Sample records for years genetic studies

  1. Parental narratives about genetic testing for hearing loss: a one year follow up study.

    PubMed

    Kaimal, Girija; Steinberg, Annie G; Ennis, Sara; Harasink, Sue Moyer; Ewing, Rachel; Li, Yuelin

    2007-12-01

    Few studies examine whether and how parental attitudes towards genetic testing change over time. In this study we interviewed parents of 14 children with newly identified hearing loss at two time points: after referral to genetics and 1 year later. Qualitative analyses of parental narratives indicate that parental attitudes did not change significantly over this time. Parents who perceived genetic testing to be useful continued to value it after testing, while parents who did not perceive it as being useful for their child's future held the same view a year later. The only parents who changed their views regarding the usefulness of genetic testing for hearing loss were those who reported that their children underwent significant changes in their hearing loss or were faced with other life threatening conditions. Parents were also often unaware of the role of the genetic counselor and how genetic counseling could help address many of their lingering questions and concerns. These emergent themes indicate the need for geneticists and genetic counselors to be aware of and sensitized to the questions and attitudes that bring parents to a genetic evaluation, as well as the reasons why parents may not follow up with genetic testing for hearing loss when recommended.

  2. Genetic studies of freshwater turtle and tortoises: a review of the past 70 years

    USGS Publications Warehouse

    FitzSimmons, Nancy N.; Hart, Kristen M.

    2007-01-01

    Powerful molecular techniques have been developed over many decades for resolving genetic relationships, population genetic structure, patterns of gene flow, mating systems, and the amount of genetic diversity in animals. Genetic studies of turtles were among the earliest and the rapid application of new genetic tools and analytical techniques is still apparent in the literature on turtles. At present, of the 198 freshwater turtles and tortoises that are listed as not extinct by the IUCN Red List, 69 species worldwide are listed as endangered or critically endangered, and an additional 56 species are listed as vulnerable. Of the ca. 300 species of the freshwater turtles and tortoises in the world, ca. 42% are considered to be facing a high risk extinction, and there is a need to focus intense conservation attention on these species. This includes a need to (i) assess our current state of knowledge regarding the application of genetics to studies of freshwater turtles and tortoises and (ii) determine future research directions. Here, we review all available published studies for the past 70 years that were written in English and used genetic markers (e.g. karyotypes, allozymes, DNA loci) to better understand the biology of freshwater turtles and tortoises. We review the types of studies conducted in relation to the species studied and quantify the countries where the studies were performed. We rack the changing use of different genetic markers through time and report on studies focused on aspects of molecular evolution within turtle genomes. We address the usefulness of particular genetic markers to answer phylogenetic questions and present data comparing population genetic structure and mating systems across species. We draw specific attention to whether authors have considered issues to turtle conservation in their research or provided new insights that have been translated into recommendations for conservation management.

  3. A nationwide genetic testing survey in Italy, year 2007.

    PubMed

    Dallapiccola, Bruno; Torrente, Isabella; Agolini, Emanuele; Morena, Arnaldo; Mingarelli, Rita

    2010-02-01

    The aim of this study was to collect the practices of cytogenetic and molecular genetic testing and genetic counseling activities in Italy in the year 2007 and provide guidance to the national and regional health systems to improve the organization of genetic services. A web-based survey was carried out to assess the total number and the type of analyses, the number and type of genetic counseling sessions, and the personnel attending these activities. The quality management system of the responding structures, in terms of certification and accreditation standards, was also investigated. The appropriateness of requests for genetic testing was evaluated for six disorders. Data were collected from 278 responding centers, half of which were located in the northern regions of the country. Twenty-eight percent of the total were certified according to quality standards. A total of 217 molecular genetic and 171 cytogenetic laboratories, and 102 clinical genetic services were surveyed. About 560,000 genetic tests, including 311,069 cytogenetic and 248,691 molecular genetic analyses of 556 genes, were recorded. The fetal karyotype was examined on either trophoblast or amniocytes in about one of every 4.4 pregnancies. Only 11.5% of cytogenetic analyses and 13.5% of molecular tests were accompanied by genetic counseling. Concerning the appropriateness of a request for genetic testing, a low congruity was found between the clinical diagnosis and the laboratory results. This study highlights the need for reorganizing the genetic structure network in Italy, which at present is oversized, improving the quality management systems, expanding the availability of testing for rare disease genes, and improving access to pretest and posttest genetic counseling.

  4. Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva

    2018-04-01

    Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.

  5. Publication Trends Over 55 Years of Behavioral Genetic Research.

    PubMed

    Ayorech, Ziada; Selzam, Saskia; Smith-Woolley, Emily; Knopik, Valerie S; Neiderhiser, Jenae M; DeFries, John C; Plomin, Robert

    2016-09-01

    We document the growth in published papers on behavioral genetics for 5-year intervals from 1960 through 2014. We used 1861 papers published in Behavior Genetics to train our search strategy which, when applied to Ovid PsychINFO, selected more than 45,000 publications. Five trends stand out: (1) the number of behavioral genetic publications has grown enormously; nearly 20,000 papers were published in 2010-2014. (2) The number of human quantitative genetic (QG) publications (e.g., twin and adoption studies) has steadily increased with more than 3000 papers published in 2010-2014. (3) The number of human molecular genetic (MG) publications increased substantially from about 2000 in 2000-2004 to 5000 in 2005-2009 to 9000 in 2010-2014. (4) Nonhuman publications yielded similar trends. (5) Although there has been exponential growth in MG publications, both human and nonhuman QG publications continue to grow. A searchable resource of this corpus of behavioral genetic papers is freely available online at http://www.teds.ac.uk/public_datasets.html and will be updated annually.

  6. Genetic and environmental influences on temperament in the first year of life: the Puerto Rico Infant Twin Study (PRINTS).

    PubMed

    Silberg, Judy L; Miguel, Vivian Febo San; Murrelle, E Lenn; Prom, Elizabeth; Bates, John E; Canino, Glorisa; Egger, Helen; Eaves, Lindon J

    2005-08-01

    Three dimensions of temperament -- difficult temperament, unadaptablility and unsociability -- were assessed in the first year of life by maternal interview in twins born in Puerto Rico during 2001 and 2002. Eight hundred and sixty-five eligible mothers (80%) were traced and interviewed. Model-fitting results showed that additive genetic factors and the individual specific environment contributed to variation in all three dimensions. In addition, the pattern of variances and correlations suggested that sibling contrast effects influence ratings of difficult temperament. Moderate effects of the shared environment contributed to ratings of adaptability and sociability. There was a significant genetic correlation between difficult temperament and unadaptability. Genetic and environmental effects do not differ significantly between boys and girls. The study is the first population-based study of Puerto Rican twins and one of few to attempt the assessment of behavior in the first year. Preliminary results for difficult temperament and sociability were consistent with those in other populations and ages. In contrast, a significant effect of the shared environment on the temperamental trait of unadaptability has not been reported previously.

  7. The Genetic Liability to Disability Retirement: A 30-Year Follow-Up Study of 24,000 Finnish Twins

    PubMed Central

    Harkonmäki, Karoliina; Silventoinen, Karri; Levälahti, Esko; Pitkäniemi, Janne; Huunan-Seppälä, Antti; Klaukka, Timo; Koskenvuo, Markku; Kaprio, Jaakko

    2008-01-01

    Background No previous studies on the effect of genetic factors on the liability to disability retirement have been carried out. The main aim of this study was to investigate the contribution of genetic factors on disability retirement due to the most common medical causes, including depressive disorders. Methods The study sample consisted of 24 043 participants (49.7% women) consisting of 11 186 complete same-sex twin pairs including 3519 monozygotic (MZ) and 7667dizygotic (DZ) pairs. Information on retirement events during 1.1.1975–31.12.2004, including disability pensions (DPs) with diagnoses, was obtained from the Finnish nationwide official pension registers. Correlations in liability for MZ and DZ twins and discrete time correlated frailty model were used to investigate the genetic liability to age at disability retirement. Results The 30 year cumulative incidence of disability retirement was 20%. Under the best fitting genetic models, the heritability estimate for DPs due to any medical cause was 0.36 (95% CI 0.32–0.40), due to musculoskeletal disorders 0.37 (0.30–0.43), cardiovascular diseases 0.48 (0.39–0.57), mental disorders 0.42 (0.35–0.49) and all other reasons 0.24 (0.17–0.31). The effect of genetic factors decreased with increasing age of retirement. For DP due to depressive disorders, 28% of the variance was explained by environmental factors shared by family members (95% CI 21–36) and 58% of the variance by the age interval specific environmental factors (95% CI 44–71). Conclusions A moderate genetic contribution to the variation of disability retirement due to any medical cause was found. The genetic effects appeared to be stronger at younger ages of disability retirement suggesting the increasing influence of environmental factors not shared with family members with increasing age. Familial aggregation in DPs due to depressive disorders was best explained by the common environmental factors and genetic factors were not needed to

  8. Metabolic syndrome-related composite factors over 5 years in the STANISLAS family study: genetic heritability and common environmental influences.

    PubMed

    Herbeth, Bernard; Samara, Anastasia; Ndiaye, Coumba; Marteau, Jean-Brice; Berrahmoune, Hind; Siest, Gérard; Visvikis-Siest, Sophie

    2010-06-03

    We estimated genetic heritability and common environmental influences for various traits related to metabolic syndrome in young families from France. At entrance and after 5 years, nineteen traits related to metabolic syndrome were measured in a sample of families drawn from the STANISLAS study. In addition, 5 aggregates of these traits were identified using factor analysis. At entrance, genetic heritability was high (20 to 44%) for plasma lipids and lipoproteins, uric acid, fasting glucose, and the related clusters "risk lipids" and "protective lipids". Intermediate or low genetic heritability (less than 20%) was shown for triglycerides, adiposity indices, blood pressure, hepatic enzyme activity, inflammatory makers and the related clusters: "liver enzymes", "adiposity/blood pressure" and "inflammation". Moreover, common environmental influences were significant for all the parameters. With regard to 5-year changes, polygenic variance was low and not statistically significant for any of the individual variables or clusters whereas shared environment influence was significant. In these young families, genetic heritability of metabolic syndrome-related traits was generally lower than previously reported while the common environmental influences were greater. In addition, only shared environment contributed to short-term changes of these traits. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Plant comparative genetics after 10 years.

    PubMed

    Gale, M D; Devos, K M

    1998-10-23

    The past 10 years have seen the discovery of unexpected levels of conservation of gene content and gene orders over millions of years of evolution within grasses, crucifers, legumes, some trees, and Solanaceae crops. Within the grasses, which include the three 500-million-ton-plus-per-year crops (wheat, maize, and rice), and the crucifers, which include all the Brassica crops, colinearity looks good enough to do most map-based cloning only in the small genome model species, rice and Arabidopsis. Elsewhere, knowledge gained in a few major crops is being pooled and applied across the board. The extrapolation of information from the well-studied species to orphan crops, which include many tropical species, is providing a solid base for their improvement. Genome rearrangements are giving new insights into evolution. In fact, comparative genetics is the key that will unlock the secrets of crop plants with genomes larger than that of humans.

  10. Child Development and Molecular Genetics: 14 Years Later

    ERIC Educational Resources Information Center

    Plomin, Robert

    2013-01-01

    Fourteen years ago, the first article on molecular genetics was published in this journal: "Child Development, Molecular Genetics, and What to Do With Genes Once They Are Found" (R. Plomin & M. Rutter, 1998). The goal of the article was to outline what developmentalists can do with genes once they are found. These new directions for developmental…

  11. Genetic moderation of stability in attachment security from early childhood to age 18 years: A replication study.

    PubMed

    Raby, K Lee; Roisman, Glenn I; Booth-LaForce, Cathryn

    2015-11-01

    A longstanding question for attachment theory and research is whether genetically based characteristics of the child influence the development of attachment security and its stability over time. This study attempted to replicate and extend recent findings indicating that the developmental stability of attachment security is moderated by oxytocin receptor (OXTR) genetic variants. Using longitudinal data from over 550 individuals, there was no evidence that OXTR rs53576 moderated the association between attachment security during early childhood and overall coherence of mind ("security") during the Adult Attachment Interview at age 18 years. Additional analyses involving a second commonly investigated OXTR variant (rs2254298) and indices of individuals' dismissing and preoccupied attachment states of mind also failed to provide robust evidence for oxytonergic moderation of the stability in attachment security across development. The discussion focuses on research strategies for investigating genetic contributions to attachment security across the life span. (c) 2015 APA, all rights reserved).

  12. The Genetic Architecture of Oral Language, Reading Fluency, and Reading Comprehension: A Twin Study From 7 to 16 Years

    PubMed Central

    2017-01-01

    This study examines the genetic and environmental etiology underlying the development of oral language and reading skills, and the relationship between them, over a long period of developmental time spanning middle childhood and adolescence. It focuses particularly on the differential relationship between language and two different aspects of reading: reading fluency and reading comprehension. Structural equation models were applied to language and reading data at 7, 12, and 16 years from the large-scale TEDS twin study. A series of multivariate twin models show a clear patterning of oral language with reading comprehension, as distinct from reading fluency: significant but moderate genetic overlap between oral language and reading fluency (genetic correlation rg = .46–.58 at 7, 12, and 16) contrasts with very substantial genetic overlap between oral language and reading comprehension (rg = .81–.87, at 12 and 16). This pattern is even clearer in a latent factors model, fit to the data aggregated across ages, in which a single factor representing oral language and reading comprehension is correlated with—but distinct from—a second factor representing reading fluency. A distinction between oral language and reading fluency is also apparent in different developmental trajectories: While the heritability of oral language increases over the period from 7 to 12 to 16 years (from h2 = .27 to .47 to .55), the heritability of reading fluency is high and largely stable over the same period of time (h2 = .73 to .71 to .64). PMID:28541066

  13. The genetic architecture of oral language, reading fluency, and reading comprehension: A twin study from 7 to 16 years.

    PubMed

    Tosto, Maria G; Hayiou-Thomas, Marianna E; Harlaar, Nicole; Prom-Wormley, Elizabeth; Dale, Philip S; Plomin, Robert

    2017-06-01

    This study examines the genetic and environmental etiology underlying the development of oral language and reading skills, and the relationship between them, over a long period of developmental time spanning middle childhood and adolescence. It focuses particularly on the differential relationship between language and two different aspects of reading: reading fluency and reading comprehension. Structural equation models were applied to language and reading data at 7, 12, and 16 years from the large-scale TEDS twin study. A series of multivariate twin models show a clear patterning of oral language with reading comprehension, as distinct from reading fluency: significant but moderate genetic overlap between oral language and reading fluency (genetic correlation r g = .46-.58 at 7, 12, and 16) contrasts with very substantial genetic overlap between oral language and reading comprehension (r g = .81-.87, at 12 and 16). This pattern is even clearer in a latent factors model, fit to the data aggregated across ages, in which a single factor representing oral language and reading comprehension is correlated with-but distinct from-a second factor representing reading fluency. A distinction between oral language and reading fluency is also apparent in different developmental trajectories: While the heritability of oral language increases over the period from 7 to 12 to 16 years (from h² = .27 to .47 to .55), the heritability of reading fluency is high and largely stable over the same period of time (h² = .73 to .71 to .64). (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Osteoarthritis year in review 2017: genetics and epigenetics.

    PubMed

    Peffers, M J; Balaskas, P; Smagul, A

    2018-03-01

    The purpose of this review is to describe highlights from original research publications related to osteoarthritis (OA), epigenetics and genomics with the intention of recognising significant advances. To identify relevant papers a Pubmed literature search was conducted for articles published between April 2016 and April 2017 using the search terms 'osteoarthritis' together with 'genetics', 'genomics', 'epigenetics', 'microRNA', 'lncRNA', 'DNA methylation' and 'histone modification'. The search term OA generated almost 4000 references. Publications using the combination of descriptors OA and genetics provided the most references (82 references). However this was reduced compared to the same period in the previous year; 8.1-2.1% (expressed as a percentage of the total publications combining the terms OA and genetics). Publications combining the terms OA with genomics (29 references), epigenetics (16 references), long non-coding RNA (lncRNA) (11 references; including the identification of novel lncRNAs in OA), DNA methylation (21 references), histone modification (3 references) and microRNA (miR) (79 references) were reviewed. Potential OA therapeutics such as histone deacetylase (HDAC) inhibitors have been identified. A number of non-coding RNAs may also provide targets for future treatments. There continues to be a year on year increase in publications researching miRs in OA (expressed as a percentage of the total publications), with a doubling over the last 4 years. An overview on the last year's progress within the fields of epigenetics and genomics with respect to OA will be given. Copyright © 2017 Osteoarthritis Research Society International. All rights reserved.

  15. [60 years of medical genetics in Israel].

    PubMed

    Shalev, Stavit A; Borochowitz, Zvi U; Zlotogora, Joel

    2010-02-01

    The principle deeds of genetics in Israel consist of a wide array of disciplines including agriculture, nutrients, biotechnology, pharmacology and pharmacogenetics, pertaining to criminal as well as medical aspects. In the scope of this state of the art historical review, the authors emphasize the medical issues. The initial stimulus for genetic studies and medical awareness among the various ethnic populations in Israel was the immigration, in the early 1950s, of over a million Jewish immigrants from more than 100 countries from all continents. It was soon recognized that frequencies of genetic diseases differed markedly among the various communities, serving as a trigger for studying and managing these populations. In this state of the art historical review, particular emphasize was given to the historical events concerning genetics in the land of Israel, as well as in the state of Israel. Highlights of genetic diversity of the various ethnic and sub-populations are added, along with the advances and major achievements of the human genetics discipline in the state of Israel.

  16. Familial transmission of schizophrenia in Palau: A 20-year genetic epidemiological study in three generations.

    PubMed

    Myles-Worsley, Marina; Tiobech, Josepha; Blailes, Francisca; Middleton, Frank A; Vinogradov, Sophia; Byerley, William; Faraone, Stephen V

    2011-04-01

    Our genetic epidemiological studies of schizophrenia and other psychotic disorders (SCZ) in the isolated population of Palau have been ongoing for 20 years. Results from the first decade showed that Palau has an elevated prevalence of SCZ and that cases cluster in extended multigenerational pedigrees interconnected via complex genetic relationships after centuries of endogamous, but not consanguineous, marriages. The aim of our second decade of research, which extended data collection into a third generation of young, high-risk (HR) Palauans, was to identify significant predictors of intergenerational transmission of illness. Our findings revealed that degree of familial loading and gender effects on reproductive fitness are important modifiers of risk for transmission of SCZ. Among 45 distinct multiplex families, we identified 10 high-density (HD) Palauan families, each with 7-29 SCZ cases, which contain half of Palau's 260 SCZ cases and 80% of the 113 SCZ cases with one or more affected first-degree relatives, indicating that familial loading is a major risk factor for SCZ in Palau. Cases that belong to multiply affected sibships are more common than cases with an affected parent. Furthermore, only 6/38 multiply affected sibships have an affected parent, strong evidence that many unaffected parents are obligate carriers of susceptibility genes. Although reproductive fitness is dramatically reduced in affected males, the 30% minority who do become fathers are twice as likely as affected mothers to transmit SCZ to an offspring. As they evolve, these HD families can help to elucidate the genetic mechanisms that predict intergenerational transmission of SCZ. Copyright © 2011 Wiley-Liss, Inc.

  17. Rapid genetic divergence in response to 15 years of simulated climate change.

    PubMed

    Ravenscroft, Catherine H; Whitlock, Raj; Fridley, Jason D

    2015-11-01

    Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long-term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community-level responses to long-term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL. © 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd.

  18. The Congenital Heart Disease Genetic Network Study

    PubMed Central

    2013-01-01

    Congenital heart defects (CHD) are the leading cause of infant mortality among birth defects, and later morbidities and premature mortality remain problematic. Although genetic factors contribute significantly to cause CHD, specific genetic lesions are unknown for most patients. The National Heart, Lung, and Blood Institute-funded Pediatric Cardiac Genomics Consortium established the Congenital Heart Disease Genetic Network Study to investigate relationships between genetic factors, clinical features, and outcomes in CHD. The Pediatric Cardiac Genomics Consortium comprises 6 main and 4 satellite sites at which subjects are recruited, and medical data and biospecimens (blood, saliva, cardiovascular tissue) are collected. Core infrastructure includes an administrative/data-coordinating center, biorepository, data hub, and core laboratories (genotyping, whole-exome sequencing, candidate gene evaluation, and variant confirmation). Eligibility includes all forms of CHD. Annual follow-up is obtained for probands <1-year-old. Parents are enrolled whenever available. Enrollment from December 2010 to June 2012 comprised 3772 probands. One or both parents were enrolled for 72% of probands. Proband median age is 5.5 years. The one third enrolled at age <1 year are contacted annually for follow-up information. The distribution of CHD favors more complex lesions. Approximately, 11% of probands have a genetic diagnosis. Adequate DNA is available from 97% and 91% of blood and saliva samples, respectively. Genomic analyses of probands with heterotaxy, atrial septal defects, conotruncal, and left ventricular outflow tract obstructive lesions are underway. The scientific community’s use of Pediatric Cardiac Genomics Consortium resources is welcome. PMID:23410879

  19. Low Genetic Variation of Red-Crowned Cranes on Hokkaido Island, Japan, Over the Hundred Years.

    PubMed

    Akiyama, Takuya; Momose, Kunikazu; Onuma, Manabu; Matsumoto, Fumio; Masuda, Ryuichi

    2017-06-01

    The red-crowned crane (Grus japonensis) is recognized internationally as an endangered species. Migratory populations breed in eastern Russia and northeastern China, whereas the resident population inhabits the island of Hokkaido, Japan. Although the population inhabiting Hokkaido had experienced a severe bottleneck by the end of the 19th century, the population size has recovered to about 1500 and continues to increase now thanks to conservation efforts. A previous study reported that no marked genetic differences were seen in the island population, and that the genetic variation of the whole population on Hokkaido was lower than that of the continental population. However, the precise genetic structure of the island population in the past or near present remains unclear. To better understand the spatiotemporal changes in the genetic structure of the island population, we performed mitochondrial DNA (mtDNA) analyses using stuffed specimens (years 1878-2001) and tissue or blood samples (years 1970-2014). We found three haplotypes in the island population, one of which was a novel mtDNA haplotype in 1997 and 2007 samples. In addition, there was no clear difference in the haplotype frequency through the time span. These results suggest that the low genetic variation of the island population persisted for the last hundred years. It is thus nearly impossible for the island population to recover its genetic variation in isolation. Conservation plans for this species should therefore include the promotion of genetic exchanges between the continental and island populations, such as through artificial introduction to Hokkaido.

  20. Genetic screening: programs, principles, and research--thirty years later. Reviewing the recommendations of the Committee for the Study of Inborn Errors of Metabolism (SIEM).

    PubMed

    Simopoulos, A P

    2009-01-01

    Screening programs for genetic diseases and characteristics have multiplied in the last 50 years. 'Genetic Screening: Programs, Principles, and Research' is the report of the Committee for the Study of Inborn Errors of Metabolism (SIEM Committee) commissioned by the Division of Medical Sciences of the National Research Council at the National Academy of Sciences in Washington, DC, published in 1975. The report is considered a classic in the field worldwide, therefore it was thought appropriate 30 years later to present the Committee's modus operandi and bring the Committee's recommendations to the attention of those involved in genetics, including organizational, educational, legal, and research aspects of genetic screening. The Committee's report anticipated many of the legal, ethical, economic, social, medical, and policy aspects of genetic screening. The recommendations are current, and future committees should be familiar with them. In 1975 the Committee stated: 'As new screening tests are devised, they should be carefully reviewed. If the experimental rate of discovery of new genetic characteristics means an accelerating rate of appearance of new screening tests, now is the time to develop the medical and social apparatus to accommodate what later on may otherwise turn out to be unmanageable growth.' What a prophetic statement that was. If the Committee's recommendations had been implemented on time, there would be today a federal agency in existence, responsive and responsible to carry out the programs and support research on various aspects of genetic screening, including implementation of a federal law that protects consumers from discrimination by their employers and the insurance industry on the basis of genetic information. Copyright 2008 S. Karger AG, Basel.

  1. Genetic and environmental influences on last-year major depression in adulthood: a highly heritable stable liability but strong environmental effects on 1-year prevalence.

    PubMed

    Kendler, K S; Gardner, C O

    2017-07-01

    This study seeks to clarify the contribution of temporally stable and occasion-specific genetic and environmental influences on risk for major depression (MD). Our sample was 2153 members of female-female twin pairs from the Virginia Twin Registry. We examined four personal interview waves conducted over an 8-year period with MD in the last year defined by DSM-IV criteria. We fitted a structural equation model to the data using classic Mx. The model included genetic and environmental risk factors for a latent, stable vulnerability to MD and for episodes in each of the four waves. The best-fit model was simple and included genetic and unique environmental influences on the latent liability to MD and unique wave-specific environmental effects. The path from latent liability to MD in the last year was constant over time, moderate in magnitude (+0.65) and weaker than the impact of occasion-specific environmental effects (+0.76). Heritability of the latent stable liability to MD was much higher (78%) than that estimated for last-year MD (32%). Of the total unique environmental influences on MD, 13% reflected enduring consequences of earlier environmental insults, 17% diagnostic error and 70% wave-specific short-lived environmental stressors. Both genetic influences on MD and MD heritability are stable over middle adulthood. However, the largest influence on last-year MD is short-lived environmental effects. As predicted by genetic theory, the heritability of MD is increased substantially by measurement at multiple time points largely through the reduction of the effects of measurement error and short-term environmental risk factors.

  2. Psychosocial effects in parents and children 12 years after newborn genetic screening for type 1 diabetes

    PubMed Central

    Kerruish, Nicola J; Healey, Dione M; Gray, Andrew R

    2017-01-01

    Little is known about the psychosocial consequences of testing newborns for genetic susceptibility to multifactorial diseases. This study reports quantitative psychosocial evaluations of parents and children 12 years after screening for type 1 diabetes (T1D). Two parent-child cohorts participated: children at increased genetic risk of T1D and children at low genetic risk. T1D risk status was determined at birth as part of a prospective study investigating potential environmental triggers of autoimmunity. Parent measures included ratings of children's emotional, behavioural and social functioning (Child Behaviour Checklist) and parenting style (Alabama Parenting Questionnaire). Child self-concept was assessed using the self-description questionnaire (SDQ1). Statistical analyses were conducted to test for differences between the groups. Twelve years after testing there was no evidence that knowledge of a child's increased genetic risk of T1D adversely affected parental ratings of their child's emotional, behavioural or social functioning, or impacted upon parenting style. There was no adverse effect upon the child's assessment of their self-concept. This study provides important preliminary data concerning longer-term psychosocial effects of incorporating tests for genetic risk of complex disorders into NBS panels. While it is reassuring that no significant adverse effects have been detected, more data will be required to adequately inform policy. PMID:28120838

  3. Genetics studies involving Swiss needle cast.

    Treesearch

    R. Johnson; F. Temel; K. Jayawickrama

    2002-01-01

    Three studies were analyzed this year that examined genetic aspects of Swiss needle cast (SNC) tolerance . Families sampled across the Siuslaw National forest showed differences in foliage health traits, but very little of the variation could be explained by environmental or climatic conditions at the parent tree location. Five test sites of the Nehalem series of...

  4. Clinical, biochemical and genetic risk factors for 30-day and 5-year mortality in 518 adult patients subjected to cardiopulmonary bypass during cardiac surgery - the INFLACOR study.

    PubMed

    Kowalik, Maciej Michał; Lango, Romuald; Siondalski, Piotr; Chmara, Magdalena; Brzeziński, Maciej; Lewandowski, Krzysztof; Jagielak, Dariusz; Klapkowski, Andrzej; Rogowski, Jan

    2018-04-25

    There is increasing evidence that genetic variability influences patients' early morbidity after cardiac surgery performed using cardiopulmonary bypass (CPB). The use of mortality as an outcome measure in cardiac surgical genetic association studies is rare. We publish the 30-day and 5-year survival analyses with focus on pre-, intra-, postoperative variables, biochemical parameters, and genetic variants in the INFLACOR (INFLAmmation in Cardiac OpeRations) cohort. In a prospectively recruited cohort of 518 adult Polish Caucasians, who underwent cardiac surgery in which CPB was used, the clinical data, biochemical parameters, IL-6, soluble ICAM-1, TNFα, soluble E-selectin, and 10 single nucleotide polymorphisms were evaluated for their association with 30-day and 5-year mortality. The 30-day mortality was associated with: pre-operative prothrombin international normalized ratio, intra-operative blood lactate, postoperative serum creatine phosphokinase, and acute kidney injury requiring renal replacement therapy (AKI-RRT) in logistic regression. Factors that determined the 5-year survival included: pre-operative NYHA class, history of peripheral artery disease and severe chronic obstructive pulmonary disease, intra-operative blood transfusion; and postoperative peripheral hypothermia, myocardial infarction, infection, and AKI-RRT in Cox regression. Serum levels of IL-6 and ICAM-1 measured three hours after the operation were associated with 30-day and 5-year mortality, respectively. The ICAM1 rs5498 was associated with 30-day and 5-year survival with borderline significance. Different risk factors determined the early (30-day) and late (5-year) survival after adult cardiac surgery in which cardiopulmonary bypass was used. Future genetic association studies in cardiac surgical patients should account for the identified chronic and perioperative risk factors.

  5. Attention problems, inhibitory control, and intelligence index overlapping genetic factors: a study in 9-, 12-, and 18-year-old twins.

    PubMed

    Polderman, Tinca J C; de Geus, Eco J C; Hoekstra, Rosa A; Bartels, Meike; van Leeuwen, Marieke; Verhulst, Frank C; Posthuma, Danielle; Boomsma, Dorret I

    2009-05-01

    It is assumed that attention problems (AP) are related to impaired executive functioning. We investigated the association between AP and inhibitory control and tested to what extent the association was due to genetic factors shared with IQ. Data were available from 3 independent samples of 9-, 12-, and 18-year-old twins and their siblings (1,209 participants). AP were assessed with checklists completed by multiple informants. Inhibitory control was measured with the Stroop Color Word Task (Stroop, 1935), and IQ with the Wechsler Intelligence Scale for Children (Wechsler et al., 2002) or Wechsler Adult Intelligence Scale (Wechsler, 1997). AP and inhibitory control were only correlated in the 12-year-old cohort (r = .18), but appeared non-significant after controlling for IQ. Significant correlations existed between AP and IQ in 9- and 12-year olds (r = -.26/-.34). Inhibitory control and IQ were correlated in all cohorts (r = -.16, -.24 and -.35, respectively). Genetic factors that influenced IQ also influenced inhibitory control. We conclude that the association between AP and inhibitory control as reported in the literature may largely derive from genetic factors that are shared with IQ.

  6. Mutations in the autoinflammatory cryopyrin-associated periodic syndrome gene: epidemiological study and lessons from eight years of genetic analysis in France.

    PubMed

    Cuisset, L; Jeru, I; Dumont, B; Fabre, A; Cochet, E; Le Bozec, J; Delpech, M; Amselem, S; Touitou, I

    2011-03-01

    Cryopyrin-associated periodic syndromes (CAPS) consist of a continuum of autoinflammatory diseases caused by a defect in interleukin 1β regulation. Although symptoms may vary widely, the discovery, in 2001, of the gene involved (NLRP3) has dramatically helped diagnosis. To define the spectrum and prevalence of NLRP3 mutations in France and to delineate initial criteria before molecular analysis. Retrospective review (2001-9) of genetic analysis data and request forms of patients living in France with an NLRP3 mutation since the set up of CAPS molecular diagnosis by the three French laboratories providing this test (GenMAI network). Over 800 analyses of this gene have been conducted, identifying 135 cases with an NLRP3 mutation (55 probands; 33 multiplex families); the estimated prevalence in France was equal to 1/360 000. A total of 21 different sequence variants were detected, among which four are common and nine are new mutations. Although the number of NLRP3 test requests has doubled over the past 5 years, genetic screening has not contributed to enhanced detection of new index cases each year. There are two possible reasons for this: (i) no clinical prerequisite for genetic diagnosis and (ii) few new large families are now identified (unlike the initial study based on a selection by linkage). A set of initial clinical criteria have been drawn up which it is recommended should be fulfilled before a patient is tested: at least three recurrent bouts, age at disease onset < 20 years and elevated levels of C-reactive protein, especially in individuals with urticaria and moderate fever.

  7. Genetic Contributions to Age-Related Decline in Executive Function: A 10-Year Longitudinal Study of COMT and BDNF Polymorphisms

    PubMed Central

    Erickson, Kirk I.; Kim, Jennifer S.; Suever, Barbara L.; Voss, Michelle W.; Francis, B. Magnus; Kramer, Arthur F.

    2008-01-01

    Genetic variability in the dopaminergic and neurotrophic systems could contribute to age-related impairments in executive control and memory function. In this study we examined whether genetic polymorphisms for catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) were related to the trajectory of cognitive decline occurring over a 10-year period in older adults. A single nucleotide polymorphism in the COMT (Val158/108Met) gene affects the concentration of dopamine in the prefrontal cortex. In addition, a Val/Met substitution in the pro-domain for BDNF (Val66Met) affects the regulated secretion and trafficking of BDNF with Met carriers showing reduced secretion and poorer cognitive function. We found that impairments over the 10-year span on a task-switching paradigm did not vary as a function of the COMT polymorphism. However, for the BDNF polymorphism the Met carriers performed worse than Val homozygotes at the first testing session but only the Val homozygotes demonstrated a significant reduction in performance over the 10-year span. Our results argue that the COMT polymorphism does not affect the trajectory of age-related executive control decline, whereas the Val/Val polymorphism for BDNF may promote faster rates of cognitive decay in old age. These results are discussed in relation to the role of BDNF in senescence and the transforming impact of the Met allele on cognitive function in old age. PMID:18958211

  8. Is pre-implantation genetic diagnosis (PGD) more of a strain regarding satisfaction with marital quality for male or female partners? A three-year follow-up study.

    PubMed

    Järvholm, Stina; Thurin-Kjellberg, Ann; Broberg, Malin

    2017-04-27

    Men and women with a hereditary genetic disease are faced with different options when they plan to become parents. One is pre-implantation genetic diagnosis (PGD) which is a combination of in vitro fertilization (IVF) and genetic analysis of the embryo before implantation. The present study focuses on how men and women planning for PGD experience the quality of marital satisfaction when they apply for treatment and again, three years later. The study was a prospective cohort study where all couples (n = 22) applying for PGD during 2010 and 2011 were eligible. Nineteen women and 17 men (i.e. 17 couples and two women) participated. Participants answered several questionnaires (Dyadic Adjustment Scale, Hospital Anxiety and Depression Scale and Parental Stress Questionnaire) before PGD treatment, and again three years later. Women who underwent PGD rated the quality of their marital relationship similarly to that of first-time parents and IVF couples, whereas men rated the marital quality somewhat lower than the contrasts groups. Satisfaction with marital quality was stable over the three-year period although men were less satisfied than women on both occasions. At year three, there was a significant correlation between martial satisfaction and parental stress in men, and between martial satisfaction and anxiety and depression in women. Men are equally, or more, affected by their situation than their female partners, with consequences for satisfaction with marital quality. For this reason they should be included in any counselling offered.

  9. Unaffected family members report improvements in daily routine sun-protection 2 years following melanoma genetic testing

    PubMed Central

    Aspinwall, Lisa G.; Taber, Jennifer M.; Kohlmann, Wendy; Leaf, Samantha L.; Leachman, Sancy A.

    2014-01-01

    Purpose Reducing ultraviolet radiation (UVR) exposure may decrease melanoma risk in the hereditary melanoma setting. It is unknown whether genetic counseling and test reporting of CDKN2A/p16 mutation status promote long-term compliance with photoprotection recommendations, especially in unaffected mutation carriers. Methods This study evaluated changes 2 years following melanoma genetic testing in self-reported practice of sun-protection (sunscreen, photoprotective clothing, UVR avoidance) among 37 members of two CDKN2A/p16 kindreds (10 unaffected carriers, 11 affected carriers, 16 unaffected noncarriers; response rate=64.9% of eligible participants). Results Multivariate profile analysis indicated that all 3 participant groups reported increased daily routine practice of sun-protection 2 years following melanoma genetic testing (p<.02), with 96.9% reporting that at least 1 sun-protection behavior was part of their daily routine, up from 78.1% at baseline (p<.015). Unaffected carriers (p<.024) and unaffected noncarriers (p<.027) reported significantly more frequent use of photoprotective clothing. Affected carriers maintained adherence to all sun-protection behaviors. Reported sunburns in the past 6 months decreased significantly (p<.018). Conclusion Members of high-risk families reported increased daily routine sun-protection and decreased sunburns 2 years following melanoma genetic testing, with no net decline in sun-protection following negative test results. Thus, genetic testing and counseling may motivate sustained improvements in prevention behaviors. PMID:24763292

  10. Methodological issues of genetic association studies.

    PubMed

    Simundic, Ana-Maria

    2010-12-01

    Genetic association studies explore the association between genetic polymorphisms and a certain trait, disease or predisposition to disease. It has long been acknowledged that many genetic association studies fail to replicate their initial positive findings. This raises concern about the methodological quality of these reports. Case-control genetic association studies often suffer from various methodological flaws in study design and data analysis, and are often reported poorly. Flawed methodology and poor reporting leads to distorted results and incorrect conclusions. Many journals have adopted guidelines for reporting genetic association studies. In this review, some major methodological determinants of genetic association studies will be discussed.

  11. Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago.

    PubMed

    Zhao, Yong-Bin; Zhang, Ye; Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong

    2015-01-01

    The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.

  12. Ancient DNA Reveals That the Genetic Structure of the Northern Han Chinese Was Shaped Prior to 3,000 Years Ago

    PubMed Central

    Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong

    2015-01-01

    The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area. PMID:25938511

  13. Genetic and environmental contributions to weight, height, and BMI from birth to 19 years of age: an international study of over 12,000 twin pairs.

    PubMed

    Dubois, Lise; Ohm Kyvik, Kirsten; Girard, Manon; Tatone-Tokuda, Fabiola; Pérusse, Daniel; Hjelmborg, Jacob; Skytthe, Axel; Rasmussen, Finn; Wright, Margaret J; Lichtenstein, Paul; Martin, Nicholas G

    2012-01-01

    To examine the genetic and environmental influences on variances in weight, height, and BMI, from birth through 19 years of age, in boys and girls from three continents. Cross-sectional twin study. Data obtained from a total of 23 twin birth-cohorts from four countries: Canada, Sweden, Denmark, and Australia. Participants were Monozygotic (MZ) and dizygotic (DZ) (same- and opposite-sex) twin pairs with data available for both height and weight at a given age, from birth through 19 years of age. Approximately 24,036 children were included in the analyses. Heritability for body weight, height, and BMI was low at birth (between 6.4 and 8.7% for boys, and between 4.8 and 7.9% for girls) but increased over time, accounting for close to half or more of the variance in body weight and BMI after 5 months of age in both sexes. Common environmental influences on all body measures were high at birth (between 74.1-85.9% in all measures for boys, and between 74.2 and 87.3% in all measures for girls) and markedly reduced over time. For body height, the effect of the common environment remained significant for a longer period during early childhood (up through 12 years of age). Sex-limitation of genetic and shared environmental effects was observed. Genetics appear to play an increasingly important role in explaining the variation in weight, height, and BMI from early childhood to late adolescence, particularly in boys. Common environmental factors exert their strongest and most independent influence specifically in pre-adolescent years and more significantly in girls. These findings emphasize the need to target family and social environmental interventions in early childhood years, especially for females. As gene-environment correlation and interaction is likely, it is also necessary to identify the genetic variants that may predispose individuals to obesity.

  14. Recent molecular genetic studies and methodological issues in suicide research.

    PubMed

    Tsai, Shih-Jen; Hong, Chen-Jee; Liou, Ying-Jay

    2011-06-01

    Suicide behavior (SB) spans a spectrum ranging from suicidal ideation to suicide attempts and completed suicide. Strong evidence suggests a genetic susceptibility to SB, including familial heritability and common occurrence in twins. This review addresses recent molecular genetic studies in SB that include case-control association, genome gene-expression microarray, and genome-wide association (GWA). This work also reviews epigenetics in SB and pharmacogenetic studies of antidepressant-induced suicide. SB fulfills criteria for a complex genetic phenotype in which environmental factors interact with multiple genes to influence susceptibility. So far, case-control association approaches are still the mainstream in SB genetic studies, although whole genome gene-expression microarray and GWA studies have begun to emerge in recent years. Genetic association studies have suggested several genes (e.g., serotonin transporter, tryptophan hydroxylase 2, and brain-derived neurotrophic factor) related to SB, but not all reports support these findings. The case-control approach while useful is limited by present knowledge of disease pathophysiology. Genome-wide studies of gene expression and genetic variation are not constrained by our limited knowledge. However, the explanatory power and path to clinical translation of risk estimates for common variants reported in genome-wide association studies remain unclear because of the presence of rare and structural genetic variation. As whole genome sequencing becomes increasingly widespread, available genomic information will no longer be the limiting factor in applying genetics to clinical medicine. These approaches provide exciting new avenues to identify new candidate genes for SB genetic studies. The other limitation of genetic association is the lack of a consistent definition of the SB phenotype among studies, an inconsistency that hampers the comparability of the studies and data pooling. In summary, SB involves multiple genes

  15. Temporal patterns of genetic variation across a 9-year-old aerial seed bank of the shrub Banksia hookeriana (Proteaceae).

    PubMed

    Barrett, Luke G; He, Tianhua; Lamont, Byron B; Krauss, Siegfried L

    2005-11-01

    The pattern of accumulation of genetic variation over time in seed banks is poorly understood. We examined the genetic structure of the aerial seed bank of Banksia hookeriana within a single 15-year-old population in fire-prone southwestern Australia, and compared genetic variation between adults and each year of a 9-year-old seed bank using amplified fragment length polymorphism (AFLP). B. hookeriana is well suited to the study of seed bank dynamics due to the canopy storage of its seeds, and because each annual crop can be identified. A total of 304 seeds from nine crop years and five maternal plants were genotyped, along with 113 plants from the adult population. Genetic variation, as assessed by the proportion of polymorphic markers (P(p)) and Shannon's index (I), increased slightly within the seed bank over time, while gene diversity (H(j)), did not change. P(p), I, and H(j) all indicated that genetic variation within the seed bank quickly approached the maximal level detected. Analysis of molecular variance revealed that less than 4% of variation could be accounted for by variation among seeds produced in different years, whereas there was greater differentiation among maternal plants (12.7%), and among individual seeds produced by different maternal plants (83.4%). With increasing population age, offspring generated each year were slightly more outbred, as indicated by an increase in the mean number of nonmaternal markers per offspring. There were no significant differences for H(j) or I between adults and the seed bank. Viability of seeds decreased with age, such that the viability of 9-year-old seeds was half that of 2-year-old seeds. These results suggest that variable fire frequencies have only limited potential to influence the amount of genetic variation stored within the seed bank of B. hookeriana.

  16. Juvenile selective vitamin B₁₂ malabsorption: 50 years after its description-10 years of genetic testing.

    PubMed

    Gräsbeck, Ralph; Tanner, Stephan M

    2011-09-01

    Fifty years have passed since the description of juvenile selective malabsorption of cobalamin (Cbl). Quality of life improvements have dramatically reduced the incidence of parasite-induced or nutritional Cbl deficiency. Consequently, inherited defects have become a leading cause of Cbl deficiency in children, which is not always expressed as anemia. Unfortunately, the gold standard for clinical diagnosis, the Schilling test, has increasingly become unavailable, and replacement tests are only in their infancy. Genetic testing is complicated by genetic heterogeneity and differential diagnosis. This review documents the history, research, and advances in genetics that have elucidated the causes of juvenile Cbl malabsorption. Genetic research has unearthed many cases in the past decade, mostly in Europe and North America, often among immigrants from the Middle East or North Africa. Lack of suitable clinical testing potentially leaves many patients inadequately diagnosed. The consequences of suboptimal Cbl levels for neurological development are well documented. By raising awareness, we wish to push for fast track development of better clinical tools and suitable genetic testing. Clinical awareness must include attention to ethnicity, a sensitive topic but effective for fast diagnosis. The treatment with monthly parenteral Cbl for life offers a simple and cost-effective solution once proper diagnosis is made.

  17. Population and genetic outcomes 20 years after reintroducing bobcats (Lynx rufus) to Cumberland Island, Georgia USA

    USGS Publications Warehouse

    Diefenbach, Duane R.; Hansen, Leslie A.; Bohling, Justin H.; Miller-Butterworth, Cassandra

    2015-01-01

    In 1988–1989, 32 bobcats Lynx rufus were reintroduced to Cumberland Island (CUIS), Georgia, USA, from which they had previously been extirpated. They were monitored intensively for 3 years immediately post-reintroduction, but no estimation of the size or genetic diversity of the population had been conducted in over 20 years since reintroduction. We returned to CUIS in 2012 to estimate abundance and effective population size of the present-day population, as well as to quantify genetic diversity and inbreeding. We amplified 12 nuclear microsatellite loci from DNA isolated from scats to establish genetic profiles to identify individuals. We used spatially explicit capture–recapture population estimation to estimate abundance. From nine unique genetic profiles, we estimate a population size of 14.4 (SE = 3.052) bobcats, with an effective population size (Ne) of 5–8 breeding individuals. This is consistent with predictions of a population viability analysis conducted at the time of reintroduction, which estimated the population would average 12–13 bobcats after 10 years. We identified several pairs of related bobcats (parent-offspring and full siblings), but ~75% of the pairwise comparisons were typical of unrelated individuals, and only one individual appeared inbred. Despite the small population size and other indications that it has likely experienced a genetic bottleneck, levels of genetic diversity in the CUIS bobcat population remain high compared to other mammalian carnivores. The reintroduction of bobcats to CUIS provides an opportunity to study changes in genetic diversity in an insular population without risk to this common species. Opportunities for natural immigration to the island are limited; therefore, continued monitoring and supplemental bobcat reintroductions could be used to evaluate the effect of different management strategies to maintain genetic diversity and population viability. The successful reintroduction and maintenance of a

  18. Psychopathic personality traits in 5 year old twins: the importance of genetic and shared environmental influences.

    PubMed

    Tuvblad, Catherine; Fanti, Kostas A; Andershed, Henrik; Colins, Olivier F; Larsson, Henrik

    2017-04-01

    There is limited research on the genetic and environmental bases of psychopathic personality traits in children. In this study, psychopathic personality traits were assessed in a total of 1189 5-year-old boys and girls drawn from the Preschool Twin Study in Sweden. Psychopathic personality traits were assessed with the Child Problematic Traits Inventory, a teacher-report measure of psychopathic personality traits in children ranging from 3 to 12 years old. Univariate results showed that genetic influences accounted for 57, 25, and 74 % of the variance in the grandiose-deceitful, callous-unemotional, and impulsive-need for stimulation dimensions, while the shared environment accounted for 17, 48 and 9 % (n.s.) in grandiose-deceitful and callous-unemotional, impulsive-need for stimulation dimensions, respectively. No sex differences were found in the genetic and environmental variance components. The non-shared environment accounted for the remaining 26, 27 and 17 % of the variance, respectively. The three dimensions of psychopathic personality were moderately correlated (0.54-0.66) and these correlations were primarily mediated by genetic and shared environmental factors. In contrast to research conducted with adolescent and adult twins, we found that both genetic and shared environmental factors influenced psychopathic personality traits in early childhood. These findings indicate that etiological models of psychopathic personality traits would benefit by taking developmental stages and processes into consideration.

  19. Molecular genetics of growth hormone deficient children: correlation with auxology and response to first year of growth hormone therapy.

    PubMed

    Khadilkar, Vaman; Phadke, Nikhil; Khatod, Kavita; Ekbote, Veena; Gupte, Supriya Phanse; Nadar, Ruchi; Khadilkar, Anuradha

    2017-05-24

    With the paucity of available literature correlating genetic mutation and response to treatment, we aimed to study the genetic makeup of children with growth hormone (GH) deficiency in Western India and correlate the mutation with auxology and response to GH treatment at end of 1 year. Fifty-three (31 boys and 22 girls) children with severe short stature (height for age z-score <-3) and failed GH stimulation test were studied. Those having concomitant thyroid hormone or cortisol deficiencies were appropriately replaced prior to starting GH treatment. A magnetic resonance imaging (MRI) brain scan was done in all. Genetic mutations were tested for in GH1, GHRH, LHX3, LHX4 and PROP1, POU1F1 and HESX1 genes. Mean age at presentation was 9.7±5.1 years. Thirty-seven children (Group A) had no genetic mutation detected. Six children (Group B) had mutations in the GH releasing hormone receptor (GHRHR) gene, while eight children (Group C) had mutation in the GH1 gene. In two children, one each had a mutation in PROP1 and LHX3. There was no statistically significant difference in baseline height, weight and BMI for age z-score and height velocity for age z-score (HVZ). HVZ was significantly lower, post 1 year GH treatment in the group with homozygous GH1 deletion than in children with no genetic defect. Response to GH at the end of 1 year was poor in children with the homozygous GH1 deletion as compared to those with GHRHR mutation or without a known mutation.

  20. Genetic and epigenetic divergence between disturbed and undisturbed subpopulations of a Mediterranean shrub: a 20-year field experiment.

    PubMed

    Herrera, Carlos M; Bazaga, Pilar

    2016-06-01

    Little is known on the potential of ecological disturbance to cause genetic and epigenetic changes in plant populations. We take advantage of a long-term field experiment initiated in 1986 to study the demography of the shrub Lavandula latifolia , and compare genetic and epigenetic characteristics of plants in two adjacent subplots, one experimentally disturbed and one left undisturbed, 20 years after disturbance. Experimental setup was comparable to an unreplicated 'Before-After-Control-Impact' (BACI) design where a single pair of perturbed and control areas were compared. When sampled in 2005, plants in the two subplots had roughly similar ages, but they had established in contrasting environments: dense conspecific population ('Undisturbed' subpopulation) versus open area with all conspecifics removed ('Disturbed' subpopulation). Plants were characterized genetically and epigenetically using amplified fragment length polymorphism (AFLP) and two classes of methylation-sensitive AFLP (MSAP) markers. Subpopulations were similar in genetic diversity but differed in epigenetic diversity and multilocus genetic and epigenetic characteristics. Epigenetic divergence between subpopulations was statistically unrelated to genetic divergence. Bayesian clustering revealed an abrupt linear boundary between subpopulations closely coincident with the arbitrary demarcation line between subplots drawn 20 years back, which supports that genetic and epigenetic divergence between subpopulations was caused by artificial disturbance. There was significant fine-scale spatial structuring of MSAP markers in both subpopulations, which in the Undisturbed one was indistinguishable from that of AFLP markers. Genetic differences between subpopulations could be explained by divergent selection alone, while the concerted action of divergent selection and disturbance-driven appearance of new methylation variants in the Disturbed subpopulation is proposed to explain epigenetic differences. This

  1. Genetic vulnerability and premature death in schizophrenia spectrum disorders: a 28-year follow-up of adoptees in the Finnish Adoptive Family Study of Schizophrenia.

    PubMed

    Hakko, Helinä; Wahlberg, Karl-Erik; Tienari, Pekka; Räsänen, Sami

    2011-09-01

    Excess mortality is widely reported among schizophrenia patients, but rarely examined in adoption study settings. We investigated whether genetic background plays a role in the premature death of adoptees with schizophrenia. Mortality among 382 adoptees in the Finnish Adoptive Family Study of Schizophrenia was monitored from 1977 to 2005 through the national causes-of-death register. The sample covered 190 adoptees with a high genetic risk of schizophrenia (HR) and 192 with a low risk (LR). Overall mortality among the adoptees did not differ between the HR and LR groups, as 10% and 9% respectively had died during the follow-up, at mean ages of 45 and 46 years. Schizophrenia spectrum disorder was the most significant predictor of premature death in both groups, with dysfunction in the rearing family environment associated with mortality, unnatural deaths and suicides in the HR but not in the LR group. All the suicides involved HR cases. Mortality among the adoptees was not related to genetic factors but to environmental ones. The association of unnatural deaths and suicides with dysfunction in the rearing environment among the HR adoptees may indicate that they had a greater genetically determined vulnerability to environmental effects than their LR counterparts. The genetic and rearing environments can be disentangled in this setting because the biological parents give the offspring their genes and the adoptive parents give them their rearing environment. Our findings add to knowledge of the factors associated with the premature death of adoptees in mid-life.

  2. The Genetics of Extreme Longevity: Lessons from the New England Centenarian Study

    PubMed Central

    Sebastiani, Paola; Perls, Thomas T.

    2012-01-01

    The New England Centenarian Study (NECS) was founded in 1994 as a longitudinal study of centenarians to determine if centenarians could be a model of healthy human aging. Over time, the NECS along with other centenarian studies have demonstrated that the majority of centenarians markedly delay high mortality risk-associated diseases toward the ends of their lives, but many centenarians have a history of enduring more chronic age-related diseases for many years, women more so than men. However, the majority of centenarians seem to deal with these chronic diseases more effectively, not experiencing disability until well into their nineties. Unlike most centenarians who are less than 101 years old, people who live to the most extreme ages, e.g., 107+ years, are generally living proof of the compression of morbidity hypothesis. That is, they compress morbidity and disability to the very ends of their lives. Various studies have also demonstrated a strong familial component to extreme longevity and now evidence particularly from the NECS is revealing an increasingly important genetic component to survival to older and older ages beyond 100 years. It appears to us that this genetic component consists of many genetic modifiers each with modest effects, but as a group they can have a strong influence. PMID:23226160

  3. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    PubMed

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century. © 2013 Blackwell Publishing Ltd.

  4. Vascular Health and Genetic Risk Affect Mild Cognitive Impairment Status and 4-Year Stability: Evidence From the Victoria Longitudinal Study

    PubMed Central

    MacDonald, Stuart W. S.; Vergote, David; Jhamandas, Jack; Westaway, David; Dixon, Roger A.

    2016-01-01

    Objectives: Mild cognitive impairment (MCI) is a high-risk condition for progression to Alzheimer’s disease (AD). Vascular health is a key mechanism underlying age-related cognitive decline and neurodegeneration. AD-related genetic risk factors may be associated with preclinical cognitive status changes. We examine independent and cross-domain interactive effects of vascular and genetic markers for predicting MCI status and stability. Method: We used cross-sectional and 2-wave longitudinal data from the Victoria Longitudinal Study, including indicators of vascular health (e.g., reported vascular diseases, measured lung capacity and pulse rate) and genetic risk factors—that is, apolipoprotein E (APOE; rs429358 and rs7412; the presence vs absence of ε4) and catechol-O-methyltransferase (COMT; rs4680; met/met vs val/val). We examined associations with objectively classified (a) cognitive status at baseline (not impaired congnitive (NIC) controls vs MCI) and (b) stability or transition of cognitive status across a 4-year interval (stable NIC–NIC vs chronic MCI–MCI or transitional NIC–MCI). Results: Using logistic regression, indicators of vascular health, both independently and interactively with APOE ε4, were associated with risk of MCI at baseline and/or associated with MCI conversion or MCI stability over the retest interval. Discussion: Several vascular health markers of aging predict MCI risk. Interactively, APOE ε4 may intensify the vascular health risk for MCI. PMID:26362601

  5. Genetic and Environmental Effects on Weight, Height, and BMI Under 18 Years in a Chinese Population-Based Twin Sample.

    PubMed

    Liu, Qingqing; Yu, Canqing; Gao, Wenjing; Cao, Weihua; Lyu, Jun; Wang, Shengfeng; Pang, Zengchang; Cong, Liming; Dong, Zhong; Wu, Fan; Wang, Hua; Wu, Xianping; Jiang, Guohong; Wang, Binyou; Li, Liming

    2015-10-01

    This study examined the genetic and environmental effects on variances in weight, height, and body mass index (BMI) under 18 years in a population-based sample from China. We selected 6,644 monozygotic and 5,969 dizygotic twin pairs from the Chinese National Twin Registry (CNTR) aged under 18 years (n = 12,613). Classic twin analyses with sex limitation were used to estimate the genetic and environmental components of weight, height, and BMI in six age groups. Sex-limitation of genetic and shared environmental effects was observed, especially when puberty begins. Heritability for weight, height, and BMI was low at 0-2 years old (less than 20% for both sexes) but increased over time, accounting for half or more of the variance in the 15-17 year age group for boys. For girls, heritabilities for weight, height and BMI was maintained at approximately 30% after puberty. Common environmental effects on all body measures were high for girls (59-87%) and presented a small peak during puberty. Genetics appear to play an increasingly important role in explaining the variation in weight, height, and BMI from early childhood to late adolescence, particularly in boys. Common environmental factors exert their strongest and most independent influence specifically in the pre-adolescent period and more significantly in girls. These findings emphasize the need to target family and social environmental interventions in early childhood years, especially for females. Further studies about puberty-related genes and social environment are needed to clarify the mechanism of sex differences.

  6. Unravelling fears of genetic discrimination: an exploratory study of Dutch HCM families in an era of genetic non-discrimination acts.

    PubMed

    Geelen, Els; Horstman, Klasien; Marcelis, Carlo L M; Doevendans, Pieter A; Van Hoyweghen, Ine

    2012-10-01

    Since the 1990s, many countries in Europe and the United States have enacted genetic non-discrimination legislation to prevent people from deferring genetic tests for fear that insurers or employers would discriminate against them based on that information. Although evidence for genetic discrimination exists, little is known about the origins and backgrounds of fears of discrimination and how it affects decisions for uptake of genetic testing. The aim of this article is to gain a better understanding of these fears and its possible impact on the uptake of testing by studying the case of hypertrophic cardiomyopathy (HCM). In a qualitative study, we followed six Dutch extended families involved in genetic testing for HCM for three-and-a-half years. Semi-structured interviews were conducted with 57 members of these families. Based on the narratives of the families, we suggest that fears of discrimination have to be situated in the broader social and life-course context of family and kin. We describe the processes in which families developed meaningful interpretations of genetic discrimination and how these interpretations affected family members' decisions to undergo genetic testing. Our findings show that fears of genetic discrimination do not so much stem from the opportunity of genetic testing but much more from earlier experiences of discrimination of diseased family members. These results help identify the possible limitations of genetic non-discrimination regulations and provide direction to clinicians supporting their clients as they confront issues of genetic testing and genetic discrimination.

  7. 5-years later - have faculty integrated medical genetics into nurse practitioner curriculum?

    PubMed

    Maradiegue, Ann H; Edwards, Quannetta T; Seibert, Diane

    2013-10-31

    Abstract Many genetic/genomic educational opportunities are available to assist nursing faculty in their knowledge and understanding of genetic/genomics. This study was conducted to assess advance practice nursing faculty members' current knowledge of medical genetics/genomics, their integration of genetics/genomics content into advance practice nursing curricula, any prior formal training/education in genetics/genomics, and their comfort level in teaching genetics/genomic content. A secondary aim was to conduct a comparative analysis of the 2010 data to a previous study conducted in 2005, to determine changes that have taken place during that time period. During a national nurse practitioner faculty conference, 85 nurse practitioner faculty voluntarily completed surveys. Approximately 70% of the 2010 faculty felt comfortable teaching basic genetic/genomic concepts compared to 50% in 2005. However, there continue to be education gaps in the genetic/genomic content taught to advance practice nursing students. If nurses are going to be a crucial member of the health-care team, they must achieve the requisite competencies to deliver the increasingly complex care patients require.

  8. Unravelling fears of genetic discrimination: an exploratory study of Dutch HCM families in an era of genetic non-discrimination acts

    PubMed Central

    Geelen, Els; Horstman, Klasien; Marcelis, Carlo LM; Doevendans, Pieter A; Van Hoyweghen, Ine

    2012-01-01

    Since the 1990s, many countries in Europe and the United States have enacted genetic non-discrimination legislation to prevent people from deferring genetic tests for fear that insurers or employers would discriminate against them based on that information. Although evidence for genetic discrimination exists, little is known about the origins and backgrounds of fears of discrimination and how it affects decisions for uptake of genetic testing. The aim of this article is to gain a better understanding of these fears and its possible impact on the uptake of testing by studying the case of hypertrophic cardiomyopathy (HCM). In a qualitative study, we followed six Dutch extended families involved in genetic testing for HCM for three-and-a-half years. Semi-structured interviews were conducted with 57 members of these families. Based on the narratives of the families, we suggest that fears of discrimination have to be situated in the broader social and life-course context of family and kin. We describe the processes in which families developed meaningful interpretations of genetic discrimination and how these interpretations affected family members' decisions to undergo genetic testing. Our findings show that fears of genetic discrimination do not so much stem from the opportunity of genetic testing but much more from earlier experiences of discrimination of diseased family members. These results help identify the possible limitations of genetic non-discrimination regulations and provide direction to clinicians supporting their clients as they confront issues of genetic testing and genetic discrimination. PMID:22453290

  9. Genetic ancestry of participants in the National Children's Study.

    PubMed

    Smith, Erin N; Jepsen, Kristen; Arias, Angelo D; Shepard, Peter J; Chambers, Christina D; Frazer, Kelly A

    2014-02-03

    The National Children's Study (NCS) is a prospective epidemiological study in the USA tasked with identifying a nationally representative sample of 100,000 children, and following them from their gestation until they are 21 years of age. The objective of the study is to measure environmental and genetic influences on growth, development, and health. Determination of the ancestry of these NCS participants is important for assessing the diversity of study participants and for examining the effect of ancestry on various health outcomes. We estimated the genetic ancestry of a convenience sample of 641 parents enrolled at the 7 original NCS Vanguard sites, by analyzing 30,000 markers on exome arrays, using the 1000 Genomes Project superpopulations as reference populations, and compared this with the measures of self-reported ethnicity and race. For 99% of the individuals, self-reported ethnicity and race agreed with the predicted superpopulation. NCS individuals self-reporting as Asian had genetic ancestry of either South Asian or East Asian groups, while those reporting as either Hispanic White or Hispanic Other had similar genetic ancestry. Of the 33 individuals who self-reported as Multiracial or Non-Hispanic Other, 33% matched the South Asian or East Asian groups, while these groups represented only 4.4% of the other reported categories. Our data suggest that self-reported ethnicity and race have some limitations in accurately capturing Hispanic and South Asian populations. Overall, however, our data indicate that despite the complexity of the US population, individuals know their ancestral origins, and that self-reported ethnicity and race is a reliable indicator of genetic ancestry.

  10. Genetic and Environmental Contributions to General Cognitive Ability through the First 16 Years of Life

    ERIC Educational Resources Information Center

    Petrill, Stephen A.; Lipton, Paul A.; Hewitt, John K.; Plomin, Robert; Cherny, Stacey S.; Corley, Robin; DeFries, John C.

    2004-01-01

    The genetic and environmental contributions to the development of general cognitive ability throughout the first 16 years of life were examined using sibling data from the Colorado Adoption Project. Correlations were analyzed along with structural equation models to characterize the genetic and environmental influences on longitudinal stability…

  11. Vascular Health and Genetic Risk Affect Mild Cognitive Impairment Status and 4-Year Stability: Evidence From the Victoria Longitudinal Study.

    PubMed

    DeCarlo, Correne A; MacDonald, Stuart W S; Vergote, David; Jhamandas, Jack; Westaway, David; Dixon, Roger A

    2016-11-01

    Mild cognitive impairment (MCI) is a high-risk condition for progression to Alzheimer's disease (AD). Vascular health is a key mechanism underlying age-related cognitive decline and neurodegeneration. AD-related genetic risk factors may be associated with preclinical cognitive status changes. We examine independent and cross-domain interactive effects of vascular and genetic markers for predicting MCI status and stability. We used cross-sectional and 2-wave longitudinal data from the Victoria Longitudinal Study, including indicators of vascular health (e.g., reported vascular diseases, measured lung capacity and pulse rate) and genetic risk factors-that is, apolipoprotein E (APOE; rs429358 and rs7412; the presence vs absence of ε4) and catechol-O-methyltransferase (COMT; rs4680; met/met vs val/val). We examined associations with objectively classified (a) cognitive status at baseline (not impaired congnitive (NIC) controls vs MCI) and (b) stability or transition of cognitive status across a 4-year interval (stable NIC-NIC vs chronic MCI-MCI or transitional NIC-MCI). Using logistic regression, indicators of vascular health, both independently and interactively with APOE ε4, were associated with risk of MCI at baseline and/or associated with MCI conversion or MCI stability over the retest interval. Several vascular health markers of aging predict MCI risk. Interactively, APOE ε4 may intensify the vascular health risk for MCI. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Genetic association studies in β-hemoglobinopathies.

    PubMed

    Thein, Swee Lay

    2013-01-01

    Characterization of the molecular basis of the β-thalassemias and sickle cell disease (SCD) clearly showed that individuals with the same β-globin genotypes can have extremely diverse clinical severity. Two key modifiers, an innate ability to produce fetal hemoglobin and coinheritance of α-thalassemia, both derived from family and population studies, affect the pathophysiology of both disorders at the primary level. In the past 2 decades, scientific research had applied genetic approaches to identify additional genetic modifiers. The review summarizes recent genetic studies and key genetic modifiers identified and traces the story of fetal hemoglobin genetics, which has led to an emerging network of globin gene regulation. The discoveries have provided insights on new targets for therapeutic intervention and raise possibilities of developing fetal hemoglobin predictive diagnostics for predicting disease severity in the newborn and for integration into prenatal diagnosis to better inform genetic counseling.

  13. Psychopathology in 7-year-old children: Differences in maternal and paternal ratings and the genetic epidemiology.

    PubMed

    Wesseldijk, Laura W; Fedko, Iryna O; Bartels, Meike; Nivard, Michel G; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; Middeldorp, Christel M

    2017-04-01

    The assessment of children's psychopathology is often based on parental report. Earlier studies have suggested that rater bias can affect the estimates of genetic, shared environmental and unique environmental influences on differences between children. The availability of a large dataset of maternal as well as paternal ratings of psychopathology in 7-year old children enabled (i) the analysis of informant effects on these assessments, and (ii) to obtain more reliable estimates of the genetic and non-genetic effects. DSM-oriented measures of affective, anxiety, somatic, attention-deficit/hyperactivity, oppositional-defiant, conduct, and obsessive-compulsive problems were rated for 12,310 twin pairs from the Netherlands Twin Register by mothers (N = 12,085) and fathers (N = 8,516). The effects of genetic and non-genetic effects were estimated on the common and rater-specific variance. For all scales, mean scores on maternal ratings exceeded paternal ratings. Parents largely agreed on the ranking of their child's problems (r 0.60-0.75). The heritability was estimated over 55% for maternal and paternal ratings for all scales, except for conduct problems (44-46%). Unbiased shared environmental influences, i.e., on the common variance, were significant for affective (13%), oppositional (13%), and conduct problems (37%). In clinical settings, different cutoffs for (sub)clinical scores could be applied to paternal and maternal ratings of their child's psychopathology. Only for conduct problems, shared environmental and genetic influences explain an equal amount in differences between children. For the other scales, genetic factors explain the majority of the variance, especially for the common part that is free of rater bias. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley

  14. Medical Genetics and the First Studies of the Genetics of Populations in Mexico.

    PubMed

    Barahona, Ana

    2016-09-01

    Following World War II (WWII), there was a new emphasis within genetics on studying the genetic composition of populations. This probably had a dual source in the growing strength of evolutionary biology and the new international interest in understanding the effects of radiation on human populations, following the atomic bombings in Japan. These global concerns were shared by Mexican physicians. Indeed, Mexico was one of the leading centers of this trend in human genetics. Three leading players in this story were Mario Salazar Mallén, Adolfo Karl, and Rubén Lisker. Their trajectories and the international networks in human genetics that were established after WWII, paved the way for the establishment of medical and population genetics in Mexico. Salazar Mallén's studies on the distribution and characterization of ABO blood groups in indigenous populations were the starting point while Karl's studies on the distribution of abnormal hemoglobin in Mexican indigenous populations showed the relationships observed in other laboratories at the time. It was Lisker's studies, however, that were instrumental in the development of population genetics in the context of national public policies for extending health care services to the Mexican population. In particular, he conducted studies on Mexican indigenous groups contributing to the knowledge of the biological diversity of human populations according to international trends that focused on the variability of human populations in terms of genetic frequencies. From the start, however, Lisker was as committed to the reconstruction of shared languages and practices as he was to building networks of collaboration in order to guarantee the necessary groundwork for establishing the study of the genetics of human populations in Mexico. This study also allows us to place Mexican science within a global context in which connected narratives describe the interplay between global trends and national contexts. Copyright © 2016 by

  15. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study.

    PubMed

    Talmud, Philippa J; Hingorani, Aroon D; Cooper, Jackie A; Marmot, Michael G; Brunner, Eric J; Kumari, Meena; Kivimäki, Mika; Humphries, Steve E

    2010-01-14

    To assess the performance of a panel of common single nucleotide polymorphisms (genotypes) associated with type 2 diabetes in distinguishing incident cases of future type 2 diabetes (discrimination), and to examine the effect of adding genetic information to previously validated non-genetic (phenotype based) models developed to estimate the absolute risk of type 2 diabetes. Workplace based prospective cohort study with three 5 yearly medical screenings. 5535 initially healthy people (mean age 49 years; 33% women), of whom 302 developed new onset type 2 diabetes over 10 years. Non-genetic variables included in two established risk models-the Cambridge type 2 diabetes risk score (age, sex, drug treatment, family history of type 2 diabetes, body mass index, smoking status) and the Framingham offspring study type 2 diabetes risk score (age, sex, parental history of type 2 diabetes, body mass index, high density lipoprotein cholesterol, triglycerides, fasting glucose)-and 20 single nucleotide polymorphisms associated with susceptibility to type 2 diabetes. Cases of incident type 2 diabetes were defined on the basis of a standard oral glucose tolerance test, self report of a doctor's diagnosis, or the use of anti-diabetic drugs. A genetic score based on the number of risk alleles carried (range 0-40; area under receiver operating characteristics curve 0.54, 95% confidence interval 0.50 to 0.58) and a genetic risk function in which carriage of risk alleles was weighted according to the summary odds ratios of their effect from meta-analyses of genetic studies (area under receiver operating characteristics curve 0.55, 0.51 to 0.59) did not effectively discriminate cases of diabetes. The Cambridge risk score (area under curve 0.72, 0.69 to 0.76) and the Framingham offspring risk score (area under curve 0.78, 0.75 to 0.82) led to better discrimination of cases than did genotype based tests. Adding genetic information to phenotype based risk models did not improve

  16. Knowledge of Genetics and Attitudes toward Genetic Testing among College Students in Saudi Arabia.

    PubMed

    Olwi, Duaa; Merdad, Leena; Ramadan, Eman

    2016-01-01

    Genetic testing has been gradually permeating the practice of medicine. Health-care providers may be confronted with new genetic approaches that require genetically informed decisions which will be influenced by patients' knowledge of genetics and their attitudes toward genetic testing. This study assesses the knowledge of genetics and attitudes toward genetic testing among college students. A cross-sectional study was conducted using a multistage stratified sample of 920 senior college students enrolled at King Abdulaziz University, Saudi Arabia. Information regarding knowledge of genetics, attitudes toward genetic testing, and sociodemographic data were collected using a self-administered questionnaire. In general, students had a good knowledge of genetics but lacked some fundamentals of genetics. The majority of students showed positive attitudes toward genetic testing, but some students showed negative attitudes toward certain aspects of genetic testing such as resorting to abortion in the case of an untreatable major genetic defect in an unborn fetus. The main significant predictors of knowledge were faculty, gender, academic year, and some prior awareness of 'genetic testing'. The main significant predictors of attitudes were gender, academic year, grade point average, and some prior awareness of 'genetic testing'. The knowledge of genetics among college students was higher than has been reported in other studies, and the attitudes toward genetic testing were fairly positive. Genetics educational programs that target youths may improve knowledge of genetics and create a public perception that further supports genetic testing. © 2016 S. Karger AG, Basel.

  17. The Congenital Heart Disease Genetic Network Study: rationale, design, and early results.

    PubMed

    Gelb, Bruce; Brueckner, Martina; Chung, Wendy; Goldmuntz, Elizabeth; Kaltman, Jonathan; Kaski, Juan Pablo; Kim, Richard; Kline, Jennie; Mercer-Rosa, Laura; Porter, George; Roberts, Amy; Rosenberg, Ellen; Seiden, Howard; Seidman, Christine; Sleeper, Lynn; Tennstedt, Sharon; Kaltman, Jonathan; Schramm, Charlene; Burns, Kristin; Pearson, Gail; Rosenberg, Ellen

    2013-02-15

    Congenital heart defects (CHD) are the leading cause of infant mortality among birth defects, and later morbidities and premature mortality remain problematic. Although genetic factors contribute significantly to cause CHD, specific genetic lesions are unknown for most patients. The National Heart, Lung, and Blood Institute-funded Pediatric Cardiac Genomics Consortium established the Congenital Heart Disease Genetic Network Study to investigate relationships between genetic factors, clinical features, and outcomes in CHD. The Pediatric Cardiac Genomics Consortium comprises 6 main and 4 satellite sites at which subjects are recruited, and medical data and biospecimens (blood, saliva, cardiovascular tissue) are collected. Core infrastructure includes an administrative/data-coordinating center, biorepository, data hub, and core laboratories (genotyping, whole-exome sequencing, candidate gene evaluation, and variant confirmation). Eligibility includes all forms of CHD. Annual follow-up is obtained for probands <1-year-old. Parents are enrolled whenever available. Enrollment from December 2010 to June 2012 comprised 3772 probands. One or both parents were enrolled for 72% of probands. Proband median age is 5.5 years. The one third enrolled at age <1 year are contacted annually for follow-up information. The distribution of CHD favors more complex lesions. Approximately, 11% of probands have a genetic diagnosis. Adequate DNA is available from 97% and 91% of blood and saliva samples, respectively. Genomic analyses of probands with heterotaxy, atrial septal defects, conotruncal, and left ventricular outflow tract obstructive lesions are underway. The scientific community's use of Pediatric Cardiac Genomics Consortium resources is welcome.

  18. Strong genetic contribution to peer relationship difficulties at school entry: findings from a longitudinal twin study.

    PubMed

    Boivin, Michel; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette; Girard, Alain; Pérusse, Daniel; Tremblay, Richard E

    2013-01-01

    This study assessed the genetic and environmental contributions to peer difficulties in the early school years. Twins' peer difficulties were assessed longitudinally in kindergarten (796 twins, Mage = 6.1 years), Grade 1 (948 twins, Mage = 7.1 years), and Grade 4 (868 twins, Mage = 10 years) through multiple informants. The multivariate results revealed that genetic factors accounted for a strong part of both yearly and stable peer difficulties. At the univariate level, the genetic contributions emerged progressively, as did a growing consensus among informants with respect to those who experienced peer difficulties. These results underline the need to intervene early and persistently, and to target the child and the peer context to prevent peer difficulties and their consequences. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  19. Pearls and pitfalls in genetic studies of migraine.

    PubMed

    Eising, Else; de Vries, Boukje; Ferrari, Michel D; Terwindt, Gisela M; van den Maagdenberg, Arn M J M

    2013-06-01

    Migraine is a prevalent neurovascular brain disorder with a strong genetic component, and different methodological approaches have been implemented to identify the genes involved. This review focuses on pearls and pitfalls of these approaches and genetic findings in migraine. Common forms of migraine (i.e. migraine with and without aura) are thought to have a polygenic make-up, whereas rare familial hemiplegic migraine (FHM) presents with a monogenic pattern of inheritance. Until a few years ago only studies in FHM yielded causal genes, which were identified by a classical linkage analysis approach. Functional analyses of FHM gene mutations in cellular and transgenic animal models suggest abnormal glutamatergic neurotransmission as a possible key disease mechanism. Recently, a number of genes were discovered for the common forms of migraine using a genome-wide association (GWA) approach, which sheds first light on the pathophysiological mechanisms involved. Novel technological strategies such as next-generation sequencing, which can be implemented in future genetic migraine research, may aid the identification of novel FHM genes and promote the search for the missing heritability of common migraine.

  20. Genetic analyses of linear profiling data on 3-year-old Swedish Warmblood horses.

    PubMed

    Viklund, Å; Eriksson, S

    2018-02-01

    A linear profiling protocol was introduced in 2013 at tests for 3-year-old Swedish Warmblood horses. In this protocol, traits are subjectively described on a nine-point linear scale from one biological extreme to the other. This complements the traditional scoring where horses are evaluated in relation to the breeding objective. This study aimed to investigate the suitability of the linear information for genetic evaluation. Data on 22 conformation traits, 17 movement traits, 14 jumping traits and one temperament trait from 3,410 horses tested between 2013 and 2016 were analysed using an animal model. For conformation traits, the heritabilities ranged from 0.10 for description of hock joint from behind to 0.52 for shape of the neck. For movement traits, the highest heritability (0.54) was estimated for elasticity in trot and the lowest (0.08) for energy in walk. The heritabilities for jumping traits ranged from 0.05 for the ability to focus on the assignment to 0.57 for scope. Genetic correlations between linear traits and corresponding traditionally scored traits were strong (-0.37 to in many cases <-0.9). The results show that the linear information is suitable for genetic evaluation and can be a useful tool for breeders. © 2018 Blackwell Verlag GmbH.

  1. Study books on ADHD genetics: balanced or biased?

    PubMed

    Te Meerman, Sanne; Batstra, Laura; Hoekstra, Rink; Grietens, Hans

    2017-06-01

    Academic study books are essential assets for disseminating knowledge about ADHD to future healthcare professionals. This study examined if they are balanced with regard to genetics. We selected and analyzed study books (N=43) used in (pre) master's programmes at 10 universities in the Netherlands. Because the mere behaviourally informed quantitative genetics give a much higher effect size of the genetic involvement in ADHD, it is important that study books contrast these findings with molecular genetics' outcomes. The latter studies use real genetic data, and their low effect sizes expose the potential weaknesses of quantitative genetics, like underestimating the involvement of the environment. Only a quarter of books mention both effect sizes and contrast these findings, while another quarter does not discuss any effect size. Most importantly, however, roughly half of the books in our sample mention only the effect sizes from quantitative genetic studies without addressing the low explained variance of molecular genetic studies. This may confuse readers by suggesting that the weakly associated genes support the quite spectacular, but potentially flawed estimates of twin, family and adoption studies, while they actually contradict them.

  2. A Twin Study into the Genetic and Environmental Influences on Academic Performance in Science in Nine-Year-Old Boys and Girls

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Dale, Philip; Plomin, Robert

    2008-01-01

    We investigated for the first time the genetic and environmental aetiology behind scientific achievement in primary school children, with a special focus on possible aetiological differences for boys and girls. For a representative community sample of 2,602 twin pairs assessed at age nine years, scientific achievement in school was rated by…

  3. Genetic Counselling, BRCA1/2 Status and Clinico-pathologic Characteristics of Patients with Ovarian Cancer before 50 Years of Age

    PubMed Central

    Cvelbar, Mirjam; Hocevar, Marko; Novakovic, Srdjan; Stegel, Vida; Perhavec, Andraz

    2017-01-01

    Abstract Background In Slovenia like in other countries, till recently, personal history of epithelial ovarian cancer (EOC) has not been included among indications for genetic counselling. Recent studies reported up to 17% rate of germinal BRCA1/2 mutation (gBRCA1/2m) within the age group under 50 years at diagnosis. The original aim of this study was to invite to the genetic counselling still living patients with EOC under 45 years, to offer gBRCA1/2m testing and to perform analysis of gBRCA1/2m rate and of clinico-pathologic characteristics. Later, we added also the data of previously genetically tested patients with EOC aged 45 to 49 years. Patients and methods All clinical data have to be interpreted in the light of many changes happened in the field of EOC just in the last few years: new hystology stage classification (FIGO), new hystology types and differentiation grades classification, new therapeutic possibilities (PARP inhibitors available, also in Slovenia) and new guidelines for genetic counselling of EOC patients (National Comprehensive Cancer Network, NCCN), together with next-generation sequencing possibilities. Results Compliance rate at the invitation was 43.1%. In the group of 27 invited or previously tested patients with EOC diagnosed before the age of 45 years, five gBRCA1/2 mutations were found. The gBRCA1/2m detection rate within the group was 18.5%. There were 4 gBRCA1 and 1 gBRCA2 mutations detected. In the extended group of 42 tested patients with EOC diagnosed before the age of 50 years, 14 gBRCA1/2 mutations were found. The gBRCA1/2m detection rate within this extended, partially selected group was 33.3%. There were 11 gBRCA1 and 3 gBRCA2 mutations detected. Conclusions The rate of gBRCA1/2 mutation in tested unselected EOC patients under the age of 50 years was higher than 10%, namely 18.5%. Considering also a direct therapeuthic benefit of PARP inhibitors for BRCA positive patients, there is a double reason to offer genetic testing to

  4. Medical Genetics and the First Studies of the Genetics of Populations in Mexico

    PubMed Central

    Barahona, Ana

    2016-01-01

    Following World War II (WWII), there was a new emphasis within genetics on studying the genetic composition of populations. This probably had a dual source in the growing strength of evolutionary biology and the new international interest in understanding the effects of radiation on human populations, following the atomic bombings in Japan. These global concerns were shared by Mexican physicians. Indeed, Mexico was one of the leading centers of this trend in human genetics. Three leading players in this story were Mario Salazar Mallén, Adolfo Karl, and Rubén Lisker. Their trajectories and the international networks in human genetics that were established after WWII, paved the way for the establishment of medical and population genetics in Mexico. Salazar Mallén’s studies on the distribution and characterization of ABO blood groups in indigenous populations were the starting point while Karl’s studies on the distribution of abnormal hemoglobin in Mexican indigenous populations showed the relationships observed in other laboratories at the time. It was Lisker’s studies, however, that were instrumental in the development of population genetics in the context of national public policies for extending health care services to the Mexican population. In particular, he conducted studies on Mexican indigenous groups contributing to the knowledge of the biological diversity of human populations according to international trends that focused on the variability of human populations in terms of genetic frequencies. From the start, however, Lisker was as committed to the reconstruction of shared languages and practices as he was to building networks of collaboration in order to guarantee the necessary groundwork for establishing the study of the genetics of human populations in Mexico. This study also allows us to place Mexican science within a global context in which connected narratives describe the interplay between global trends and national contexts. PMID:27601615

  5. Some genetic problems in physical growth and development. A longitudinal study on children aged 0--7 years.

    PubMed

    Chrzastek-Spruch, H M

    1977-01-01

    Aiming at determining the influence of some genetic factors on growth and development, a longitudinal study of 180 children (90 M and 90 F) from the city of Lublin was carried out, with periodical medical examinations and anthropometric measurements from birth to 7 years of age. The parents of each child were also examined. The correlation coefficients between parents and children show that, as regards height, the greatest similarity occurs between mothers and daughters, and a lesser one between fathers and sons. As regards weight, sons are more similar to fathers than daughters to mothers. The relationship between the growth and development of children and the mating type of parents, parental age, and birth order, was also investigated. In negative assortative mating, the children are taller than the children of middle-height parents from positive assortative mating couples. Children (especially daughters) of tall mothers and short fathers grow taller than children of tall fathers and short mothers. Finally, the dependence of growth on parental age and birth order was analysed and the conclusions reached were quite interesting.

  6. Preimplantation genetic diagnosis for cystic fibrosis: the Montpellier center's 10-year experience.

    PubMed

    Girardet, A; Ishmukhametova, A; Willems, M; Coubes, C; Hamamah, S; Anahory, T; Des Georges, M; Claustres, M

    2015-02-01

    This study provides an overview of 10 years of experience of preimplantation genetic diagnosis (PGD) for cystic fibrosis (CF) in our center. Owing to the high allelic heterogeneity of CF transmembrane conductance regulator (CFTR) mutations in south of France, we have set up a powerful universal test based on haplotyping eight short tandem repeats (STR) markers together with the major mutation p.Phe508del. Of 142 couples requesting PGD for CF, 76 have been so far enrolled in the genetic work-up, and 53 had 114 PGD cycles performed. Twenty-nine cycles were canceled upon in vitro fertilization (IVF) treatment because of hyper- or hypostimulation. Of the remaining 85 cycles, a total of 493 embryos were biopsied and a genetic diagnosis was obtained in 463 (93.9%), of which 262 (without or with a single CF-causing mutation) were transferable. Twenty-eight clinical pregnancies were established, yielding a pregnancy rate per transfer of 30.8% in the group of seven couples with one member affected with CF, and 38.3% in the group of couples whose both members are carriers of a CF-causing mutation [including six couples with congenital bilateral absence of the vas deferens (CBAVD)]. So far, 25 children were born free of CF and no misdiagnosis was recorded. Our test is applicable to 98% of couples at risk of transmitting CF. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Study books on ADHD genetics: balanced or biased?

    PubMed Central

    te Meerman, Sanne; Batstra, Laura; Hoekstra, Rink; Grietens, Hans

    2017-01-01

    ABSTRACT Academic study books are essential assets for disseminating knowledge about ADHD to future healthcare professionals. This study examined if they are balanced with regard to genetics. We selected and analyzed study books (N=43) used in (pre) master’s programmes at 10 universities in the Netherlands. Because the mere behaviourally informed quantitative genetics give a much higher effect size of the genetic involvement in ADHD, it is important that study books contrast these findings with molecular genetics’ outcomes. The latter studies use real genetic data, and their low effect sizes expose the potential weaknesses of quantitative genetics, like underestimating the involvement of the environment. Only a quarter of books mention both effect sizes and contrast these findings, while another quarter does not discuss any effect size. Most importantly, however, roughly half of the books in our sample mention only the effect sizes from quantitative genetic studies without addressing the low explained variance of molecular genetic studies. This may confuse readers by suggesting that the weakly associated genes support the quite spectacular, but potentially flawed estimates of twin, family and adoption studies, while they actually contradict them. PMID:28532325

  8. Genetic analysis of Apuleia leiocarpa as revealed by random amplified polymorphic DNA markers: prospects for population genetic studies.

    PubMed

    Lencina, K H; Konzen, E R; Tsai, S M; Bisognin, D A

    2016-12-19

    Apuleia leiocarpa (Vogel) J.F. MacBride is a hardwood species native to South America, which is at serious risk of extinction. Therefore, it is of prime importance to examine the genetic diversity of this species, information required for developing conservation, sustainable management, and breeding strategies. Although scarcely used in recent years, random amplified polymorphic DNA markers are useful resources for the analysis of genetic diversity and structure of tree species. This study represents the first genetic analysis based on DNA markers in A. leiocarpa that aimed to investigate the levels of polymorphism and to select markers for the precise characterization of its genetic structure. We adapted the original DNA extraction protocol based on cetyltrimethyl ammonium bromide, and describe a simple procedure that can be used to obtain high-quality samples from leaf tissues of this tree. Eighteen primers were selected, revealing 92 bands, from which 75 were polymorphic and 61 were sufficient to represent the overall genetic structure of the population without compromising the precision of the analysis. Some fragments were conserved among individuals, which can be sequenced and used to analyze nucleotide diversity parameters through a wider set of A. leiocarpa individuals and populations. The individuals were separated into 11 distinct groups with variable levels of genetic diversity, which is important for selecting desirable genotypes and for the development of a conservation and sustainable management program. Our results are of prime importance for further investigations concerning the genetic characterization of this important, but vulnerable species.

  9. Ten years of genetics and genomics: what have we achieved and where are we heading?

    PubMed Central

    Heard, Edith; Tishkoff, Sarah; Todd, John A.; Vidal, Marc; Wagner, Günter P.; Wang, Jun; Weigel, Detlef; Young, Richard

    2010-01-01

    To celebrate the first 10 years of Nature Reviews Genetics, we asked eight leading researchers for their views on the key developments in genetics and genomics in the past decade and the prospects for the future. Their responses highlight the incredible changes that the field has seen, from the explosion of genomic data and the many possibilities it has opened up to the ability to reprogramme adult cells to pluripotency. The way ahead looks similarly exciting as we address questions such as how cells function as systems and how complex interactions among genetics, epigenetics and the environment combine to shape phenotypes. PMID:20820184

  10. Exposing College Students to Exercise: The Training Interventions and Genetics of Exercise Response (TIGER) Study

    ERIC Educational Resources Information Center

    Sailors, Mary H.; Jackson, Andrew S.; McFarlin, Brian K.; Turpin, Ian; Ellis, Kenneth J.; Foreyt, John P.; Hoelscher, Deanna M.; Bray, Molly S.

    2010-01-01

    Objective: The Training Interventions and Genetics of Exercise Response (TIGER) study is an exercise program designed to introduce sedentary college students to regular physical activity and to identify genetic factors that influence response to exercise. Participants: A multiracial/ethnic cohort (N = 1,567; 39% male), age 18 to 35 years,…

  11. Genetics of the Framingham Heart Study Population

    PubMed Central

    Govindaraju, Diddahally R.; Cupples, L. Adrienne; Kannel, William B.; O’Donnell, Christopher J.; Atwood, Larry D.; D’Agostino, Ralph B.; Fox, Caroline S.; Larson, Marty; Levy, Daniel; Morabito, Joanne; Vasan, Ramachandran S.; Splansky, Greta Lee; Wolf, Philip A.; Benjamin, Emelia J.

    2010-01-01

    This article provides an introduction to the Framingham Heart Study (FHS) and the genetic research related to cardiovascular diseases conducted in this unique population1. It briefly describes the origins of the study, the risk factors that contribute to heart disease and the approaches taken to discover the genetic basis of some of these risk factors. The genetic architecture of several biological risk factors has been explained using family studies, segregation analysis, heritability, phenotypic and genetic correlations. Many quantitative trait loci underlying cardiovascular diseases have been discovered using different molecular markers. Additionally, results from genome-wide association studies using 100,000 markers, and the prospects of using 550,000 markers for association studies are presented. Finally, the use of this unique sample in genotype and environment interaction is described. PMID:19010253

  12. Genetically at-risk status and individual agency. A qualitative study on asymptomatic women living with genetic risk of breast/ovarian cancer.

    PubMed

    Caiata-Zufferey, Maria

    2015-05-01

    For the last 20 years, genetic tests have allowed unaffected women to determine whether they are predisposed to developing breast/ovarian cancer due to BRCA1/2 gene mutations. In the event of adverse results, women receive a specific label associated with a set of medical recommendations: the genetically at-risk status. This qualitative study adopted a life-course perspective to understand the impact of this status on women's agency. Following a grounded theory design, retrospective biographical interviews were conducted in Switzerland between 2011 and 2013 with 32 unaffected women at risk of developing genetic breast/ovarian cancer and aware of their predisposition for at least three years. The results show that the genetically at-risk status conveys an invitation to transform health into a project, i.e., into a set of planned activities realized in collaboration with the medical system in order to reduce the risk of developing cancer. This health project shapes women's agency in three ways: it enhances, constrains and questions it, thus creating a sense of disorientation about what is considered rational and appropriate in terms of genetic risk management. Based on these findings, the paper concludes by stressing the paradoxes of the genetically at-risk status and the limits of the medical system in managing women designated with it. The paper also suggests that because of the disorientation intrinsic to their situation, genetically at-risk women have to reflexively construct their own health project from a range of available options in ways that are coherent and viable for themselves and their significant others. This process of reflexive construction may be called legitimation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Genetic ancestry of participants in the National Children’s Study

    PubMed Central

    2014-01-01

    Background The National Children’s Study (NCS) is a prospective epidemiological study in the USA tasked with identifying a nationally representative sample of 100,000 children, and following them from their gestation until they are 21 years of age. The objective of the study is to measure environmental and genetic influences on growth, development, and health. Determination of the ancestry of these NCS participants is important for assessing the diversity of study participants and for examining the effect of ancestry on various health outcomes. Results We estimated the genetic ancestry of a convenience sample of 641 parents enrolled at the 7 original NCS Vanguard sites, by analyzing 30,000 markers on exome arrays, using the 1000 Genomes Project superpopulations as reference populations, and compared this with the measures of self-reported ethnicity and race. For 99% of the individuals, self-reported ethnicity and race agreed with the predicted superpopulation. NCS individuals self-reporting as Asian had genetic ancestry of either South Asian or East Asian groups, while those reporting as either Hispanic White or Hispanic Other had similar genetic ancestry. Of the 33 individuals who self-reported as Multiracial or Non-Hispanic Other, 33% matched the South Asian or East Asian groups, while these groups represented only 4.4% of the other reported categories. Conclusions Our data suggest that self-reported ethnicity and race have some limitations in accurately capturing Hispanic and South Asian populations. Overall, however, our data indicate that despite the complexity of the US population, individuals know their ancestral origins, and that self-reported ethnicity and race is a reliable indicator of genetic ancestry. PMID:24490717

  14. Genetic variants related to height and risk of atrial fibrillation: the cardiovascular health study.

    PubMed

    Rosenberg, Michael A; Kaplan, Robert C; Siscovick, David S; Psaty, Bruce M; Heckbert, Susan R; Newton-Cheh, Christopher; Mukamal, Kenneth J

    2014-07-15

    Increased height is a known independent risk factor for atrial fibrillation (AF). However, whether genetic determinants of height influence risk is uncertain. In this candidate gene study, we examined the association of 209 height-associated single-nucleotide polymorphisms (SNPs) with incident AF in 3,309 persons of European descent from the Cardiovascular Health Study, a prospective cohort study of older adults (aged ≥ 65 years) enrolled in 1989-1990. After a median follow-up period of 13.2 years, 879 participants developed incident AF. The height-associated SNPs together explained approximately 10% of the variation in height (P = 6.0 × 10(-8)). Using an unweighted genetic height score, we found a nonsignificant association with risk of AF (per allele, hazard ratio = 1.01, 95% confidence interval: 1.00, 1.02; P = 0.06). In weighted analyses, we found that genetically predicted height was strongly associated with AF risk (per 10 cm, hazard ratio = 1.30, 95% confidence interval: 1.03, 1.64; P = 0.03). Importantly, for all models, the inclusion of actual height completely attenuated the genetic height effect. Finally, we identified 1 nonsynonymous SNP (rs1046934) that was independently associated with AF and may warrant future study. In conclusion, we found that genetic determinants of height appear to increase the risk of AF, primarily via height itself. This approach of examining SNPs associated with an intermediate phenotype should be considered as a method for identifying novel genetic targets. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Genetic studies of Age-related macular degeneration: lessons, challenges and opportunities for disease management

    PubMed Central

    Ratna Priya, Rinki; Chew, Emily Y.; Swaroop, Anand

    2012-01-01

    Age-related macular degeneration (AMD) is a common cause of visual impairment in individuals over 55 years of age worldwide. The varying clinical phenotypes of AMD result from contributions of genetic, epigenetic and non-genetic (environmental) factors. Genetic studies of AMD have come of age as a direct result of tremendous gains from human genome project, genomewide association studies and identification of numerous susceptibility loci. These findings have implicated immune response, high-density lipoprotein cholesterol metabolism, extracellular matrix, and angiogenesis signaling pathways in disease pathophysiology. Here, we address how the wealth of genetic findings in AMD is expected to impact the practice of medicine, providing opportunities for improved risk assessment, molecular diagnosis, preventive and therapeutic intervention. We propose that the potential of using genetic variants for monitoring treatment response (pharmacogenetics) may usher a new era of personalized medicine in the clinical management of AMD. PMID:23009893

  16. Quantitative genetic analysis of cellular adhesion molecules: the Fels Longitudinal Study.

    PubMed

    Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Demerath, Ellen W; Sun, Shumei S; Chumlea, Wm C; Towne, Bradford; Siervogel, Roger M

    2006-03-01

    Circulating concentrations of inflammatory markers predict cardiovascular disease (CVD) risk and are closely associated with obesity. However, little is known concerning genetic influences on serum levels of inflammatory markers. In this study, we estimated the heritability (h2) of soluble cellular adhesion molecule (sCAM) concentrations and examined the correlational architecture between different sCAMs. The study population included 234 men and 270 women aged 18-76 years, belonging to 121 families participating in the Fels Longitudinal Study. Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sESEL-1) and P-selectin (sPSEL-1) were assayed using commercially available kits. A variance components-based maximum likelihood method was used to estimate the h2 of the different serum inflammatory markers while simultaneously adjusting for the effects of known CVD risk factors, such as age and smoking. Additionally, we used bivariate extensions of these methods to estimate genetic and random environmental correlations among sCAMs. Levels of sCAMs were significantly heritable: h2=0.24+/-0.10 for sICAM-1, h2=0.22+/-0.10 for sVCAM-1, h2=0.50+/-0.11 for sESEL-1, and h2=0.46+/-0.10 for sPSEL-1. In addition, a significant genetic correlation (rho(G)=0.63) was found between sICAM-1 and sVCAM-1 indicating some degree of shared genetic control. In the Fels Longitudinal Study, the levels of four sCAMs are significantly influenced by genetic effects, and sICAM-1 shares a common genetic background with sVCAM-1.

  17. Genetic evaluation of weaning weight and probability of lambing at 1 year of age in Targhee lambs

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate genetic control of 120-day weaning weight and the probability of lambing at 1 year of age in Targhee ewe lambs. Records of 5,967 ewe lambs born from 1989 to 2012 and first exposed to rams for breeding at approximately 7 months of age were analyzed. Reco...

  18. MetaGenyo: a web tool for meta-analysis of genetic association studies.

    PubMed

    Martorell-Marugan, Jordi; Toro-Dominguez, Daniel; Alarcon-Riquelme, Marta E; Carmona-Saez, Pedro

    2017-12-16

    Genetic association studies (GAS) aims to evaluate the association between genetic variants and phenotypes. In the last few years, the number of this type of study has increased exponentially, but the results are not always reproducible due to experimental designs, low sample sizes and other methodological errors. In this field, meta-analysis techniques are becoming very popular tools to combine results across studies to increase statistical power and to resolve discrepancies in genetic association studies. A meta-analysis summarizes research findings, increases statistical power and enables the identification of genuine associations between genotypes and phenotypes. Meta-analysis techniques are increasingly used in GAS, but it is also increasing the amount of published meta-analysis containing different errors. Although there are several software packages that implement meta-analysis, none of them are specifically designed for genetic association studies and in most cases their use requires advanced programming or scripting expertise. We have developed MetaGenyo, a web tool for meta-analysis in GAS. MetaGenyo implements a complete and comprehensive workflow that can be executed in an easy-to-use environment without programming knowledge. MetaGenyo has been developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-Weinberg test, statistical association for different genetic models, analysis of heterogeneity, testing for publication bias, subgroup analysis and robustness testing of the results. MetaGenyo is a useful tool to conduct comprehensive genetic association meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/ .

  19. Genetic Moderation of Stability in Attachment Security from Early Childhood to Age 18 Years: A Replication Study

    ERIC Educational Resources Information Center

    Raby, K. Lee; Roisman, Glenn I.; Booth-LaForce, Cathryn

    2015-01-01

    A longstanding question for attachment theory and research is whether genetically based characteristics of the child influence the development of attachment security and its stability over time. This study attempted to replicate and extend recent findings indicating that the developmental stability of attachment security is moderated by oxytocin…

  20. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    PubMed

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  1. Childhood victimization and inflammation in young adulthood: A genetically sensitive cohort study.

    PubMed

    Baldwin, Jessie R; Arseneault, Louise; Caspi, Avshalom; Fisher, Helen L; Moffitt, Terrie E; Odgers, Candice L; Pariante, Carmine; Ambler, Antony; Dove, Rosamund; Kepa, Agnieszka; Matthews, Timothy; Menard, Anne; Sugden, Karen; Williams, Benjamin; Danese, Andrea

    2018-01-01

    Childhood victimization is an important risk factor for later immune-related disorders. Previous evidence has demonstrated that childhood victimization is associated with elevated levels of inflammation biomarkers measured decades after exposure. However, it is unclear whether this association is (1) already detectable in young people, (2) different in males and females, and (3) confounded by genetic liability to inflammation. Here we sought to address these questions. Participants were 2232 children followed from birth to age 18years as part of the Environmental Risk (E-Risk) Longitudinal Twin Study. Childhood victimization was measured prospectively from birth to age 12years. Inflammation was measured through C-reactive protein (CRP) levels in dried blood spots at age 18years. Latent genetic liability for high inflammation levels was assessed through a twin-based method. Greater exposure to childhood victimization was associated with higher CRP levels at age 18 (serum-equivalent means were 0.65 in non-victimized Study members, 0.74 in those exposed to one victimization type, and 0.81 in those exposed to poly-victimization; p=0.018). However, this association was driven by a significant association in females (serum-equivalent means were 0.75 in non-victimized females, 0.87 in those exposed to one type of victimization, and 1.19 in those exposed to poly-victimization; p=0.010), while no significant association was observed in males (p=0.19). Victimized females showed elevated CRP levels independent of latent genetic influence, as well as childhood socioeconomic status, and waist-hip ratio and body temperature at the time of CRP assessment. Childhood victimization is associated with elevated CRP levels in young women, independent of latent genetic influences and other key risk factors. These results strengthen causal inference about the effects of childhood victimization on inflammation levels in females by accounting for potential genetic confounding. Copyright

  2. Ten-year experiences on initial genetic examination in childhood acute lymphoblastic leukaemia in Hungary (1993-2002). Technical approaches and clinical implementation.

    PubMed

    Olah, Eva; Balogh, Erzsebet; Pajor, Laszlo; Jakab, Zsuzsanna

    2011-03-01

    A nationwide study was started in 1993 to provide genetic diagnosis for all newly diagnosed childhood ALL cases in Hungary using cytogenetic examination, DNA-index determination, FISH (aneuploidy, ABL/BCR, TEL/AML1) and molecular genetic tests (ABL/BCR, MLL/AF4, TEL/AML1). Aim of the study was to assess the usefulness of different genetic methods, to study the frequency of various aberrations and their prognostic significance. Results were synthesized for genetic subgrouping of patients. To assess the prognostic value of genetic aberrations overall and event-free survival of genetic subgroups were compared using Kaplan-Meier method. Prognostic role of aberrations was investigated by multivariate analysis (Cox's regression) as well in comparison with other factors (age, sex, major congenital abnormalities, initial WBC, therapy, immunophenotype). Five hundred eighty-eight ALL cases were diagnosed between 1993-2002. Cytogenetic examination was performed in 537 (91%) (success rate 73%), DNA-index in 265 (45%), FISH in 74 (13%), TEL/AML1 RT-PCR in 219 (37%) cases producing genetic diagnosis in 457 patients (78%). Proportion of subgroups with good prognosis in prae-B-cell ALL was lower than expected: hyperdiploidB 18% (73/400), TEL/AML1+ 9% (36/400). Univariate analysis showed significantly better 5-year EFS in TEL/AML1+ (82%) and hyperdiploidB cases (78%) than in tetraploid (44%) or pseudodiploid (52%) subgroups. By multivariate analysis main negative prognostic factors were: congenital abnormalities, high WBC, delay in therapy, specific translocations. Complementary use of each of genetic methods used is necessary for reliable genetic diagnosis according to the algorithm presented. Specific genetic alterations proved to be of prognostic significance.

  3. Employability of genetic counselors with a PhD in genetic counseling.

    PubMed

    Wallace, Jody P; Myers, Melanie F; Huether, Carl A; Bedard, Angela C; Warren, Nancy Steinberg

    2008-06-01

    The development of a PhD in genetic counseling has been discussed for more than 20 years, yet the perspectives of employers have not been assessed. The goal of this qualitative study was to gain an understanding of the employability of genetic counselors with a PhD in genetic counseling by conducting interviews with United States employers of genetic counselors. Study participants were categorized according to one of the following practice areas: academic, clinical, government, industry, laboratory, or research. All participants were responsible for hiring genetic counselors in their institutions. Of the 30 employers interviewed, 23 envisioned opportunities for individuals with a PhD degree in genetic counseling, particularly in academic and research settings. Performing research and having the ability to be a principal investigator on a grant was the primary role envisioned for these individuals by 22/30 participants. Employers expect individuals with a PhD in genetic counseling to perform different roles than MS genetic counselors with a master's degree. This study suggests there is an employment niche for individuals who have a PhD in genetic counseling that complements, and does not compete with, master's prepared genetic counselors.

  4. Genetics and recent human evolution.

    PubMed

    Templeton, Alan R

    2007-07-01

    Starting with "mitochondrial Eve" in 1987, genetics has played an increasingly important role in studies of the last two million years of human evolution. It initially appeared that genetic data resolved the basic models of recent human evolution in favor of the "out-of-Africa replacement" hypothesis in which anatomically modern humans evolved in Africa about 150,000 years ago, started to spread throughout the world about 100,000 years ago, and subsequently drove to complete genetic extinction (replacement) all other human populations in Eurasia. Unfortunately, many of the genetic studies on recent human evolution have suffered from scientific flaws, including misrepresenting the models of recent human evolution, focusing upon hypothesis compatibility rather than hypothesis testing, committing the ecological fallacy, and failing to consider a broader array of alternative hypotheses. Once these flaws are corrected, there is actually little genetic support for the out-of-Africa replacement hypothesis. Indeed, when genetic data are used in a hypothesis-testing framework, the out-of-Africa replacement hypothesis is strongly rejected. The model of recent human evolution that emerges from a statistical hypothesis-testing framework does not correspond to any of the traditional models of human evolution, but it is compatible with fossil and archaeological data. These studies also reveal that any one gene or DNA region captures only a small part of human evolutionary history, so multilocus studies are essential. As more and more loci became available, genetics will undoubtedly offer additional insights and resolutions of human evolution.

  5. Forty-five years of cell-cycle genetics

    PubMed Central

    Reid, Brian J.; Culotti, Joseph G.; Nash, Robert S.; Pringle, John R.

    2015-01-01

    In the early 1970s, studies in Leland Hartwell’s laboratory at the University of Washington launched the genetic analysis of the eukaryotic cell cycle and set the path that has led to our modern understanding of this centrally important process. This 45th-anniversary Retrospective reviews the steps by which the project took shape, the atmosphere in which this happened, and the possible morals for modern times. It also provides an up-to-date look at the 35 original CDC genes and their human homologues. PMID:26628751

  6. A Delphi study to determine the European core curriculum for Master programmes in genetic counselling.

    PubMed

    Skirton, Heather; Barnoy, Sivia; Ingvoldstad, Charlotta; van Kessel, Ingrid; Patch, Christine; O'Connor, Anita; Serra-Juhe, Clara; Stayner, Barbara; Voelckel, Marie-Antoinette

    2013-10-01

    Genetic counsellors have been working in some European countries for at least 30 years. Although there are great disparities between the numbers, education, practice and acceptance of these professionals across Europe, it is evident that genetic counsellors and genetic nurses in Europe are working autonomously within teams to deliver patient care. The aim of this study was to use the Delphi research method to develop a core curriculum to guide the educational preparation of these professionals in Europe. The Delphi method enables the researcher to utilise the views and opinions of a group of recognised experts in the field of study; this study consisted of four phases. Phases 1 and 4 consisted of expert workshops, whereas data were collected in phases 2 and 3 (n=35) via online surveys. All participants in the study were considered experts in the field of genetic counselling. The topics considered essential for genetic counsellor training have been organised under the following headings: (1) counselling; (2) psychological issues; (3) medical genetics; (4) human genetics; (5) ethics, law and sociology; (6) professional practice; and (7) education and research. Each topic includes the knowledge, skills and attitudes required to enable genetic counsellors to develop competence. In addition, it was considered by the experts that clinical practice should comprise 50% of the educational programme. The core Master programme curriculum will enable current courses to be assessed and inform the design of future educational programmes for European genetic counsellors.

  7. Friendship Experiences and Anxiety Among Children: A Genetically Informed Study.

    PubMed

    Poirier, Catherine Serra; Brendgen, Mara; Girard, Alain; Vitaro, Frank; Dionne, Ginette; Boivin, Michel

    2016-01-01

    This study examined (a) whether, in line with a gene-environment correlation (rGE), a genetic disposition for anxiety puts children at risk of having anxious friends or having no reciprocal friends; (b) to what extent these friendship experiences are related to anxiety symptoms, when controlling for sex and genetic disposition for this trait; and (c) the additive and interactive predictive links of the reciprocal best friend's anxiety symptoms and of friendship quality with children's anxiety symptoms. Using a genetically informed design based on 521 monozygotic and ic twins (264 girls; 87% of European descent) assessed in Grade 4 (M age = 10.04 years, SD = .26), anxiety symptoms and perceived friendship quality were measured with self-report questionnaires. Results indicated that, in line with rGE, children with a strong genetic disposition for anxiety were more likely to have anxious friends than nonanxious friends. Moreover, controlling for their genetic risk for anxiety, children with anxious friends showed higher levels of anxiety symptoms than children with nonanxious friends but did not differ from those without reciprocal friends. Additional analyses suggested a possible contagion of anxiety symptoms between reciprocal best friends when perceived negative features of friendship were high. These results underline the importance of teaching strategies such as problem solving that enhance friendship quality to limit the potential social contagion of anxiety symptoms.

  8. Persistence of the same genetic type of Mycoplasma hyopneumoniae in a closed herd for at least two years.

    PubMed

    Rebaque, Florencia; Camacho, Pablo; Parada, Julián; Lucchesi, Paula; Ambrogi, Arnaldo; Tamiozzo, Pablo

    2017-10-20

    Two cross-sectional studies were carried out in 2013 and 2015 monitoring for Mycoplasma hyopneumoniae presence in a swine farm. In these studies, the genetic diversity of M. hyopneumoniae was assessed in clinical specimens using a Multiple Locus Variable-number tandem repeat Analysis (MLVA) targeting P97 R1, P146 R3 and H4 loci. The samples from August 2015 showed the MLVA profile prevalent in June 2013, therefore it can be concluded that a same genetic type of M. hyopneumoniae can persist for at least two years in a closed herd. In addition, the nested PCR reactions implemented in this study showed to be useful for MLVA typing in non-invasive clinical samples. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Disease-Concordant Twins Empower Genetic Association Studies.

    PubMed

    Tan, Qihua; Li, Weilong; Vandin, Fabio

    2017-01-01

    Genome-wide association studies with moderate sample sizes are underpowered, especially when testing SNP alleles with low allele counts, a situation that may lead to high frequency of false-positive results and lack of replication in independent studies. Related individuals, such as twin pairs concordant for a disease, should confer increased power in genetic association analysis because of their genetic relatedness. We conducted a computer simulation study to explore the power advantage of the disease-concordant twin design, which uses singletons from disease-concordant twin pairs as cases and ordinary healthy samples as controls. We examined the power gain of the twin-based design for various scenarios (i.e., cases from monozygotic and dizygotic twin pairs concordant for a disease) and compared the power with the ordinary case-control design with cases collected from the unrelated patient population. Simulation was done by assigning various allele frequencies and allelic relative risks for different mode of genetic inheritance. In general, for achieving a power estimate of 80%, the sample sizes needed for dizygotic and monozygotic twin cases were one half and one fourth of the sample size of an ordinary case-control design, with variations depending on genetic mode. Importantly, the enriched power for dizygotic twins also applies to disease-concordant sibling pairs, which largely extends the application of the concordant twin design. Overall, our simulation revealed a high value of disease-concordant twins in genetic association studies and encourages the use of genetically related individuals for highly efficiently identifying both common and rare genetic variants underlying human complex diseases without increasing laboratory cost. © 2016 John Wiley & Sons Ltd/University College London.

  10. What factors may influence psychological well being at three months and one year post BRCA genetic result disclosure?

    PubMed

    Bosch, Nina; Junyent, Núria; Gadea, Neus; Brunet, Joan; Ramon y Cajal, Teresa; Torres, Asunción; Graña, Begoña; Velasco, Angela; Darder, Esther; Mensa, Irene; Balmaña, Judith

    2012-12-01

    Genetic testing for breast cancer predisposition has been available in the clinical practice for more than a decade. How the result of genetic testing affects the psychological well-being of the individuals is an under-researched area in many populations. Follow-up analysis of psychological well-being via HADS scale was performed in 364 individuals at 3 months and 1 year after the disclosure of BRCA1/2 genetic result. We analyzed potential predictors for pathological anxiety and variables associated to the variation of HADS scores over time. At pre-test only 16% and 4% of individuals presented symptoms of anxiety and depression, respectively. Having a prior diagnosis of cancer and presenting a pathological HADS-A score at the baseline were associated with clinically significant anxiety scores at one year, but the genetic test result was not. Thus, BRCA genetic testing does not influence short and long term anxiety and depression levels among those identified as mutation carriers. It is our task to demystify the allegedly negative impact of BRCA testing on psychological well being to increase the uptake of genetic testing and benefit those who are at high risk of developing breast, ovarian and prostate cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Genetic Association Studies of Suicidal Behavior: A Review of the Past 10 Years, Progress, Limitations, and Future Directions

    PubMed Central

    Mirkovic, Bojan; Laurent, Claudine; Podlipski, Marc-Antoine; Frebourg, Thierry; Cohen, David; Gerardin, Priscille

    2016-01-01

    Suicidal behaviors (SBs), which range from suicidal ideation to suicide attempts and completed suicide, represent a fatal dimension of mental ill-health. The involvement of genetic risk factors in SB is supported by family, twin, and adoption studies. The aim of this paper is to review recent genetic association studies in SBs including (i) case–control studies, (ii) family-based association studies, and (iii) genome-wide association studies (GWAS). Various studies on genetic associations have tended to suggest that a number of genes [e.g., tryptophan hydroxylase, serotonin receptors and transporters, or brain-derived neurotrophic factors (BDNFs)] are linked to SBs, but these findings are not consistently supported by the results obtained. Although the candidate–gene approach is useful, it is hampered by the present state of knowledge concerning the pathophysiology of diseases. Interpretations of GWAS results are mostly hindered by a lack of annotation describing the functions of most variation throughout the genome. Association studies have addressed a wide range of single-nucleotide polymorphisms in numerous genes. We have included 104 such studies, of which 10 are family-based association studies and 11 are GWAS. Numerous meta-analyses of case–control studies have shown significant associations of SB with variants in the serotonin transporter gene (5-HTT or SLC6A4) and the tryptophan hydroxylase 1 gene (TPH1), but others report contradictory results. The gene encoding BDNF and its receptor (NTRK2) are also promising candidates. Only two of the GWAS showed any significant associations. Several pathways are mentioned in an attempt to understand the lack of reproducibility and the disappointing results. Consequently, we review and discuss here the following aspects: (i) sample characteristics and confounding factors; (ii) statistical limits; (iii) gene–gene interactions; (iv) gene, environment, and by time interactions; and (v) technological and theoretical

  12. A Genetically Informed Study of Associations between Family Functioning and Child Psychosocial Adjustment

    PubMed Central

    Schermerhorn, Alice C.; D’Onofrio, Brian M.; Turkheimer, Eric; Ganiban, Jody M.; Spotts, Erica L.; Lichtenstein, Paul; Reiss, David; Neiderhiser, Jenae M.

    2010-01-01

    Research has documented associations between family functioning and offspring psychosocial adjustment, but questions remain regarding whether these associations are partly due to confounding genetic factors and other environmental factors. The current study used a genetically informed approach, the Children of Twins design, to explore the associations between family functioning (family conflict, marital quality, and agreement about parenting) and offspring psychopathology. Participants were 867 twin pairs (388 MZ; 479 DZ) from the Twin and Offspring Study in Sweden (TOSS), their spouses, and children (51.7% female; M = 15.75 years). The results suggested associations between exposure to family conflict (assessed by the mother, father, and child) and child adjustment were independent of genetic factors and other environmental factors. However, when family conflict was assessed using only children’s reports, the results indicated that genetic factors also influenced these associations. In addition, the analyses indicated that exposure to low marital quality and agreement about parenting was associated with children’s internalizing and externalizing problems, and that genetic factors also contributed to the associations of marital quality and agreement about parenting with offspring externalizing problems. PMID:21142367

  13. [Genetic and environmental factors of asthma and allergy: Results of the EGEA study].

    PubMed

    Bouzigon, E; Nadif, R; Le Moual, N; Dizier, M-H; Aschard, H; Boudier, A; Bousquet, J; Chanoine, S; Donnay, C; Dumas, O; Gormand, F; Jacquemin, B; Just, J; Margaritte-Jeannin, P; Matran, R; Pison, C; Rage, E; Rava, M; Sarnowski, C; Smit, L A M; Temam, S; Varraso, R; Vignoud, L; Lathrop, M; Pin, I; Demenais, F; Kauffmann, F; Siroux, V

    2015-10-01

    The EGEA study (epidemiological study on the genetics and environment of asthma, bronchial hyperresponsiveness and atopy), which combines a case-control and a family-based study of asthma case (n=2120 subjects) with three surveys over 20 years, aims to identify environmental and genetic factors associated with asthma and asthma-related phenotypes. We summarize the results of the phenotypic characterization and the investigation of environmental and genetic factors of asthma and asthma-related phenotypes obtained since 2007 in the EGEA study (42 articles). Both epidemiological and genetic results confirm the heterogeneity of asthma. These results strengthen the role of the age of disease onset, the allergic status and the level of disease activity in the identification of the different phenotypes of asthma. The deleterious role of active smoking, exposure to air pollution, occupational asthmogenic agents and cleaning products on the prevalence and/or activity of asthma has been confirmed. Accounting for gene-environment interactions allowed the identification of new genetic factors underlying asthma and asthma-related traits and better understanding of their mode of action. The EGEA study is contributing to the advances in respiratory research at the international level. The new phenotypic, environmental and biological data available in EGEA study will help characterizing the long-term evolution of asthma and the factors associated to this evolution. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  14. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses.

    PubMed

    Bertram, Lars; Tanzi, Rudolph E

    2008-10-01

    The genetic underpinnings of Alzheimer's disease (AD) remain largely elusive despite early successes in identifying three genes that cause early-onset familial AD (those that encode amyloid precursor protein (APP) and the presenilins (PSEN1 and PSEN2)), and one genetic risk factor for late-onset AD (the gene that encodes apolipoprotein E (APOE)). A large number of studies that aimed to help uncover the remaining disease-related loci have been published in recent decades, collectively proposing or refuting the involvement of over 500 different gene candidates. Systematic meta-analyses of these studies currently highlight more than 20 loci that have modest but significant effects on AD risk. This Review discusses the putative pathogenetic roles and common biochemical pathways of some of the most genetically and biologically compelling of these potential AD risk factors.

  15. Genetic studies of type 2 diabetes in South Asians: a systematic overview.

    PubMed

    Chowdhury, Ritam; Narayan, Kabayam M Venkat; Zabetian, Azadeh; Raj, Suraja; Tabassum, Rubina

    2014-01-01

    Diabetes Mellitus, which affects 366 million people worldwide, is a leading cause of mortality, morbidity, and loss of quality of life. South Asians, comprising 24% of the world's population, suffer a large burden of type 2 diabetes. With intriguing risk phenotypes, unique environmental triggers, and potential genetic predisposition, South Asians offer a valuable resource for investigating the pathophysiology of type 2 diabetes. Genomics has proven its potential to underpin some of the etiology of type 2 diabetes by identifying a number of susceptibility genes, but such data are scarce and unclear in South Asians. We present a systematic review of studies on the genetic basis of type 2 diabetes or its complications in South Asians published between 1987-2012, and discuss the findings and limitations of the available data. Of the 91 eligible studies meeting our inclusion criteria, a vast majority included Indian populations, followed by a few in those of Pakistani origin, while other South Asian countries were generally under-represented. Though a large number of studies focused on the replication of findings from genome-wide association studies (GWAS) in European populations, a few studies explored new genes and pathways along with GWAS in South Asians and suggested the potential to unravel population- specific susceptibility genes in this population. We find encouraging improvements in study designs, sample sizes and the numbers of genetic variants investigated over the last five years, which reflect the existing capacity and scope for large-scale genetic studies in South Asians.

  16. Genetic and environmental influences on blood pressure variability: a study in twins.

    PubMed

    Xu, Xiaojing; Ding, Xiuhua; Zhang, Xinyan; Su, Shaoyong; Treiber, Frank A; Vlietinck, Robert; Fagard, Robert; Derom, Catherine; Gielen, Marij; Loos, Ruth J F; Snieder, Harold; Wang, Xiaoling

    2013-04-01

    Blood pressure variability (BPV) and its reduction in response to antihypertensive treatment are predictors of clinical outcomes; however, little is known about its heritability. In this study, we examined the relative influence of genetic and environmental sources of variance of BPV and the extent to which it may depend on race or sex in young twins. Twins were enrolled from two studies. One study included 703 white twins (308 pairs and 87 singletons) aged 18-34 years, whereas another study included 242 white twins (108 pairs and 26 singletons) and 188 black twins (79 pairs and 30 singletons) aged 12-30 years. BPV was calculated from 24-h ambulatory blood pressure recording. Twin modeling showed similar results in the separate analysis in both twin studies and in the meta-analysis. Familial aggregation was identified for SBP variability (SBPV) and DBP variability (DBPV) with genetic factors and common environmental factors together accounting for 18-40% and 23-31% of the total variance of SBPV and DBPV, respectively. Unique environmental factors were the largest contributor explaining up to 82-77% of the total variance of SBPV and DBPV. No sex or race difference in BPV variance components was observed. The results remained the same after adjustment for 24-h blood pressure levels. The variance in BPV is predominantly determined by unique environment in youth and young adults, although familial aggregation due to additive genetic and/or common environment influences was also identified explaining about 25% of the variance in BPV.

  17. Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study

    PubMed Central

    Neupane, Binod; Beyene, Joseph

    2015-01-01

    In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data

  18. Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.

    PubMed

    Neupane, Binod; Beyene, Joseph

    2015-01-01

    In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data

  19. Genetic association studies in osteoarthritis: is it fairytale?

    PubMed

    Warner, Sophie C; Valdes, Ana M

    2017-01-01

    Osteoarthritis is a common complex disorder with a strong genetic component. Other identified risk factors such as increasing age and overweight do not fully explain the risk of osteoarthritis. Here, we highlight the main findings from genetic association studies on osteoarthritis to date. Currently, genetic association studies have identified 21 independent susceptibility loci for osteoarthritis. Studies have focused on hip, knee and hand osteoarthritis, as well as posttotal joint replacement and minimum joint space width, a proxy for cartilage thickness. Four distinct loci have recently been identified in a genome-wide association scan on minimum joint space width. The role of mitochondrial DNA variants has been the focus of a recent meta-analysis. Findings have previously been mixed, however, this study suggests a plausible involvement of mitochondrial DNA in the progression of radiographic knee osteoarthritis. Identifying genetic locations of interest provides a framework upon which to base future studies, for example replication analysis and functional work. Genetic association studies have shaped and will continue to shape research in this field. Improving the understanding of osteoarthritis could improve the diagnosis and treatment of the disease and improve quality of life for many individuals.

  20. Strong Genetic Contribution to Peer Relationship Difficulties at School Entry: Findings from a Longitudinal Twin Study

    ERIC Educational Resources Information Center

    Boivin, Michel; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette; Girard, Alain; Perusse, Daniel; Tremblay, Richard E.

    2013-01-01

    This study assessed the genetic and environmental contributions to peer difficulties in the early school years. Twins' peer difficulties were assessed longitudinally in kindergarten (796 twins, "M"[subscript age] = 6.1 years), Grade 1 (948 twins, "M"[subscript age] = 7.1 years), and Grade 4 (868 twins, "M"[subscript…

  1. Evaluation of two-year Jewish genetic disease screening program in Atlanta: insight into community genetic screening approaches.

    PubMed

    Shao, Yunru; Liu, Shuling; Grinzaid, Karen

    2015-04-01

    Improvements in genetic testing technologies have led to the development of expanded carrier screening panels for the Ashkenazi Jewish population; however, there are major inconsistencies in current screening practices. A 2-year pilot program was launched in Atlanta in 2010 to promote and facilitate screening for 19 Jewish genetic diseases. We analyzed data from this program, including participant demographics and outreach efforts. This retrospective analysis is based on a de-identified dataset of 724 screenees. Data were obtained through medical chart review and questionnaires and included demographic information, screening results, response to outreach efforts, and follow-up behavior and preferences. We applied descriptive analysis, chi-square tests, and logistic regression to analyze the data and compare findings with published literature. The majority of participants indicated that they were not pregnant or did not have a partner who was pregnant were affiliated with Jewish organizations and reported 100 % AJ ancestry. Overall, carrier frequency was 1 in 3.9. Friends, rabbis, and family members were the most common influencers of the decision to receive screening. People who were older, had a history of pregnancy, and had been previously screened were more likely to educate others (all p < 0.05). Analysis of this 2-year program indicated that people who are ready to have children or expand their families are more likely to get screened and encourage others to be screened. The most effective outreach efforts targeted influencers who then encouraged screening in the target population. Educating influencers and increasing overall awareness were the most effective outreach strategies.

  2. The Stability of Genetic Determination from Age 2 to Age 9: A Longitudinal Twin Study.

    ERIC Educational Resources Information Center

    Lytton, Hugh; And Others

    A longitudinal investigation of the social and cognitive development of male twins was conducted when twins were 2.5 years of age, and again when they were 8- to 10-years-old. This study was designed to re-examine the heritability of the traits studied at the earlier age and, thus, to address the question of the stability of genetic determination.…

  3. Genetic analysis of circulating tumor cells in pancreatic cancer patients: A pilot study.

    PubMed

    Görner, Karin; Bachmann, Jeannine; Holzhauer, Claudia; Kirchner, Roland; Raba, Katharina; Fischer, Johannes C; Martignoni, Marc E; Schiemann, Matthias; Alunni-Fabbroni, Marianna

    2015-07-01

    Pancreatic cancer is one of the most aggressive malignant tumors, mainly due to an aggressive metastasis spreading. In recent years, circulating tumor cells became associated to tumor metastasis. Little is known about their expression profiles. The aim of this study was to develop a complete workflow making it possible to isolate circulating tumor cells from patients with pancreatic cancer and their genetic characterization. We show that the proposed workflow offers a technical sensitivity and specificity high enough to detect and isolate single tumor cells. Moreover our approach makes feasible to genetically characterize single CTCs. Our work discloses a complete workflow to detect, count and genetically analyze individual CTCs isolated from blood samples. This method has a central impact on the early detection of metastasis development. The combination of cell quantification and genetic analysis provides the clinicians with a powerful tool not available so far. Copyright © 2015. Published by Elsevier Inc.

  4. Methodological issues in genetic association studies of inherited thrombophilia: original report of recent practice.

    PubMed

    Simundic, Ana-Maria; Nikolac, Nora; Topic, Elizabeta

    2009-01-01

    The aims of this article are to evaluate the methodological quality of genetic association studies on the inherited thrombophilia published during 2003 to 2005, to identify the most common mistakes made by authors of those studies, and to examine if overall quality of the article correlates with the quality of the journal. Articles were evaluated by 2 independent reviewers using the checklist of 16 items. A total of 58 eligible studies were identified. Average total score was 7.59 +/- 1.96. Total article score did not correlate with the journal impact factor (r = 0.3971; 95% confidence interval [CI], 0.1547-0.5944, P = .002). Total score did not differ across years (P = .624). Finally, it is concluded that methodological quality of genetic association studies is not optimal, and it does not depend on the quality of the journal. Journals should adopt methodological criteria for reporting the genetic association studies, and editors should encourage authors to strictly adhere to those criteria.

  5. Genetic influences on bone loss in the San Antonio Family Osteoporosis Study

    PubMed Central

    Shaffer, John R.; Kammerer, Candace M.; Bruder, Jan M.; Cole, Shelley A.; Dyer, Thomas D.; Almasy, Laura; MacCluer, Jean W.; Blangero, John; Bauer, Richard L.; Mitchell, Braxton D.

    2009-01-01

    Summary The genetic contribution to age-related bone loss is not well understood. We estimated that genes accounted for 25–45% of variation in 5-year change in bone mineral density in men and women. An autosome-wide linkage scan yielded no significant evidence for chromosal regions implicated in bone loss. Introduction The contribution of genetics to acquisition of peak bone mass is well documented, but little is know about the influence of genes on subsequent bone loss with age. We therefore measured 5-year change in bone mineral density (BMD) in 300 Mexican Americans (>45 years of age) from the San Antonio Family Osteoporosis Study to identify genetic factors influencing bone loss. Methods Annualized change in BMD was calculated from measurements taken 5.5 years apart. Heritability (h2) of BMD change was estimated using variance components methods and autosome-wide linkage analysis was carried out using 460 microsatellite markers at a mean 7.6 cM interval density. Results Rate of BMD change was heritable at the forearm (h2=0.31, p=0.021), hip (h2 =0.44, p=0.017), spine (h2=0.42, p=0.005), but not whole body (h2=0.18, p=0.123). Covariates associated with rapid bone loss (advanced age, baseline BMD, female sex, low baseline weight, postmenopausal status, and interim weight loss) accounted for 10% to 28% of trait variation. No significant evidence of linkage was observed at any skeletal site. Conclusions This is one of the first studies to report significant heritability of BMD change for weight-bearing and non-weight-bearing bones in an unselected population and the first linkage scan for change in BMD. PMID:18414963

  6. The prosocial personality and its facets: genetic and environmental architecture of mother-reported behavior of 7-year-old twins

    PubMed Central

    Knafo-Noam, Ariel; Uzefovsky, Florina; Israel, Salomon; Davidov, Maayan; Zahn-Waxler, Caroyln

    2015-01-01

    Children vary markedly in their tendency to behave prosocially, and recent research has implicated both genetic and environmental factors in this variability. Yet, little is known about the extent to which different aspects of prosociality constitute a single dimension (the prosocial personality), and to the extent they are intercorrelated, whether these aspects share their genetic and environmental origins. As part of the Longitudinal Israeli Study of Twins (LIST), mothers of 183 monozygotic (MZ) and dizygotic (DZ) 7-year-old twin pairs (51.6% male) reported regarding their children’s prosociality using questionnaires. Five prosociality facets (sharing, social concern, kindness, helping, and empathic concern) were identified. All five facets intercorrelated positively (r > 0.39) suggesting a single-factor structure to the data, consistent with the theoretical idea of a single prosociality trait. Higher MZ than DZ twin correlations indicated genetic contributions to each prosociality facet. A common-factor-common-pathway multivariate model estimated high (69%) heritability for the common prosociality factor, with the non-shared environment and error accounting for the remaining variance. For each facet, unique genetic and environmental contributions were identified as well. The results point to the presence of a broad prosociality phenotype, largely affected by genetics; whereas additional genetic and environmental factors contribute to different aspects of prosociality, such as helping and sharing. PMID:25762952

  7. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador A

    2016-03-01

    The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Education as a moderator of genetic risk for higher body mass index: prospective cohort study from childhood to adulthood.

    PubMed

    Komulainen, K; Pulkki-Råback, L; Jokela, M; Lyytikäinen, L-P; Pitkänen, N; Laitinen, T; Hintsanen, M; Elovainio, M; Hintsa, T; Jula, A; Juonala, M; Pahkala, K; Viikari, J; Lehtimäki, T; Raitakari, O; Keltikangas-Järvinen, L

    2018-04-01

    The life-course development of body mass index (BMI) may be driven by interactions between genes and obesity-inducing social environments. We examined whether lower parental or own education accentuates the genetic risk for higher BMI over the life course, and whether diet and physical activity account for the educational differences in genetic associations with BMI. The study comprised 2441 participants (1319 women, 3-18 years at baseline) from the prospective, population-based Cardiovascular Risk in Young Finns Study. BMI (kg/m 2 ) trajectories were calculated from 18 to 49 years, using data from six time points spanning 31 years. A polygenic risk score for BMI was calculated as a weighted sum of risk alleles in 97 single-nucleotide polymorphisms. Education was assessed via self-reports, measured prospectively from participants in adulthood and from parents when participants were children. Diet and physical activity were self-reported in adulthood. Mean BMI increased from 22.6 to 26.6 kg/m 2 during the follow-up. In growth curve analyses, the genetic risk score was associated with faster BMI increase over time (b=0.02, (95% CI, 0.01-0.02, P<0.001)). The association between the genetic risk score and BMI was more pronounced among those with lower educational level in adulthood (b=-0.12 (95% CI, -0.23-0.01); P=0.036)). No interaction effect was observed between the genetic risk score and parental education (b=0.05 (95% CI, -0.09-0.18; P=0.51)). Diet and physical activity explained little of the interaction effect between the genetic risk score and adulthood education. In this prospective study, the association of a risk score of 97 genetic variants with BMI was stronger among those with low compared with high education. This suggests lower education in adulthood accentuates the risk of higher BMI in people at genetic risk.

  9. Friendship conflict and the development of generalized physical aggression in the early school years: a genetically informed study of potential moderators.

    PubMed

    Salvas, Marie-Claude; Vitaro, Frank; Brendgen, Mara; Dionne, Ginette; Tremblay, Richard E; Boivin, Michel

    2014-06-01

    Several authors consider high and frequent conflicts between friends during childhood as a serious risk for subsequent conduct problems such as generalized physical aggression toward others (e.g., Kupersmidt, Burchinal, & Patterson, 1995; Sebanc, 2003). Although it seems logical to assume that friendship conflict could have some negative consequences on children's behaviors, some scholars have suggested that a certain amount of conflict between friends may actually promote social adjustment (e.g., Laursen & Pursell, 2009). The aim of this study was to investigate the role of friendship conflict in regard to the development of generalized physical aggression toward others in the early school years (i.e., from kindergarten to Grade 1), as well as the moderating role of relational (i.e., shared positive affect and dyadic conflict resolution skills) and personal (i.e., children's sex and genetic liability for aggression) characteristics in this context. The sample included 745 twins assessed through teacher, peer, child, and friend ratings in kindergarten and Grade 1. Friendship conflict in kindergarten was linearly related to an increase in boys' but not girls' generalized physical aggression. However, shared positive affect and conflict resolution skills mitigated the prospective associations between friendship conflict and generalized physical aggression. These results were independent of children's sex, genetic risk for physical aggression, and initial levels of generalized physical aggression in kindergarten. Fostering a positive relationship between friends at school entry may buffer against the risk associated with experiencing friendship conflict. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. GENETIC AND ENVIRONMENTAL EFFECTS ON BODY MASS INDEX DURING ADOLESCENCE: A PROSPECTIVE STUDY AMONG FINNISH TWINS

    PubMed Central

    Lajunen, Hanna-Reetta; Kaprio, Jaakko; Keski-Rahkonen, Anna; Rose, Richard J.; Pulkkinen, Lea; Rissanen, Aila; Silventoinen, Karri

    2009-01-01

    Objective To study genetic and environmental factors affecting body mass index (BMI) and BMI phenotypic correlations across adolescence. Design Prospective, population-based, twin cohort study. Subjects and methods We used twin modeling in 2413 monozygotic and same-sex and opposite-sex dizygotic Finnish twin pairs born in 1983–1987 and assessed by self-report questionnaires at 11–12, 14, and 17 years. Results Heritability of BMI was estimated to be 0.58–0.69 among 11–12- and 14-year-old boys and girls, 0.83 among 17-year-old boys and 0.74 among girls. Common environmental effects shared by siblings were 0.15–0.24 among 11–12- and 14-year-old boys and girls but no longer discernible at 17 y. Unique environmental effects were 0.15–0.23. Additive genetic factors explained 90–96% of the BMI phenotypic correlations across adolescence, whereas unique environmental factors explained the rest. Common environment had no effect on BMI phenotypic correlations. Conclusions The genetic contribution to BMI is strong during adolescence, and it mainly explains BMI phenotypic correlations across adolescence. Common environmental factors have an effect on BMI during early adolescence, but that effect disappears by late adolescence. PMID:19337205

  11. Kernel-Based Measure of Variable Importance for Genetic Association Studies.

    PubMed

    Gallego, Vicente; Luz Calle, M; Oller, Ramon

    2017-06-17

    The identification of genetic variants that are associated with disease risk is an important goal of genetic association studies. Standard approaches perform univariate analysis where each genetic variant, usually Single Nucleotide Polymorphisms (SNPs), is tested for association with disease status. Though many genetic variants have been identified and validated so far using this univariate approach, for most complex diseases a large part of their genetic component is still unknown, the so called missing heritability. We propose a Kernel-based measure of variable importance (KVI) that provides the contribution of a SNP, or a group of SNPs, to the joint genetic effect of a set of genetic variants. KVI can be used for ranking genetic markers individually, sets of markers that form blocks of linkage disequilibrium or sets of genetic variants that lie in a gene or a genetic pathway. We prove that, unlike the univariate analysis, KVI captures the relationship with other genetic variants in the analysis, even when measured at the individual level for each genetic variable separately. This is specially relevant and powerful for detecting genetic interactions. We illustrate the results with data from an Alzheimer's disease study and show through simulations that the rankings based on KVI improve those rankings based on two measures of importance provided by the Random Forest. We also prove with a simulation study that KVI is very powerful for detecting genetic interactions.

  12. Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years.

    PubMed

    Berlin, Sofia; Hallingbäck, Henrik R; Beyer, Friderike; Nordh, Nils-Erik; Weih, Martin; Rönnberg-Wästljung, Ann-Christin

    2017-07-01

    Phenotypic plasticity can affect the geographical distribution of taxa and greatly impact the productivity of crops across contrasting and variable environments. The main objectives of this study were to identify genotype-phenotype associations in key biomass and phenology traits and the strength of phenotypic plasticity of these traits in a short-rotation coppice willow population across multiple years and contrasting environments to facilitate marker-assisted selection for these traits. A hybrid Salix viminalis  × ( S. viminalis × Salix schwerinii ) population with 463 individuals was clonally propagated and planted in three common garden experiments comprising one climatic contrast between Sweden and Italy and one water availability contrast in Italy. Several key phenotypic traits were measured and phenotypic plasticity was estimated as the trait value difference between experiments. Quantitative trait locus (QTL) mapping analyses were conducted using a dense linkage map and phenotypic effects of S. schwerinii haplotypes derived from detected QTL were assessed. Across the climatic contrast, clone predictor correlations for biomass traits were low and few common biomass QTL were detected. This indicates that the genetic regulation of biomass traits was sensitive to environmental variation. Biomass QTL were, however, frequently shared across years and across the water availability contrast. Phenology QTL were generally shared between all experiments. Substantial phenotypic plasticity was found among the hybrid offspring, that to a large extent had a genetic origin. Individuals carrying influential S. schwerinii haplotypes generally performed well in Sweden but less well in Italy in terms of biomass production. The results indicate that specific genetic elements of S. schwerinii are more suited to Swedish conditions than to those of Italy. Therefore, selection should preferably be conducted separately for such environments in order to maximize biomass

  13. Developmental neuropsychological assessment of 4- to 5-year-old children born following Preimplantation Genetic Diagnosis (PGD): A pilot study.

    PubMed

    Sacks, Gilat Chaya; Altarescu, Gheona; Guedalia, Judith; Varshaver, Irit; Gilboa, Tal; Levy-Lahad, Ephrat; Eldar-Geva, Talia

    2016-01-01

    The purpose of this pilot study was to evaluate developmental neuropsychological profiles of 4- to 5-year-old children born after Preimplantation Genetic Diagnosis (PGD). Twenty-seven participants received a neurological examination and a battery of neuropsychological assessments including Wechsler Preschool & Primary Scale of Intelligence - Third Edition (WPPSI-III; cognitive development), Preschool Language Scale, Fourth Edition (PLS-4; language development), Wide Range Assessment of Visual Motor Abilities (visual motor abilities), Childhood Autism Rating Scales II (a screening test for autistic spectrum disorders), and the Miles ABC Test (ocular dominance). Parental questionnaires included the Behavior Rating Inventory of Executive Function Preschool Version (BRIEF-P; executive function), Child Behavior Checklist (CBCL) and the Carey Temperament Scales Behavioral Style Questionnaire (socioemotional development and temperament), and the Vineland Adaptive Behavior Scales, Interview Edition, Second Edition (general adaptive behavior). Subjects' tests results were compared to each test's norms. Children born after PGD demonstrated scores within the normal or above-normal ranges for all developmental outcomes (mean ± SD): WPPSI-III-VIQ 107.4 ± 14.4 (p = .013), PLS-4-Total 113.2 ± 12.4, p < .001), CBCL-Total 41.1 ± 8.6 (p < .001), BRIEF-P-Global Executive Composite 44.8 ± 9.5 (p = .009). Twelve (44%) of the PGD children had a significant difference between their VIQ and PIQ scores (compared to 27% in the general population). One subject was found to show possible signs of autistic spectrum disorder, although a family history of autism was noted. In conclusion, in this pilot study, children assessed at age 4-5 years and conceived after PGD displayed developmental neuropsychological outcomes within normal limits as compared to their chronologic peers. A larger study is needed to evaluate and follow the neuropsychological development of children born after PGD.

  14. Investigating genetic and environmental contributions to adolescent externalizing behavior in a collectivistic culture: a multi-informant twin study.

    PubMed

    Chen, J; Yu, J; Zhang, J; Li, X; McGue, M

    2015-07-01

    Little is known about the etiology of adolescents' externalizing behavior (Ext) in collectivistic cultures. We aimed to fill this gap by investigating the genetic and environmental influences on Ext in Chinese adolescents. The etiological heterogeneity of aggression (AGG) and rule breaking (RB) was also examined. The study sample included 908 pairs of same-sex twins aged from 10 to 18 years (mean = 13.53 years, s.d. = 2.26). Adolescents' Ext were assessed with the Achenbach System of Empirically Based Assessment including Child Behavior Checklist, Teacher Report Form, and Youth Self-Report. Univariate genetic analyses showed that genetic influences on all measures were moderate ranging from 34% to 50%, non-shared environmental effects ranged from 23% to 52%, and shared environmental effects were significant in parent- and teacher-reported measures ranging from 29% to 43%. Bivariate genetic analyses indicated that AGG and RB shared large genetic influences (r g = 0.64-0.79) but moderate non-shared environmental factors (r e = 0.34-0.52). Chinese adolescents' Ext was moderately influenced by genetic factors. AGG and RB had moderate independent genetic and non-shared environmental influences, and thus constitute etiologically distinct dimensions within Ext in Chinese adolescents. The heritability of AGG, in particular, was smaller in Chinese adolescents than suggested by previous data obtained on Western peers. This study suggests that the collectivistic cultural values and Confucianism philosophy may attenuate genetic potential in Ext, especially AGG.

  15. Genetic regulation of pre-pubertal development of body mass index: a longitudinal study of Japanese twin boys and girls.

    PubMed

    Silventoinen, Karri; Kaprio, Jaakko; Yokoyama, Yoshie

    2011-03-01

    We analyzed the genetic architecture of prepubertal development of relative weight to height in 216 monozygotic and 159 dizygotic complete Japanese twin pairs (52% girls). Ponderal index at birth (kg/m(3)) and body mass index (BMI, kg/m(2)) from 1 to 11 years of age were used. Additive genetic factors explained the major proportion (52-74%) of the variation of BMI from 1 to 11 years of age. Environmental factors common to both co-twins also showed some effect (7-28%), but at most ages this was not statistically significant. Strong genetic tracking was found for BMI from 1 to 11 years of age, but there was also evidence for a persistent effect of common environmental factors. Our results suggest that the genetic architecture of BMI development in the Japanese population is generally similar to that found in previous twin studies in Caucasian populations.

  16. Genetically engineering milk.

    PubMed

    Whitelaw, C Bruce A; Joshi, Akshay; Kumar, Satish; Lillico, Simon G; Proudfoot, Chris

    2016-02-01

    It has been thirty years since the first genetically engineered animal with altered milk composition was reported. During the intervening years, the world population has increased from 5bn to 7bn people. An increasing demand for protein in the human diet has followed this population expansion, putting huge stress on the food supply chain. Many solutions to the grand challenge of food security for all have been proposed and are currently under investigation and study. Amongst these, genetics still has an important role to play, aiming to continually enable the selection of livestock with enhanced traits. Part of the geneticist's tool box is the technology of genetic engineering. In this Invited Review, we indicate that this technology has come a long way, we focus on the genetic engineering of dairy animals and we argue that the new strategies for precision breeding demand proper evaluation as to how they could contribute to the essential increases in agricultural productivity our society must achieve.

  17. Explanatory Models of Genetics and Genetic Risk among a Selected Group of Students.

    PubMed

    Goltz, Heather Honoré; Bergman, Margo; Goodson, Patricia

    2016-01-01

    This exploratory qualitative study focuses on how college students conceptualize genetics and genetic risk, concepts essential for genetic literacy (GL) and genetic numeracy (GN), components of overall health literacy (HL). HL is dependent on both the background knowledge and culture of a patient, and lower HL is linked to increased morbidity and mortality for a number of chronic health conditions (e.g., diabetes and cancer). A purposive sample of 86 students from three Southwestern universities participated in eight focus groups. The sample ranged in age from 18 to 54 years, and comprised primarily of female (67.4%), single (74.4%), and non-White (57%) participants, none of whom were genetics/biology majors. A holistic-content approach revealed broad categories concerning participants' explanatory models (EMs) of genetics and genetic risk. Participants' EMs were grounded in highly contextualized narratives that only partially overlapped with biomedical models. While higher education levels should be associated with predominately knowledge-based EM of genetic risk, this study shows that even in well-educated populations cultural factors can dominate. Study findings reveal gaps in how this sample of young adults obtains, processes, and understands genetic/genomic concepts. Future studies should assess how individuals with low GL and GN obtain and process genetics and genetic risk information and incorporate this information into health decision making. Future work should also address the interaction of communication between health educators, providers, and genetic counselors, to increase patient understanding of genetic risk.

  18. Cancer heterogeneity: origins and implications for genetic association studies

    PubMed Central

    Urbach, Davnah; Lupien, Mathieu; Karagas, Margaret R.; Moore, Jason H.

    2012-01-01

    Genetic association studies have become standard approaches to characterize the genetic and epigenetic variability associated with cancer development, including predispositions and mutations. However, the bewildering genetic and phenotypic heterogeneity inherent in cancer both magnifies the conceptual and methodological problems associated with these approaches and renders the translation of available genetic information into a knowledge that is both biologically sound and clinically relevant difficult. Here, we elaborate on the underlying causes of this complexity, illustrate why it represents a challenge for genetic association studies, and briefly discuss how it can be reconciled with the ultimate goal of identifying targetable disease pathways and successfully treating individual patients. PMID:22858414

  19. Population genetics of Ice Age brown bears

    PubMed Central

    Leonard, Jennifer A.; Wayne, Robert K.; Cooper, Alan

    2000-01-01

    The Pleistocene was a dynamic period for Holarctic mammal species, complicated by episodes of glaciation, local extinctions, and intercontinental migration. The genetic consequences of these events are difficult to resolve from the study of present-day populations. To provide a direct view of population genetics in the late Pleistocene, we measured mitochondrial DNA sequence variation in seven permafrost-preserved brown bear (Ursus arctos) specimens, dated from 14,000 to 42,000 years ago. Approximately 36,000 years ago, the Beringian brown bear population had a higher genetic diversity than any extant North American population, but by 15,000 years ago genetic diversity appears similar to the modern day. The older, genetically diverse, Beringian population contained sequences from three clades now restricted to local regions within North America, indicating that current phylogeographic patterns may provide misleading data for evolutionary studies and conservation management. The late Pleistocene phylogeographic data also indicate possible colonization routes to areas south of the Cordilleran ice sheet. PMID:10677513

  20. The Genetic and Environmental Etiology of Decision-Making: A Longitudinal Twin Study

    ERIC Educational Resources Information Center

    Tuvblad, Catherine; Gao, Yu; Wang, Pan; Raine, Adrian; Botwick, Theodore; Baker, Laura A.

    2013-01-01

    The present study examined the genetic and environmental etiology of decision-making (Iowa Gambling Task; Bechara, Damasio, Damasio, & Anderson, 1994), in a sample of twins at ages 11-13, 14-15, and 16-18 years. The variance across five 20-trial blocks could be explained by a latent "decision-making" factor within each of the three times of IGT…

  1. Genetic Code Expansion as a Tool to Study Regulatory Processes of Transcription

    NASA Astrophysics Data System (ADS)

    Schmidt, Moritz; Summerer, Daniel

    2014-02-01

    The expansion of the genetic code with noncanonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.

  2. Genetic privacy.

    PubMed

    Sankar, Pamela

    2003-01-01

    During the past 10 years, the number of genetic tests performed more than tripled, and public concern about genetic privacy emerged. The majority of states and the U.S. government have passed regulations protecting genetic information. However, research has shown that concerns about genetic privacy are disproportionate to known instances of information misuse. Beliefs in genetic determinacy explain some of the heightened concern about genetic privacy. Discussion of the debate over genetic testing within families illustrates the most recent response to genetic privacy concerns.

  3. Next Generation Analytic Tools for Large Scale Genetic Epidemiology Studies of Complex Diseases

    PubMed Central

    Mechanic, Leah E.; Chen, Huann-Sheng; Amos, Christopher I.; Chatterjee, Nilanjan; Cox, Nancy J.; Divi, Rao L.; Fan, Ruzong; Harris, Emily L.; Jacobs, Kevin; Kraft, Peter; Leal, Suzanne M.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Province, Michael A.; Ramos, Erin M.; Ritchie, Marylyn D.; Roeder, Kathryn; Schaid, Daniel J.; Stephens, Matthew; Thomas, Duncan C.; Weinberg, Clarice R.; Witte, John S.; Zhang, Shunpu; Zöllner, Sebastian; Feuer, Eric J.; Gillanders, Elizabeth M.

    2012-01-01

    Over the past several years, genome-wide association studies (GWAS) have succeeded in identifying hundreds of genetic markers associated with common diseases. However, most of these markers confer relatively small increments of risk and explain only a small proportion of familial clustering. To identify obstacles to future progress in genetic epidemiology research and provide recommendations to NIH for overcoming these barriers, the National Cancer Institute sponsored a workshop entitled “Next Generation Analytic Tools for Large-Scale Genetic Epidemiology Studies of Complex Diseases” on September 15–16, 2010. The goal of the workshop was to facilitate discussions on (1) statistical strategies and methods to efficiently identify genetic and environmental factors contributing to the risk of complex disease; and (2) how to develop, apply, and evaluate these strategies for the design, analysis, and interpretation of large-scale complex disease association studies in order to guide NIH in setting the future agenda in this area of research. The workshop was organized as a series of short presentations covering scientific (gene-gene and gene-environment interaction, complex phenotypes, and rare variants and next generation sequencing) and methodological (simulation modeling and computational resources and data management) topic areas. Specific needs to advance the field were identified during each session and are summarized. PMID:22147673

  4. Representing genetic variation as continuous surfaces: An approach for identifying spatial dependency in landscape genetic studies

    Treesearch

    Melanie A. Murphy; Jeffrey S. Evans; Samuel A. Cushman; Andrew Storfer

    2008-01-01

    Landscape genetics, an emerging field integrating landscape ecology and population genetics, has great potential to influence our understanding of habitat connectivity and distribution of organisms. Whereas typical population genetics studies summarize gene flow as pairwise measures between sampling localities, landscape characteristics that influence population...

  5. Genetic and environmental contributions to sleep-wake behavior in 12-year-old twins.

    PubMed

    Sletten, Tracey L; Rajaratnam, Shantha M W; Wright, Margaret J; Zhu, Gu; Naismith, Sharon; Martin, Nicholas G; Hickie, Ian

    2013-11-01

    To examine the role of genetic and environmental factors on sleep behavior in 12-year-old twins matched for family environment. Population-based twin cohort. Participants were assessed in their home environment. One hundred thirty-two adolescent twins comprising 25 monozygotic (MZ) and 41 dizygotic (DZ) twin pairs; aged 12.2 ± 0.1 y (mean ± standard deviation). N/A. For 2 weeks in their home environment, participants wore a wrist activity monitor and completed a daily sleep diary. Sleep diaries included reports of bedtime, wake time, and estimated sleep onset time. Mean timing, duration, and quality of sleep during the 2 weeks were calculated for each individual and compared within twin pairs. MZ twin correlations were higher than the DZ correlations for total sleep time (MZr = 0.64; DZr = 0.38) and sleep onset latency (MZr = 0.83; DZr = 0.53) and significantly higher for wake after sleep onset (MZr = 0.66; DZr = 0.04) and sleep efficiency (MZr = 0.82; DZr = 0.10). Univariate modeling showed additive genetic factors accounted for 65% of the variance in total sleep time, 83% in sleep onset latency, and 52% and 57% of the variance in wake after sleep onset and sleep efficiency, respectively. A predominant influence of shared environment was found on the timing of sleep (67% for sleep start time, 86% for sleep end time). There is a strong genetic influence on the sleep-wake patterns of 12-year-old adolescents. Genes have a greater influence on sleep initiation and sleep maintenance and a smaller role in sleep timing, likely to be influenced by family environment.

  6. Genetic studies of age-related macular degeneration: lessons, challenges, and opportunities for disease management.

    PubMed

    Priya, Rinki Ratna; Chew, Emily Y; Swaroop, Anand

    2012-12-01

    Age-related macular degeneration (AMD) is a common cause of visual impairment in individuals >55 years of age worldwide. The varying clinical phenotypes of AMD result from contributions of genetic, epigenetic, and nongenetic (environmental) factors. Genetic studies of AMD have come of age as a direct result of tremendous gains from the human genome project, genome-wide association studies, and identification of numerous susceptibility loci. These findings have implicated immune response, high-density lipoprotein cholesterol metabolism, extracellular matrix, and angiogenesis signaling pathways in disease pathophysiology. Herein, we address how the wealth of genetic findings in AMD is expected to impact the practice of medicine, providing opportunities for improved risk assessment, molecular diagnosis, preventive, and therapeutic intervention. We propose that the potential of using genetic variants for monitoring treatment response (pharmacogenetics) may usher in a new era of personalized medicine in the clinical management of AMD. Proprietary or commercial disclosures may be found after the references. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  7. The Complexity of Alcohol Drinking: Studies in Rodent Genetic Models

    PubMed Central

    Phillips, Tamara J.; Belknap, John K.

    2012-01-01

    Risk for alcohol dependence in humans has substantial genetic contributions. Successful rodent models generally attempt to address only selected features of the human diagnosis. Most such models target the phenotype of oral administration of alcohol solutions, usually consumption of or preference for an alcohol solution versus water. Data from rats and mice for more than 50 years have shown genetic influences on preference drinking and related phenotypes. This paper summarizes some key findings from that extensive literature. Much has been learned, including the genomic location and possible identity of several genes influencing preference drinking. We report new information from congenic lines confirming QTLs for drinking on mouse chromosomes 2 and 9. There are many strengths of the various phenotypic assays used to study drinking, but there are also some weaknesses. One major weakness, the lack of drinking excessively enough to become intoxicated, has recently been addressed with a new genetic animal model, mouse lines selectively bred for their high and intoxicating blood alcohol levels after a limited period of drinking in the circadian dark. We report here results from a second replicate of that selection and compare them with the first replicate. PMID:20552264

  8. The Genetic Architecture of Oral Language, Reading Fluency, and Reading Comprehension: A Twin Study from 7 to 16 Years

    ERIC Educational Resources Information Center

    Tosto, Maria G.; Hayiou-Thomas, Marianna E.; Harlaar, Nicole; Prom-Wormley, Elizabeth; Dale, Philip S.; Plomin, Robert

    2017-01-01

    This study examines the genetic and environmental etiology underlying the development of oral language and reading skills, and the relationship between them, over a long period of developmental time spanning middle childhood and adolescence. It focuses particularly on the differential relationship between language and two different aspects of…

  9. Genetic architecture of learning and delayed recall: a twin study of episodic memory.

    PubMed

    Panizzon, Matthew S; Lyons, Michael J; Jacobson, Kristen C; Franz, Carol E; Grant, Michael D; Eisen, Seth A; Xian, Hong; Kremen, William S

    2011-07-01

    Although episodic memory is often conceptualized as consisting of multiple component processes, there is a lack of understanding as to whether these processes are influenced by the same or different genetic determinants. The aim of the present study was to utilize multivariate twin analyses to elucidate the degree to which learning and delayed recall, two critical measures of episodic memory performance, have common or different genetic and environmental influences. Participants from the Vietnam Era Twin Study of Aging (314 monozygotic twin pairs, 259 dizygotic twin pairs, and 47 unpaired twins) were assessed using the second edition of the California Verbal Learning Test. Mean age at the time of the evaluation was 55.4 years (SD = 2.5). Model fitting revealed the presence of a higher-order latent factor influencing learning, short- and long-delay free recall, with a heritability of .36. The best-fitting model also indicated specific genetic influences on learning, which accounted for 10% of the overall variance. Given that learning involves the acquisition and retrieval of information, whereas delayed recall involves only retrieval, we conclude that these specific effects are likely to reflect genes that are specific to acquisition processes. These results demonstrate that even in nonclinical populations, it is possible to differentiate component processes in episodic memory. These different genetic influences may have implications for gene association studies, as well as other genetic studies of cognitive aging and disorders of episodic memory such as Alzheimer's disease or mild cognitive impairment. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  10. HYBRIDIZATION STUDY BETWEEN GENETICALLY MODIFIED BRASSICA NAPUS AND NON-GENETICALLY MODIFIED B. NAPUS AND B. RAPA

    EPA Science Inventory

    Gene exchange between cultivated crops and wild species has gained significance in recent years because of concerns regarding the potential for gene flow between genetically modified (GM) crops and their domesticated and wild relatives. As part of our ecological effects of gene ...

  11. Evaluation of the Endorsement of the STrengthening the REporting of Genetic Association Studies (STREGA) Statement on the Reporting Quality of Published Genetic Association Studies

    PubMed Central

    Nedovic, Darko; Panic, Nikola; Pastorino, Roberta; Ricciardi, Walter; Boccia, Stefania

    2016-01-01

    The STrengthening the REporting of Genetic Association studies (STREGA) statement was based on the STrengthening the REporting of OBservational studies in Epidemiology (STROBE) statement, and it was published in 2009 in order to improve the reporting of genetic association (GA) studies. Our aim was to evaluate the impact of STREGA endorsement on the quality of reporting of GA studies published in journals in the field of genetics and heredity (GH). Quality of reporting was evaluated by assessing the adherence of papers to the STREGA checklist. After identifying the GH journals that endorsed STREGA in their instructions for authors, we randomly appraised papers published in 2013 from journals endorsing STREGA that published GA studies (Group A); in GH journals that never endorsed STREGA (Group B); in GH journals endorsing STREGA, but in the year preceding its endorsement (Group C); and in the same time period as Group C from GH journals that never endorsed STREGA (Group D). The STREGA statement was referenced in 29 (18.1%) of 160 GH journals, of which 18 (62.1%) journals published GA studies. Among the 18 journals endorsing STREGA, we found a significant increase in the overall adherence to the STREGA checklist over time (A vs C; P < 0.0001). Adherence to the STREGA checklist was significantly higher in journals endorsing STREGA compared to those that did not endorse the statement (A vs B; P = 0.04). No significant improvement was detected in the adherence to STREGA items in journals not endorsing STREGA over time (B vs D; P > 0.05). The endorsement of STREGA resulted in an increase in quality of reporting of GA studies over time, while no similar improvement was reported for journals that never endorsed STREGA. PMID:27349199

  12. Genetic influences on variation in female orgasmic function: a twin study

    PubMed Central

    Dunn, Kate M; Cherkas, Lynn F; Spector, Tim D

    2005-01-01

    Orgasmic dysfunction in females is commonly reported in the general population with little consensus on its aetiology. We performed a classical twin study to explore whether there were observable genetic influences on female orgasmic dysfunction. Adult females from the TwinsUK register were sent a confidential survey including questions on sexual problems. Complete responses to the questions on orgasmic dysfunction were obtained from 4037 women consisting of 683 monozygotic and 714 dizygotic pairs of female twins aged between 19 and 83 years. One in three women (32%) reported never or infrequently achieving orgasm during intercourse, with a corresponding figure of 21% during masturbation. A significant genetic influence was seen with an estimated heritability for difficulty reaching orgasm during intercourse of 34% (95% confidence interval 27–40%) and 45% (95% confidence interval 38–52%) for orgasm during masturbation. These results show that the wide variation in orgasmic dysfunction in females has a genetic basis and cannot be attributed solely to cultural influences. These results should stimulate further research into the biological and perhaps evolutionary processes governing female sexual function. PMID:17148182

  13. Genetic influences on variation in female orgasmic function: a twin study.

    PubMed

    Dunn, Kate M; Cherkas, Lynn F; Spector, Tim D

    2005-09-22

    Orgasmic dysfunction in females is commonly reported in the general population with little consensus on its aetiology. We performed a classical twin study to explore whether there were observable genetic influences on female orgasmic dysfunction. Adult females from the TwinsUK register were sent a confidential survey including questions on sexual problems. Complete responses to the questions on orgasmic dysfunction were obtained from 4037 women consisting of 683 monozygotic and 714 dizygotic pairs of female twins aged between 19 and 83 years. One in three women (32%) reported never or infrequently achieving orgasm during intercourse, with a corresponding figure of 21% during masturbation. A significant genetic influence was seen with an estimated heritability for difficulty reaching orgasm during intercourse of 34% (95% confidence interval 27-40%) and 45% (95% confidence interval 38-52%) for orgasm during masturbation. These results show that the wide variation in orgasmic dysfunction in females has a genetic basis and cannot be attributed solely to cultural influences. These results should stimulate further research into the biological and perhaps evolutionary processes governing female sexual function.

  14. Genetic and Environmental Influences on Frontal EEG Asymmetry and Alpha Power in 9–10 Year Old Twins

    PubMed Central

    Gao, Yu; Tuvblad, Catherine; Raine, Adrian; Lozano, Dora I.; Baker, Laura A.

    2008-01-01

    Modest genetic influences on frontal EEG asymmetry have been found in adults, but little is known about its genetic origins in children. Resting frontal asymmetry and alpha power were examined in 951 9–10-year-old twins. Results showed that in both males and females: (1) a modest but significant amount of variance in frontal asymmetry was accounted for by genetic factors (11–27%) with the remainder accounted for by non-shared environmental influences, and (2) alpha power were highly heritable, with 70–85% of the variance accounted for by genetic factors. Results suggest that the genetic architecture of frontal asymmetry and alpha power in late childhood are similar to that in adulthood and that the high non-shared environmental influences on frontal asymmetry may reflect environmentally-influenced individual differences in the maturation of frontal cortex as well as state-dependent influences on specific measurements. PMID:19386046

  15. Genetic Determinism in School Textbooks: A Comparative Study Conducted among Sixteen Countries

    ERIC Educational Resources Information Center

    Castera, Jeremy; Clement, Pierre; Abrougui, Mondher; Nisiforou, Olympia; Valanides, Nicos; Turcinaviciene, Jurga; Sarapuu, Tago; Agorram, Boujemaa; Calado, Florbela; Bogner, Franz; Carvalho, Graca

    2008-01-01

    Genetic concepts have significantly evolved over the last ten years, and are now less connected to innate ideas and reductionism. Unique reference to genetic determinism has been replaced by the interaction between the genes and their environment (epigenetics). Our analyses relate to how current school biology textbooks present this new paradigm…

  16. A clinical study of patients with genetically confirmed Huntington's disease from India.

    PubMed

    Murgod, U A; Saleem, Q; Anand, A; Brahmachari, S K; Jain, S; Muthane, U B

    2001-09-15

    Clinical data across the globe especially in genetic diseases like Huntington's disease (HD) is most helpful when collected using standardized formats. This helps in proper comparison of clinical and genetic data. Herein, we report clinical data on 26 genetically confirmed HD patients from 19 Indian families predominantly from South India. Clinical data and evaluation was performed using standardized formats used by the Huntington Disease Study Group. Adult onset HD was commonest while Juvenile HD (onset <20 years) was observed in approximately 15% of patients. Chorea was the commonest presenting symptom (n=23, 88.5%) while remaining presented with psychiatric symptoms (n=3, 11.5%). Impairment of saccades was observed in approximately 75% of patients. Mean (SD) CAG repeats in the abnormal allele was 48.4 (8.7). Total motor score but not the total behavioral score worsens with duration of symptoms. The functional checklist score correlates with total motor score rather than with duration of symptoms. We detail clinical characteristics in genetically confirmed HD patients from a predominantly South Indian cohort. We observed a slightly higher occurrence of Juvenile HD. Functional disabilities in our patients correlate with worsening of motor rather than behavioral symptoms.

  17. [Genetic, epidemiologic and clinical study of familial prostate cancer].

    PubMed

    Valéri, Antoine

    2002-01-01

    Prostate cancer (CaP) is the most frequent cancer among men over 50 and its frequency increases with age. It has become a significant public health problem due to the ageing population. Epidemiologists report familial aggregation in 15 to 25% of cases and inherited susceptibility with autosomal dominant or X-linked model in 5 to 10% of cases. Clinical and biological features of familial CaP remain controversial. To perform: (1) Genetic study of familial Cap (mapping of susceptibility genes), (2) epidemiologic study (prevalence, associated cancers in the genealogy, model of transmission), and clinical study of familial CaP. (I) conducting a nationwide family collection (ProGène study) with 2+ CaP we have performed a genomewide linkage analysis and identified a predisposing locus on 1q42.2-43 named PCaP (Predisposing to Cancer of the Prostate); (II) conducting a systematic genealogic analysis of 691 CaP followed up in 3 University departments of urology (Hospitals of Brest, Paris St Louis and Nancy) we have observed: (1) 14.2% of familial and 3.6% of hereditary CaP, (2) a higher risk of breast cancer in first degree relatives of probands (CaP+) in familial CaP than in sporadic CaP and in early onset CaP (< 55 years) when compared with late onset CaP ([dG]75 years), (3) an autosomal dominant model with brother-brother dependance), (4) the lack of specific clinical or biological feature (except for early onset) in hereditary CaP when compared with sporadic CaP. (1) The mapping of a susceptibility locus will permit the cloning of a predisposing gene on 1q42.2-43, offer the possibility of genetic screening in families at risk and permit genotype/phenotype correlation studies; (2) the transmission model will improve parameteric linkage studies; (3) the lack of distinct specific clinical patterns suggest diagnostic and follow up modalities for familial and hereditary CaP similar to sporadic cancer while encouraging early screening of families at risk, given the earlier

  18. Genetic Effects on Children's Conversational Language Use

    ERIC Educational Resources Information Center

    DeThorne, Laura S.; Petrill, Stephen A.; Hart, Sara A.; Channell, Ron W.; Campbell, Rebecca J.; Deater-Deckard, Kirby; Thompson, Lee Anne; Vanderbergh, David J.

    2008-01-01

    Purpose: The present study examined the extent of genetic and environmental influences on individual differences in children's conversational language use. Method: Behavioral genetic analyses focused on conversational measures and 2 standardized tests from 380 twins (M = 7.13 years) during the 2nd year of the Western Reserve Reading Project (S. A.…

  19. Lessons from 25 years of genetic mapping in onion: where next?

    USDA-ARS?s Scientific Manuscript database

    Genetic maps are useful tools for both basic research and plant improvement. Close association of genetic markers with genes controlling economically important traits allows for indirect selection, avoiding often time-consuming and expensive phenotypic evaluations. As a result, detailed genetic maps...

  20. Genetic counselor perceptions of genetic counseling session goals: a validation study of the reciprocal-engagement model.

    PubMed

    Hartmann, Julianne E; Veach, Patricia McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S

    2015-04-01

    Although some researchers have attempted to define genetic counseling practice goals, no study has obtained consensus about the goals from a large sample of genetic counselors. The Reciprocal-Engagement Model (REM; McCarthy Veach, Bartels & LeRoy, 2007) articulates 17 goals of genetic counseling practice. The present study investigated whether these goals could be generalized as a model of practice, as determined by a larger group of clinical genetic counselors. Accordingly, 194 genetic counselors were surveyed regarding their opinions about the importance of each goal and their perceptions of how frequently they achieve each goal. Mean importance ratings suggest they viewed every goal as important. Factor analysis of the 17 goals yielded four factors: Understanding and Appreciation, Support and Guidance, Facilitative Decision-Making, and Patient-Centered Education. Patient-Centered Education and Facilitative Decision-Making goals received the highest mean importance ratings. Mean frequency ratings were consistently lower than importance ratings, suggesting genetic counseling goals may be difficult to achieve and/or not applicable in all situations. A number of respondents provided comments about the REM goals that offer insight into factors related to implementing the goals in clinical practice. This study presents preliminary evidence concerning the validity of the goals component of the REM.

  1. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins.

    PubMed

    Mustelin, L; Silventoinen, K; Pietiläinen, K; Rissanen, A; Kaprio, J

    2009-01-01

    Both obesity and exercise behavior are influenced by genetic and environmental factors. However, whether obesity and physical inactivity share the same genetic vs environmental etiology has rarely been studied. We therefore analyzed these complex relationships, and also examined whether physical activity modifies the degree of genetic influence on body mass index (BMI) and waist circumference (WC). The FinnTwin16 Study is a population-based, longitudinal study of five consecutive birth cohorts (1975-1979) of Finnish twins. Data on height, weight, WC and physical activity of 4343 subjects at the average age of 25 (range, 22-27 years) years were obtained by a questionnaire and self-measurement of WC. Quantitative genetic analyses based on linear structural equations were carried out by the Mx statistical package. The modifying effect of physical activity on genetic and environmental influences was analyzed using gene-environment interaction models. The overall heritability estimates were 79% in males and 78% in females for BMI, 56 and 71% for WC and 55 and 54% for physical activity, respectively. There was an inverse relationship between physical activity and WC in males (r = -0.12) and females (r=-0.18), and between physical activity and BMI in females (r = -0.12). Physical activity significantly modified the heritability of BMI and WC, with a high level of physical activity decreasing the additive genetic component in BMI and WC. Physically active subjects were leaner than sedentary ones, and physical activity reduced the influence of genetic factors to develop high BMI and WC. This suggests that the individuals at greatest genetic risk for obesity would benefit the most from physical activity.

  2. The Genetic and Environmental Origins of Learning Abilities and Disabilities in the Early School Years

    ERIC Educational Resources Information Center

    Kovas, Yulia; Haworth, Claire M. A.; Dale, Philip S.; Plomin, Robert

    2007-01-01

    Despite the importance of learning abilities and disabilities in education and child development, little is known about their genetic and environmental origins in the early school years. We report results for English (which includes reading, writing, and speaking), mathematics, and science as well as general cognitive ability in a large and…

  3. Application of molecular genetic tools to studies of forest pathosystems [Chapter 2

    Treesearch

    Mee-Sook Kim; Ned B. Klopfenstein; Richard C. Hamelin

    2005-01-01

    The use of molecular genetics in forest pathology has greatly increased over the past 10 years. For the most part, molecular genetic tools were initially developed to focus on individual components (e.g., pathogen, host) of forest pathosystems. As part of broader forest ecosystem complexes, forest pathosystems involve dynamic interactions among living components (e.g...

  4. Simulating a base population in honey bee for molecular genetic studies.

    PubMed

    Gupta, Pooja; Conrad, Tim; Spötter, Andreas; Reinsch, Norbert; Bienefeld, Kaspar

    2012-06-27

    Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ(2) statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r(2) values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic

  5. Genetic studies of Crohn's disease: Past, present and future

    PubMed Central

    Liu, Jimmy Z.; Anderson, Carl A.

    2014-01-01

    The exact aetiology of Crohn's disease is unknown, though it is clear from early epidemiological studies that a combination of genetic and environmental risk factors contributes to an individual's disease susceptibility. Here, we review the history of gene-mapping studies of Crohn's disease, from the linkage-based studies that first implicated the NOD2 locus, through to modern-day genome-wide association studies that have discovered over 140 loci associated with Crohn's disease and yielded novel insights into the biological pathways underlying pathogenesis. We describe on-going and future gene-mapping studies that utilise next generation sequencing technology to pinpoint causal variants and identify rare genetic variation underlying Crohn's disease risk. We comment on the utility of genetic markers for predicting an individual's disease risk and discuss their potential for identifying novel drug targets and influencing disease management. Finally, we describe how these studies have shaped and continue to shape our understanding of the genetic architecture of Crohn's disease. PMID:24913378

  6. A Rapid Systematic Review of Outcomes Studies in Genetic Counseling.

    PubMed

    Madlensky, Lisa; Trepanier, Angela M; Cragun, Deborah; Lerner, Barbara; Shannon, Kristen M; Zierhut, Heather

    2017-06-01

    As healthcare reimbursement is increasingly tied to value-of-service, it is critical for the genetic counselor (GC) profession to demonstrate the value added by GCs through outcomes research. We conducted a rapid systematic literature review to identify outcomes of genetic counseling. Web of Science (including PubMed) and CINAHL databases were systematically searched to identify articles meeting the following criteria: 1) measures were assessed before and after genetic counseling (pre-post design) or comparisons were made between a GC group vs. a non-GC group (comparative cohort design); 2) genetic counseling outcomes could be assessed independently of genetic testing outcomes, and 3) genetic counseling was conducted by masters-level genetic counselors, or non-physician providers. Twenty-three papers met the inclusion criteria. The majority of studies were in the cancer genetic setting and the most commonly measured outcomes included knowledge, anxiety or distress, satisfaction, perceived risk, genetic testing (intentions or receipt), health behaviors, and decisional conflict. Results suggest that genetic counseling can lead to increased knowledge, perceived personal control, positive health behaviors, and improved risk perception accuracy as well as decreases in anxiety, cancer-related worry, and decisional conflict. However, further studies are needed to evaluate a wider array of outcomes in more diverse genetic counseling settings.

  7. An 8-Year Breeding Program for Asian Seabass Lates calcarifer: Genetic Evaluation, Experiences, and Challenges.

    PubMed

    Khang, Pham Van; Phuong, Truong Ha; Dat, Nguyen Khac; Knibb, Wayne; Nguyen, Nguyen Hong

    2018-01-01

    Selective breeding for marine finfish is challenging due to difficulties in reproduction, larval rearing, and on-growth in captive environments. The farming of Asian seabass ( Lates calcarifer ) has all these problems and our knowledge of the quantitative genetic information (heritability and correlations) of traits necessary for commercial exploitation is poor. The present study was conducted to address this knowledge gap and to provide information that can be applied to sea bass and other aquaculture species. We carried out a comprehensive genetic evaluation for three traits (body weight, total length, and survival) collected from a breeding population for Asian seabass over an eight-year period from 2010 to 2017. Statistical analysis was carried out on 4,567 adult fish at 105, 180, 270, 360, 450, and 570 days post-hatch (dph). The heritabilities (h 2 ) estimated for body weight and length using linear mixed model were moderate to high (0.12 to 0.78 and 0.41 to 0.85, respectively) and they differed between the measurement periods. Survival during grow-out phase was analyzed using threshold logistic and probit models. The heritability estimates for survival rate on the underlying liability scale ( h L 2 ) varied from 0.05 to 0.21. When the observed heritability obtained from the linear mixed model was back-transformed to the liability scale, they were similar but not significant. In addition, we examined effects of genotype by environment (G × E) interaction on body traits. The genetic correlation for body weight between tank and sea cage cultures were high (0.91-0.94) in the first and second rearing periods (180 and 270 dph) but the correlation was decreased to 0.59 ± 0.33 at 360 dph. This suggests that the genotype by environment interaction is important for body traits in this population. Furthermore, the genetic correlations of body weights between different measurement periods were moderate but different from one. This suggests that body weights measured at

  8. Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of Pinus tabuliformis Carr. over a 12-year span.

    PubMed

    Li, Wei; Wang, Xiaoru; Li, Yue

    2011-01-01

    Coniferous seed orchards require a long period from initial seed harvest to stable seed production. Differential reproductive success and asynchrony are among the main factors for orchard crops year-to-year variation in terms of parental gametic contribution and ultimately the genetic gain. It is fundamental in both making predictions about the genetic composition of the seed crop and decisions about orchard roguing and improved seed orchard establishment. In this paper, a primary Chinese pine seed orchard with 49 clones is investigated for stability, variation and correlation analysis of factors which influence genetic quality of the seed lots from initial seed harvest to the stable seed production over a 12 years span. Results indicated that the reproductive synchrony index of pollen shedding has shown to be higher than that of the strobili receptivity, and both can be drastically influenced by the ambient climate factors. Reproductive synchrony index of the clones has certain relative stability and it could be used as an indication of the seed orchard status during maturity stage; clones in the studied orchard have shown extreme differences in terms of the gametic and genetic contribution to the seed crop at the orchard's early production phase specifically when they severe as either female or male parents. Those differences are closely related to clonal sex tendency at the time of orchard's initial reproduction. Clonal gamete contribution as male and female parent often has a negative correlation. Clone utilization as pollen, seed or both pollen and seed donors should consider the role it would play in the seed crop; due to numerous factors influencing on the mating system in seed orchards, clonal genetic contribution as male parent is uncertain, and it has major influence on the genetic composition in the seed orchard during the initial reproductive and seed production phase.

  9. WONOEP appraisal: new genetic approaches to study epilepsy

    PubMed Central

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non

  10. A simulations approach for meta-analysis of genetic association studies based on additive genetic model.

    PubMed

    John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping

    2018-06-01

    Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.

  11. Seventeen years of research on genetics of resistance to Aphanomyces root rot of pea

    USDA-ARS?s Scientific Manuscript database

    Aphanomyces root rot, caused by the oomycete Aphanomyces euteiches, is a major soil borne disease of pea in many countries. Genetic resistance is considered to be a main way to control the disease. Since 2000, INRA has engaged a long-term research program to study genetic resistance to A. euteiches ...

  12. Association of Genetic Risk for Schizophrenia With Nonparticipation Over Time in a Population-Based Cohort Study.

    PubMed

    Martin, Joanna; Tilling, Kate; Hubbard, Leon; Stergiakouli, Evie; Thapar, Anita; Davey Smith, George; O'Donovan, Michael C; Zammit, Stanley

    2016-06-15

    Progress has recently been made in understanding the genetic basis of schizophrenia and other psychiatric disorders. Longitudinal studies are complicated by participant dropout, which could be related to the presence of psychiatric problems and associated genetic risk. We tested whether common genetic variants implicated in schizophrenia were associated with study nonparticipation among 7,867 children and 7,850 mothers from the Avon Longitudinal Study of Parents and Children (ALSPAC; 1991-2007), a longitudinal population cohort study. Higher polygenic risk scores for schizophrenia were consistently associated with noncompletion of questionnaires by study mothers and children and nonattendance at data collection throughout childhood and adolescence (ages 1-15 years). These associations persisted after adjustment for other potential correlates of nonparticipation. Results suggest that persons at higher genetic risk for schizophrenia are likely to be underrepresented in cohort studies, which will underestimate risk of this and related psychiatric, cognitive, and behavioral phenotypes in the population. Statistical power to detect associations with these phenotypes will be reduced, while analyses of schizophrenia-related phenotypes as outcomes may be biased by the nonrandom missingness of these phenotypes, even if multiple imputation is used. Similarly, in complete-case analyses, collider bias may affect associations between genetic risk and other factors associated with missingness. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  13. Genetic educational needs and the role of genetics in primary care: a focus group study with multiple perspectives

    PubMed Central

    2011-01-01

    Background Available evidence suggests that improvements in genetics education are needed to prepare primary care providers for the impact of ongoing rapid advances in genomics. Postgraduate (physician training) and master (midwifery training) programmes in primary care and public health are failing to meet these perceived educational needs. The aim of this study was to explore the role of genetics in primary care (i.e. family medicine and midwifery care) and the need for education in this area as perceived by primary care providers, patient advocacy groups and clinical genetics professionals. Methods Forty-four participants took part in three types of focus groups: mono-disciplinary groups of general practitioners and midwives, respectively and multidisciplinary groups composed of a diverse set of experts. The focus group sessions were audio-taped, transcribed verbatim and analysed using content analysis. Recurrent themes were identified. Results Four themes emerged regarding the educational needs and the role of genetics in primary care: (1) genetics knowledge, (2) family history, (3) ethical dilemmas and psychosocial effects in relation to genetics and (4) insight into the organisation and role of clinical genetics services. These themes reflect a shift in the role of genetics in primary care with implications for education. Although all focus group participants acknowledged the importance of genetics education, general practitioners felt this need more urgently than midwives and more strongly emphasized their perceived knowledge deficiencies. Conclusion The responsibilities of primary care providers with regard to genetics require further study. The results of this study will help to develop effective genetics education strategies to improve primary care providers' competencies in this area. More research into the educational priorities in genetics is needed to design courses that are suitable for postgraduate and master programmes for general practitioners and

  14. [Quality of genetic services--analysis of medical genetic expert opinions solicited by private health insurance companies].

    PubMed

    Nippert, Reinhardt Peter; Schmidtke, Jörg

    2012-01-01

    Service quality for patients with genetic conditions can be assessed through the analysis of clinical genetic data sets, as was the case in this study. It represents a secondary analysis of a compilation of a single genetic expert's medical opinions covering the years 2000 to 2009, solicited by private health insurance companies with the intention of probing into medical necessity and adequacy of genetic testing ordered by physicians. Genetic testing has become an increasingly important part of clinical diagnostic services. Controlling these services does not only reduce costs but also saves patients from unwarranted over-utilisation. Therefore, the reasons given by doctors when ordering genetic tests are part of the quality of service delivery. The study revealed that more than 30% of the molecular genetic tests ordered lack sound medical reasoning and 30% of the cases studied show violation or neglect of guidelines and recommendations for diagnostic procedures with respect to genetic testing. In essence, the findings indicate a need for human genetic information among physicians. Their professional organisations are called upon to design and offer CME/CPD programmes in medical genetics to maintain and continually improve the quality of medical genetic care for patients with genetic conditions. Copyright © 2012. Published by Elsevier GmbH.

  15. Genetic Literacy and Patient Perceptions of IBD Testing Utility and Disease Control: A Randomized Vignette Study of Genetic Testing

    PubMed Central

    Hooker, Gillian W.; Peay, Holly; Erby, Lori; Bayless, Theodore; Biesecker, Barbara B.; Roter, Debra L.

    2014-01-01

    Background Findings from inflammatory bowel disease (IBD) genome-wide association studies are being translated clinically into prognostic and diagnostic indicators of disease. Yet, patient perception and understanding of these tests and their applicability to providing risk information is unclear. The goal of this study was to determine, using hypothetical scenarios, whether patients with IBD perceive genetic testing to be useful for risk assessment, whether genetic test results impact perceived control, and whether low genetic literacy may be a barrier to patient understanding of these tests. Methods Two hundred fifty seven patients with IBD from the Johns Hopkins gastroenterology clinics were randomized to receive a vignette depicting either a genetic testing scenario or a standard blood testing scenario. Participants were asked questions about the vignette and responses were compared between groups. Results Perceptions of test utility for risk assessment were higher among participants responding to the genetic vignette (P < 0.001). There were no significant differences in perceptions of control over IBD after hypothetical testing between vignettes (P = 0.24). Participant responses were modified by genetic literacy, measured using a scale developed for this study. Participants randomized to the genetic vignette who scored higher on the genetic literacy scale perceived greater utility of testing for risk assessment (P = 0.008) and more control after testing (P = 0.02). Conclusions Patients with IBD perceive utility in genetic testing for providing information relevant to family members, and this appreciation is promoted by genetic literacy. Low genetic literacy among patients poses a potential threat to effective translation of genetic and genomic tests. PMID:24691112

  16. Genetic studies of stuttering in a founder population.

    PubMed

    Wittke-Thompson, Jacqueline K; Ambrose, Nicoline; Yairi, Ehud; Roe, Cheryl; Cook, Edwin H; Ober, Carole; Cox, Nancy J

    2007-01-01

    Genome-wide linkage and association analyses were conducted to identify genetic determinants of stuttering in a founder population in which 48 individuals affected with stuttering are connected in a single 232-person genealogy. A novel approach was devised to account for all necessary relationships to enable multipoint linkage analysis. Regions with nominal evidence for linkage were found on chromosomes 3 (P=0.013, 208.8 centiMorgans (cM)), 13 (P=0.012, 52.6 cM), and 15 (P=0.02, 100 cM). Regions with nominal evidence for association with stuttering that overlapped with a linkage signal are located on chromosomes 3 (P=0.0047, 195 cM), 9 (P=0.0067, 46.5 cM), and 13 (P=0.0055, 52.6 cM). We also conducted the first meta-analysis for stuttering using results from linkage studies in the Hutterites and The Illinois International Genetics of Stuttering Project and identified regions with nominal evidence for linkage on chromosomes 2 (P=0.013, 180-195 cM) and 5 (P=0.0051, 105-120 cM; P=0.015, 120-135 cM). None of the linkage signals detected in the Hutterite sample alone, or in the meta-analysis, meet genome-wide criteria for significance, although some of the stronger signals overlap linkage mapping signals previously reported for other speech and language disorders. After reading this article, the reader will be able to: (1) summarize information about the background of common disorders and methodology of genetic studies; (2) evaluate the role of genetics in stuttering; (3) discuss the value of using founder populations in genetic studies; (4) articulate the importance of combining several studies in a meta-analysis; (5) discuss the overlap of genetic signals identified in stuttering with other speech and language disorders.

  17. Genetic specificity of face recognition.

    PubMed

    Shakeshaft, Nicholas G; Plomin, Robert

    2015-10-13

    Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities.

  18. Employees' perspectives on ethically important aspects of genetic research participation: a pilot study.

    PubMed

    Roberts, Laura Weiss; Warner, Teddy D; Geppert, Cynthia M A; Rogers, Melinda; Green Hammond, Katherine A

    2005-01-01

    Insights from genetic research may greatly improve our understanding of physical and mental illnesses and assist in the prevention of disease. Early experience with genetic information suggests that it may lead to stigma, discrimination, and other psychosocial harms, however, and this may be particularly salient in some settings, such as the workplace. Despite the importance of these issues, little is known about how healthy adults, including workers, perceive and understand ethically important issues in genetic research pertaining to physical and mental illness. We developed, pilot tested, and administered a written survey and structured interview to 63 healthy working adults in 2 settings. For this paper, we analyzed a subset of items that assessed attitudes toward ethically relevant issues related to participation in genetic research on physical and mental illness, such as its perceived importance, its acceptability for various populations, and appropriate motivations for participation. Our respondents strongly endorsed the importance of physical and mental illness genetic research. They viewed participation as somewhat to very acceptable for all 12 special population groups we asked about, including persons with mental illness. They perceived more positives than negatives in genetic research participation, giving neutral responses regarding potential risks. They affirmed many motivations for participation to varying degrees. Men tended to affirm genetic research participation importance, acceptability, and motivations more strongly than women. Healthy working persons may be willing partners in genetic research related to physical and mental illnesses in coming years. This project suggests the feasibility and value of evidence-based ethics inquiry, although further study is necessary. Evidence regarding stakeholders' perspectives on ethically important issues in science may help in the development of research practices and policy.

  19. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

    PubMed Central

    Cleynen, Isabelle; Boucher, Gabrielle; Jostins, Luke; Schumm, L Philip; Zeissig, Sebastian; Ahmad, Tariq; Andersen, Vibeke; Andrews, Jane M; Annese, Vito; Brand, Stephan; Brant, Steven R; Cho, Judy H; Daly, Mark J; Dubinsky, Marla; Duerr, Richard H; Ferguson, Lynnette R; Franke, Andre; Gearry, Richard B; Goyette, Philippe; Hakonarson, Hakon; Halfvarson, Jonas; Hov, Johannes R; Huang, Hailang; Kennedy, Nicholas A; Kupcinskas, Limas; Lawrance, Ian C; Lee, James C; Satsangi, Jack; Schreiber, Stephan; Théâtre, Emilie; van der Meulen-de Jong, Andrea E; Weersma, Rinse K; Wilson, David C; Parkes, Miles; Vermeire, Severine; Rioux, John D; Mansfield, John; Silverberg, Mark S; Radford-Smith, Graham; McGovern, Dermot P B; Barrett, Jeffrey C; Lees, Charlie W

    2016-01-01

    Summary Background Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34 819 patients (19 713 with Crohn's disease, 14 683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype–phenotype associations across 156 154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. Findings After quality control, the primary analysis included 29 838 patients (16 902 with Crohn's disease, 12 597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for

  20. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    PubMed Central

    Cerqueira-Silva, Carlos Bernard M.; Jesus, Onildo N.; Santos, Elisa S. L.; Corrêa, Ronan X.; Souza, Anete P.

    2014-01-01

    Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

  1. Appetitive traits as behavioural pathways in genetic susceptibility to obesity: a population-based cross-sectional study.

    PubMed

    Konttinen, Hanna; Llewellyn, Clare; Wardle, Jane; Silventoinen, Karri; Joensuu, Anni; Männistö, Satu; Salomaa, Veikko; Jousilahti, Pekka; Kaprio, Jaakko; Perola, Markus; Haukkala, Ari

    2015-10-01

    The mechanisms through which genes influence body weight are not well understood, but appetite has been implicated as one mediating pathway. Here we use data from two independent population-based Finnish cohorts (4632 adults aged 25-74 years from the DILGOM study and 1231 twin individuals aged 21-26 years from the FinnTwin12 study) to investigate whether two appetitive traits mediate the associations between known obesity-related genetic variants and adiposity. The results from structural equation modelling indicate that the effects of a polygenic risk score (90 obesity-related loci) on measured body mass index and waist circumference are partly mediated through higher levels of uncontrolled eating (βindirect = 0.030-0.032, P < 0.001 in DILGOM) and emotional eating (βindirect = 0.020-0.022, P < 0.001 in DILGOM and βindirect = 0.013-0.015, P = 0.043-0.044 in FinnTwin12). Our findings suggest that genetic predispositions to obesity may partly exert their effects through appetitive traits reflecting lack of control over eating or eating in response to negative emotions. Obesity prevention and treatment studies should examine the impact of targeting these eating behaviours, especially among individuals having a high genetic predisposition to obesity.

  2. Scientific reporting is suboptimal for aspects that characterize genetic risk prediction studies: a review of published articles based on the Genetic RIsk Prediction Studies statement.

    PubMed

    Iglesias, Adriana I; Mihaescu, Raluca; Ioannidis, John P A; Khoury, Muin J; Little, Julian; van Duijn, Cornelia M; Janssens, A Cecile J W

    2014-05-01

    Our main objective was to raise awareness of the areas that need improvements in the reporting of genetic risk prediction articles for future publications, based on the Genetic RIsk Prediction Studies (GRIPS) statement. We evaluated studies that developed or validated a prediction model based on multiple DNA variants, using empirical data, and were published in 2010. A data extraction form based on the 25 items of the GRIPS statement was created and piloted. Forty-two studies met our inclusion criteria. Overall, more than half of the evaluated items (34 of 62) were reported in at least 85% of included articles. Seventy-seven percentage of the articles were identified as genetic risk prediction studies through title assessment, but only 31% used the keywords recommended by GRIPS in the title or abstract. Seventy-four percentage mentioned which allele was the risk variant. Overall, only 10% of the articles reported all essential items needed to perform external validation of the risk model. Completeness of reporting in genetic risk prediction studies is adequate for general elements of study design but is suboptimal for several aspects that characterize genetic risk prediction studies such as description of the model construction. Improvements in the transparency of reporting of these aspects would facilitate the identification, replication, and application of genetic risk prediction models. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Monitoring Hip and Elbow Dysplasia achieved modest genetic improvement of 74 dog breeds over 40 years in USA.

    PubMed

    Hou, Yali; Wang, Yachun; Lu, Xuemei; Zhang, Xu; Zhao, Qian; Todhunter, Rory J; Zhang, Zhiwu

    2013-01-01

    Hip (HD) and Elbow Dysplasia (ED) are two common complex developmental disorders of dogs. In order to decrease their prevalence and severity, the Orthopedic Foundation for Animals (OFA) has a voluntary registry of canine hip and elbow conformation certified by boarded radiologists. However, the voluntarily reports have been severely biased against exposing dogs with problems, especially at beginning period. Fluctuated by additional influential factors such as age, the published raw scores barely showed trends of improvement. In this study, we used multiple-trait mixed model to simultaneously adjust these factors and incorporate pedigree to derive Estimated Breeding Values (EBV). A total of 1,264,422 dogs from 74 breeds were evaluated for EBVs from 760,455 hip scores and 135,409 elbow scores. These EBVs have substantially recovered the reporting bias and the other influences. Clear and steady trends of genetic improvement were observed over the 40 years since 1970. The total genetic improvements were 16.4% and 1.1% of the phenotypic standard deviation for HD and ED, respectively. The incidences of dysplasia were 0.83% and 2.08%, and the heritabilities were estimated as 0.22 and 0.17 for hip and elbow scores, respectively. The genetic correlation between them was 0.12. We conclude that EBV is more effective than reporting raw phenotype. The weak genetic correlation suggested that selection based on hip scores would also slightly improve elbow scores but it is necessary to allocate effort toward improvement of elbow scores alone.

  4. Childhood physical, environmental, and genetic predictors of adult hypertension: the cardiovascular risk in young Finns study.

    PubMed

    Juhola, Jonna; Oikonen, Mervi; Magnussen, Costan G; Mikkilä, Vera; Siitonen, Niina; Jokinen, Eero; Laitinen, Tomi; Würtz, Peter; Gidding, Samuel S; Taittonen, Leena; Seppälä, Ilkka; Jula, Antti; Kähönen, Mika; Hutri-Kähönen, Nina; Lehtimäki, Terho; Viikari, Jorma S A; Juonala, Markus; Raitakari, Olli T

    2012-07-24

    Hypertension is a major modifiable cardiovascular risk factor. The present longitudinal study aimed to examine the best combination of childhood physical and environmental factors to predict adult hypertension and furthermore whether newly identified genetic variants for blood pressure increase the prediction of adult hypertension. The study cohort included 2625 individuals from the Cardiovascular Risk in Young Finns Study who were followed up for 21 to 27 years since baseline (1980; age, 3-18 years). In addition to dietary factors and biomarkers related to blood pressure, we examined whether a genetic risk score based on 29 newly identified single-nucleotide polymorphisms enhances the prediction of adult hypertension. Hypertension in adulthood was defined as systolic blood pressure ≥ 130 mm Hg and/or diastolic blood pressure ≥ 85 mm Hg or medication for the condition. Independent childhood risk factors for adult hypertension included the individual's own blood pressure (P<0.0001), parental hypertension (P<0.0001), childhood overweight/obesity (P=0.005), low parental occupational status (P=0.003), and high genetic risk score (P<0.0001). Risk assessment based on childhood overweight/obesity status, parental hypertension, and parental occupational status was superior in predicting hypertension compared with the approach using only data on childhood blood pressure levels (C statistics, 0.718 versus 0.733; P=0.0007). Inclusion of both parental hypertension history and data on novel genetic variants for hypertension further improved the C statistics (0.742; P=0.015). Prediction of adult hypertension was enhanced by taking into account known physical and environmental childhood risk factors, family history of hypertension, and novel genetic variants. A multifactorial approach may be useful in identifying children at high risk for adult hypertension.

  5. Diet Quality and Change in Blood Lipids during 16 Years of Follow-up and Their Interaction with Genetic Risk for Dyslipidemia.

    PubMed

    Sonestedt, Emily; Hellstrand, Sophie; Drake, Isabel; Schulz, Christina-Alexandra; Ericson, Ulrika; Hlebowicz, Joanna; Persson, Margaretha M; Gullberg, Bo; Hedblad, Bo; Engström, Gunnar; Orho-Melander, Marju

    2016-05-09

    A high diet quality according to the Swedish nutrition recommendations is associated with a reduced risk of cardiovascular disease in the population-based Malmö Diet and Cancer cohort. To further clarify this protective association, we examined the association between high diet quality and change in triglycerides, high density lipoprotein-cholesterol (HDL-C), and low density lipoprotein-cholesterol (LDL-C) after 16 years of follow-up in 3152 individuals (61% women; 46-68 years at baseline). In addition, we examined if genetic risk scores composed of 80 lipid-associated genetic variants modify these associations. A diet quality index based on intakes of saturated fat, polyunsaturated fat, sucrose, fiber, fruit and vegetables, and fish was constructed. A high diet quality was associated with lower risk of developing high triglycerides (p = 0.02) and high LDL-C (p = 0.03) during follow-up compared with a low diet quality. We found an association between diet quality and long-term change in HDL-C only among those with lower genetic risk for low HDL-C as opposed to those with higher genetic risk (p-interaction = 0.04). Among those with lower genetic risk for low HDL-C, low diet quality was associated with decreased HDL-C during follow-up (p = 0.05). In conclusion, individuals with high adherence to the Swedish nutrition recommendation had lower risk of developing high triglycerides and LDL-C during 16 years of follow-up.

  6. Design of microarray experiments for genetical genomics studies.

    PubMed

    Bueno Filho, Júlio S S; Gilmour, Steven G; Rosa, Guilherme J M

    2006-10-01

    Microarray experiments have been used recently in genetical genomics studies, as an additional tool to understand the genetic mechanisms governing variation in complex traits, such as for estimating heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for inferring regulatory networks controlling gene expression. Several articles on the design of microarray experiments discuss situations in which treatment effects are assumed fixed and without any structure. In the case of two-color microarray platforms, several authors have studied reference and circular designs. Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within family structures or complex pedigrees) are presented. In these cases treatments are more appropriately considered to be random effects, with specific covariance structures, in which the genetic goals relate to the estimation of genetic variances and the heritability of transcriptional abundances.

  7. Human genetic resistance to malaria.

    PubMed

    Williams, Thomas N

    2009-01-01

    This brief chapter highlights the need for caution when designing and interpreting studies aimed at seeking new genes that may be associated with malaria protection, or investigating the potential mechanisms for protection in promising candidates. Judging genetic effects on the basis of the wrong clinical phenotype and missing true protective genes because their protective effects are masked by unpredictable epistatic effects are major potential pitfalls. These issues are by no means unique to malaria: in recent years, the importance of larger sample sizes and careful phenotypic definitions have become appreciated increasingly, particularly for genome-wide studies of complex diseases (Cordell and Clayton, 2005; Burton, Tobin and Hopper, 2005). Until recently, research in the field of malaria genetics has not enjoyed the sort of funding afforded to similar work investigating diseases of importance to the developed world. However, in the last few years, coupled with advances in genetic diagnostics that have led to massive automation and falling costs per gene explored, momentum has grown towards more generous funding that brings with it the opportunity for much larger, multisite cohesive studies. The stage is set for a giant leap forward in the coming years.

  8. A Twin Study of ADHD Symptoms in Early Adolescence: Hyperactivity-Impulsivity and Inattentiveness Show Substantial Genetic Overlap but Also Genetic Specificity

    ERIC Educational Resources Information Center

    Greven, Corina U.; Rijsdijk, Fruhling V.; Plomin, Robert

    2011-01-01

    A previous paper in this journal revealed substantial genetic overlap between the ADHD dimensions of hyperactivity-impulsivity and inattentiveness in a sample of 8-year old twins drawn from a UK-representative population sample. Four years later, when the twins were 12 years old, more than 5,500 pairs drawn from the same sample were rated again on…

  9. Genetic specificity of face recognition

    PubMed Central

    Shakeshaft, Nicholas G.; Plomin, Robert

    2015-01-01

    Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities. PMID:26417086

  10. Evidence for Shared Genetic Risk between ADHD Symptoms and Reduced Mathematics Ability: A Twin Study

    ERIC Educational Resources Information Center

    Greven, Corina U.; Kovas, Yulia; Willcutt, Erik G.; Petrill, Stephen A.; Plomin, Robert

    2013-01-01

    Background: Attention-deficit/hyperactivity disorder (ADHD) symptoms and mathematics ability are associated, but little is known about the genetic and environmental influences underlying this association. Methods: Data came from more than 6,000 twelve-year-old twin pairs from the UK population-representative Twins Early Development Study. Parents…

  11. Simulating a base population in honey bee for molecular genetic studies

    PubMed Central

    2012-01-01

    Background Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Results Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ2 statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r2 values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. Conclusion We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to

  12. Genetic code mutations: the breaking of a three billion year invariance.

    PubMed

    Mat, Wai-Kin; Xue, Hong; Wong, J Tze-Fei

    2010-08-20

    The genetic code has been unchanging for some three billion years in its canonical ensemble of encoded amino acids, as indicated by the universal adoption of this ensemble by all known organisms. Code mutations beginning with the encoding of 4-fluoro-Trp by Bacillus subtilis, initially replacing and eventually displacing Trp from the ensemble, first revealed the intrinsic mutability of the code. This has since been confirmed by a spectrum of other experimental code alterations in both prokaryotes and eukaryotes. To shed light on the experimental conversion of a rigidly invariant code to a mutating code, the present study examined code mutations determining the propagation of Bacillus subtilis on Trp and 4-, 5- and 6-fluoro-tryptophans. The results obtained with the mutants with respect to cross-inhibitions between the different indole amino acids, and the growth effects of individual nutrient withdrawals rendering essential their biosynthetic pathways, suggested that oligogenic barriers comprising sensitive proteins which malfunction with amino acid analogues provide effective mechanisms for preserving the invariance of the code through immemorial time, and mutations of these barriers open up the code to continuous change.

  13. Bivariate Genetic Analyses of Stuttering and Nonfluency in a Large Sample of 5-Year-Old Twins

    ERIC Educational Resources Information Center

    van Beijsterveldt, Catharina Eugenie Maria; Felsenfeld, Susan; Boomsma, Dorret Irene

    2010-01-01

    Purpose: Behavioral genetic studies of speech fluency have focused on participants who present with clinical stuttering. Knowledge about genetic influences on the development and regulation of normal speech fluency is limited. The primary aims of this study were to identify the heritability of stuttering and high nonfluency and to assess the…

  14. Human genetic mapping studies using single sperm typing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubert, R.S.

    1993-01-01

    Sperm typing is a powerful technique that uses the polymerase chain reaction (PCR) to analyze DNA sequences within single sperm cells in order to construct genetic maps. This methodology was used to estimate the recombination fraction between D3S2 and D3S2 which was found to be 0.28 (95% CI = 0.20-0.36). Pedigree analysis was unable to determine genetic distance between these two markers due to their low informativeness. We also showed that dinucleotide and tetranucleotide repeat polymorphisms can be analyzed in single cells without using radioactivity or denaturing gels. This provides a rich new source of DANA polymorphisms for genetic mappingmore » by sperm typing. In addition, an approach that uses the sperm typing methodology is described that can define the physical boundaries of meiotic recombination hotspots. The hotspot at 4p16.3 near the Huntington disease gene was localized to an interval between D4S10 and D4S126. These studies demonstrated the usefulness of sperm typing as a tool for the study of human genetic.« less

  15. Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study.

    PubMed

    Kremen, William S; Prom-Wormley, Elizabeth; Panizzon, Matthew S; Eyler, Lisa T; Fischl, Bruce; Neale, Michael C; Franz, Carol E; Lyons, Michael J; Pacheco, Jennifer; Perry, Michele E; Stevens, Allison; Schmitt, J Eric; Grant, Michael D; Seidman, Larry J; Thermenos, Heidi W; Tsuang, Ming T; Eisen, Seth A; Dale, Anders M; Fennema-Notestine, Christine

    2010-01-15

    The impact of genetic and environmental factors on human brain structure is of great importance for understanding normative cognitive and brain aging as well as neuropsychiatric disorders. However, most studies of genetic and environmental influences on human brain structure have either focused on global measures or have had samples that were too small for reliable estimates. Using the classical twin design, we assessed genetic, shared environmental, and individual-specific environmental influences on individual differences in the size of 96 brain regions of interest (ROIs). Participants were 474 middle-aged male twins (202 pairs; 70 unpaired) in the Vietnam Era Twin Study of Aging (VETSA). They were 51-59 years old, and were similar to U.S. men in their age range in terms of sociodemographic and health characteristics. We measured thickness of cortical ROIs and volume of other ROIs. On average, genetic influences accounted for approximately 70% of the variance in the volume of global, subcortical, and ventricular ROIs and approximately 45% of the variance in the thickness of cortical ROIs. There was greater variability in the heritability of cortical ROIs (0.00-0.75) as compared with subcortical and ventricular ROIs (0.48-0.85). The results did not indicate lateralized heritability differences or greater genetic influences on the size of regions underlying higher cognitive functions. The findings provide key information for imaging genetic studies and other studies of brain phenotypes and endophenotypes. Longitudinal analysis will be needed to determine whether the degree of genetic and environmental influences changes for different ROIs from midlife to later life.

  16. Genetic association studies of obesity in Africa: a systematic review.

    PubMed

    Yako, Y Y; Echouffo-Tcheugui, J B; Balti, E V; Matsha, T E; Sobngwi, E; Erasmus, R T; Kengne, A P

    2015-03-01

    Obesity is increasing in Africa, but the underlying genetic background largely remains unknown. We assessed existing evidence on genetic determinants of obesity among populations within Africa. MEDLINE and EMBASE were searched and the bibliographies of retrieved articles were examined. Included studies had to report on the association of a genetic marker with obesity indices and the presence/occurrence of obesity/obesity trait. Data were extracted on study design and characteristics, genetic determinants and effect estimates of associations with obesity indices. According to this data, over 300 polymorphisms in 42 genes have been studied in various population groups within Africa mostly through the candidate gene approach. Polymorphisms in genes such as ACE, ADIPOQ, ADRB2, AGRP, AR, CAPN10, CD36, C7orf31, DRD4, FTO, MC3R, MC4R, SGIP1 and LEP were found to be associated with various measures of obesity. Of the 36 polymorphisms previously validated by genome-wide association studies (GWAS) elsewhere, only FTO and MC4R polymorphisms showed significant associations with obesity in black South Africans, Nigerians and Ghanaians. However, these data are insufficient to establish the true nature of genetic susceptibility to obesity in populations within Africa. There has been recent progress in describing the genetic architecture of obesity among populations within Africa. This effort needs to be sustained via GWAS studies. © 2015 World Obesity.

  17. Mathematical Ability of 10-Year-Old Boys and Girls: Genetic and Environmental Etiology of Typical and Low Performance

    PubMed Central

    Kovas, Yulia; Haworth, Claire M. A.; Petrill, Stephen A.; Plomin, Robert

    2009-01-01

    The genetic and environmental etiologies of 3 aspects of low mathematical performance (math disability) and the full range of variability (math ability) were compared for boys and girls in a sample of 5,348 children age 10 years (members of 2,674 pairs of same-sex and opposite-sex twins) from the United Kingdom (UK). The measures, which we developed for Web-based testing, included problems from 3 domains of mathematics taught as part of the UK National Curriculum. Using quantitative genetic model-fitting analyses, similar results were found for math disabilities and abilities for all 3 measures: Moderate genetic influence and environmental influence were mainly due to nonshared environmental factors that were unique to the individual, with little influence from shared environment. No sex differences were found in the etiologies of math abilities and disabilities. We conclude that low mathematical performance is the quantitative extreme of the same genetic and environmental factors responsible for variation throughout the distribution. PMID:18064980

  18. A rangewide population genetic study of trumpeter swans

    USGS Publications Warehouse

    Oyler-McCance, S.J.; Ransler, F.A.; Berkman, L.K.; Quinn, T.W.

    2007-01-01

    For management purposes, the range of naturally occurring trumpeter swans (Cygnus buccinator) has been divided into two populations, the Pacific Coast Population (PP) and the Rocky Mountain Population (RMP). Little is known about the distribution of genetic variation across the species' range despite increasing pressure to make difficult management decisions regarding the two populations and flocks within them. To address this issue, we used rapidly evolving genetic markers (mitochondrial DNA sequence and 17 nuclear microsatellite loci) to elucidate the underlying genetic structure of the species. Data from both markers revealed a significant difference between the PP and RMP with the Yukon Territory as a likely area of overlap. Additionally, we found that the two populations have somewhat similar levels of genetic diversity (PP is slightly higher) suggesting that the PP underwent a population bottleneck similar to a well-documented one in the RMP. Both genetic structure and diversity results reveal that the Tri-State flock, a suspected unique, non-migratory flock, is not genetically different from the Canadian flock of the RMP and need not be treated as a unique population from a genetic standpoint. Finally, trumpeter swans appear to have much lower mitochondrial DNA variability than other waterfowl studied thus far which may suggest a previous, species-wide bottleneck. ?? 2007 Springer Science+Business Media, Inc.

  19. Consecutive five-year analysis of paternal and maternal gene flow and contributions of gametic heterogeneities to overall genetic composition of dispersed seeds of Pinus densiflora (Pinaceae).

    PubMed

    Iwaizumi, Masakazu G; Takahashi, Makoto; Isoda, Keiya; Austerlitz, Frédéric

    2013-09-01

    Genetic variability in monoecious woody plant populations results from the assemblage of individuals issued from asymmetrical male and female reproductive functions, produced during spatially and temporarily heterogeneous reproductive and dispersal events. Here we investigated the dispersal patterns and levels of genetic diversity and differentiation of both paternal and maternal gametes in a natural population of Pinus densiflora at the multiple-year scale as long as five consecutive years. • We analyzed the paternity and maternity for 1576 seeds and 454 candidate adult trees using nuclear DNA polymorphisms of diploid biparental embryos and haploid maternal megagametophytes at eight microsatellite loci. • Despite the low levels of genetic differentiation among gamete groups, a two-way AMOVA analysis showed that the parental origin (paternal vs. maternal gametes), the year of gamete production and their interaction had significant effects on the genetic composition of the seeds. While maternal gamete groups showed a significant FST value across the 5 years, this was not true for their paternal counterparts. Within the population, we found that the relative reproductive contributions of the paternal vs. the maternal parent differed among adult trees, the maternal contributions showing a larger year-to-year fluctuation. • The overall genetic variability of dispersed seeds appeared to result from two sources of heterogeneity: the difference between paternal and maternal patterns of reproduction and gamete dispersal and year-to-year heterogeneity of reproduction of adult trees, especially in their maternal reproduction.

  20. German new onset diabetes in the young incident cohort study: DiMelli study design and first-year results.

    PubMed

    Thümer, Leonore; Adler, Kerstin; Bonifacio, Ezio; Hofmann, Frank; Keller, Manfred; Milz, Christine; Munte, Axel; Ziegler, Anette-Gabriele

    2010-01-01

    Diabetes incidence in childhood and youth is increasing worldwide, including autoimmune and non-autoimmune cases. Recent findings suggest that there is a larger than expected proportion of type 2 diabetes in youth, and potential cases of intermediate diabetes phenotypes. Most pediatric diabetes registries focus on type 1 diabetes. Also, there is an absence of reliable data on type 2 diabetes incidence in youth. The DiMelli study aims to establish a diabetes incidence cohort registry of patients in Germany, diagnosed with diabetes mellitus before age 20 years. It will be used to characterize diabetes phenotypes by immunologic, metabolic, and genetic markers. DiMelli will assess the contribution of obesity and socio-demographic factors to the development of diabetes in childhood and youth. Recruitment of patients started in 2009, and is expected to continue at a rate of 250 patients per year. 84% of the 216 patients recruited within the first year were positive for multiple islet autoantibodies, 12% for one islet autoantibody, and 4% were islet autoantibody-negative. Patients with multiple islet autoantibodies were younger and had lower fasting C-peptide levels, compared to islet autoantibody-negative patients (median age 10.0 vs. 14.1 years, p < 0.01). Results from the first year of the study show that DiMelli will help to reveal new knowledge on the etiology of diabetes, and the contribution of genetic predisposition and environmental risk factors to the different types of diabetes.

  1. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study.

    PubMed

    Cleynen, Isabelle; Boucher, Gabrielle; Jostins, Luke; Schumm, L Philip; Zeissig, Sebastian; Ahmad, Tariq; Andersen, Vibeke; Andrews, Jane M; Annese, Vito; Brand, Stephan; Brant, Steven R; Cho, Judy H; Daly, Mark J; Dubinsky, Marla; Duerr, Richard H; Ferguson, Lynnette R; Franke, Andre; Gearry, Richard B; Goyette, Philippe; Hakonarson, Hakon; Halfvarson, Jonas; Hov, Johannes R; Huang, Hailang; Kennedy, Nicholas A; Kupcinskas, Limas; Lawrance, Ian C; Lee, James C; Satsangi, Jack; Schreiber, Stephan; Théâtre, Emilie; van der Meulen-de Jong, Andrea E; Weersma, Rinse K; Wilson, David C; Parkes, Miles; Vermeire, Severine; Rioux, John D; Mansfield, John; Silverberg, Mark S; Radford-Smith, Graham; McGovern, Dermot P B; Barrett, Jeffrey C; Lees, Charlie W

    2016-01-09

    Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34,819 patients (19,713 with Crohn's disease, 14,683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype-phenotype associations across 156,154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. After quality control, the primary analysis included 29,838 patients (16,902 with Crohn's disease, 12,597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with

  2. Genetic thinking in the study of social relationships: Five points of entry

    PubMed Central

    Reiss, David

    2014-01-01

    For nearly a generation, researchers studying human behavioral development have combined genetically informed research designs with careful measures of social relationships: parenting, sibling relationships, peer relationships, marital processes, social class stratifications and patterns of social engagement in the elderly. In what way have these genetically informed studies altered the construction and testing of social theories of human development? We consider five points where genetic thinking is taking hold. First, genetic findings suggest an alternative scenario for explaining social data. Associations between measures of the social environment and human development may be due to genes that influence both. Second, genetic studies add to other prompts to study the early developmental origins of current social phenomena in mid-life and beyond. Third, genetic analyses promise to bring to the surface understudied social systems, such as sibling relationships, that have an impact on human development independent of genotype. Fourth, genetic analyses anchor in neurobiology individual differences in resilience and sensitivity to both adverse and favorable social environments. Finally, genetic analyses increase the utility of laboratory simulations of human social processes and of animal models. PMID:25419225

  3. Gait strategy in genetically obese patients: a 7-year follow up.

    PubMed

    Cimolin, V; Vismara, L; Galli, M; Grugni, G; Cau, N; Capodaglio, P

    2014-07-01

    The aim of this study was to quantitatively evaluate the change in gait and body weight in the long term in patients with Prader-Willi Syndrome (PWS). Eight adults with PWS were evaluated at baseline and after 7 years. During this period patient participated an in- and out-patient rehabilitation programs including nutritional and adapted physical activity interventions. Two different control groups were included: the first group included 14 non-genetically obese patients (OCG: obese control group) and the second group included 10 age-matched healthy individuals (HCG: healthy control group). All groups were quantitatively assessed during walking with 3D-GA. The results at the 7-year follow-up revealed significant weight loss in the PWS group and spatial-temporal changes in gait parameters (velocity, step length and cadence). With regard to the hip joint, there were significant changes in terms of hip position, which is less flexed. Knee flexion-extension showed a reduction of flexion in swing phase and of its excursion. No changes of the ankle position were evident. As for ankle kinetics, we observed in the second session higher values for the peak of ankle power in terminal stance in comparison to the first session. No changes were found in terms of ankle kinetics. The findings demonstrated improvements associated to long-term weight loss, especially in terms of spatial-temporal parameters and at hip level. Our results back the call for early weight loss interventions during childhood, which would allow the development of motor patterns under normal body weight conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Ancient DNA reveals genetic stability despite demographic decline: 3,000 years of population history in the endemic Hawaiian petrel.

    PubMed

    Welch, Andreanna J; Wiley, Anne E; James, Helen F; Ostrom, Peggy H; Stafford, Thomas W; Fleischer, Robert C

    2012-12-01

    In the Hawaiian Islands, human colonization, which began approximately 1,200 to 800 years ago, marks the beginning of a period in which nearly 75% of the endemic avifauna became extinct and the population size and range of many additional species declined. It remains unclear why some species persisted whereas others did not. The endemic Hawaiian petrel (Pterodroma sandwichensis) has escaped extinction, but colonies on two islands have been extirpated and populations on remaining islands have contracted. We obtained mitochondrial DNA sequences from 100 subfossil bones, 28 museum specimens, and 289 modern samples to investigate patterns of gene flow and temporal changes in the genetic diversity of this endangered species over the last 3,000 years, as Polynesians and then Europeans colonized the Hawaiian Islands. Genetic differentiation was found to be high between both modern and ancient petrel populations. However, gene flow was substantial between the extirpated colonies on Oahu and Molokai and modern birds from the island of Lanai. No significant reductions in genetic diversity occurred over this period, despite fears in the mid-1900s that this species may have been extinct. Simulations show that even a decline to a stable effective population size of 100 individuals would result in the loss of only 5% of the expected heterozygosity. Simulations also show that high levels of genetic diversity may be retained due to the long generation time of this species. Such decoupling between population size and genetic diversity in long-lived species can have important conservation implications. It appears that a pattern of dispersal from declining colonies, in addition to long generation time, may have allowed the Hawaiian petrel to escape a severe genetic bottleneck, and the associated extinction vortex, and persist despite a large population decline after human colonization.

  5. Public culture and public understanding of genetics: a focus group study.

    PubMed

    Bates, Benjamin R

    2005-01-01

    As the role of genetic science in everyday life has grown, policymakers have become concerned about Americans' understandings of this science. Much effort has been devoted to formal schooling, but less attention has been paid to the role of public culture in shaping public understanding of genetics. Research into public cultural messages about genetics has claimed that the public is likely to adopt problematic accounts, but few studies have explored the public's articulation of these messages. This study is based on 25 focus groups convened to explore the lay public's understanding of genetics. The study found that the public processed a greater variety of messages than assumed by previous researchers, including documentaries, non-science-fiction films, and popular television in addition to previous researchers' focus on science fiction and news media. The study also found that the public does not process the messages through the linear, transmission model assumed by previous research. The public processes messages about genetics complexly and critically. On the basis of these findings, the study suggests that researchers should include a greater variety of texts about genetics in their research and attend more fully to audience processing in addition to content analyses of these texts.

  6. Pitfalls in setting up genetic studies on preeclampsia.

    PubMed

    Laivuori, Hannele

    2013-04-01

    This presentation will consider approaches to discover susceptibility genes for a complex genetic disorder such as preeclampsia. The clinical disease presumably results from the additive effects of multiple sequence variants from the mother and the foetus together with environmental factors. Disease heterogeneity and underpowered study designs are likely to be behind non-reproducible results in candidate gene association studies. To avoid spurious findings, sample size and characteristics of the study populations as well as replication studies in an independent study population should be an essential part of a study design. In family-based linkage studies relationship with genotype and phenotype may be modified by a variety of factors. The large number of families needed in discovering genetic variants with modest effect sizes is difficult to attain. Moreover, the identification of underlying mutations has proven difficult. When pooling data or performing meta-analyses from different populations, disease and locus heterogeneity may become a major issue. First genome-wide association studies (GWAS) have identified risk loci for preeclampsia. Adequately powered replication studies are critical in order to replicate the initial GWAS findings. This approach requires rigorous multiple testing correction. The expected effect sizes of individual sequence variants on preeclampsia are small, but this approach is likely to decipher new clues to the pathogenesis. The rare variants, gene-gene and gene-environmental interactions as well as noncoding genetic variations and epigenetics are expected to explain the missing heritability. Next-generation sequencing technologies will make large amount of data on genomes and transcriptomes available. Complexity of the data poses a challenge. Different depths of coverage might be chosen depending on the design of the study, and validation of the results by different methods is mandatory. In order to minimize disease heterogeneity in

  7. Monitoring Hip and Elbow Dysplasia Achieved Modest Genetic Improvement of 74 Dog Breeds over 40 Years in USA

    PubMed Central

    Zhang, Xu; Zhao, Qian; Todhunter, Rory J.; Zhang, Zhiwu

    2013-01-01

    Hip (HD) and Elbow Dysplasia (ED) are two common complex developmental disorders of dogs. In order to decrease their prevalence and severity, the Orthopedic Foundation for Animals (OFA) has a voluntary registry of canine hip and elbow conformation certified by boarded radiologists. However, the voluntarily reports have been severely biased against exposing dogs with problems, especially at beginning period. Fluctuated by additional influential factors such as age, the published raw scores barely showed trends of improvement. In this study, we used multiple-trait mixed model to simultaneously adjust these factors and incorporate pedigree to derive Estimated Breeding Values (EBV). A total of 1,264,422 dogs from 74 breeds were evaluated for EBVs from 760,455 hip scores and 135,409 elbow scores. These EBVs have substantially recovered the reporting bias and the other influences. Clear and steady trends of genetic improvement were observed over the 40 years since 1970. The total genetic improvements were 16.4% and 1.1% of the phenotypic standard deviation for HD and ED, respectively. The incidences of dysplasia were 0.83% and 2.08%, and the heritabilities were estimated as 0.22 and 0.17 for hip and elbow scores, respectively. The genetic correlation between them was 0.12. We conclude that EBV is more effective than reporting raw phenotype. The weak genetic correlation suggested that selection based on hip scores would also slightly improve elbow scores but it is necessary to allocate effort toward improvement of elbow scores alone. PMID:24124555

  8. Insights from human genetic studies of lung and organ fibrosis.

    PubMed

    Garcia, Christine Kim

    2018-01-02

    Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.

  9. Logical and Methodological Issues Affecting Genetic Studies of Humans Reported in Top Neuroscience Journals.

    PubMed

    Grabitz, Clara R; Button, Katherine S; Munafò, Marcus R; Newbury, Dianne F; Pernet, Cyril R; Thompson, Paul A; Bishop, Dorothy V M

    2018-01-01

    Genetics and neuroscience are two areas of science that pose particular methodological problems because they involve detecting weak signals (i.e., small effects) in noisy data. In recent years, increasing numbers of studies have attempted to bridge these disciplines by looking for genetic factors associated with individual differences in behavior, cognition, and brain structure or function. However, different methodological approaches to guarding against false positives have evolved in the two disciplines. To explore methodological issues affecting neurogenetic studies, we conducted an in-depth analysis of 30 consecutive articles in 12 top neuroscience journals that reported on genetic associations in nonclinical human samples. It was often difficult to estimate effect sizes in neuroimaging paradigms. Where effect sizes could be calculated, the studies reporting the largest effect sizes tended to have two features: (i) they had the smallest samples and were generally underpowered to detect genetic effects, and (ii) they did not fully correct for multiple comparisons. Furthermore, only a minority of studies used statistical methods for multiple comparisons that took into account correlations between phenotypes or genotypes, and only nine studies included a replication sample or explicitly set out to replicate a prior finding. Finally, presentation of methodological information was not standardized and was often distributed across Methods sections and Supplementary Material, making it challenging to assemble basic information from many studies. Space limits imposed by journals could mean that highly complex statistical methods were described in only a superficial fashion. In summary, methods that have become standard in the genetics literature-stringent statistical standards, use of large samples, and replication of findings-are not always adopted when behavioral, cognitive, or neuroimaging phenotypes are used, leading to an increased risk of false-positive findings

  10. Clinical applications of preimplantation genetic testing.

    PubMed

    Brezina, Paul R; Kutteh, William H

    2015-02-19

    Genetic diagnostic technologies are rapidly changing the way medicine is practiced. Preimplantation genetic testing is a well established application of genetic testing within the context of in vitro fertilization cycles. It involves obtaining a cell(s) from a developing embryo in culture, which is then subjected to genetic diagnostic analysis; the resulting information is used to guide which embryos are transferred into the uterus. The potential applications and use of this technology have increased in recent years. Experts agree that preimplantation genetic diagnosis is clinically appropriate for many known genetic disorders. However, some applications of such testing, such as preimplantation genetic screening for aneuploidy, remain controversial. Clinical data suggest that preimplantation genetic screening may be useful, but further studies are needed to quantify the size of the effect and who would benefit most. © BMJ Publishing Group Ltd 2015.

  11. Yangtze River, an insignificant genetic boundary in tufted deer (Elaphodus cephalophus): the evidence from a first population genetics study.

    PubMed

    Sun, Zhonglou; Pan, Tao; Wang, Hui; Pang, Mujia; Zhang, Baowei

    2016-01-01

    Great rivers were generally looked at as the geographical barrier to gene flow for many taxonomic groups. The Yangtze River is the third largest river in the world, and flows across South China and into the East China Sea. Up until now, few studies have been carried out to evaluate its effect as a geographical barrier. In this study, we attempted to determine the barrier effect of the Yangtze River on the tufted deer ( Elaphodus cephalophus ) using the molecular ecology approach. Using mitochondrial DNA control region (CR) sequences and 13 nuclear microsatellite loci, we explored the genetic structure and gene flow in two adjacent tufted deer populations (Dabashan and Wulingshan populations), which are separated by the Yangtze River. Results indicated that there are high genetic diversity levels in the two populations, but no distinguishable haplotype group or potential genetic cluster was detected which corresponded to specific geographical population. At the same time, high gene flow was observed between Wulingshan and Dabashan populations. The tufted deer populations experienced population decrease from 0.3 to 0.09 Ma BP, then followed by a distinct population increase. A strong signal of recent population decline ( T = 4,396 years) was detected in the Wulingshan population by a Markov-Switching Vector Autoregressions(MSVAR) process population demography analysis. The results indicated that the Yangtze River may not act as an effective barrier to gene flow in the tufted deer. Finally, we surmised that the population demography of the tufted deer was likely affected by Pleistocene climate fluctuations and ancient human activities.

  12. Genetic influences on alcohol use behaviors have diverging developmental trajectories: a prospective study among male and female twins.

    PubMed

    Meyers, Jacquelyn L; Salvatore, Jessica E; Vuoksimaa, Eero; Korhonen, Tellervo; Pulkkinen, Lea; Rose, Richard J; Kaprio, Jaakko; Dick, Danielle M

    2014-11-01

    Both alcohol-specific genetic factors and genetic factors related to externalizing behavior influence problematic alcohol use. Little is known, however, about the etiologic role of these 2 components of genetic risk on alcohol-related behaviors across development. Prior studies conducted in a male cohort of twins suggest that externalizing genetic factors are important for predicting heavy alcohol use in adolescence, whereas alcohol-specific genetic factors increase in importance during the transition to adulthood. In this report, we studied twin brothers and sisters and brother-sister twin pairs to examine such developmental trajectories and investigate whether sex and cotwin sex effects modify these genetic influences. We used prospective, longitudinal twin data collected between ages 12 and 22 within the population-based FinnTwin12 cohort study (analytic n = 1,864). Our dependent measures of alcohol use behaviors included alcohol initiation (age 12), intoxication frequency (ages 14 and 17), and alcohol dependence criteria (age 22). Each individual's genetic risk of alcohol use disorders (AUD-GR) was indexed by his/her parents' and cotwin's DSM-IV Alcohol Dependence (AD) criterion counts. Likewise, each individual's genetic risk of externalizing disorders (EXT-GR) was indexed with a composite measure of parents' and cotwin's DSM-IV Conduct Disorder and Antisocial Personality Disorder criterion counts. EXT-GR was most strongly related to alcohol use behaviors during adolescence, while AUD-GR was most strongly related to alcohol problems in young adulthood. Further, sex of the twin and sex of the cotwin significantly moderated the associations between genetic risk and alcohol use behaviors across development: AUD-GR influenced early adolescent alcohol use behaviors in females more than in males, and EXT-GR influenced age 22 AD more in males than in females. In addition, the associations of AUD-GR and EXT-GR with intoxication frequency were greater among 14- and

  13. The Evolution of Human Genetic Studies of Cleft Lip and Cleft Palate

    PubMed Central

    Marazita, Mary L.

    2013-01-01

    Orofacial clefts (OFCs)—primarily cleft lip and cleft palate—are among the most common birth defects in all populations worldwide, and have notable population, ethnicity, and gender differences in birth prevalence. Interest in these birth defects goes back centuries, as does formal scientific interest; scientists often used OFCs as examples or evidence during paradigm shifts in human genetics, and have also used virtually every new method of human genetic analysis to deepen our understanding of OFC. This review traces the evolution of human genetic investigations of OFC, highlights the specific insights gained about OFC through the years, and culminates in a review of recent key OFC genetic findings resulting from the powerful tools of the genomics era. Notably, OFC represents a major success for genome-wide approaches, and the field is poised for further breakthroughs in the near future. PMID:22703175

  14. Participation in a Year-Long CURE Embedded into Major Core Genetics and Cellular and Molecular Biology Laboratory Courses Results in Gains in Foundational Biological Concepts and Experimental Design Skills by Novice Undergraduate Researchers†

    PubMed Central

    Peteroy-Kelly, Marcy A.; Marcello, Matthew R.; Crispo, Erika; Buraei, Zafir; Strahs, Daniel; Isaacson, Marisa; Jaworski, Leslie; Lopatto, David; Zuzga, David

    2017-01-01

    This two-year study describes the assessment of student learning gains arising from participation in a year-long curriculum consisting of a classroom undergraduate research experience (CURE) embedded into second-year, major core Genetics and Cellular and Molecular Biology (CMB) laboratory courses. For the first course in our CURE, students used micro-array or RNAseq analyses to identify genes important for environmental stress responses by Saccharomyces cerevisiae. The students were tasked with creating overexpressing mutants of their genes and designing their own original experiments to investigate the functions of those genes using the overexpression and null mutants in the second CURE course. In order to evaluate student learning gains, we employed three validated concept inventories in a pretest/posttest format and compared gains on the posttest versus the pretest with student laboratory final grades. Our results demonstrated that there was a significant correlation between students earning lower grades in the Genetics laboratory for both years of this study and gains on the Genetics Concept Assessment (GCA). We also demonstrated a correlation between students earning lower grades in the Genetics laboratory and gains on the Introductory Molecular and Cell Biology Assessment (IMCA) for year 1 of the study. Students furthermore demonstrated significant gains in identifying the variable properties of experimental subjects when assessed using the Rubric for Experimental (RED) design tool. Results from the administration of the CURE survey support these findings. Our results suggest that a year-long CURE enables lower performing students to experience greater gains in their foundational skills for success in the STEM disciplines. PMID:28904646

  15. Participation in a Year-Long CURE Embedded into Major Core Genetics and Cellular and Molecular Biology Laboratory Courses Results in Gains in Foundational Biological Concepts and Experimental Design Skills by Novice Undergraduate Researchers.

    PubMed

    Peteroy-Kelly, Marcy A; Marcello, Matthew R; Crispo, Erika; Buraei, Zafir; Strahs, Daniel; Isaacson, Marisa; Jaworski, Leslie; Lopatto, David; Zuzga, David

    2017-01-01

    This two-year study describes the assessment of student learning gains arising from participation in a year-long curriculum consisting of a classroom undergraduate research experience (CURE) embedded into second-year, major core Genetics and Cellular and Molecular Biology (CMB) laboratory courses. For the first course in our CURE, students used micro-array or RNAseq analyses to identify genes important for environmental stress responses by Saccharomyces cerevisiae . The students were tasked with creating overexpressing mutants of their genes and designing their own original experiments to investigate the functions of those genes using the overexpression and null mutants in the second CURE course. In order to evaluate student learning gains, we employed three validated concept inventories in a pretest/posttest format and compared gains on the posttest versus the pretest with student laboratory final grades. Our results demonstrated that there was a significant correlation between students earning lower grades in the Genetics laboratory for both years of this study and gains on the Genetics Concept Assessment (GCA). We also demonstrated a correlation between students earning lower grades in the Genetics laboratory and gains on the Introductory Molecular and Cell Biology Assessment (IMCA) for year 1 of the study. Students furthermore demonstrated significant gains in identifying the variable properties of experimental subjects when assessed using the Rubric for Experimental (RED) design tool. Results from the administration of the CURE survey support these findings. Our results suggest that a year-long CURE enables lower performing students to experience greater gains in their foundational skills for success in the STEM disciplines.

  16. Writing and Reading Skills as Assessed by Teachers in 7-Year Olds: A Behavioral Genetic Approach

    ERIC Educational Resources Information Center

    Oliver, Bonamy R.; Dale, Philip S.; Plomin, Robert

    2007-01-01

    A behavioral genetic analysis of general writing ability was conducted using teacher assessments based on UK National Curriculum criteria for a sample of 3296 same-sex pairs of 7-year-old twins. Writing was highly heritable within the normal range (0.66) and at the low extreme (0.70). Environmental influences were almost all non-shared, with…

  17. Genetic Thinking in the Study of Social Relationships: Five Points of Entry.

    PubMed

    Reiss, David

    2010-09-01

    For nearly a generation, researchers studying human behavioral development have combined genetically informed research designs with careful measures of social relationships such as parenting, sibling relationships, peer relationships, marital processes, social class stratifications, and patterns of social engagement in the elderly. In what way have these genetically informed studies altered the construction and testing of social theories of human development? We consider five points of entry where genetic thinking is taking hold. First, genetic findings suggest an alternative scenario for explaining social data. Associations between measures of the social environment and human development may be due to genes that influence both. Second, genetic studies add to other prompts to study the early developmental origins of current social phenomena in midlife and beyond. Third, genetic analyses promise to shed light on understudied social systems, such as sibling relationships, that have an impact on human development independent of genotype. Fourth, genetic analyses anchor in neurobiology individual differences in resilience and sensitivity to both adverse and favorable social environments. Finally, genetic analyses increase the utility of laboratory simulations of human social processes and of animal models. © The Author(s) 2010.

  18. Genetic and environmental influences on growth from late childhood to adulthood: a longitudinal study of two Finnish twin cohorts.

    PubMed

    Jelenkovic, Aline; Ortega-Alonso, Alfredo; Rose, Richard J; Kaprio, Jaakko; Rebato, Esther; Silventoinen, Karri

    2011-01-01

    Human growth is a complex process that remains insufficiently understood. We aimed to analyze genetic and environmental influences on growth from late childhood to early adulthood. Two cohorts of monozygotic and dizygotic (same sex and opposite sex) Finnish twin pairs were studied longitudinally using self-reported height at 11-12, 14, and 17 years and adult age (FinnTwin12) and at 16, 17, and 18 years and adult age (FinnTwin16). Univariate and multivariate variance component models for twin data were used. From childhood to adulthood, genetic differences explained 72-81% of the variation of height in boys and 65-86% in girls. Environmental factors common to co-twins explained 5-23% of the variation of height, with the residual variation explained by environmental factors unique to each twin individual. Common environmental factors affecting height were highly correlated between the analyzed ages (0.72-0.99 and 0.91-1.00 for boys and girls, respectively). Genetic (0.58-0.99 and 0.70-0.99, respectively) and unique environmental factors (0.32-0.78 and 0.54-0.82, respectively) affecting height at different ages were more weakly, but still substantially, correlated. The genetic contribution to height is strong during adolescence. The high genetic correlations detected across the ages encourage further efforts to identify genes affecting growth. Common and unique environmental factors affecting height during adolescence are also important, and further studies are necessary to identify their nature and test whether they interact with genetic factors. Copyright © 2011 Wiley-Liss, Inc.

  19. Low Genetic Diversity and Low Gene Flow Corresponded to a Weak Genetic Structure of Ruddy-Breasted Crake (Porzana fusca) in China.

    PubMed

    Zhu, Chaoying; Chen, Peng; Han, Yuqing; Ruan, Luzhang

    2018-05-12

    The Ruddy-breasted Crake (Porzana fusca) is an extremely poorly known species. Although it is not listed as globally endangered, in recent years, with the interference of climate change and human activities, its habitat is rapidly disappearing and its populations have been shrinking. There are two different life history traits for Ruddy-breasted Crake in China, i.e., non-migratory population in the south and migratory population in the north of China. In this study, mitochondrial control sequences and microsatellite datasets of 88 individuals sampled from 8 sites were applied to analyze their genetic diversity, genetic differentiation, and genetic structure. Our results indicated that low genetic diversity and genetic differentiation exit in most populations. The neutrality test suggested significantly negative Fu's Fs value, which, in combination with detection of the mismatch distribution, indicated that population expansion occurred in the interglacier approximately 98,000 years ago, and the time of the most recent common ancestor (TMRCA) was estimated to about 202,705 years ago. Gene flow analysis implied that the gene flow was low, but gene exchange was frequent among adjacent populations. Both phylogenetic and STRUCTURE analyses implied weak genetic structure. In general, the genetic diversity, gene flow, and genetic structure of Ruddy-breasted Crake were low.

  20. High Satisfaction and Low Distress in Breast Cancer Patients One Year after BRCA-Mutation Testing without Prior Face-to-Face Genetic Counseling.

    PubMed

    Sie, Aisha S; Spruijt, Liesbeth; van Zelst-Stams, Wendy A G; Mensenkamp, Arjen R; Ligtenberg, Marjolijn J L; Brunner, Han G; Prins, Judith B; Hoogerbrugge, Nicoline

    2016-06-01

    According to standard practice following referral to clinical genetics, most high risk breast cancer (BC) patients in many countries receive face-to-face genetic counseling prior to BRCA-mutation testing (DNA-intake). We evaluated a novel format by prospective study: replacing the intake consultation with telephone, written and digital information sent home. Face-to-face counseling then followed BRCA-mutation testing (DNA-direct). One year after BRCA-result disclosure, 108 participants returned long-term follow-up questionnaires, of whom 59 (55 %) had previously chosen DNA-direct (intervention) versus DNA-intake (standard practice i.e., control: 45 %). Questionnaires assessed satisfaction and psychological distress. All participants were satisfied and 85 % of DNA-direct participants would choose this procedure again; 10 % would prefer DNA-intake and 5 % were undecided. In repeated measurements ANOVA, general distress (GHQ-12, p = 0.01) and BC-specific distress (IES-bc, p = 0.03) were lower in DNA-direct than DNA-intake at all time measurements. Heredity-specific distress (IES-her) did not differ significantly between groups. Multivariate regression analyses showed that choice of procedure did not significantly contribute to either general or heredity-specific distress. BC-specific distress (after BC diagnosis) did contribute to both general and heredity-specific distress. This suggests that higher distress scores reflected BC experience, rather than the type of genetic diagnostic procedure. In conclusion, the large majority of BC patients that used DNA-direct reported high satisfaction without increased distress both in the short term, and 1 year after conclusion of genetic testing.

  1. Inflammatory Bowel Disease: Genetics, Epigenetics, and Pathogenesis

    PubMed Central

    Loddo, Italia; Romano, Claudio

    2015-01-01

    Inflammatory bowel diseases (IBDs) are complex, multifactorial disorders characterized by chronic relapsing intestinal inflammation. Although etiology remains largely unknown, recent research has suggested that genetic factors, environment, microbiota, and immune response are involved in the pathogenesis. Epidemiological evidence for a genetic contribution is defined: 15% of patients with Crohn’s Disease (CD) have an affected family member with IBD, and twin studies for CD have shown 50% concordance in monozygotic twins compared to <10% in dizygotics. The most recent and largest genetic association studies, which employed genome-wide association data for over 75,000 patients and controls, identified 163 susceptibility loci for IBD. More recently, a trans-ethnic analysis, including over 20,000 individuals, identified an additional 38 new IBD loci. Although most cases are correlated with polygenic contribution toward genetic susceptibility, there is a spectrum of rare genetic disorders that can contribute to early-onset IBD (before 5 years) or very early onset IBD (before 2 years). Genetic variants that cause these disorders have a wide effect on gene function. These variants are so rare in allele frequency that the genetic signals are not detected in genome-wide association studies of patients with IBD. With recent advances in sequencing techniques, ~50 genetic disorders have been identified and associated with IBD-like immunopathology. Monogenic defects have been found to alter intestinal immune homeostasis through many mechanisms. Candidate gene resequencing should be carried out in early-onset patients in clinical practice. The evidence that genetic factors contribute in small part to disease pathogenesis confirms the important role of microbial and environmental factors. Epigenetic factors can mediate interactions between environment and genome. Epigenetic mechanisms could affect development and progression of IBD. Epigenomics is an emerging field, and

  2. Genetics of migraine.

    PubMed

    Anttila, Verneri; Wessman, Maija; Kallela, Mikko; Palotie, Aarno

    2018-01-01

    Genetics of migraine has recently undergone a major shift, moving in the space of a few years from having only a few known genes for rare Mendelian forms to 47 known common variant loci affecting the susceptibility of the common forms of migraine. This has largely been achieved by rapidly increasing sample sizes for genomewide association studies (GWAS), soon to be followed by the first wave of large-scale exome-sequencing studies. The large number of detected loci, chief among them TRPM8, PRDM16, and LRP1, have enabled a number of in silico analyses, which have shed light on the functional and tissue-level aspects of the common risk variants for migraine, including evidence for involvement of both vascular and neuronal mechanisms. Polygenic risk scores and other measures of genetic variance based on GWAS information are further opening the door to dissecting pharmacogenetics, functional etiology, and comorbidity. Heritability-based analyses are demonstrating strong links between migraine and other neuropsychiatric disorders and brain phenotypes, highlighting genetic links between migraine and major depressive disorder and attention-deficit hyperactivity disorder, among others. These recent successes in migraine genetics are starting to be mature enough to provide robust evidence of specific quantifiable genetic factors in common migraine. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Limited genetic covariance between autistic traits and intelligence: findings from a longitudinal twin study.

    PubMed

    Hoekstra, Rosa A; Happé, Francesca; Baron-Cohen, Simon; Ronald, Angelica

    2010-07-01

    Intellectual disability is common in individuals with autism spectrum conditions. However, the strength of the association between both conditions and its relevance to finding the underlying (genetic) causes of autism is unclear. This study aimed to investigate the longitudinal association between autistic traits and intelligence in a general population twin sample and to examine the etiology of this association. Parental ratings of autistic traits and performance on intelligence tests were collected in a sample of 8,848 twin pairs when the children were 7/8, 9, and 12 years old. Phenotypic and longitudinal correlations in the sample as a whole were compared to the associations in the most extreme scoring 5% of the population. The genetic and environmental influences on the overlap between autistic traits and IQ and on the stability of this relationship over time were estimated using structural equation modeling. Autistic traits were modestly negatively correlated to intellectual ability, both in the extreme scoring groups and among the full-range scores. The correlation was stable over time and was mainly explained by autistic trait items assessing communication difficulties. Genetic model fitting showed that autistic traits and IQ were influenced by a common set of genes and a common set of environmental influences that continuously affect these traits throughout childhood. The genetic correlation between autistic traits and IQ was only modest. These findings suggest that individual differences in autistic traits are substantially genetically independent of intellectual functioning. The relevance of these findings to future studies is discussed. (c) 2010 Wiley-Liss, Inc.

  4. [Prospect and application of microsatellite population genetics in study of geoherbs].

    PubMed

    Zhang, Wen-Jing; Zhang, Yong-Qing; Yuan, Qing-Jun; Huang, Lu-Qi; Jiang, Dan; Jing, Li

    2013-12-01

    The author introduces the basic concepts of microsatellite and population genetics and its characteristics, expounds the application of these theories for population genetic structure and genetic diversity, gene flow and evolutionary significant unit ESU division research. This paper discuss its applicationin study of genetic causes, origin of cultivation, different regional origins of geoherbs, aiming at providing a new theory and method for geoherbs.

  5. The Israeli National Genetic database: a 10-year experience.

    PubMed

    Zlotogora, Joël; Patrinos, George P

    2017-03-16

    The Israeli National and Ethnic Mutation database ( http://server.goldenhelix.org/israeli ) was launched in September 2006 on the ETHNOS software to include clinically relevant genomic variants reported among Jewish and Arab Israeli patients. In 2016, the database was reviewed and corrected according to ClinVar ( https://www.ncbi.nlm.nih.gov/clinvar ) and ExAC ( http://exac.broadinstitute.org ) database entries. The present article summarizes some key aspects from the development and continuous update of the database over a 10-year period, which could serve as a paradigm of successful database curation for other similar resources. In September 2016, there were 2444 entries in the database, 890 among Jews, 1376 among Israeli Arabs, and 178 entries among Palestinian Arabs, corresponding to an ~4× data content increase compared to when originally launched. While the Israeli Arab population is much smaller than the Jewish population, the number of pathogenic variants causing recessive disorders reported in the database is higher among Arabs (934) than among Jews (648). Nevertheless, the number of pathogenic variants classified as founder mutations in the database is smaller among Arabs (175) than among Jews (192). In 2016, the entire database content was compared to that of other databases such as ClinVar and ExAC. We show that a significant difference in the percentage of pathogenic variants from the Israeli genetic database that were present in ExAC was observed between the Jewish population (31.8%) and the Israeli Arab population (20.6%). The Israeli genetic database was launched in 2006 on the ETHNOS software and is available online ever since. It allows querying the database according to the disorder and the ethnicity; however, many other features are not available, in particular the possibility to search according to the name of the gene. In addition, due to the technical limitations of the previous ETHNOS software, new features and data are not included in the

  6. Genetic stability of ectomycorrhizal fungi is not affected by cryopreservation at -130 °C or cold storage with repeated sub-cultivations over a period of 2 years.

    PubMed

    Crahay, Charlotte; Munaut, Françoise; Colpaert, Jan V; Huret, Stéphanie; Declerck, Stéphane

    2017-08-01

    Cryopreservation is considered the most reliable method for storage of filamentous fungi including ectomycorrhizal (ECM) fungi. A number of studies, however, have reported genetic changes in fungus cultures following cryopreservation. In the present study, the genetic stability of six ECM fungus isolates was analyzed using amplified fragment length polymorphism (AFLP). The isolates were preserved for 2 years either by cryopreservation (at -130 °C) or by storage at 4 °C with regular sub-cultivation. A third preservation treatment consisting of isolates maintained on Petri dishes at 22-23 °C for 2 years (i.e., without any sub-cultivation) was included and used as a control. The differences observed in AFLP patterns between the three preservation methods remained within the range of the total error generated by the AFLP procedure (6.85%). Therefore, cryopreservation at -130 °C and cold storage with regular sub-cultivation did not affect the genetic stability of the ECM fungus isolates, and both methods can be used for the routine storage of ECM fungus isolates over a period of 2 years.

  7. The ten years (2004-2014): Progress in peanut genetics and genomics

    USDA-ARS?s Scientific Manuscript database

    Plant breeding, genetics, and genomics play a critical role in sustainable agriculture specifically in improving crop productivity, quality, and resistance to pests and diseases. The germplasm collections have been treasures of crop genetic resources. Utilization of the collections of wild peanut sp...

  8. Experiencing new forms of genetic choice: findings from an ethnographic study of preimplantation genetic diagnosis.

    PubMed

    Roberts, Celia; Franklin, Sarah

    2004-12-01

    Contemporary scientific and clinical knowledges and practices continue to make available new forms of genetic information, and to create new forms of reproductive choice. For example, couples at high risk of passing on a serious genetic condition to their offspring in Britain today have the opportunity to use Preimplantation Genetic Diagnosis (PGD) to select embryos that are unaffected by serious genetic disease. This information assists these couples in making reproductive choices. This article presents an analysis of patients' experiences of making the decision to undertake PGD treatment and of making reproductive choices based on genetic information. We present qualitative interview data from an ethnographic study of PGD based in two British clinics which indicate how these new forms of genetic choice are experienced by patients. Our data suggest that PGD patients make decisions about treatment in a complex way, taking multiple variables into account, and maintaining ongoing assessments of the multiple costs of engaging with PGD. Patients are aware of broader implications of their decisions, at personal, familial, and societal levels, as well as clinical ones. Based on these findings we argue that the ethical and social aspects of PGD are often as innovative as the scientific and medical aspects of this technique, and that in this sense, science cannot be described as "racing ahead" of society.

  9. Genetic neurological channelopathies: molecular genetics and clinical phenotypes.

    PubMed

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Life trajectories, genetic testing, and risk reduction decisions in 18–39 year old women at risk for hereditary breast and ovarian cancer

    PubMed Central

    Williams, Janet K.; Bowers, Barbara J.; Calzone, Kathleen

    2009-01-01

    This qualitative study identified four life trajectories that influenced the decision in young women to have genetic testing for mutations in BRCA1/2 and subsequent risk reduction decisions after receiving a positive mutation result. Fifty nine women between the ages of 18–39 years were interviewed in this grounded theory study, 44 of those tested were found to have a mutation in either BRCA1 or BRCA2. Of those with a mutation, 23 had no history of cancer and 21 had a breast cancer diagnosis. Analysis of the 44 participants tested found that risk reducing decisions were related to the life trajectories that preceded genetic testing. These life trajectories included: 1) Long-standing awareness of breast cancer in the family, 2) Loss of one’s mother to breast cancer at a young age, 3) Expression of concern by a health care provider, and 4) Personal diagnosis of breast cancer. Understanding possible influences behind decision making for genetic testing and risk reduction in young women may assist health care providers in offering age appropriate guidance and support. PMID:18979190

  11. Characterizing Clinical Genetic Counselors' Countertransference Experiences: an Exploratory Study.

    PubMed

    Reeder, Rebecca; Veach, Patricia McCarthy; MacFarlane, Ian M; LeRoy, Bonnie S

    2017-10-01

    Countertransference (CT) refers to conscious and unconscious emotions, fantasies, behaviors, perceptions, and psychological defenses genetic counselors experience in response to any aspect of genetic counseling situations (Weil 2010). Some authors theorize about the importance of recognizing and managing CT, but no studies solely aim to explore genetic counselors' experiences of the phenomenon. This study examined the extent to which clinical genetic counselors' perceive themselves as inclined to experience CT, gathered examples of CT encountered in clinical situations, and assessed their CT management strategies. An anonymous online survey, sent to NSGC members, yielded 127 usable responses. Participants completed Likert-type items rating their CT propensities; 57 of these individuals also provided examples of CT they experienced in their practice. Factor analysis of CT propensities tentatively suggested four factors: Control, Conflict Avoidance, Directiveness, and Self-Regulation, accounting for 38.5% of response variance. Thematic analysis of CT examples yielded five common triggers: general similarity to patient, medical/genetic similarity, angry patients, patient behaves differently from counselor expectations, and disclosing bad news; six common manifestations: being self-focused, projecting feelings onto the patient, intense emotional reaction to patient, being overly invested, disengagement, and physical reaction; five CT effects: disruption in rapport building, repaired empathy, over-identification, conversation does not reach fullest potential, and counselor is drained emotionally; and three management strategies: recognizing CT as it occurs, self-reflection, and consultation. Results suggest CT is a common experience, occurring in both "routine" and emotionally complex cases. Training programs, continuing education, and peer supervision might include discussion of CT, informed by examples from the present study, to increase genetic counselor awareness

  12. The CogBIAS longitudinal study protocol: cognitive and genetic factors influencing psychological functioning in adolescence.

    PubMed

    Booth, Charlotte; Songco, Annabel; Parsons, Sam; Heathcote, Lauren; Vincent, John; Keers, Robert; Fox, Elaine

    2017-12-29

    Optimal psychological development is dependent upon a complex interplay between individual and situational factors. Investigating the development of these factors in adolescence will help to improve understanding of emotional vulnerability and resilience. The CogBIAS longitudinal study (CogBIAS-L-S) aims to combine cognitive and genetic approaches to investigate risk and protective factors associated with the development of mood and impulsivity-related outcomes in an adolescent sample. CogBIAS-L-S is a three-wave longitudinal study of typically developing adolescents conducted over 4 years, with data collection at age 12, 14 and 16. At each wave participants will undergo multiple assessments including a range of selective cognitive processing tasks (e.g. attention bias, interpretation bias, memory bias) and psychological self-report measures (e.g. anxiety, depression, resilience). Saliva samples will also be collected at the baseline assessment for genetic analyses. Multilevel statistical analyses will be performed to investigate the developmental trajectory of cognitive biases on psychological functioning, as well as the influence of genetic moderation on these relationships. CogBIAS-L-S represents the first longitudinal study to assess multiple cognitive biases across adolescent development and the largest study of its kind to collect genetic data. It therefore provides a unique opportunity to understand how genes and the environment influence the development and maintenance of cognitive biases and provide insight into risk and protective factors that may be key targets for intervention.

  13. The Relevance of HLA Sequencing in Population Genetics Studies

    PubMed Central

    Sanchez-Mazas, Alicia

    2014-01-01

    Next generation sequencing (NGS) is currently being adapted by different biotechnological platforms to the standard typing method for HLA polymorphism, the huge diversity of which makes this initiative particularly challenging. Boosting the molecular characterization of the HLA genes through efficient, rapid, and low-cost technologies is expected to amplify the success of tissue transplantation by enabling us to find donor-recipient matching for rare phenotypes. But the application of NGS technologies to the molecular mapping of the MHC region also anticipates essential changes in population genetic studies. Huge amounts of HLA sequence data will be available in the next years for different populations, with the potential to change our understanding of HLA variation in humans. In this review, we first explain how HLA sequencing allows a better assessment of the HLA diversity in human populations, taking also into account the methodological difficulties it introduces at the statistical level; secondly, we show how analyzing HLA sequence variation may improve our comprehension of population genetic relationships by facilitating the identification of demographic events that marked human evolution; finally, we discuss the interest of both HLA and genome-wide sequencing and genotyping in detecting functionally significant SNPs in the MHC region, the latter having also contributed to the makeup of the HLA molecular diversity observed today. PMID:25126587

  14. The relevance of HLA sequencing in population genetics studies.

    PubMed

    Sanchez-Mazas, Alicia; Meyer, Diogo

    2014-01-01

    Next generation sequencing (NGS) is currently being adapted by different biotechnological platforms to the standard typing method for HLA polymorphism, the huge diversity of which makes this initiative particularly challenging. Boosting the molecular characterization of the HLA genes through efficient, rapid, and low-cost technologies is expected to amplify the success of tissue transplantation by enabling us to find donor-recipient matching for rare phenotypes. But the application of NGS technologies to the molecular mapping of the MHC region also anticipates essential changes in population genetic studies. Huge amounts of HLA sequence data will be available in the next years for different populations, with the potential to change our understanding of HLA variation in humans. In this review, we first explain how HLA sequencing allows a better assessment of the HLA diversity in human populations, taking also into account the methodological difficulties it introduces at the statistical level; secondly, we show how analyzing HLA sequence variation may improve our comprehension of population genetic relationships by facilitating the identification of demographic events that marked human evolution; finally, we discuss the interest of both HLA and genome-wide sequencing and genotyping in detecting functionally significant SNPs in the MHC region, the latter having also contributed to the makeup of the HLA molecular diversity observed today.

  15. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies

    PubMed Central

    Wang, Tiange; Heianza, Yoriko; Sun, Dianjianyi; Huang, Tao; Ma, Wenjie; Rimm, Eric B; Manson, JoAnn E; Hu, Frank B; Willett, Walter C

    2018-01-01

    Abstract Objective To investigate whether improving adherence to healthy dietary patterns interacts with the genetic predisposition to obesity in relation to long term changes in body mass index and body weight. Design Prospective cohort study. Setting Health professionals in the United States. Participants 8828 women from the Nurses’ Health Study and 5218 men from the Health Professionals Follow-up Study. Exposure Genetic predisposition score was calculated on the basis of 77 variants associated with body mass index. Dietary patterns were assessed by the Alternate Healthy Eating Index 2010 (AHEI-2010), Dietary Approach to Stop Hypertension (DASH), and Alternate Mediterranean Diet (AMED). Main outcome measures Five repeated measurements of four year changes in body mass index and body weight over follow-up (1986 to 2006). Results During a 20 year follow-up, genetic association with change in body mass index was significantly attenuated with increasing adherence to the AHEI-2010 in the Nurses’ Health Study (P=0.001 for interaction) and Health Professionals Follow-up Study (P=0.005 for interaction). In the combined cohorts, four year changes in body mass index per 10 risk allele increment were 0.07 (SE 0.02) among participants with decreased AHEI-2010 score and −0.01 (0.02) among those with increased AHEI-2010 score, corresponding to 0.16 (0.05) kg versus −0.02 (0.05) kg weight change every four years (P<0.001 for interaction). Viewed differently, changes in body mass index per 1 SD increment of AHEI-2010 score were −0.12 (0.01), −0.14 (0.01), and −0.18 (0.01) (weight change: −0.35 (0.03), −0.36 (0.04), and −0.50 (0.04) kg) among participants with low, intermediate, and high genetic risk, respectively. Similar interaction was also found for DASH but not for AMED. Conclusions These data indicate that improving adherence to healthy dietary patterns could attenuate the genetic association with weight gain. Moreover, the beneficial effect of improved

  16. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies.

    PubMed

    Wang, Tiange; Heianza, Yoriko; Sun, Dianjianyi; Huang, Tao; Ma, Wenjie; Rimm, Eric B; Manson, JoAnn E; Hu, Frank B; Willett, Walter C; Qi, Lu

    2018-01-10

    To investigate whether improving adherence to healthy dietary patterns interacts with the genetic predisposition to obesity in relation to long term changes in body mass index and body weight. Prospective cohort study. Health professionals in the United States. 8828 women from the Nurses' Health Study and 5218 men from the Health Professionals Follow-up Study. Genetic predisposition score was calculated on the basis of 77 variants associated with body mass index. Dietary patterns were assessed by the Alternate Healthy Eating Index 2010 (AHEI-2010), Dietary Approach to Stop Hypertension (DASH), and Alternate Mediterranean Diet (AMED). Five repeated measurements of four year changes in body mass index and body weight over follow-up (1986 to 2006). During a 20 year follow-up, genetic association with change in body mass index was significantly attenuated with increasing adherence to the AHEI-2010 in the Nurses' Health Study (P=0.001 for interaction) and Health Professionals Follow-up Study (P=0.005 for interaction). In the combined cohorts, four year changes in body mass index per 10 risk allele increment were 0.07 (SE 0.02) among participants with decreased AHEI-2010 score and -0.01 (0.02) among those with increased AHEI-2010 score, corresponding to 0.16 (0.05) kg versus -0.02 (0.05) kg weight change every four years (P<0.001 for interaction). Viewed differently, changes in body mass index per 1 SD increment of AHEI-2010 score were -0.12 (0.01), -0.14 (0.01), and -0.18 (0.01) (weight change: -0.35 (0.03), -0.36 (0.04), and -0.50 (0.04) kg) among participants with low, intermediate, and high genetic risk, respectively. Similar interaction was also found for DASH but not for AMED. These data indicate that improving adherence to healthy dietary patterns could attenuate the genetic association with weight gain. Moreover, the beneficial effect of improved diet quality on weight management was particularly pronounced in people at high genetic risk for obesity. Published by

  17. Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study.

    PubMed

    Murray, Anna; Bennett, Claire E; Perry, John R B; Weedon, Michael N; Jacobs, Patricia A; Morris, Danielle H; Orr, Nicholas; Schoemaker, Minouk J; Jones, Michael; Ashworth, Alan; Swerdlow, Anthony J

    2011-01-01

    Women become infertile approximately 10 years before menopause, and as more women delay childbirth into their 30s, the number of women who experience infertility is likely to increase. Tests that predict the timing of menopause would allow women to make informed reproductive decisions. Current predictors are only effective just prior to menopause, and there are no long-range indicators. Age at menopause and early menopause (EM) are highly heritable, suggesting a genetic aetiology. Recent genome-wide scans have identified four loci associated with variation in the age of normal menopause (40-60 years). We aimed to determine whether theses loci are also risk factors for EM. We tested the four menopause-associated genetic variants in a cohort of approximately 2000 women with menopause≤45 years from the Breakthrough Generations Study (BGS). All four variants significantly increased the odds of having EM. Comparing the 4.5% of individuals with the lowest number of risk alleles (two or three) with the 3.0% with the highest number (eight risk alleles), the odds ratio was 4.1 (95% CI 2.4-7.1, P=4.0×10(-7)). In combination, the four variants discriminated EM cases with a receiver operator characteristic area under the curve of 0.6. Four common genetic variants identified by genome-wide association studies, had a significant impact on the odds of having EM in an independent cohort from the BGS. The discriminative power is still limited, but as more variants are discovered they may be useful for predicting reproductive lifespan.

  18. Associations between reading achievement and independent reading in early elementary school: A genetically-informative cross-lagged study

    PubMed Central

    Harlaar, Nicole; Deater-Deckard, Kirby; Thompson, Lee A.; DeThorne, Laura S.; Petrill, Stephen A.

    2013-01-01

    This study used a cross-lagged twin design to examine reading achievement and independent reading from 10 to 11 years (n = 436 twin pairs). Reading achievement at age 10 significantly predicted independent reading at age 11. The alternative path, from independent reading at age 10 to reading achievement at age 11, was not significant. Individual differences in reading achievement and independent reading at both ages were primarily due to genetic influences. Furthermore, individual differences in independent reading at age 11 partly reflected genetic influences on reading achievement at age 10. These findings suggest that genetic influences that contribute to individual differences in children’s reading abilities also influence the extent to which children actively seek out and create opportunities to read. PMID:22026450

  19. Genetic studies in pediatric ITP: outlook, feasibility and requirements

    PubMed Central

    Bergmann, Anke K.; Grace, Rachael F.; Neufeld, Ellis J.

    2010-01-01

    The genomic revolution in medicine has not escaped attention of clinicians and scientists involved in medical management and research studies of immune thrombocytopenic purpura (ITP). In principle, ITP biology and care will benefit greatly from modern methods to understand the patterns of gene expression and genetic markers associated with fundamental parameters of the disease including predictors of remission; risk factors for severity; determinants of response to various therapies; and possibly biological sub-types. However, applying modern genetics to ITP carries severe challenges: (i) achieving adequate sample sizes is a fundamental problem because ITP is rare (and in pediatric ITP, chronic cases constitute only about 1/4 of the total); (ii) familial transmission of childhood ITP is so rare that a convincing pedigree requires consideration of other immunologic or hematologic disorders; (iii) ITP is probably biologically heterogeneous, based on clinical observations, immunological studies and animal models. Here we review the advantages and disadvantages of potential genetic approaches. Sufficient information is available to set reasonable bounds on which genetic analyses of ITP are feasible, and how they are most likely to be accomplished. The highest priority is for accurate phenotypes to compare to genetic analyses. Several registries worldwide hold promise for accomplishing this goal. PMID:20309691

  20. Efficient inference for genetic association studies with multiple outcomes.

    PubMed

    Ruffieux, Helene; Davison, Anthony C; Hager, Jorg; Irincheeva, Irina

    2017-10-01

    Combined inference for heterogeneous high-dimensional data is critical in modern biology, where clinical and various kinds of molecular data may be available from a single study. Classical genetic association studies regress a single clinical outcome on many genetic variants one by one, but there is an increasing demand for joint analysis of many molecular outcomes and genetic variants in order to unravel functional interactions. Unfortunately, most existing approaches to joint modeling are either too simplistic to be powerful or are impracticable for computational reasons. Inspired by Richardson and others (2010, Bayesian Statistics 9), we consider a sparse multivariate regression model that allows simultaneous selection of predictors and associated responses. As Markov chain Monte Carlo (MCMC) inference on such models can be prohibitively slow when the number of genetic variants exceeds a few thousand, we propose a variational inference approach which produces posterior information very close to that of MCMC inference, at a much reduced computational cost. Extensive numerical experiments show that our approach outperforms popular variable selection methods and tailored Bayesian procedures, dealing within hours with problems involving hundreds of thousands of genetic variants and tens to hundreds of clinical or molecular outcomes. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Role-playing is an effective instructional strategy for genetic counseling training: an investigation and comparative study.

    PubMed

    Xu, Xiao-Feng; Wang, Yan; Wang, Yan-Yan; Song, Ming; Xiao, Wen-Gang; Bai, Yun

    2016-09-02

    Genetic diseases represent a significant public health challenge in China that will need to be addressed by a correspondingly large number of professional genetic counselors. However, neither an official training program for genetic counseling, nor formal board certification, was available in China before 2015. In 2009, a genetic counseling training program based on role-playing was implemented as a pilot study at the Third Military Medical University to train third-year medical students. Questionnaires on participant attitudes to the program and role-playing were randomly administered to 324 students after they had finished their training. Pre- and post-training instructional tests, focusing on 42 key components of genetic counseling, were administered randomly to 200 participants to assess mastery of each component. Finally, scores in final examinations of 578 participants from 2009 to 2011 were compared to scores obtained by 614 non-participating students from 2006 to 2008 to further assess program efficacy. Both the training program and the instructional strategy of role-playing were accepted by most participants. Students believed that role-playing improved their practice of genetic counseling and medical genetics, enhanced their communication skills, and would likely contribute to future professional performance. The average understanding of 40 of the key points in genetic counseling was significantly improved, and most students approached excellent levels of mastery. Scores in final examinations and the percentages of students scoring above 90 were also significantly elevated. Role-playing is a feasible and effective instructional strategy for training genetic counselors in China as well as in other developing countries.

  2. Cost-efficient selection of a marker panel in genetic studies

    Treesearch

    Jamie S. Sanderlin; Nicole Lazar; Michael J. Conroy; Jaxk Reeves

    2012-01-01

    Genetic techniques are frequently used to sample and monitor wildlife populations. The goal of these studies is to maximize the ability to distinguish individuals for various genetic inference applications, a process which is often complicated by genotyping error. However, wildlife studies usually have fixed budgets, which limit the number of geneticmarkers available...

  3. Genetic and environmental influences on Anxious/Depression during childhood: a study from the Netherlands Twin Register.

    PubMed

    Boomsma, D I; van Beijsterveldt, C E M; Hudziak, J J

    2005-11-01

    For a large sample of twin pairs from the Netherlands Twins Register who were recruited at birth and followed through childhood, we obtained parental ratings of Anxious/Depression (A/D). Maternal ratings were obtained at ages 3 years (for 9025 twin pairs), 5 years (9222 pairs), 7 years (7331 pairs), 10 years (4430 pairs) and 12 years (2363 pairs). For 60-90% of the pairs, father ratings were also available. Multivariate genetic models were used to test for rater-independent and rater-specific assessments of A/D and to determine the genetic and environmental influences on individual differences in A/D at different ages. At all ages, monozygotic twins resembled each other more closely for A/D than dizygotic twins, implying genetic influences on variation in A/D. Opposite sex twin pairs resembled each other to same extent as same-sex dizygotic twins, suggesting that the same genes are expressed in boys and girls. Heritability estimates for rater-independent A/D were high in 3-year olds (76%) and decreased in size as children grew up [60% at age 5, 67% at age 7, 53% at age 10 (60% in boys) and 48% at age 12 years]. The decrease in genetic influences was accompanied by an increase in the influence of the shared family environment [absent at ages 3 and 7, 16% at age 5, 20% at age 10 (5% in boys) and 18% at age 12 years]. The agreement between parental A/D ratings was between 0.5 and 0.7, with somewhat higher correlations for the youngest group. Disagreement in ratings between the parents was not merely the result of unreliability or rater bias. Both the parents provided unique information from their own perspective on the behavior of their children. Significant influences of genetic and shared environmental factors were found for the unique parental views. At all ages, the contribution of shared environmental factors to variation in rater-specific views was higher for father ratings. Also, at all ages except age 12, the heritability estimates for the rater

  4. Genetic studies of the Roma (Gypsies): a review

    PubMed Central

    Kalaydjieva, Luba; Gresham, David; Calafell, Francesc

    2001-01-01

    Background Data provided by the social sciences as well as genetic research suggest that the 8-10 million Roma (Gypsies) who live in Europe today are best described as a conglomerate of genetically isolated founder populations. The relationship between the traditional social structure observed by the Roma, where the Group is the primary unit, and the boundaries, demographic history and biological relatedness of the diverse founder populations appears complex and has not been addressed by population genetic studies. Results Recent medical genetic research has identified a number of novel, or previously known but rare conditions, caused by private founder mutations. A summary of the findings, provided in this review, should assist diagnosis and counselling in affected families, and promote future collaborative research. The available incomplete epidemiological data suggest a non-random distribution of disease-causing mutations among Romani groups. Conclusion Although far from systematic, the published information indicates that medical genetics has an important role to play in improving the health of this underprivileged and forgotten people of Europe. Reported carrier rates for some Mendelian disorders are in the range of 5 -15%, sufficient to justify newborn screening and early treatment, or community-based education and carrier testing programs for disorders where no therapy is currently available. To be most productive, future studies of the epidemiology of single gene disorders should take social organisation and cultural anthropology into consideration, thus allowing the targeting of public health programs and contributing to the understanding of population structure and demographic history of the Roma. PMID:11299048

  5. Analysis of Informed Consent Document Utilization in a Minimal-Risk Genetic Study

    PubMed Central

    Desch, Karl; Li, Jun; Kim, Scott; Laventhal, Naomi; Metzger, Kristen; Siemieniak, David; Ginsburg, David

    2012-01-01

    Background The signed informed consent document certifies that the process of informed consent has taken place and provides research participants with comprehensive information about their role in the study. Despite efforts to optimize the informed consent document, only limited data are available about the actual use of consent documents by participants in biomedical research. Objective To examine the use of online consent documents in a minimal-risk genetic study. Design Prospective sibling cohort enrolled as part of a genetic study of hematologic and common human traits. Setting University of Michigan Campus, Ann Arbor, Michigan. Participants Volunteer sample of healthy persons with 1 or more eligible siblings aged 14 to 35 years. Enrollment was through targeted e-mail to student lists. A total of 1209 persons completed the study. Measurements Time taken by participants to review a 2833-word online consent document before indicating consent and identification of a masked hyperlink near the end of the document. Results The minimum predicted reading time was 566 seconds. The median time to consent was 53 seconds. A total of 23% of participants consented within 10 seconds, and 93% of participants consented in less than the minimum predicted reading time. A total of 2.5% of participants identified the masked hyperlink. Limitation The online consent process was not observed directly by study investigators, and some participants may have viewed the consent document more than once. Conclusion Few research participants thoroughly read the consent document before agreeing to participate in this genetic study. These data suggest that current informed consent documents, particularly for low-risk studies, may no longer serve the intended purpose of protecting human participants, and the role of these documents should be reassessed. Primary Funding Source National Institutes of Health. PMID:21893624

  6. The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era.

    PubMed

    Ritchie, Marylyn D

    2012-10-01

    Pharmacogenomics is emerging as a popular type of study for human genetics in recent years. This is primarily due to the many success stories and high potential for translation to clinical practice. In this review, the strengths and limitations of pharmacogenomics are discussed as well as the primary epidemiologic, clinical trial, and in vitro study designs implemented. A brief discussion of molecular and analytic approaches will be reviewed. Finally, several examples of bench-to-bedside clinical implementations of pharmacogenetic traits will be described. Pharmacogenomics continues to grow in popularity because of the important genetic associations identified that drive the possibility of precision medicine.

  7. Moderation of Harsh Parenting on Genetic and Environmental Contributions to Child and Adolescent Deviant Peer Affiliation: A Longitudinal Twin Study.

    PubMed

    Li, Mengjiao; Chen, Jie; Li, Xinying; Deater-Deckard, Kirby

    2015-07-01

    Affiliation with deviant peers is associated with biologically influenced personal attributes, and is itself a major contributor to growth in antisocial behavior over childhood and adolescence. Several studies have shown that variance in child and adolescent deviant peer affiliation includes genetic and non-genetic influences, but none have examined longitudinal genetic and environmental stability or change within the context of harsh parenting. To address this gap, we tested the moderating role of harsh parenting on genetic and environmental stability or change of deviant peer affiliation in a longitudinal (spanning one and a half years) study of Chinese child and adolescent twin pairs (N = 993, 52.0% female). Using multiple informants (child- and parent-reports) and measurement methods to minimize rater bias, we found that individual differences in deviant peer affiliation at each assessment were similarly explained by moderate genetic and nonshared environmental variance. The longitudinal stability and change of deviant peer affiliation were explained by genetic and nonshared environmental factors. The results also revealed that the genetic variance for deviant peer affiliation is higher in the families with harsher parenting. This amplified genetic risk underscores the role of harsh parenting in the selection and socialization process of deviant peer relationships.

  8. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  9. Levels of Evidence: Cancer Genetics Studies (PDQ®)—Health Professional Version

    Cancer.gov

    Levels of Evidence for Cancer Genetics Studies addresses the process and challenges of developing evidence-based summaries. Get information about how to weigh the strength of the evidence from cancer genetics studies in this summary for clinicians.

  10. Prediction of Adulthood Obesity Using Genetic and Childhood Clinical Risk Factors in the Cardiovascular Risk in Young Finns Study.

    PubMed

    Seyednasrollah, Fatemeh; Mäkelä, Johanna; Pitkänen, Niina; Juonala, Markus; Hutri-Kähönen, Nina; Lehtimäki, Terho; Viikari, Jorma; Kelly, Tanika; Li, Changwei; Bazzano, Lydia; Elo, Laura L; Raitakari, Olli T

    2017-06-01

    Obesity is a known risk factor for cardiovascular disease. Early prediction of obesity is essential for prevention. The aim of this study is to assess the use of childhood clinical factors and the genetic risk factors in predicting adulthood obesity using machine learning methods. A total of 2262 participants from the Cardiovascular Risk in YFS (Young Finns Study) were followed up from childhood (age 3-18 years) to adulthood for 31 years. The data were divided into training (n=1625) and validation (n=637) set. The effect of known genetic risk factors (97 single-nucleotide polymorphisms) was investigated as a weighted genetic risk score of all 97 single-nucleotide polymorphisms (WGRS97) or a subset of 19 most significant single-nucleotide polymorphisms (WGRS19) using boosting machine learning technique. WGRS97 and WGRS19 were validated using external data (n=369) from BHS (Bogalusa Heart Study). WGRS19 improved the accuracy of predicting adulthood obesity in training (area under the curve [AUC=0.787 versus AUC=0.744, P <0.0001) and validation data (AUC=0.769 versus AUC=0.747, P =0.026). WGRS97 improved the accuracy in training (AUC=0.782 versus AUC=0.744, P <0.0001) but not in validation data (AUC=0.749 versus AUC=0.747, P =0.785). Higher WGRS19 associated with higher body mass index at 9 years and WGRS97 at 6 years. Replication in BHS confirmed our findings that WGRS19 and WGRS97 are associated with body mass index. WGRS19 improves prediction of adulthood obesity. Predictive accuracy is highest among young children (3-6 years), whereas among older children (9-18 years) the risk can be identified using childhood clinical factors. The model is helpful in screening children with high risk of developing obesity. © 2017 American Heart Association, Inc.

  11. Genetics of osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urano, Tomohiko; Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies onmore » twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.« less

  12. [An overview of neurometabolic diseases in Tunisia. a 3-year prospective study].

    PubMed

    Kraoua, I; Benrhouma, H; Rouissi, A; Youssef-Turki, I Ben; Zouari, B; Kaabachi, N; Gouider-Khouja, N

    2009-01-01

    Neurometabolic diseases are a large group of genetic diseases. In our country, the diagnostic and therapeutic approach to theses diseases is rather difficult. The aim of our study was to determine the frequency of neurometabolic diseases in the hospital population, to describe the problems in diagnosing these conditions and difficulties encountered during patient care. Our goal was to propose guidelines for a practical diagnostic and therapeutic approach to neurometabolic disorders in our country. We have conducted a prospective study over a 3-year period including all patients diagnosed with "metabolic disease" and followed at the Child and Adolescent Neurology Department of the National Institute of Neurology of Tunis. One hundred and thirty-six patients were included (2.4% of our patients). Mean age was 7.3 +/- 5.1 years. Mean age at onset was 4.3 years. There was a high consanguinity rate. Respiratory chain defects were the most frequently suspected diseases (16.9%), followed by lysosomal diseases (8.8%). Chromatography, initially systematically prescribed, became targeted with a higher diagnostic efficacy. Metabolic diseases diagnosed as certain, represented 22% of the studied cases. This can be explained by the insufficiency of available laboratory tests of confirmation. The prescription of specific treatment was insufficient, even for confirmed pathologies (14.7%) because of the high cost of these therapies. The diagnostic approach has to be rational, targeted, multidisciplinar and conducted within a care network. Diagnostic priority should focus on treatable neurometabolic diseases. The establishment of a systematized registry and neonatal screening for the main treatable neurometabolic diseases constitute the final objective of our work to prepare for biochemical and genetic studies.

  13. Genetic scores of smoking behaviour in a Chinese population.

    PubMed

    Yang, Shanshan; He, Yao; Wang, Jianhua; Wang, Yiyan; Wu, Lei; Zeng, Jing; Liu, Miao; Zhang, Di; Jiang, Bin; Li, Xiaoying

    2016-03-07

    This study sought to structure a genetic score for smoking behaviour in a Chinese population. Single-nucleotide polymorphisms (SNPs) from genome-wide association studies (GWAS) were evaluated in a community-representative sample (N = 3,553) of Beijing, China. The candidate SNPs were tested in four genetic models (dominance model, recessive model, heterogeneous codominant model and additive model), and 7 SNPs were selected to structure a genetic score. A total of 3,553 participants (1,477 males and 2,076 females) completed the survey. Using the unweighted score, we found that participants with a high genetic score had a 34% higher risk of trying smoking and a 43% higher risk of SI at ≤ 18 years of age after adjusting for age, gender, education, occupation, ethnicity, body mass index (BMI) and sports activity time. The unweighted genetic scores were chosen to best extrapolate and understand these results. Importantly, genetic score was significantly associated with smoking behaviour (smoking status and SI at ≤ 18 years of age). These results have the potential to guide relevant health education for individuals with high genetic scores and promote the process of smoking control to improve the health of the population.

  14. Multivariate analysis in a genetic divergence study of Psidium guajava.

    PubMed

    Nogueira, A M; Ferreira, M F S; Guilhen, J H S; Ferreira, A

    2014-12-18

    The family Myrtaceae is widespread in the Atlantic Forest and is well-represented in the Espírito Santo State in Brazil. In the genus Psidium of this family, guava (Psidium guajava L.) is the most economically important species. Guava is widely cultivated in tropical and subtropical countries; however, the widespread cultivation of only a small number of guava tree cultivars may cause the genetic vulnerability of this crop, making the search for promising genotypes in natural populations important for breeding programs and conservation. In this study, the genetic diversity of 66 guava trees sampled in the southern region of Espírito Santo and in Caparaó, MG, Brazil were evaluated. A total of 28 morphological descriptors (11 quantitative and 17 multicategorical) and 18 microsatellite markers were used. Principal component, discriminant and cluster analyses, descriptive analyses, and genetic diversity analyses using simple sequence repeats were performed. Discrimination of accessions using molecular markers resulted in clustering of genotypes of the same origin, which was not observed using morphological data. Genetic diversity was detected between and within the localities evaluated, regardless of the methodology used. Genetic differentiation among the populations using morphological and molecular data indicated the importance of the study area for species conservation, genetic erosion estimation, and exploitation in breeding programs.

  15. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes.

    PubMed

    Driver, John P; Chen, Yi-Guang; Mathews, Clayton E

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.

  16. A comparative phylogenetic study of genetics and folk music.

    PubMed

    Pamjav, Horolma; Juhász, Zoltán; Zalán, Andrea; Németh, Endre; Damdin, Bayarlkhagva

    2012-04-01

    Computer-aided comparison of folk music from different nations is one of the newest research areas. We were intrigued to have identified some important similarities between phylogenetic studies and modern folk music. First of all, both of them use similar concepts and representation tools such as multidimensional scaling for modelling relationship between populations. This gave us the idea to investigate whether these connections are merely accidental or if they mirror population migrations from the past. We raised the question; does the complex structure of musical connections display a clear picture and can this system be interpreted by the genetic analysis? This study is the first to systematically investigate the incidental genetic background of the folk music context between different populations. Paternal (42 populations) and maternal lineages (56 populations) were compared based on Fst genetic distances of the Y chromosomal and mtDNA haplogroup frequencies. To test this hypothesis, the corresponding musical cultures were also compared using an automatic overlap analysis of parallel melody styles for 31 Eurasian nations. We found that close musical relations of populations indicate close genetic distances (<0.05) with a probability of 82%. It was observed that there is a significant correlation between population genetics and folk music; maternal lineages have a more important role in folk music traditions than paternal lineages. Furthermore, the combination of these disciplines establishing a new interdisciplinary research field of "music-genetics" can be an efficient tool to get a more comprehensive picture on the complex behaviour of populations in prehistoric time.

  17. Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases

    PubMed Central

    Amos, Christopher I.; Bafna, Vineet; Hauser, Elizabeth R.; Hernandez, Ryan D.; Li, Chun; Liberles, David A.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Papanicolaou, George J.; Peng, Bo; Ritchie, Marylyn D.; Rosenfeld, Gabriel; Witte, John S.

    2014-01-01

    Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled “Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to: (i) identify opportunities, challenges and resource needs for the development and application of genetic simulation models; (ii) improve the integration of tools for modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation. PMID:25371374

  18. A survey on awareness of genetic counseling for non-invasive prenatal testing: the first year experience in Japan.

    PubMed

    Yotsumoto, Junko; Sekizawa, Akihiko; Suzumori, Nobuhiro; Yamada, Takahiro; Samura, Osamu; Nishiyama, Miyuki; Miura, Kiyonori; Sawai, Hideaki; Murotsuki, Jun; Kitagawa, Michihiro; Kamei, Yoshimasa; Masuzaki, Hideaki; Hirahara, Fumiki; Endo, Toshiaki; Fukushima, Akimune; Namba, Akira; Osada, Hisao; Kasai, Yasuyo; Watanabe, Atsushi; Katagiri, Yukiko; Takeshita, Naoki; Ogawa, Masaki; Okai, Takashi; Izumi, Shunichiro; Hamanoue, Haruka; Inuzuka, Mayuko; Haino, Kazufumi; Hamajima, Naoki; Nishizawa, Haruki; Okamoto, Yoko; Nakamura, Hiroaki; Kanegawa, Takeshi; Yoshimatsu, Jun; Tairaku, Shinya; Naruse, Katsuhiko; Masuyama, Hisashi; Hyodo, Maki; Kaji, Takashi; Maeda, Kazuhisa; Matsubara, Keiichi; Ogawa, Masanobu; Yoshizato, Toshiyuki; Ohba, Takashi; Kawano, Yukie; Sago, Haruhiko

    2016-12-01

    The purpose of this study is to summarize the results from a survey on awareness of genetic counseling for pregnant women who wish to receive non-invasive prenatal testing (NIPT) in Japan. As a component of a clinical study by the Japan NIPT Consortium, genetic counseling was conducted for women who wished to receive NIPT, and a questionnaire concerning both NIPT and genetic counseling was given twice: once after pre-test counseling and again when test results were reported. The responses of 7292 women were analyzed. They expressed high satisfaction with the genetic counseling system of the NIPT Consortium (94%). The number of respondents who indicated that genetic counseling is necessary for NIPT increased over time. Furthermore, they highly valued genetic counseling provided by skilled clinicians, such as clinical geneticists or genetic counselors. The vast majority (90%) responded that there was sufficient opportunity to consider the test ahead of time. Meanwhile, women who received positive test results had a poor opinion and expressed a low-degree satisfaction. We confirmed that the pre-test genetic counseling that we conducted creates an opportunity for pregnant women to sufficiently consider prenatal testing, promotes its understanding and has possibilities to effectively facilitate informed decision making after adequate consideration. A more careful and thorough approach is considered to be necessary for women who received positive test results.

  19. Nature, nurture and academic achievement: a twin study of teacher assessments of 7-year-olds.

    PubMed

    Walker, Sheila O; Petrill, Stephen A; Spinath, Frank M; Plomin, Robert

    2004-09-01

    Twin research has consistently shown substantial genetic influence on individual differences in cognitive ability; however, much less is known about the genetic and environmental aetiologies of school achievement. Our goal is to test the hypotheses that teacher-assessed achievement in the early school years shows substantial genetic influence but only modest shared environmental influence when children are assessed by the same teachers and by different teachers. 1,189 monozygotic (MZ) and dizygotic (DZ) twin pairs born in 1994 in England and Wales. Teachers evaluated academic achievement for 7-year-olds in Mathematics and English. Results were based on the twin method, which compares the similarity between identical and fraternal twins. Suggested substantial genetic influence in that identical twins were almost twice as similar as fraternal twins when compared on teacher assessments for Mathematics, English and a total score. The results confirm prior research suggesting that teacher assessments of academic achievement are substantially influenced by genetics. This finding holds even when twins are assessed independently by different teachers.

  20. Clinical utility of genetic testing in pediatric drug-resistant epilepsy: a pilot study.

    PubMed

    Ream, Margie A; Mikati, Mohamad A

    2014-08-01

    The utility of genetic testing in pediatric drug-resistant epilepsy (PDRE), its yield in "real life" clinical practice, and the practical implications of such testing are yet to be determined. To start to address the above gaps in our knowledge as they apply to a patient population seen in a tertiary care center. We retrospectively reviewed our experience with the use of clinically available genetic tests in the diagnosis and management of PDRE in one clinic over one year. Genetic testing included, depending on clinical judgment, one or more of the following: karyotype, chromosomal microarray, single gene sequencing, gene sequencing panels, and/or whole exome sequencing (WES). We were more likely to perform genetic testing in patients with developmental delay, epileptic encephalopathy, and generalized epilepsy. In our unique population, the yield of specific genetic diagnosis was relatively high: karyotype 14.3%, microarray 16.7%, targeted single gene sequencing 15.4%, gene panels 46.2%, and WES 16.7%. Overall yield of diagnosis from at least one of the above tests was 34.5%. Disease-causing mutations that were not clinically suspected based on the patients' phenotypes and representing novel phenotypes were found in 6.9% (2/29), with an additional 17.2% (5/29) demonstrating pharmacologic variants. Three patients were incidentally found to be carriers of recessive neurologic diseases (10.3%). Variants of unknown significance (VUSs) were identified in 34.5% (10/29). We conclude that genetic testing had at least some utility in our patient population of PDRE, that future similar larger studies in various populations are warranted, and that clinics offering such tests must be prepared to address the complicated questions raised by the results of such testing. Copyright © 2014. Published by Elsevier Inc.

  1. Studies on the Pathophysiology and Genetic Basis of Migraine

    PubMed Central

    Gasparini, Claudia F; Sutherland, Heidi G.; Griffiths, Lyn R

    2013-01-01

    Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people’s daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies. PMID:24403849

  2. Genetic testing in cardiovascular diseases.

    PubMed

    Arndt, Anne-Karin; MacRae, Calum A

    2014-05-01

    The review is designed to outline the major developments in genetic testing in the cardiovascular arena in the past year or so. This is an exciting time in genetic testing as whole exome and whole genome approaches finally reach the clinic. These new approaches offer insight into disease causation in families in which this might previously have been inaccessible, and also bring a wide range of interpretative challenges. Among the most significant recent findings has been the extent of physiologic rare coding variation in the human genome. New disease genes have been identified through whole exome studies in neonatal arrhythmia, congenital heart disease and coronary artery disease that were simply inaccessible with other techniques. This has not only shed light on the challenges of genetic testing at this scale, but has also sharply defined the limits of prior gene-panel focused testing. As novel therapies targeting specific genetic subsets of disease become available, genetic testing will become a part of routine clinical care. The pace of change in sequencing technologies has begun to transform clinical medicine, and cardiovascular disease is no exception. The complexity of such studies emphasizes the importance of real-time communication between the genetics laboratory and genetically informed clinicians. New efforts in data and knowledge management will be central to the continued advancement of genetic testing.

  3. Deaf Adults' Reasons for Genetic Testing Depend on Cultural Affiliation: Results from a Prospective, Longitudinal Genetic Counseling and Testing Study

    ERIC Educational Resources Information Center

    Boudreault, Patrick; Baldwin, Erin E.; Fox, Michelle; Dutton, Loriel; Tullis, LeeElle; Linden, Joyce; Kobayashi, Yoko; Zhou, Jin; Sinsheimer, Janet S.; Sininger, Yvonne; Grody, Wayne W.; Palmer, Christina G. S.

    2010-01-01

    This article examines the relationship between cultural affiliation and deaf adults' motivations for genetic testing for deafness in the first prospective, longitudinal study to examine the impact of genetic counseling and genetic testing on deaf adults and the deaf community. Participants (n = 256), classified as affiliating with hearing, Deaf,…

  4. A decade of molecular genetic testing for MODY: a retrospective study of utilization in The Netherlands.

    PubMed

    Weinreich, Stephanie S; Bosma, Astrid; Henneman, Lidewij; Rigter, Tessel; Spruijt, Carla M J; Grimbergen, Anneliese J E M A; Breuning, Martijn H; de Koning, Eelco J P; Losekoot, Monique; Cornel, Martina C

    2015-01-01

    Genetic testing for maturity-onset diabetes of the young (MODY) may be relevant for treatment and prognosis in patients with usually early-onset, non-ketotic, insulin-sensitive diabetes and for monitoring strategies in non-diabetic mutation carriers. This study describes the first 10 years of genetic testing for MODY in The Netherlands in terms of volume and test positive rate, medical setting, purpose of the test and age of patients tested. Some analyses focus on the most prevalent subtype, HNF1A MODY. Data were retrospectively extracted from a laboratory database. In total, 502 individuals were identified with a pathogenic mutation in HNF4A, GCK or HNF1A between 2001 and 2010. Although mutation scanning for MODY was used at an increasing rate, cascade testing was only used for one relative, on average, per positive index patient. Testing for HNF1A MODY was mostly requested by internists and paediatricians, often from regional hospitals. Primary care physicians and clinical geneticists rarely requested genetic testing for HNF1A MODY. Clinical geneticists requested cascade testing relatively more often than other health professionals. A substantial proportion (currently 29%) of HNF1A MODY probands was at least 40 years old at the time of testing. In conclusion, the number of individuals genetically tested for MODY so far in The Netherlands is low compared with previously predicted numbers of patients. Doctors' valuation of the test and patients' and family members' response to (an offer of) genetic testing on the other hand need to be investigated. Efforts may be needed to develop and implement translational guidelines.

  5. [Progress in studies on the genetic risk factors for nonsyndromic cleft lip or palate in China].

    PubMed

    Huang, Y Q

    2017-04-09

    Cleft lip and palate is the most common congenital defects of oral and maxillofacial region in human beings. The etiology of this malformation is complex, with both genetic and environmental causal factors are involved. To provide a better understanding in the genetic etiology of cleft lip or palate, the author summarized recent years studies based on Chinese population. Those researches included validation of some candidate genes for cleft lip or palate, using genome wide association analysis which included six independent cohorts from China to elucidate the genetic architecture of non-syndromic cleft lip with or without cleft palate in Chinese population and finally found a new susceptibility locus. This locus was on the 16p13.3 (rs8049367) between CREBBP and ADCY9. It has been mentioned common methods of genetic analysis involved in the researches on cleft lip or palate in this paper. Furthermore, we try to discuss new methods to illustrate the etiology of cleft lip and palate that could provide more inspiration on future researches.

  6. The heritability and genetic correlates of mobile phone use: a twin study of consumer behavior.

    PubMed

    Miller, Geoffrey; Zhu, Gu; Wright, Margaret J; Hansell, Narelle K; Martin, Nicholas G

    2012-02-01

    There has been almost no overlap between behavior genetics and consumer behavior research, despite each field's importance in understanding society. In particular, both have neglected to study genetic influences on consumer adoption and usage of new technologies -- even technologies as important as the mobile phone, now used by 5.8 out of 7.0 billion people on earth. To start filling this gap, we analyzed self-reported mobile phone use, intelligence, and personality traits in two samples of Australian teenaged twins (mean ages 14.2 and 15.6 years), totaling 1,036 individuals. ACE modeling using Mx software showed substantial heritabilities for how often teens make voice calls (.60 and .34 in samples 1 and 2, respectively) and for how often they send text messages (.53 and. 50). Shared family environment - including neighborhood, social class, parental education, and parental income (i.e., the generosity of calling plans that parents can afford for their teens) -- had much weaker effects. Multivariate modeling based on cross-twin, cross-trait correlations showed negative genetic correlations between talking/texting frequency and intelligence (around -.17), and positive genetic correlations between talking/texting frequency and extraversion (about .20 to .40). Our results have implications for assessing the risks of mobile phone use such as radiofrequency field (RF) exposure and driving accidents, for studying adoption and use of other emerging technologies, for understanding the genetic architecture of the cognitive and personality traits that predict consumer behavior, and for challenging the common assumption that consumer behavior is shaped entirely by culture, media, and family environment.

  7. Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank.

    PubMed

    Cadzow, Murray; Merriman, Tony R; Dalbeth, Nicola

    2017-08-09

    Many different combinations of available data have been used to identify gout cases in large genetic studies. The aim of this study was to determine the performance of case definitions of gout using the limited items available in multipurpose cohorts for population-based genetic studies. This research was conducted using the UK Biobank Resource. Data, including genome-wide genotypes, were available for 105,421 European participants aged 40-69 years without kidney disease. Gout definitions and combinations of these definitions were identified from previous epidemiological studies. These definitions were tested for association with 30 urate-associated single-nucleotide polymorphisms (SNPs) by logistic regression, adjusted for age, sex, waist circumference, and ratio of waist circumference to height. Heritability estimates under an additive model were generated using GCTA version 1.26.0 and PLINK version 1.90b3.32 by partitioning the genome. There were 2066 (1.96%) cases defined by self-report of gout, 1652 (1.57%) defined by urate-lowering therapy (ULT) use, 382 (0.36%) defined by hospital diagnosis, 1861 (1.76%) defined by hospital diagnosis or gout-specific medications and 2295 (2.18%) defined by self-report of gout or ULT use. Association with gout at experiment-wide significance (P < 0.0017) was observed for 13 SNPs with gout using the self-report of gout or ULT use definition, 12 SNPs using the self-report of gout definition, 11 SNPs using the hospital diagnosis or gout-specific medication definition, 10 SNPs using ULT use definition and 3 SNPs using hospital diagnosis definition. Heritability estimates ranged from 0.282 to 0.308 for all definitions except hospital diagnosis (0.236). Of the limited items available in multipurpose cohorts, the case definition of self-report of gout or ULT use has high sensitivity and precision for detecting association in genetic epidemiological studies of gout.

  8. Genetic Resources in the "Calabaza Pipiana" Squash (Cucurbita argyrosperma) in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models.

    PubMed

    Sánchez-de la Vega, Guillermo; Castellanos-Morales, Gabriela; Gámez, Niza; Hernández-Rosales, Helena S; Vázquez-Lobo, Alejandra; Aguirre-Planter, Erika; Jaramillo-Correa, Juan P; Montes-Hernández, Salvador; Lira-Saade, Rafael; Eguiarte, Luis E

    2018-01-01

    Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma , known in Mexico as calabaza pipiana , and its wild relative C. argyrosperma ssp. sororia . The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia , and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia , in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies' distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies ( H E = 0.428 in sororia , and H E = 0.410 in argyrosperma ). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation ( F ST ) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low

  9. Genetic Determinism in the Genetics Curriculum: An Exploratory Study of the Effects of Mendelian and Weldonian Emphases

    ERIC Educational Resources Information Center

    Jamieson, Annie; Radick, Gregory

    2017-01-01

    Twenty-first-century biology rejects genetic determinism, yet an exaggerated view of the power of genes in the making of bodies and minds remains a problem. What accounts for such tenacity? This article reports an exploratory study suggesting that the common reliance on Mendelian examples and concepts at the start of teaching in basic genetics is…

  10. Recent advances in epilepsy genetics.

    PubMed

    Orsini, Alessandro; Zara, Federico; Striano, Pasquale

    2018-02-22

    In last few years there has been rapid increase in the knowledge of epilepsy genetics. Nowadays, it is estimated that genetic epilepsies include over than 30% of all epilepsy syndromes. Several genetic tests are now available for diagnostic purposes in clinical practice. In particular, next-generation sequencing has proven to be effective in revealing gene mutations causing epilepsies in up to a third of the patients. This has lead also to functional studies that have given insight into disease pathophysiology and consequently to the identification of potential therapeutic targets opening the way of precision medicine for epilepsy patients. This minireview is focused on the most recent advances in genetics of epilepsies. We will also overview the modern genomic technologies and illustrate the diagnostic pathways in patients with genetic epilepsies. Finally, the potential implications for a personalized treatment (precision medicine) are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients.

    PubMed

    Rostomyan, Liliya; Daly, Adrian F; Petrossians, Patrick; Nachev, Emil; Lila, Anurag R; Lecoq, Anne-Lise; Lecumberri, Beatriz; Trivellin, Giampaolo; Salvatori, Roberto; Moraitis, Andreas G; Holdaway, Ian; Kranenburg-van Klaveren, Dianne J; Chiara Zatelli, Maria; Palacios, Nuria; Nozieres, Cecile; Zacharin, Margaret; Ebeling, Tapani; Ojaniemi, Marja; Rozhinskaya, Liudmila; Verrua, Elisa; Jaffrain-Rea, Marie-Lise; Filipponi, Silvia; Gusakova, Daria; Pronin, Vyacheslav; Bertherat, Jerome; Belaya, Zhanna; Ilovayskaya, Irena; Sahnoun-Fathallah, Mona; Sievers, Caroline; Stalla, Gunter K; Castermans, Emilie; Caberg, Jean-Hubert; Sorkina, Ekaterina; Auriemma, Renata Simona; Mittal, Sachin; Kareva, Maria; Lysy, Philippe A; Emy, Philippe; De Menis, Ernesto; Choong, Catherine S; Mantovani, Giovanna; Bours, Vincent; De Herder, Wouter; Brue, Thierry; Barlier, Anne; Neggers, Sebastian J C M M; Zacharieva, Sabina; Chanson, Philippe; Shah, Nalini Samir; Stratakis, Constantine A; Naves, Luciana A; Beckers, Albert

    2015-10-01

    Despite being a classical growth disorder, pituitary gigantism has not been studied previously in a standardized way. We performed a retrospective, multicenter, international study to characterize a large series of pituitary gigantism patients. We included 208 patients (163 males; 78.4%) with growth hormone excess and a current/previous abnormal growth velocity for age or final height >2 s.d. above country normal means. The median onset of rapid growth was 13 years and occurred significantly earlier in females than in males; pituitary adenomas were diagnosed earlier in females than males (15.8 vs 21.5 years respectively). Adenomas were ≥10 mm (i.e., macroadenomas) in 84%, of which extrasellar extension occurred in 77% and invasion in 54%. GH/IGF1 control was achieved in 39% during long-term follow-up. Final height was greater in younger onset patients, with larger tumors and higher GH levels. Later disease control was associated with a greater difference from mid-parental height (r=0.23, P=0.02). AIP mutations occurred in 29%; microduplication at Xq26.3 - X-linked acrogigantism (X-LAG) - occurred in two familial isolated pituitary adenoma kindreds and in ten sporadic patients. Tumor size was not different in X-LAG, AIP mutated and genetically negative patient groups. AIP-mutated and X-LAG patients were significantly younger at onset and diagnosis, but disease control was worse in genetically negative cases. Pituitary gigantism patients are characterized by male predominance and large tumors that are difficult to control. Treatment delay increases final height and symptom burden. AIP mutations and X-LAG explain many cases, but no genetic etiology is seen in >50% of cases. © 2015 Society for Endocrinology.

  12. Genetic short stature.

    PubMed

    Grunauer, Michelle; Jorge, Alexander A L

    2018-02-01

    Adult height and growth patterns are largely genetically programmed. Studies in twins have indicated that the heritability of height is high (>80%), suggesting that genetic variation is the main determinant of stature. Height exhibits a normal (Gaussian) distribution according to sex, age, and ancestry. Short stature is usually defined as a height which is 2 standard deviations (S.D.) less than the mean height of a specific population. This definition includes 2.3% of the population and usually includes healthy individuals. In this group of short stature non-syndromic conditions, the genetic influence occurs polygenically or oligogenically. As a rule, each common genetic variant accounts for a small effect (1mm) on individual height variation. Recently, several studies demonstrated that some rare variants can cause greater effect on height, without causing a syndromic condition. In more extreme cases, height SDS below 2.5 or 3 (which would comprise approximately 0.6 and 0.1% of the population, respectively) is frequently associated with syndromic conditions and are usually caused by a monogenic defect. More than 1,000 inherited/genetic diseases have growth disorder as an important phenotype. These conditions are usually responsible for syndromic short stature. In the coming years, we expect to discover several genetic causes of short stature, thereby explaining the phenotype of what we currently classify as short stature of unknown cause. These discoveries will have a profound impact on the follow-up and treatment of these children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modularization of genetic elements promotes synthetic metabolic engineering.

    PubMed

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Genetic and environmental relationships between change in weight and insulin resistance: the Healthy Twin Study.

    PubMed

    Song, Yun-Mi; Lee, Kayoung; Sung, Joohon

    2014-06-01

    We aimed to investigate the association between weight change from 20 years of age and insulin resistance (IR), and genetic and environmental relationships between these traits. In 594 Korean twins and family members (209 men, 385 women, 44.0 ± 10.8 years old), the percentage of weight change was calculated using self-reported body weight at 20 years of age and currently measured bodyweight. IR traits were assessed using fasting plasma glucose and insulin, the homeostasis model assessment of IR index (HOMA-IR), and the quantitative insulin sensitivity check index (QUICKI). Linear mixed analysis was applied after adjusting for household, body mass index (BMI) at the age of 20 years, age, sex, alcohol, smoking, physical activity, and caloric intake. Heritabilities and genetic and environmental correlations were estimated after adjusting for covariates. In 55 monozygotic twin pairs discordant for HOMA-IR level by >0.3, a conditional logistic regression analysis was conducted regarding weight change. Increases in glucose, insulin, and HOMA-IR and a decrease in QUICKI were associated with a higher percentage of weight change (p < .05). Estimated heritabilities for IR traits were 0.401-0.606 (p < .001). In cross-trait relationships, environmental correlations were -0.43-0.42 (p < .05 for all IR), while genetic correlations were -0.27-0.27 (p < .05 for QUICKI, insulin, and HOMA-IR). In 55 pairs of monozygotic twins, the odds ratio (95% confidence interval) for having a higher level of HOMA-IR was 1.10 (1.03-1.17) with 1% increase in weight change since 20 years old, after adjusting for lifestyle-related factors. In conclusion, both genetic and environmental influences played significant roles in the positive association between weight change from 20 years of age and IR.

  15. Genetic spectrum of hereditary neuropathies with onset in the first year of life

    PubMed Central

    Baets, Jonathan; Deconinck, Tine; De Vriendt, Els; Zimoń, Magdalena; Yperzeele, Laetitia; Van Hoorenbeeck, Kim; Peeters, Kristien; Spiegel, Ronen; Parman, Yesim; Ceulemans, Berten; Van Bogaert, Patrick; Pou-Serradell, Adolf; Bernert, Günther; Dinopoulos, Argirios; Auer-Grumbach, Michaela; Sallinen, Satu-Leena; Fabrizi, Gian Maria; Pauly, Fernand; Van den Bergh, Peter; Bilir, Birdal; Battaloglu, Esra; Madrid, Ricardo E.; Kabzińska, Dagmara; Kochanski, Andrzej; Topaloglu, Haluk; Miller, Geoffrey; Jordanova, Albena; Timmerman, Vincent

    2011-01-01

    Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine–Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot–Marie–Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot–Marie–Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot–Marie–Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset. PMID:21840889

  16. New developments in genetics of myositis.

    PubMed

    Rothwell, Simon; Lamb, Janine A; Chinoy, Hector

    2016-11-01

    This article reviews the advances that have been made in our understanding of the genetics of the idiopathic inflammatory myopathies (IIM) in the past 2 years, with a particular focus on polymyositis, dermatomyositis and inclusion body myositis. Two large human leukocyte antigen (HLA) imputation studies have confirmed a strong association with the 8.1 ancestral haplotype in clinical subgroups of myositis and suggest multiple independent associations on this haplotype. Risk in these genes may be due to specific amino acid positions within the peptide-binding grooves of HLA molecules. A large genetic study in 2566 IIM patients revealed associations such as PTPN22, STAT4, UBE2L3 and BLK, which overlap with risk variants reported in other seropositive autoimmune diseases. There is also evidence of different genetic architectures in clinical subgroups of IIM. Candidate gene studies in the Japanese and Chinese populations have replicated previous IIM associations which suggest common aetiology between ethnicities. International collaborations have facilitated large genetic studies in IIM that have revealed much about the genetics of this rare complex disease both within the HLA region and genome-wide. Future approaches, such as sequencing and trans-ethnic meta-analyses, will advance our knowledge of IIM genetics.

  17. Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience.

    PubMed

    Ubaldi, Filippo Maria; Cimadomo, Danilo; Capalbo, Antonio; Vaiarelli, Alberto; Buffo, Laura; Trabucco, Elisabetta; Ferrero, Susanna; Albani, Elena; Rienzi, Laura; Levi Setti, Paolo E

    2017-05-01

    To report laboratory and clinical outcomes in preimplantation genetic diagnosis for aneuploidies (PGD-A) cycles for women 44 to 47 years old. Multicenter, longitudinal, observational study. In vitro fertilization (IVF) centers. One hundred and thirty-seven women aged 44.7 ± 0.7 years (range: 44.0-46.7) undergoing 150 PGD-A cycles during April 2013 to January 2016. Quantitative polymerase chain reaction-based PGD-A on trophectoderm biopsies and cryopreserved euploid single-embryo transfer (SET). Primary outcome measure: delivery rate per cycle; secondary outcome measures: miscarriage rate, and the rate and reasons for cycle cancelation with subanalyses for female age and number of metaphase 2 oocytes retrieved. In 102 (68.0%) of 150 cycles blastocyst development was obtained, but only 21 (14.0%) were euploid blastocysts. The overall euploidy rate was 11.8% (22 of 187). Twenty-one SET procedures were performed, resulting in 13 clinical pregnancies, of which 1 miscarried and 12 delivered. The delivery rate was 57.1% per transfer, 8.0% per cycle, and 8.8% per patient. The logistic regression analysis found that only female age (odds ratio 0.78) and number of metaphase 2 oocytes retrieved (odds ratio 1.25) statistically significantly correlated with the likelihood of delivery. The delivery rate per cycle was 10.6% (11 of 104) in patients aged 44.0 to 44.9 years and 2.6% in patients aged 45.0 to 45.9 years (n = 1 of 38). No euploid blastocysts were found for patients older than 45.0 years. Extensive counseling based on biological and clinical data should be provided to women older than 43 years who are requesting IVF because of their very low odds of success and high risk for embryonic aneuploidies. Nevertheless, the low miscarriage and good delivery rates reported in this study in women with good ovarian reserve aged 44 should encourage the use of PGD-A in this population. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc

  18. A pilot study of spatial patterns in referrals to a multicentre cancer genetics service.

    PubMed

    Tempest, Vanessa; Higgs, Gary; McDonald, Kevin; Iredale, Rachel; Bater, Tony; Gray, Jonathon

    2005-01-01

    To analyse spatial and temporal patterns in patients referred to a cancer genetics service in order to monitor service utilization and accessibility. Postcodes of patients during a 4-year period were used to examine spatial patterns using a Geographical Information System (GIS). Referral rates were compared visually and statistically to explore yearly variation for administrative areas in Wales. There has been a four-fold increase in actual referrals to the service over the period of study. The variance between unitary authority referral rates has decreased from the inception of the service from an almost ten-fold difference between lowest and highest in year 1 to less than a three-fold difference in year 4. This study shows the potential of GIS to highlight spatial variations in referral rates across Wales. Although the disparity in referral rates has decreased, trends in referral rates are not consistent. Ongoing research will examine those referral and referrer characteristics affecting uptake. Copyright 2005 S. Karger AG, Basel.

  19. Genetic and environmental influences on eating behavior - a study of twin pairs reared apart or reared together

    USDA-ARS?s Scientific Manuscript database

    This study examined the relative influence of genetic versus environmental factors on specific aspects of eating behavior. Adult monozygotic twins (22 pairs and 3 singleton reared apart, 38 pairs and 9 singleton reared together, age 18-76 years, BMI 17-43 kg/m2) completed the Three Factor Eating Que...

  20. Genetic Predictors for Cardiovascular Disease in Hispanics

    PubMed Central

    Qi, Lu; Campos, Hannia

    2012-01-01

    A less favorable cardiovascular risk factor profile, but paradoxically lower cardiovascular morbidity and mortality have been observed in Hispanics, a pattern often referred to as the Hispanic Paradox. It was proposed the specific genetic susceptibility of this admixed population and gene-environment interactions may partly explain the paradox. The past few years have seen great advances in discovering genetic risk factors using genome-wide association studies (GWAS) for cardiovascular disease especially in Caucasians. However, there is no GWAS of cardiovascular disease that have been reported in Hispanics. In the Costa Rican Heart Study we reported both the consistency and disparity of genetic effects on risk of coronary heart disease (CHD) between Hispanics and other ethnic groups. We demonstrated the improvement in the identified genetic markers on discrimination of CHD in Hispanics was modest. Future genetic research in Hispanics would consider the diversities in genetic structure, lifestyle and socioeconomics among various sub-populations, and comprehensively evaluate potential gene-environment interactions in relation to cardiovascular risk. PMID:22498015

  1. Genetic rescue in an inbred Arctic fox (Vulpes lagopus) population.

    PubMed

    Hasselgren, Malin; Angerbjörn, Anders; Eide, Nina E; Erlandsson, Rasmus; Flagstad, Øystein; Landa, Arild; Wallén, Johan; Norén, Karin

    2018-03-28

    Isolation of small populations can reduce fitness through inbreeding depression and impede population growth. Outcrossing with only a few unrelated individuals can increase demographic and genetic viability substantially, but few studies have documented such genetic rescue in natural mammal populations. We investigate the effects of immigration in a subpopulation of the endangered Scandinavian arctic fox ( Vulpes lagopus ), founded by six individuals and isolated for 9 years at an extremely small population size. Based on a long-term pedigree (105 litters, 543 individuals) combined with individual fitness traits, we found evidence for genetic rescue. Natural immigration and gene flow of three outbred males in 2010 resulted in a reduction in population average inbreeding coefficient ( f ), from 0.14 to 0.08 within 5 years. Genetic rescue was further supported by 1.9 times higher juvenile survival and 1.3 times higher breeding success in immigrant first-generation offspring compared with inbred offspring. Five years after immigration, the population had more than doubled in size and allelic richness increased by 41%. This is one of few studies that has documented genetic rescue in a natural mammal population suffering from inbreeding depression and contributes to a growing body of data demonstrating the vital connection between genetics and individual fitness. © 2018 The Author(s).

  2. The adequacy of informed consent forms in genetic research in Oman: a pilot study.

    PubMed

    Al-Riyami, Asya; Jaju, Deepali; Jaju, Sanjay; Silverman, Henry J

    2011-08-01

    Genetic research presents ethical challenges to the achievement of valid informed consent, especially in developing countries with areas of low literacy. During the last several years, a number of genetic research proposals involving Omani nationals were submitted to the Department of Research and Studies, Ministry of Health, Oman. The objective of this paper is to report on the results of an internal quality assurance initiative to determine the extent of the information being provided in genetic research informed consent forms. In order to achieve this, we developed checklists to assess the inclusion of basic elements of informed consent as well as elements related to the collection and future storage of biological samples. Three of the authors independently evaluated and reached consensus on seven informed consent forms that were available for review. Of the seven consent forms, four had less than half of the basic elements of informed consent. None contained any information regarding whether genetic information relevant to health would be disclosed, whether participants may share in commercial products, the extent of confidentiality protections, and the inclusion of additional consent forms for future storage and use of tissue samples. Information regarding genetic risks and withdrawal of samples were rarely mentioned (1/7), whereas limits on future use of samples were mentioned in 3 of 7 consent forms. Ultimately, consent forms are not likely to address key issues regarding genetic research that have been recommended by research ethics guidelines. We recommend enhanced educational efforts to increase awareness, on the part of researchers, of information that should be included in consent forms. © 2011 Blackwell Publishing Ltd.

  3. Prevalence of obesity was related to HLA-DQ in 2-4-year-old children at genetic risk for type 1 diabetes.

    PubMed

    Yang, J; Lernmark, Å; Uusitalo, U M; Lynch, K F; Veijola, R; Winkler, C; Larsson, H E; Rewers, M; She, J-X; Ziegler, A G; Simell, O G; Hagopian, W A; Akolkar, B; Krischer, J P; Vehik, K

    2014-12-01

    Body size is postulated to modulate type 1 diabetes as either a trigger of islet autoimmunity or an accelerator to clinical onset after seroconversion. As overweight and obesity continue to rise among children, the aim of this study was to determine whether human leukocyte antigen DQ (HLA-DQ) genotypes may be related to body size among children genetically at risk for type 1 diabetes. Repeated measures of weight and height were collected from 5969 children 2-4 years of age enrolled in The Environmental Determinants of Diabetes in the Young prospective study. Overweight and obesity was determined by the International Obesity Task Force cutoff values that correspond to body mass index (BMI) of 25 and 30 kg m(-)(2) at age 18. The average BMI was comparable across specific HLA genotypes at every age point. The proportion of overweight was not different by HL A, but percent obesity varied by age with a decreasing trend among DQ2/8 carriers (P for trend=0.0315). A multivariable regression model suggested DQ2/2 was associated with higher obesity risk at age 4 (odds ratio, 2.41; 95% confidence interval, 1.21-4.80) after adjusting for the development of islet autoantibody and/or type 1 diabetes. The HLA-DQ2/2 genotype may predispose to obesity among 2-4-year-old children with genetic risk for type 1 diabetes.

  4. Genetic and environmental effects on same-sex sexual behavior: a population study of twins in Sweden.

    PubMed

    Långström, Niklas; Rahman, Qazi; Carlström, Eva; Lichtenstein, Paul

    2010-02-01

    There is still uncertainty about the relative importance of genes and environments on human sexual orientation. One reason is that previous studies employed self-selected, opportunistic, or small population-based samples. We used data from a truly population-based 2005-2006 survey of all adult twins (20-47 years) in Sweden to conduct the largest twin study of same-sex sexual behavior attempted so far. We performed biometric modeling with data on any and total number of lifetime same-sex sexual partners, respectively. The analyses were conducted separately by sex. Twin resemblance was moderate for the 3,826 studied monozygotic and dizygotic same-sex twin pairs. Biometric modeling revealed that, in men, genetic effects explained .34-.39 of the variance, the shared environment .00, and the individual-specific environment .61-.66 of the variance. Corresponding estimates among women were .18-.19 for genetic factors, .16-.17 for shared environmental, and 64-.66 for unique environmental factors. Although wide confidence intervals suggest cautious interpretation, the results are consistent with moderate, primarily genetic, familial effects, and moderate to large effects of the nonshared environment (social and biological) on same-sex sexual behavior.

  5. Introduction to genetics in ophthalmology, value of family studies

    PubMed

    Ohba

    2000-05-01

    This paper reviews the author's personal experience with genetic eye diseases and discusses the significance of family studies in providing key information for the advancement of molecular research. Choroideremia: This disease has long been known as an X-linked progressive tapetoretinal degeneration, but it was first described in Japan in 1974 after finding asymptomatic fundus changes in heterozygous female carriers that are compatible with X chromosomal inactivation. Mutations in the disease-causing gene (REP-1) provide a clue to the diagnosis and pathophysiology of the disease.Leber's Hereditary Optic Neuropathy: The clinical expression is so variable among affected individuals and families that mild optic nerve disease of insidious onset should be differentiated from autosomal dominant optic atrophy. Molecular assessment of mitochondrial DNA leads to a definite diagnosis of the disease, but mitochondrial DNA mutations do not fully account for the clinical manifestation and phenotypic variability of the disease.Norrie Disease: This rare X-linked vitreoretinal dysplasia, characterized by congenital bilateral blindness, was documented in Japan some twenty years ago and the disease has been identified in four unrelated Japanese families. The disease, once diagnosed on the basis of elaborate clinical and familial studies, can now be defined by molecular assessment of the Norrie disease gene.Congenital Nystagmus: A four-generation family was described which presented with autosomal dominantly inherited congenital nystagmus, peripheral corneal opacity, and foveal hypoplasia without any iris tissue malformation. The diagnosis of this family was established by detection of a missense mutation in the paired domain of the PAX 6 gene, hence conforming to a forme fruste of congenital aniridia.Sorsby's Fundus Dystrophy: Two Japanese families with Sorsby's fundus dystrophy showed late-onset retinal dystrophy characterized by submacular hemorrhage and atrophy. Our patients

  6. [Introduction to genetics in ophthalmology. Value of family studies].

    PubMed

    Ohba, N

    1999-12-01

    This paper reviews the author's personal experience with genetic eye diseases and discusses the significance of family studies in providing key information for the advancement of molecular research. CHOROIDEREMIA: This disease has long been known as an X-linked progressive tapetoretinal degeneration, but it was first described in Japan in 1974 after finding asymptomatic fundus changes in heterozygous female carriers that are compatible with X chromosomal inactivation. Mutations in the disease-causing gene (REP-1) provide a clue to the diagnosis and pathophysiology of the disease. LEBER'S HEREDITARY OPTIC NEUROPATHY: The clinical expression is so variable among affected individuals and families that mild optic nerve disease of insidious onset should be differentiated from autosomal dominant optic atrophy. Molecular assessment of mitochondrial DNA leads to a definite diagnosis of the disease, but mitochondrial DNA mutations do not fully account for the clinical manifestation and phenotypic variability of the disease. NORRIE DISEASE: This rare X-linked vitreoretinal dysplasia, characterized by congenital bilateral blindness, was documented in Japan some twenty years ago and the disease has been identified in four unrelated Japanese families. The disease, once diagnosed on the basis of elaborate clinical and familial studies, can now be defined by molecular assessment of the Norrie disease gene. CONGENITAL NYSTAGMUS: A four-generation family was described which presented with autosomal dominantly inherited congenital nystagmus, peripheral corneal opacity, and foveal hypoplasia without any iris tissue malformation. The diagnosis of this family was established by detection of a missense mutation in the paired domain of the PAX 6 gene, hence conforming to a forme fruste of congenital aniridia. SORSBY'S FUNDUS DYSTROPHY: Two Japanese families with Sorsby's fundus dystrophy showed late-onset retinal dystrophy characterized by submacular hemorrhage and atrophy. Our patients

  7. Are associations between parental divorce and children's adjustment genetically mediated? An adoption study.

    PubMed

    O'Connor, T G; Caspi, A; DeFries, J C; Plomin, R

    2000-07-01

    The hypothesis that the association between parental divorce and children's adjustment is mediated by genetic factors was examined in the Colorado Adoption Project, a prospective longitudinal study of 398 adoptive and biological families. In biological families, children who experienced their parents' separation by the age of 12 years exhibited higher rates of behavioral problems and substance use, and lower levels of achievement and social adjustment, compared with children whose parents' marriages remained intact. Similarly, adopted children who experienced their (adoptive) parents' divorces exhibited elevated levels of behavioral problems and substance use compared with adoptees whose parents did not separate, but there were no differences on achievement and social competence. The findings for psychopathology are consistent with an environmentally mediated explanation for the association between parent divorce and children's adjustment; in contrast, the findings for achievement and social adjustment are consistent with a genetically mediated explanation involving passive genotype-environment correlation.

  8. Predicting age-age genetic correlations in tree-breeding programs: a case study of Pinus taeda L.

    Treesearch

    D.P. Gwaze; F.E. Bridgwater; T.D. Byram; J.A. Woolliams; C.G. Williams

    2000-01-01

    A meta-analysis of 520 parents and 51,439 individuals was used to develop two equations for predicting age-age genetic correlations in Pinus taeda L. Genetic and phenotypic family mean correlations and heritabilities were estimated for ages ranging from 2 to 25 years on 31...

  9. Ensuring privacy in the study of pathogen genetics

    PubMed Central

    Mehta, Sanjay R.; Vinterbo, Staal A.; Little, Susan J.

    2014-01-01

    Rapid growth in the genetic sequencing of pathogens in recent years has led to the creation of large sequence databases. This aggregated sequence data can be very useful for tracking and predicting epidemics of infectious diseases. However, the balance between the potential public health benefit and the risk to personal privacy for individuals whose genetic data (personal or pathogen) are included in such work has been difficult to delineate, because neither the true benefit nor the actual risk to participants has been adequately defined. Existing approaches to minimise the risk of privacy loss to participants are based on de-identification of data by removal of a predefined set of identifiers. These approaches neither guarantee privacy nor protect the usefulness of the data. We propose a new approach to privacy protection that will quantify the risk to participants, while still maximising the usefulness of the data to researchers. This emerging standard in privacy protection and disclosure control, which is known as differential privacy, uses a process-driven rather than data-centred approach to protecting privacy. PMID:24721230

  10. Ensuring privacy in the study of pathogen genetics.

    PubMed

    Mehta, Sanjay R; Vinterbo, Staal A; Little, Susan J

    2014-08-01

    Rapid growth in the genetic sequencing of pathogens in recent years has led to the creation of large sequence databases. This aggregated sequence data can be very useful for tracking and predicting epidemics of infectious diseases. However, the balance between the potential public health benefit and the risk to personal privacy for individuals whose genetic data (personal or pathogen) are included in such work has been difficult to delineate, because neither the true benefit nor the actual risk to participants has been adequately defined. Existing approaches to minimise the risk of privacy loss to participants are based on de-identification of data by removal of a predefined set of identifiers. These approaches neither guarantee privacy nor protect the usefulness of the data. We propose a new approach to privacy protection that will quantify the risk to participants, while still maximising the usefulness of the data to researchers. This emerging standard in privacy protection and disclosure control, which is known as differential privacy, uses a process-driven rather than data-centred approach to protecting privacy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Genetic approaches for the study of PTSD: Advances and challenges

    PubMed Central

    Banerjee, Sunayana B.; Morrison, Filomene G.; Ressler, Kerry J.

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a highly debilitating stress and anxiety-related disorder that occurs in response to specific trauma or abuse. Genetic risk factors may account for up to 30–40% of the heritability of PTSD. Understanding the gene pathways that are associated with PTSD, and how those genes interact with the fear and stress circuitry to mediate risk and resilience for PTSD will enable the development of targeted therapies to prevent the occurrence of or decrease the severity of this complex multi-gene disorder. This review will summarize recent research on genetic approaches to understanding PTSD risk and resilience in human populations, including candidate genes and their epigenetic modifications, genome-wide association studies and neural imaging genetics approaches. Despite challenges faced within this field of study such as inconsistent results and replications, genetic approaches still offer exciting opportunities for the identification and development of novel therapeutic targets and therapies in the future. PMID:28242325

  12. Meta-analysis of genetic variants associated with human exceptional longevity

    PubMed Central

    Sebastiani, Paola; Bae1, Harold; Sun, Fangui X.; Andersen, Stacy L.; Daw, E. Warwick; Malovini, Alberto; Kojima, Toshio; Hirose, Nobuyoshi; Schupf, Nicole; Puca, Annibale; Perls, Thomas T

    2013-01-01

    Despite evidence from family studies that there is a strong genetic influence upon exceptional longevity, relatively few genetic variants have been associated with this trait. One reason could be that many genes individually have such weak effects that they cannot meet standard thresholds of genome wide significance, but as a group in specific combinations of genetic variations, they can have a strong influence. Previously we reported that such genetic signatures of 281 genetic markers associated with about 130 genes can do a relatively good job of differentiating centenarians from non-centenarians particularly if the centenarians are 106 years and older. This would support our hypothesis that the genetic influence upon exceptional longevity increases with older and older (and rarer) ages. We investigated this list of markers using similar genetic data from 5 studies of centenarians from the USA, Europe and Japan. The results from the meta-analysis show that many of these variants are associated with survival to these extreme ages in other studies. Since many centenarians compress morbidity and disability towards the end of their lives, these results could point to biological pathways and therefore new therapeutics to increase years of healthy lives in the general population. PMID:24244950

  13. Genetic diversity of Plasmodium vivax over time and space: a community-based study in rural Amazonia.

    PubMed

    Batista, Camilla L; Barbosa, Susana; Da Silva Bastos, Melissa; Viana, Susana Ariane S; Ferreira, Marcelo U

    2015-02-01

    To examine how community-level genetic diversity of the malaria parasite Plasmodium vivax varies across time and space, we investigated the dynamics of parasite polymorphisms during the early phases of occupation of a frontier settlement in the Amazon Basin of Brazil. Microsatellite characterization of 84 isolates of P. vivax sampled over 3 years revealed a moderate-to-high genetic diversity (mean expected heterozygosity, 0.699), with a large proportion (78.5%) of multiple-clone infections (MCI), but also a strong multilocus linkage disequilibrium (LD) consistent with rare outcrossing. Little temporal and no spatial clustering was observed in the distribution of parasite haplotypes. A single microsatellite haplotype was shared by 3 parasites collected during an outbreak; all other 81 haplotypes were recovered only once. The lowest parasite diversity, with the smallest proportion of MCI and the strongest LD, was observed at the time of the outbreak, providing a clear example of epidemic population structure in a human pathogen. Population genetic parameters returned to pre-outbreak values during last 2 years of study, despite the concomitant decline in malaria incidence. We suggest that parasite genotyping can be useful for tracking the spread of new parasite strains associated with outbreaks in areas approaching malaria elimination.

  14. Genetic variation, phenotypic stability, and repeatability of drought response in European larch throughout 50 years in a common garden experiment

    PubMed Central

    George, Jan-Peter; Grabner, Michael; Karanitsch-Ackerl, Sandra; Mayer, Konrad; Weißenbacher, Lambert; Schueler, Silvio

    2017-01-01

    Abstract Assessing intra-specific variation in drought stress response is required to mitigate the consequences of climate change on forest ecosystems. Previous studies suggest that European larch (Larix decidua Mill.), an important European conifer in mountainous and alpine forests, is highly vulnerable to drought. In light of this, we estimated the genetic variation in drought sensitivity and its degree of genetic determination in a 50-year-old common garden experiment in the drought-prone northeastern Austria. Tree ring data from larch provenances originating from across the species' natural range were used to estimate the drought reaction in four consecutive drought events (1977, 1981, 1990–1994, and 2003) with extremely low standardized precipitation- and evapotranspiration-index values that affected growth in all provenances. We found significant differences among provenances across the four drought periods for the trees’ capacity to withstand drought (resistance) and for their capacity to reach pre-drought growth levels after drought (resilience). Provenances from the species' northern distribution limit in the Polish lowlands were found to be more drought resistant and showed higher stability across all drought periods than provenances from mountainous habitats at the southern fringe. The degree of genetic determination, as estimated by the repeatability, ranged up to 0.39, but significantly differed among provenances, indicating varying degrees of natural selection at the provenance origin. Generally, the relationship between the provenances’ source climate and drought behavior was weak, suggesting that the contrasting patterns of drought response are a result of both genetic divergence out of different refugial lineages and local adaptation to summer or winter drought conditions. Our analysis suggests that European larch posseses high genetic variation among and within provenances that can be used for assisted migration and breeding programs. PMID

  15. Genetic research: who is at risk for alcoholism.

    PubMed

    Foroud, Tatiana; Edenberg, Howard J; Crabbe, John C

    2010-01-01

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) was founded 40 years ago to help elucidate the biological underpinnings of alcohol dependence, including the potential contribution of genetic factors. Twin, adoption, and family studies conclusively demonstrated that genetic factors account for 50 to 60 percent of the variance in risk for developing alcoholism. Case-control studies and linkage analyses have helped identify DNA variants that contribute to increased risk, and the NIAAA-sponsored Collaborative Studies on Genetics of Alcoholism (COGA) has the expressed goal of identifying contributing genes using state-of-the-art genetic technologies. These efforts have ascertained several genes that may contribute to an increased risk of alcoholism, including certain variants encoding alcohol-metabolizing enzymes and neurotransmitter receptors. Genome-wide association studies allowing the analysis of millions of genetic markers located throughout the genome will enable discovery of further candidate genes. In addition to these human studies, genetic animal models of alcohol's effects and alcohol use have greatly advanced our understanding of the genetic basis of alcoholism, resulting in the identification of quantitative trait loci and allowing for targeted manipulation of candidate genes. Novel research approaches-for example, into epigenetic mechanisms of gene regulation-also are under way and undoubtedly will further clarify the genetic basis of alcoholism.

  16. Overlap and specificity of genetic and environmental influences on mathematics and reading disability in 10-year-old twins

    PubMed Central

    Kovas, Y.; Haworth, C.M.A.; Harlaar, N.; Petrill, S.A.; Dale, P.S.; Plomin, R.

    2009-01-01

    Background To what extent do genetic and environmental influences on reading disability overlap with those on mathematics disability? Multivariate genetic research on the normal range of variation in unselected samples has led to a Generalist Genes Hypothesis which posits that the same genes largely affect individual differences in these abilities in the normal range. However, little is known about the etiology of co-morbidity for the disability extremes of reading and mathematics. Method From 2596 pairs of 10-year-old monozygotic and dizygotic twins assessed on a web-based battery of reading and mathematics tests, we selected the lowest 15% on reading and on mathematics. We conducted bivariate DeFries–Fulker (DF) extremes analyses to assess overlap and specificity of genetic and environmental influences on reading and mathematics disability defined by a 15% cut-off. Results Both reading and mathematics disability are moderately heritable (47% and 43%, respectively) and show only modest shared environmental influence (16% and 20%). There is substantial phenotypic co-morbidity between reading and mathematics disability. Bivariate DF extremes analyses yielded a genetic correlation of .67 between reading disability and mathematics disability, suggesting that they are affected largely by the same genetic factors. The shared environmental correlation is .96 and the non-shared environmental correlation is .08. Conclusions In line with the Generalist Genes Hypothesis, the same set of generalist genes largely affects mathematical and reading disabilities. The dissociation between the disabilities occurs largely due to independent non-shared environmental influences. PMID:17714376

  17. Peripheral neuropathy in genetically characterized patients with mitochondrial disorders: A study from south India.

    PubMed

    Bindu, Parayil Sankaran; Govindaraju, Chikanna; Sonam, Kothari; Nagappa, Madhu; Chiplunkar, Shwetha; Kumar, Rakesh; Gayathri, Narayanappa; Bharath, M M Srinivas; Arvinda, Hanumanthapura R; Sinha, Sanjib; Khan, Nahid Akthar; Govindaraj, Periyasamy; Nunia, Vandana; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Taly, Arun B

    2016-03-01

    There are relatively few studies, which focus on peripheral neuropathy in large cohorts of genetically characterized patients with mitochondrial disorders. This study sought to analyze the pattern of peripheral neuropathy in a cohort of patients with mitochondrial disorders. The study subjects were derived from a cohort of 52 patients with a genetic diagnosis of mitochondrial disorders seen over a period of 8 years (2006-2013). All patients underwent nerve conduction studies and those patients with abnormalities suggestive of peripheral neuropathy were included in the study. Their phenotypic features, genotype, pattern of peripheral neuropathy and nerve conduction abnormalities were analyzed retrospectively. The study cohort included 18 patients (age range: 18 months-50 years, M:F- 1.2:1).The genotype included mitochondrial DNA point mutations (n=11), SURF1 mutations (n=4) and POLG1(n=3). Axonal neuropathy was noted in 12 patients (sensori-motor:n=4; sensory:n=4; motor:n=4) and demyelinating neuropathy in 6. Phenotype-genotype correlations revealed predominant axonal neuropathy in mtDNA point mutations and demyelinating neuropathy in SURF1. Patients with POLG related disorders had both sensory ataxic neuropathy and axonal neuropathy. A careful analysis of the family history, clinical presentation, biochemical, histochemical and structural analysis may help to bring out the mitochondrial etiology in patients with peripheral neuropathy and may facilitate targeted gene testing. Presence of demyelinating neuropathy in Leigh's syndrome may suggest underlying SURF1 mutations. Sensory ataxic neuropathy with other mitochondrial signatures should raise the possibility of POLG related disorder. Copyright © 2015. Published by Elsevier B.V.

  18. Attaining genetic height potential: Analysis of height outcomes from the ANSWER Program in children treated with growth hormone over 5 years.

    PubMed

    Ross, Judith L; Lee, Peter A; Gut, Robert; Germak, John

    2015-12-01

    This study aimed to assess attainment of genetic height potential after long-term growth hormone (GH) treatment in GH-naïve children diagnosed with isolated growth hormone deficiency (IGHD), multiple pituitary hormone deficiency (MPHD), born small for gestational age (SGA), or idiopathic short stature (ISS) enrolled in the American Norditropin® Web-enabled Research (ANSWER) Program. Children with IGHD (n=2884), MPHD (n=200), SGA (n=481), or ISS (n=733) with baseline height standard deviation score (HSDS)≤-2 were assessed over 5 years of GH treatment for mean HSDS, change in HSDS (ΔHSDS), and corrected HSDS (HSDS-target HSDS). Mean HSDS and corrected HSDS significantly increased to close to target height across all diagnostic groups after 5 years of GH treatment (P<0.0001). ∆HSDS at year 5 increased for all groups (IGHD: 1.8; MPHD: 2.1; SGA: 1.8; ISS: 1.6). Among patients who continued GH for 5 years, mean insulin-like growth factor-I (IGF-I) SDS increased to within normal range across all groups. Body mass index (BMI) SDS remained relatively stable in all diagnostic groups. Bone age (BA) increased, and the mean BA to chronological age (BA/CA) ratio reached or approached 1 across diagnostic groups over 5 years of GH treatment. Long-term GH therapy resulted in a significant increase in mean HSDS and corrected HSDS from baseline values in all diagnostic groups. The observed increase in mean corrected HSDS is consistent with growth that approached the patients' genetic height potential, although complete height gains will be evaluated at the attainment of final height. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Heritability and confirmation of genetic association studies for childhood asthma in twins.

    PubMed

    Ullemar, V; Magnusson, P K E; Lundholm, C; Zettergren, A; Melén, E; Lichtenstein, P; Almqvist, C

    2016-02-01

    Although the genetics of asthma has been extensively studied using both quantitative and molecular genetic analysis methods, both approaches lack studies specific to the childhood phenotype and including other allergic diseases. This study aimed to give specific estimates for the heritability of childhood asthma and other allergic diseases, to attempt to replicate findings from genomewide association studies (GWAS) for childhood asthma and to test the same variants against other allergic diseases. In a cohort of 25 306 Swedish twins aged 9 or 12 years, data on asthma were available from parental interviews and population-based registers. The interviews also inquired about wheeze, hay fever, eczema, and food allergy. Through structural equation modeling, the heritability of all phenotypes was calculated. A subset of 10 075 twins was genotyped for 16 single nucleotide polymorphisms (SNPs) selected from previous GWAS; these were first tested for association with asthma and significant findings also against the other allergic diseases. The heritability of any childhood asthma was 0.82 (95% CI 0.79-0.85). For the other allergic diseases, the range was approximately 0.60-0.80. Associations for six SNPs with asthma were replicated, including rs2305480 in the GSDMB gene (OR 0.80, 95% CI 0.74-0.86, P = 1.5*10(-8) ; other significant associations all below P = 3.5*10(-4) ). Of these, only rs3771180 in IL1RL1 was associated with any other allergic disease (for hay fever, OR 0.64, 95% CI 0.53-0.77, P = 2.5*10(-6) ). Asthma and allergic diseases of childhood are highly heritable, and these high-risk genetic variants associated specifically with childhood asthma, except for one SNP shared with hay fever. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Potential Genetic Risk Factors for Chronic TMD: Genetic Associations from the OPPERA Case Control Study

    PubMed Central

    Smith, Shad B.; Maixner, Dylan; Greenspan, Joel; Dubner, Ron; Fillingim, Roger; Ohrbach, Richard; Knott, Charles; Slade, Gary; Bair, Eric; Gibson, Dustin G.; Zaykin, Dmitri V.; Weir, Bruce; Maixner, William; Diatchenko, Luda

    2011-01-01

    Genetic factors play a role in the etiology of persistent pain conditions, putatively by modulating underlying processes such as nociceptive sensitivity, psychological well-being, inflammation, and autonomic response. However, to date, only a few genes have been associated with temporomandibular disorders (TMD). This study evaluated 358 genes involved in pain processes, comparing allelic frequencies between 166 cases with chronic TMD and 1442 controls enrolled in the OPPERA (Orofacial Pain: Prospective Evaluation and Risk Assessment) study cooperative agreement. To enhance statistical power, 182 TMD cases and 170 controls from a similar study were included in the analysis. Genotyping was performed using the Pain Research Panel, an Affymetrix gene chip representing 3295 single nucleotide polymorphisms, including ancestry-informative markers that were used to adjust for population stratification. Adjusted associations between genetic markers and TMD case status were evaluated using logistic regression. The OPPERA findings provided evidence supporting previously-reported associations between TMD and two genes: HTR2A and COMT. Other genes were revealed as potential new genetic risk factors for TMD, including NR3C1, CAMK4, CHRM2, IFRD1, and GRK5. While these findings need to be replicated in independent cohorts, the genes potentially represent important markers of risk for TMD and they identify potential targets for therapeutic intervention. PMID:22074755

  1. Genetic Resources in the “Calabaza Pipiana” Squash (Cucurbita argyrosperma) in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models

    PubMed Central

    Sánchez-de la Vega, Guillermo; Castellanos-Morales, Gabriela; Gámez, Niza; Hernández-Rosales, Helena S.; Vázquez-Lobo, Alejandra; Aguirre-Planter, Erika; Jaramillo-Correa, Juan P.; Montes-Hernández, Salvador; Lira-Saade, Rafael; Eguiarte, Luis E.

    2018-01-01

    Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies’ distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low levels of gene

  2. [The genetics of depressive disorders].

    PubMed

    Schulte-Körne, Gerd; Allgaier, Antje-Kathrin

    2008-01-01

    Among the most common severe psychiatric disorders worldwide, depressive disorders are a leading cause of morbidity, the onset usually occurring during childhood or adolescence. Symptomatology, prevalence, outcome and treatment differentiate depressive disorder nosologically as being either unipolar depression or bipolar disorder, which is characterized by one or more episodes of mania with or without episodes of depression. Genetic factors decisively influence the susceptibility to depressive disorders. Family studies and twin studies have been essential in defining the magnitude of familial risk and liability to heritability, particularly in the case of bipolar disorder. In recent years, linkage and association studies have made great strides towards identifying candidate genes. Particularly the s-allele of the serotonin transporter has been repeatedly confirmed to be a risk factor. Meta-analyses suggest, however, that the genetic contributions of the ascertained loci are relatively small. Along with genetic factors, environmental factors are heavily involved. Gene-environment action plays a pivotal role, particularly in unipolar depression. The genetic disposition seems to be modulated by a protective or pathogenic environment. Early-onset disorders must be further investigated in future as studies to date are somewhat limited.

  3. Spontaneous disclosure of BRCA1/2 genetic test results to employers: a French prospective study

    PubMed Central

    Eisinger, François; Fabre, Roxane; Lasset, Christine; Stoppa-Lyonnet, Dominique; Julian-Reynier, Claire; Nogues, Catherine

    2012-01-01

    The aim of this study was to examine the patterns of disclosure of BRCA1/2 genetic test results to employers by unaffected carriers. In a national prospective cohort study on unaffected BRCA1/2 mutation carriers, disclosure to employers was assessed prospectively, using self-administered questionnaires, up to 2 years after their test results were delivered by cancer geneticists. Kaplan–Meier curves and Cox-regression analysis were used to assess the factors associated with time to disclosure to the employer. Mean age of the 146 women BRCA1/2 carriers who were employed when their test results were delivered was 37.1 years (range: 19–57). At the end of the second year of follow-up, 47 of them (32.2%) had disclosed their results to their employers; median time to disclosure was 6 months. Reasons spontaneously expressed were first to inform the employer that medical surveillance/surgery was necessary for cancer risk management although these carriers did not actually have cancer. After multivariate adjustment on age, women with a lower educational level (HRadj=2.00, P=0.026) and those who had undergone prophylactic surgery during the 2 years of follow-up (HRadj=2.18, P=0.019) had disclosed their BRCA status to their employers earlier and more frequently. One-third of the female carriers not affected by breast/ovarian cancer disclosed their BRCA1/2 genetic test results spontaneously to their employers, mainly to inform them that they were disease-free but required medical surveillance or a surgical intervention to reduce the risk of cancer. PMID:22378286

  4. Genetic and environmental influences on non-specific neck pain in early adolescence: A classical twin study

    PubMed Central

    Ståhl, Minna K; El-Metwally, Ashraf A; Mikkelsson, Marja K; Salminen, Jouko J; Pulkkinen, Lea R; Rose, Richard J; Kaprio, Jaakko A

    2012-01-01

    Background Prevalence of neck pain has increased among adolescents. The origins of adult chronic neck pain may lie in late childhood, but for early prevention, more information is needed about its aetiology. We investigated the relative roles of genetic and environmental factors in early adolescent neck pain with a classic twin study. Methods Frequency of neck pain was assessed with a validated pain questionnaire in a population-based sample of nearly 1800 pairs of 11–12-year-old Finnish twins. Twin pair similarity for neck pain was quantified by polychoric correlations, and variance components were estimated with biometric structural equation modelling. Results Prevalence of neck pain reported at least once monthly was 38% and at least once weekly 16%, with no significant differences between gender or zygosity. A greater polychoric correlation in liability to neck pain was found in monozygotic (0.67) than for dizygotic pairs (0.38), suggesting strong genetic influences. Model-fitting indicated that 68% (95% CI 62 to 74) of the variation in liability to neck pain could be attributed to genetic effects, with the remainder attributed to unshared environmental effects. No evidence for sex-specific genetic effects or for sex differences in the magnitude of genetic effects was found. Conclusions Genetic and unique environmental factors seem to play the most important roles in liability to neck pain in early adolescence. Future research should be directed to identifying pathways for genetic influences on neck pain and in exploring effectiveness of interventions that target already identified environmental risk factors. PMID:23139100

  5. Cannabis controversies: how genetics can inform the study of comorbidity.

    PubMed

    Agrawal, Arpana; Lynskey, Michael T

    2014-03-01

    To review three key and controversial comorbidities of cannabis use-other illicit drug use, psychosis and depression, as well as suicide, from a genetically informed perspective. Selective review. Genetic factors play a critical role in the association between cannabis use, particularly early-onset use and use of other illicit drugs, psychosis and depression, as well as suicide, albeit via differing mechanisms. For other illicit drugs, while there is strong evidence for shared genetic influences, residual association that is attributable to causal or person-specific environmental factors cannot be ruled out. For depression, common genetic influences are solely responsible for the association with cannabis use but for suicidal attempt, evidence for person-specific factors persists. Finally, even though rates of cannabis use are inordinately high in those with psychotic disorders, there is no evidence of shared genetic etiologies underlying this comorbidity. Instead, there is limited evidence that adolescent cannabis use might moderate the extent to which diathesis influences psychosis. Overlapping genetic influences underlie the association between early-onset cannabis use and other illicit drug use as well as depression and suicide. For psychosis, mechanisms other than shared genetic influences might be at play. © 2014 Society for the Study of Addiction.

  6. Study of InDel genetic markers with forensic and ancestry informative interest in PALOP's immigrant populations in Lisboa.

    PubMed

    Inácio, Ana; Costa, Heloísa Afonso; da Silva, Cláudia Vieira; Ribeiro, Teresa; Porto, Maria João; Santos, Jorge Costa; Igrejas, Gilberto; Amorim, António

    2017-05-01

    The migratory phenomenon in Portugal has become one of the main factors for the genetic variability. In the last few years, a new class of autosomal insertion/deletion markers-InDel-has attracted interest in forensic genetics. Since there is no data for InDel markers of Portuguese-speaking African countries (PALOP) immigrants living in Lisboa, our aim is the characterization of those groups of individuals by typing them with at least 30 InDel markers and to compare different groups of individuals/populations. We studied 454 bloodstain samples belonging to immigrant individuals from Angola, Guinea-Bissau, and Mozambique. DNA extraction was performed with the Chelex® 100 method. After extraction, all samples were typed with the Investigator® DIPplex method. Through the obtained results, allelic frequencies show that all markers are at Hardy-Weinberg equilibrium, and we can confirm that those populations show significant genetic distances between themselves, between them, and the host Lisboa population. Because of this, they introduce genetic variability in Lisboa population.

  7. Genetics/genomics education for nongenetic health professionals: a systematic literature review.

    PubMed

    Talwar, Divya; Tseng, Tung-Sung; Foster, Margaret; Xu, Lei; Chen, Lei-Shih

    2017-07-01

    The completion of the Human Genome Project has enhanced avenues for disease prevention, diagnosis, and management. Owing to the shortage of genetic professionals, genetics/genomics training has been provided to nongenetic health professionals for years to establish their genomic competencies. We conducted a systematic literature review to summarize and evaluate the existing genetics/genomics education programs for nongenetic health professionals. Five electronic databases were searched from January 1990 to June 2016. Forty-four studies met our inclusion criteria. There was a growing publication trend. Program participants were mainly physicians and nurses. The curricula, which were most commonly provided face to face, included basic genetics; applied genetics/genomics; ethical, legal, and social implications of genetics/genomics; and/or genomic competencies/recommendations in particular professional fields. Only one-third of the curricula were theory-based. The majority of studies adopted a pre-/post-test design and lacked follow-up data collection. Nearly all studies reported participants' improvements in one or more of the following areas: knowledge, attitudes, skills, intention, self-efficacy, comfort level, and practice. However, most studies did not report participants' age, ethnicity, years of clinical practice, data validity, and data reliability. Many genetics/genomics education programs for nongenetic health professionals exist. Nevertheless, enhancement in methodological quality is needed to strengthen education initiatives.Genet Med advance online publication 20 October 2016.

  8. Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos

    PubMed Central

    Conomos, Matthew P.; Laurie, Cecelia A.; Stilp, Adrienne M.; Gogarten, Stephanie M.; McHugh, Caitlin P.; Nelson, Sarah C.; Sofer, Tamar; Fernández-Rhodes, Lindsay; Justice, Anne E.; Graff, Mariaelisa; Young, Kristin L.; Seyerle, Amanda A.; Avery, Christy L.; Taylor, Kent D.; Rotter, Jerome I.; Talavera, Gregory A.; Daviglus, Martha L.; Wassertheil-Smoller, Sylvia; Schneiderman, Neil; Heiss, Gerardo; Kaplan, Robert C.; Franceschini, Nora; Reiner, Alex P.; Shaffer, John R.; Barr, R. Graham; Kerr, Kathleen F.; Browning, Sharon R.; Browning, Brian L.; Weir, Bruce S.; Avilés-Santa, M. Larissa; Papanicolaou, George J.; Lumley, Thomas; Szpiro, Adam A.; North, Kari E.; Rice, Ken; Thornton, Timothy A.; Laurie, Cathy C.

    2016-01-01

    US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a “genetic-analysis group” variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness. PMID:26748518

  9. Design considerations for genetic linkage and association studies.

    PubMed

    Nsengimana, Jérémie; Bishop, D Timothy

    2012-01-01

    This chapter describes the main issues that genetic epidemiologists usually consider in the design of linkage and association studies. For linkage, we briefly consider the situation of rare, highly penetrant alleles showing a disease pattern consistent with Mendelian inheritance investigated through parametric methods in large pedigrees or with autozygosity mapping in inbred families, and we then turn our focus to the most common design, affected sibling pairs, of more relevance for common, complex diseases. Theoretical and more practical power and sample size calculations are provided as a function of the strength of the genetic effect being investigated. We also discuss the impact of other determinants of statistical power such as disease heterogeneity, pedigree, and genotyping errors, as well as the effect of the type and density of genetic markers. Linkage studies should be as large as possible to have sufficient power in relation to the expected genetic effect size. Segregation analysis, a formal statistical technique to describe the underlying genetic susceptibility, may assist in the estimation of the relevant parameters to apply, for instance. However, segregation analyses estimate the total genetic component rather than a single-locus effect. Locus heterogeneity should be considered when power is estimated and at the analysis stage, i.e. assuming smaller locus effect than the total the genetic component from segregation studies. Disease heterogeneity should be minimised by considering subtypes if they are well defined or by otherwise collecting known sources of heterogeneity and adjusting for them as covariates; the power will depend upon the relationship between the disease subtype and the underlying genotypes. Ultimately, identifying susceptibility alleles of modest effects (e.g. RR≤1.5) requires a number of families that seem unfeasible in a single study. Meta-analysis and data pooling between different research groups can provide a sizeable study

  10. Genetic studies of human neuropathic pain conditions: a review

    PubMed Central

    Zorina-Lichtenwalter, Katerina; Parisien, Marc; Diatchenko, Luda

    2018-01-01

    Abstract Numerous studies have shown associations between genetic variants and neuropathic pain disorders. Rare monogenic disorders are caused by mutations of substantial effect size in a single gene, whereas common disorders are likely to have a contribution from multiple genetic variants of mild effect size, representing different biological pathways. In this review, we survey the reported genetic contributors to neuropathic pain and submit them for validation in a 150,000-participant sample of the U.K. Biobank cohort. Successfully replicated association with a neuropathic pain construct for 2 variants in IL10 underscores the importance of neuroimmune interactions, whereas genome-wide significant association with low back pain (P = 1.3e-8) and false discovery rate 5% significant associations with hip, knee, and neck pain for variant rs7734804 upstream of the MAT2B gene provide evidence of shared contributing mechanisms to overlapping pain conditions at the molecular genetic level. PMID:29240606

  11. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  12. You're a What? Genetic Counselor

    ERIC Educational Resources Information Center

    Mullins, John

    2011-01-01

    When it first emerged about 50 years ago, genetic counseling focused primarily on prenatal testing to detect genetic conditions. But counseling services have evolved to keep pace with a greater knowledge of genetics and wider application of genetic diagnostic testing. Today, there are several types of genetic counselors, and their expertise covers…

  13. Challenges in reproducibility of genetic association studies: lessons learned from the obesity field.

    PubMed

    Li, A; Meyre, D

    2013-04-01

    A robust replication of initial genetic association findings has proved to be difficult in human complex diseases and more specifically in the obesity field. An obvious cause of non-replication in genetic association studies is the initial report of a false positive result, which can be explained by a non-heritable phenotype, insufficient sample size, improper correction for multiple testing, population stratification, technical biases, insufficient quality control or inappropriate statistical analyses. Replication may, however, be challenging even when the original study describes a true positive association. The reasons include underpowered replication samples, gene × gene, gene × environment interactions, genetic and phenotypic heterogeneity and subjective interpretation of data. In this review, we address classic pitfalls in genetic association studies and provide guidelines for proper discovery and replication genetic association studies with a specific focus on obesity.

  14. Multiple testing and power calculations in genetic association studies.

    PubMed

    So, Hon-Cheong; Sham, Pak C

    2011-01-01

    Modern genetic association studies typically involve multiple single-nucleotide polymorphisms (SNPs) and/or multiple genes. With the development of high-throughput genotyping technologies and the reduction in genotyping cost, investigators can now assay up to a million SNPs for direct or indirect association with disease phenotypes. In addition, some studies involve multiple disease or related phenotypes and use multiple methods of statistical analysis. The combination of multiple genetic loci, multiple phenotypes, and multiple methods of evaluating associations between genotype and phenotype means that modern genetic studies often involve the testing of an enormous number of hypotheses. When multiple hypothesis tests are performed in a study, there is a risk of inflation of the type I error rate (i.e., the chance of falsely claiming an association when there is none). Several methods for multiple-testing correction are in popular use, and they all have strengths and weaknesses. Because no single method is universally adopted or always appropriate, it is important to understand the principles, strengths, and weaknesses of the methods so that they can be applied appropriately in practice. In this article, we review the three principle methods for multiple-testing correction and provide guidance for calculating statistical power.

  15. Shared Genetic Control of Brain Activity During Sleep and Insulin Secretion: A Laboratory-Based Family Study.

    PubMed

    Morselli, Lisa L; Gamazon, Eric R; Tasali, Esra; Cox, Nancy J; Van Cauter, Eve; Davis, Lea K

    2018-01-01

    Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and β-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and β-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate. © 2017 by the American Diabetes Association.

  16. Presymptomatic ALS genetic counseling and testing

    PubMed Central

    Stanislaw, Christine; Reyes, Eliana; Hussain, Sumaira; Cooley, Anne; Fernandez, Maria Catalina; Dauphin, Danielle D.; Michon, Sara-Claude; Andersen, Peter M.; Wuu, Joanne

    2016-01-01

    Remarkable advances in our understanding of the genetic contributions to amyotrophic lateral sclerosis (ALS) have sparked discussion and debate about whether clinical genetic testing should routinely be offered to patients with ALS. A related, but distinct, question is whether presymptomatic genetic testing should be offered to family members who may be at risk for developing ALS. Existing guidelines for presymptomatic counseling and testing are mostly based on small number of individuals, clinical judgment, and experience from other neurodegenerative disorders. Over the course of the last 8 years, we have provided testing and 317 genetic counseling sessions (including predecision, pretest, posttest, and ad hoc counseling) to 161 first-degree family members participating in the Pre-Symptomatic Familial ALS Study (Pre-fALS), as well as testing and 75 posttest counseling sessions to 63 individuals with familial ALS. Based on this experience, and the real-world challenges we have had to overcome in the process, we recommend an updated set of guidelines for providing presymptomatic genetic counseling and testing to people at high genetic risk for developing ALS. These recommendations are especially timely and relevant given the growing interest in studying presymptomatic ALS. PMID:27194384

  17. Molecular genetic classification in Prader-Willi syndrome: a multisite cohort study.

    PubMed

    Butler, Merlin G; Hartin, Samantha N; Hossain, Waheeda A; Manzardo, Ann M; Kimonis, Virginia; Dykens, Elisabeth; Gold, June Anne; Kim, Soo-Jeong; Weisensel, Nicolette; Tamura, Roy; Miller, Jennifer L; Driscoll, Daniel J

    2018-05-05

    Prader-Willi syndrome (PWS) is due to errors in genomic imprinting. PWS is recognised as the most common known genetic cause of life-threatening obesity. This report summarises the frequency and further characterises the PWS molecular classes and maternal age effects. High-resolution microarrays, comprehensive chromosome 15 genotyping and methylation-specific multiplex ligation probe amplification were used to describe and further characterise molecular classes of maternal disomy 15 (UPD15) considering maternal age. We summarised genetic data from 510 individuals with PWS and 303 (60%) had the 15q11-q13 deletion; 185 (36%) with UPD15 and 22 (4%) with imprinting defects. We further characterised UPD15 findings into subclasses based on the presence (size, location) or absence of loss of heterozygosity (LOH). Additionally, significantly older mothers (mean age=32.5 years vs 27.7 years) were found in the UPD15 group (n=145) compared with the deletion subtype (n=200). We report on molecular classes in PWS using advanced genomic technology in the largest cohort to date. LOH patterns in UPD15 may impact the risk of having a second genetic condition if the mother carries a recessive mutant allele in the isodisomic region on chromosome 15. The risk of UPD15 may also increase with maternal age. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies

    PubMed Central

    Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.

    2015-01-01

    The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980

  19. Physiological significance of ghrelin revealed by studies using genetically engineered mouse models with modifications in the ghrelin system.

    PubMed

    Ariyasu, Hiroyuki; Akamizu, Takashi

    2015-01-01

    Ghrelin, an endogenous ligand for the growth hormone (GH) secretagogue receptor (GHS-R or ghrelin receptor), is a 28-amino acid acylated peptide mainly produced in the stomach. The pharmacological administration of ghrelin is known to exert diverse effects, such as stimulating GH secretion, promoting food intake, and increasing adiposity. In recent years, genetically engineered mouse models have provided important insights into the physiology of various hormones. In this review, we discuss current knowledge regarding the physiological significance of ghrelin on the basis of studies using genetically engineered mouse models with modifications in the ghrelin system.

  20. Evidence for shared genetic risk between ADHD symptoms and reduced mathematics ability: a twin study

    PubMed Central

    Greven, Corina U.; Kovas, Yulia; Willcutt, Erik G.; Petrill, Stephen A.; Plomin, Robert

    2013-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) symptoms and mathematics ability are associated, but little is known about the genetic and environmental influences underlying this association. Methods Data came from more than 6,000 12-year-old twin pairs from the U.K. population-representative Twins Early Development Study. Parents rated each twin’s behaviour using a DSM-IV-based 18-item questionnaire of inattentive and hyperactive-impulsive ADHD symptoms. Mathematics tests based on the U.K. National Curriculum were completed by each twin. The twins also completed standardised tests of reading and general cognitive ability. Multivariate twin model fitting was applied. Results Inattentive and hyperactive-impulsive ADHD symptoms were highly heritable (67% and 73%, respectively). Mathematics ability was moderately heritable (46%). Mathematics ability and inattentiveness showed a significantly greater phenotypic correlation (rp=−0.26) and genetic correlation (rA=−0.41) than mathematics ability and hyperactivity-impulsivity (rp=−0.18; rA=−0.22). The genetic correlation between inattentiveness and mathematics ability was largely independent from hyperactivity-impulsivity, and was only partially accounted for by genetic influences related to reading and general cognitive ability. Conclusions Results revealed the novel finding that mathematics ability shows significantly stronger phenotypic and genetic associations with inattentiveness than with hyperactivity-impulsivity. Genetic associations between inattentiveness and mathematics ability could only partially be accounted for by hyperactivity-impulsivity, reading and general cognitive ability. Results suggest that mathematics ability is associated with ADHD symptoms largely because it shares genetic risk factors with inattentiveness, and provide further evidence for considering inattentiveness and hyperactivity-impulsivity separately. DNA markers for ADHD symptoms (especially inattentiveness) may also

  1. Evidence for shared genetic risk between ADHD symptoms and reduced mathematics ability: a twin study.

    PubMed

    Greven, Corina U; Kovas, Yulia; Willcutt, Erik G; Petrill, Stephen A; Plomin, Robert

    2014-01-01

    Attention-deficit/hyperactivity disorder (ADHD) symptoms and mathematics ability are associated, but little is known about the genetic and environmental influences underlying this association. Data came from more than 6,000 twelve-year-old twin pairs from the UK population-representative Twins Early Development Study. Parents rated each twin's behaviour using a DSM-IV-based 18-item questionnaire of inattentive and hyperactive-impulsive ADHD symptoms. Mathematics tests based on the UK National Curriculum were completed by each twin. The twins also completed standardised tests of reading and general cognitive ability. Multivariate twin model fitting was applied. Inattentive and hyperactive-impulsive ADHD symptoms were highly heritable (67% and 73% respectively). Mathematics ability was moderately heritable (46%). Mathematics ability and inattentiveness showed a significantly greater phenotypic correlation (r(p) = -.26) and genetic correlation (r(A) = -.41) than mathematics ability and hyperactivity-impulsivity (r(p) = -.18; r(A) = -.22). The genetic correlation between inattentiveness and mathematics ability was largely independent from hyperactivity-impulsivity, and was only partially accounted for by genetic influences related to reading and general cognitive ability. Results revealed the novel finding that mathematics ability shows significantly stronger phenotypic and genetic associations with inattentiveness than with hyperactivity-impulsivity. Genetic associations between inattentiveness and mathematics ability could only partially be accounted for by hyperactivity-impulsivity, reading and general cognitive ability. Results suggest that mathematics ability is associated with ADHD symptoms largely because it shares genetic risk factors with inattentiveness, and provide further evidence for considering inattentiveness and hyperactivity-impulsivity separately. DNA markers for ADHD symptoms (especially inattentiveness) may also be candidate risk factors for

  2. Mathematical Ability of 10-Year-Old Boys and Girls: Genetic and Environmental Etiology of Typical and Low Performance

    ERIC Educational Resources Information Center

    Kovas, Yulia; Haworth, Claire M. A.; Petrill, Stephen A.; Plomin, Robert

    2007-01-01

    The genetic and environmental etiologies of 3 aspects of low mathematical performance (math disability) and the full range of variability (math ability) were compared for boys and girls in a sample of 5,348 children age 10 years (members of 2,674 pairs of same-sex and opposite-sex twins) from the United Kingdom (UK). The measures, which we…

  3. Genetics and epigenetics of rheumatoid arthritis

    PubMed Central

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  4. Variation in recombination rate may bias human genetic disease mapping studies.

    PubMed

    Boyle, A Susannah; Noor, Mohamed A F

    2004-11-01

    The availability of the human genome sequence and variability information (as from the International HapMap project) will enhance our ability to map genetic disorders and choose targets for therapeutic intervention. However, several factors, such as regional variation in recombination rate, can bias conclusions from genetic mapping studies. Here, we examine the impact of regional variation in recombination rate across the human genome. Through computer simulations and literature surveys, we conclude that genetic disorders have been mapped to regions of low recombination more often than expected if such diseases were randomly distributed across the genome. This concentration in low recombination regions may be an artifact, and disorders appearing to be caused by a few genes of large effect may be polygenic. Future genetic mapping studies should be conscious of this potential complication by noting the regional recombination rate of regions implicated in diseases.

  5. Challenges in managing genetic cancer risk: a long-term qualitative study of unaffected women carrying BRCA1/BRCA2 mutations.

    PubMed

    Caiata-Zufferey, Maria; Pagani, Olivia; Cina, Viviane; Membrez, Véronique; Taborelli, Monica; Unger, Sheila; Murphy, Anne; Monnerat, Christian; Chappuis, Pierre O

    2015-09-01

    Women carrying BRCA1/BRCA2 germ-line mutations have an increased risk of developing breast/ovarian cancer. To minimize this risk, international guidelines recommend lifelong surveillance and preventive measures. This study explores the challenges that unaffected women genetically predisposed to breast/ovarian cancer face in managing their risk over time and the psychosocial processes behind these challenges. Between 2011 and 2013, biographical qualitative interviews were conducted in Switzerland with 32 unaffected French- and Italian-speaking women carrying BRCA1/BRCA2 mutations. Their mutation status had been known for at least 3 years (mean, 6 years). Data were analyzed through constant comparative analysis using software for qualitative analysis. From the time these women received their positive genetic test results, they were encouraged to follow medical guidelines. Meanwhile, their adherence to these guidelines was constantly questioned by their social and medical environments. As a result of these contradictory pressures, BRCA1/BRCA2 mutation carriers experienced a sense of disorientation about the most appropriate way of dealing with genetic risk. Given the contradictory attitudes of health-care professionals in caring for unaffected BRCA1/BRCA2 mutation carriers, there is an urgent need to educate physicians in dealing with genetically at-risk women and to promote a shared representation of this condition among them.Genet Med 17 9, 726-732.

  6. Linguistic, geographic and genetic isolation: a collaborative study of Italian populations.

    PubMed

    Capocasa, Marco; Anagnostou, Paolo; Bachis, Valeria; Battaggia, Cinzia; Bertoncini, Stefania; Biondi, Gianfranco; Boattini, Alessio; Boschi, Ilaria; Brisighelli, Francesca; Caló, Carla Maria; Carta, Marilisa; Coia, Valentina; Corrias, Laura; Crivellaro, Federica; De Fanti, Sara; Dominici, Valentina; Ferri, Gianmarco; Francalacci, Paolo; Franceschi, Zelda Alice; Luiselli, Donata; Morelli, Laura; Paoli, Giorgio; Rickards, Olga; Robledo, Renato; Sanna, Daria; Sanna, Emanuele; Sarno, Stefania; Sineo, Luca; Taglioli, Luca; Tagarelli, Giuseppe; Tofanelli, Sergio; Vona, Giuseppe; Pettener, Davide; Destro Bisol, Giovanni

    2014-01-01

    The animal and plant biodiversity of the Italian territory is known to be one of the richest in the Mediterranean basin and Europe as a whole, but does the genetic diversity of extant human populations show a comparable pattern? According to a number of studies, the genetic structure of Italian populations retains the signatures of complex peopling processes which took place from the Paleolithic to modern era. Although the observed patterns highlight a remarkable degree of genetic heterogeneity, they do not, however, take into account an important source of variation. In fact, Italy is home to numerous ethnolinguistic minorities which have yet to be studied systematically. Due to their difference in geographical origin and demographic history, such groups not only signal the cultural and social diversity of our country, but they are also potential contributors to its bio-anthropological heterogeneity. To fill this gap, research groups from four Italian Universities (Bologna, Cagliari, Pisa and Roma Sapienza) started a collaborative study in 2007, which was funded by the Italian Ministry of Education, University and Research and received partial support by the Istituto Italiano di Antropologia. In this paper, we present an account of the results obtained in the course of this initiative. Four case-studies relative to linguistic minorities from the Eastern Alps, Sardinia, Apennines and Southern Italy are first described and discussed, focusing on their micro-evolutionary and anthropological implications. Thereafter, we present the results of a systematic analysis of the relations between linguistic, geographic and genetic isolation. Integrating the data obtained in the course of the long-term study with literature and unpublished results on Italian populations, we show that a combination of linguistic and geographic factors is probably responsible for the presence of the most robust signatures of genetic isolation. Finally, we evaluate the magnitude of the diversity

  7. Genetic Complexity of Episodic Memory: A Twin Approach to Studies of Aging

    PubMed Central

    Kremen, William S.; Spoon, Kelly M.; Jacobson, Kristen C.; Vasilopoulos, Terrie; McCaffery, Jeanne M.; Panizzon, Matthew S.; Franz, Carol E.; Vuoksimaa, Eero; Xian, Hong; Rana, Brinda K.; Toomey, Rosemary; McKenzie, Ruth; Lyons, Michael J.

    2016-01-01

    Episodic memory change is a central issue in cognitive aging, and understanding that process will require elucidation of its genetic underpinnings. A key limiting factor in genetically informed research on memory has been lack of attention to genetic and phenotypic complexity, as if “memory is memory” and all well-validated assessments are essentially equivalent. Here we applied multivariate twin models to data from late-middle-aged participants in the Vietnam Era Twin Study of Aging to examine the genetic architecture of 6 measures from 3 standard neuropsychological tests: the California Verbal Learning Test-2, and Wechsler Memory Scale-III Logical Memory (LM) and Visual Reproductions (VR). An advantage of the twin method is that it can estimate the extent to which latent genetic influences are shared or independent across different measures before knowing which specific genes are involved. The best-fitting model was a higher order common pathways model with a heritable higher order general episodic memory factor and three test-specific subfactors. More importantly, substantial genetic variance was accounted for by genetic influences that were specific to the latent LM and VR subfactors (28% and 30%, respectively) and independent of the general factor. Such unique genetic influences could partially account for replication failures. Moreover, if different genes influence different memory phenotypes, they could well have different age-related trajectories. This approach represents an important step toward providing critical information for all types of genetically informative studies of aging and memory. PMID:24956007

  8. The study of relatedness and genetic diversity in cranes

    USGS Publications Warehouse

    Gee, G.F.; Dessauer, H.C.; Longmire, J.; Briles, W.E.; Simon, R.C.; Wood, Don A.

    1992-01-01

    The U.S. Fish and Wildlife Service (Service) is responsible for recovery of endangered species in the wild and, when necessary, maintenance in captivity. These programs provide an immediate measure of insurance against extinction. A prerequisite inherent in all of these programs is the preservation of enough genetic diversity to maintain a viable population and to maintain the capacity of the population to respond to change. Measures of genetic diversity examine polymorphic genes that are not influenced by selection pressures. Examples of these techniques and those used to determine relatedness are discussed. Studies of genetic diversity, electrophoresis of blood proteins, relatedness, blood typing, and restriction fragment length polymorphisms which are being used by the Patuxent Wildlife Research Center are discussed in detail.

  9. A community genetics perspective: opportunities for the coming decade.

    PubMed

    Crutsinger, Gregory M

    2016-04-01

    Community genetics was originally proposed as a novel approach to identifying links between genes and ecosystems, and merging ecological and evolutional perspectives. The dozen years since the birth of community genetics have seen many empirical studies and common garden experiments, as well as the rise of eco-evolutionary dynamics research and a general shift in ecology to incorporate intraspecific variation. So what have we learned from community genetics? Can individual genes affect entire ecosystems? Are there interesting questions left to be answered, or has community genetics run its course? This perspective makes a series of key points about the general patterns that have emerged and calls attention to gaps in our understanding to be addressed in the coming years. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Genetics affects choice of academic subjects as well as achievement

    PubMed Central

    Rimfeld, Kaili; Ayorech, Ziada; Dale, Philip S.; Kovas, Yulia; Plomin, Robert

    2016-01-01

    We have previously shown that individual differences in educational achievement are highly heritable throughout compulsory education. After completing compulsory education at age 16, students in England can choose to continue to study for two years (A-levels) in preparation for applying to university and they can freely choose which subjects to study. Here, for the first time, we show that choosing to do A-levels and the choice of subjects show substantial genetic influence, as does performance after two years studying the chosen subjects. Using a UK-representative sample of 6584 twin pairs, heritability estimates were 44% for choosing to do A-levels and 52–80% for choice of subject. Achievement after two years was also highly heritable (35–76%). The findings that DNA differences substantially affect differences in appetites as well as aptitudes suggest a genetic way of thinking about education in which individuals actively create their own educational experiences in part based on their genetic propensities. PMID:27310577

  11. Genetic covariance between central corneal thickness and anterior chamber volume: a Hungarian twin study.

    PubMed

    Toth, Georgina Zsofia; Racz, Adel; Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Szekelyhidi, Zita; Littvay, Levente; Suveges, Ildiko; Nemeth, Janos; Nagy, Zoltan Zsolt

    2014-10-01

    Few, and inconsistent, studies have showed high heritability of some parameters of the anterior segment of the eye; however, no heritability of anterior chamber volume (ACV) has been reported, and no study has been performed to investigate the correlation between the ACV and central corneal thickness (CCT). Anterior segment measurements (Pentacam, Oculus) were obtained from 220 eyes of 110 adult Hungarian twins (41 monozygotic and 14 same-sex dizygotic pairs; 80% women; age 48.6 ± 15.5 years) obtained from the Hungarian Twin Registry. Age- and sex-adjusted heritability of ACV was 85% (bootstrapped 95% confidence interval; CI: 69% to 93%), and 88% for CCT (CI: 79% to 95%). Common environmental effects had no influence, and unshared environmental factors were responsible for 12% and 15% of the variance, respectively. The correlation between ACV and CCT was negative and significant (r ph = -0.35, p < .05), and genetic factors accounted for the covariance significantly (0.934; CI: 0.418, 1.061) based on the bivariate Cholesky decomposition model. These findings support the high heritability of ACV and central corneal thickness, and a strong genetic covariance between them, which underscores the importance of identification of the specific genetic factors and the family risk-based screening of disorders related to these variables, such as open-angle and also angle closure glaucoma and corneal endothelial alterations.

  12. Scientific rationality, uncertainty and the governance of human genetics: an interview study with researchers at deCODE genetics.

    PubMed

    Hjörleifsson, Stefán; Schei, Edvin

    2006-07-01

    Technology development in human genetics is fraught with uncertainty, controversy and unresolved moral issues, and industry scientists are sometimes accused of neglecting the implications of their work. The present study was carried out to elicit industry scientists' reflections on the relationship between commercial, scientific and ethical dimensions of present day genetics and the resources needed for robust governance of new technologies. Interviewing scientists of the company deCODE genetics in Iceland, we found that in spite of optimism, the informants revealed ambiguity and uncertainty concerning the use of human genetic technologies for the prevention of common diseases. They concurred that uncritical marketing of scientific success might cause exaggerated public expectations of health benefits from genetics, with the risk of backfiring and causing resistance to genetics in the population. On the other hand, the scientists did not address dilemmas arising from the commercial nature of their own employer. Although the scientists tended to describe public fear as irrational, they identified issues where scepticism might be well founded and explored examples where they, despite expert knowledge, held ambiguous or tentative personal views on the use of predictive genetic technologies. The rationality of science was not seen as sufficient to ensure beneficial governance of new technologies. The reflexivity and suspension of judgement demonstrated in the interviews exemplify productive features of moral deliberation in complex situations. Scientists should take part in dialogues concerning the governance of genetic technologies, acknowledge any vested interests, and use their expertise to highlight, not conceal the technical and moral complexity involved.

  13. New paradigms for BRCA1/BRCA2 testing in women with ovarian cancer: results of the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study

    PubMed Central

    Plaskocinska, Inga; Shipman, Hannah; Drummond, James; Thompson, Edward; Buchanan, Vanessa; Newcombe, Barbara; Hodgkin, Charlotte; Barter, Elisa; Ridley, Paul; Ng, Rita; Miller, Suzanne; Dann, Adela; Licence, Victoria; Webb, Hayley; Tan, Li Tee; Daly, Margaret; Ayers, Sarah; Rufford, Barnaby; Earl, Helena; Parkinson, Christine; Duncan, Timothy; Jimenez-Linan, Mercedes; Sagoo, Gurdeep S; Abbs, Stephen; Hulbert-Williams, Nicholas; Pharoah, Paul; Crawford, Robin; Brenton, James D; Tischkowitz, Marc

    2016-01-01

    Background Over recent years genetic testing for germline mutations in BRCA1/BRCA2 has become more readily available because of technological advances and reducing costs. Objective To explore the feasibility and acceptability of offering genetic testing to all women recently diagnosed with epithelial ovarian cancer (EOC). Methods Between 1 July 2013 and 30 June 2015 women newly diagnosed with EOC were recruited through six sites in East Anglia, UK into the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study. Eligibility was irrespective of patient age and family history of cancer. The psychosocial arm of the study used self-report, psychometrically validated questionnaires (Depression Anxiety and Stress Scale (DASS-21); Impact of Event Scale (IES)) and cost analysis was performed. Results 232 women were recruited and 18 mutations were detected (12 in BRCA1, 6 in BRCA2), giving a mutation yield of 8%, which increased to 12% in unselected women aged <70 years (17/146) but was only 1% in unselected women aged ≥70 years (1/86). IES and DASS-21 scores in response to genetic testing were significantly lower than equivalent scores in response to cancer diagnosis (p<0.001). Correlation tests indicated that although older age is a protective factor against any traumatic impacts of genetic testing, no significant correlation exists between age and distress outcomes. Conclusions The mutation yield in unselected women diagnosed with EOC from a heterogeneous population with no founder mutations was 8% in all ages and 12% in women under 70. Unselected genetic testing in women with EOC was acceptable to patients and is potentially less resource-intensive than current standard practice. PMID:27208206

  14. Gender Dysphoria in a 62-Year-Old Genetic Female With Congenital Adrenal Hyperplasia.

    PubMed

    Silveira, Mariana Telles; Knobloch, Felícia; Silva Janovsky, Carolina C P; Kater, Claudio E

    2016-10-01

    We report a case of gender dysphoria (GD) in a 62-year-old genetic female patient, raising the pros and cons of performing corrective surgery later in life. This 46,XX DSD patient was registered and reared as a girl; CAH was diagnosed late in childhood. Poor adherence to treatment and lack of proper psychological management contributed to evident GD. Living for years as a male, the patient applied for a legitimate male identification document in his late 50s; thereafter, he requested a sex-reassignment surgery "to disguise his female body upon his death." We informed the patient and family about surgery hazards, while analytical therapy allowed the group to evaluate the actual wish for surgery. When the wish was brought up, the role of death urged the group to rethink the course of treatment. During the process, it became clear that the patient's desire for surgery, more than a wish for changing the genitalia, expressed an impulse related to issues of endorsement and acceptance of his male identity. This report raises interesting questions about sexuality in a social context and prompts the idea that sexuality is broader than sex itself, raising new questions on the psychological risks faced when considering a body change after years of living with a disorder of sex development.

  15. Genetic selection and conservation of genetic diversity*.

    PubMed

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. © 2012 Blackwell Verlag GmbH.

  16. Beyond genome-wide association studies: genetic heterogeneity and individual predisposition to cancer

    PubMed Central

    Galvan, Antonella; Ioannidis, John P.A.; Dragani, Tommaso A.

    2010-01-01

    Genome-wide association studies (GWAS) using population-based designs have identified many genetic loci associated with risk of a range of complex diseases including cancer; however, each locus exerts a very small effect and most heritability remains unexplained. Family-based pedigree studies have also suggested tentative loci linked to increased cancer risk, often characterized by pedigree-specificity. However, a comparison between the results of population-and those of family-based studies shows little concordance. Explanations for this unidentified genetic ‘dark matter’ of cancer include phenotype ascertainment issues, limited power, gene-gene and gene-environment interactions, population heterogeneity, parent-of-origin-specific effects, rare and unexplored variants. Many of these reasons converge towards the concept of genetic heterogeneity that might implicate hundreds of genetic variants in regulating cancer risk. Dissecting the dark matter is a challenging task. Further insights can be gained from both population association and pedigree studies. PMID:20106545

  17. A 100-Year Review: Methods and impact of genetic selection in dairy cattle-From daughter-dam comparisons to deep learning algorithms.

    PubMed

    Weigel, K A; VanRaden, P M; Norman, H D; Grosu, H

    2017-12-01

    In the early 1900s, breed society herdbooks had been established and milk-recording programs were in their infancy. Farmers wanted to improve the productivity of their cattle, but the foundations of population genetics, quantitative genetics, and animal breeding had not been laid. Early animal breeders struggled to identify genetically superior families using performance records that were influenced by local environmental conditions and herd-specific management practices. Daughter-dam comparisons were used for more than 30 yr and, although genetic progress was minimal, the attention given to performance recording, genetic theory, and statistical methods paid off in future years. Contemporary (herdmate) comparison methods allowed more accurate accounting for environmental factors and genetic progress began to accelerate when these methods were coupled with artificial insemination and progeny testing. Advances in computing facilitated the implementation of mixed linear models that used pedigree and performance data optimally and enabled accurate selection decisions. Sequencing of the bovine genome led to a revolution in dairy cattle breeding, and the pace of scientific discovery and genetic progress accelerated rapidly. Pedigree-based models have given way to whole-genome prediction, and Bayesian regression models and machine learning algorithms have joined mixed linear models in the toolbox of modern animal breeders. Future developments will likely include elucidation of the mechanisms of genetic inheritance and epigenetic modification in key biological pathways, and genomic data will be used with data from on-farm sensors to facilitate precision management on modern dairy farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Molecular genetics of human obesity: A comprehensive review.

    PubMed

    Singh, Rajan Kumar; Kumar, Permendra; Mahalingam, Kulandaivelu

    2017-02-01

    Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  19. From Precaution to Peril: Public Relations Across Forty Years of Genetic Engineering.

    PubMed

    Hogan, Andrew J

    2016-12-01

    The Asilomar conference on genetic engineering in 1975 has long been pointed to by scientists as a model for internal regulation and public engagement. In 2015, the organizers of the International Summit on Human Gene Editing in Washington, DC looked to Asilomar as they sought to address the implications of the new CRISPR gene editing technique. Like at Asilomar, the conveners chose to limit the discussion to a narrow set of potential CRISPR applications, involving inheritable human genome editing. The adoption by scientists in 2015 of an Asilomar-like script for discussing genetic engineering offers historians the opportunity to analyze the adjustments that have been made since 1975, and to identify the blind spots that remain in public engagement. Scientists did take important lessons from the fallout of their limited engagement with public concerns at Asilomar. Nonetheless, the scientific community has continued to overlook some of the longstanding public concerns about genetic engineering, in particular the broad and often covert genetic modification of food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies.

    PubMed

    Templin, William D; Seeb, James E; Jasper, James R; Barclay, Andrew W; Seeb, Lisa W

    2011-03-01

    Most information about Chinook salmon genetic diversity and life history originates from studies from the West Coast USA, western Canada and southeast Alaska; less is known about Chinook salmon from western and southcentral Alaska drainages. Populations in this large area are genetically distinct from populations to the south and represent an evolutionary legacy of unique genetic, phenotypic and life history diversity. More genetic information is necessary to advance mixed stock analysis applications for studies involving these populations. We assembled a comprehensive, open-access baseline of 45 single nucleotide polymorphisms (SNPs) from 172 populations ranging from Russia to California. We compare SNP data from representative populations throughout the range with particular emphasis on western and southcentral Alaska. We grouped populations into major lineages based upon genetic and geographic characteristics, evaluated the resolution for identifying the composition of admixtures and performed mixed stock analysis on Chinook salmon caught incidentally in the walleye pollock fishery in the Bering Sea. SNP data reveal complex genetic structure within Alaska and can be used in applications to address not only regional issues, but also migration pathways, bycatch studies on the high seas, and potential changes in the range of the species in response to climate change. © 2011 Blackwell Publishing Ltd.

  1. Genetic and ecological studies of animals in Chernobyl and Fukushima.

    PubMed

    Mousseau, Timothy A; Møller, Anders P

    2014-01-01

    Recent advances in genetic and ecological studies of wild animal populations in Chernobyl and Fukushima have demonstrated significant genetic, physiological, developmental, and fitness effects stemming from exposure to radioactive contaminants. The few genetic studies that have been conducted in Chernobyl generally show elevated rates of genetic damage and mutation rates. All major taxonomic groups investigated (i.e., birds, bees, butterflies, grasshoppers, dragonflies, spiders, mammals) displayed reduced population sizes in highly radioactive parts of the Chernobyl Exclusion Zone. In Fukushima, population censuses of birds, butterflies, and cicadas suggested that abundances were negatively impacted by exposure to radioactive contaminants, while other groups (e.g., dragonflies, grasshoppers, bees, spiders) showed no significant declines, at least during the first summer following the disaster. Insufficient information exists for groups other than insects and birds to assess effects on life history at this time. The differences observed between Fukushima and Chernobyl may reflect the different times of exposure and the significance of multigenerational mutation accumulation in Chernobyl compared to Fukushima. There was considerable variation among taxa in their apparent sensitivity to radiation and this reflects in part life history, physiology, behavior, and evolutionary history. Interestingly, for birds, population declines in Chernobyl can be predicted by historical mitochondrial DNA base-pair substitution rates that may reflect intrinsic DNA repair ability. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Genetic Determinism in the Genetics Curriculum. An Exploratory Study of the Effects of Mendelian and Weldonian Emphases

    NASA Astrophysics Data System (ADS)

    Jamieson, Annie; Radick, Gregory

    2017-12-01

    Twenty-first-century biology rejects genetic determinism, yet an exaggerated view of the power of genes in the making of bodies and minds remains a problem. What accounts for such tenacity? This article reports an exploratory study suggesting that the common reliance on Mendelian examples and concepts at the start of teaching in basic genetics is an eliminable source of support for determinism. Undergraduate students who attended a standard `Mendelian approach' university course in introductory genetics on average showed no change in their determinist views about genes. By contrast, students who attended an alternative course which, inspired by the work of a critic of early Mendelism, W. F. R. Weldon (1860-1906), replaced an emphasis on Mendel's peas with an emphasis on developmental contexts and their role in bringing about phenotypic variability, were less determinist about genes by the end of teaching. Improvements in both the new Weldonian curriculum and the study design are in view for the future.

  3. Design of a randomized trial of diabetes genetic risk testing to motivate behavior change: the Genetic Counseling/lifestyle Change (GC/LC) Study for Diabetes Prevention.

    PubMed

    Grant, Richard W; Meigs, James B; Florez, Jose C; Park, Elyse R; Green, Robert C; Waxler, Jessica L; Delahanty, Linda M; O'Brien, Kelsey E

    2011-10-01

    The efficacy of diabetes genetic risk testing to motivate behavior change for diabetes prevention is currently unknown. This paper presents key issues in the design and implementation of one of the first randomized trials (The Genetic Counseling/Lifestyle Change (GC/LC) Study for Diabetes Prevention) to test whether knowledge of diabetes genetic risk can motivate patients to adopt healthier behaviors. Because individuals may react differently to receiving 'higher' vs 'lower' genetic risk results, we designed a 3-arm parallel group study to separately test the hypotheses that: (1) patients receiving 'higher' diabetes genetic risk results will increase healthy behaviors compared to untested controls, and (2) patients receiving 'lower' diabetes genetic risk results will decrease healthy behaviors compared to untested controls. In this paper we describe several challenges to implementing this study, including: (1) the application of a novel diabetes risk score derived from genetic epidemiology studies to a clinical population, (2) the use of the principle of Mendelian randomization to efficiently exclude 'average' diabetes genetic risk patients from the intervention, and (3) the development of a diabetes genetic risk counseling intervention that maintained the ethical need to motivate behavior change in both 'higher' and 'lower' diabetes genetic risk result recipients. Diabetes genetic risk scores were developed by aggregating the results of 36 diabetes-associated single nucleotide polymorphisms. Relative risk for type 2 diabetes was calculated using Framingham Offspring Study outcomes, grouped by quartiles into 'higher', 'average' (middle two quartiles) and 'lower' genetic risk. From these relative risks, revised absolute risks were estimated using the overall absolute risk for the study group. For study efficiency, we excluded all patients receiving 'average' diabetes risk results from the subsequent intervention. This post-randomization allocation strategy was

  4. NCI study offers genetic insights into common lymphoma

    Cancer.gov

    An NCI study identifies genetic subtypes of diffuse large B-cell lymphoma (DLBCL), helping explain why only some patients with this most common lymphoma respond to treatment, and offering a path toward targeted therapies.

  5. Clinical Perspectives on Lupus Genetics: Advances and Opportunities

    PubMed Central

    James, Judith A.

    2014-01-01

    Synopsis In recent years, genome wide association studies have led to an explosion in the identification of regions containing confirmed genetic risk variants within complex human diseases, for example in systemic lupus erythematosus (SLE). Many of these strongest SLE genetic associations can be divided into groups based upon their potential roles in different processes implicated in lupus pathogenesis, including ubiquitination (a process of marking proteins for degradation), DNA degradation, innate immunity, cellular immunity (B cell, T cell, neutrophil, monocytes), lymphocyte development, and antigen presentation. Recent advances have also demonstrated several genetic associations with SLE subphenotypes and subcriteria, such as autoantibody production, lupus nephritis, serositis, and arthritis. Despite the broad range of lupus genetic studies to date, many areas for further exploration remain to move lupus genetic studies toward clinically informative endpoints, such as identifying individuals at the greatest risk of end-organ damage, early mortality or poor response to a specific therapeutic regimen. PMID:25034154

  6. Weighted Genetic Risk Scores and Prediction of Weight Gain in Solid Organ Transplant Populations

    PubMed Central

    Saigi-Morgui, Núria; Quteineh, Lina; Bochud, Pierre-Yves; Crettol, Severine; Kutalik, Zoltán; Wojtowicz, Agnieszka; Bibert, Stéphanie; Beckmann, Sonja; Mueller, Nicolas J; Binet, Isabelle; van Delden, Christian; Steiger, Jürg; Mohacsi, Paul; Stirnimann, Guido; Soccal, Paola M.; Pascual, Manuel; Eap, Chin B

    2016-01-01

    Background Polygenic obesity in Solid Organ Transplant (SOT) populations is considered a risk factor for the development of metabolic abnormalities and graft survival. Few studies to date have studied the genetics of weight gain in SOT recipients. We aimed to determine whether weighted genetic risk scores (w-GRS) integrating genetic polymorphisms from GWAS studies (SNP group#1 and SNP group#2) and from Candidate Gene studies (SNP group#3) influence BMI in SOT populations and if they predict ≥10% weight gain (WG) one year after transplantation. To do so, two samples (nA = 995, nB = 156) were obtained from naturalistic studies and three w-GRS were constructed and tested for association with BMI over time. Prediction of 10% WG at one year after transplantation was assessed with models containing genetic and clinical factors. Results w-GRS were associated with BMI in sample A and B combined (BMI increased by 0.14 and 0.11 units per additional risk allele in SNP group#1 and #2, respectively, p-values<0.008). w-GRS of SNP group#3 showed an effect of 0.01 kg/m2 per additional risk allele when combining sample A and B (p-value 0.04). Models with genetic factors performed better than models without in predicting 10% WG at one year after transplantation. Conclusions This is the first study in SOT evaluating extensively the association of w-GRS with BMI and the influence of clinical and genetic factors on 10% of WG one year after transplantation, showing the importance of integrating genetic factors in the final model. Genetics of obesity among SOT recipients remains an important issue and can contribute to treatment personalization and prediction of WG after transplantation. PMID:27788139

  7. Weighted Genetic Risk Scores and Prediction of Weight Gain in Solid Organ Transplant Populations.

    PubMed

    Saigi-Morgui, Núria; Quteineh, Lina; Bochud, Pierre-Yves; Crettol, Severine; Kutalik, Zoltán; Wojtowicz, Agnieszka; Bibert, Stéphanie; Beckmann, Sonja; Mueller, Nicolas J; Binet, Isabelle; van Delden, Christian; Steiger, Jürg; Mohacsi, Paul; Stirnimann, Guido; Soccal, Paola M; Pascual, Manuel; Eap, Chin B

    2016-01-01

    Polygenic obesity in Solid Organ Transplant (SOT) populations is considered a risk factor for the development of metabolic abnormalities and graft survival. Few studies to date have studied the genetics of weight gain in SOT recipients. We aimed to determine whether weighted genetic risk scores (w-GRS) integrating genetic polymorphisms from GWAS studies (SNP group#1 and SNP group#2) and from Candidate Gene studies (SNP group#3) influence BMI in SOT populations and if they predict ≥10% weight gain (WG) one year after transplantation. To do so, two samples (nA = 995, nB = 156) were obtained from naturalistic studies and three w-GRS were constructed and tested for association with BMI over time. Prediction of 10% WG at one year after transplantation was assessed with models containing genetic and clinical factors. w-GRS were associated with BMI in sample A and B combined (BMI increased by 0.14 and 0.11 units per additional risk allele in SNP group#1 and #2, respectively, p-values<0.008). w-GRS of SNP group#3 showed an effect of 0.01 kg/m2 per additional risk allele when combining sample A and B (p-value 0.04). Models with genetic factors performed better than models without in predicting 10% WG at one year after transplantation. This is the first study in SOT evaluating extensively the association of w-GRS with BMI and the influence of clinical and genetic factors on 10% of WG one year after transplantation, showing the importance of integrating genetic factors in the final model. Genetics of obesity among SOT recipients remains an important issue and can contribute to treatment personalization and prediction of WG after transplantation.

  8. Genetic influences on alcohol-related hangover.

    PubMed

    Slutske, Wendy S; Piasecki, Thomas M; Nathanson, Lisa; Statham, Dixie J; Martin, Nicholas G

    2014-12-01

    To quantify the relative contributions of genetic and environmental factors to alcohol hangover. Biometric models were used to partition the variance in hangover phenotypes. A community-based sample of Australian twins. Members of the Australian Twin Registry, Cohort II who reported consuming alcohol in the past year when surveyed in 2004-07 (n = 4496). Telephone interviews assessed participants' frequency of drinking to intoxication and frequency of hangover the day after drinking. Analyses examined three phenotypes: hangover frequency, hangover susceptibility (i.e. residual variance in hangover frequency after accounting for intoxication frequency) and hangover resistance (a dichotomous variable defined as having been intoxicated at least once in the past year with no reported hangovers). Genetic factors accounted for 45% [95% confidence interval (CI) = 37-53%] and 40% (95% CI = 33-48%) of the variation in hangover frequency in men and women, respectively. Most of the genetic variation in hangover frequency overlapped with genetic contributions to intoxication frequency. Genetic influences accounted for 24% (95% CI = 14-35%) and 16% (95% CI = 8-25%) of the residual hangover susceptibility variance in men and women, respectively. Forty-three per cent (95% CI = 22-63%) of the variation in hangover resistance was explained by genetic influences, with no evidence for significant sex differences. There was no evidence for shared environmental influences for any of the hangover phenotypes. Individual differences in the propensity to experience a hangover and of being resistant to hangover at a given level of alcohol use are genetically influenced. © 2014 Society for the Study of Addiction.

  9. A review of genome-wide approaches to study the genetic basis for spermatogenic defects.

    PubMed

    Aston, Kenneth I; Conrad, Donald F

    2013-01-01

    Rapidly advancing tools for genetic analysis on a genome-wide scale have been instrumental in identifying the genetic bases for many complex diseases. About half of male infertility cases are of unknown etiology in spite of tremendous efforts to characterize the genetic basis for the disorder. Advancing our understanding of the genetic basis for male infertility will require the application of established and emerging genomic tools. This chapter introduces many of the tools available for genetic studies on a genome-wide scale along with principles of study design and data analysis.

  10. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants.

    PubMed

    Pierce, Brandon L; Ahsan, Habibul; Vanderweele, Tyler J

    2011-06-01

    Mendelian Randomization (MR) studies assess the causality of an exposure-disease association using genetic determinants [i.e. instrumental variables (IVs)] of the exposure. Power and IV strength requirements for MR studies using multiple genetic variants have not been explored. We simulated cohort data sets consisting of a normally distributed disease trait, a normally distributed exposure, which affects this trait and a biallelic genetic variant that affects the exposure. We estimated power to detect an effect of exposure on disease for varying allele frequencies, effect sizes and samples sizes (using two-stage least squares regression on 10,000 data sets-Stage 1 is a regression of exposure on the variant. Stage 2 is a regression of disease on the fitted exposure). Similar analyses were conducted using multiple genetic variants (5, 10, 20) as independent or combined IVs. We assessed IV strength using the first-stage F statistic. Simulations of realistic scenarios indicate that MR studies will require large (n > 1000), often very large (n > 10,000), sample sizes. In many cases, so-called 'weak IV' problems arise when using multiple variants as independent IVs (even with as few as five), resulting in biased effect estimates. Combining genetic factors into fewer IVs results in modest power decreases, but alleviates weak IV problems. Ideal methods for combining genetic factors depend upon knowledge of the genetic architecture underlying the exposure. The feasibility of well-powered, unbiased MR studies will depend upon the amount of variance in the exposure that can be explained by known genetic factors and the 'strength' of the IV set derived from these genetic factors.

  11. Functional genetic studies of the tarnished plant bug

    USDA-ARS?s Scientific Manuscript database

    The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beuvois) has become a primary pest of cotton in the Mississippi Delta. To identify new techological and genetic methods to control TPB, studies have begun to focus on genes expressed by the insect. Initial studies on interference of transcr...

  12. Using a genetic, observational study as a strategy to estimate the potential cost-effectiveness of pharmacological CCR5 blockade in dialysis patients.

    PubMed

    Muntinghe, Friso L H; Vegter, Stefan; Verduijn, Marion; Boeschoten, Elisabeth W; Dekker, Friedo W; Navis, Gerjan; Postma, Maarten

    2011-07-01

    Randomized clinical trials are expensive and time consuming. Therefore, strategies are needed to prioritise tracks for drug development. Genetic association studies may provide such a strategy by considering the differences between genotypes as a proxy for a natural, lifelong, randomized at conception, clinical trial. Previously an association with better survival was found in dialysis patients with systemic inflammation carrying a deletion variant of the CC-chemokine receptor 5 (CCR5). We hypothesized that in an analogous manner, pharmacological CCR5 blockade could protect against inflammation-driven mortality and estimated if such a treatment would be cost-effective. A genetic screen and treat strategy was modelled using a decision-analytic Markov model, in which patients were screened for the CCR5 deletion 32 polymorphism and those with the wild type and systemic inflammation were treated with pharmacological CCR5 blockers. Kidney transplantation and mortality rates were calculated using patient level data. Extensive sensitivity analyses were performed. The cost-effectiveness of the genetic screen and treat strategy was &OV0556;18 557 per life year gained and &OV0556;21 896 per quality-adjusted life years gained. Concordance between the genetic association and pharmacological effectiveness was a main driver of cost-effectiveness. Sensitivity analyses showed that even a modest effectiveness of pharmacological CCR5 blockade would result in a treatment strategy that is good value for money. Pharmacological blockade of the CCR5 receptor in inflamed dialysis patients can be incorporated in a potentially cost-effective screen and treat programme. These findings provide formal rationale for clinical studies. This study illustrates the potential of genetic association studies for drug development, as a source of Mendelian randomized evidence from an observational setting.

  13. Associations of genetic variants for adult lipid levels with lipid levels in children. The Generation R Study.

    PubMed

    Latsuzbaia, Ardashel; Jaddoe, Vincent W V; Hofman, Albert; Franco, Oscar H; Felix, Janine F

    2016-12-01

    Lipid concentrations are heritable traits. Recently, the number of known genetic loci associated with lipid levels in adults increased from 95 to 157. The effects of these 157 loci have not been tested in children. Considering that lipid levels track from childhood to adulthood, we studied to determine whether these variants already affected lipid concentrations in a large group of 2,645 children with a median age of 6.0 years (95% range 5.7-7.3 years) from the population-based Generation R Study. Twenty-eight SNPs associated with TGs, 39 SNPs associated with total cholesterol (TC), 28 SNPs associated with LDL cholesterol (LDL-C), and 56 SNPs associated with HDL cholesterol (HDL-C) were analyzed individually and combined into genetic risk scores (GRSs). All risk scores were associated with their specific outcomes. The differences in mean absolute lipid and lipoprotein values between the 10% of children with the highest lipid or lipoprotein GRS versus the 10% with the lowest score were 0.28, 0.25, 0.32, and 0.30 mmol/l for TGs, TC, LDL-C, and HDL-C, respectively. In conclusion, we show for the first time that GRSs based on 157 SNPs associated with adult lipid concentrations are associated with lipid levels in children. The genetic background of these phenotypes at least partly overlaps between children and adults. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Genetically engineered mouse models for studying inflammatory bowel disease.

    PubMed

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. A Behavior-Genetic Study of Parenting Quality, Infant Attachment Security, and Their Covariation in a Nationally Representative Sample

    ERIC Educational Resources Information Center

    Roisman, Glenn I.; Fraley, R. Chris

    2008-01-01

    A number of relatively small-sample, genetically sensitive studies of infant attachment security have been published in the past several years that challenge the view that all psychological phenotypes are heritable and that environmental influences on child development--to the extent that they can be detected--serve to make siblings dissimilar.…

  16. [Epidemiology of familial prostatic cancer: 4-year assessment of French studies].

    PubMed

    Valeri, A; Drelon, E; Azzouzi, R; Delannoy, A; Teillac, P; Fournier, G; Mangin, P; Berthon, P; Cussenot, O

    1999-09-01

    (1) To determine the frequency of familial (at least 2 cases) and hereditary forms of prostate cancer (CaP), (2) to define the results according to the patient's age at diagnosis, as various epidemiological studies have demonstrated a possible familial aggregation of CaP in about 15 to 25% of cases. Carter's familial segregation study (P.N.A.S. 1992, 89, 3367-71) showed that a genetic predisposition, with autosomal dominant transmission, could be responsible for 9% of all cases of prostate cancer. We conducted a systematic genealogy study of patients suffering from newly diagnosed CaP or followed for known CaP in 3 French urological centres, by means of questionnaires completed by the patients. Subsequently, a national collection of families with at least 2 cases of CaP identified families with hereditary forms of CaP. Hereditary cases were considered to be those presenting at least: one CaP in three 1st degree relatives, or 3 cases over 3 generations in the same branch of the family (paternal or maternal), or finally 2 early cases before the age of 55 years. Statistical analysis used the univariate logistic regression test between family status and the medical centre or the patient's age at diagnosis. From July 1994 onwards, we included 801 patients (all stages combined) in the systematic study and 110 patients (13.7%) were excluded (refusal to participate, advanced age). For 691 of the families studied (Brest: 225, Nancy: 249, Paris St Louis: 217), we observed 32 (14.2%), 29 (11.6%), 37 (17.1%) of familial forms (mean: 14.2%) and 11 (4.9%), 6 (2.4%), 8 (3.7%) of hereditary forms (mean: 3.6%), respectively (no significant differences between centres). Analysis of the results according to age at diagnosis of CaP also showed a higher incidence of familial (significant difference) and hereditary forms (limit of significance) for CaP occurring at a younger age (before 65 years). The national collection collected a total of 624 familial forms of CaP, including 236 (37

  17. Study Points to Genetic Subtypes of Esophageal Cancer

    Cancer.gov

    A Cancer Currents blog post about a study by The Cancer Genome Atlas Research Network that identified distinct genetic and molecular changes in esophageal cancers that could improve their classification and identify potential new treatments.

  18. Genome-wide Association Study of Cannabis Dependence Severity, Novel Risk Variants, and Shared Genetic Risks.

    PubMed

    Sherva, Richard; Wang, Qian; Kranzler, Henry; Zhao, Hongyu; Koesterer, Ryan; Herman, Aryeh; Farrer, Lindsay A; Gelernter, Joel

    2016-05-01

    Cannabis dependence (CAD) is a serious problem worldwide and is of growing importance in the United States because cannabis is increasingly available legally. Although genetic factors contribute substantially to CAD risk, at present no well-established specific genetic risk factors for CAD have been elucidated. To report findings for DSM-IV CAD criteria from association analyses performed in large cohorts of African American and European American participants from 3 studies of substance use disorder genetics. This genome-wide association study for DSM-IV CAD criterion count was performed in 3 independent substance dependence cohorts (the Yale-Penn Study, Study of Addiction: Genetics and Environment [SAGE], and International Consortium on the Genetics of Heroin Dependence [ICGHD]). A referral sample and volunteers recruited in the community and from substance abuse treatment centers included 6000 African American and 8754 European American participants, including some from small families. Participants from the Yale-Penn Study were recruited from 2000 to 2013. Data were collected for the SAGE trial from 1990 to 2007 and for the ICGHD from 2004 to 2009. Data were analyzed from January 2, 2013, to November 9, 2015. Criterion count for DSM-IV CAD. Among the 14 754 participants, 7879 were male, 6875 were female, and the mean (SD) age was 39.2 (10.2) years. Three independent regions with genome-wide significant single-nucleotide polymorphism associations were identified, considering the largest possible sample. These included rs143244591 (β = 0.54, P = 4.32 × 10-10 for the meta-analysis) in novel antisense transcript RP11-206M11.7;rs146091982 (β = 0.54, P = 1.33 × 10-9 for the meta-analysis) in the solute carrier family 35 member G1 gene (SLC35G1); and rs77378271 (β = 0.29, P = 2.13 × 10-8 for the meta-analysis) in the CUB and Sushi multiple domains 1 gene (CSMD1). Also noted was evidence of genome-level pleiotropy between CAD and

  19. Genetic causes of intellectual disability in a birth cohort: A population‐based study

    PubMed Central

    Riegel, Mariluce; Segal, Sandra L.; Félix, Têmis M.; Barros, Aluísio J. D.; Santos, Iná S.; Matijasevich, Alicia; Giugliani, Roberto; Black, Maureen

    2015-01-01

    Intellectual disability affects approximately 1–3% of the population and can be caused by genetic and environmental factors. Although many studies have investigated the etiology of intellectual disability in different populations, few studies have been performed in middle‐income countries. The present study estimated the prevalence of genetic causes related to intellectual disability in a cohort of children from a city in south Brazil who were followed from birth. Children who showed poor performance in development and intelligence tests at the ages of 2 and 4 were included. Out of 4,231 liveborns enrolled in the cohort, 214 children fulfilled the inclusion criteria. A diagnosis was established in approximately 90% of the children evaluated. Genetic causes were determined in 31 of the children and 19 cases remained unexplained even after extensive investigation. The overall prevalence of intellectual disability in this cohort due to genetic causes was 0.82%. Because this study was nested in a cohort, there were a large number of variables related to early childhood and the likelihood of information bias was minimized by collecting information with a short recall time. This study was not influenced by selection bias, allowing identification of intellectual disability and estimation of the prevalence of genetic causes in this population, thereby increasing the possibility of providing appropriate management and/or genetic counseling. © 2015 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:25728503

  20. Genetic and Environmental Stability Differs in Reactive and Proactive Aggression

    PubMed Central

    Tuvblad, Catherine; Raine, Adrian; Zheng, Mo; Baker, Laura A.

    2009-01-01

    The aim of this study was to examine stability and change in genetic and environmental influences on reactive (impulsive and affective) and proactive (planned and instrumental) aggression from childhood to early adolescence. The sample was drawn from an ongoing longitudinal twin study of risk factors for antisocial behavior at the University of Southern California (USC). The twins were measured on two occasions: ages 9–10 years (N = 1,241) and 11–14 years (N = 874). Reactive and proactive aggressive behaviors were rated by parents. The stability in reactive aggression was due to genetic and nonshared environmental influences, whereas the continuity in proactive aggression was primarily genetically mediated. Change in both reactive and proactive aggression between the two occasions was mainly explained by nonshared environmental influences, although some evidence for new genetic variance at the second occasion was found for both forms of aggression. These results suggest that proactive and reactive aggression differ in their genetic and environmental stability, and provide further evidence for some distinction between reactive and proactive forms of aggression. PMID:19688841

  1. Associations of Fitness, Physical Activity, Strength, and Genetic Risk With Cardiovascular Disease: Longitudinal Analyses in the UK Biobank Study.

    PubMed

    Tikkanen, Emmi; Gustafsson, Stefan; Ingelsson, Erik

    2018-06-12

    Observational studies have shown inverse associations among fitness, physical activity, and cardiovascular disease. However, little is known about these associations in individuals with elevated genetic susceptibility for these diseases. We estimated associations of grip strength, objective and subjective physical activity, and cardiorespiratory fitness with cardiovascular events and all-cause death in a large cohort of 502 635 individuals from the UK Biobank (median follow-up, 6.1 years; interquartile range, 5.4-6.8 years). Then we further examined these associations in individuals with different genetic burden by stratifying individuals based on their genetic risk scores for coronary heart disease and atrial fibrillation. We compared disease risk among individuals in different tertiles of fitness, physical activity, and genetic risk using lowest tertiles as reference. Grip strength, physical activity, and cardiorespiratory fitness showed inverse associations with incident cardiovascular events (coronary heart disease: hazard ratio [HR], 0.79; 95% confidence interval [CI], 0.77-0.81; HR, 0.95; 95% CI, 0.93-0.97; and HR, 0.68; 95% CI, 0.63-0.74, per SD change, respectively; atrial fibrillation: HR, 0.75; 95% CI, 0.73-0.76; HR, 0.93; 95% CI, 0.91-0.95; and HR, 0.60; 95% CI, 0.56-0.65, per SD change, respectively). Higher grip strength and cardiorespiratory fitness were associated with lower risk of incident coronary heart disease and atrial fibrillation in each genetic risk score group ( P trend <0.001 in each genetic risk category). In particular, high levels of cardiorespiratory fitness were associated with 49% lower risk for coronary heart disease (HR, 0.51; 95% CI, 0.38-0.69) and 60% lower risk for atrial fibrillation (HR, 0.40; 95%, CI 0.30-0.55) among individuals at high genetic risk for these diseases. Fitness and physical activity demonstrated inverse associations with incident cardiovascular disease in the general population, as well as in individuals

  2. The genetics of exceptional longevity: Insights from centenarians.

    PubMed

    Santos-Lozano, Alejandro; Santamarina, Ana; Pareja-Galeano, Helios; Sanchis-Gomar, Fabian; Fiuza-Luces, Carmen; Cristi-Montero, Carlos; Bernal-Pino, Aranzazu; Lucia, Alejandro; Garatachea, Nuria

    2016-08-01

    As the world population ages, so the prevalence increases of individuals aged 100 years or more, known as centenarians. Reaching this age has been described as exceptional longevity (EL) and is attributed to both genetic and environmental factors. Many genetic variations known to affect life expectancy exist in centenarians. This review of studies conducted on centenarians and supercentenarians (older than 110 years) updates knowledge of the impacts on longevity of the twenty most widely investigated single nucleotide polymorphisms (SNPs). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Genetic and Environmental Etiologies of the Longitudinal Relations between Prereading Skills and Reading

    ERIC Educational Resources Information Center

    Christopher, Micaela E.; Hulslander, Jacqueline; Byrne, Brian; Samuelsson, Stefan; Keenan, Janice M.; Pennington, Bruce; DeFries, John C.; Wadsworth, Sally J.; Willcutt, Erik; Olson, Richard K.

    2015-01-01

    The present study explored the environmental and genetic etiologies of the longitudinal relations between prereading skills and reading and spelling. Twin pairs (n = 489) were assessed before kindergarten (M = 4.9 years), post-first grade (M = 7.4 years), and post-fourth grade (M = 10.4 years). Genetic influences on five prereading skills (print…

  4. Update on bacterial meningitis: epidemiology, trials and genetic association studies.

    PubMed

    Kasanmoentalib, E Soemirien; Brouwer, Matthijs C; van de Beek, Diederik

    2013-06-01

    Bacterial meningitis is a life-threatening disease that continues to inflict a heavy toll. We reviewed recent advances in vaccination, randomized studies on treatment, and genetic association studies in bacterial meningitis. The incidence of bacterial meningitis has decreased after implementation of vaccines, and further implementation of existing conjugate vaccines particularly in low-income countries is expected to reduce the global disease burden. Several randomized studies have been performed recently in this field. Clinical studies showed that short duration (5 days) of antibiotic treatment is as effective as longer duration treatment in low-income countries, and that dexamethasone decreases death and neurological sequelae in high-income countries. Ongoing trials will further define the role of paracetamol, glycerol and hypothermia in bacterial meningitis. Genetic association studies identified pathophysiological mechanisms that could be counteracted in experimental meningitis, providing promising leads for future treatments. Conjugate vaccines have reduced the burden of bacterial meningitis in high-income countries, but implementation of available vaccines in low-income countries is necessary to reduce disease burden worldwide. Adjunctive dexamethasone therapy has beneficial effects in patients with bacterial meningitis but only in high-income countries. Genetic association studies may reveal targets for new treatment strategies.

  5. Genetic testing in benign familial epilepsies of the first year of life: clinical and diagnostic significance.

    PubMed

    Zara, Federico; Specchio, Nicola; Striano, Pasquale; Robbiano, Angela; Gennaro, Elena; Paravidino, Roberta; Vanni, Nicola; Beccaria, Francesca; Capovilla, Giuseppe; Bianchi, Amedeo; Caffi, Lorella; Cardilli, Viviana; Darra, Francesca; Bernardina, Bernardo Dalla; Fusco, Lucia; Gaggero, Roberto; Giordano, Lucio; Guerrini, Renzo; Incorpora, Gemma; Mastrangelo, Massimo; Spaccini, Luigina; Laverda, Anna Maria; Vecchi, Marilena; Vanadia, Francesca; Veggiotti, Pierangelo; Viri, Maurizio; Occhi, Guya; Budetta, Mauro; Taglialatela, Maurizio; Coviello, Domenico A; Vigevano, Federico; Minetti, Carlo

    2013-03-01

    To dissect the genetics of benign familial epilepsies of the first year of life and to assess the extent of the genetic overlap between benign familial neonatal seizures (BFNS), benign familial neonatal-infantile seizures (BFNIS), and benign familial infantile seizures (BFIS). Families with at least two first-degree relatives affected by focal seizures starting within the first year of life and normal development before seizure onset were included. Families were classified as BFNS when all family members experienced neonatal seizures, BFNIS when the onset of seizures in family members was between 1 and 4 months of age or showed both neonatal and infantile seizures, and BFIS when the onset of seizures was after 4 months of age in all family members. SCN2A, KCNQ2, KCNQ3, PPRT2 point mutations were analyzed by direct sequencing of amplified genomic DNA. Genomic deletions involving KCNQ2 and KCNQ3 were analyzed by multiple-dependent probe amplification method. A total of 46 families including 165 affected members were collected. Eight families were classified as BFNS, 9 as BFNIS, and 29 as BFIS. Genetic analysis led to the identification of 41 mutations, 14 affecting KCNQ2, 1 affecting KCNQ3, 5 affecting SCN2A, and 21 affecting PRRT2. The detection rate of mutations in the entire cohort was 89%. In BFNS, mutations specifically involve KCNQ2. In BFNIS two genes are involved (KCNQ2, six families; SCN2A, two families). BFIS families are the most genetically heterogeneous, with all four genes involved, although about 70% of them carry a PRRT2 mutation. Our data highlight the important role of KCNQ2 in the entire spectrum of disorders, although progressively decreasing as the age of onset advances. The occurrence of afebrile seizures during follow-up is associated with KCNQ2 mutations and may represent a predictive factor. In addition, we showed that KCNQ3 mutations might be also involved in families with infantile seizures. Taken together our data indicate an important

  6. Living with Genetic Risk: Effect on Adolescent Self-Concept

    PubMed Central

    McConkie-Rosell, Allyn; Spiridigliozzi, Gail A.; Melvin, Elizabeth; Dawson, Deborah V.; Lachiewicz, Ave M.

    2009-01-01

    The purpose of this study is to describe the interplay of adolescent girls’ self-concept, coping behaviors, and adjustment associated with knowledge of genetic risk for fragile X syndrome. We will report here findings on self concept. Using a multi-group cross-sectional design this study focused on girls ages 14–25 years from families previously diagnosed with fragile X syndrome, who knew they were 1) carriers (n = 20; mean age 18.35 years s.d. 2.5), or 2) noncarriers (n =18; mean age 17.78 years s.d. 2.69), or 3) at-risk to be carriers (n = 15; mean age 17.87 s.d. 3.18). The girls completed the Tennessee Self Concept Scale (TSCS:2), a visual analog scale, and a guided interview. Total and all subscale scores on the TSCS:2 were in the normal range for all three groups. However, threats to self concept were found in personal self (physical self, genetic identity, and parental role), social self, and family self (family genetic identity) as they specifically related to the meaning of genetic information and varied based on risk status. Our findings suggest that risk information itself is threatening and for some girls, may be as threatening as learning one is a carrier. Certainty related to genetic risk status appears to make a positive difference for some girls by allowing them the opportunity to face the challenge of their genetic risk status and to begin to consider the meaning of this information. PMID:18200514

  7. A study of changes in genetic and environmental influences on weight and shape concern across adolescence.

    PubMed

    Wade, Tracey D; Hansell, Narelle K; Crosby, Ross D; Bryant-Waugh, Rachel; Treasure, Janet; Nixon, Reginald; Byrne, Susan; Martin, Nicholas G

    2013-02-01

    The goal of the current study was to examine whether genetic and environmental influences on an important risk factor for disordered eating, weight and shape concern, remained stable over adolescence. This stability was assessed in 2 ways: whether new sources of latent variance were introduced over development and whether the magnitude of variance contributing to the risk factor changed. We examined an 8-item WSC subscale derived from the Eating Disorder Examination (EDE) using telephone interviews with female adolescents. From 3 waves of data collected from female-female same-sex twin pairs from the Australian Twin Registry, a subset of the data (which included 351 pairs at Wave 1) was used to examine 3 age cohorts: 12 to 13, 13 to 15, and 14 to 16 years. The best-fitting model contained genetic and environmental influences, both shared and nonshared. Biometric model fitting indicated that nonshared environmental influences were largely specific to each age cohort, and results suggested that latent shared environmental and genetic influences that were influential at 12 to 13 years continued to contribute to subsequent age cohorts, with independent sources of both emerging at ages 13 to 15. The magnitude of all 3 latent influences could be constrained to be the same across adolescence. Ages 13 to 15 were indicated as a time of risk for the development of high levels of WSC, given that most specific environmental risk factors were significant at this time (e.g., peer teasing about weight, adverse life events), and indications of the emergence of new sources of latent genetic and environmental variance over this period. 2013 APA, all rights reserved

  8. Genetically Modified Foods and Consumer Perspective.

    PubMed

    Boccia, Flavio; Sarnacchiaro, Pasquale

    2015-01-01

    Genetically modified food is able to oppose the world's hunger and preserve the environment, even if the patents in this matter are symptomatic of several doubts. And also, transgenic consumption causes problems and skepticism among consumers in several European countries, but above all in Italy, where there is a strong opposition over recent years. So, the present study conducted a research to study the consumption of genetically modified food products by Italian young generation. This research presented the following purposes: firstly, to analyze genetically modified products' consumption among a particular category of consumers; secondly, to implement a quantitative model to understand behaviour about this particular kind of consumption and identify the factors that determine their purchase. The proposed model shows that transgenic consumption is especially linked to knowledge and impact on environment and mankind's health.

  9. Handling ethical, legal and social issues in birth cohort studies involving genetic research: responses from studies in six countries

    PubMed Central

    2010-01-01

    Background Research involving minors has been the subject of much ethical debate. The growing number of longitudinal, pediatric studies that involve genetic research present even more complex challenges to ensure appropriate protection of children and families as research participants. Long-term studies with a genetic component involve collection, retention and use of biological samples and personal information over many years. Cohort studies may be established to study specific conditions (e.g. autism, asthma) or may have a broad aim to research a range of factors that influence the health and development of children. Studies are increasingly intended to serve as research platforms by providing access to data and biological samples to researchers over many years. This study examines how six birth cohort studies in North America and Europe that involve genetic research handle key ethical, legal and social (ELS) issues: recruitment, especially parental authority to include a child in research; initial parental consent and subsequent assent and/or consent from the maturing child; withdrawal; confidentiality and sample/data protection; handling sensitive information; and disclosure of results. Methods Semi-structured telephone interviews were carried out in 2008/09 with investigators involved in six birth cohort studies in Canada, Denmark, England, France, the Netherlands and the United States. Interviewees self-identified as being knowledgeable about ELS aspects of the study. Interviews were conducted in English. Results The studies vary in breadth of initial consent, but none adopt a blanket consent for future use of samples/data. Ethics review of new studies is a common requirement. Studies that follow children past early childhood recognise a need to seek assent/consent as the child matures. All studies limit access to identifiable data and advise participants of the right to withdraw. The clearest differences among studies concern handling of sensitive

  10. Genetic susceptibility for air pollution-induced airway inflammation in the SALIA study.

    PubMed

    Hüls, Anke; Krämer, Ursula; Herder, Christian; Fehsel, Karin; Luckhaus, Christian; Stolz, Sabine; Vierkötter, Andrea; Schikowski, Tamara

    2017-01-01

    Long-term air pollution exposure has been associated with chronic inflammation providing a link to the development of chronic health effects. Furthermore, there is evidence that pathways activated by endoplasmatic reticulum (ER) stress induce airway inflammation and thereby play an important role in the pathogenesis of inflammatory diseases. We investigated the role of genetic variation of the ER stress pathway on air pollution-induced inflammation. We used the follow-up examination of the German SALIA study (N=402, age 68-79 years). Biomarkers of inflammation were determined in induced sputum. We calculated biomarker-specific weighted genetic risk scores (GRS) out of eight ER stress related single nucleotide polymorphisms and tested their interaction with PM 2.5 , PM 2.5 absorbance, PM 10 and NO 2 exposure on inflammation by adjusted linear regression. Genetic variation of the ER stress pathway was associated with higher concentration of inflammation-related biomarkers (levels of leukotriene (LT)B 4 , tumor necrosis factor-α (TNF-α), the total number of cells and nitric oxide (NO) derivatives). Furthermore, we observed a significant interaction between air pollution exposure and the ER stress risk score on the concentration of inflammation-related biomarkers. The strongest gene-environment interaction was found for LTB 4 (PM 2.5 : p-value=0.002, PM 2.5 absorbance: p-value=0.002, PM 10 : p-value=0.001 and NO 2 : p-value=0.004). Women with a high GRS had a 38% (95%-CI: 16-64%) higher LTB 4 level for an increase of 2.06μg/m³(IQR) in PM 2.5 (no associations in women with a low GRS). These results indicate that genetic variation in the ER stress pathway might play a role in air pollution induced inflammation in the lung. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Trends in genetic patent applications: the commercialization of academic intellectual property.

    PubMed

    Kers, Jannigje G; Van Burg, Elco; Stoop, Tom; Cornel, Martina C

    2014-10-01

    We studied trends in genetic patent applications in order to identify the trends in the commercialization of research findings in genetics. To define genetic patent applications, the European version (ECLA) of the International Patent Classification (IPC) codes was used. Genetic patent applications data from the PATSTAT database from 1990 until 2009 were analyzed for time trends and regional distribution. Overall, the number of patent applications has been growing. In 2009, 152 000 patent applications were submitted under the Patent Cooperation Treaty (PCT) and within the EP (European Patent) system of the European Patent Office (EPO). The number of genetic patent applications increased until a peak was reached in the year 2000, with >8000 applications, after which it declined by almost 50%. Continents show different patterns over time, with the global peak in 2000 mainly explained by the USA and Europe, while Asia shows a stable number of >1000 per year. Nine countries together account for 98.9% of the total number of genetic patent applications. In The Netherlands, 26.7% of the genetic patent applications originate from public research institutions. After the year 2000, the number of genetic patent applications dropped significantly. Academic leadership and policy as well as patent regulations seem to have an important role in the trend differences. The ongoing investment in genetic research in the past decade is not reflected by an increase of patent applications.

  12. Genetic information, non-discrimination, and privacy protections in genetic counseling practice.

    PubMed

    Prince, Anya E R; Roche, Myra I

    2014-12-01

    The passage of the Genetic Information Non Discrimination Act (GINA) was hailed as a pivotal achievement that was expected to calm the fears of both patients and research participants about the potential misuse of genetic information. However, 6 years later, patient and provider awareness of legal protections at both the federal and state level remains discouragingly low, thereby, limiting their potential effectiveness. The increasing demand for genetic testing will expand the number of individuals and families who could benefit from obtaining accurate information about the privacy and anti-discriminatory protections that GINA and other laws extend. In this paper we describe legal protections that are applicable to individuals seeking genetic counseling, review the literature on patient and provider fears of genetic discrimination and examine their awareness and understandings of existing laws, and summarize how genetic counselors currently discuss genetic discrimination. We then present three genetic counseling cases to illustrate issues of genetic discrimination and provide relevant information on applicable legal protections. Genetic counselors have an unprecedented opportunity, as well as the professional responsibility, to disseminate accurate knowledge about existing legal protections to their patients. They can strengthen their effectiveness in this role by achieving a greater knowledge of current protections including being able to identify specific steps that can help protect genetic information.

  13. Genetic Information, Non-Discrimination, and Privacy Protections in Genetic Counseling Practice

    PubMed Central

    Prince, Anya E.R.; Roche, Myra I.

    2014-01-01

    The passage of the Genetic Information Non Discrimination Act (GINA) was hailed as a pivotal achievement that was expected to calm the fears of both patients and research participants about the potential misuse of genetic information. However, six years later, patient and provider awareness of legal protections at both the federal and state level remains discouragingly low, thereby, limiting their potential effectiveness. The increasing demand for genetic testing will expand the number of individuals and families who could benefit from obtaining accurate information about the privacy and anti-discriminatory protections that GINA and other laws extend. In this paper we describe legal protections that are applicable to individuals seeking genetic counseling, review the literature on patient and provider fears of genetic discrimination and examine their awareness and understandings of existing laws, and summarize how genetic counselors currently discuss genetic discrimination. We then present three genetic counseling cases to illustrate issues of genetic discrimination and provide relevant information on applicable legal protections. Genetic counselors have an unprecedented opportunity, as well as the professional responsibility, to disseminate accurate knowledge about existing legal protections to their patients. They can strengthen their effectiveness in this role by achieving a greater knowledge of current protections including being able to identify specific steps that can help protect genetic information. PMID:25063358

  14. A powerful and robust test in genetic association studies.

    PubMed

    Cheng, Kuang-Fu; Lee, Jen-Yu

    2014-01-01

    There are several well-known single SNP tests presented in the literature for detecting gene-disease association signals. Having in place an efficient and robust testing process across all genetic models would allow a more comprehensive approach to analysis. Although some studies have shown that it is possible to construct such a test when the variants are common and the genetic model satisfies certain conditions, the model conditions are too restrictive and in general difficult to verify. In this paper, we propose a powerful and robust test without assuming any model restrictions. Our test is based on the selected 2 × 2 tables derived from the usual 2 × 3 table. By signals from these tables, we show through simulations across a wide range of allele frequencies and genetic models that this approach may produce a test which is almost uniformly most powerful in the analysis of low- and high-frequency variants. Two cancer studies are used to demonstrate applications of the proposed test. © 2014 S. Karger AG, Basel.

  15. Introducing genetic testing for cardiovascular disease in primary care: a qualitative study.

    PubMed

    Middlemass, Jo B; Yazdani, Momina F; Kai, Joe; Standen, Penelope J; Qureshi, Nadeem

    2014-05-01

    While primary care systematically offers conventional cardiovascular risk assessment, genetic tests for coronary heart disease (CHD) are increasingly commercially available to patients. It is unclear how individuals may respond to these new sources of risk information. To explore how patients who have had a recent conventional cardiovascular risk assessment, perceive additional information from genetic testing for CHD. Qualitative interview study in 12 practices in Nottinghamshire from both urban and rural settings. Interviews were conducted with 29 adults, who consented to genetic testing after having had a conventional cardiovascular risk assessment. Individuals' principal motivation for genetic testing was their family history of CHD and a desire to convey the results to their children. After testing, however, there was limited recall of genetic test results and scepticism about the value of informing their children. Participants dealt with conflicting findings from the genetic test, family history, and conventional assessment by either focusing on genetic risk or environmental lifestyle factors. In some participants, genetic test results appeared to reinforce healthy behaviour but others were falsely reassured, despite having an 'above-average' conventional cardiovascular risk score. Although genetic testing was acceptable, participants were unclear how to interpret genetic risk results. To facilitate healthy behaviour, health professionals should explore patients' understanding of genetic test results in light of their family history and conventional risk assessment.

  16. Introducing genetic testing for cardiovascular disease in primary care: a qualitative study

    PubMed Central

    Middlemass, Jo B; Yazdani, Momina F; Kai, Joe; Standen, Penelope J; Qureshi, Nadeem

    2014-01-01

    Background While primary care systematically offers conventional cardiovascular risk assessment, genetic tests for coronary heart disease (CHD) are increasingly commercially available to patients. It is unclear how individuals may respond to these new sources of risk information. Aim To explore how patients who have had a recent conventional cardiovascular risk assessment, perceive additional information from genetic testing for CHD. Design and setting Qualitative interview study in 12 practices in Nottinghamshire from both urban and rural settings. Method Interviews were conducted with 29 adults, who consented to genetic testing after having had a conventional cardiovascular risk assessment. Results Individuals’ principal motivation for genetic testing was their family history of CHD and a desire to convey the results to their children. After testing, however, there was limited recall of genetic test results and scepticism about the value of informing their children. Participants dealt with conflicting findings from the genetic test, family history, and conventional assessment by either focusing on genetic risk or environmental lifestyle factors. In some participants, genetic test results appeared to reinforce healthy behaviour but others were falsely reassured, despite having an ‘above-average’ conventional cardiovascular risk score. Conclusion Although genetic testing was acceptable, participants were unclear how to interpret genetic risk results. To facilitate healthy behaviour, health professionals should explore patients’ understanding of genetic test results in light of their family history and conventional risk assessment. PMID:24771842

  17. Genetic predisposition toward suicidal ideation in patients with acute coronary syndrome.

    PubMed

    Kang, Hee-Ju; Bae, Kyung-Yeol; Kim, Sung-Wan; Shin, Il-Seon; Hong, Young Joon; Ahn, Youngkeun; Jeong, Myung Ho; Yoon, Jin-Sang; Kim, Jae-Min

    2017-11-07

    The genetic predisposition toward suicidal ideation has been explored to identify subgroups at high risk and to prevent suicide. Acute coronary syndrome (ACS) is associated with an increased risk of suicide, but few studies have explored the genetic predisposition toward suicide in ACS populations. Therefore, this longitudinal study explored the genetic predisposition toward suicidal ideation in ACS patients. In total, of 969 patients within 2 weeks after ACS, 711 were followed at 1 year after ACS. Suicidal ideation was evaluated with the relevant items on the Montgomery-Åsberg Depression Rating Scale. Ten genetic polymorphisms associated with serotonergic systems, neurotrophic factors, carbon metabolism, and inflammatory cytokines were examined. Associations between genetic polymorphisms and suicidal ideation within 2 weeks and 1 year of ACS were investigated using logistic regression models. The 5-HTTLPR s allele was significantly associated with suicidal ideation within 2 weeks of ACS after adjusting for covariates and after the Bonferroni correction. TNF-α -308 G/A , IL-1β -511 C/T , and IL-1β + 3953C/T were significantly associated with suicidal ideation within 2 weeks after ACS, but these associations did not reach significance after the Bonferroni correction in unadjusted analyses and after adjusting for covariance. However, no significant association between genetic polymorphisms and suicidal ideation was found at 1 year. Genetic predisposition, 5-HTTLPR s allele in particular, may confer susceptibility to suicidal ideation in ACS patients during the acute phase of ACS.

  18. A behavioral genetic study of intrapersonal and interpersonal dimensions of narcissism.

    PubMed

    Luo, Yu L L; Cai, Huajian; Song, Hairong

    2014-01-01

    Narcissism, characterized by grandiose self-image and entitled feelings to others, has been increasingly prevalent in the past decades. This study examined genetic and environmental bases of two dimensions of narcissism: intrapersonal grandiosity and interpersonal entitlement. A total of 304 pairs of twins from Beijing, China completed the Narcissistic Grandiosity Scale and the Psychological Entitlement Scale. Both grandiosity (23%) and entitlement (35%) were found to be moderately heritable, while simultaneously showing considerable non-shared environmental influences. Moreover, the genetic and environmental influences on the two dimensions were mostly unique (92-93%), with few genetic and environmental effects in common (7-8%). The two dimensions of narcissism, intrapersonal grandiosity and interpersonal entitlement, are heritable and largely independent of each other in terms of their genetic and environmental sources. These findings extend our understanding of the heritability of narcissism on the one hand. On the other hand, the study demonstrates the rationale for distinguishing between intrapersonal and interpersonal dimensions of narcissism, and possibly personality in general as well.

  19. Genetic Signatures of Exceptional Longevity in Humans

    PubMed Central

    Sebastiani, Paola; Solovieff, Nadia; DeWan, Andrew T.; Walsh, Kyle M.; Puca, Annibale; Hartley, Stephen W.; Melista, Efthymia; Andersen, Stacy; Dworkis, Daniel A.; Wilk, Jemma B.; Myers, Richard H.; Steinberg, Martin H.; Montano, Monty; Baldwin, Clinton T.; Hoh, Josephine; Perls, Thomas T.

    2012-01-01

    Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity. PMID:22279548

  20. Genetic and Environmental Factors in Invasive Cervical Cancer: Design and Methods of a Classical Twin Study.

    PubMed

    Machalek, Dorothy A; Wark, John D; Tabrizi, Sepehr N; Hopper, John L; Bui, Minh; Dite, Gillian S; Cornall, Alyssa M; Pitts, Marian; Gertig, Dorota; Erbas, Bircan; Garland, Suzanne M

    2017-02-01

    Persistent high-risk human papillomavirus (HPV) infection is a necessary prerequisite for development of cervical cancer and its precursor lesion, high-grade squamous intraepithelial lesion (HSIL). However, HPV infection is not sufficient to drive this process, and genetic and environmental factors may also play a role. The Cervical Cancer, Genetics and Environment Twin Study was established to investigate the environmental and genetic influences on variation in susceptibility to cervical pre-cancer in 25- to 69-year-old monozygotic (MZ) and dizygotic (DZ) twins recruited through the Australian Twin Registry. Reviews of Papanicolaou (Pap) screening histories were undertaken to identify individual women with a history of an abnormal Pap test. This was followed by detection of HPV in archival Pap smears of selected twin pairs to determine HPV persistence. Selected twin pairs also completed a detailed questionnaire on socio-demographic characteristics, sexual behavior, and HPV knowledge. In future analyses, under the assumptions of the classical twin design, case-wise concordance for persistent HPV infection and HSIL will be calculated for MZ and DZ twin pairs, and twin pairs (both MZ and DZ) who are discordant for the above outcomes will be used to assess the contributions of measured environmental risk factors. The study examines factors related to HPV persistence and development of HSIL among female MZ and DZ twins. The results will contribute to our understanding of the natural history of cervical HPV infection and the relative contributions of genetic and environmental factors in disease progression.

  1. Does cortisol moderate the environmental association between peer victimization and depression symptoms? A genetically informed twin study.

    PubMed

    Brendgen, Mara; Ouellet-Morin, Isabelle; Lupien, Sonia; Vitaro, Frank; Dionne, Ginette; Boivin, Michel

    2017-10-01

    Many youths who are victimized by peers suffer from depression symptoms. However, not all bullying victims show depression symptoms and individuals' biological sensitivity may play an important moderating role in this regard. In line with this notion, peer victimization has been associated with increased depressive symptoms in youth with higher basal cortisol secretion. It is unclear, however, whether this moderating effect of cortisol really concerns the environmental effect of peer victimization on depression. Indeed, genetic factors can also influence individuals' environmental experiences, including peer victimization, and part of these genetic factors may be those associated with depression. Using a genetically informed design based on 159 monozygotic and 120 dizygotic twin pairs (52% girls) assessed at age 14 years, this study examined whether cortisol secretion moderates the environmental or the genetic association between peer victimization and depression symptoms. Salivary cortisol at awakening was obtained with buccal swabs during four school week days. Peer victimization and depression were assessed via self-reports. Cholesky modeling revealed that peer victimization was associated with depression symptoms via both genetic and environmental pathways. Moreover, the environmental association between peer victimization and depression symptoms steadily increased with increasing levels of morning cortisol. The genetic association between peer victimization and depression symptoms also varied, albeit less, as a function of individuals' cortisol secretion. These findings support the hypothesis that peer victimization increases internalizing psychopathology mainly in youth with heightened biological reactivity to environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Persistence and innovation effects in genetic and environmental factors in negative emotionality during infancy: A twin study.

    PubMed

    Schumann, Lyndall; Boivin, Michel; Paquin, Stéphane; Lacourse, Eric; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette; Tremblay, Richard E; Booij, Linda

    2017-01-01

    Difficult temperament in infancy is a risk factor for forms of later internalizing and externalizing psychopathology, including depression and anxiety. A better understanding of the roots of difficult temperament requires assessment of its early development with a genetically informative design. The goal of this study was to estimate genetic and environmental contributions to individual differences in infant negative emotionality, their persistence over time and their influences on stability between 5 and 18 months of age. Participants were 244 monozygotic and 394 dizygotic twin pairs (49.7% male) recruited from birth. Mothers rated their twins for negative emotionality at 5 and 18 months. Longitudinal analysis of stability and innovation between the two time points was performed in Mplus. There were substantial and similar heritability (approximately 31%) and shared environmental (57.3%) contributions to negative emotionality at both 5 and 18 months. The trait's interindividual stability across time was both genetically- and environmentally- mediated. Evidence of innovative effects (i.e., variance at 18 months independent from variance at 5 months) indicated that negative emotionality is developmentally dynamic and affected by persistent and new genetic and environmental factors at 18 months. In the first two years of life, ongoing genetic and environmental influences support temperamental negative emotionality but new genetic and environmental factors also indicate dynamic change of those factors across time. A better understanding of the source and timing of factors on temperament in early development, and role of sex, could improve efforts to prevent related psychopathology.

  3. Molecular Population Genetics

    PubMed Central

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  4. Genetic parameters and genetic trends in the Chinese × European Tiameslan composite pig line. II. Genetic trends

    PubMed Central

    Zhang, Siqing; Bidanel, Jean-Pierre; Burlot, Thierry; Legault, Christian; Naveau, Jean

    2000-01-01

    The Tiameslan line was created between 1983 and 1985 by mating Meishan × Jiaxing crossbred Chinese boars with sows from the Laconie composite male line. The Tiameslan line has been selected since then on an index combining average backfat thickness (ABT) and days from 20 to 100 kg (DT). Direct and correlated responses to 11 years of selection were estimated using BLUP methodology applied to a multiple trait animal model. A total of 11 traits were considered, i.e.: ABT, DT, body weight at 4 (W4w), 8 (W8w) and 22 (W22w) weeks of age, teat number (TEAT), number of good teats (GTEAT), total number of piglets born (TNB), born alive (NBA) and weaned (NW) per litter, and birth to weaning survival rate (SURV). Performance data from a total of 4 881 males and 4 799 females from 1 341 litters were analysed. The models included both direct and maternal effects for ABT, W4w and W8w. Male and female performances were considered as different traits for W22w, DT and ABT. Genetic parameters estimated in another paper (Zhang et al., Genet. Sel. Evol. 32 (2000) 41-56) were used to perform the analyses. Favourable phenotypic (ΔP) and direct genetic trends (ΔGd) were obtained for post-weaning growth traits and ABT. Trends for maternal effects were limited. Phenotypic and genetic trends were larger in females than in males for ABT (e.g. ΔGd = -0.48 vs. -0.38 mm/year), were larger in males for W22w (ΔGd = 0.90 vs. 0.58 kg/year) and were similar in both sexes for DT (ΔGd = -0.54 vs. -0.55 day/year). Phenotypic and genetic trends were slightly favourable for W4w, W8w, TEAT and GTEAT and close to zero for reproductive traits. PMID:14736407

  5. From Cloning Neural Development Genes to Functional Studies in Mice, 30 Years of Advancements.

    PubMed

    Joyner, Alexandra L

    2016-01-01

    The invention of new mouse molecular genetics techniques, initiated in the 1980s, has repeatedly expanded our ability to tackle exciting developmental biology problems. The brain is the most complex organ, and as such the more sophisticated the molecular genetics technique, the more impact they have on uncovering new insights into how our brain functions. I provide a general time line for the introduction of new techniques over the past 30 years and give examples of new discoveries in the neural development field that emanated from them. I include a look to what the future holds and argue that we are at the dawn of a very exciting age for young scientists interested in studying how the nervous system is constructed and functions with such precision. © 2016 Elsevier Inc. All rights reserved.

  6. Genetic variation and genetic structure of the endangered species Sinowilsonia henryi Hemsi. (Hamamelidaceae) revealed by amplified fragment length polymorphism (AFLP) markers.

    PubMed

    Zhang, H; Ji, W L; Li, M; Zhou, L Y

    2015-10-14

    Comprehensive research of genetic variation is crucial in designing conservation strategies for endangered and threatened species. Sinowilsonia henryi Hemsi. is a tertiary relic with a limited geographical distribution in the central and western areas of China. It is endangered because of climate change and habitat fragmentation over the last thousands of years. In this study, amplified fragment length polymorphism markers were utilized to estimate genetic diversity and genetic structure in and among S. henryi. In this study, Nei's genetic diversity and Shannon's information index were found to be 0.192 and 0.325 respectively, indicating a moderate-to-high genetic diversity in species. According to analysis of molecular variation results, 32% of the genetic variation was shown to be partitioned among populations, demonstrating a relatively high genetic divergence; this was supported by principal coordinate analysis and unweighted pair-group method with arithmetic average analysis. Moreover, the Mantel test showed that there was no significant correlation between genetic and geographical distances. The above results can be explained by the effects of habitat fragmentation, history traits, and gene drift. Based on the results, several implications were indicated and suggestions proposed for preservation strategies for this species.

  7. New paradigms for BRCA1/BRCA2 testing in women with ovarian cancer: results of the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study.

    PubMed

    Plaskocinska, Inga; Shipman, Hannah; Drummond, James; Thompson, Edward; Buchanan, Vanessa; Newcombe, Barbara; Hodgkin, Charlotte; Barter, Elisa; Ridley, Paul; Ng, Rita; Miller, Suzanne; Dann, Adela; Licence, Victoria; Webb, Hayley; Tan, Li Tee; Daly, Margaret; Ayers, Sarah; Rufford, Barnaby; Earl, Helena; Parkinson, Christine; Duncan, Timothy; Jimenez-Linan, Mercedes; Sagoo, Gurdeep S; Abbs, Stephen; Hulbert-Williams, Nicholas; Pharoah, Paul; Crawford, Robin; Brenton, James D; Tischkowitz, Marc

    2016-10-01

    Over recent years genetic testing for germline mutations in BRCA1/BRCA2 has become more readily available because of technological advances and reducing costs. To explore the feasibility and acceptability of offering genetic testing to all women recently diagnosed with epithelial ovarian cancer (EOC). Between 1 July 2013 and 30 June 2015 women newly diagnosed with EOC were recruited through six sites in East Anglia, UK into the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study. Eligibility was irrespective of patient age and family history of cancer. The psychosocial arm of the study used self-report, psychometrically validated questionnaires (Depression Anxiety and Stress Scale (DASS-21); Impact of Event Scale (IES)) and cost analysis was performed. 232 women were recruited and 18 mutations were detected (12 in BRCA1, 6 in BRCA2), giving a mutation yield of 8%, which increased to 12% in unselected women aged <70 years (17/146) but was only 1% in unselected women aged ≥70 years (1/86). IES and DASS-21 scores in response to genetic testing were significantly lower than equivalent scores in response to cancer diagnosis (p<0.001). Correlation tests indicated that although older age is a protective factor against any traumatic impacts of genetic testing, no significant correlation exists between age and distress outcomes. The mutation yield in unselected women diagnosed with EOC from a heterogeneous population with no founder mutations was 8% in all ages and 12% in women under 70. Unselected genetic testing in women with EOC was acceptable to patients and is potentially less resource-intensive than current standard practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Longitudinal Stability in Genetic Effects on Children's Conversational Language Productivity

    ERIC Educational Resources Information Center

    DeThorne, Laura Segebart; Harlaar, Nicole; Petrill, Stephen A.; Deater-Deckard, Kirby

    2012-01-01

    Purpose: The authors examined the longitudinal stability of genetic and environmental influences on children's productive language sample measures during the early school-age years. Method: Twin study methodology with structural equation modeling was used to derive univariate estimates of additive genetic (A), shared environmental (C), and…

  9. Disorders of sex development: a genetic study of patients in a multidisciplinary clinic

    PubMed Central

    Laino, Luigi; Majore, Silvia; Preziosi, Nicoletta; Grammatico, Barbara; De Bernardo, Carmelilia; Scommegna, Salvatore; Rapone, Anna Maria; Marrocco, Giacinto; Bottillo, Irene; Grammatico, Paola

    2014-01-01

    Sex development is a process under genetic control directing both the bi-potential gonads to become either a testis or an ovary, and the consequent differentiation of internal ducts and external genitalia. This complex series of events can be altered by a large number of genetic and non-genetic factors. Disorders of sex development (DSD) are all the medical conditions characterized by an atypical chromosomal, gonadal, or phenotypical sex. Incomplete knowledge of the genetic mechanisms involved in sex development results in a low probability of determining the molecular definition of the genetic defect in many of the patients. In this study, we describe the clinical, cytogenetic, and molecular study of 88 cases with DSD, including 29 patients with 46,XY and disorders in androgen synthesis or action, 18 with 46,XX and disorders in androgen excess, 17 with 46,XY and disorders of gonadal (testicular) development, 11 classified as 46,XX other, eight with 46,XX and disorders of gonadal (ovarian) development, and five with sex chromosome anomalies. In total, we found a genetic variant in 56 out of 88 of them, leading to the clinical classification of every patient, and we outline the different steps required for a coherent genetic testing approach. In conclusion, our results highlight the fact that each category of DSD is related to a large number of different DNA alterations, thus requiring multiple genetic studies to achieve a precise etiological diagnosis for each patient. PMID:25248670

  10. Genetic causes of intellectual disability in a birth cohort: a population-based study.

    PubMed

    Karam, Simone M; Riegel, Mariluce; Segal, Sandra L; Félix, Têmis M; Barros, Aluísio J D; Santos, Iná S; Matijasevich, Alicia; Giugliani, Roberto; Black, Maureen

    2015-06-01

    Intellectual disability affects approximately 1-3% of the population and can be caused by genetic and environmental factors. Although many studies have investigated the etiology of intellectual disability in different populations, few studies have been performed in middle-income countries. The present study estimated the prevalence of genetic causes related to intellectual disability in a cohort of children from a city in south Brazil who were followed from birth. Children who showed poor performance in development and intelligence tests at the ages of 2 and 4 were included. Out of 4,231 liveborns enrolled in the cohort, 214 children fulfilled the inclusion criteria. A diagnosis was established in approximately 90% of the children evaluated. Genetic causes were determined in 31 of the children and 19 cases remained unexplained even after extensive investigation. The overall prevalence of intellectual disability in this cohort due to genetic causes was 0.82%. Because this study was nested in a cohort, there were a large number of variables related to early childhood and the likelihood of information bias was minimized by collecting information with a short recall time. This study was not influenced by selection bias, allowing identification of intellectual disability and estimation of the prevalence of genetic causes in this population, thereby increasing the possibility of providing appropriate management and/or genetic counseling. © 2015 Wiley Periodicals, Inc.

  11. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.

    PubMed

    Zhang-James, Yanli; Faraone, Stephen V

    2016-07-01

    Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Marking 15 years of the Genetic and Rare Diseases Information Center

    PubMed Central

    Lewis, Janine; Snyder, Michelle; Hyatt-Knorr, Henrietta

    2017-01-01

    BACKGROUND: The Genetic and Rare Diseases Information Center (GARD), a program of the National Center for Advancing Translational Sciences, was established in 2002 to assist the public in finding reliable, timely, and easy-to-understand information about genetic and/or rare diseases in English or Spanish. OBJECTIVE: A review of longitudinal data on GARD inquiries from 2002 to 2016 and assessment of the results of two user satisfaction surveys were conducted to understand the demographics and needs of GARD customers over time. METHODS: Since 2002, GARD has collected anonymized data while responding to questions received via e-mail, website, telephone, fax, letter, or TTY. Between 2002 and 2016 GARD received a total of 60,106 inquiries. User satisfaction surveys were conducted in 2006 and 2014, in which users self-selected to participate. RESULTS: The annual number of inquiries has risen steadily since 2002. Inquiries are overwhelmingly from educated female patients, family, and friends seeking disease-specific information, treatment options, referrals, and research studies. Most users report satisfaction with the experience. CONCLUSIONS: Rare disease patients and their families face challenges in finding information about their symptoms or diagnosis, prognosis, treatment options, significance for family members, and research opportunities. Lack of available clinical expertise can leave patients, their family, and friends with little choice but to become knowledgeable on their own. GARD fills a critical need by providing the public with vetted, evidence-based information that empowers people to engage in their own health care and seek research studies of relevance. PMID:29152459

  13. Metastatic neuroblastoma of the mandible: a cytogenetic and molecular genetic study.

    PubMed

    Manor, Esther; Kapelushnik, Joseph; Joshua, Ben-Zion; Bodner, Lipa

    2012-08-01

    Neuroblastoma (NB) jaw metastases are rare. Here, we report on cytogenetic and genetic studies on metastatic NB to the mandible. A 7-year-old boy, with an abdominal neuroblastoma, presented with a mass of the left body of the mandible. Cytogenetic analysis of the original tumor and the mandibular lesion biopsies revealed similar heterogenous subclones with 42 ~ 47,XY,+der(1)(q11 → qter),-2,del(7)(q21.1 → qter),-8,-9,-10,-11,del(11)(q13.3 → qter),-13,-14,-15,-17, + 18-18,der(18)(?),+21,+m1,+m2,+m3,+m4,+m5,+m6,+m7[cp25]. The different markers were identified by SKY analysis. Most of the cells carried 3-6 of these translocations: der(1;21), der(2;9;17), der(2;15;18), der(2;15;Y), der(8;10), der(10;17). Molecular examination using Neuroblastoma MLPA kit (MRC-Holland) revealed gain of 1q25, 1q42, 2q33, 2p23, 2p24 (N-myc), and 21q22, and loss of 11q22, 11q23, 17p13, and 17q11. FISH analysis using N-myc probe showed high amplification levels of N-myc. The cytogenetic and molecular genetic work-ups revealed that the mandibular lesion is a metastasis of the original abdominal tumor and not a second primary caused by the aggressive treatment. Clinical parameters such as : patient's age, site of primary tumor and the mandibular metastasis, together with poor prognosis genetic markers explain the patient's short-term survival.

  14. 77 FR 48993 - Proposed Collection; Comment Request; The Sister Study: A Prospective Study of the Genetic and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Genetic and Environmental Risk Factors for Breast Cancer SUMMARY: In compliance with the requirement of... Sister Study: A Prospective Study of the Genetic and Environmental Risk Factors for Breast Cancer. Type... the development of breast cancer in a high-risk cohort of sisters of women who have had breast cancer...

  15. Temporal genetic changes in Plasmodium vivax apical membrane antigen 1 over 19 years of transmission in southern Mexico.

    PubMed

    Flores-Alanis, Alejandro; González-Cerón, Lilia; Santillán, Frida; Ximenez, Cecilia; Sandoval, Marco A; Cerritos, René

    2017-05-02

    Mexico advanced to the pre-elimination phase in 2009 due to a significant reduction in malaria cases, and since 2000, Plasmodium vivax is the only species transmitted. During the last two decades, malaria transmission has been mostly local and isolated to a few regions. It is important to gain further insights into the impact of control measures on the parasite population structure. Hence, the aim of the current study was to determine detailed changes in P. vivax genetic diversity and population structure based on analysing the gene that encodes the apical membrane antigen 1 (pvama1). This analysis covered from control to pre-elimination (1993-2011) in a hypo-endemic region in southern Mexico. The 213 pvama1 I-II sequences presently analysed were grouped into six periods of three years each. They showed low genetic diversity, with 15 haplotypes resolved. Among the DNA sequences, there was a gradual decrease in genetic diversity, the number of mixed genotype infections and the intensity of positive selection, in agreement with the parallel decline in malaria cases. At the same time, linkage disequilibrium (R 2 ) increased. The three-dimensional haplotype network revealed that pvama1 I-II haplotypes were separated by 1-11 mutational steps, and between one another by 0-3 unsampled haplotypes. In the temporal network, seven haplotypes were detected in at least two of the six-time layers, and only four distinct haplotypes were evidenced in the pre-elimination phase. Structure analysis indicated that three subpopulations fluctuated over time. Only 8.5% of the samples had mixed ancestry. In the pre-elimination phase, subpopulation P1 was drastically reduced, and the admixture was absent. The results suggest that P. vivax in southern Mexico evolved based on local adaptation into three "pseudoclonal" subpopulations that diversified at the regional level and persisted over time, although with varying frequency. Control measures and climate events influenced the number of

  16. Testing for genetic differences in survival and growth between hatchery and wild Chinook salmon from Warm Springs River, Oregon (Study sites: Warm Springs Hatchery and Little White Salmon River; Stocks: Warm Springs hatchery and Warm Springs River wild; Year classes: 1992 and 1996): Chapter 8

    USGS Publications Warehouse

    Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Leonetti,; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    The program at Warm Springs National Fish Hatchery in north - central Oregon was initiated with spring Chinook salmon Oncorhynchus tshawytscha from the Warm Springs River. Managers included wild fish in the broodstock most years and avoided artificial selection to minimize genetic divergence from the wild founder population. We tested for genetic differences in survival and growth between the hatchery and wild populations to ascertain whether this goal has been achieved. Progeny of hatchery x hatchery (HH), hatchery female x wild male (HW), and wild x wild (WW) crosses were genetically marked at the sSOD - 1* allozyme locus and released together as unfed fry in hatchery ponds in 1992 and 1996 and in the Little White Salmon River, in south - central Washington, in 1996. Fish were evaluated to returning adult at the hatchery and over their freshwater residence of 16 months in the stream. The three crosses differed on several measures including survival to outmigration in the stream (WW>HH>HW) and juvenile growth in the hatchery (1992 year - class; WW>HW>HH); however, results may have been confounded. The genetic marks were found to differentially effect survival in a companion study (HH mark favored over WW mark; HW mark intermediate). Furthermore, HW survival in the current study was neither intermediate, as would be expect ed from additive genetic effects, nor similar to that of HH fish as would be expected from maternal effects since HW and HH fish were maternal half - siblings. Finally, the unexpected performance of HW fish precludes ruling out maternal differences between hatchery and wild mothers as the cause of differences between HH and WW fish. The key finding that survival of HH fish in a stream was 0.91 that for WW fish, indicating a small loss of fitness for natural rearing in the hatchery population, is valid only if three conditions hold: (1) any selection on the genetic marks was in the same direction as in the companion study, (2) lower survival in

  17. A new lead from genetic studies in depressed siblings: assessing studies of chromosome 3.

    PubMed

    Hamilton, Steven P

    2011-08-01

    Studies by Breen et al. and Pergadia et al. find evidence for genetic linkage between major depressive disorder and the same region on chromosome 3. The linked region contains the gene GRM7, which encodes a protein for the metabotropic glutamate receptor 7 (mGluR7). Both studies used affected sibling pairs, and neither was able to replicate its finding using association studies in individuals from larger population-based studies. Other family-based studies have also failed to find a signal in this region. Furthermore, there are some differences in how the phenotype was classified, with Breen et al. finding evidence only in the most severely affected patients. Nonetheless, the finding is not without other substantive support. A meta-analysis of 3,957 case subjects with major depressive disorder and 3,428 control subjects from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D), Genetics of Recurrent Early-onset Depression (GenRED), and the Genetic Association Information Network-MDD (GAIN-MDD) data sets demonstrated a region of association for major depressive disorder within GRM7. Thus, the significance of this finding remains uncertain, although it points to a gene that might hold significant promise for further developments in studying the pathophysiology and treatment of major depressive disorder.

  18. Genetic counseling and the ethical issues around direct to consumer genetic testing.

    PubMed

    Hawkins, Alice K; Ho, Anita

    2012-06-01

    Over the last several years, direct to consumer(DTC) genetic testing has received increasing attention in the public, healthcare and academic realms. DTC genetic testing companies face considerable criticism and scepticism,particularly from the medical and genetic counseling community. This raises the question of what specific aspects of DTC genetic testing provoke concerns, and conversely,promises, for genetic counselors. This paper addresses this question by exploring DTC genetic testing through an ethic allens. By considering the fundamental ethical approaches influencing genetic counseling (the ethic of care and principle-based ethics) we highlight the specific ethical concerns raised by DTC genetic testing companies. Ultimately,when considering the ethics of DTC testing in a genetic counseling context, we should think of it as a balancing act. We need careful and detailed consideration of the risks and troubling aspects of such testing, as well as the potentially beneficial direct and indirect impacts of the increased availability of DTC genetic testing. As a result it is essential that genetic counselors stay informed and involved in the ongoing debate about DTC genetic testing and DTC companies. Doing so will ensure that the ethical theories and principles fundamental to the profession of genetic counseling are promoted not just in traditional counseling sessions,but also on a broader level. Ultimately this will help ensure that the public enjoys the benefits of an increasingly genetic based healthcare system.

  19. The Development of Inhibitory Control in Early Childhood: A Twin Study from 2-3 Years

    ERIC Educational Resources Information Center

    Gagne, Jeffrey R.; Saudino, Kimberly J.

    2016-01-01

    Parent- and lab-based observer ratings were employed to examine genetic and environmental influences on continuity and change in inhibitory control (IC) in over 300 twin-pairs assessed longitudinally at 2 and 3 years of age. Genetic influences accounted for approximately 60% of the variance in parent-rated IC at both ages. Although many of the…

  20. Case-control study of genetic and environmental influences on premature death of adult adoptees.

    PubMed

    Petersen, Liselotte; Nielsen, Gert G; Andersen, Per Kragh; Sørensen, Thorkild I A

    2002-08-01

    Genetic and environmental influence on risk of premature death in adulthood was investigated by estimating the associations in total and cause-specific mortality of adult Danish adoptees and their biological and adoptive parents. Among all 14,427 nonfamilial adoptions formally granted in Denmark during the period 1923 through 1947, we identified 976 case families in which the adoptee died before a fixed date. As control families, we selected 976 families where the adoptees were alive on that date, and matched to the case adoptees with regard to gender and year and month of birth. The data were viewed as a cohort of case parents and a cohort of control parents, and lifetime distributions in the two cohorts were compared using a Cox regression, stratified with regard to the matching variables: gender and year of birth. In the main analyses, the sample was restricted with regard to birth year of the adoptees, and age of transfer to the adoptive parents, and age at death was restricted to the same range for parents and offspring (25-64 years) in order to consider a symmetric lifetime distribution. This reduces the sample to 459 case families and 738 control families. Various truncations, restrictions, and stratifications were used in order to examine the robustness of the results. The results showed a higher mortality among biological parents who had children dying in the age range 25 through 64 years, and this was significant for death from natural causes, infectious causes, vascular causes, and from all causes combined. There were no significant effects for the adoptive parents. This study supports that there are moderate genetic influences on the risk of dying prematurely in adulthood, and only a small, if any, effect of the family environment. Copyright 2002 Wiley-Liss, Inc.

  1. Genetic grouping strategies in selection efficiency of composite beef cattle ( × ).

    PubMed

    Petrini, J; Pertile, S F N; Eler, J P; Ferraz, J B S; Mattos, E C; Figueiredo, L G G; Mourão, G B

    2015-02-01

    The inclusion of genetic groups in sire evaluation has been widely used to represent genetic differences among animals not accounted for by the absence of parentage data. However, the definition of these groups is still arbitrary, and studies assessing the effects of genetic grouping strategies on the selection efficiency are rare. Therefore, the aim in this study was to compare genetic grouping strategies for animals with unknown parentage in prediction of breeding values (EBV). The total of 179,302 records of weaning weight (WW), 29,825 records of scrotal circumference (SC), and 70,302 records of muscling score (MUSC) from Montana Tropical animals, a Brazilian composite beef cattle population, were used. Genetic grouping strategies involving year of birth, sex of the unknown parent, birth farm, breed composition, and their combinations were evaluated. Estimated breeding values were predicted for each approach simulating a loss of genealogy data. Thereafter, these EBV were compared to those obtained in an analysis involving a real relationship matrix to estimate selection efficiency and correlations between EBV and animal rankings. The analysis model included the fixed effects of contemporary groups and class of the dam age at calving, the covariates of additive and nonadditive genetic effects, and age, and the additive genetic effect of animal as random effects. A second model also included the fixed effects of genetic group. The use of genetic groups resulted in means of selection efficiency and correlation of 70.4 to 97.1% and 0.51 to 0.94 for WW, 85.8 to 98.8% and 0.82 to 0.98 for SC, and 85.1 to 98.6% and 0.74 to 0.97 for MUSC, respectively. High selection efficiencies were observed for year of birth and breed composition strategies. The maximum absolute difference in annual genetic gain estimated through the use of complete genealogy and genetic groups were 0.38 kg for WW, 0.02 cm for SC, and 0.01 for MUSC, with lower differences obtained when year of birth

  2. An assessment of the reliability of quantitative genetics estimates in study systems with high rate of extra-pair reproduction and low recruitment.

    PubMed

    Bourret, A; Garant, D

    2017-03-01

    Quantitative genetics approaches, and particularly animal models, are widely used to assess the genetic (co)variance of key fitness related traits and infer adaptive potential of wild populations. Despite the importance of precision and accuracy of genetic variance estimates and their potential sensitivity to various ecological and population specific factors, their reliability is rarely tested explicitly. Here, we used simulations and empirical data collected from an 11-year study on tree swallow (Tachycineta bicolor), a species showing a high rate of extra-pair paternity and a low recruitment rate, to assess the importance of identity errors, structure and size of the pedigree on quantitative genetic estimates in our dataset. Our simulations revealed an important lack of precision in heritability and genetic-correlation estimates for most traits, a low power to detect significant effects and important identifiability problems. We also observed a large bias in heritability estimates when using the social pedigree instead of the genetic one (deflated heritabilities) or when not accounting for an important cause of resemblance among individuals (for example, permanent environment or brood effect) in model parameterizations for some traits (inflated heritabilities). We discuss the causes underlying the low reliability observed here and why they are also likely to occur in other study systems. Altogether, our results re-emphasize the difficulties of generalizing quantitative genetic estimates reliably from one study system to another and the importance of reporting simulation analyses to evaluate these important issues.

  3. Genetic study of kelp ``901'' strain

    NASA Astrophysics Data System (ADS)

    Xia, Peng; Wang, Xiuliang; Li, Xiaojie; Zhao, Yushan; Yao, Lin; Duan, Delin

    2005-06-01

    Based on DNA extraction and optimization of random amplified reaction (RAPD) to the gametophytes and sporophytes of Kelp “901” strain, genetic study on variation was conducted to its parents and offsprings of F6, F7, F8, and F9 generation. RAPD results have shown that among 30 selected primers for gametophytes, 297 loci ranging from 200 to 3 000 bp were obtained in the average of 9.9 loci for each primer. This indicated a high polymorphic rate with RAPD detection. UPGMA (unweighted pair-group method arithmetic average) analysis showed that each male and female gametophyte of a generation could be clustered into one pair separately. The genetic distances of the Kelp 901 generation were 0.3212 0.4767, and the maximum was between F7 and F8 (0.4767). Identity analysis showed that F6 generation was more close to the female parent (0.6593), and F7 generation was more close to the male parent (0.578 8). To the sporophytes study in 24 selected primers for RAPD amplification, 191 loci ranging from 230 2800 bp were obtained, in the average to each primer of 8.0 loci. The heterozygosity to six populations were male parent (0.2239), female parent (0.1072), F6 (0.2164), F7(0.2286), F8(0.2296) and F9(0.3172). The nearest genetic distance was 0.083 5(F8, F9). Total heterozygosity (HT) of F6, F7, F8 and F9 generations was 0.3186, the average heterozygosity (HS) for F6, F7, F8 and F9 generations was 0.2480, and deduced coefficient of population differentiation (Gst) was 22.2%. Six sequence characterized amplified regions (SCAR) were preliminary screened through RAPD analysis. It needed to be verified in detail as they are significant for molecular marker assistance in breeding and selecting Laminaria.

  4. Genetic Variants Related to Height and Risk of Atrial Fibrillation

    PubMed Central

    Rosenberg, Michael A.; Kaplan, Robert C.; Siscovick, David S.; Psaty, Bruce M.; Heckbert, Susan R.; Newton-Cheh, Christopher; Mukamal, Kenneth J.

    2014-01-01

    Increased height is a known independent risk factor for atrial fibrillation (AF). However, whether genetic determinants of height influence risk is uncertain. In this candidate gene study, we examined the association of 209 height-associated single-nucleotide polymorphisms (SNPs) with incident AF in 3,309 persons of European descent from the Cardiovascular Health Study, a prospective cohort study of older adults (aged ≥65 years) enrolled in 1989–1990. After a median follow-up period of 13.2 years, 879 participants developed incident AF. The height-associated SNPs together explained approximately 10% of the variation in height (P = 6.0 × 10−8). Using an unweighted genetic height score, we found a nonsignificant association with risk of AF (per allele, hazard ratio = 1.01, 95% confidence interval: 1.00, 1.02; P = 0.06). In weighted analyses, we found that genetically predicted height was strongly associated with AF risk (per 10 cm, hazard ratio = 1.30, 95% confidence interval: 1.03, 1.64; P = 0.03). Importantly, for all models, the inclusion of actual height completely attenuated the genetic height effect. Finally, we identified 1 nonsynonymous SNP (rs1046934) that was independently associated with AF and may warrant future study. In conclusion, we found that genetic determinants of height appear to increase the risk of AF, primarily via height itself. This approach of examining SNPs associated with an intermediate phenotype should be considered as a method for identifying novel genetic targets. PMID:24944287

  5. Genetic and environmental influences on adult attention deficit hyperactivity disorder symptoms: a large Swedish population-based study of twins.

    PubMed

    Larsson, H; Asherson, P; Chang, Z; Ljung, T; Friedrichs, B; Larsson, J-O; Lichtenstein, P

    2013-01-01

    Attention deficit hyperactivity disorder (ADHD) frequently persists into adulthood. Family and twin studies delineate a disorder with strong genetic influences among children and adolescents based on parent- and teacher-reported data but little is known about the genetic and environmental contribution to DSM-IV ADHD symptoms in adulthood. We therefore aimed to investigate the impact of genetic and environmental influences on the inattentive and hyperactive-impulsive symptoms of ADHD in adults. Twin methods were applied to self-reported assessments of ADHD symptoms from a large population-based Swedish twin study that included data from 15 198 Swedish male and female twins aged 20 to 46 years. The broad heritability [i.e., A + D, where A is an additive genetic factor and D (dominance) a non-additive genetic factor] was 37% (A = 11%, D = 26%) for inattention and 38% (A = 18%, D = 20%) for hyperactivity-impulsivity. The results also indicate that 52% of the phenotypic correlation between inattention and hyperactivity-impulsivity (r = 0.43) was explained by genetic influences whereas the remaining part of the covariance was explained by non-shared environmental influences. These results were replicated across age strata. Our findings of moderate broad heritability estimates are consistent with previous literature on self-rated ADHD symptoms in older children, adolescents and adults and retrospective reports of self-rated childhood ADHD by adults but differ from studies of younger children with informant ratings. Future research needs to clarify whether our data indicate a true decrease in the heritability of ADHD in adults compared to children, or whether this relates to the use of self-ratings in contrast to informant data.

  6. Genetic relationship between growth and reproductive traits in Nellore cattle.

    PubMed

    Santana, M L; Eler, J P; Ferraz, J B S; Mattos, E C

    2012-04-01

    The objective of this study was to evaluate the genetic relationship between postweaning weight gain (PWG), heifer pregnancy (HP), scrotal circumference (SC) at 18 months of age, stayability at 6 years of age (STAY) and finishing visual score at 18 months of age (PREC), and to determine the potential of these traits as selection criteria for the genetic improvement of growth and reproduction in Nellore cattle. The HP was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 days. The STAY was defined as whether or not a cow calved every year up to the age of 6 years, given that she was provided the opportunity to breed. The Bayesian linear-threshold analysis via the Gibbs sampler was used to estimate the variance and covariance components applying a multitrait model. Posterior mean estimates of direct heritability were 0.15 ± 0.00, 0.42 ± 0.02, 0.49 ± 0.01, 0.11 ± 0.01 and 0.19 ± 0.00 for PWG, HP, SC, STAY and PREC, respectively. The genetic correlations between traits ranged from 0.17 to 0.62. The traits studied generally have potential for use as selection criteria in genetic breeding programs. The genetic correlations between all traits show that selection for one of these traits does not imply the loss of the others.

  7. A Twin Study of Genetic Influences on Diurnal Preference and Risk for Alcohol Use Outcomes

    PubMed Central

    Watson, Nathaniel F.; Buchwald, Dedra; Harden, Kathryn Paige

    2013-01-01

    Objective: The population-based University of Washington Twin Registry (UWTR) was used to examine (1) genetic influences on chronobiology and (2) whether these genetic factors influence alcohol-use phenotypes. Methods: We used a reduced Horne-Östberg Morningness-Eveningness Questionnaire (rMEQ) to survey UWTR participants for diurnal preference. Frequency and quantity of alcohol use, as well as binge drinking (6+ drinks per occasion), were assessed on a 5-point Likert scale. Both diurnal preference and alcohol use were self-reported. Twin data were analyzed by using structural equation models. Results: The sample consisted of 2,945 participants (mean age = 36.4 years), including 1,127 same-sex and opposite-sex twin pairs and 691 individual twins. The rMEQ range was 4-25, with a mean score of 15.3 (SD 4.0). Diurnal “morning types” comprised 30.7% (N = 903) of participants, while 17.4% (N = 513) were “evening types.” Regarding alcohol use, 21.2% (N = 624) reported never drinking. Among drinkers, 35.7% (N = 829) reported ≥ 3 drinks per occasion and 48.1% (N = 1,116) reported at least one instance of binge drinking. Genetic influences accounted for 37% of the variance in diurnal preference, with the remaining 63% due to non-shared environmental influences. Genetic propensities toward diurnal eveningness were significantly associated with increased alcohol quantity (β = -0.17; SE = 0.05, p < 0.001) and increased binge drinking (β = -0.19; SE = 0.04, p < 0.001), but not with frequency of alcohol use. Environmental paths between diurnal preference and alcohol use phenotypes were not significant. Conclusions: Genetic influences on diurnal preference confer elevated risk for problematic alcohol use, including increased quantity and binge drinking. Differences in circadian rhythm may be an important and understudied pathway of risk for genetic influences on alcohol use. Citation: Watson NF; Buchwald D; Harden KP. A twin study of genetic influences on diurnal

  8. Teaching Genetics in Secondary Classrooms: A Linguistic Analysis of Teachers' Talk about Proteins

    ERIC Educational Resources Information Center

    Thörne, Karin; Gericke, Niklas

    2014-01-01

    This study investigates Swedish biology teachers' inclusion of proteins when teaching genetics in grade nine (students 15-16 years old). For some years, there has been a call to give attention to proteins when teaching genetics as a means of linking the concepts "gene" and "trait". Students are known to have problems with this…

  9. Trends in genetic patent applications: the commercialization of academic intellectual property

    PubMed Central

    Kers, Jannigje G; Van Burg, Elco; Stoop, Tom; Cornel, Martina C

    2014-01-01

    We studied trends in genetic patent applications in order to identify the trends in the commercialization of research findings in genetics. To define genetic patent applications, the European version (ECLA) of the International Patent Classification (IPC) codes was used. Genetic patent applications data from the PATSTAT database from 1990 until 2009 were analyzed for time trends and regional distribution. Overall, the number of patent applications has been growing. In 2009, 152 000 patent applications were submitted under the Patent Cooperation Treaty (PCT) and within the EP (European Patent) system of the European Patent Office (EPO). The number of genetic patent applications increased until a peak was reached in the year 2000, with >8000 applications, after which it declined by almost 50%. Continents show different patterns over time, with the global peak in 2000 mainly explained by the USA and Europe, while Asia shows a stable number of >1000 per year. Nine countries together account for 98.9% of the total number of genetic patent applications. In The Netherlands, 26.7% of the genetic patent applications originate from public research institutions. After the year 2000, the number of genetic patent applications dropped significantly. Academic leadership and policy as well as patent regulations seem to have an important role in the trend differences. The ongoing investment in genetic research in the past decade is not reflected by an increase of patent applications. PMID:24448546

  10. Genetic transformation of fruit trees: current status and remaining challenges.

    PubMed

    Gambino, Giorgio; Gribaudo, Ivana

    2012-12-01

    Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field cultivation and commercial application of these transgenic plants. In addition, over the years much work has been performed to enhance abiotic stress tolerance, to induce modifications of plant growth and habit, to produce marker-free transgenic plants and to improve fruit quality by modification of genes that are crucially important in the production of specific plant components. Recently, with the release of several genome sequences, studies of functional genomics are becoming increasingly important: by modification (overexpression or silencing) of genes involved in the production of specific plant components is possible to uncover regulatory mechanisms associated with the biosynthesis and catabolism of metabolites in plants. This review focuses on the main advances, in recent years, in genetic transformation of the most important species of fruit trees, devoting particular attention to functional genomics approaches and possible future challenges of genetic engineering for these species in the post-genomic era.

  11. Genetic Variants in Diseases of the Extrapyramidal System

    PubMed Central

    Oczkowska, Anna; Kozubski, Wojciech; Lianeri, Margarita; Dorszewska, Jolanta

    2014-01-01

    Knowledge on the genetics of movement disorders has advanced significantly in recent years. It is now recognized that disorders of the basal ganglia have genetic basis and it is suggested that molecular genetic data will provide clues to the pathophysiology of normal and abnormal motor control. Progress in molecular genetic studies, leading to the detection of genetic mutations and loci, has contributed to the understanding of mechanisms of neurodegeneration and has helped clarify the pathogenesis of some neurodegenerative diseases. Molecular studies have also found application in the diagnosis of neurodegenerative diseases, increasing the range of genetic counseling and enabling a more accurate diagno-sis. It seems that understanding pathogenic processes and the significant role of genetics has led to many experiments that may in the future will result in more effective treatment of such diseases as Parkinson’s or Huntington’s. Currently used molecular diagnostics based on DNA analysis can identify 9 neurodegenerative diseases, including spinal cerebellar ataxia inherited in an autosomal dominant manner, dentate-rubro-pallido-luysian atrophy, Friedreich’s disease, ataxia with ocu-lomotorapraxia, Huntington's disease, dystonia type 1, Wilson’s disease, and some cases of Parkinson's disease. PMID:24653660

  12. Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication.

    PubMed

    Haasl, Ryan J; Payseur, Bret A

    2016-01-01

    Genomewide scans for natural selection (GWSS) have become increasingly common over the last 15 years due to increased availability of genome-scale genetic data. Here, we report a representative survey of GWSS from 1999 to present and find that (i) between 1999 and 2009, 35 of 49 (71%) GWSS focused on human, while from 2010 to present, only 38 of 83 (46%) of GWSS focused on human, indicating increased focus on nonmodel organisms; (ii) the large majority of GWSS incorporate interpopulation or interspecific comparisons using, for example F(ST), cross-population extended haplotype homozygosity or the ratio of nonsynonymous to synonymous substitutions; (iii) most GWSS focus on detection of directional selection rather than other modes such as balancing selection; and (iv) in human GWSS, there is a clear shift after 2004 from microsatellite markers to dense SNP data. A survey of GWSS meant to identify loci positively selected in response to severe hypoxic conditions support an approach to GWSS in which a list of a priori candidate genes based on potential selective pressures are used to filter the list of significant hits a posteriori. We also discuss four frequently ignored determinants of genomic heterogeneity that complicate GWSS: mutation, recombination, selection and the genetic architecture of adaptive traits. We recommend that GWSS methodology should better incorporate aspects of genomewide heterogeneity using empirical estimates of relevant parameters and/or realistic, whole-chromosome simulations to improve interpretation of GWSS results. Finally, we argue that knowledge of potential selective agents improves interpretation of GWSS results and that new methods focused on correlations between environmental variables and genetic variation can help automate this approach. © 2015 John Wiley & Sons Ltd.

  13. Genetic perspectives on northern population cycles: bridging the gap between theory and empirical studies.

    PubMed

    Norén, Karin; Angerbjörn, Anders

    2014-05-01

    Many key species in northern ecosystems are characterised by high-amplitude cyclic population demography. In 1924, Charles Elton described the ecology and evolution of cyclic populations in a classic paper and, since then, a major focus has been the underlying causes of population cycles. Elton hypothesised that fluctuations reduced population genetic variation and influenced the direction of selection pressures. In concordance with Elton, present theories concern the direct consequences of population cycles for genetic structure due to the processes of genetic drift and selection, but also include feedback models of genetic composition on population dynamics. Most of these theories gained mathematical support during the 1970s and onwards, but due to methodological drawbacks, difficulties in long-term sampling and a complex interplay between microevolutionary processes, clear empirical data allowing the testing of these predictions are still scarce. Current genetic tools allow for estimates of genetic variation and identification of adaptive genomic regions, making this an ideal time to revisit this subject. Herein, we attempt to contribute towards a consensus regarding the enigma described by Elton almost 90 years ago. We present nine predictions covering the direct and genetic feedback consequences of population cycles on genetic variation and population structure, and review the empirical evidence. Generally, empirical support for the predictions was low and scattered, with obvious gaps in the understanding of basic population processes. We conclude that genetic variation in northern cyclic populations generally is high and that the geographic distribution and amount of diversity are usually suggested to be determined by various forms of context- and density-dependent dispersal exceeding the impact of genetic drift. Furthermore, we found few clear signatures of selection determining genetic composition in cyclic populations. Dispersal is assumed to have a strong

  14. Social and Genetic Influences on Adolescent Religious Attitudes and Practices

    ERIC Educational Resources Information Center

    Eaves, Lindon J.; Hatemi, Peter K.; Prom-Womley, Elizabeth C.; Murrelle, Lenn

    2008-01-01

    The authors explore the contributions of social and genetic influences to religious attitudes and practices in a population-based sample of 11-18 year olds and their mothers who responded to a Religious Attitudes and Practices Inventory and Religious Rearing Practices Inventory respectively. Contrary to genetic studies examining adult religious…

  15. Molecular Population Genetics.

    PubMed

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  16. Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies.

    PubMed

    García-Lor, Andrés; Luro, François; Navarro, Luis; Ollitrault, Patrick

    2012-01-01

    Genetic stratification associated with domestication history is a key parameter for estimating the pertinence of genetic association study within a gene pool. Previous molecular and phenotypic studies have shown that most of the diversity of cultivated citrus results from recombination between three main species: C. medica (citron), C. reticulata (mandarin) and C. maxima (pummelo). However, the precise contribution of each of these basic species to the genomes of secondary cultivated species, such as C. sinensis (sweet orange), C. limon (lemon), C. aurantium (sour orange), C. paradisi (grapefruit) and recent hybrids is unknown. Our study focused on: (1) the development of insertion-deletion (InDel) markers and their comparison with SSR markers for use in genetic diversity and phylogenetic studies; (2) the analysis of the contributions of basic taxa to the genomes of secondary species and modern cultivars and (3) the description of the organisation of the Citrus gene pool, to evaluate how genetic association studies should be done at the cultivated Citrus gene pool level. InDel markers appear to be better phylogenetic markers for tracing the contributions of the three ancestral species, whereas SSR markers are more useful for intraspecific diversity analysis. Most of the genetic organisation of the Citrus gene pool is related to the differentiation between C. reticulata, C. maxima and C. medica. High and generalised LD was observed, probably due to the initial differentiation between the basic species and a limited number of interspecific recombinations. This structure precludes association genetic studies at the genus level without developing additional recombinant populations from interspecific hybrids. Association genetic studies should also be affordable at intraspecific level in a less structured pool such as C. reticulata.

  17. A Behavioral Genetic Study of Intrapersonal and Interpersonal Dimensions of Narcissism

    PubMed Central

    Luo, Yu L. L.; Cai, Huajian; Song, Hairong

    2014-01-01

    Narcissism, characterized by grandiose self-image and entitled feelings to others, has been increasingly prevalent in the past decades. This study examined genetic and environmental bases of two dimensions of narcissism: intrapersonal grandiosity and interpersonal entitlement. A total of 304 pairs of twins from Beijing, China completed the Narcissistic Grandiosity Scale and the Psychological Entitlement Scale. Both grandiosity (23%) and entitlement (35%) were found to be moderately heritable, while simultaneously showing considerable non-shared environmental influences. Moreover, the genetic and environmental influences on the two dimensions were mostly unique (92–93%), with few genetic and environmental effects in common (7–8%). The two dimensions of narcissism, intrapersonal grandiosity and interpersonal entitlement, are heritable and largely independent of each other in terms of their genetic and environmental sources. These findings extend our understanding of the heritability of narcissism on the one hand. On the other hand, the study demonstrates the rationale for distinguishing between intrapersonal and interpersonal dimensions of narcissism, and possibly personality in general as well. PMID:24695616

  18. Generalist genes and learning disabilities: a multivariate genetic analysis of low performance in reading, mathematics, language and general cognitive ability in a sample of 8000 12-year-old twins.

    PubMed

    Haworth, Claire M A; Kovas, Yulia; Harlaar, Nicole; Hayiou-Thomas, Marianna E; Petrill, Stephen A; Dale, Philip S; Plomin, Robert

    2009-10-01

    Our previous investigation found that the same genes influence poor reading and mathematics performance in 10-year-olds. Here we assess whether this finding extends to language and general cognitive disabilities, as well as replicating the earlier finding for reading and mathematics in an older and larger sample. Using a representative sample of 4000 pairs of 12-year-old twins from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between internet-based batteries of language and general cognitive ability tests in addition to tests of reading and mathematics for the bottom 15% of the distribution using DeFries-Fulker extremes analysis. We compared these results to those for the entire distribution. All four traits were highly correlated at the low extreme (average group phenotypic correlation = .58). and in the entire distribution (average phenotypic correlation = .59). Genetic correlations for the low extreme were consistently high (average = .67), and non-shared environmental correlations were modest (average = .23). These results are similar to those seen across the entire distribution (.68 and .23, respectively). The 'Generalist Genes Hypothesis' holds for language and general cognitive disabilities, as well as reading and mathematics disabilities. Genetic correlations were high, indicating a strong degree of overlap in genetic influences on these diverse traits. In contrast, non-shared environmental influences were largely specific to each trait, causing phenotypic differentiation of traits.

  19. Genetic and environmental relationships of metabolic and weight phenotypes to metabolic syndrome and diabetes: the healthy twin study.

    PubMed

    Song, Yun-Mi; Sung, Joohon; Lee, Kayoung

    2015-02-01

    We aimed to examine the relationships, including genetic and environmental correlations, between metabolic and weight phenotypes and factors related to diabetes and metabolic syndrome. Participants of the Healthy Twin Study without diabetes (n=2687; 895 monozygotic and 204 dizygotic twins, and 1588 nontwin family members; mean age, 42.5±13.1 years) were stratified according to body mass index (BMI) (<25 vs. ≥25 kg/m(2)) and metabolic syndrome categories at baseline. The metabolic traits, namely diabetes and metabolic syndrome, metabolic syndrome components, glycated hemoglobin (HbA1c) level, and homeostasis model assessment of insulin resistance (HOMA-IR), were assessed after 2.5±2.1 years. In a multivariate-adjusted model, those who had metabolic syndrome or overweight phenotypes at baseline were more likely to have higher HbA1C and HOMA-IR levels and abnormal metabolic syndrome components at follow-up as compared to the metabolically healthy normal weight subgroup. The incidence of diabetes was 4.4-fold higher in the metabolically unhealthy but normal weight individuals and 3.3-fold higher in the metabolically unhealthy and overweight individuals as compared with the metabolically healthy normal weight individuals. The heritability of the metabolic syndrome/weight phenotypes was 0.40±0.03. Significant genetic and environmental correlations were observed between the metabolic syndrome/weight phenotypes at baseline and the metabolic traits at follow-up, except for incident diabetes, which only had a significant common genetic sharing with the baseline phenotypes. The genetic and environmental relationships between the metabolic and weight phenotypes at baseline and the metabolic traits at follow-up suggest pleiotropic genetic mechanisms and the crucial role of lifestyle and behavioral factors.

  20. The role of medical libraries in undergraduate education: a case study in genetics*

    PubMed Central

    Tennant, Michele R.; Miyamoto, Michael M.

    2002-01-01

    Between 1996 and 2001, the Health Science Center Libraries and Department of Zoology at the University of Florida partnered to provide a cohesive and comprehensive learning experience to undergraduate students in PCB3063, “Genetics.” During one semester each year, a librarian worked with up to 120 undergraduates, providing bibliographic and database instruction in the tools that practicing geneticists use (MEDLINE, GenBank, BLAST, etc.). Students learned to evaluate and synthesize the information that they retrieved, coupling it with information provided in classroom lectures, thus resulting in well-researched short papers on an assigned genetics topic. Exit surveys of students indicated that the majority found the library sessions and librarian's instruction to be useful. Responses also indicated that the project facilitated increased understanding of genetics concepts and appreciation for the scientific research process and the relevance of genetics to the real world. The library benefited from this partnership on a variety of fronts, including the development of skilled library users, pretrained future clientele, and increased visibility among campus research laboratories. The course and associated information instruction and assigned projects can be considered models for course-integrated instruction and the role of medical libraries in undergraduate education. PMID:11999176

  1. Persistence and innovation effects in genetic and environmental factors in negative emotionality during infancy: A twin study

    PubMed Central

    Boivin, Michel; Paquin, Stéphane; Lacourse, Eric; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette; Tremblay, Richard E.; Booij, Linda

    2017-01-01

    Background Difficult temperament in infancy is a risk factor for forms of later internalizing and externalizing psychopathology, including depression and anxiety. A better understanding of the roots of difficult temperament requires assessment of its early development with a genetically informative design. The goal of this study was to estimate genetic and environmental contributions to individual differences in infant negative emotionality, their persistence over time and their influences on stability between 5 and 18 months of age. Method Participants were 244 monozygotic and 394 dizygotic twin pairs (49.7% male) recruited from birth. Mothers rated their twins for negative emotionality at 5 and 18 months. Longitudinal analysis of stability and innovation between the two time points was performed in Mplus. Results There were substantial and similar heritability (approximately 31%) and shared environmental (57.3%) contributions to negative emotionality at both 5 and 18 months. The trait’s interindividual stability across time was both genetically- and environmentally- mediated. Evidence of innovative effects (i.e., variance at 18 months independent from variance at 5 months) indicated that negative emotionality is developmentally dynamic and affected by persistent and new genetic and environmental factors at 18 months. Conclusions In the first two years of life, ongoing genetic and environmental influences support temperamental negative emotionality but new genetic and environmental factors also indicate dynamic change of those factors across time. A better understanding of the source and timing of factors on temperament in early development, and role of sex, could improve efforts to prevent related psychopathology. PMID:28448561

  2. Mapping the Regional Influence of Genetics on Brain Structure Variability - A Tensor-Based Morphometry Study

    PubMed Central

    Brun, Caroline; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; Madsen, Sarah K.; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I.; McMahon, Katie; Wright, Margaret; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Genetic and environmental factors influence brain structure and function profoundly The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins’ 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject’s anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions which have a more protracted maturational time-course. PMID:19446645

  3. A twin study of the genetics of fear conditioning.

    PubMed

    Hettema, John M; Annas, Peter; Neale, Michael C; Kendler, Kenneth S; Fredrikson, Mats

    2003-07-01

    Fear conditioning is a traditional model for the acquisition of fears and phobias. Studies of the genetic architecture of fear conditioning may inform gene-finding strategies for anxiety disorders. The objective of this study was to determine the genetic and environmental sources of individual differences in fear conditioning by means of a twin sample. Classic fear conditioning data were experimentally obtained from 173 same-sex twin pairs (90 monozygotic and 83 dizygotic). Sequences of evolutionary fear-relevant (snakes and spiders) and fear-irrelevant (circles and triangles) pictorial stimuli served as conditioned stimuli paired with a mild electric shock serving as the unconditioned stimulus. The outcome measure was the electrodermal skin conductance response. We applied structural equation modeling methods to the 3 conditioning phases of habituation, acquisition, and extinction to determine the extent to which genetic and environmental factors underlie individual variation in associative and nonassociative learning. All components of the fear conditioning process in humans demonstrated moderate heritability, in the range of 35% to 45%. Best-fitting multivariate models suggest that 2 sets of genes may underlie the trait of fear conditioning: one that most strongly affects nonassociative processes of habituation that also is shared with acquisition and extinction, and a second that appears related to associative fear conditioning processes. In addition, these data provide tentative evidence of differences in heritability based on the fear relevance of the stimuli. Genes represent a significant source of individual variation in the habituation, acquisition, and extinction of fears, and genetic effects specific to fear conditioning are involved.

  4. Genetic and neurodevelopmental influences in autistic disorder.

    PubMed

    Nicolson, Rob; Szatmari, Peter

    2003-09-01

    In the past, autism was considered to be largely psychogenic. However, research in the last 2 decades indicates that autism is largely caused by genetic factors that lead to abnormal brain development. This article reviews research into the genetic and neurodevelopmental factors underlying autism. We review the findings from genetic and brain-imaging studies of autism over the past 15 years and synthesize these findings as a guide for future research. Genome scans and association studies have suggested potential genomic regions and genes, respectively, that may be involved in the etiology of autism, and there have been some replications of these results. Similarly, the findings that brain volume is exaggerated in autism and corpus callosum size is reduced have also been independently replicated. Unfortunately, studies of other subcortical structures remain inconclusive or contradictory. Overwhelming evidence now supports a neurobiological basis for autism. However, further refinements will be needed to guide future studies, particularly to identify the most informative phenotypes to investigate. Additionally, studies examining the role of genetic factors in the brain abnormalities underlying autism will likely lead to further findings that will enhance our understanding of autism's causes.

  5. Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies

    PubMed Central

    Acland, Gregory M.

    2014-01-01

    Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision. PMID:22065099

  6. Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies.

    PubMed

    Miyadera, Keiko; Acland, Gregory M; Aguirre, Gustavo D

    2012-02-01

    Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision.

  7. Understanding our Genetic Inheritance: The U.S. Human Genome Project, The First Five Years FY 1991--1995

    DOE R&D Accomplishments Database

    1990-04-01

    The Human Genome Initiative is a worldwide research effort with the goal of analyzing the structure of human DNA and determining the location of the estimated 100,000 human genes. In parallel with this effort, the DNA of a set of model organisms will be studied to provide the comparative information necessary for understanding the functioning of the human genome. The information generated by the human genome project is expected to be the source book for biomedical science in the 21st century and will by of immense benefit to the field of medicine. It will help us to understand and eventually treat many of the more than 4000 genetic diseases that affect mankind, as well as the many multifactorial diseases in which genetic predisposition plays an important role. A centrally coordinated project focused on specific objectives is believed to be the most efficient and least expensive way of obtaining this information. The basic data produced will be collected in electronic databases that will make the information readily accessible on convenient form to all who need it. This report describes the plans for the U.S. human genome project and updates those originally prepared by the Office of Technology Assessment (OTA) and the National Research Council (NRC) in 1988. In the intervening two years, improvements in technology for almost every aspect of genomics research have taken place. As a result, more specific goals can now be set for the project.

  8. Genetics of SLE: evidence from mouse models.

    PubMed

    Morel, Laurence

    2010-06-01

    Great progress has been made in the field of lupus genetics in the past few years, notably with the publication of genome-wide association studies in humans and the identification of susceptibility genes (including Fcgr2b, Ly108, Kallikrein genes and Coronin-1A) in mouse models of spontaneous lupus. This influx of new information has revealed an ever-increasing interdependence between the mouse and human systems for unraveling the genetic basis of lupus susceptibility. Studies in the 1980s and 1990s established that mice prone to spontaneous lupus constitute excellent models of the genetic architecture of human systemic lupus erythematosus (SLE). This notion has been greatly strengthened by the convergence of the functional pathways that are defective in both human and murine lupus. Within these pathways, variants in a number of genes have now been shown to be directly associated with lupus in both species. Consequently, mouse models will continue to serve a pre-eminent role in lupus genetics research, with an increased emphasis on mechanistic and molecular studies of human susceptibility alleles.

  9. Adults' perceptions of genetic counseling and genetic testing.

    PubMed

    Houfek, Julia Fisco; Soltis-Vaughan, Brigette S; Atwood, Jan R; Reiser, Gwendolyn M; Schaefer, G Bradley

    2015-02-01

    This study described the perceptions of genetic counseling and testing of adults (N = 116) attending a genetic education program. Understanding perceptions of genetic counseling, including the importance of counseling topics, will contribute to patient-focused care as clinical genetic applications for common, complex disorders evolve. Participants completed a survey addressing: the importance of genetic counseling topics, benefits and negative effects of genetic testing, and sharing test results. Topics addressing practical information about genetic conditions were rated most important; topics involving conceptual genetic/genomic principles were rated least important. The most frequently identified benefit and negative effect of testing were prevention/early detection/treatment and psychological distress. Participants perceived that they were more likely to share test results with first-degree than other relatives. Findings suggest providing patients with practical information about genetic testing and genetic contributions to disease, while also determining whether their self-care abilities would be enhanced by teaching genetic/genomic principles. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A Study of Two Instructional Sequences Informed by Alternative Learning Progressions in Genetics

    NASA Astrophysics Data System (ADS)

    Duncan, Ravit Golan; Choi, Jinnie; Castro-Faix, Moraima; Cavera, Veronica L.

    2017-12-01

    Learning progressions (LPs) are hypothetical models of how learning in a domain develops over time with appropriate instruction. In the domain of genetics, there are two independently developed alternative LPs. The main difference between the two progressions hinges on their assumptions regarding the accessibility of classical (Mendelian) versus molecular genetics and the order in which they should be taught. In order to determine the relative difficulty of the different genetic ideas included in the two progressions, and to test which one is a better fit with students' actual learning, we developed two modules in classical and molecular genetics and alternated their sequence in an implementation study with 11th grade students studying biology. We developed a set of 56 ordered multiple-choice items that collectively assessed both molecular and classical genetic ideas. We found significant gains in students' learning in both molecular and classical genetics, with the largest gain relating to understanding the informational content of genes and the smallest gain in understanding modes of inheritance. Using multidimensional item response modeling, we found no statistically significant differences between the two instructional sequences. However, there was a trend of slightly higher gains for the molecular-first sequence for all genetic ideas.

  11. A new method for studying population genetics of cyst nematodes based on Pool-Seq and genomewide allele frequency analysis.

    PubMed

    Mimee, Benjamin; Duceppe, Marc-Olivier; Véronneau, Pierre-Yves; Lafond-Lapalme, Joël; Jean, Martine; Belzile, François; Bélair, Guy

    2015-11-01

    Cyst nematodes are important agricultural pests responsible for billions of dollars of losses each year. Plant resistance is the most effective management tool, but it requires a close monitoring of population genetics. Current technologies for pathotyping and genotyping cyst nematodes are time-consuming, expensive and imprecise. In this study, we capitalized on the reproduction mode of cyst nematodes to develop a simple population genetic analysis pipeline based on genotyping-by-sequencing and Pool-Seq. This method yielded thousands of SNPs and allowed us to study the relationships between populations of different origins or pathotypes. Validation of the method on well-characterized populations also demonstrated that it was a powerful and accurate tool for population genetics. The genomewide allele frequencies of 23 populations of golden nematode, from nine countries and representing the five known pathotypes, were compared. A clear separation of the pathotypes and fine genetic relationships between and among global populations were obtained using this method. In addition to being powerful, this tool has proven to be very time- and cost-efficient and could be applied to other cyst nematode species. © 2015 Her Majesty the Queen in Right of Canada Molecular Ecology Resources © 2015 John Wiley & Sons Ltd Reproduced with the permission of the Minister of Agriculture and Agri-food.

  12. Genetic architecture of lipid traits changes over time and differs by race: Princeton Lipid Follow-up Study.

    PubMed

    Woo, Jessica G; Morrison, John A; Stroop, Davis M; Aronson Friedman, Lisa; Martin, Lisa J

    2014-07-01

    Dyslipidemia is a major risk factor for CVD. Previous studies on lipid heritability have largely focused on white populations assessed after the obesity epidemic. Given secular trends and racial differences in lipid levels, this study explored whether lipid heritability is consistent across time and between races. African American and white nuclear families had fasting lipids measured in the 1970s and 22-30 years later. Heritability was estimated, and bivariate analyses between visits were conducted by race using variance components analysis. A total of 1,454 individuals (age 14.1/40.6 for offspring/parents at baseline; 39.6/66.5 at follow-up) in 373 families (286 white, 87 African American) were included. Lipid trait heritabilities were typically stronger during the 1970s than the 2000s. At baseline, additive genetic variation for LDL was significantly lower in African Americans than whites (P = 0.015). Shared genetic contribution to lipid variability over time was significant in both whites (all P < 0.0001) and African Americans (P ≤ 0.05 for total, LDL, and HDL cholesterol). African American families demonstrated shared environmental contributions to lipid variation over time (all P ≤ 0.05). Lower heritability, lower LDL genetic variance, and durable environmental effects across the obesity epidemic in African American families suggest race-specific approaches are needed to clarify the genetic etiology of lipids. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Epidemiology and genetic variability of human metapneumovirus during a 4-year-long study in Southeastern Brazil.

    PubMed

    Oliveira, Danielle B L; Durigon, Edison L; Carvalho, Ariane C L; Leal, Andréa L; Souza, Thereza S; Thomazelli, Luciano M; Moraes, Claudia T P; Vieira, Sandra E; Gilio, Alfredo E; Stewien, Klaus E

    2009-05-01

    Epidemiological and molecular characteristics of human metapneumovirus (hMPV) were compared with human respiratory syncytial virus (hRSV) in infants and young children admitted for acute lower respiratory tract infections in a prospective study during four consecutive years in subtropical Brazil. GeneScan polymerase chain assays (GeneScan RT-PCR) were used to detect hMPV and hRSV in nasopharyngeal aspirates of 1,670 children during January 2003 to December 2006. hMPV and hRSV were detected, respectively, in 191 (11.4%) and in 702 (42%) of the children admitted with acute lower respiratory tract infections at the Sao Paulo University Hospital. Sequencing data of the hMPV F gene revealed that two groups of the virus, each divided into two subgroups, co-circulated during three consecutive years. It was also shown that a clear dominance of genotype B1 occurred during the years 2004 and 2005, followed by genotype A2 during 2006. Copyright 2009 Wiley-Liss, Inc.

  14. Genetic and environmental contributions to anxiety among Chinese children and adolescents--a multi-informant twin study.

    PubMed

    Chen, Jie; Yu, Jing; Li, Xinying; Zhang, Jianxin

    2015-05-01

    Child and adolescent anxiety has become a major public health concern in China, but little was known about the etiology of anxiety in Chinese children and adolescents. The present study aimed to investigate genetic and environmental influences on trait anxiety among Chinese children and adolescents. Rater, sex, and age differences on these estimates were also examined. Self-reported and parent-reported child's trait anxiety was collected from 1,104 pairs of same-sex twins aged 9-18 years. Genetic models were fitted to data from each informant to determine the genetic (A), shared (C), and non-shared environmental (E) influences on trait anxiety. The parameter estimates and 95% confidence intervals (CI) of A, C, E on self-reported trait anxiety were 50% [30%, 60%], 5% [0%, 24%], 45% [40%, 49%]. For parent-reported data, the corresponding parameter estimates were 63% [47%, 78%], 13% [1%, 28%], and 24% [22%, 27%], respectively. The heritability of anxiety was higher in girls for self-reported data, but higher in boys for parent-reported data. There was no significant age difference in genetic and environmental contributions for self-reported data, but a significant increase of heritability with age for parent-reported data. The trait anxiety in Chinese children and adolescents was highly heritable. Non-shared environmental factors also played an important role. The estimates of genetic and environmental effects differed by rater, sex and age. Our findings largely suggest the cross-cultural generalizability of the etiological model of child and adolescent anxiety. © 2014 Association for Child and Adolescent Mental Health.

  15. Strengthening the reporting of genetic risk prediction studies (GRIPS): explanation and elaboration

    PubMed Central

    Janssens, A Cecile JW; Ioannidis, John PA; Bedrosian, Sara; Boffetta, Paolo; Dolan, Siobhan M; Dowling, Nicole; Fortier, Isabel; Freedman, Andrew N; Grimshaw, Jeremy M; Gulcher, Jeffrey; Gwinn, Marta; Hlatky, Mark A; Janes, Holly; Kraft, Peter; Melillo, Stephanie; O'Donnell, Christopher J; Pencina, Michael J; Ransohoff, David; Schully, Sheri D; Seminara, Daniela; Winn, Deborah M; Wright, Caroline F; van Duijn, Cornelia M; Little, Julian; Khoury, Muin J

    2011-01-01

    The rapid and continuing progress in gene discovery for complex diseases is fueling interest in the potential application of genetic risk models for clinical and public health practice. The number of studies assessing the predictive ability is steadily increasing, but they vary widely in completeness of reporting and apparent quality. Transparent reporting of the strengths and weaknesses of these studies is important to facilitate the accumulation of evidence on genetic risk prediction. A multidisciplinary workshop sponsored by the Human Genome Epidemiology Network developed a checklist of 25 items recommended for strengthening the reporting of Genetic RIsk Prediction Studies (GRIPS), building on the principles established by previous reporting guidelines. These recommendations aim to enhance the transparency, quality and completeness of study reporting, and thereby to improve the synthesis and application of information from multiple studies that might differ in design, conduct or analysis. PMID:21407270

  16. Genetics Home Reference: retinoblastoma

    MedlinePlus

    ... children per year in the United States. It accounts for about 4 percent of all cancers in children younger than 15 years. Related Information What information about a genetic condition can statistics ...

  17. Protecting genetic materials and genetic information: a case study of Guthrie Cards in Victoria.

    PubMed

    Lawson, C; Smith, R

    2001-11-01

    The authors are privileged to have been provided with correspondence about a dispute over the ongoing storage of genetic material (as Guthrie Cards) in Victoria. The correspondence details confusion over the roles of government and the private sector service provider in accounting for the storage, use and destruction of these stored genetic materials collected as part of a government public health program. The purpose in publishing this account is to highlight the present inadequacies in current practices and the ongoing potential for a crisis in the management of collected genetic materials through a lack of appropriate regulation, transparency and accountability. The article suggests measures to remedy some of the existing inadequacies in contractual arrangements and recommends that the government retain ownership and control of both the genetic materials and the derived information to ensure some accountability in the present legal environment.

  18. Ancient individuals from the North American Northwest Coast reveal 10,000 years of regional genetic continuity.

    PubMed

    Lindo, John; Achilli, Alessandro; Perego, Ugo A; Archer, David; Valdiosera, Cristina; Petzelt, Barbara; Mitchell, Joycelynn; Worl, Rosita; Dixon, E James; Fifield, Terence E; Rasmussen, Morten; Willerslev, Eske; Cybulski, Jerome S; Kemp, Brian M; DeGiorgio, Michael; Malhi, Ripan S

    2017-04-18

    Recent genomic studies of both ancient and modern indigenous people of the Americas have shed light on the demographic processes involved during the first peopling. The Pacific Northwest Coast proves an intriguing focus for these studies because of its association with coastal migration models and genetic ancestral patterns that are difficult to reconcile with modern DNA alone. Here, we report the low-coverage genome sequence of an ancient individual known as "Shuká K áa" ("Man Ahead of Us") recovered from the On Your Knees Cave (OYKC) in southeastern Alaska (archaeological site 49-PET-408). The human remains date to ∼10,300 calendar (cal) y B.P. We also analyze low-coverage genomes of three more recent individuals from the nearby coast of British Columbia dating from ∼6,075 to 1,750 cal y B.P. From the resulting time series of genetic data, we show that the Pacific Northwest Coast exhibits genetic continuity for at least the past 10,300 cal y B.P. We also infer that population structure existed in the late Pleistocene of North America with Shuká K áa on a different ancestral line compared with other North American individuals from the late Pleistocene or early Holocene (i.e., Anzick-1 and Kennewick Man). Despite regional shifts in mtDNA haplogroups, we conclude from individuals sampled through time that people of the northern Northwest Coast belong to an early genetic lineage that may stem from a late Pleistocene coastal migration into the Americas.

  19. Ancient individuals from the North American Northwest Coast reveal 10,000 years of regional genetic continuity

    PubMed Central

    Lindo, John; Achilli, Alessandro; Perego, Ugo A.; Archer, David; Valdiosera, Cristina; Petzelt, Barbara; Mitchell, Joycelynn; Worl, Rosita; Dixon, E. James; Fifield, Terence E.; Rasmussen, Morten; Willerslev, Eske; Cybulski, Jerome S.; Kemp, Brian M.; DeGiorgio, Michael; Malhi, Ripan S.

    2017-01-01

    Recent genomic studies of both ancient and modern indigenous people of the Americas have shed light on the demographic processes involved during the first peopling. The Pacific Northwest Coast proves an intriguing focus for these studies because of its association with coastal migration models and genetic ancestral patterns that are difficult to reconcile with modern DNA alone. Here, we report the low-coverage genome sequence of an ancient individual known as “Shuká Káa” (“Man Ahead of Us”) recovered from the On Your Knees Cave (OYKC) in southeastern Alaska (archaeological site 49-PET-408). The human remains date to ∼10,300 calendar (cal) y B.P. We also analyze low-coverage genomes of three more recent individuals from the nearby coast of British Columbia dating from ∼6,075 to 1,750 cal y B.P. From the resulting time series of genetic data, we show that the Pacific Northwest Coast exhibits genetic continuity for at least the past 10,300 cal y B.P. We also infer that population structure existed in the late Pleistocene of North America with Shuká Káa on a different ancestral line compared with other North American individuals from the late Pleistocene or early Holocene (i.e., Anzick-1 and Kennewick Man). Despite regional shifts in mtDNA haplogroups, we conclude from individuals sampled through time that people of the northern Northwest Coast belong to an early genetic lineage that may stem from a late Pleistocene coastal migration into the Americas. PMID:28377518

  20. Tree genetic and improvement research at the University of Minnesota

    Treesearch

    Scott S. Pauley

    1970-01-01

    The School of Forestry's Tree Improvement Research Project was initiated in 1955. Studies in this area during the past fourteen years have been designed to accumulate information on genetic diversity in native and exotic tree species and isolate genetically superior lines for direct use in Minnesota forest plantings or for further selective breeding. Nursery...

  1. A model for family-based case-control studies of genetic imprinting and epistasis.

    PubMed

    Li, Xin; Sui, Yihan; Liu, Tian; Wang, Jianxin; Li, Yongci; Lin, Zhenwu; Hegarty, John; Koltun, Walter A; Wang, Zuoheng; Wu, Rongling

    2014-11-01

    Genetic imprinting, or called the parent-of-origin effect, has been recognized to play an important role in the formation and pathogenesis of human diseases. Although the epigenetic mechanisms that establish genetic imprinting have been a focus of many genetic studies, our knowledge about the number of imprinting genes and their chromosomal locations and interactions with other genes is still scarce, limiting precise inference of the genetic architecture of complex diseases. In this article, we present a statistical model for testing and estimating the effects of genetic imprinting on complex diseases using a commonly used case-control design with family structure. For each subject sampled from a case and control population, we not only genotype its own single nucleotide polymorphisms (SNPs) but also collect its parents' genotypes. By tracing the transmission pattern of SNP alleles from parental to offspring generation, the model allows the characterization of genetic imprinting effects based on Pearson tests of a 2 × 2 contingency table. The model is expanded to test the interactions between imprinting effects and additive, dominant and epistatic effects in a complex web of genetic interactions. Statistical properties of the model are investigated, and its practical usefulness is validated by a real data analysis. The model will provide a useful tool for genome-wide association studies aimed to elucidate the picture of genetic control over complex human diseases. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.

    PubMed

    Misztal, I

    2017-04-01

    Production environments are expected to change, mostly to a hotter climate but also possibly more extreme and drier. Can the current generation of farm animals cope with the changes or should it be specifically selected for changing conditions? In general, genetic selection produces animals with a smaller environmental footprint but also with smaller environmental flexibility. Some answers are coming from heat-stress research across species, with heat tolerance partly understood as a greater environmental flexibility. Specific studies in various species show the complexities of defining and selecting for heat tolerance. In Holsteins, the genetic component for effect of heat stress on production approximately doubles in second and quadruples in third parity. Cows with elevated body temperature have the greatest production under heat stress but probably are at risk for increased mortality. In hot but less intensive environments, the effect of heat stress on production is minimal, although the negative effect on fertility remains. Mortality peaks under heat stress and increases with parity. In Angus, the effect of heat stress is stronger only in selected regions, probably because of adaptation of calving seasons to local conditions and crossbreeding. Genetically, the direct effect shows variability because of heat stress, but the maternal effect does not, probably because dams shield calves from environmental challenges. In pigs, the effect of heat stress is strong for commercial farms but almost nothing for nucleus farms, which have lower pig density and better heat abatement. Under intensive management, heat stress is less evident in drier environments because of more efficient cooling. A genetic component of heat stress exists, but it is partly masked by improving management and selection based on data from elite farms. Genetic selection may provide superior identification of heat-tolerant animals, but a few cycles may be needed for clear results. Also, simple

  3. Genetic, Psychological, and Personal Network Factors Associated With Changes in Binge Drinking Over 2 Years Among Mexican Heritage Adolescents in the USA.

    PubMed

    Song, Sunmi; Marcum, Christopher Steven; Wilkinson, Anna V; Shete, Sanjay; Koehly, Laura M

    2018-04-24

    Despite prevalent binge drinking and alcohol-dependent symptoms among Hispanics, few studies have examined how multidimensional factors influence Hispanic adolescents' binge drinking. Purpose This study examines the effects of genetic, psychological, and social network factors on binge drinking over time among Mexican heritage adolescents in the USA and whether there are correlations among genetic variants that are associated with binge drinking and psychological and network characteristics. Mexican heritage adolescents (n = 731) participated in a longitudinal study, which included genetic testing at baseline, alcohol use assessments at first and second follow-ups, and questionnaires on sensation seeking, impulsivity, and peer and family network characteristics at second follow-up. Logistic regression and Spearman correlation analyses were performed. After adjusting for demographic characteristics, underlying genetic clustering, and binge drinking at first follow-up, two genetic variants on tryptophan hydroxylase 2 (TPH2; rs17110451, rs7963717), sensation seeking and impulsivity, and having a greater fraction of peers who drink or encourage drinking alcohol were associated with greater risk whereas another genetic variant on TPH2 (rs11178999) and having a greater fraction of close family relationships were associated with reduced risk for binge drinking at second follow-up. Genetic variants in TPH1 (rs591556) were associated with sensation seeking and impulsivity, while genetic variants in TPH2 (rs17110451) were associated with the fraction of drinkers in family. Results reveal that genetic variants in the serotonin pathway, behavioral disinhibition traits, and social networks exert joint influences on binge drinking in Mexican heritage adolescents in the USA.

  4. The genetics of alcoholism: identifying specific genes through family studies.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2006-09-01

    Alcoholism is a complex disorder with both genetic and environmental risk factors. Studies in humans have begun to elucidate the genetic underpinnings of the risk for alcoholism. Here we briefly review strategies for identifying individual genes in which variations affect the risk for alcoholism and related phenotypes, in the context of one large study that has successfully identified such genes. The Collaborative Study on the Genetics of Alcoholism (COGA) is a family-based study that has collected detailed phenotypic data on individuals in families with multiple alcoholic members. A genome-wide linkage approach led to the identification of chromosomal regions containing genes that influenced alcoholism risk and related phenotypes. Subsequently, single nucleotide polymorphisms (SNPs) were genotyped in positional candidate genes located within the linked chromosomal regions, and analyzed for association with these phenotypes. Using this sequential approach, COGA has detected association with GABRA2, CHRM2 and ADH4; these associations have all been replicated by other researchers. COGA has detected association to additional genes including GABRG3, TAS2R16, SNCA, OPRK1 and PDYN, results that are awaiting confirmation. These successes demonstrate that genes contributing to the risk for alcoholism can be reliably identified using human subjects.

  5. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability

    PubMed Central

    Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-01-01

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865

  6. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.

    PubMed

    Chen, Huan; Gu, Xiao-Hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-02-03

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10 -10 , maximum β -2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.

  7. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution

    PubMed Central

    Boueiz, Adel; Lutz, Sharon M.; Cho, Michael H.; Hersh, Craig P.; Bowler, Russell P.; Washko, George R.; Halper-Stromberg, Eitan; Bakke, Per; Gulsvik, Amund; Laird, Nan M.; Beaty, Terri H.; Coxson, Harvey O.; Crapo, James D.; Silverman, Edwin K.; Castaldi, Peter J.

    2017-01-01

    Rationale: Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe–predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. Objectives: To identify the genetic influences of emphysema distribution in non–alpha-1 antitrypsin–deficient smokers. Methods: A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism–, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. Measurements and Main Results: We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. Conclusions: This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings

  8. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution.

    PubMed

    Boueiz, Adel; Lutz, Sharon M; Cho, Michael H; Hersh, Craig P; Bowler, Russell P; Washko, George R; Halper-Stromberg, Eitan; Bakke, Per; Gulsvik, Amund; Laird, Nan M; Beaty, Terri H; Coxson, Harvey O; Crapo, James D; Silverman, Edwin K; Castaldi, Peter J; DeMeo, Dawn L

    2017-03-15

    Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe-predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. To identify the genetic influences of emphysema distribution in non-alpha-1 antitrypsin-deficient smokers. A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism-, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings may point to new biologic pathways on which to expand diagnostic and therapeutic

  9. Developmental Markers of Genetic Liability to Autism in Parents: A Longitudinal, Multigenerational Study.

    PubMed

    Losh, Molly; Martin, Gary E; Lee, Michelle; Klusek, Jessica; Sideris, John; Barron, Sheila; Wassink, Thomas

    2017-03-01

    Genetic liability to autism spectrum disorder (ASD) can be expressed in unaffected relatives through subclinical, genetically meaningful traits, or endophenotypes. This study aimed to identify developmental endophenotypes in parents of individuals with ASD by examining parents' childhood academic development over the school-age period. A cohort of 139 parents of individuals with ASD were studied, along with their children with ASD and 28 controls. Parents' childhood records in the domains of language, reading, and math were studied from grades K-12. Results indicated that relatively lower performance and slower development of skills (particularly language related skills), and an uneven rate of development across domains predicted ASD endophenotypes in adulthood for parents, and the severity of clinical symptoms in children with ASD. These findings may mark childhood indicators of genetic liability to ASD in parents, that could inform understanding of the subclinical expression of ASD genetic liability.

  10. [Genetic predisposition and Pediatric Acute Respiratory Distress Syndrome: New tools for genetic study].

    PubMed

    Erranz, M Benjamín; Wilhelm, B Jan; Riquelme, V Raquel; Cruces, R Pablo

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is the most severe form of respiratory failure. Theoretically, any acute lung condition can lead to ARDS, but only a small percentage of individuals actually develop the disease. On this basis, genetic factors have been implicated in the risk of developing ARDS. Based on the pathophysiology of this disease, many candidate genes have been evaluated as potential modifiers in patient, as well as in animal models, of ARDS. Recent experimental data and clinical studies suggest that variations of genes involved in key processes of tissue, cellular and molecular lung damage may influence susceptibility and prognosis of ARDS. However, the pathogenesis of pediatric ARDS is complex, and therefore, it can be expected that many genes might contribute. Genetic variations such as single nucleotide polymorphisms and copy-number variations are likely associated with susceptibility to ARDS in children with primary lung injury. Genome-wide association (GWA) studies can objectively examine these variations, and help identify important new genes and pathogenetic pathways for future analysis. This approach might also have diagnostic and therapeutic implications, such as predicting patient risk or developing a personalized therapeutic approach to this serious syndrome. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  11. Impact of Genetic Counseling and Connexin-26 and Connexin-30 Testing on Deaf Identity and Comprehension of Genetic Test Results in a Sample of Deaf Adults: A Prospective, Longitudinal Study

    PubMed Central

    Palmer, Christina G. S.; Boudreault, Patrick; Baldwin, Erin E.; Sinsheimer, Janet S.

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results. PMID:25375116

  12. Impact of genetic counseling and Connexin-26 and Connexin-30 testing on deaf identity and comprehension of genetic test results in a sample of deaf adults: a prospective, longitudinal study.

    PubMed

    Palmer, Christina G S; Boudreault, Patrick; Baldwin, Erin E; Sinsheimer, Janet S

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results.

  13. A finding in genetic polymorphism analysis study: A case of non-mosaic 47, XXX without manifestations.

    PubMed

    Yang, Xingyi; Ye, Zilan; Zhang, Xiaofang; Wang, Huijun; Liu, Chao

    2017-07-01

    Trisomy X (47, XXX) is a sex chromosome aneuploidy condition in which females have an extra X chromosome, compared to the 46, XX karyotype in typical females. There is considerable variation in the phenotype, with some individuals very mildly affected and others with more significant physical and psychological features. However, the trisomy X in this case, without any of these phenotype, is rarely reported. Here, we report a case found during DNA sample collection in a study of genetic polymorphism analysis of loci in Chinese ethnic group, of a female with neither laboratory or clinical signs of Triple X syndrome. She was born at her mother's 60years old and her father's 62years old. Advanced maternal age was found acting as a significant risk factor of Triplo-X. Moreover, her child are also born without manifestations of 47, XXX syndrome. Pedigree study demonstrated the normal karyotype of the children. A diagnosis of 47XXX was made on the basis of a chromosomal study. Therefore, laboratory investigations (including PCR amplification, more than two kinds of X-STR genotyping, G-banding karyotyping analysis and Pedigree study) are applied to rule out the possibility of Mosaicism (45, X0/47, XXX) and ascertain her 47XXX karyotype without mosaic. The objective of this study was to report a case of trisomy X, diagnostic investigation and management of the case, and to analysis the genetically possible reasons behind the case. To our knowledge, this case is a rare one, found in DNA sample collection for the estimation of gene frequency in the process of genetic polymorphism study, of non-mosaic 47, XXX without signs of physical syndrome and born healthy children. In this study, it revealed that the proportion of trisomy X would be more than official statistics and risk of systemic disabilities is lower than estimated. Moreover, we found out that sample mixture and mosaicism act as the interference factors in forensic test. Therefore, we draw the conclusion that

  14. Prostate Cancer Genetics in African Americans

    DTIC Science & Technology

    2014-09-01

    ADDRESS. 1. REPORT DATE 2 . REPORT TYPE Annual 3. DATES COVERED 15 Aug 2013 – 14 Aug 2014 4. TITLE AND SUBTITLE Prostate Cancer Genetics in...first two years of this grant has involved (1) hiring and training of culturally competent research personnel; ( 2 ) the establishment of a project...was no indication of familial prostate cancer. Task 2 : Data Collection and Management (Years 1- 3) The study-specific database has been

  15. The Combined Effect of Common Genetic Risk Variants on Circulating Lipoproteins Is Evident in Childhood: A Longitudinal Analysis of the Cardiovascular Risk in Young Finns Study

    PubMed Central

    Buscot, Marie-jeanne; Magnussen, Costan G.; Juonala, Markus; Pitkänen, Niina; Lehtimäki, Terho; Viikari, Jorma S. A.; Kähönen, Mika; Hutri-Kähönen, Nina; Schork, Nicholas J.

    2016-01-01

    Low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are modifiable risk factors for cardiovascular disease. Several genetic loci for predisposition to abnormal LDL-C, HDL-C and TG have been identified. However, it remains unclear whether these loci are consistently associated with serum lipid levels at each age or with unique developmental trajectories. Therefore, we assessed the association between genome wide association studies (GWAS) derived polygenic genetic risk scores and LDL-C, HDL-C, and triglyceride trajectories from childhood to adulthood using data available from the 27-year European ‘Cardiovascular Risk in Young Finns’ Study. For 2,442 participants, three weighted genetic risk scores (wGRSs) for HDL-C (38 SNPs), LDL-C (14 SNPs) and triglycerides (24 SNPs) were computed and tested for association with serum lipoprotein levels measured up to 8 times between 1980 and 2011. The categorical analyses revealed no clear divergence of blood lipid trajectories over time between wGRSs categories, with participants in the lower wGRS quartiles tending to have average lipoprotein concentrations 30 to 45% lower than those in the upper-quartile wGRS beginning at age 3 years and continuing through to age 49 years (where the upper-quartile wGRS have 4–7 more risk alleles than the lower wGRS group). Continuous analyses, however, revealed a significant but moderate time-dependent genetic interaction for HDL-C levels, with the association between HDL-C and the continuous HDL-C risk score weakening slightly with age. Conversely, in males, the association between the continuous TG genetic risk score and triglycerides levels tended to be lower in childhood and become more pronounced after the age of 25 years. Although the influence of genetic factors on age-specific lipoprotein values and developmental trajectories is complex, our data show that wGRSs are highly predictive of HDL-C, LDL-C, and triglyceride

  16. Genetic origin of the relationship between parental negativity and behavior problems from early childhood to adolescence: A longitudinal genetically sensitive study

    PubMed Central

    Alemany, Silvia; Rijsdijk, Frühling V.; Haworth, Claire Margaret Alison; Fañanás, Lourdes; Plomin, Robert

    2013-01-01

    Little is known about how genetic and environmental factors contribute to the association between parental negativity and behavior problems from early childhood to adolescence. The current study fitted a cross-lagged model in a sample consisting of 4,075 twin pairs to explore (a) the role of genetic and environmental factors in the relationship between parental negativity and behavior problems from age 4 to age 12, (b) whether parent-driven and child-driven processes independently explain the association, and (c) whether there are sex differences in this relationship. Both phenotypes showed substantial genetic influence at both ages. The concurrent overlap between them was mainly accounted for by genetic factors. Causal pathways representing stability of the phenotypes and parent-driven and child-driven effects significantly and independently account for the association. Significant but slight differences were found between males and females for parent-driven effects. These results were highly similar when general cognitive ability was added asa covariate. In summary, the longitudinal association between parental negativity and behavior problems seems to be bidirectional and mainly accounted for by genetic factors. Furthermore, child-driven effects were mainly genetically mediated, and parent-driven effects were a function of both genetic and shared-environmental factors. PMID:23627958

  17. Comparative genetic diversity in a sample of pony breeds from the U.K. and North America: a case study in the conservation of global genetic resources.

    PubMed

    Winton, Clare L; Plante, Yves; Hind, Pamela; McMahon, Robert; Hegarty, Matthew J; McEwan, Neil R; Davies-Morel, Mina C G; Morgan, Charly M; Powell, Wayne; Nash, Deborah M

    2015-08-01

    Most species exist as subdivided ex situ daughter population(s) derived from a single original group of individuals. Such subdivision occurs for many reasons both natural and manmade. Traditional British and Irish pony breeds were introduced to North America (U.S.A. and Canada) within the last 150 years, and subsequently equivalent breed societies were established. We have analyzed selected U.K. and North American equivalent pony populations as a case study for understanding the relationship between putative source and derived subpopulations. Diversity was measured using mitochondrial DNA and a panel of microsatellite markers. Genetic signatures differed between the North American subpopulations according to historical management processes. Founder effect and stochastic drift was apparent, particularly pronounced in some breeds, with evidence of admixture of imported mares of different North American breeds. This demonstrates the importance of analysis of subpopulations to facilitate understanding the genetic effects of past management practices and to lead to informed future conservation strategies.

  18. Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis.

    PubMed

    van Hulzen, Kimm J E; Scholz, Claus J; Franke, Barbara; Ripke, Stephan; Klein, Marieke; McQuillin, Andrew; Sonuga-Barke, Edmund J; Kelsoe, John R; Landén, Mikael; Andreassen, Ole A; Lesch, Klaus-Peter; Weber, Heike; Faraone, Stephen V; Arias-Vasquez, Alejandro; Reif, Andreas

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BPD) are frequently co-occurring and highly heritable mental health conditions. We hypothesized that BPD cases with an early age of onset (≤21 years old) would be particularly likely to show genetic covariation with ADHD. Genome-wide association study data were available for 4609 individuals with ADHD, 9650 individuals with BPD (5167 thereof with early-onset BPD), and 21,363 typically developing controls. We conducted a cross-disorder genome-wide association study meta-analysis to identify whether the observed comorbidity between ADHD and BPD could be due to shared genetic risks. We found a significant single nucleotide polymorphism-based genetic correlation between ADHD and BPD in the full and age-restricted samples (r Gfull = .64, p = 3.13 × 10 -14 ; r Grestricted = .71, p = 4.09 × 10 -16 ). The meta-analysis between the full BPD sample identified two genome-wide significant (p rs7089973 = 2.47 × 10 -8 ; p rs11756438 = 4.36 × 10 -8 ) regions located on chromosomes 6 (CEP85L) and 10 (TAF9BP2). Restricting the analyses to BPD cases with an early onset yielded one genome-wide significant association (p rs58502974 = 2.11 × 10 -8 ) on chromosome 5 in the ADCY2 gene. Additional nominally significant regions identified contained known expression quantitative trait loci with putative functional consequences for NT5DC1, NT5DC2, and CACNB3 expression, whereas functional predictions implicated ABLIM1 as an allele-specific expressed gene in neuronal tissue. The single nucleotide polymorphism-based genetic correlation between ADHD and BPD is substantial, significant, and consistent with the existence of genetic overlap between ADHD and BPD, with potential differential genetic mechanisms involved in early and later BPD onset. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Genetic and Non-Genetic Factors Affecting the Quality of Anticoagulation Control and Vascular Events in Atrial Fibrillation.

    PubMed

    Park, Yun Kyung; Lee, Mi Ji; Kim, Jae Ha; Lee, Jin Soo; Park, Rae Woong; Kim, Gyeong-Moon; Chung, Chin-Sang; Lee, Kwang Ho; Kim, June Soo; Lee, Soo-Youn; Bang, Oh Young

    2017-06-01

    Warfarin has a narrow therapeutic window. We hypothesized that genetic factors related to warfarin metabolism (CYP2C9) and activity (VKORC1) would show stronger associations than modifiable factors with the quality of anticoagulation control and risks for thromboembolism and hemorrhage. In this retrospective cohort analysis, clinical and genetic data were collected from 380 patients with atrial fibrillation (AF) who were followed for an average observation period of 4 years. We evaluated the factors associated with time in therapeutic range (TTR, international normalized ratio [INR]: 2-3) and vascular events (either thromboembolic or hemorrhagic), including both genetic (CYP2C9 and VKORC1 genotype) and modifiable factors (anticoagulation service and warfarin dose assessment interval). The genotypic frequency of CYP2C9*3 (rs1057910) was 9.5% and that of VKORC1 1173C>T (rs9934438) was 16.3%. TTR showed dependence on VKORC1 polymorphism: TTR was higher in carriers of the VKORC1 1173C>T than of the VKORC1 TT genotype (61.7 ± 16.0% versus 56.7 ± 17.4%, P = .031). Multivariate testing showed that the VKORC1 genotype and anticoagulation service were independently related to labile INRs (TTR <65%). Vascular events were observed in 66 patients (18.4%) during the study period. A Cox proportional hazard model showed that the use of anticoagulation service and patients' characteristics, such as AF-thromboembolic risk (CHA 2 DS 2 -VASc score: Congestive heart failure, Hypertension, Age 75 years or older, Diabetes mellitus, previous Stroke or transient ischemic attack, Vascular disease, Age 65 to 74 years, female) and consequence (neurologic disability), but not genetic factors, were independently associated with vascular events. Both genetic factor (VKORC1 genotype) and clinical efforts (anticoagulation service) influenced the quality of anticoagulation control. However, clinical events were more strongly associated with patient characteristics and clinical

  20. Fifteen years of quantitative trait loci studies in fish: challenges and future directions.

    PubMed

    Ashton, David T; Ritchie, Peter A; Wellenreuther, Maren

    2017-03-01

    Understanding the genetic basis of phenotypic variation is a major challenge in biology. Here, we systematically evaluate 146 quantitative trait loci (QTL) studies on teleost fish over the last 15 years to investigate (i) temporal trends and (ii) factors affecting QTL detection and fine-mapping. The number of fish QTL studies per year increased over the review period and identified a cumulative number of 3632 putative QTLs. Most studies used linkage-based mapping approaches and were conducted on nonmodel species with limited genomic resources. A gradual and moderate increase in the size of the mapping population and a sharp increase in marker density from 2011 onwards were observed; however, the number of QTLs and variance explained by QTLs changed only minimally over the review period. Based on these findings, we discuss the causative factors and outline how larger sample sizes, phenomics, comparative genomics, epigenetics and software development could improve both the quantity and quality of QTLs in future genotype-phenotype studies. Given that the technical limitations on DNA sequencing have mostly been overcome in recent years, a renewed focus on these and other study design factors will likely lead to significant improvements in QTL studies in the future. © 2016 John Wiley & Sons Ltd.

  1. Genetic HLA Study of Kurds in Iraq, Iran and Tbilisi (Caucasus, Georgia): Relatedness and Medical Implications.

    PubMed

    Arnaiz-Villena, Antonio; Palacio-Grüber, Jose; Muñiz, Ester; Campos, Cristina; Alonso-Rubio, Javier; Gomez-Casado, Eduardo; Salih, Shadallah Fareq; Martin-Villa, Manuel; Al-Qadi, Rawand

    2017-01-01

    Kurds from Iraq (Dohuk and Erbil Area, North Iraq) have been analyzed for HLA genes. Their HLA genetic profile has been compared with that of other Kurd groups from Iran and Tbilisi (Georgia, Caucasus) and also Worldwide populations. A total of 7,746 HLA chromosomes have been used. Genetic distances, NJ dendrograms and correspondence analyses have been carried out. Haplotype HLA-B*52-DRB1*15 is present in all three analyzed Kurd populations. HLA-A*02-B*51-DRB1*11 is present in Iraq and Georgia Kurds. Haplotypes common to Iran and Iraq Kurds are HLA DRB1*11-DQB1*03, HLA DRB1*03-DQB1*02 and others in a lower frequency. Our HLA study conclusions are that Kurds most probably belong to an ancient Mediterranean / Middle East / Caucasian genetic substratum and that present results and those previously obtained by us in Kurds may be useful for Medicine in future Kurd transplantation programs, HLA Epidemiology (HLA linked diseases) and Pharmacogenomics (HLA-associated drug side effects) and also for Anthropology. It is discussed that one of the most ancient Kurd ancestor groups is in Hurrians (2,000 years BC).

  2. Genetic HLA Study of Kurds in Iraq, Iran and Tbilisi (Caucasus, Georgia): Relatedness and Medical Implications

    PubMed Central

    Muñiz, Ester; Campos, Cristina; Alonso-Rubio, Javier; Gomez-Casado, Eduardo; Salih, Shadallah Fareq; Martin-Villa, Manuel; Al-Qadi, Rawand

    2017-01-01

    Kurds from Iraq (Dohuk and Erbil Area, North Iraq) have been analyzed for HLA genes. Their HLA genetic profile has been compared with that of other Kurd groups from Iran and Tbilisi (Georgia, Caucasus) and also Worldwide populations. A total of 7,746 HLA chromosomes have been used. Genetic distances, NJ dendrograms and correspondence analyses have been carried out. Haplotype HLA-B*52—DRB1*15 is present in all three analyzed Kurd populations. HLA-A*02-B*51-DRB1*11 is present in Iraq and Georgia Kurds. Haplotypes common to Iran and Iraq Kurds are HLA DRB1*11—DQB1*03, HLA DRB1*03—DQB1*02 and others in a lower frequency. Our HLA study conclusions are that Kurds most probably belong to an ancient Mediterranean / Middle East / Caucasian genetic substratum and that present results and those previously obtained by us in Kurds may be useful for Medicine in future Kurd transplantation programs, HLA Epidemiology (HLA linked diseases) and Pharmacogenomics (HLA-associated drug side effects) and also for Anthropology. It is discussed that one of the most ancient Kurd ancestor groups is in Hurrians (2,000 years BC). PMID:28114347

  3. Genetic studies among seven endogamous populations of the Koshi Zone, Bihar (India).

    PubMed

    Pandey, B N; Das, P K; Husain, S; Anwer, Md Rauf; Jha, A K

    2003-09-01

    The distribution of AB0 and Rhesus blood groups, PTC taste sensitivity and colour blindness was studied among seven endogamous populations (Tharu, Mushar, Santal, Dhobi, Julaha, Kulhaiya and Karan Kayastha) in the Koshi Zone of Bihar (India). The phenotype and allele frequencies of the four gene loci (AB0, RH, PTC and colour blindness) show considerable differences between these populations. The measurement of genetic distances revealed, that the lowest genetic distance is seen between Dhobi and Julaha, the highest between Mushar and Tharu. From the genetic distance analysis there is some evidence for a close genetic relationship among the population groups belonging to the same region, irrespective of their caste, religion, linguistic or any other affinities. It may be concluded that all these populations have arisen through a common ancestor and changed gene frequencies among them is due to evolutionary forces like mutation, selection, migration, temporal variation and genetic drift. However, these populations retain their separate entities by practising endogamy. Gene diversity analysis reveals that these populations are at an early stage of genetic differentiation.

  4. [Study on tests of genetics experiments in universities].

    PubMed

    Jie, He; Hao, Zhang; Lili, Zhang

    2015-03-01

    Based on the present situation and the development of experiment tests in universities, we introduced a reform in tests of genetics experiments. According to the teaching goals and course contents of genetics experiment, the tests of genetics experiments contain four aspects on the performance of students: the adherence to the experimental procedures, the depth of participation in experiment, the quality of experiment report, and the mastery of experiment principles and skills, which account for 10 %, 20 %, 40 % and 30 % in the total scores, respectively. All four aspects were graded quantitatively. This evaluation system has been tested in our experiment teaching. The results suggest that it has an effect on the promotion of teaching in genetics experiments.

  5. Disease-modifying genetic factors in cystic fibrosis.

    PubMed

    Marson, Fernando A L

    2018-05-01

    To compile data from the past 10 years regarding the role of modifying genes in cystic fibrosis (CF). CF is a model disease for understanding of the action of modifying genes. Although it is a monogenic (CFTR) autosomal recessive disease, CF presents with wide phenotypic variability. In CF, variability occurs with different intensity among patients by each organ, being organ-specific, resulting from the mutual interaction of environmental and genetic factors, including CFTR mutations and various other genes, most of which are associated with inflammatory processes. In individuals, using precision medicine, gene modification studies have revealed individualized responses to drugs depending on particular CFTR mutations and modifying genes, most of which are alternative ion channels. Studies of modifying genes in CF allow: understanding of clinical variability among patients with the same CFTR genotype; evaluation of precision medicine; understanding of environmental and genetic effects at the organ level; understanding the involvement of genetic variants in inflammatory responses; improvements in genetic counseling; understanding the involvement of genetic variants in inflammatory responses in lung diseases, such as asthma; and understanding the individuality of the person with the disease.

  6. Genetics of Streptomyces rimosus, the Oxytetracycline Producer

    PubMed Central

    Petković, Hrvoje; Cullum, John; Hranueli, Daslav; Hunter, Iain S.; Perić-Concha, Nataša; Pigac, Jasenka; Thamchaipenet, Arinthip; Vujaklija, Dušica; Long, Paul F.

    2006-01-01

    From a genetic standpoint, Streptomyces rimosus is arguably the best-characterized industrial streptomycete as the producer of oxytetracycline and other tetracycline antibiotics. Although resistance to these antibiotics has reduced their clinical use in recent years, tetracyclines have an increasing role in the treatment of emerging infections and noninfective diseases. Procedures for in vivo and in vitro genetic manipulations in S. rimosus have been developed since the 1950s and applied to study the genetic instability of S. rimosus strains and for the molecular cloning and characterization of genes involved in oxytetracycline biosynthesis. Recent advances in the methodology of genome sequencing bring the realistic prospect of obtaining the genome sequence of S. rimosus in the near term. PMID:16959966

  7. Genetic and environmental influences on sleep quality in middle-aged men: a twin study.

    PubMed

    Genderson, Margo R; Rana, Brinda K; Panizzon, Matthew S; Grant, Michael D; Toomey, Rosemary; Jacobson, Kristen C; Xian, Hong; Cronin-Golomb, Alice; Franz, Carol E; Kremen, William S; Lyons, Michael J

    2013-10-01

    Poor sleep quality is a risk factor for a number of cognitive and physiological age-related disorders. Identifying factors underlying sleep quality are important in understanding the etiology of these age-related health disorders. We investigated the extent to which genes and the environment contribute to subjective sleep quality in middle-aged male twins using the classical twin design. We used the Pittsburgh Sleep Quality Index to measure sleep quality in 1218 middle-aged twin men from the Vietnam Era Twin Study of Aging (mean age = 55.4 years; range 51-60; 339 monozygotic twin pairs, 257 dizygotic twin pairs, 26 unpaired twins). The mean PSQI global score was 5.6 [SD = 3.6; range 0-20]. Based on univariate twin models, 34% of variability in the global PSQI score was due to additive genetic effects (heritability) and 66% was attributed to individual-specific environmental factors. Common environment did not contribute to the variability. Similarly, the heritability of poor sleep-a dichotomous measure based on the cut-off of global PSQI>5-was 31%, with no contribution of the common environment. Heritability of six of the seven PSQI component scores (subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, and daytime dysfunction) ranged from 0.15 to 0.31, whereas no genetic influences contributed to the use of sleeping medication. Additive genetic influences contribute to approximately one-third of the variability of global subjective sleep quality. Our results in middle-aged men constitute a first step towards examination of the genetic relationship between sleep and other facets of aging. © 2013 European Sleep Research Society.

  8. Genetic and Environmental Influences on Sleep Quality in Middle-Aged Men: A Twin Study

    PubMed Central

    Genderson, Margo R.; Rana, Brinda K.; Panizzon, Matthew S.; Grant, Michael D.; Toomey, Rosemary; Jacobson, Kristen C.; Xian, Hong; Cronin-Golomb, Alice; Franz, Carol E.; Kremen, William S.; Lyons, Michael J.

    2013-01-01

    SUMMARY Poor sleep quality is a risk factor for a number of cognitive and physiological age-related disorders. Identifying factors underlying sleep quality are important in understanding the etiology of these age-related health disorders. We investigated the extent to which genes and the environment contribute to subjective sleep quality in middle-aged male twins using the classical twin design. We used the Pittsburgh Sleep Quality Index (PSQI) to measure sleep quality in 1218 middle-aged twin men from the Vietnam Era Twin Study of Aging (VETSA)(mean age=55.4 years; range 51–60; 339 monozygotic twin pairs, 257 dizygotic twin pairs, 26 unpaired twins). The mean PSQI global score was 5.6 (SD=3.6; range 0–20). Based on univariate twin models, 34% of variability in the global PSQI score was due to additive genetic effects (heritability) and 66% was attributed to individual-specific environmental factors. Common environment did not contribute to the variability. Similarly, the heritability of poor sleep—a dichotomous measure based on the cut-off of global PSQI>5--was 31% with no contribution of the common environment. Heritability of six of the seven PSQI component scores (Subjective Sleep Quality, Sleep Latency, Sleep Duration, Habitual Sleep Efficiency, Sleep Disturbances, and Daytime Dysfunction) ranged from .15 to .31, where as no genetic influences contributed to Use of Sleeping Medication. Additive genetic influences contribute to approximately one-third of the variability of global subjective sleep quality. Our results in middle-aged men constitute a first step toward examination of the genetic relationship between sleep and other facets of aging. PMID:23509903

  9. A survey of genetic counselors about the needs of 18-25 year olds from families with hereditary breast and ovarian cancer syndrome.

    PubMed

    Werner-Lin, Allison; Ratner, Rachel; Hoskins, Lindsey M; Lieber, Caroline

    2015-02-01

    As a result of modern treatments, the life of women who test positive for BRCA mutations may be plotted along the arc of preventive medicine rather than the slope of diagnostics. Despite evidence supporting the benefits of risk reduction, protocols for early detection and prevention among women from families affected by hereditary breast and ovarian cancer (HBOC) are not yet proven, and clinical trials have not been undertaken for patients aged 18 to 25. The absence of psychosocial data may leave genetic counselors without uniform guidance on how to manage the care of these patients. This project sought to investigate perspectives on counseling 18-25 year-old patients from families with hereditary cancer syndromes, with specific emphasis on HBOC, given their unique developmental, familial, and medical challenges. Certified genetic counselors were recruited through the NSGC's Cancer Genetics Special Interest Group listserv. Researchers constructed an online survey which included 41 items and elicited information about: counselor demographics, training, and practice settings; approaches to cancer risk assessment; and common challenges in work with 18- to 25-year-old patients. The survey was also informed by previous work by researchers with 18 to 25-year-olds with BRCA gene mutations. Eighty-six surveys were completed. Researchers used a combination of grounded theory and content analysis for open-ended responses, supported and triangulated with statistical analysis to maximize the interpretation of data. Genetic counselors who responded to this survey experience 18-25 year old patients presenting for cancer risk assessment differently than older patients, and some reported adapting their counseling style to address these differences. Respondents differed in the extent to which they felt well-versed in the developmental needs of patients in this age group. Respondents aged 39 and under reported feeling familiar with this stage in life, having more recently

  10. What Use Is Population Genetics?

    PubMed

    Charlesworth, Brian

    2015-07-01

    The Genetic Society of America's Thomas Hunt Morgan Medal is awarded to an individual GSA member for lifetime achievement in the field of genetics. For over 40 years, 2015 recipient Brian Charlesworth has been a leader in both theoretical and empirical evolutionary genetics, making substantial contributions to our understanding of how evolution acts on genetic variation. Some of the areas in which Charlesworth's research has been most influential are the evolution of sex chromosomes, transposable elements, deleterious mutations, sexual reproduction, and life history. He also developed the influential theory of background selection, whereby the recurrent elimination of deleterious mutations reduces variation at linked sites, providing a general explanation for the correlation between recombination rate and genetic variation. Copyright © 2015 by the Genetics Society of America.

  11. The genetics of dystonia: new twists in an old tale

    PubMed Central

    Charlesworth, Gavin; Bhatia, Kailash P.

    2013-01-01

    Dystonia is a common movement disorder seen by neurologists in clinic. Genetic forms of the disease are important to recognize clinically and also provide valuable information about possible pathogenic mechanisms within the wider disorder. In the past few years, with the advent of new sequencing technologies, there has been a step change in the pace of discovery in the field of dystonia genetics. In just over a year, four new genes have been shown to cause primary dystonia (CIZ1, ANO3, TUBB4A and GNAL), PRRT2 has been identified as the cause of paroxysmal kinesigenic dystonia and other genes, such as SLC30A10 and ATP1A3, have been linked to more complicated forms of dystonia or new phenotypes. In this review, we provide an overview of the current state of knowledge regarding genetic forms of dystonia—related to both new and well-known genes alike—and incorporating genetic, clinical and molecular information. We discuss the mechanistic insights provided by the study of the genetic causes of dystonia and provide a helpful clinical algorithm to aid clinicians in correctly predicting the genetic basis of various forms of dystonia. PMID:23775978

  12. Scalability problems of simple genetic algorithms.

    PubMed

    Thierens, D

    1999-01-01

    Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simple genetic algorithms were understood. Here we present some of the work that has aided in getting a clear insight in the scalability problems of simple genetic algorithms. Particularly, we discuss the important issue of building block mixing. We show how the need for mixing places a boundary in the GA parameter space that, together with the boundary from the schema theorem, delimits the region where the GA converges reliably to the optimum in problems of bounded difficulty. This region shrinks rapidly with increasing problem size unless the building blocks are tightly linked in the problem coding structure. In addition, we look at how straightforward extensions of the simple genetic algorithm-namely elitism, niching, and restricted mating are not significantly improving the scalability problems.

  13. Genetic Predisposition to Central Obesity and Risk of Type 2 Diabetes: Two Independent Cohort Studies

    PubMed Central

    Huang, Tao; Qi, Qibin; Zheng, Yan; Ley, Sylvia H.; Manson, JoAnn E.; Hu, Frank B.

    2015-01-01

    OBJECTIVE Abdominal obesity is a major risk factor for type 2 diabetes (T2D). We aimed to examine the association between the genetic predisposition to central obesity, assessed by the waist-to-hip ratio (WHR) genetic score, and T2D risk. RESEARCH DESIGN AND METHODS The current study included 2,591 participants with T2D and 3,052 participants without T2D of European ancestry from the Nurses’ Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). Genetic predisposition to central obesity was estimated using a genetic score based on 14 established loci for the WHR. RESULTS We found that the central obesity genetic score was linearly related to higher T2D risk. Results were similar in the NHS (women) and HPFS (men). In combined results, each point of the central obesity genetic score was associated with an odds ratio (OR) of 1.04 (95% CI 1.01–1.07) for developing T2D, and the OR was 1.24 (1.03–1.45) when comparing extreme quartiles of the genetic score after multivariate adjustment. CONCLUSIONS The data indicate that genetic predisposition to central obesity is associated with higher T2D risk. This association is mediated by central obesity. PMID:25852209

  14. Genetic variation in steelhead of Oregon and northern California

    USGS Publications Warehouse

    Reisenbichler, R.R.; McIntyre, J.D.; Solazzi, M.F.; Landino, S.W

    1992-01-01

    Steelhead Oncorhynchus mykiss from various sites between the Columbia River and the Mad River, California, were genetically characterized at 10 protein-coding loci or pairs of loci by starch gel electrophoresis. Fish from coastal streams differed from fish east of the Cascade Mountains and from fish of the Willamette River (a tributary of the Columbia River, west of the Cascade Mountains). Coastal steelhead from the northern part of the study area differed from those in the southern part. Genetic differentiation within and among drainages was not statistically significant; however, gene diversity analysis and the life history of steelhead suggested that fish from different drainages should be considered as separate populations. Genetic variation among fish in separate drainages was similar to that reported in northwestern Washington and less than that reported in British Columbia. Allele frequencies varied significantly among year-classes. Genetic variation within samples accounted for 98.3% of the total genetic variation observed in this study. Most hatchery populations differed from wild populations, suggesting that conservation of genetic diversity among and within wild populations could be facilitated by altering hatchery programs.

  15. PERSONAL CHARACTERISTICS OF OLDER PRIMARY CARE PATIENTS WHO PROVIDE A BUCCAL SWAB FOR APOE TESTING AND BANKING OF GENETIC MATERIAL: THE SPECTRUM STUDY

    PubMed Central

    Bogner, Hillary R.; Wittink, Marsha N.; Merz, Jon F.; Straton, Joseph B.; Cronholm, Peter F.; Rabins, Peter V.; Gallo, Joseph J.

    2009-01-01

    OBJECTIVE To determine the personal characteristics and reasons associated with providing a buccal swab for APOE genetic testing in a primary care study. METHODS The study sample consisted of 342 adults aged 65 years and older recruited from primary care settings. RESULTS In all, 88% of patients agreed to provide a DNA sample for APOE genotyping and 78% of persons providing a sample agreed to banking of the DNA. Persons aged 80 years and older and African-Americans were less likely to participate in APOE genotyping. Concern about confidentiality was the most common reason for not wanting to provide a DNA sample or to have DNA banked. CONCLUSION We found stronger relationships between sociodemographic variables of age and ethnicity with participation in genetic testing than we did between level of educational attainment, gender, function, cognition, and affect. PMID:15692195

  16. Genetic architecture for susceptibility to gout in the KARE cohort study.

    PubMed

    Shin, Jimin; Kim, Younyoung; Kong, Minyoung; Lee, Chaeyoung

    2012-06-01

    This study aimed to identify functional associations of cis-regulatory regions with gout susceptibility using data resulted from a genome-wide association study (GWAS), and to show a genetic architecture for gout with interaction effects among genes within each of the identified functions. The GWAS was conducted with 8314 control subjects and 520 patients with gout in the Korea Association REsource cohort. However, genetic associations with any individual nucleotide variants were not discovered by Bonferroni multiple testing in the GWAS (P>1.42 × 10(-7)). Genomic regions enrichment analysis was employed to identify functional associations of cis-regulatory regions. This analysis revealed several biological processes associated with gout susceptibility, and they were quite different from those with serum uric acid level. Epistasis for susceptibility to gout was estimated using entropy decomposition with selected genes within each biological process identified by the genomic regions enrichment analysis. Some epistases among nucleotide sequence variants for gout susceptibility were found to be larger than their individual effects. This study provided the first evidence that genetic factors for gout susceptibility greatly differed from those for serum uric acid level, which may suggest that research endeavors for identifying genetic factors for gout susceptibility should not be heavily dependent on pathogenesis of uric acid. Interaction effects between genes should be examined to explain a large portion of phenotypic variability for gout susceptibility.

  17. An exploratory study with preliminary results: The development and evaluation of a Genetics Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hott, Adam M.

    Modern science education reform includes the development of standards and recommendations for content as well as the development and evaluation of pedagogy, but demonstrates limited assessment of student knowledge. Student knowledge assessment is an important factor in measuring the scientific literacy of current students. Concept inventories have been developed and used for the past fourteen years to assess non-science major student conceptual understanding of a content area. Inventories have been developed in the fields of physics, astronomy, chemistry and biology. The development and evaluation of a Genetics Concept Inventory (GCI) is presented here. The reliability estimate of 0.62 is supported by a respected panel of genetics educators' revisions, no significant gender bias, and the ability of junior and senior biology majors to outperform the non-science majors. Pretest/Posttest comparisons show a significant increase in five of six genetics content areas as well as a 9% increase on the overall percent score for the instrument. Although the Genetics Concept Inventory presented here needs further modification and testing, it is the first step in the development of a quality assessment tool for genetics content.

  18. Genetic restoration in the eastern collared lizard under prescribed woodland burning.

    PubMed

    Neuwald, Jennifer L; Templeton, Alan R

    2013-07-01

    Eastern collared lizards of the Ozarks live in glades--open, rocky habitats embedded in a woodland matrix. Past fire suppression had made the woodlands a barrier to dispersal, leading to habitat destruction, fragmentation and local extinction. Reintroduced populations of lizards were subjected to 10 years of habitat fragmentation under continued fire suppression followed by twelve years of landscape restoration with prescribed burns. Prior to prescribed burning, genetic diversity decreased within glades and differentiation increased among glades. With woodland burning, genetic diversity within glades first decreased during an expanding colonization phase, but then increased as a dynamically stable metapopulation was established. Population differentiation among glades also stabilized in the metapopulation under weak isolation-by-distance. This study is one of the first to examine the genetic changes in a species of conservation concern throughout all the stages of decline and recovery and shows the importance of landscape-level restoration for maintaining the genetic integrity of populations. This study also demonstrates how mark-recapture and genetic data together can yield detailed insight into metapopulation dynamics that would be impossible from just one type of data alone. © 2013 John Wiley & Sons Ltd.

  19. Disclosure of Research Results in Genetic Studies of Parkinson Disease Due to LRRK2 Mutations

    PubMed Central

    Bressman, Susan; Raymond, Deborah; Glickman, Amanda; Tolosa, Eduardo

    2015-01-01

    With the advent of large genetic studies examining both symptomatic and asymptomatic individuals, whether and how to disclose genetic research results have become pressing questions. The need is particularly acute in the case of LRRK2 research: Movement centers worldwide are recruiting cohorts of individuals with PD and their family members, including asymptomatic carriers, clinical features and treatment are complex and evolving, and disclosure policies vary at different sites and have been modified during the course of some studies. Herein, we present the major ethical principles of autonomy, beneficence, non-maleficence, and honesty that should guide disclosure policies in studies of families with LRRK2 mutations. We make recommendations regarding: genetic counseling, policies of either active or passive disclosure, responsibilities of funders to budget for genetic counseling, clinical genetic testing where locally required for disclosure, and aspects of study design to avoid mandatory disclosure whenever feasible. PMID:25952684

  20. The impact of using old germplasm on genetic merit and diversity-A cattle breed case study.

    PubMed

    Eynard, Sonia E; Windig, Jack J; Hulsegge, Ina; Hiemstra, Sipke-Joost; Calus, Mario P L

    2018-05-29

    Artificial selection and high genetic gains in livestock breeds led to a loss of genetic diversity. Current genetic diversity conservation actions focus on long-term maintenance of breeds under selection. Gene banks play a role in such actions by storing genetic materials for future use and the recent development of genomic information is facilitating characterization of gene bank material for better use. Using the Meuse-Rhine-Issel Dutch cattle breed as a case study, we inferred the potential role of germplasm of old individuals for genetic diversity conservation of the current population. First, we described the evolution of genetic merit and diversity over time and then we applied the optimal contribution (OC) strategy to select individuals for maximizing genetic diversity, or maximizing genetic merit while constraining loss of genetic diversity. In the past decades, genetic merit increased while genetic diversity decreased. Genetic merit and diversity were both higher in an OC scenario restricting the rate of inbreeding when old individuals were considered for selection, compared to considering only animals from the current population. Thus, our study shows that gene bank material, in the form of old individuals, has the potential to support long-term maintenance and selection of breeds. © 2018 The Authors. Journal of Animal Breeding and Genetics Published by Blackwell Verlag GmbH.

  1. Synthesis and assessment of date palm genetic diversity studies

    USDA-ARS?s Scientific Manuscript database

    A thorough assessment of genetic diversity and population differentiation of Phoenix dactylifera are critical for its dynamic conservation and sustainable utilization of its genetic diversity. Estimates of genetic diversity based on phenotypic, biochemical and molecular markers; and fruit quality tr...

  2. [Clinical and genetic study patients with tuberous sclerosis complex].

    PubMed

    Rubilar, Carla; López, Francisca; Troncoso, Mónica; Barrios, Andrés; Herrera, Luisa

    2017-02-01

    Tuberous sclerosis complex (TSC) is a multisystem autosomal dominant disease caused by mutations in the tumor suppressor genes TSC1 or TSC2. To characterize clinically and genetically patients diagnosed with TSC. Descriptive study of clinical records of 42 patients from a pediatric neuropsychiatry department diagnosed with TSC and genetic study in 21 of them. The exon 15 of TSC1 gene and exons 33, 36 and 37 of TSC2 gene were amplified by polymerase chain reaction and sequenced. The relationship between the mutations found with the severity and clinical course were analyzed. In 61.9% of the patients the symptoms began before 6 months of age. The initial most frequent manifestations of TSC were new onset of seizures (73.8%) and the detection of cardiac rhabdomyomas (16.6%). During the evolution of the disease all patients had neurological involvement; 92.9% had epilepsy. All patients presented hypomelanotic spots, 47.6% facial angiofibromas, 23.8% Shagreen patch, 47.6 heart rhabdomyomas and 35.7% retinal hamartomas. In the genetic study of 21 patients two heterozygous pathogenic mutations in TSC1 and one in TSC2 genes were identified. The latter had a more severe clinical phenotype. Neurological and dermatological manifestations were the most frequent ones in patients with TSC. Two pathogenic mutations in TSC1 and one in TSC2 genes were identified. The patient with TSC2 mutation manifested a more severe clinical phenotype.

  3. [Advances in genetic research of cerebral palsy].

    PubMed

    Wang, Fang-Fang; Luo, Rong; Qu, Yi; Mu, De-Zhi

    2017-09-01

    Cerebral palsy is a group of syndromes caused by non-progressive brain injury in the fetus or infant and can cause disabilities in childhood. Etiology of cerebral palsy has always been a hot topic for clinical scientists. More and more studies have shown that genetic factors are closely associated with the development of cerebral palsy. With the development and application of various molecular and biological techniques such as chromosome microarray analysis, genome-wide association study, and whole exome sequencing, new achievements have been made in the genetic research of cerebral palsy. Chromosome abnormalities, copy number variations, susceptibility genes, and single gene mutation associated with the development of cerebral palsy have been identified, which provides new opportunities for the research on the pathogenesis of cerebral palsy. This article reviews the advances in the genetic research on cerebral palsy in recent years.

  4. How genetics came to the unborn: 1960-2000.

    PubMed

    Löwy, Ilana

    2014-09-01

    Prenatal diagnosis (PND) is frequently identified with genetic testing. The termination of pregnancy for foetal malformation was called 'genetic abortion', in spite of the fact that in many cases the malformation does not result from changes in the genetic material of the cell. This study argues that the 'geneticization' of PND reflected the transformation of the meaning of the term 'genetics' in the 1960s and 70s. Such transformation was linked with the definition of Down syndrome as a genetic condition, and to the key role of search for this condition in the transformation of PND into a routine approach. The identification of PND with the polysemic term 'genetics' was also favoured by hopes that cytogenetic studies will lead to cures or prevention of common birth defects, the association of genetic counsellors with prenatal diagnosis, and the raising prestige of clinical genetics. In spite of the impressive achievements of the latter specialty, more than fifty years after the first prenatal diagnoses, the main 'cure' of a severe foetal malformation remains the same as it was in the 1960s: the termination of a pregnancy. The identification of PND with genetics deflects attention from the gap between scientists' capacity to elucidate the causes of numerous birth defects and their ability (as for now) to prevent or treat these defects, and favours the maintenance of a powerful regimen of hope. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Monogenic and polygenic determinants of sarcoma risk: an international genetic study.

    PubMed

    Ballinger, Mandy L; Goode, David L; Ray-Coquard, Isabelle; James, Paul A; Mitchell, Gillian; Niedermayr, Eveline; Puri, Ajay; Schiffman, Joshua D; Dite, Gillian S; Cipponi, Arcadi; Maki, Robert G; Brohl, Andrew S; Myklebost, Ola; Stratford, Eva W; Lorenz, Susanne; Ahn, Sung-Min; Ahn, Jin-Hee; Kim, Jeong Eun; Shanley, Sue; Beshay, Victoria; Randall, Robert Lor; Judson, Ian; Seddon, Beatrice; Campbell, Ian G; Young, Mary-Anne; Sarin, Rajiv; Blay, Jean-Yves; O'Donoghue, Seán I; Thomas, David M

    2016-09-01

    Sarcomas are rare, phenotypically heterogeneous cancers that disproportionately affect the young. Outside rare syndromes, the nature, extent, and clinical significance of their genetic origins are not known. We aimed to investigate the genetic basis for bone and soft-tissue sarcoma seen in routine clinical practice. In this genetic study, we included 1162 patients with sarcoma from four cohorts (the International Sarcoma Kindred Study [ISKS], 966 probands; Project GENESIS, 48 probands; Asan Bio-Resource Center, 138 probands; and kConFab, ten probands), who were older than 15 years at the time of consent and had a histologically confirmed diagnosis of sarcoma, recruited from specialist sarcoma clinics without regard to family history. Detailed clinical, pathological, and pedigree information was collected, and cancer diagnoses in probands and relatives were independently verified. Targeted exon sequencing using blood (n=1114) or saliva (n=48) samples was done on 72 genes (selected due to associations with increased cancer risk) and rare variants were stratified into classes approximating the International Agency for Research on Cancer (IARC) clinical classification for genetic variation. We did a case-control rare variant burden analysis using 6545 Caucasian controls included from three cohorts (ISKS, 235 controls; LifePool, 2010 controls; and National Heart, Lung, and Blood Institute Exome Sequencing Project [ESP], 4300 controls). The median age at cancer diagnosis in 1162 sarcoma probands was 46 years (IQR 29-58), 170 (15%) of 1162 probands had multiple primary cancers, and 155 (17%) of 911 families with informative pedigrees fitted recognisable cancer syndromes. Using a case-control rare variant burden analysis, 638 (55%) of 1162 sarcoma probands bore an excess of pathogenic germline variants (combined odds ratio [OR] 1·43, 95% CI 1·24-1·64, p<0·0001), with 227 known or expected pathogenic variants occurring in 217 individuals. All classes of pathogenic

  6. Genetic and developmental factors in spontaneous selective attention: a study of normal twins.

    PubMed

    Myles-Worsley, M; Coon, H

    1997-08-08

    The Spontaneous Selective Attention Task (SSAT) is a visual word identification task designed to measure the type of selective attention that occurs spontaneously when there are multiple stimuli, all potentially relevant, and insufficient time to process each of them fully. These are conditions which are common in everyday life. SSAT performance is measured by word identification accuracy, first under a baseline divided attention condition with no predictability, then under a selective attention condition with partial predictability introduced via word repetition. Accuracy to identify novel words in the upper location which becomes partially predictable (P words) vs. the lower location which remains non-predictable (N words) can be used to calculate a baseline performance index and a P/N ratio measure of selective attention. The SSAT has been shown to identify an attentional abnormality that may be useful in the development of an attentional endophenotype for family-genetic studies of schizophrenia. This study examined age and genetic effects on SSAT performance in normal children in order to evaluate whether the SSAT has the potential to qualify as a candidate endophenotype for schizophrenia in studies of at-risk children. A total of 59 monozygotic twin pairs and 33 same-sex dizygotic twin pairs ranging from 10 to 18 years of age were tested on the SSAT, a Continuous Performance Test. (CPT), a Span of Apprehension Test (SPAN) and a full-scale IQ test. Baseline performance on the SSAT, which was correlated with verbal IQ and SPAN performance, improved with age but showed no significant heritability. The P/N selectivity ratio was stable over the 10-18-year age range, was not significantly correlated with IQ, CPT, or SPAN performance, and its heritability was estimated to be 0.41. These findings suggest that the P/N selectivity ratio measured by the SSAT may be useful as a vulnerability marker in studies of children born into families segregating schizophrenia.

  7. Paternal Genetic Structure of Hainan Aborigines Isolated at the Entrance to East Asia

    PubMed Central

    Li, Dongna; Li, Hui; Ou, Caiying; Lu, Yan; Sun, Yuantian; Yang, Bo; Qin, Zhendong; Zhou, Zhenjian; Li, Shilin; Jin, Li

    2008-01-01

    Background At the southern entrance to East Asia, early population migration has affected most of the Y-chromosome variations of East Asians. Methodology/Principal Findings To assess the isolated genetic structure of Hainan Island and the original genetic structure at the southern entrance, we studied the Y chromosome diversity of 405 Hainan Island aborigines from all the six populations, who have little influence of the recent mainland population relocations and admixtures. Here we report that haplogroups O1a* and O2a* are dominant among Hainan aborigines. In addition, the frequency of the mainland dominant haplogroup O3 is quite low among these aborigines, indicating that they have lived rather isolated. Clustering analyses suggests that the Hainan aborigines have been segregated since about 20 thousand years ago, after two dominant haplogroups entered East Asia (31 to 36 thousand years ago). Conclusions/Significance Our results suggest that Hainan aborigines have been isolated at the entrance to East Asia for about 20 thousand years, whose distinctive genetic characteristics could be used as important controls in many population genetic studies. PMID:18478090

  8. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.

    PubMed

    Hüls, Anke; Krämer, Ursula; Carlsten, Christopher; Schikowski, Tamara; Ickstadt, Katja; Schwender, Holger

    2017-12-16

    Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign weights, the gold standard is to use external weights from an independent study. However, appropriate external weights are not always available. In such situations and in the presence of predominant marginal genetic effects, we have shown in a previous study that GRS with internal weights from marginal genetic effects ("GRS-marginal-internal") are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However, this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect stronger than the marginal genetic effect. In this paper, we present a weighting approach for such predominant interactions ("GRS-interaction-training") in which parts of the data are used to estimate the weights from the interaction terms and the remaining data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to the GRS-marginal-internal approach and to GRS with external weights. Our simulation study showed that in the absence of external weights and with predominant interaction effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations). When appropriate external weights are unavailable, we

  9. Externalizing problems, attention regulation, and household chaos: a longitudinal behavioral genetic study.

    PubMed

    Wang, Zhe; Deater-Deckard, Kirby; Petrill, Stephen A; Thompson, Lee A

    2012-08-01

    Previous research documented a robust link between difficulties in self-regulation and development of externalizing problems (i.e., aggression and delinquency). In this study, we examined the longitudinal additive and interactive genetic and environmental covariation underlying this well-established link using a twin design. The sample included 131 pairs of monozygotic twins and 173 pairs of same-sex dizygotic twins who participated in three waves of annual assessment. Mothers and fathers provided reports of externalizing problems. Teacher report and observer rating were used to assess twin's attention regulation. The etiology underlying the link between externalizing problems and attention regulation shifted from a common genetic mechanism to a common environmental mechanism in the transition across middle childhood. Household chaos moderated the genetic variance of and covariance between externalizing problems and attention regulation. The genetic influence on individual differences in both externalizing problems and attention regulation was stronger in more chaotic households. However, higher levels of household chaos attenuated the genetic link between externalizing problems and attention regulation.

  10. The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies

    PubMed Central

    Barnett, Ian; Mukherjee, Rajarshi; Lin, Xihong

    2017-01-01

    It is of substantial interest to study the effects of genes, genetic pathways, and networks on the risk of complex diseases. These genetic constructs each contain multiple SNPs, which are often correlated and function jointly, and might be large in number. However, only a sparse subset of SNPs in a genetic construct is generally associated with the disease of interest. In this article, we propose the generalized higher criticism (GHC) to test for the association between an SNP set and a disease outcome. The higher criticism is a test traditionally used in high-dimensional signal detection settings when marginal test statistics are independent and the number of parameters is very large. However, these assumptions do not always hold in genetic association studies, due to linkage disequilibrium among SNPs and the finite number of SNPs in an SNP set in each genetic construct. The proposed GHC overcomes the limitations of the higher criticism by allowing for arbitrary correlation structures among the SNPs in an SNP-set, while performing accurate analytic p-value calculations for any finite number of SNPs in the SNP-set. We obtain the detection boundary of the GHC test. We compared empirically using simulations the power of the GHC method with existing SNP-set tests over a range of genetic regions with varied correlation structures and signal sparsity. We apply the proposed methods to analyze the CGEM breast cancer genome-wide association study. Supplementary materials for this article are available online. PMID:28736464

  11. Genetic variation in the microfibril angle of loblolly pine from two test sites

    Treesearch

    Jennifer H. Myszewski; Floyd E. Bridgwater; William J. Lowe; Thomas D. Byram; Robert A. Megraw

    2004-01-01

    In recent years, several studies have examined the effect of microfibril angle (MFA) on wood quality. However, little research has been conducted upon the genetic mechanisms controlling MFA. In this study, we examined the heritability of MFA in loblolly pine, Pinus taeda L., and its genetic relationships with height, diameter, volume, and specific...

  12. Effect of sociocultural cleavage on genetic differentiation: a study from North India.

    PubMed

    Khan, Faisal; Pandey, Atul Kumar; Borkar, Meenal; Tripathi, Manorma; Talwar, Sudha; Bisen, P S; Agrawal, Suraksha

    2008-06-01

    Indian populations possess an exclusive genetic profile primarily due to the many migratory events, which caused an extensive range of genetic diversity, and also due to stringent and austere sociocultural barriers that structure these populations into different endogamous groups. In the present study we attempt to explore the genetic relationships between various endogamous North Indian populations and to determine the effect of stringent social regulations on their gene pool. Twenty STR markers were genotyped in 1,800 random North Indians from 9 endogamous populations belonging to upper-caste and middle-caste Hindus and Muslims. All nine populations had high allelic diversity (176 alleles) and average observed heterozygosity (0.742 +/- 0.06), suggesting strong intrapopulation diversity. The average F(ST) value over all loci was as low as 0.0084. However, within-group F(ST) and genetic distance analysis showed that populations of the same group were genetically closer to each other. The genetic distance of Muslims from middle castes (F(ST) = 0.0090; DA = 0.0266) was significantly higher than that of Muslims from upper castes (F(ST) = 0.0050; DA = 0.0148). Phylogenetic trees (neighbor-joining and maximum-likelihood) show the basal cluster pattern of three clusters corresponding to Muslims, upper-caste, and middle-caste populations, with Muslims clustered with upper-caste populations. Based on the results, we conclude that the extensive gene flow through a series of migrations and invasions has created an enormous amount of genetic diversity. The interpopulation differences are minimal but have a definite pattern, in which populations of different socioreligious groups have more genetic similarity within the same group and are genetically more distant from populations of other groups. Finally, North Indian Muslims show a differential genetic relationship with upper- and middle-caste populations.

  13. Genetic and Environmental Influences on Testosterone in Adolescents: Evidence for Sex Differences

    PubMed Central

    Harden, K. Paige; Kretsch, Natalie; Tackett, Jennifer L.; Tucker-Drob, Elliot M.

    2015-01-01

    The current study investigated the genetic and environmental etiology of individual differences in salivary testosterone during adolescence, using data from 49 pairs of monozygotic twins and 68 pairs of dizygotic twins, ages 14–19 years (M = 16.0 years). Analyses tested for sex differences in genetic and environmental influences on testosterone and its relation to pubertal development. Among adolescent males, individual differences in testosterone were substantially heritable (55%), and significantly associated with self-reported pubertal status (controlling for age) via common genetic influences. In contrast, there was no heritable variation in testosterone for females, and testosterone in females was not significantly associated with pubertal status after controlling for age. Rather, environmental influences shared by twins raised together accounted for all of the familial similarity in female testosterone (53%). This study adds to a small but growing body of research that investigates genetic influences on individual differences in behaviorally-relevant hormones. PMID:24523135

  14. Hierarchical Naive Bayes for genetic association studies.

    PubMed

    Malovini, Alberto; Barbarini, Nicola; Bellazzi, Riccardo; de Michelis, Francesca

    2012-01-01

    Genome Wide Association Studies represent powerful approaches that aim at disentangling the genetic and molecular mechanisms underlying complex traits. The usual "one-SNP-at-the-time" testing strategy cannot capture the multi-factorial nature of this kind of disorders. We propose a Hierarchical Naïve Bayes classification model for taking into account associations in SNPs data characterized by Linkage Disequilibrium. Validation shows that our model reaches classification performances superior to those obtained by the standard Naïve Bayes classifier for simulated and real datasets. In the Hierarchical Naïve Bayes implemented, the SNPs mapping to the same region of Linkage Disequilibrium are considered as "details" or "replicates" of the locus, each contributing to the overall effect of the region on the phenotype. A latent variable for each block, which models the "population" of correlated SNPs, can be then used to summarize the available information. The classification is thus performed relying on the latent variables conditional probability distributions and on the SNPs data available. The developed methodology has been tested on simulated datasets, each composed by 300 cases, 300 controls and a variable number of SNPs. Our approach has been also applied to two real datasets on the genetic bases of Type 1 Diabetes and Type 2 Diabetes generated by the Wellcome Trust Case Control Consortium. The approach proposed in this paper, called Hierarchical Naïve Bayes, allows dealing with classification of examples for which genetic information of structurally correlated SNPs are available. It improves the Naïve Bayes performances by properly handling the within-loci variability.

  15. Disclosure of research results in genetic studies of Parkinson's disease caused by LRRK2 mutations.

    PubMed

    Pont-Sunyer, Claustre; Bressman, Susan; Raymond, Deborah; Glickman, Amanda; Tolosa, Eduardo; Saunders-Pullman, Rachel

    2015-06-01

    With the advent of large genetic studies examining both symptomatic and asymptomatic individuals, whether and how to disclose genetic research results have become pressing questions. The need is particularly acute in the case of LRRK2 research: Movement centers worldwide are recruiting cohorts of individuals with Parkinson's disease (PD) and their family members, including asymptomatic carriers. Clinical features and treatment are complex and evolving, and disclosure policies vary at different sites and have been modified during the course of some studies. We present the major ethical principles of autonomy, beneficence, nonmaleficence, and honesty that should guide disclosure policies in studies of families with LRRK2 mutations. We make recommendations regarding genetic counseling, policies of either active or passive disclosure, responsibilities of funders to budget for genetic counseling, clinical genetic testing where locally required for disclosure, and aspects of study design to avoid mandatory disclosure whenever feasible. © 2015 International Parkinson and Movement Disorder Society. © 2015 International Parkinson and Movement Disorder Society.

  16. Cohort Profile: Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness.

    PubMed

    Smith, Blair H; Campbell, Archie; Linksted, Pamela; Fitzpatrick, Bridie; Jackson, Cathy; Kerr, Shona M; Deary, Ian J; Macintyre, Donald J; Campbell, Harry; McGilchrist, Mark; Hocking, Lynne J; Wisely, Lucy; Ford, Ian; Lindsay, Robert S; Morton, Robin; Palmer, Colin N A; Dominiczak, Anna F; Porteous, David J; Morris, Andrew D

    2013-06-01

    GS:SFHS is a family-based genetic epidemiology study with DNA and socio-demographic and clinical data from about 24 000 volunteers across Scotland aged 18-98 years, from February 2006 to March 2011. Biological samples and anonymized data form a resource for research on the genetics of health, disease and quantitative traits of current and projected public health importance. Specific and important features of GS:SFHS include the family-based recruitment, with the intent of obtaining family groups; the breadth and depth of phenotype information, including detailed data on cognitive function, personality traits and mental health; consent and mechanisms for linkage of all data to comprehensive routine health-care records; and 'broad' consent from participants to use their data and samples for a wide range of medical research, including commercial research, and for re-contact for the potential collection of other data or samples, or for participation in related studies and the design and review of the protocol in parallel with in-depth sociological research on (potential) participants and users of the research outcomes. These features were designed to maximize the power of the resource to identify, replicate or control for genetic factors associated with a wide spectrum of illnesses and risk factors, both now and in the future.

  17. Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations.

    PubMed

    Shama, Lisa N S; Kubow, Karen B; Jokela, Jukka; Robinson, Christopher T

    2011-09-27

    Extinction and re-colonisation of local populations is common in ephemeral habitats such as temporary streams. In most cases, such population turnover leads to reduced genetic diversity within populations and increased genetic differentiation among populations due to stochastic founder events, genetic drift, and bottlenecks associated with re-colonisation. Here, we examined the spatio-temporal genetic structure of 8 alpine caddisfly populations inhabiting permanent and temporary streams from four valleys in two regions of the Swiss Alps in years before and after a major stream drying event, the European heat wave in summer 2003. We found that population turnover after 2003 led to a loss of allelic richness and gene diversity but not to significant changes in observed heterozygosity. Within all valleys, permanent and temporary streams in any given year were not differentiated, suggesting considerable gene flow and admixture between streams with differing hydroperiods. Large changes in allele frequencies after 2003 resulted in a substantial increase in genetic differentiation among valleys within one to two years (1-2 generations) driven primarily by drift and immigration. Signatures of genetic bottlenecks were detected in all 8 populations after 2003 using the M-ratio method, but in no populations when using a heterozygosity excess method, indicating differential sensitivity of bottleneck detection methods. We conclude that genetic differentiation among A. uncatus populations changed markedly both temporally and spatially in response to the extreme climate event in 2003. Our results highlight the magnitude of temporal population genetic changes in response to extreme events. More specifically, our results show that extreme events can cause rapid genetic divergence in metapopulations. Further studies are needed to determine if recovery from this perturbation through gradual mixing of diverged populations by migration and gene flow leads to the pre-climate event state

  18. [Genetic aspects of genealogy].

    PubMed

    Tetushkin, E Iu

    2011-11-01

    The supplementary historical discipline genealogy is also a supplementary genetic discipline. In its formation, genetics borrowed from genealogy some methods of pedigree analysis. In the 21th century, it started receiving contribution from computer-aided genealogy and genetic (molecular) genealogy. The former provides novel tools for genetics, while the latter, which employing genetic methods, enriches genetics with new evidence. Genealogists formulated three main laws ofgenealogy: the law of three generations, the law of doubling the ancestry number, and the law of declining ancestry. The significance and meaning of these laws can be fully understood only in light of genetics. For instance, a controversy between the exponential growth of the number of ancestors of an individual, i.e., the law of doubling the ancestry number, and the limited number of the humankind is explained by the presence of weak inbreeding because of sibs' interference; the latter causes the pedigrees' collapse, i.e., explains also the law of diminishing ancestry number. Mathematic modeling of pedigrees' collapse presented in a number of studies showed that the number of ancestors of each individual attains maximum in a particular generation termed ancestry saturated generation. All representatives of this and preceding generation that left progeny are common ancestors of all current members of the population. In subdivided populations, these generations are more ancient than in panmictic ones, whereas in small isolates and social strata with limited numbers of partners, they are younger. The genealogical law of three generations, according to which each hundred years contain on average three generation intervals, holds for generation lengths for Y-chromosomal DNA, typically equal to 31-32 years; for autosomal and mtDNA, this time is somewhat shorter. Moving along ascending lineas, the number of genetically effective ancestors transmitting their DNA fragment to descendants increases far

  19. Campylobacter multi-locus sequence types and antimicrobial susceptibility of broiler cecal isolates: a two year study of 143 commercial flocks

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to assess genetic diversity and antimicrobial susceptibility of Campylobacter jejuni and coli recovered from broiler ceca at slaughter. Ceca from one broiler were collected from the evisceration line in a commercial processing plant, once or twice weekly for two year...

  20. Update on Abdominal Aortic Aneurysm Research: From Clinical to Genetic Studies

    PubMed Central

    Kuivaniemi, Helena; Ryer, Evan J.; Elmore, James R.; Hinterseher, Irene; Smelser, Diane T.; Tromp, Gerard

    2014-01-01

    An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta with a diameter of at least 3.0 cm. AAAs are often asymptomatic and are discovered as incidental findings in imaging studies or when the AAA ruptures leading to a medical emergency. AAAs are more common in males than females, in individuals of European ancestry, and in those over 65 years of age. Smoking is the most important environmental risk factor. In addition, a positive family history of AAA increases the person's risk for AAA. Interestingly, diabetes has been shown to be a protective factor for AAA in many large studies. Hallmarks of AAA pathogenesis include inflammation, vascular smooth muscle cell apoptosis, extracellular matrix degradation, and oxidative stress. Autoimmunity may also play a role in AAA development and progression. In this Outlook paper, we summarize our recent studies on AAA including clinical studies related to surgical repair of AAA and genetic risk factor and large-scale gene expression studies. We conclude with a discussion on our research projects using large data sets available through electronic medical records and biobanks. PMID:24834361

  1. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    PubMed

    Wang, Hai-yan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  2. Host genetics of Epstein-Barr virus infection, latency and disease.

    PubMed

    Houldcroft, Charlotte J; Kellam, Paul

    2015-03-01

    Epstein-Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin's lymphoma and Burkitt's lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkin's lymphoma. Host genetics is also important in infectious disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV antibody response, and an EBV-status stratified genome-wide association study of Hodgkin's lymphoma. Although many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole-genome and whole-exome studies, revealing new human genes at the heart of the host-EBV interaction. © 2014 The Authors Reviews in Medical Virology published by John Wiley & Sons Ltd.

  3. Host genetics of Epstein–Barr virus infection, latency and disease

    PubMed Central

    Houldcroft, Charlotte J; Kellam, Paul

    2015-01-01

    Epstein–Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin's lymphoma and Burkitt's lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkin's lymphoma. Host genetics is also important in infectious disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV antibody response, and an EBV-status stratified genome-wide association study of Hodgkin's lymphoma. Although many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole-genome and whole-exome studies, revealing new human genes at the heart of the host–EBV interaction. © 2014 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:25430668

  4. Molecular Genetic Study of Human Esophageal Carcinoma

    DTIC Science & Technology

    1991-07-16

    chromosome 13q (Friend, et al. 1986; Lee, et al. 1987). The biochemical functions of the tumor suppressor gene products are not clearly elucidated...et al. 1990). In contrast to the dominant oncogenes, two genetic lesions are required for the manifestation of tumor suppressor gene , one each to...multiple genetic mutations. Oncogenes and tumor suppressor genes are frequently involved in the pathogenesis of human cancers. The transformation

  5. Shared genetic effects between hepatic steatosis and fibrosis: A prospective twin study

    PubMed Central

    Cui, Jeffrey; Chen, Chi-Hua; Lo, Min-Tzu; Schork, Nicholas; Bettencourt, Ricki; Gonzalez, Monica P; Bhatt, Archana; Hooker, Jonathan; Shaffer, Katherine; Nelson, Karen E; Long, Michelle T; Brenner, David A; Sirlin, Claude B; Loomba, Rohit

    2016-01-01

    Introduction Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic risk factors including hypertension and dyslipidemia, and may progress to liver fibrosis. Previous studies have shown that hepatic steatosis and fibrosis are heritable but whether they have a significant shared gene effect is unknown. This study aimed to examine the shared gene effects between hepatic steatosis, fibrosis, and their associations with metabolic risk factors. Methods This is a cross-sectional analysis of a prospective cohort of well-characterized, community-dwelling twins (45 monozygotic, 20 dizygotic twin pairs, 130 total subjects) from Southern California. Hepatic steatosis was assessed with MRI-proton density fat fraction (MRI-PDFF) and hepatic fibrosis was assessed with magnetic resonance elastography (MRE). A standard bivariate twin AE model was used to estimate the proportion of phenotypic variance between two phenotypes accounted for by additive genetic effects (A) and individual-specific environmental effects (E). Genetic correlations (rG) estimated from this model represent the degree to which the genetic determinants of two phenotypes overlap. Results The mean (±SD) age and BMI were 47.1 (±21.9) years and 26.9 (±6.5) kg/m2, respectively. 20% (26/130) of the cohort had hepatic steatosis (MRI-PDFF ≥5%) and 8.2% (10/122) had hepatic fibrosis (MRE ≥3Kpa). Blood pressure (systolic and diastolic), triglycerides, glucose, homeostatic model assessment of insulin resistance (HOMA-IR), insulin, hemoglobin A1c (HbA1c), and low high-density lipoprotein (HDL) had significant shared gene effects with hepatic steatosis. Triglycerides, glucose, HOMA-IR, insulin, HbA1c, and low HDL had significant shared gene effects with hepatic fibrosis. Hepatic steatosis and fibrosis had a highly significant shared gene effect of 0.756 (95% CI: 0.716–1, p<0.0001). Conclusions Genes involved with steatosis pathogenesis may also be involved with fibrosis pathogenesis. PMID:27315352

  6. Genetic differences between hatchery and wild steelhead for survival, growth, dispersal, and male maturation in a natural stream (Study site: Twenty-Mile Creek; Stocks: Dworshak hatchery and Selway River wild; Year classes: 1994 and 1995): Chapter 3

    USGS Publications Warehouse

    Rubin, Stephen P.; Reisenbichler, Reginald R.; Hensleigh, Jay E.; Wetzel, Lisa A.; Baker, Bruce M.; Leonetti,; Stenberg, Karl D.; Slatton, Stacey L.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    This study was initiated in the early 1990s to provide managers with data comparing genetic fitness for natural rearing, as measured by survival of juveniles in freshwater, between steelhead Oncorhynchus mykiss from Dworshak National Fish Hatchery and wild steelhead from the Clearwater River, Idaho. We artificially spawned hatchery steelhead and wild steelhead from the Selway River, a Clearwater River tributary, released the resulting genetically marked (at the PEPA allozyme locus) progeny (HxH, HxW from hatchery females and wild males, and WxW) as unfed fry in a second order tributary of the South Fork Clearwater River, and monitored fish residing in the stream or emigrating from it for five years. Barrier falls prevented access to the stream by naturally produced steelhead. Over 90% of the emigrants were one or two years of age and too small to be smolts (mean fork length at age-2 = 103 mm). Per fry released, the HxH cross produced 0.64-0.83 times as many emigrants as the WxW cross (P<0.05). The HxH cross produced 0.63 times as many age-4 residuals as the WxW cross for one year-class (P=0.051) and 0.68 times as many for the other (ns). Survival from age-1 to age-4 was lower for HxH than for WxW residuals of one year-class (P<0.05) and survival from age-2 to age-4 may have been lower for HxH than for WxW residuals of the other (P=0.062). Collectively, these results indicate lower survival for HxH than for WxW fish. Size was often greater for HxH than for WxW fish indicating faster growth for the former, and condition factor was also usually greater for HxH than for WxW fish. Dispersal of fry from release sites and emigration of one- and two-year olds from the study stream were greater for WxW than for HxH fish, and apparently neither was from competitive displacement of small by larger fish. Incidence of flowing milt was higher for HxH than for WxW fish at age-2. Peak incidence of flowing milt for older residuals was similar among crosses (about 50%), but the peak

  7. Does receiving genetic counseling impact genetic counselor practice?

    PubMed

    Peters, Elizabeth; McCarthy Veach, Patricia; Ward, Erin E; LeRoy, Bonnie S

    2004-10-01

    This study was an investigation of whether genetic counselors have received genetic counseling and if so, how they believe it affects their practice. One thousand genetic counselors were mailed surveys about the nature of genetic counseling services received, impact on their clinical practice, frequency and reasons for disclosing about their receipt of counseling to their clients, and demographics. Ninety-three of the 510 respondents reported receiving genetic counseling. Of these, almost three-fourths were practicing genetic counselors while receiving services. Reasons for services include prenatal concerns, family history of cancer, and history/risk of other genetic conditions. Frequently endorsed effects on practice include increased empathy and understanding of client decisions, feeling more connected with clients, greater emphasis on psychosocial support, and sympathy. Forty-six respondents disclosed to clients about their receipt of genetic counseling. Prevalent reasons include client asked, help clients feel they are not alone, demonstrate counselor understanding, decrease client anxiety, build rapport, and normalize client feelings. Practice and research recommendations are given.

  8. Four factors for the initiation of substance use by young adulthood: a 10-year follow-up twin and sibling study of marital conflict, monitoring, siblings, and peers.

    PubMed

    Neiderhiser, Jenae M; Marceau, Kristine; Reiss, David

    2013-02-01

    This study examined genetic and environmental influences on associations among marital conflict about the child, parental monitoring, sibling relationship negativity, and peer delinquency during adolescence and initiation of illegal drug use by young adulthood. The sample comprised data collected longitudinally from same-sex sibling pairs and parents when the siblings were 10-18 years old (M = 14.5 and 12.9 years for Child 1 and Child 2, respectively) and 20-35 years old (M = 26.8 and 25.5 years for Child 1 and Child 2, respectively). Findings indicate four factors that explain the initiation of illegal drug use: two shaped by genetic influences and two shaped by environments shared by siblings. The two genetically shaped factors probably have distinct mechanisms: one a child-initiated coercive process in the family and the other parent and peer processes shaped by the child's disclosure. The environmentally influenced factors seem distinctively shaped by poor parental monitoring of both sibs and the effects of siblings on each other's deviancy.

  9. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype

    PubMed Central

    Ceccarelli, Fulvia; Perricone, Carlo; Borgiani, Paola; Ciccacci, Cinzia; Rufini, Sara; Cipriano, Enrica; Alessandri, Cristiano; Spinelli, Francesca Romana; Sili Scavalli, Antonio; Novelli, Giuseppe; Valesini, Guido; Conti, Fabrizio

    2015-01-01

    Genetic factors exert an important role in determining Systemic Lupus Erythematosus (SLE) susceptibility, interplaying with environmental factors. Several genetic studies in various SLE populations have identified numerous susceptibility loci. From a clinical point of view, SLE is characterized by a great heterogeneity in terms of clinical and laboratory manifestations. As widely demonstrated, specific laboratory features are associated with clinical disease subset, with different severity degree. Similarly, in the last years, an association between specific phenotypes and genetic variants has been identified, allowing the possibility to elucidate different mechanisms and pathways accountable for disease manifestations. However, except for Lupus Nephritis (LN), no studies have been designed to identify the genetic variants associated with the development of different phenotypes. In this review, we will report data currently known about this specific association. PMID:26798662

  10. Association of four genetic loci with uric acid levels and reduced renal function: the J-SHIPP Suita study.

    PubMed

    Tabara, Yasuharu; Kohara, Katsuhiko; Kawamoto, Ryuichi; Hiura, Yumiko; Nishimura, Kunihiro; Morisaki, Takayuki; Kokubo, Yoshihiro; Okamura, Tomonori; Tomoike, Hitonobu; Iwai, Naoharu; Miki, Tetsuro

    2010-01-01

    Recent genome-wide association studies have identified several genetic variants as susceptibility loci for serum uric acid (UA) levels. We also identified a common nonsense mutation, W258X, responsible for renal hypouricemia. Here, we investigated clinical implications of these genetic variants by cross-sectional and longitudinal genetic epidemiological analysis. The study enrolled 5,165 Japanese subjects aged 64 ± 12 years from the general population. Clinical parameters were obtained from the personal health records, evaluated at medical checkups. Serum UA levels were significantly different between the SLC22A12 rs11231825 (CC/CT/TT: 4.5 ± 1.6, 5.0 ± 1.4, 5.3 ± 1.4 mg/dl; p = 7.6 × 10(-20)), SLC2A9 rs1014290 (TT/TG/GG: 4.9 ± 1.4, 5.1 ± 1.4, 5.3 ± 1.4 mg/dl; p = 3.1 × 10(-11)) and ABCG2 rs2231142 (TT/TG/GG: 5.3 ± 1.5, 5.2 ± 1.4, 5.1 ± 1.4 mg/dl; p = 2.0 × 10(-5)) genotypes. During 9.4 years of follow-up, 87 new cases of hyperuricemia were diagnosed. Multiple logistic regression analysis identified the accumulation of risk alleles as a significant determinant of future development of hyperuricemia (OR = 7.94; 95% CI: 1.97-53.6). In contrast, subjects with nonsense mutation predominantly showed lower UA levels (XX/XW/WW: 1.3 ± 1.7, 3.6 ± 1.0, 5.2 ± 1.4 mg/dl; p = 9.3 × 10(-82)). However, these subjects showed significantly reduced renal function (β = -0.111; p < 0.001) independently of possible covariates. Accumulation of risk genotypes was an independent risk factor for future development of hyperuricemia. Genetically developed hypouricemia was an independent risk factor for decreased renal function. Copyright © 2010 S. Karger AG, Basel.

  11. Plasmodium vivax merozoite surface protein-3 alpha: a high-resolution marker for genetic diversity studies.

    PubMed

    Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena

    2010-06-01

    Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.

  12. Four-year follow-up study in a NF1 boy with a focal pontine hamartoma.

    PubMed

    Parisi, Pasquale; Persechino, Severino; Paolino, Maria Chiara; Nicita, Francesco; Torrente, Isabella; Bozzao, Alessandro; Villa, Maria Pia

    2013-02-11

    Neurofibromatosis is a collective name for a group of genetic conditions in which benign tumours affect the nervous system. Type 1 is caused by a genetic mutation in the NF1 gene (OMIM 613113) and symptoms can vary dramatically between individuals, even within the same family. Some people have very mild skin changes, whereas others suffer severe medical complications. The condition usually appears in childhood and is diagnosed if two of the following are present: six or more café-au-lait patches larger than 1.5 cm in diameter, axillary or groin freckling, 2 or more Lisch nodules (small pigmented areas in the iris of the eye), 2 or more neurofibromas, optic pathway gliomas, bone dysplasia, and a first-degree family relative with Neurofibromatosis type 1. The pattern of inheritance is autosomal dominant, however, half of all NF1 cases are 'sporadic' and there is no family history. Neurofibromatosis type 1 is an extremely variable condition whose morbidity and mortality is largely dictated by the occurrence of the many complications that may involve any of the body systems. We describe a family affected by NF1 in whom genetic molecular analysis identified the same mutation in the son and father. Routine MRI showed pontine focal lesions in the eight-year-old son, though not in the father. We performed a four years follow-up study and at follow-up pontine hamartoma size remained unchanged in the son, and the father showed still no brain lesions, confirming thus an intra-familial phenotype variability.

  13. Temporal estimates of genetic diversity in some Mytilus galloprovincialis populations impacted by the Prestige oil-spill

    NASA Astrophysics Data System (ADS)

    Lado-Insua, Tanya; Pérez, Montse; Diz, Angel P.; Presa, Pablo

    2011-04-01

    The sinking of the tanker Prestige in November 2002 off the coast of Galicia resulted in the release of about 60,000 tons of heavy oil. The oil-spill provoked a serious environmental impact in Spanish and French coasts, which biological consequences are still being assessed. In this study we address the temporal dynamics of genetic diversity in some mussel populations impacted by the oil-spill. Changes in genetic diversity can be measured in natural populations provided that serial samples are available from before (year 2000) and after (years 2003, 2005) the oil-spill. Analyses of seven microsatellites indicate a weak but significant increase of genetic variation after the spill. This phenomenon is interpreted herein in terms of a balance between a enhanced genome mutability on microsatellite variation and a low genetic drift due to toxicants and asphyxia although other stochastic phenomena cannot be ruled out. Per locus annotation showed that in spite of the allelic changes observed in the period 2000-2005, the final size of most allelic series remained quite alike to those of year 2000. Present genetic data suggest that the genotoxic impact of the Prestige spill did not compromise the genetic diversity of studied mussel populations, at least regarding the genetic markers analysed.

  14. Mosquito Surveillance for 15 Years Reveals High Genetic Diversity Among West Nile Viruses in Israel.

    PubMed

    Lustig, Yaniv; Hindiyeh, Musa; Orshan, Laor; Weiss, Leah; Koren, Ravit; Katz-Likvornik, Shiri; Zadka, Hila; Glatman-Freedman, Aharona; Mendelson, Ella; Shulman, Lester M

    2016-04-01

    West Nile Virus (WNV) is endemic in Israel and has been the cause of several outbreaks in recent years. In 2000, a countrywide mosquito survey was established to monitor WNV activity and characterize viral genotypes in Israel. We analyzed data from 7135 pools containing 277 186 mosquitoes collected over the past 15 years and, here, report partial sequences of WNV genomes obtained from 102 of the 336 positive mosquito pools. Phylogenetic analysis demonstrated that cluster 4 and the Mediterranean and Eastern European subtypes of cluster 2 within WNV lineage 1 circulated in Israel, as did WNV lineage 2, highlighting a high genetic diversity of WNV genotypes in our region. As a major crossroads for bird migration between Africa and Eurasia and with a long history of human infection, Israel serves as a resource hub for WNV in Africa and Eurasia and provides valuable information on WNV circulation in these regions. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  15. Ocular Manifestations of Noonan Syndrome: A Prospective Clinical and Genetic Study of 25 Patients.

    PubMed

    van Trier, Dorothée C; Vos, Anna M C; Draaijer, Renske W; van der Burgt, Ineke; Draaisma, Jos M Th; Cruysberg, Johannes R M

    2016-10-01

    To determine the full spectrum of ocular manifestations in patients with Noonan syndrome (NS). Prospective cross-sectional clinical and genetic study in a tertiary referral center. Twenty-five patients with NS (mean age, 14 years; range, 8 months-25 years) clinically diagnosed by validated criteria. All patients were examined by the same team following a detailed study protocol. Genetic analyses were performed in 23 patients. Ocular abnormalities of vision and refraction, external ocular features, ocular position and motility, anterior segment, posterior segment, and intraocular pressure. Ocular features of vision and refraction were amblyopia (32%), myopia (40%), and astigmatism (52%). External ocular features were epicanthic folds (84%), hypertelorism (68%), ptosis (56%), high upper eyelid crease (64%), lower eyelid retraction (60%), abnormal upward slanting palpebral fissures (36%), downward slanting palpebral fissures (32%), and lagophthalmos (28%). Orthoptic abnormalities included strabismus (40%), abnormal stereopsis (44%), and limited ocular motility (40%). Anterior segment abnormalities included prominent corneal nerves (72%) and posterior embryotoxon (32%). Additional ocular features were found, including nonglaucomatous optic disc excavation (20%), relatively low (<10 mmHg) intraocular pressure (22%), and optic nerve hypoplasia (4%). Mutations were established in 22 patients: 19 PTPN11 mutations (76%), 1 SOS1 mutation, 1 BRAF mutation, and 1 KRAS mutation. The patient with the highest number of prominent corneal nerves had an SOS1 mutation. The patient with the lowest visual acuity, associated with bilateral optic nerve hypoplasia, had a BRAF mutation. Patients with severe ptosis and nearly total absence of levator muscle function had PTPN11 mutations. All patients showed at least 3 ocular features (range, 3-13; mean, 7), including at least 1 external ocular feature in more than 95% of the patients. Noonan syndrome is a clinical diagnosis with multiple

  16. A population-based survey in Australia of men's and women's perceptions of genetic risk and predictive genetic testing and implications for primary care.

    PubMed

    Taylor, S

    2011-01-01

    Community attitudes research regarding genetic issues is important when contemplating the potential value and utilisation of predictive testing for common diseases in mainstream health services. This article aims to report population-based attitudes and discuss their relevance to integrating genetic services in primary health contexts. Men's and women's attitudes were investigated via population-based omnibus telephone survey in Queensland, Australia. Randomly selected adults (n = 1,230) with a mean age of 48.8 years were interviewed regarding perceptions of genetic determinants of health; benefits of genetic testing that predict 'certain' versus 'probable' future illness; and concern, if any, regarding potential misuse of genetic test information. Most (75%) respondents believed genetic factors significantly influenced health status; 85% regarded genetic testing positively although attitudes varied with age. Risk-based information was less valued than certainty-based information, but women valued risk information significantly more highly than men. Respondents reported 'concern' (44%) and 'no concern' (47%) regarding potential misuse of genetic information. This study contributes important population-based data as most research has involved selected individuals closely impacted by genetic disorders. While community attitudes were positive regarding genetic testing, genetic literacy is important to establish. The nature of gender differences regarding risk perception merits further study and has policy and service implications. Community concern about potential genetic discrimination must be addressed if health benefits of testing are to be maximised. Larger questions remain in scientific, policy, service delivery, and professional practice domains before predictive testing for common disorders is efficacious in mainstream health care. Copyright © 2011 S. Karger AG, Basel.

  17. Patient compliance based on genetic medicine: a literature review.

    PubMed

    Schneider, Kai Insa; Schmidtke, Jörg

    2014-01-01

    For this literature review, medical literature data bases were searched for studies on patient compliance after genetic risk assessment. The review focused on conditions where secondary or tertiary preventive options exist, namely cancer syndromes (BRCA-related cancer, HNPCC/colon cancer), hemochromatosis, thrombophilia, smoking cessation, and obesity. As a counterpart, patient compliance was assessed regarding medication adherence and medical advice in some of the most epidemiologically important conditions (including high blood pressure, metabolic syndrome, and coronary heart disease) after receiving medical advice based on nongenetic risk information or a combination of genetic and nongenetic risk information. In the majority of studies based on genetic risk assessments, patients were confronted with predictive rather than diagnostic genetic profiles. Most of the studies started from a knowledge base around 10 years ago when DNA testing was at an early stage, limited in scope and specificity, and costly. The major result is that overall compliance of patients after receiving a high-risk estimate from genetic testing for a given condition is high. However, significant behavior change does not take place just because the analyte is "genetic." Many more factors play a role in the complex process of behavioral tuning. Without adequate counseling and guidance, patients may interpret risk estimates of predictive genetic testing with an increase in fear and anxiety.

  18. Genome-wide association study of swine farrowing traits. Part I: Genetic and genomic parameter estimates

    USDA-ARS?s Scientific Manuscript database

    The primary objective of this study was to determine genetic and genomic parameters among swine farrowing traits. Genetic parameters were obtained by using MTDFREML and genomic parameters were obtained using GenSel. Genetic and residual variances obtained from MTDFREML were used as priors for the ...

  19. From Novice to Seasoned Practitioner: a Qualitative Investigation of Genetic Counselor Professional Development.

    PubMed

    Zahm, Kimberly Wehner; Veach, Patricia McCarthy; Martyr, Meredith A; LeRoy, Bonnie S

    2016-08-01

    Research on genetic counselor professional development would characterize typical developmental processes, inform training and supervision, and promote life-long development opportunities. To date, however no studies have comprehensively examined this phenomenon. The aims of this study were to investigate the nature of professional development for genetic counselors (processes, influences, and outcomes) and whether professional development varies across experience levels. Thirty-four genetic counselors participated in semi-structured telephone interviews exploring their perspectives on their professional development. Participants were sampled from three levels of post-degree genetic counseling experience: novice (0-5 years), experienced (6-14 years), and seasoned (>15 years). Using modified Consensual Qualitative Research and grounded theory methods, themes, domains, and categories were extracted from the data. The themes reflect genetic counselors' evolving perceptions of their professional development and its relationship to: (a) being a clinician, (b) their professional identity, and (c) the field itself. Across experience levels, prevalent influences on professional development were interpersonal (e.g., experiences with patients, genetic counseling colleagues) and involved professional and personal life events. Common developmental experiences included greater confidence and less anxiety over time, being less information-driven and more emotion-focused with patients, delivering "bad news" to patients remains challenging, and individuals' professional development experiences parallel genetic counseling's development as a field. With a few noteworthy exceptions, professional development was similar across experience levels. A preliminary model of genetic counselor professional development is proposed suggesting development occurs in a non-linear fashion throughout the professional lifespan. Each component of the model mutually influences the others, and there

  20. Genetic similarities between tobacco use disorder and related comorbidities: an exploratory study

    PubMed Central

    2014-01-01

    Background Tobacco use disorder (TUD), defined as the use of tobacco to the detriment of a person’s health or social functioning, is associated with various disorders. We hypothesized that mutual variation in genes may partly explain this link. The aims of this study were to make a non-exhaustive inventory of the disorders using (partially) the same genetic pathways as TUD, and to describe the genetic similarities between TUD and the selected disorders. Methods We developed a 3 stage approach: (i) selection of genes influencing TUD using Gene2Mesh and Ingenuity Pathway Analysis (IPA), (ii) selection of disorders associated with the selected genes using IPA and (iii) genetic similarities between disorders associated with TUD using Jaccard distance and cluster analyses. Results Fourteen disorders and thirty-two genes met our inclusion criteria. The Jaccard distance between pairs of disorders ranged from 0.00 (e.g. oesophageal cancer and malignant hypertension) to 0.45 (e.g. bladder cancer and addiction). A lower number in the Jaccard distance indicates a higher similarity between the two disorders. Two main clusters of genetically similar disorders were observed, one including coexisting disorders (e.g. addiction and alcoholism) and the other one with the side-effects of smoking (e.g. gastric cancer and malignant hypertension). Conclusions This exploratory study partly explains the potential genetic components linking TUD to other disorders. Two principle clusters of disorders were observed (i) coexisting disorders of TUD and (ii) side-effects of TUD disorders. A further deepening of this observation in a real life study should allow strengthening this hypothesis. PMID:25060307