroinvertebrates, salamanders, and fishes) was largely unaffected by differences in canopy <span class="hlt">cover</span>. In urbanizing <span class="hlt">areas</span> where catchment land <span class="hlt">cover</span> drives habitat and biotic quality, management practices that rely exclusively on forested riparian <span class="hlt">areas</span> for stream protection are unlikely to be effective at maintaining ecosystem integrity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912756L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912756L"><span>Mapping snow <span class="hlt">cover</span> using multi-source satellite data on big data platforms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lhermitte, Stef</p> <p>2017-04-01</p> <p>Snowmelt is an important and dynamically changing water resource in mountainous regions around the world. In this framework, remote sensing data of snow <span class="hlt">cover</span> data provides an essential input for hydrological models to model the water contribution from remote mountain <span class="hlt">areas</span> and to understand how this water resource might alter as a result of climate change. Traditionally, however, many of these remote sensing products show a trade-off between spatial and temporal resolution (e.g., 16-day Landsat at 30m vs. daily MODIS at 500m resolution). With the advent of Sentinel-1 and 2 and the PROBA-V 100m products this trade-off can partially be tackled by having data that corresponds more closely to the spatial and temporal variations in snow <span class="hlt">cover</span> typically observed over complex mountain <span class="hlt">areas</span>. This study provides first a quantitative analysis of the trade-offs between the state-of-the-art snow <span class="hlt">cover</span> mapping methodologies for Landsat, MODIS, PROBA-V, Sentinel-1 and 2 and applies them on big data platforms such as Google Earth Engine (GEE), RSS (ESA Research Service & Support) CloudToolbox, and the PROBA-V Mission Exploitation Platform (MEP). Second, it combines the different sensor data-cubes in one multi-sensor classification approach using newly developed spatio-temporal probability classifiers within the big data platform environments. Analysis of the spatio-temporal differences in derived snow <span class="hlt">cover</span> <span class="hlt">areas</span> from the different sensors reveals the importance of understanding the spatial and temporal scales at which variations occur. Moreover, it shows the importance of i) temporal resolution when monitoring highly dynamical properties such as snow <span class="hlt">cover</span> and of ii) differences in satellite viewing angles over complex mountain <span class="hlt">areas</span>. Finally, it highlights the potential and drawbacks of big data platforms for combining multi-source satellite data for monitoring dynamical processes such as snow <span class="hlt">cover</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...95f2005F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...95f2005F"><span>Tree-Ring Widths and Snow <span class="hlt">Cover</span> Depth in High Tauern</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falarz, Malgorzata</p> <p>2017-12-01</p> <p>The aim of the study is to examine the correlation of Norway spruce tree-ring widths and the snow <span class="hlt">cover</span> depth in the High Tauern mountains. The average standardized tree-ring widths indices for Nowary spruce posted by Bednarz and Niedzwiedz (2006) were taken into account. Increment cores were collected from 39 Norway spruces growing in the High Tauern near the upper limit of the forest at altitude of 1700-1800 m, 3 km from the meteorological station at Sonnblick. Moreover, the maximum of snow <span class="hlt">cover</span> depth in Sonnblick (3105 m a.s.l.) for each winter season in the period from 1938/39 to 1994/95 (57 winter seasons) was taken into account. The main results of the research are as follows: (1) tree-ring widths in a given <span class="hlt">year</span> does not reveal statistically significant dependency on the maximum snow <span class="hlt">cover</span> depth observed in the winter season, which ended this <span class="hlt">year</span>; (2) however, the tested relationship is statistically significant in the case of correlating of the tree-ring widths in a given <span class="hlt">year</span> with a maximum snow <span class="hlt">cover</span> depth in a season of previous <span class="hlt">year</span>. The correlation coefficient for the entire period of the study is not very high (r=0.27) but shows a statistical significance at the 0.05 level; (3) the described relationship is not stable over time. 30-<span class="hlt">year</span> moving correlations showed no significant dependencies till 1942 and after 1982 (probably due to the so-called divergence phenomenon). However, during the period of 1943-1981 the values of correlation coefficient for moving 30-<span class="hlt">year</span> periods are statistically significant and range from 0.37 to 0.45; (4) the correlation coefficient between real and calibrated (on the base of the regression equation) values of maximum snow <span class="hlt">cover</span> depth is statistically significant for calibration period and not significant for verification one; (5) due to a quite short period of statistically significant correlations and not very strict dependencies, the reconstruction of snow <span class="hlt">cover</span> on Sonnblick for the period before regular measurements</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23292371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23292371"><span>50 <span class="hlt">years</span> of optics research [Invited].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schwider, Johannes</p> <p>2013-01-01</p> <p>The 50-<span class="hlt">year</span> life span of Applied Optics <span class="hlt">covers</span> also approximately the time I have been engaged in optics. I started in 1962 [1] with the Institute for Optics and Spectroscopy, which was one of several Academy Institutes (mission statement: "theoria cum praxi," G. Leibniz) located in Berlin-Adlershof on the <span class="hlt">area</span> of the first airfield in Berlin dating back to the beginning of the 20th century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710246M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710246M"><span>Establishment of three permanent <span class="hlt">cover</span> crop seed mixtures in Hungarian vineyards</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miglécz, Tamas; Valkó, Orsolya; Donkó, Ádám; Deák, Balázs; Török, Péter; Kelemen, András; Drexler, Dóra; Tóthmérész, Béla</p> <p>2015-04-01</p> <p>In organic vineyard farming sowing high diversity <span class="hlt">cover</span> crop seed mixtures offers a great opportunity to overcome high-priority problems mitigating vineyard cultivation, such as gain erosion control, save soil fertility, improve soil microbial activity and control weeds. Furthermore, we can also improve the biodiversity and ecosystem services of vineyards. Mainly non-native or low diversity seed mixtures are used for <span class="hlt">cover</span> cropping containing some grass, grain or Fabaceae species. We studied vegetation development after sowing native high-diversity seed mixtures in four vineyards in an on farm field trial. We compared the effects of 4 treatments: (i) Biocont-Ecowin mixture (12 species), (ii) Fabaceae mixture (9 species), (iii) Grass-forb mixture (16 species) and control (no seed sowing). Study sites were located in Tokaj wine region, East Hungary. Seed mixtures were sown in March, 2012. After sowing, we recorded the percentage <span class="hlt">cover</span> of vascular plant species in the end of June 2012, 2013 and 2014 in altogether 80 permanent plots. In the first <span class="hlt">year</span> the establishment and weed control of Biocont-Ecowin and Legume seed mixture was the best. For the second <span class="hlt">year</span> in inter-rows sown with Grass-herb and Legume seed mixtures we detected decreasing weed <span class="hlt">cover</span> scores, while in inter-rows sown with Biocont-Ecowin seed mixture and in control inter-rows we detected higher weed <span class="hlt">cover</span> scores. In the third <span class="hlt">year</span> we still detected lower weed <span class="hlt">cover</span> scores in inter-rows sown with Grass-forb and Legume seed mixtures, however on several sites we also detected decreasing <span class="hlt">cover</span> of sown species. All sown species were detected in our plots during the time of the study, however some species were present only with low <span class="hlt">cover</span> scores or only in a few plots. Out of the sown species Lotus corniculatus, Medicago lupulina, Plantago lanceolata, Trifolium repens, T. pratense and Coronilla varia established the most successfully, and had high <span class="hlt">cover</span> scores on most sites even in the second and third <span class="hlt">year</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJAEO..62..224L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJAEO..62..224L"><span>Measuring land-use and land-<span class="hlt">cover</span> change using the U.S. department of agriculture's cropland data layer: Cautions and recommendations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lark, Tyler J.; Mueller, Richard M.; Johnson, David M.; Gibbs, Holly K.</p> <p>2017-10-01</p> <p>Monitoring agricultural land is important for understanding and managing food production, environmental conservation efforts, and climate change. The United States Department of Agriculture's Cropland Data Layer (CDL), an annual satellite imagery-derived land <span class="hlt">cover</span> map, has been increasingly used for this application since complete coverage of the conterminous United States became available in 2008. However, the CDL is designed and produced with the intent of mapping annual land <span class="hlt">cover</span> rather than tracking changes over time, and as a result certain precautions are needed in multi-<span class="hlt">year</span> change analyses to minimize error and misapplication. We highlight scenarios that require special considerations, suggest solutions to key challenges, and propose a set of recommended good practices and general guidelines for CDL-based land change estimation. We also characterize a problematic issue of crop <span class="hlt">area</span> underestimation bias within the CDL that needs to be accounted for and corrected when calculating changes to crop and cropland <span class="hlt">areas</span>. When used appropriately and in conjunction with related information, the CDL is a valuable and effective tool for detecting diverse trends in agriculture. By explicitly discussing the methods and techniques for post-classification measurement of land-<span class="hlt">cover</span> and land-use change using the CDL, we aim to further stimulate the discourse and continued development of suitable methodologies. Recommendations generated here are intended specifically for the CDL but may be broadly applicable to additional remotely-sensed land <span class="hlt">cover</span> datasets including the National Land <span class="hlt">Cover</span> Database (NLCD), Moderate Resolution Imaging Spectroradiometer (MODIS)-based land <span class="hlt">cover</span> products, and other regional, national, and global land <span class="hlt">cover</span> classification maps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25435154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25435154"><span>Estimating inter-annual diversity of seasonal agricultural <span class="hlt">area</span> using multi-temporal resourcesat data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sreenivas, K; Sekhar, N Seshadri; Saxena, Manoj; Paliwal, R; Pathak, S; Porwal, M C; Fyzee, M A; Rao, S V C Kameswara; Wadodkar, M; Anasuya, T; Murthy, M S R; Ravisankar, T; Dadhwal, V K</p> <p>2015-09-15</p> <p>The present study aims at analysis of spatial and temporal variability in agricultural land <span class="hlt">cover</span> during 2005-6 and 2011-12 from an ongoing program of annual land use mapping using multidate Advanced Wide Field Sensor (AWiFS) data aboard Resourcesat-1 and 2. About 640-690 multi-temporal AWiFS quadrant data products per <span class="hlt">year</span> (depending on cloud <span class="hlt">cover</span>) were co-registered and radiometrically normalized to prepare state (administrative unit) mosaics. An 18-fold classification was adopted in this project. Rule-based techniques along with maximum-likelihood algorithm were employed to deriving land <span class="hlt">cover</span> information as well as changes within agricultural land <span class="hlt">cover</span> classes. The agricultural land <span class="hlt">cover</span> classes include - kharif (June-October), rabi (November-April), zaid (April-June), <span class="hlt">area</span> sown more than once, fallow lands and plantation crops. Mean kappa accuracy of these estimates varied from 0.87 to 0.96 for various classes. Standard error of estimate has been computed for each class annually and the <span class="hlt">area</span> estimates were corrected using standard error of estimate. The corrected estimates range between 99 and 116 Mha for kharif and 77-91 Mha for rabi. The kharif, rabi and net sown <span class="hlt">area</span> were aggregated at 10 km × 10 km grid on annual basis for entire India and CV was computed at each grid cell using temporal spatially-aggregated <span class="hlt">area</span> as input. This spatial variability of agricultural land <span class="hlt">cover</span> classes was analyzed across meteorological zones, irrigated command <span class="hlt">areas</span> and administrative boundaries. The results indicate that out of various states/meteorological zones, Punjab was consistently cropped during kharif as well as rabi seasons. Out of all irrigated commands, Tawa irrigated command was consistently cropped during rabi season. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6169T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6169T"><span>Quantitative land-<span class="hlt">cover</span> change in space and time over the last 11 000 <span class="hlt">years</span> in the Baltic Sea catchment <span class="hlt">area</span> and Norway - implications for studies on vegetation-climate interactions and land-use as a forcing of climate change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trondman, Anna-Kari; Gaillard, Marie-José; Nielsen, Anne Birgitte; Shinya, Sugita; John, Birks; Anne, Bjune; Mihkel, Kangur; Per, Lagerås; Malgorzata, Latalowa; Matts, Lindbladh; Anneli, Poska; Siim, Veski</p> <p>2016-04-01</p> <p>Quantification of the effect of human-induced land-<span class="hlt">cover</span> change (land-use) on climate in the past is still a subject of debate. Although we know that both biogeochemical and biogeophysical processes between the land surface and the atmosphere due to anthropogenic land-<span class="hlt">cover</span> change lead to significant effects on climate, we still know little on the net effect of both types of processes. For instance climate modelling studies have shown that the extent of deforestation in Europe between 6k and 0.2k - as proposed by the KK scenarios of Anthropogenic Land <span class="hlt">Cover</span> Change (ALCC) of Kaplan et al (2009) - has either warming or cooling biogeophysical effects on the geographical location (Strandberg et al., 2014). Further progress in our understanding of the effects of land-use change on climate greatly depends on the availability of reliable, empirical data on past land-use changes in quantitative terms. We present here pollen-based estimates of regional vegetation <span class="hlt">cover</span> over the Holocene in the catchment of the Baltic Sea and in Norway. The regional abundance of individual plant species, genus, and groups of taxa were estimated at a 0.5k - to 0.1k - calender <span class="hlt">year</span> time resolution using 339 pollen records and the REVEALS model (Sugita, 2007). Although there are very large differences between pollen percentages and REVEALS estimates of plant <span class="hlt">cover</span> in terms of percentage values, the general trends in relative changes of the large landscape units (coniferous trees, deciduous trees, and open land) over time are comparable between the two. However, the ages obtained for the establishment of all tree taxa using a "REVEALS estimate threshold" of 1% are almost all older (by 0.5k <span class="hlt">years</span> or more) than the ages inferred earlier from pollen percentages, and the times of maximum abundances of the tree taxa, as well as the relationships trees/openland and coniferous/deciduous are different between pollen percentages and plant <span class="hlt">cover</span>. The pollen-based REVEALS <span class="hlt">cover</span> of open land confirms the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>