Sample records for years structural equation

  1. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  2. Prolongation structures of nonlinear evolution equations

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.; Estabrook, F. B.

    1975-01-01

    A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.

  3. Equational Sentence Structure in Eskimo.

    ERIC Educational Resources Information Center

    Hofmann, Th. R.

    A comparison of the syntactic characteristics of mathematical equations and Eskimo syntax is made, and a proposal that Eskimo has a level of structure similar to that of equations is described. P:t performative contrast is reanalyzed. Questions and speculations on the formal treatment of this type of structure in transformational grammar, and its…

  4. Applying Meta-Analysis to Structural Equation Modeling

    ERIC Educational Resources Information Center

    Hedges, Larry V.

    2016-01-01

    Structural equation models play an important role in the social sciences. Consequently, there is an increasing use of meta-analytic methods to combine evidence from studies that estimate the parameters of structural equation models. Two approaches are used to combine evidence from structural equation models: A direct approach that combines…

  5. Structural Equation Modeling of Multivariate Time Series

    ERIC Educational Resources Information Center

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…

  6. Hamiltonian structure of the Lotka-Volterra equations

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1990-03-01

    The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.

  7. Multi-Hamiltonian structure of the Born-Infeld equation

    NASA Astrophysics Data System (ADS)

    Arik, Metin; Neyzi, Fahrünisa; Nutku, Yavuz; Olver, Peter J.; Verosky, John M.

    1989-06-01

    The multi-Hamiltonian structure, conservation laws, and higher order symmetries for the Born-Infeld equation are exhibited. A new transformation of the Born-Infeld equation to the equations of a Chaplygin gas is presented and explored. The Born-Infeld equation is distinguished among two-dimensional hyperbolic systems by its wealth of such multi-Hamiltonian structures.

  8. Multi-Hamiltonian structure of equations of hydrodynamic type

    NASA Astrophysics Data System (ADS)

    Gümral, H.; Nutku, Y.

    1990-11-01

    The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.

  9. The Specific Analysis of Structural Equation Models

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2004-01-01

    Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…

  10. Alternative bi-Hamiltonian structures for WDVV equations of associativity

    NASA Astrophysics Data System (ADS)

    Kalayci, J.; Nutku, Y.

    1998-01-01

    The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.

  11. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  12. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  13. Systems of fuzzy equations in structural mechanics

    NASA Astrophysics Data System (ADS)

    Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej

    2008-08-01

    Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series, , Texas Research Report No. 2007-01, 2007].

  14. Fitting ARMA Time Series by Structural Equation Models.

    ERIC Educational Resources Information Center

    van Buuren, Stef

    1997-01-01

    This paper outlines how the stationary ARMA (p,q) model (G. Box and G. Jenkins, 1976) can be specified as a structural equation model. Maximum likelihood estimates for the parameters in the ARMA model can be obtained by software for fitting structural equation models. The method is applied to three problem types. (SLD)

  15. Using Mixed-Effects Structural Equation Models to Study Student Academic Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1992-01-01

    A study at the University of Tennessee Knoxville used mixed-effect structural equation models incorporating latent variables as an alternative to conventional methods of analyzing college students' (n=722) first-year-to-senior academic gains. Results indicate, contrary to previous analysis, that coursework and student characteristics interact to…

  16. Multilevel Structural Equation Models for the Analysis of Comparative Data on Educational Performance

    ERIC Educational Resources Information Center

    Goldstein, Harvey; Bonnet, Gerard; Rocher, Thierry

    2007-01-01

    The Programme for International Student Assessment comparative study of reading performance among 15-year-olds is reanalyzed using statistical procedures that allow the full complexity of the data structures to be explored. The article extends existing multilevel factor analysis and structural equation models and shows how this can extract richer…

  17. The impact of general health and social support on health promoting lifestyle in the first year postpartum: the structural equation modelling

    PubMed Central

    Hajimiri, Khadijeh; Shakibazadeh, Elham; Mehrizi, Ali Asghar Haeri; Shabbidar, Sakineh

    2018-01-01

    Background and aim Postpartum is a critical period for mothers which often leads to neglect of their own health. Mothers’ new responsibilities may affect their health promoting lifestyle (HPL). The aim of this study was to determine the impact of both general health and social support on health-promoting lifestyle. Methods A cross-sectional survey was conducted on 310 women who gave birth over a one-year period in Zanjan (Iran), 2016. A proportionate stratified random sampling technique was used to select respondents from each stratum. Health-promoting lifestyle was assessed using the health-promoting lifestyle profile II (HPLP II) scale. A structure equation model (SEM) was used to determine the relationship between observed and latent variables. Data were analysed using SPSS version 22 and LISREL 8.5 software. Results The age of 42.6% of the participants was more than 30 years and 40.3% of them had an academic education. The mean score of the health-promoting lifestyle was 131.28 (15.37). The structural equation model fitted well with RMSEA =0.07, CFI=0.92, and GFI=0.94. Among the latent factors, general health, with a factor load of −0.68, had greater impact on health-promoting lifestyle than social support. Moreover, there was a significant correlation (−0.63) between general health and perceived social support in the postpartum period. Conclusion health-promoting lifestyle was not at appropriate levels among women in the first year after delivery. These findings suggest that strengthening general health and social support would improve a health-promoting lifestyle in Iranian postpartum women. PMID:29588825

  18. On Structural Equation Model Equivalence.

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    1999-01-01

    Presents a necessary and sufficient condition for the equivalence of structural-equation models that is applicable to models with parameter restrictions and models that may or may not fulfill assumptions of the rules. Illustrates the application of the approach for studying model equivalence. (SLD)

  19. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  20. Relationship between oral health-related knowledge, attitudes and behavior among 15-16-year-old adolescents: a structural equation modeling approach.

    PubMed

    Tolvanen, Mimmi; Lahti, Satu; Miettunen, Jouko; Hausen, Hannu

    2012-03-01

    The aim of this study was to confirm the previously observed attitudinal factor structure related to behavioral change and the knowledge-attitude-behavior model on dental health and hygiene among adolescents. The study population consisted of all 8(th) and 9(th) graders (15-16 years) who started the 2004-2005 school year in Rauma, Finland (n = 827). Data on knowledge, attitudes, toothbrushing and using fluoride toothpaste were gathered by questionnaires. Hypothesized structure included four attitudinal factors related to dental health and hygiene: 'importance of toothbrushing when participating in social situations' (F1), 'importance of toothbrushing for health-related reasons and better appearance' (F2), 'being concerned about developing caries lesions' (F3) and 'importance of toothbrushing for feeling accepted' (F4). Structural equation modeling (SEM) was used to test the hypothesized model: pathways lead from knowledge to behavior both directly and via attitudes. The hypothesized model was also modified by removing non-significant pathways and studying the inter-relationships between attitudes. A confirmatory factor analysis revealed that factor F4 had to be removed. In the final model, knowledge influenced behavior directly and via two attitude factors, F1 and F2, which were inter-related. 'Concern about developing caries lesions' was a background factor influencing only knowledge. The final factor structure and SEM model were acceptable-to-good fit. Knowledge had a smaller effect on behavior than on attitudes. Our results support theories about the causal knowledge-attitudes-behavior chain, also for adolescents' oral health-related behaviors.

  1. A Structural Equation Modeling Analysis of Influences on Juvenile Delinquency

    ERIC Educational Resources Information Center

    Barrett, David E.; Katsiyannis, Antonis; Zhang, Dalun; Zhang, Dake

    2014-01-01

    This study examined influences on delinquency and recidivism using structural equation modeling. The sample comprised 199,204 individuals: 99,602 youth whose cases had been processed by the South Carolina Department of Juvenile Justice and a matched control group of 99,602 youth without juvenile records. Structural equation modeling for the…

  2. Structural equation modeling and natural systems

    USGS Publications Warehouse

    Grace, James B.

    2006-01-01

    This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.

  3. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  4. Multiplicity Control in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  5. Random-Effects Models for Meta-Analytic Structural Equation Modeling: Review, Issues, and Illustrations

    ERIC Educational Resources Information Center

    Cheung, Mike W.-L.; Cheung, Shu Fai

    2016-01-01

    Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…

  6. Meta-Analytic Structural Equation Modeling (MASEM): Comparison of the Multivariate Methods

    ERIC Educational Resources Information Center

    Zhang, Ying

    2011-01-01

    Meta-analytic Structural Equation Modeling (MASEM) has drawn interest from many researchers recently. In doing MASEM, researchers usually first synthesize correlation matrices across studies using meta-analysis techniques and then analyze the pooled correlation matrix using structural equation modeling techniques. Several multivariate methods of…

  7. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  8. Structural equation modeling for observational studies

    USGS Publications Warehouse

    Grace, J.B.

    2008-01-01

    Structural equation modeling (SEM) represents a framework for developing and evaluating complex hypotheses about systems. This method of data analysis differs from conventional univariate and multivariate approaches familiar to most biologists in several ways. First, SEMs are multiequational and capable of representing a wide array of complex hypotheses about how system components interrelate. Second, models are typically developed based on theoretical knowledge and designed to represent competing hypotheses about the processes responsible for data structure. Third, SEM is conceptually based on the analysis of covariance relations. Most commonly, solutions are obtained using maximum-likelihood solution procedures, although a variety of solution procedures are used, including Bayesian estimation. Numerous extensions give SEM a very high degree of flexibility in dealing with nonnormal data, categorical responses, latent variables, hierarchical structure, multigroup comparisons, nonlinearities, and other complicating factors. Structural equation modeling allows researchers to address a variety of questions about systems, such as how different processes work in concert, how the influences of perturbations cascade through systems, and about the relative importance of different influences. I present 2 example applications of SEM, one involving interactions among lynx (Lynx pardinus), mongooses (Herpestes ichneumon), and rabbits (Oryctolagus cuniculus), and the second involving anuran species richness. Many wildlife ecologists may find SEM useful for understanding how populations function within their environments. Along with the capability of the methodology comes a need for care in the proper application of SEM.

  9. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  10. Estimation of health effects of prenatal methylmercury exposure using structural equation models.

    PubMed

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe; Weihe, Pal

    2002-10-14

    Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity. Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker. The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets.

  11. Annotated bibliography of structural equation modelling: technical work.

    PubMed

    Austin, J T; Wolfle, L M

    1991-05-01

    Researchers must be familiar with a variety of source literature to facilitate the informed use of structural equation modelling. Knowledge can be acquired through the study of an expanding literature found in a diverse set of publishing forums. We propose that structural equation modelling publications can be roughly classified into two groups: (a) technical and (b) substantive applications. Technical materials focus on the procedures rather than substantive conclusions derived from applications. The focus of this article is the former category; included are foundational/major contributions, minor contributions, critical and evaluative reviews, integrations, simulations and computer applications, precursor and historical material, and pedagogical textbooks. After a brief introduction, we annotate 294 articles in the technical category dating back to Sewall Wright (1921).

  12. Prolongation structures of nonlinear evolution equations. II

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1976-01-01

    The prolongation structure of a closed ideal of exterior differential forms is further discussed, and its use illustrated by application to an ideal (in six dimensions) representing the cubically nonlinear Schroedinger equation. The prolongation structure in this case is explicitly given, and recurrence relations derived which support the conjecture that the structure is open - i.e., does not terminate as a set of structure relations of a finite-dimensional Lie group. We introduce the use of multiple pseudopotentials to generate multiple Baecklund transformation, and derive the double Baecklund transformation. This symmetric transformation concisely expresses the (usually conjectured) theorem of permutability, which must consequently apply to all solutions irrespective of asymptotic constraints.

  13. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1989-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  14. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1987-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  15. On equations of motion of a nonlinear hydroelastic structure

    NASA Astrophysics Data System (ADS)

    Plotnikov, P. I.; Kuznetsov, I. V.

    2008-07-01

    Formal derivation of equations of a nonlinear hydroelastic structure, which is a volume of an ideal incompressible fluid covered by a shell, is proposed. The study is based on two assumptions. The first assumption implies that the energy stored in the shell is completely determined by the mean curvature and by the elementary area. In a three-dimensional case, the energy stored in the shell is chosen in the form of the Willmore functional. In a two-dimensional case, a more generic form of the functional can be considered. The second assumption implies that the equations of motionhave a Hamiltonian structure and can be obtained from the Lagrangian variational principle. In a two-dimensional case, a condition for the hydroelastic structure is derived, which relates the external pressure and the curvature of the elastic shell.

  16. Errors of Inference in Structural Equation Modeling

    ERIC Educational Resources Information Center

    McCoach, D. Betsy; Black, Anne C.; O'Connell, Ann A.

    2007-01-01

    Although structural equation modeling (SEM) is one of the most comprehensive and flexible approaches to data analysis currently available, it is nonetheless prone to researcher misuse and misconceptions. This article offers a brief overview of the unique capabilities of SEM and discusses common sources of user error in drawing conclusions from…

  17. Sample Size Requirements for Structural Equation Models: An Evaluation of Power, Bias, and Solution Propriety

    ERIC Educational Resources Information Center

    Wolf, Erika J.; Harrington, Kelly M.; Clark, Shaunna L.; Miller, Mark W.

    2013-01-01

    Determining sample size requirements for structural equation modeling (SEM) is a challenge often faced by investigators, peer reviewers, and grant writers. Recent years have seen a large increase in SEMs in the behavioral science literature, but consideration of sample size requirements for applied SEMs often relies on outdated rules-of-thumb.…

  18. Sport Participation and Metabolic Risk During Adolescent Years: A Structured Equation Model.

    PubMed

    Werneck, AndréOliveira; da Silva, Danilo Rodrigues Pereira; Fernandes, Rômulo Araújo; Ronque, EnioRicardoVaz; Coelho-E-Silva, Manuel J; Cyrino, Edilson Serpeloni

    2018-06-21

    Sports practice during childhood can influence health indicators in later ages through direct and indirect pathways. Thus, this study aimed to test direct and indirect pathways to the association between sports practice in childhood and metabolic risk in adolescence, adopting physical activity, adiposity, and cardiorespiratory fitness at adolescence as potential mediators. This cross-sectional study with retrospective information was conducted with 991 adolescents (579 girls, 412 boys) aged 10 to 16 y. Sports activity was self-reported in childhood (retrospective data) and physical activity evaluated in adolescence through questionnaires. Somatic maturation (Mirwald method), cardiorespiratory fitness (20-m shuttle-run test), body fat (skinfolds), waist circumference, blood pressure (automatic instrument) and blood variables (fasting glucose, HDL cholesterol, and triglycerides) were measured at adolescence. Waist circumference, blood pressure and blood variables composed the metabolic risk score. Structured equation modeling was adopted. In both sexes, the relationship between sports practice at childhood and metabolic risk was fully mediated by habitual physical activity, which is related to the obesity construct and cardiorespiratory fitness. Obesity was associated with metabolic risk in boys (β=0.062; p<0.001) and girls (β=0.047; p<0.001). The relationship between sports practice in childhood and metabolic risk in adolescence was mediated by physical activity, obesity, and cardiorespiratory fitness. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Structural Equation Modeling of School Violence Data: Methodological Considerations

    ERIC Educational Resources Information Center

    Mayer, Matthew J.

    2004-01-01

    Methodological challenges associated with structural equation modeling (SEM) and structured means modeling (SMM) in research on school violence and related topics in the social and behavioral sciences are examined. Problems associated with multiyear implementations of large-scale surveys are discussed. Complex sample designs, part of any…

  20. Crystal structure optimisation using an auxiliary equation of state

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  1. Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.

    PubMed

    Ma, Li-Yuan; Zhu, Zuo-Nong

    2014-09-01

    In this paper, we investigate nonintegrable semidiscrete Hirota equations, including the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation. We focus on the topics on gauge-equivalent structures and dynamical behaviors for the two nonintegrable semidiscrete equations. By using the concept of the prescribed discrete curvature, we show that, under the discrete gauge transformations, the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation are, respectively, gauge equivalent to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We prove that the two discrete gauge transformations are reversible. We study the dynamical properties for the two nonintegrable semidiscrete Hirota equations. The exact spatial period solutions of the two nonintegrable semidiscrete Hirota equations are obtained through the constructions of period orbits of the stationary discrete Hirota equations. We discuss the topic regarding whether the spatial period property of the solution to the nonintegrable semidiscrete Hirota equation is preserved to that of the corresponding gauge-equivalent nonintegrable semidiscrete equations under the action of discrete gauge transformation. By using the gauge equivalent, we obtain the exact solutions to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We also give the numerical simulations for the stationary discrete Hirota equations. We find that their dynamics are much richer than the ones of stationary discrete nonlinear Schrödinger equations.

  2. Study of solution procedures for nonlinear structural equations

    NASA Technical Reports Server (NTRS)

    Young, C. T., II; Jones, R. F., Jr.

    1980-01-01

    A method for the redution of the cost of solution of large nonlinear structural equations was developed. Verification was made using the MARC-STRUC structure finite element program with test cases involving single and multiple degrees of freedom for static geometric nonlinearities. The method developed was designed to exist within the envelope of accuracy and convergence characteristic of the particular finite element methodology used.

  3. Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru; VanDalsem, William (Technical Monitor)

    1994-01-01

    Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.

  4. Maximum entropy and equations of state for random cellular structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivier, N.

    Random, space-filling cellular structures (biological tissues, metallurgical grain aggregates, foams, etc.) are investigated. Maximum entropy inference under a few constraints yields structural equations of state, relating the size of cells to their topological shape. These relations are known empirically as Lewis's law in Botany, or Desch's relation in Metallurgy. Here, the functional form of the constraints is now known as a priori, and one takes advantage of this arbitrariness to increase the entropy further. The resulting structural equations of state are independent of priors, they are measurable experimentally and constitute therefore a direct test for the applicability of MaxEnt inferencemore » (given that the structure is in statistical equilibrium, a fact which can be tested by another simple relation (Aboav's law)). 23 refs., 2 figs., 1 tab.« less

  5. Reporting Multiple-Group Mean and Covariance Structure across Occasions with Structural Equation Modeling

    ERIC Educational Resources Information Center

    Okech, David

    2012-01-01

    Objectives: Using baseline and second wave data, the study evaluated the measurement and structural properties of parenting stress, personal mastery, and economic strain with N = 381 lower income parents who decided to join and those who did not join in a child development savings account program. Methods: Structural equation modeling mean and…

  6. Multidisciplinary optimization of controlled space structures with global sensitivity equations

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.

    1991-01-01

    A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.

  7. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.

    PubMed

    Nestler, Steffen

    2014-05-01

    Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.

  8. Disability and health-related quality-of-life 4 years after a severe traumatic brain injury: A structural equation modelling analysis.

    PubMed

    Azouvi, Philippe; Ghout, Idir; Bayen, Eleonore; Darnoux, Emmanuelle; Azerad, Sylvie; Ruet, Alexis; Vallat-Azouvi, Claire; Pradat-Diehl, Pascale; Aegerter, Philippe; Charanton, James; Jourdan, Claire

    2016-01-01

    To assess predictors and indicators of disability and quality-of-life 4 years after severe traumatic brain injury (TBI), using structural equation modelling (SEM). The PariS-TBI study is a longitudinal multi-centre inception cohort study of 504 patients with severe TBI. Among 245 survivors, 147 patients were evaluated upon 4-year follow-up, and 85 completed the full assessment. Two outcome measures were analysed separately using SEM: the Glasgow Outcome Scale-extended (GOS-E), to measure disability, and the QOLIBRI, to assess quality-of-life. Four groups of variables were entered in the model: demographics; injury severity; mood and cognitive impairments; somatic impairments. The GOS-E was directly significantly related to mood and cognition, injury severity, and somatic impairments. Age and education had an indirect effect, mediated by mood/cognition or somatic deficiencies. In contrast, the only direct predictor of QOLIBRI was mood and cognition. Age and somatic impairments had an indirect influence on the QOLIBRI. Although this study should be considered as explorative, it suggests that disability and quality-of-life were directly influenced by different factors. While disability appeared to result from an interaction of a wide range of factors, quality-of-life was solely directly related to psycho-cognitive factors.

  9. Integrability and Poisson Structures of Three Dimensional Dynamical Systems and Equations of Hydrodynamic Type

    NASA Astrophysics Data System (ADS)

    Gumral, Hasan

    Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.

  10. On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1987-11-01

    The multi-Hamiltonian structure of a class of nonlinear wave equations governing the propagation of finite amplitude waves is discussed. Infinitely many conservation laws had earlier been obtained for these equations. Starting from a (primary) Hamiltonian formulation of these equations the necessary and sufficient conditions for the existence of bi-Hamiltonian structure are obtained and it is shown that the second Hamiltonian operator can be constructed solely through a knowledge of the first Hamiltonian function. The recursion operator which first appears at the level of bi-Hamiltonian structure gives rise to an infinite sequence of conserved Hamiltonians. It is found that in general there exist two different infinite sequences of conserved quantities for these equations. The recursion relation defining higher Hamiltonian structures enables one to obtain the necessary and sufficient conditions for the existence of the (k+1)st Hamiltonian operator which depends on the kth Hamiltonian function. The infinite sequence of conserved Hamiltonians are common to all the higher Hamiltonian structures. The equations of gas dynamics are discussed as an illustration of this formalism and it is shown that in general they admit tri-Hamiltonian structure with two distinct infinite sets of conserved quantities. The isothermal case of γ=1 is an exceptional one that requires separate treatment. This corresponds to a specialization of the equations governing the expansion of plasma into vacuum which will be shown to be equivalent to Poisson's equation in nonlinear acoustics.

  11. Multi-Hamiltonian structure of Plebanski's second heavenly equation

    NASA Astrophysics Data System (ADS)

    Neyzi, F.; Nutku, Y.; Sheftel, M. B.

    2005-09-01

    We show that Plebanski's second heavenly equation, when written as a first-order nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri's theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions.

  12. Discrete Kalman filtering equations of second-order form for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, K. F.; Belvin, W. Keith

    1991-01-01

    A second-order form of discrete Kalman filtering equations is proposed as a candidate state estimator for efficient simulations of control-structure interactions in coupled physical coordinate configurations as opposed to decoupled modal coordinates. The resulting matrix equation of the present state estimator consists of the same symmetric, sparse N x N coupled matrices of the governing structural dynamics equations as opposed to unsymmetric 2N x 2N state space-based estimators. Thus, in addition to substantial computational efficiency improvement, the present estimator can be applied to control-structure design optimization for which the physical coordinates associated with the mass, damping and stiffness matrices of the structure are needed instead of modal coordinates.

  13. Model fit evaluation in multilevel structural equation models

    PubMed Central

    Ryu, Ehri

    2014-01-01

    Assessing goodness of model fit is one of the key questions in structural equation modeling (SEM). Goodness of fit is the extent to which the hypothesized model reproduces the multivariate structure underlying the set of variables. During the earlier development of multilevel structural equation models, the “standard” approach was to evaluate the goodness of fit for the entire model across all levels simultaneously. The model fit statistics produced by the standard approach have a potential problem in detecting lack of fit in the higher-level model for which the effective sample size is much smaller. Also when the standard approach results in poor model fit, it is not clear at which level the model does not fit well. This article reviews two alternative approaches that have been proposed to overcome the limitations of the standard approach. One is a two-step procedure which first produces estimates of saturated covariance matrices at each level and then performs single-level analysis at each level with the estimated covariance matrices as input (Yuan and Bentler, 2007). The other level-specific approach utilizes partially saturated models to obtain test statistics and fit indices for each level separately (Ryu and West, 2009). Simulation studies (e.g., Yuan and Bentler, 2007; Ryu and West, 2009) have consistently shown that both alternative approaches performed well in detecting lack of fit at any level, whereas the standard approach failed to detect lack of fit at the higher level. It is recommended that the alternative approaches are used to assess the model fit in multilevel structural equation model. Advantages and disadvantages of the two alternative approaches are discussed. The alternative approaches are demonstrated in an empirical example. PMID:24550882

  14. Analyzing Mixed-Dyadic Data Using Structural Equation Models

    ERIC Educational Resources Information Center

    Peugh, James L.; DiLillo, David; Panuzio, Jillian

    2013-01-01

    Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…

  15. Generalized Appended Product Indicator Procedure for Nonlinear Structural Equation Analysis.

    ERIC Educational Resources Information Center

    Wall, Melanie M.; Amemiya, Yasuo

    2001-01-01

    Considers the estimation of polynomial structural models and shows a limitation of an existing method. Introduces a new procedure, the generalized appended product indicator procedure, for nonlinear structural equation analysis. Addresses statistical issues associated with the procedure through simulation. (SLD)

  16. On the structure of nonlinear constitutive equations for fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Jansson, Stefan

    1992-01-01

    The structure of constitutive equations for nonlinear multiaxial behavior of transversely isotropic fiber reinforced metal matrix composites subject to proportional loading was investigated. Results from an experimental program were combined with numerical simulations of the composite behavior for complex stress to reveal the full structure of the equations. It was found that the nonlinear response can be described by a quadratic flow-potential, based on the polynomial stress invariants, together with a hardening rule that is dominated by two different hardening mechanisms.

  17. Maximum Likelihood Estimation of Nonlinear Structural Equation Models.

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Zhu, Hong-Tu

    2002-01-01

    Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)

  18. Partial Least Squares Structural Equation Modeling with R

    ERIC Educational Resources Information Center

    Ravand, Hamdollah; Baghaei, Purya

    2016-01-01

    Structural equation modeling (SEM) has become widespread in educational and psychological research. Its flexibility in addressing complex theoretical models and the proper treatment of measurement error has made it the model of choice for many researchers in the social sciences. Nevertheless, the model imposes some daunting assumptions and…

  19. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  20. Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations

    NASA Astrophysics Data System (ADS)

    Sotoudeh, Zahra

    2011-07-01

    Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis. This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables. In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research. This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.

  1. Local Influence Analysis of Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  2. Structural Equation Modeling Reporting Practices for Language Assessment

    ERIC Educational Resources Information Center

    Ockey, Gary J.; Choi, Ikkyu

    2015-01-01

    Studies that use structural equation modeling (SEM) techniques are increasingly encountered in the language assessment literature. This popularity has created the need for a set of guidelines that can indicate what should be included in a research report and make it possible for research consumers to judge the appropriateness of the…

  3. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  4. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE PAGES

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris; ...

    2018-04-23

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  5. Solutions for Missing Data in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Carter, Rufus Lynn

    2006-01-01

    Many times in both educational and social science research it is impossible to collect data that is complete. When administering a survey, for example, people may answer some questions and not others. This missing data causes a problem for researchers using structural equation modeling (SEM) techniques for data analyses. Because SEM and…

  6. Quantization of wave equations and hermitian structures in partial differential varieties

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1980-01-01

    Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation—e.g., of the form □ϕ + m2ϕ + gϕp = 0—admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments. PMID:16592923

  7. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    PubMed

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  8. Case-Deletion Diagnostics for Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Lu, Bin

    2003-01-01

    In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…

  9. Hamiltonian structure of real Monge - Ampère equations

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1996-06-01

    The variational principle for the real homogeneous Monge - Ampère equation in two dimensions is shown to contain three arbitrary functions of four variables. There exist two different specializations of this variational principle where the Lagrangian is degenerate and furthermore contains an arbitrary function of two variables. The Hamiltonian formulation of these degenerate Lagrangian systems requires the use of Dirac's theory of constraints. As in the case of most completely integrable systems the constraints are second class and Dirac brackets directly yield the Hamiltonian operators. Thus the real homogeneous Monge - Ampère equation in two dimensions admits two classes of infinitely many Hamiltonian operators, namely a family of local, as well as another family non-local Hamiltonian operators and symplectic 2-forms which depend on arbitrary functions of two variables. The simplest non-local Hamiltonian operator corresponds to the Kac - Moody algebra of vector fields and functions on the unit circle. Hamiltonian operators that belong to either class are compatible with each other but between classes there is only one compatible pair. In the case of real Monge - Ampère equations with constant right-hand side this compatible pair is the only pair of Hamiltonian operators that survives. Then the complete integrability of all these real Monge - Ampère equations follows by Magri's theorem. Some of the remarkable properties we have obtained for the Hamiltonian structure of the real homogeneous Monge - Ampère equation in two dimensions turn out to be generic to the real homogeneous Monge - Ampère equation and the geodesic flow for the complex homogeneous Monge - Ampère equation in arbitrary number of dimensions. Hence among all integrable nonlinear evolution equations in one space and one time dimension, the real homogeneous Monge - Ampère equation is distinguished as one that retains its character as an integrable system in multiple dimensions.

  10. OpenMx: An Open Source Extended Structural Equation Modeling Framework

    ERIC Educational Resources Information Center

    Boker, Steven; Neale, Michael; Maes, Hermine; Wilde, Michael; Spiegel, Michael; Brick, Timothy; Spies, Jeffrey; Estabrook, Ryne; Kenny, Sarah; Bates, Timothy; Mehta, Paras; Fox, John

    2011-01-01

    OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx runs within the "R" statistical programming environment on Windows, Mac OS-X, and Linux computers. The rationale for developing OpenMx is discussed along with the philosophy behind the user interface. The OpenMx data structures are…

  11. Second-order discrete Kalman filtering equations for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.

    1991-01-01

    A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.

  12. Nonlinear model of a rotating hub-beams structure: Equations of motion

    NASA Astrophysics Data System (ADS)

    Warminski, Jerzy

    2018-01-01

    Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.

  13. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1975-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. A general relativistic version of the mixing-length formalism for convection is presented. It is argued that in work on spherical systems, general relativity theorists have identified the wrong quantity as total mass-energy inside radius r.

  14. Covariant symplectic structure of the complex Monge-Ampère equation

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    2000-04-01

    The complex Monge-Ampère equation is invariant under arbitrary holomorphic changes of the independent variables with unit Jacobian. We present its variational formulation where the action remains invariant under this infinite group. The new Lagrangian enables us to obtain the first symplectic 2-form for the complex Monge-Ampère equation in the framework of the covariant Witten-Zuckerman approach to symplectic structure. We base our considerations on a reformulation of the Witten-Zuckerman theory in terms of holomorphic differential forms. The first closed and conserved Witten-Zuckerman symplectic 2-form for the complex Monge-Ampère equation is obtained in arbitrary dimension and for all cases elliptic, hyperbolic and homogeneous. The connection of the complex Monge-Ampère equation with Ricci-flat Kähler geometry suggests the use of the Hilbert action principle as an alternative variational formulation. However, we point out that Hilbert's Lagrangian is a divergence for Kähler metrics and serves as a topological invariant rather than yielding the Euclideanized Einstein field equations. Nevertheless, since the Witten-Zuckerman theory employs only the boundary terms in the first variation of the action, Hilbert's Lagrangian can be used to obtain the second Witten-Zuckerman symplectic 2-form. This symplectic 2-form vanishes on shell, thus defining a Lagrangian submanifold. In its derivation the connection of the second symplectic 2-form with the complex Monge-Ampère equation is indirect but we show that it satisfies all the properties required of a symplectic 2-form for the complex elliptic, or hyperbolic Monge-Ampère equation when the dimension of the complex manifold is 3 or higher. The complex Monge-Ampère equation admits covariant bisymplectic structure for complex dimension 3, or higher. However, in the physically interesting case of n=2 we have only one symplectic 2-form. The extension of these results to the case of complex Monge

  15. Uncovering the influence of social skills and psychosociological factors on pain sensitivity using structural equation modeling.

    PubMed

    Tanaka, Yoichi; Nishi, Yuki; Nishi, Yuki; Osumi, Michihiro; Morioka, Shu

    2017-01-01

    Pain is a subjective emotional experience that is influenced by psychosociological factors such as social skills, which are defined as problem-solving abilities in social interactions. This study aimed to reveal the relationships among pain, social skills, and other psychosociological factors by using structural equation modeling. A total of 101 healthy volunteers (41 men and 60 women; mean age: 36.6±12.7 years) participated in this study. To evoke participants' sense of inner pain, we showed them images of painful scenes on a PC screen and asked them to evaluate the pain intensity by using the visual analog scale (VAS). We examined the correlation between social skills and VAS, constructed a hypothetical model based on results from previous studies and the current correlational analysis results, and verified the model's fit using structural equation modeling. We found significant positive correlations between VAS and total social skills values, as well as between VAS and the "start of relationships" subscales. Structural equation modeling revealed that the values for "start of relationships" had a direct effect on VAS values (path coefficient =0.32, p <0.01). In addition, the "start of relationships" had both a direct and an indirect effect on psychological factors via social support. The results indicated that extroverted people are more sensitive to inner pain and tend to get more social support and maintain a better psychological condition.

  16. Bayesian structural equation modeling: a more flexible representation of substantive theory.

    PubMed

    Muthén, Bengt; Asparouhov, Tihomir

    2012-09-01

    This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed Bayesian approach is particularly beneficial in applications where parameters are added to a conventional model such that a nonidentified model is obtained if maximum-likelihood estimation is applied. This approach is useful for measurement aspects of latent variable modeling, such as with confirmatory factor analysis, and the measurement part of structural equation modeling. Two application areas are studied, cross-loadings and residual correlations in confirmatory factor analysis. An example using a full structural equation model is also presented, showing an efficient way to find model misspecification. The approach encompasses 3 elements: model testing using posterior predictive checking, model estimation, and model modification. Monte Carlo simulations and real data are analyzed using Mplus. The real-data analyses use data from Holzinger and Swineford's (1939) classic mental abilities study, Big Five personality factor data from a British survey, and science achievement data from the National Educational Longitudinal Study of 1988.

  17. On Nonequivalence of Several Procedures of Structural Equation Modeling

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Chan, Wai

    2005-01-01

    The normal theory based maximum likelihood procedure is widely used in structural equation modeling. Three alternatives are: the normal theory based generalized least squares, the normal theory based iteratively reweighted least squares, and the asymptotically distribution-free procedure. When data are normally distributed and the model structure…

  18. Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies

    ERIC Educational Resources Information Center

    Smith, Carrie E.; Cribbie, Robert A.

    2013-01-01

    When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…

  19. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  20. Is Small Still Beautiful for the Strengths and Difficulties Questionnaire? Novel Findings Using Exploratory Structural Equation Modeling.

    PubMed

    Garrido, Luis Eduardo; Barrada, Juan Ramón; Aguasvivas, José Armando; Martínez-Molina, Agustín; Arias, Víctor B; Golino, Hudson F; Legaz, Eva; Ferrís, Gloria; Rojo-Moreno, Luis

    2018-06-01

    During the present decade a large body of research has employed confirmatory factor analysis (CFA) to evaluate the factor structure of the Strengths and Difficulties Questionnaire (SDQ) across multiple languages and cultures. However, because CFA can produce strongly biased estimations when the population cross-loadings differ meaningfully from zero, it may not be the most appropriate framework to model the SDQ responses. With this in mind, the current study sought to assess the factorial structure of the SDQ using the more flexible exploratory structural equation modeling approach. Using a large-scale Spanish sample composed of 67,253 youths aged between 10 and 18 years ( M = 14.16, SD = 1.07), the results showed that CFA provided a severely biased and overly optimistic assessment of the underlying structure of the SDQ. In contrast, exploratory structural equation modeling revealed a generally weak factorial structure, including questionable indicators with large cross-loadings, multiple error correlations, and significant wording variance. A subsequent Monte Carlo study showed that sample sizes greater than 4,000 would be needed to adequately recover the SDQ loading structure. The findings from this study prevent recommending the SDQ as a screening tool and suggest caution when interpreting previous results in the literature based on CFA modeling.

  1. Flows in a tube structure: Equation on the graph

    NASA Astrophysics Data System (ADS)

    Panasenko, Grigory; Pileckas, Konstantin

    2014-08-01

    The steady-state Navier-Stokes equations in thin structures lead to some elliptic second order equation for the macroscopic pressure on a graph. At the nodes of the graph the pressure satisfies Kirchoff-type junction conditions. In the non-steady case the problem for the macroscopic pressure on the graph becomes nonlocal in time. In the paper we study the existence and uniqueness of a solution to such one-dimensional model on the graph for a pipe-wise network. We also prove the exponential decay of the solution with respect to the time variable in the case when the data decay exponentially with respect to time.

  2. A Bayesian Approach for Analyzing Longitudinal Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum

    2011-01-01

    This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…

  3. Effects of Employing Ridge Regression in Structural Equation Models.

    ERIC Educational Resources Information Center

    McQuitty, Shaun

    1997-01-01

    LISREL 8 invokes a ridge option when maximum likelihood or generalized least squares are used to estimate a structural equation model with a nonpositive definite covariance or correlation matrix. Implications of the ridge option for model fit, parameter estimates, and standard errors are explored through two examples. (SLD)

  4. A Structural Equation Model of Expertise in College Physics

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Carr, Martha

    2009-01-01

    A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…

  5. A Structural Equation Model of Conceptual Change in Physics

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  6. Spirometric Reference Equations for Elderly Chinese in Jinan Aged 60–84 Years

    PubMed Central

    Tian, Xin-Yu; Liu, Chun-Hong; Wang, De-Xiang; Ji, Xiu-Li; Shi, Hui; Zheng, Chun-Yan; Xie, Meng-Shuang; Xiao, Wei

    2018-01-01

    Background: The interpretation of spirometry varies on different reference values. Older people are usually underrepresented in published predictive values. This study aimed at developing spirometric reference equations for elderly Chinese in Jinan aged 60–84 years and to compare them to previous equations. Methods: The project covered all of Jinan city, and the recruitment period lasted 9 months from January 1, 2017 to September 30, 2017, 434 healthy people aged 60–84 years who had never smoked (226 females and 208 males) were recruited to undergo spirometry. Vital capacity (VC), forced VC (FVC), forced expiratory volume in 1 s (FEV1), FEV1/FVC, FEV1/VC, FEV6, peak expiratory flow, and forced expiratory flow at 25%, 50%, 75%, and 25–75% of FVC exhaled (FEF25%, FEF50%, FEF75%, and FEF25–75%) were analyzed. Reference equations for mean and the lower limit of normal (LLN) were derived using the lambda-mu-sigma method. Comparisons between new and previous equations were performed by paired t-test. Results: New reference equations were developed from the sample. The LLN of FEV1/FVC, FEF25–75% computed using the 2012-Global Lung Function Initiative (GLI) and 2006-Hong Kong equations were both lower than the new equations. The biggest degree of difference for FEV1/FVC was 19% (70.46% vs. 59.29%, t = 33.954, P < 0.01) and for maximal midexpiratory flow (MMEF, equals to FEF25–75%) was 22% (0.82 vs. 0.67, t = 21.303, P < 0.01). The 1990-North China and 2009-North China equations predicted higher mean values of FEV1/FVC and FEF25–75% than the present model. The biggest degrees of difference were −4% (78.31% vs. 81.27%, t = −85.359, P < 0.01) and −60% (2.11 vs. 4.68, t = −170.287, P < 0.01), respectively. Conclusions: The newly developed spirometric reference equations are applicable to elderly Chinese in Jinan. The 2012-GLI and 2006-Hong Kong equations may lead to missed diagnoses of obstructive ventilatory defects and the small airway dysfunction

  7. A Note on Structural Equation Modeling Estimates of Reliability

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2010-01-01

    Reliability can be estimated using structural equation modeling (SEM). Two potential problems with this approach are that estimates may be unstable with small sample sizes and biased with misspecified models. A Monte Carlo study was conducted to investigate the quality of SEM estimates of reliability by themselves and relative to coefficient…

  8. Meta-Analytic Structural Equation Modeling: A Two-Stage Approach

    ERIC Educational Resources Information Center

    Cheung, Mike W. L.; Chan, Wai

    2005-01-01

    To synthesize studies that use structural equation modeling (SEM), researchers usually use Pearson correlations (univariate r), Fisher z scores (univariate z), or generalized least squares (GLS) to combine the correlation matrices. The pooled correlation matrix is then analyzed by the use of SEM. Questionable inferences may occur for these ad hoc…

  9. Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations

    NASA Astrophysics Data System (ADS)

    Blossey, R.; Maggs, A. C.; Podgornik, R.

    2017-06-01

    We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation introduced by Bazant et al. [Phys. Rev. Lett. 106, 046102 (2011)], 10.1103/PhysRevLett.106.046102, whereby the structuring near the surface is determined by bulk coefficients.

  10. Fitting Meta-Analytic Structural Equation Models with Complex Datasets

    ERIC Educational Resources Information Center

    Wilson, Sandra Jo; Polanin, Joshua R.; Lipsey, Mark W.

    2016-01-01

    A modification of the first stage of the standard procedure for two-stage meta-analytic structural equation modeling for use with large complex datasets is presented. This modification addresses two common problems that arise in such meta-analyses: (a) primary studies that provide multiple measures of the same construct and (b) the correlation…

  11. Maximum Likelihood Estimation in Meta-Analytic Structural Equation Modeling

    ERIC Educational Resources Information Center

    Oort, Frans J.; Jak, Suzanne

    2016-01-01

    Meta-analytic structural equation modeling (MASEM) involves fitting models to a common population correlation matrix that is estimated on the basis of correlation coefficients that are reported by a number of independent studies. MASEM typically consist of two stages. The method that has been found to perform best in terms of statistical…

  12. Uncovering the influence of social skills and psychosociological factors on pain sensitivity using structural equation modeling

    PubMed Central

    Tanaka, Yoichi; Nishi, Yuki; Nishi, Yuki; Osumi, Michihiro; Morioka, Shu

    2017-01-01

    Pain is a subjective emotional experience that is influenced by psychosociological factors such as social skills, which are defined as problem-solving abilities in social interactions. This study aimed to reveal the relationships among pain, social skills, and other psychosociological factors by using structural equation modeling. A total of 101 healthy volunteers (41 men and 60 women; mean age: 36.6±12.7 years) participated in this study. To evoke participants’ sense of inner pain, we showed them images of painful scenes on a PC screen and asked them to evaluate the pain intensity by using the visual analog scale (VAS). We examined the correlation between social skills and VAS, constructed a hypothetical model based on results from previous studies and the current correlational analysis results, and verified the model’s fit using structural equation modeling. We found significant positive correlations between VAS and total social skills values, as well as between VAS and the “start of relationships” subscales. Structural equation modeling revealed that the values for “start of relationships” had a direct effect on VAS values (path coefficient =0.32, p<0.01). In addition, the “start of relationships” had both a direct and an indirect effect on psychological factors via social support. The results indicated that extroverted people are more sensitive to inner pain and tend to get more social support and maintain a better psychological condition. PMID:28979161

  13. A Comparative Structural Equation Modeling Investigation of the Relationships among Teaching, Cognitive and Social Presence

    ERIC Educational Resources Information Center

    Kozan, Kadir

    2016-01-01

    The present study investigated the relationships among teaching, cognitive, and social presence through several structural equation models to see which model would better fit the data. To this end, the present study employed and compared several different structural equation models because different models could fit the data equally well. Among…

  14. An Improved Estimation Using Polya-Gamma Augmentation for Bayesian Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S.

    2018-01-01

    Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…

  15. Model Comparison of Nonlinear Structural Equation Models with Fixed Covariates.

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2003-01-01

    Proposed a new nonlinear structural equation model with fixed covariates to deal with some complicated substantive theory and developed a Bayesian path sampling procedure for model comparison. Illustrated the approach with an illustrative example using data from an international study. (SLD)

  16. USING STRUCTURAL EQUATION MODELING TO INVESTIGATE RELATIONSHIPS AMONG ECOLOGICAL VARIABLES

    EPA Science Inventory

    This paper gives an introductory account of Structural Equation Modeling (SEM) and demonstrates its application using LISREL< with a model utilizing environmental data. Using nine EMAP data variables, we analyzed their correlation matrix with an SEM model. The model characterized...

  17. Going beyond Equations with Disciplinary Thinking in First-Year Physics

    ERIC Educational Resources Information Center

    Syed, M. Qasim

    2015-01-01

    Students in first-year physics courses generally focus on hunting for suitable equations and formulas when tackling a variety of physical situations and physics problems. There is a need for a framework that can guide them to disciplinary ways of thinking and help them begin to think like physicists. To serve this end, in this study, a framework…

  18. Implementing Restricted Maximum Likelihood Estimation in Structural Equation Models

    ERIC Educational Resources Information Center

    Cheung, Mike W.-L.

    2013-01-01

    Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…

  19. A Structural Equation Model for Predicting Business Student Performance

    ERIC Educational Resources Information Center

    Pomykalski, James J.; Dion, Paul; Brock, James L.

    2008-01-01

    In this study, the authors developed a structural equation model that accounted for 79% of the variability of a student's final grade point average by using a sample size of 147 students. The model is based on student grades in 4 foundational business courses: introduction to business, macroeconomics, statistics, and using databases. Educators and…

  20. Characterizing the Shape of Anatomical Structures With Poisson’s Equation

    PubMed Central

    Haidar, Haissam; Levitt, James J.; McCarley, Robert W.; Shenton, Martha E.; Soul, Janet S.

    2009-01-01

    Poisson’s equation, a fundamental partial differential equation in classical physics, has a number of properties that are interesting for shape analysis. In particular, the equipotential sets of the solution graph become smoother as the potential increases. We use the displacement map, the length of the streamlines formed by the gradient field of the solution, to measure the “complexity” (or smoothness) of the equipotential sets, and study its behavior as the potential increases. We believe that this function complexity = f (potential), which we call the shape characteristic, is a very natural way to express shape. Robust algorithms are presented to compute the solution to Poisson’s equation, the displacement map, and the shape characteristic. We first illustrate our technique on two-dimensional synthetic examples and natural silhouettes. We then perform two shape analysis studies on three-dimensional neuroanatomical data extracted from magnetic resonance (MR) images of the brain. In the first study, we investigate changes in the caudate nucleus in Schizotypal Personality Disorder (SPD) and confirm previously published results on this structure [1]. In the second study, we present a data set of caudate nuclei of premature infants with asymmetric white matter injury. Our method shows structural shape differences that volumetric measurements were unable to detect. PMID:17024829

  1. Development of reference equations for spirometry in Japanese children aged 6-18 years.

    PubMed

    Takase, Masato; Sakata, Hiroshi; Shikada, Masahiro; Tatara, Katsuyoshi; Fukushima, Takayoshi; Miyakawa, Tomoo

    2013-01-01

    Spirometry is the most widely used pulmonary function test and the measured values of spirometric parameters need to be evaluated using reference values predicted for the corresponding race, sex, age, and height. However, none of the existing reference equations for Japanese children covers the entire age range of 6-18 years. The Japanese Society of Pediatric Pulmonology had organized a working group in 2006, in order to develop a new set of national standard reference equations for commonly used spirometric parameters that are applicable through the age range of 6-18 years. Quality assured spirometric data were collected through 2006-2008, from 14 institutions in Japan. We applied multiple regression analysis, using age in years (A), square of age (A(2)), height in meters (H), square of height (H(2)), and the product of age and height (AH) as explanatory variables to predict forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV(1)), peak expiratory flow (PEF), forced expiratory flow between 25% and 75% of the FVC (FEF(25-75%)), instantaneous forced expiratory flow when 50% (FEF(50%)) or 75% (FEF(75%)) of the FVC have been expired. Finally, 1,296 tests (674 boys, 622 girls) formed the reference data set. Distributions of the percent predicted values did not differ by ages, confirming excellent fit of the prediction equations throughout the entire age range from 6 to 18 years. Cut-off values (around 5 percentile points) for the parameters were also determined. We recommend the use of this new set of prediction equations together with suggested cut-off values, for assessment of spirometry in Japanese children and adolescents. Copyright © 2012 Wiley Periodicals, Inc.

  2. Further insights on the French WISC-IV factor structure through Bayesian structural equation modeling.

    PubMed

    Golay, Philippe; Reverte, Isabelle; Rossier, Jérôme; Favez, Nicolas; Lecerf, Thierry

    2013-06-01

    The interpretation of the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all cross-loadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Investigating Supervisory Relationships and Therapeutic Alliances Using Structural Equation Modeling

    ERIC Educational Resources Information Center

    DePue, Mary Kristina; Lambie, Glenn W.; Liu, Ren; Gonzalez, Jessica

    2016-01-01

    The authors used structural equation modeling to examine the contribution of supervisees' supervisory relationship levels to therapeutic alliance (TA) scores with their clients in practicum. Results showed that supervisory relationship scores positively contributed to the TA. Client and counselor ratings of the TA also differed.

  4. Using Structural Equation Modeling To Fit Models Incorporating Principal Components.

    ERIC Educational Resources Information Center

    Dolan, Conor; Bechger, Timo; Molenaar, Peter

    1999-01-01

    Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…

  5. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  6. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method

    ERIC Educational Resources Information Center

    Maslowsky, Julie; Jager, Justin; Hemken, Douglas

    2015-01-01

    Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…

  7. Determinants of quality of life in patients with fibromyalgia: A structural equation modeling approach.

    PubMed

    Lee, Jeong-Won; Lee, Kyung-Eun; Park, Dong-Jin; Kim, Seong-Ho; Nah, Seong-Su; Lee, Ji Hyun; Kim, Seong-Kyu; Lee, Yeon-Ah; Hong, Seung-Jae; Kim, Hyun-Sook; Lee, Hye-Soon; Kim, Hyoun Ah; Joung, Chung-Il; Kim, Sang-Hyon; Lee, Shin-Seok

    2017-01-01

    Health-related quality of life (HRQOL) in patients with fibromyalgia (FM) is lower than in patients with other chronic diseases and the general population. Although various factors affect HRQOL, no study has examined a structural equation model of HRQOL as an outcome variable in FM patients. The present study assessed relationships among physical function, social factors, psychological factors, and HRQOL, and the effects of these variables on HRQOL in a hypothesized model using structural equation modeling (SEM). HRQOL was measured using SF-36, and the Fibromyalgia Impact Questionnaire (FIQ) was used to assess physical dysfunction. Social and psychological statuses were assessed using the Beck Depression Inventory (BDI), the State-Trait Anxiety Inventory (STAI), the Arthritis Self-Efficacy Scale (ASES), and the Social Support Scale. SEM analysis was used to test the structural relationships of the model using the AMOS software. Of the 336 patients, 301 (89.6%) were women with an average age of 47.9±10.9 years. The SEM results supported the hypothesized structural model (χ2 = 2.336, df = 3, p = 0.506). The final model showed that Physical Component Summary (PCS) was directly related to self-efficacy and inversely related to FIQ, and that Mental Component Summary (MCS) was inversely related to FIQ, BDI, and STAI. In our model of FM patients, HRQOL was affected by physical, social, and psychological variables. In these patients, higher levels of physical function and self-efficacy can improve the PCS of HRQOL, while physical function, depression, and anxiety negatively affect the MCS of HRQOL.

  8. Determinants of quality of life in patients with fibromyalgia: A structural equation modeling approach

    PubMed Central

    Lee, Jeong-Won; Lee, Kyung-Eun; Park, Dong-Jin; Kim, Seong-Ho; Nah, Seong-Su; Lee, Ji Hyun; Kim, Seong-Kyu; Lee, Yeon-Ah; Hong, Seung-Jae; Kim, Hyun-Sook; Lee, Hye-Soon; Kim, Hyoun Ah; Joung, Chung-Il; Kim, Sang-Hyon

    2017-01-01

    Objective Health-related quality of life (HRQOL) in patients with fibromyalgia (FM) is lower than in patients with other chronic diseases and the general population. Although various factors affect HRQOL, no study has examined a structural equation model of HRQOL as an outcome variable in FM patients. The present study assessed relationships among physical function, social factors, psychological factors, and HRQOL, and the effects of these variables on HRQOL in a hypothesized model using structural equation modeling (SEM). Methods HRQOL was measured using SF-36, and the Fibromyalgia Impact Questionnaire (FIQ) was used to assess physical dysfunction. Social and psychological statuses were assessed using the Beck Depression Inventory (BDI), the State-Trait Anxiety Inventory (STAI), the Arthritis Self-Efficacy Scale (ASES), and the Social Support Scale. SEM analysis was used to test the structural relationships of the model using the AMOS software. Results Of the 336 patients, 301 (89.6%) were women with an average age of 47.9±10.9 years. The SEM results supported the hypothesized structural model (χ2 = 2.336, df = 3, p = 0.506). The final model showed that Physical Component Summary (PCS) was directly related to self-efficacy and inversely related to FIQ, and that Mental Component Summary (MCS) was inversely related to FIQ, BDI, and STAI. Conclusions In our model of FM patients, HRQOL was affected by physical, social, and psychological variables. In these patients, higher levels of physical function and self-efficacy can improve the PCS of HRQOL, while physical function, depression, and anxiety negatively affect the MCS of HRQOL. PMID:28158289

  9. Comparing direct and iterative equation solvers in a large structural analysis software system

    NASA Technical Reports Server (NTRS)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  10. Nested Structural Equation Models: Noncentrality and Power of Restriction Test.

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    1998-01-01

    Discusses the difference in noncentrality parameters of nested structural equation models and their utility in evaluating statistical power associated with the pertinent restriction test. Asymptotic confidence intervals for that difference are presented. These intervals represent a useful adjunct to goodness-of-fit indexes in assessing constraints…

  11. Update to core reporting practices in structural equation modeling.

    PubMed

    Schreiber, James B

    This paper is a technical update to "Core Reporting Practices in Structural Equation Modeling." 1 As such, the content covered in this paper includes, sample size, missing data, specification and identification of models, estimation method choices, fit and residual concerns, nested, alternative, and equivalent models, and unique issues within the SEM family of techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A Maximum Likelihood Approach for Multisample Nonlinear Structural Equation Models with Missing Continuous and Dichotomous Data

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    Structural equation models are widely appreciated in social-psychological research and other behavioral research to model relations between latent constructs and manifest variables and to control for measurement error. Most applications of SEMs are based on fully observed continuous normal data and models with a linear structural equation.…

  13. Anti-Transgender Prejudice: A Structural Equation Model of Associated Constructs

    ERIC Educational Resources Information Center

    Tebbe, Esther N.; Moradi, Bonnie

    2012-01-01

    This study aimed to identify theoretically relevant key correlates of anti-transgender prejudice. Specifically, structural equation modeling was used to test the unique relations of anti-lesbian, gay, and bisexual (LGB) prejudice; traditional gender role attitudes; need for closure; and social dominance orientation with anti-transgender prejudice.…

  14. Multilevel Analysis of Structural Equation Models via the EM Algorithm.

    ERIC Educational Resources Information Center

    Jo, See-Heyon

    The question of how to analyze unbalanced hierarchical data generated from structural equation models has been a common problem for researchers and analysts. Among difficulties plaguing statistical modeling are estimation bias due to measurement error and the estimation of the effects of the individual's hierarchical social milieu. This paper…

  15. Structural analysis equations

    Treesearch

    Douglas R. Rammer

    2010-01-01

    Equations for deformation and stress, which are the basis for tension members and beam and column design, are discussed in this chapter. The first two sections cover tapered members, straight members, and special considerations such as notches, slits, and size effect. A third section presents stability criteria for members subject to buckling and for members subject to...

  16. Structural analysis equations

    Treesearch

    Lawrence A. Soltis

    1999-01-01

    Equations for deformation and stress, which are the basis for tension members and beam and column design, are discussed in this chapter. The first two sections cover tapered members, straight members, and special considerations such as notches, slits, and size effect. A third section presents stability criteria for members subject to buckling and for members subject to...

  17. Application of Exploratory Structural Equation Modeling to Evaluate the Academic Motivation Scale

    ERIC Educational Resources Information Center

    Guay, Frédéric; Morin, Alexandre J. S.; Litalien, David; Valois, Pierre; Vallerand, Robert J.

    2015-01-01

    In this research, the authors examined the construct validity of scores of the Academic Motivation Scale using exploratory structural equation modeling. Study 1 and Study 2 involved 1,416 college students and 4,498 high school students, respectively. First, results of both studies indicated that the factor structure tested with exploratory…

  18. Bootstrap Estimation of Sample Statistic Bias in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Thompson, Bruce; Fan, Xitao

    This study empirically investigated bootstrap bias estimation in the area of structural equation modeling (SEM). Three correctly specified SEM models were used under four different sample size conditions. Monte Carlo experiments were carried out to generate the criteria against which bootstrap bias estimation should be judged. For SEM fit indices,…

  19. The Interplay of School Readiness and Teacher Readiness for Educational Technology Integration: A Structural Equation Model

    ERIC Educational Resources Information Center

    Petko, Dominik; Prasse, Doreen; Cantieni, Andrea

    2018-01-01

    Decades of research have shown that technological change in schools depends on multiple interrelated factors. Structural equation models explaining the interplay of factors often suffer from high complexity and low coherence. To reduce complexity, a more robust structural equation model was built with data from a survey of 349 Swiss primary school…

  20. Electromagnetic scattering of large structures in layered earths using integral equations

    NASA Astrophysics Data System (ADS)

    Xiong, Zonghou; Tripp, Alan C.

    1995-07-01

    An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.

  1. Fitting Data to Model: Structural Equation Modeling Diagnosis Using Two Scatter Plots

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Hayashi, Kentaro

    2010-01-01

    This article introduces two simple scatter plots for model diagnosis in structural equation modeling. One plot contrasts a residual-based M-distance of the structural model with the M-distance for the factor score. It contains information on outliers, good leverage observations, bad leverage observations, and normal cases. The other plot contrasts…

  2. Play Context, Commitment, and Dating Violence: A Structural Equation Model

    ERIC Educational Resources Information Center

    Gonzalez-Mendez, Rosaura; Hernandez-Cabrera, Juan Andres

    2009-01-01

    This study develops a structural equation model to describe the effect of two groups of factors (type of commitment and play context) on the violence experienced during intimate partner conflict. After contrasting the model in adolescents and university students, we have confirmed that aggressive play and the simulation of jealousy and anger…

  3. A Structural Equation Modelling of the Academic Self-Concept Scale

    ERIC Educational Resources Information Center

    Matovu, Musa

    2014-01-01

    The study aimed at validating the academic self-concept scale by Liu and Wang (2005) in measuring academic self-concept among university students. Structural equation modelling was used to validate the scale which was composed of two subscales; academic confidence and academic effort. The study was conducted on university students; males and…

  4. Structural Equation Models in a Redundancy Analysis Framework With Covariates.

    PubMed

    Lovaglio, Pietro Giorgio; Vittadini, Giorgio

    2014-01-01

    A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.

  5. Guidelines for a graph-theoretic implementation of structural equation modeling

    USGS Publications Warehouse

    Grace, James B.; Schoolmaster, Donald R.; Guntenspergen, Glenn R.; Little, Amanda M.; Mitchell, Brian R.; Miller, Kathryn M.; Schweiger, E. William

    2012-01-01

    Structural equation modeling (SEM) is increasingly being chosen by researchers as a framework for gaining scientific insights from the quantitative analyses of data. New ideas and methods emerging from the study of causality, influences from the field of graphical modeling, and advances in statistics are expanding the rigor, capability, and even purpose of SEM. Guidelines for implementing the expanded capabilities of SEM are currently lacking. In this paper we describe new developments in SEM that we believe constitute a third-generation of the methodology. Most characteristic of this new approach is the generalization of the structural equation model as a causal graph. In this generalization, analyses are based on graph theoretic principles rather than analyses of matrices. Also, new devices such as metamodels and causal diagrams, as well as an increased emphasis on queries and probabilistic reasoning, are now included. Estimation under a graph theory framework permits the use of Bayesian or likelihood methods. The guidelines presented start from a declaration of the goals of the analysis. We then discuss how theory frames the modeling process, requirements for causal interpretation, model specification choices, selection of estimation method, model evaluation options, and use of queries, both to summarize retrospective results and for prospective analyses. The illustrative example presented involves monitoring data from wetlands on Mount Desert Island, home of Acadia National Park. Our presentation walks through the decision process involved in developing and evaluating models, as well as drawing inferences from the resulting prediction equations. In addition to evaluating hypotheses about the connections between human activities and biotic responses, we illustrate how the structural equation (SE) model can be queried to understand how interventions might take advantage of an environmental threshold to limit Typha invasions. The guidelines presented provide for

  6. Structural Equation Modeling Diagnostics Using R Package Semdiag and EQS

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Zhang, Zhiyong

    2012-01-01

    Yuan and Hayashi (2010) introduced 2 scatter plots for model and data diagnostics in structural equation modeling (SEM). However, the generation of the plots requires in-depth understanding of their underlying technical details. This article develops and introduces an R package semdiag for easily drawing the 2 plots. With a model specified in EQS…

  7. Structure of two-dimensional solitons in the context of a generalized Kadomtsev-Petviashvili equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramyan, L.A.; Stepanyants, Yu.A.

    1988-04-01

    The structure of steady-state two-dimensional solutions of the soliton type with quadratic and cubic nonlinearities and power-law dispersion is analyzed numerically. It is shown that steadily coupled two-dimensional multisolitons can exist for positive dispersion in a broad class of equations, which generalize the Kadomtsev-Petviashvili equation.

  8. The Ffowcs Williams-Hawkings equation - Fifteen years of research

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1986-01-01

    The Ffowcs Williams-Hawkings equation governs the generation of sound in fluids in the presence of solid boundaries in motion. This equation is reviewed for situations where the linearization of the governing equations is allowed. In addition, research on the application of this equation to problems of aeroacoustic is briefly surveyed. Particular attention is given to the formulation of supersonic sources moving in uniform propeller-like motion.

  9. Reference equations for 6-min walk test in healthy Indian subjects (25-80 years).

    PubMed

    Palaniappan Ramanathan, Ramanathan; Chandrasekaran, Baskaran

    2014-01-01

    Six-min walk test (6MWT), a simple functional capacity evaluation tool used globally to determine the prognosis and effectiveness of any therapeutic/medical intervention. However, variability in reference equations derived from western population (due to racial and ethnicity variations) hinders from adequate use of 6MWT clinically. Further, there are no valid Indian studies that predict reference values for 6-min walk distance (6MWD) in healthy Indian normal. We aimed for framing individualized reference equations for 6MWT in healthy Indian population. Anthropometric variables (age, weight, height, and body mass index (BMI)) and 6-min walk in a 30 m corridor were evaluated in 125 subjects (67 females) in a cross-sectional trial. 6MWD significantly correlated with age (r = -0.29), height (r = 0.393), weight (r = 0.08), and BMI (r = -0.17). The gender specific reference equations for healthy Indian individuals were: (1) Males: 561.022 - (2.507 × age [years]) + (1.505 × weight [kg]) - (0.055 × height [cm]). R (2) = 0.288. (2) Indian females: 30.325 - (0.809 × age [years]) - (2.074 × weight [kg]) + (4.235 × height [cm]). R (2) = 0.272. Though the equations possess a small coefficient of determination and larger standard error estimate, the former applicability to Indian population is justified. These reference equations are probably most appropriate for evaluating the walked capacity of Indian patients with chronic diseases.

  10. A structural equation model relating impaired sensorimotor function, fear of falling and gait patterns in older people.

    PubMed

    Menz, Hylton B; Lord, Stephen R; Fitzpatrick, Richard C

    2007-02-01

    Many falls in older people occur while walking, however the mechanisms responsible for gait instability are poorly understood. Therefore, the aim of this study was to develop a plausible model describing the relationships between impaired sensorimotor function, fear of falling and gait patterns in older people. Temporo-spatial gait parameters and acceleration patterns of the head and pelvis were obtained from 100 community-dwelling older people aged between 75 and 93 years while walking on an irregular walkway. A theoretical model was developed to explain the relationships between these variables, assuming that head stability is a primary output of the postural control system when walking. This model was then tested using structural equation modeling, a statistical technique which enables the testing of a set of regression equations simultaneously. The structural equation model indicated that: (i) reduced step length has a significant direct and indirect association with reduced head stability; (ii) impaired sensorimotor function is significantly associated with reduced head stability, but this effect is largely indirect, mediated by reduced step length, and; (iii) fear of falling is significantly associated with reduced step length, but has little direct influence on head stability. These findings provide useful insights into the possible mechanisms underlying gait characteristics and risk of falling in older people. Particularly important is the indication that fear-related step length shortening may be maladaptive.

  11. Physical factors underlying the association between lower walking performance and falls in older people: a structural equation model.

    PubMed

    Shimada, Hiroyuki; Tiedemann, Anne; Lord, Stephen R; Suzukawa, Megumi; Makizako, Hyuma; Kobayashi, Kumiko; Suzuki, Takao

    2011-01-01

    The purpose of this study was to determine the interrelationships between lower limb muscle performance, balance, gait and falls in older people using structural equation modeling. Study participants were two hundred and thirteen people aged 65 years and older (mean age, 80.0 ± 7.1 years), who used day-care services in Japan. The outcome measures were the history of falls three months retrospectively and physical risk factors for falling, including performance in the chair stand test (CST), one-leg standing test (OLS), tandem walk test, 6m walking time, and the timed up-and-go (TUG) test. Thirty-nine (18.3%) of the 213 participants had fallen at least one or more times during the preceding 3 months. The fall group had significantly slower 6m walking speed and took significantly longer to undertake the TUG test than the non-fall group. In a structural equation model, performance in the CST contributed significantly to gait function, and low gait function was significantly and directly associated with falls in older people. This suggests that task-specific strength exercise as well as general mobility retraining should be important components of exercise programs designed to reduce falls in older people. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. An integrable family of Monge-Ampère equations and their multi-Hamiltonian structure

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Sarioǧlu, Ö.

    1993-02-01

    We have identified a completely integrable family of Monge-Ampère equations through an examination of their Hamiltonian structure. Starting with a variational formulation of the Monge-Ampère equations we have constructed the first Hamiltonian operator through an application of Dirac's theory of constraints. The completely integrable class of Monge-Ampère equations are then obtained by solving the Jacobi identities for a sufficiently general form of the second Hamiltonian operator that is compatible with the first.

  13. Structural equation modeling in pediatric psychology: overview and review of applications.

    PubMed

    Nelson, Timothy D; Aylward, Brandon S; Steele, Ric G

    2008-08-01

    To describe the use of structural equation modeling (SEM) in the Journal of Pediatric Psychology (JPP) and to discuss the usefulness of SEM applications in pediatric psychology research. The use of SEM in JPP between 1997 and 2006 was examined and compared to leading journals in clinical psychology, clinical child psychology, and child development. SEM techniques were used in <4% of the empirical articles appearing in JPP between 1997 and 2006. SEM was used less frequently in JPP than in other clinically relevant journals over the past 10 years. However, results indicated a recent increase in JPP studies employing SEM techniques. SEM is an under-utilized class of techniques within pediatric psychology research, although investigations employing these methods are becoming more prevalent. Despite its infrequent use to date, SEM is a potentially useful tool for advancing pediatric psychology research with a number of advantages over traditional statistical methods.

  14. Investigating the Theoretical Structure of the DAS-II Core Battery at School Age Using Bayesian Structural Equation Modeling

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.

    2018-01-01

    Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…

  15. Structural Equation Modeling in Assessing Students' Understanding of the State Changes of Matter

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios; Tsitsipis, Georgios; Papageorgiou, George

    2012-01-01

    In this study, structural equation modeling (SEM) is applied to an instrument assessing students' understanding of the particulate nature of matter, the collective properties and physical changes, such as melting, evaporation, boiling and condensation. The structural relationships among particular groups of items were investigated. In addition,…

  16. CALL FOR PAPERS: Special issue: One hundred years of PVI, the Fuchs Painlevé equation

    NASA Astrophysics Data System (ADS)

    Clarkson, P. A.; Joshi, N.; Mazzocco, M.; Nijhoff, F. W.; Noumi, M.

    2005-10-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `One hundred years of Painlevé VI, the Fuchs Painlevé equation'. The motivation behind this special issue is to celebrate the centenary of the discovery of this famous differential equation. The Editorial Board has invited P A Clarkson, N Joshi, M Mazzocco, F W Nijhoff and M Noumi to serve as Guest Editors for the issue. The nonlinear ordinary differential equation, which is nowadays known as the Painlevé VI (PVI) equation, is one of the most important differential equations in mathematical physics. It was discovered 100 years ago by Richard Fuchs (son of the famous mathematician Lazarus Fuchs) and reported for the first time in Comptes Rendus de l'Academie des Sciences Paris 141 555 8 (1905). Gambier, in his seminal paper of 1906, included this equation as the top equation in the list of what are now known as the six Painlevé transcendental equations. The Painlevé list emerged from the work on the classification of all ordinary second-order differential equations whose general solution are `uniform', in the sense that there are no movable (i.e. as a function of the initial data) singularities (meaning branch points) worse than poles. The latter is known as the Painlevé property. As the top equation in the Painlevé list of transcendental equations, the importance of PVI can be appreciated by recognizing that this is a universal differential equation, which is the most general (in terms of number of free parameters) of the known second order ODEs defining nonlinear special functions. As such, parallels can be drawn between the role played by PVI transcendents in the nonlinear case and the hypergeometric functions at the linear level. In fact, the monograph From Gauss to Painlevé by K Iwasaki, H Kimura, S Shimomura and M Yoshida (Vieweg, 1991), draws very clearly the line stretching over more than 150 years of special function theory in which PVI is

  17. A homotopy algorithm for synthesizing robust controllers for flexible structures via the maximum entropy design equations

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Richter, Stephen

    1990-01-01

    One well known deficiency of LQG compensators is that they do not guarantee any measure of robustness. This deficiency is especially highlighted when considering control design for complex systems such as flexible structures. There has thus been a need to generalize LQG theory to incorporate robustness constraints. Here we describe the maximum entropy approach to robust control design for flexible structures, a generalization of LQG theory, pioneered by Hyland, which has proved useful in practice. The design equations consist of a set of coupled Riccati and Lyapunov equations. A homotopy algorithm that is used to solve these design equations is presented.

  18. Structural stability and chaotic solutions of perturbed Benjamin-Ono equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnir, B.; Morrison, P.J.

    1986-11-01

    A method for proving chaos in partial differential equations is discussed and applied to the Benjamin-Ono equation subject to perturbations. The perturbations are of two types: one that corresponds to viscous dissipation, the so-called Burger's term, and one that involves the Hilbert transform and has been used to model Landau damping. The method proves chaos in the PDE by proving temporal chaos in its pole solutions. The spatial structure of the pole solutions remains intact, but their positions are chaotic in time. Melnikov's method is invoked to show this temporal chaos. It is discovered that the pole behavior is verymore » sensitive to the Burger's perturbation, but is quite insensitive to the perturbation involving the Hilbert transform.« less

  19. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  20. A Structural Equation Modelling Approach for Massive Blended Synchronous Teacher Training

    ERIC Educational Resources Information Center

    Kannan, Kalpana; Narayanan, Krishnan

    2015-01-01

    This paper presents a structural equation modelling (SEM) approach for blended synchronous teacher training workshop. It examines the relationship among various factors that influence the Satisfaction (SAT) of participating teachers. Data were collected with the help of a questionnaire from about 500 engineering college teachers. These teachers…

  1. A Methodological Review of Structural Equation Modelling in Higher Education Research

    ERIC Educational Resources Information Center

    Green, Teegan

    2016-01-01

    Despite increases in the number of articles published in higher education journals using structural equation modelling (SEM), research addressing their statistical sufficiency, methodological appropriateness and quantitative rigour is sparse. In response, this article provides a census of all covariance-based SEM articles published up until 2013…

  2. Superwoman Schema: Using Structural Equation Modeling to Investigate Measurement Invariance in a Questionnaire

    ERIC Educational Resources Information Center

    Steed, Teneka C.

    2013-01-01

    Evaluating the psychometric properties of a newly developed instrument is critical to understanding how well an instrument measures what it intends to measure, and ensuring proposed use and interpretation of questionnaire scores are valid. The current study uses Structural Equation Modeling (SEM) techniques to examine the factorial structure and…

  3. Pavement-Transportation Computer Assisted Structural Engineering (PCASE) Implementation of the Modified Berggren (ModBerg) Equation for Computing the Frost Penetration Depth within Pavement Structures

    DTIC Science & Technology

    2012-04-01

    ER D C/ G SL T R -1 2 -1 5 Pavement -Transportation Computer Assisted Structural Engineering (PCASE) Implementation of the Modified...Berggren (ModBerg) Equation for Computing the Frost Penetration Depth within Pavement Structures G eo te ch n ic al a n d S tr u ct u re s La b or at...April 2012 Pavement -Transportation Computer Assisted Structural Engineering (PCASE) Implementation of the Modified Berggren (ModBerg) Equation for

  4. Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum

    2006-01-01

    A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…

  5. A Robust Bayesian Approach for Structural Equation Models with Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Xia, Ye-Mao

    2008-01-01

    In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…

  6. An Examination of Statistical Power in Multigroup Dynamic Structural Equation Models

    ERIC Educational Resources Information Center

    Prindle, John J.; McArdle, John J.

    2012-01-01

    This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…

  7. Bayesian Structural Equation Modeling: A More Flexible Representation of Substantive Theory

    ERIC Educational Resources Information Center

    Muthen, Bengt; Asparouhov, Tihomir

    2012-01-01

    This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…

  8. New Equations for Calculating Principal and Fine-Structure Atomic Spectra for Single and Multi-Electron Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis R.

    A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation andmore » its relationship to the new equations are presented.« less

  9. [Factors affecting maternal physical activities: an analysis based on the structural equation modeling].

    PubMed

    Liu, Yi; Luo, Bi-Ru

    2016-11-20

    To analyze the factors affecting maternal physical activities at different stages among pregnant women. Self-designed questionnaires were used to investigate the physical activities of women in different stages, including 650 in the first, 650 in the second, and 750 in the third trimester of pregnancy. The factors affecting maternal physical activities were analyzed using the structural equation model that comprised 4 latent variables (attitude, norm, behavioral attention and behavior) with observed variables that matched the latent variables. The participants ranged from 18 to 35 years of age. The women and their husbands, but not their mothers or mothers-in-law, were all well educated. The caregiver during pregnancy was mostly the mother followed by the husband. For traveling, the women in the first, second and third trimesters preferred walking, bus, and personal escort, respectively; the main physical activity was walking in all trimesters, and the women in different trimester were mostly sedentary, a greater intensity of exercise was associated with less exercise time. Structural equation modeling (SEM) analysis showed that the physical activities of pregnant women was affected by behavioral intention (with standardized regression coefficient of 0.372); attitude and subjective norms affected physical activity by indirectly influencing the behavior intention (standardized regression coefficients of 0.140 and 0.669). The pregnant women in different stages have inappropriate physical activities with insufficient exercise time and intensity. The subjective norms affects the physical activities of the pregnant women by influencing their attitudes and behavior intention indirectly, suggesting the need of health education of the caregivers during pregnancy.

  10. Teacher's Corner: Structural Equation Modeling with the Sem Package in R

    ERIC Educational Resources Information Center

    Fox, John

    2006-01-01

    R is free, open-source, cooperatively developed software that implements the S statistical programming language and computing environment. The current capabilities of R are extensive, and it is in wide use, especially among statisticians. The sem package provides basic structural equation modeling facilities in R, including the ability to fit…

  11. Frequentist Model Averaging in Structural Equation Modelling.

    PubMed

    Jin, Shaobo; Ankargren, Sebastian

    2018-06-04

    Model selection from a set of candidate models plays an important role in many structural equation modelling applications. However, traditional model selection methods introduce extra randomness that is not accounted for by post-model selection inference. In the current study, we propose a model averaging technique within the frequentist statistical framework. Instead of selecting an optimal model, the contributions of all candidate models are acknowledged. Valid confidence intervals and a [Formula: see text] test statistic are proposed. A simulation study shows that the proposed method is able to produce a robust mean-squared error, a better coverage probability, and a better goodness-of-fit test compared to model selection. It is an interesting compromise between model selection and the full model.

  12. Analytical study of sandwich structures using Euler-Bernoulli beam equation

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.

    2017-01-01

    This paper presents an analytical study of sandwich structures. In this study, the Euler-Bernoulli beam equation is solved analytically for a four-point bending problem. Appropriate initial and boundary conditions are specified to enclose the problem. In addition, the balance coefficient is calculated and the Rule of Mixtures is applied. The focus of this study is to determine the effective material properties and geometric features such as the moment of inertia of a sandwich beam. The effective parameters help in the development of a generic analytical correlation for complex sandwich structures from the perspective of four-point bending calculations. The main outcomes of these analytical calculations are the lateral displacements and longitudinal stresses for each particular material in the sandwich structure.

  13. Physical violence against schoolteachers: an analysis using structural equation models.

    PubMed

    Melanda, Francine Nesello; Santos, Hellen Geremias Dos; Salvagioni, Denise Albieri Jodas; Mesas, Arthur Eumann; González, Alberto Durán; Andrade, Selma Maffei de

    2018-01-01

    This study aimed to identify associations between sociodemographic, workplace, and school environmental factors and the occurrence of physical violence against teachers at school. This was a cross-sectional study of teachers that had been working for at least a year in elementary or middle schools in the state school system in Londrina, Paraná State, Brazil. A convenience sample was taken of the 20 schools with the most teachers in the city of Londrina. Data were obtained through interviews and self-completed questionnaires in 2012 and 2013. Physical violence was defined as reports of attempted or actual physical aggression using cold steel weapons or firearms in the 12 months prior to the study. Structural equation models were used for the data analysis. Of the 937 teachers eligible for the study, 789 (84.2%) were interviewed. The physical violence victimization rate in schoolteachers was 8.4%. Work conditions (number of schools where the teachers worked and type of employment contract) showed a direct effect on physical violence (p = 0.032), as did having experienced previous situations of violence in the school (p = 0.059). Age (up to 40 years) was indirectly related to physical violence, correlating with worse work conditions. The results highlight the importance of improving teachers' work conditions and implementing measures to prevent violence both in schools and in society as a whole.

  14. General and specific attention-deficit/hyperactivity disorder factors of children 4 to 6 years of age: An exploratory structural equation modeling approach to assessing symptom multidimensionality.

    PubMed

    Arias, Víctor B; Ponce, Fernando P; Martínez-Molina, Agustín; Arias, Benito; Núñez, Daniel

    2016-01-01

    We tested first-order factor and bifactor models of attention-deficit/hyperactivity disorder (ADHD) using confirmatory factor analysis (CFA) and exploratory structural equation modeling (ESEM) to adequately summarize the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, (DSM-IV-TR) symptoms observed in a Spanish sample of preschoolers and kindergarteners. Six ESEM and CFA models were estimated based on teacher evaluations of the behavior of 638 children 4 to 6 years of age. An ESEM bifactor model with a central dimension plus 3 specific factors (inattention, hyperactivity, and impulsivity) showed the best fit and interpretability. Strict invariance between the sexes was observed. The bifactor model provided a solution to previously encountered inconsistencies in the factorial models of ADHD in young children. However, the low reliability of the specific factors casts doubt on the utility of the subscales for ADHD measurement. More research is necessary to clarify the nature of G and S factors of ADHD. (c) 2016 APA, all rights reserved.

  15. Perievent panic attack and depression after the World Trade Center disaster: a structural equation model analysis.

    PubMed

    Adams, Richard E; Boscarino, Joseph A

    2011-01-01

    Research suggests that perievent panic attacks--panic attacks in temporal proximity to traumatic events--are predictive of later mental health status, including the onset of depression. Using a community sample of New York City residents interviewed 1 year and 2 years after the World Trade Center Disaster, we estimated a structural equation model (SEM) using pre-disaster psychological status and post-disaster life events, together with psychosocial resources, to assess the relationship between perievent panic and later onset depression. Bivariate results revealed a significant association between perievent panic and both year-1 and year-2 depression. Results for the SEM, however showed that perievent panic was predictive of year-1 depression, but not year-2 depression, once potential confounders were controlled Year-2 stressors and year-2 psychosocial resources were the best predictors of year-2 depression onset. Pre-disaster psychological problems were directly implicated in year-1 depression, but not year-2 depression. We conclude that a conceptual model that includes pre- and post-disaster variables best explains the complex causal pathways between psychological status, stressor exposure, perievent panic attacks, and depression onset two years after the World Trade Center attacks.

  16. Use of Item Parceling in Structural Equation Modeling with Missing Data

    ERIC Educational Resources Information Center

    Orcan, Fatih

    2013-01-01

    Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…

  17. Solution of quadratic matrix equations for free vibration analysis of structures.

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1973-01-01

    An efficient digital computer procedure and the related numerical algorithm are presented herein for the solution of quadratic matrix equations associated with free vibration analysis of structures. Such a procedure enables accurate and economical analysis of natural frequencies and associated modes of discretized structures. The numerically stable algorithm is based on the Sturm sequence method, which fully exploits the banded form of associated stiffness and mass matrices. The related computer program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be substantially more accurate and economical than other existing procedures of such analysis. Numerical examples are presented for two structures - a cantilever beam and a semicircular arch.

  18. Bifurcation structure of localized states in the Lugiato-Lefever equation with anomalous dispersion

    NASA Astrophysics Data System (ADS)

    Parra-Rivas, P.; Gomila, D.; Gelens, L.; Knobloch, E.

    2018-04-01

    The origin, stability, and bifurcation structure of different types of bright localized structures described by the Lugiato-Lefever equation are studied. This mean field model describes the nonlinear dynamics of light circulating in fiber cavities and microresonators. In the case of anomalous group velocity dispersion and low values of the intracavity phase detuning these bright states are organized in a homoclinic snaking bifurcation structure. We describe how this bifurcation structure is destroyed when the detuning is increased across a critical value, and determine how a bifurcation structure known as foliated snaking emerges.

  19. The Andersen aerobic fitness test: New peak oxygen consumption prediction equations in 10 and 16-year olds.

    PubMed

    Aadland, E; Andersen, L B; Lerum, Ø; Resaland, G K

    2018-03-01

    Measurement of aerobic fitness by determining peak oxygen consumption (VO 2peak ) is often not feasible in children and adolescents, thus field tests such as the Andersen test are required in many settings, for example in most school-based studies. This study provides cross-validated prediction equations for VO 2peak based on the Andersen test in 10 and 16-year-old children. We included 235 children (n = 113 10-year olds and 122 16-year olds) who performed the Andersen test and a progressive treadmill test to exhaustion to determine VO 2peak . Joint and sex-specific prediction equations were derived and tested in 20 random samples. Performance in terms of systematic (bias) and random error (limits of agreement) was evaluated by means of Bland-Altman plots. Bias varied from -4.28 to 5.25 mL/kg/min across testing datasets, sex, and the 2 age groups. Sex-specific equations (mean bias -0.42 to 0.16 mL/kg/min) performed somewhat better than joint equations (-1.07 to 0.84 mL/kg/min). Limits of agreement were substantial across all datasets, sex, and both age groups, but were slightly lower in 16-year olds (5.84-13.29 mL/kg/min) compared to 10-year olds (9.60-15.15 mL/kg/min). We suggest the presented equations can be used to predict VO 2peak from the Andersen test performance in children and adolescents on a group level. Although the Andersen test appears to be a good measure of aerobic fitness, researchers should interpret cross-sectional individual-level predictions of VO 2peak with caution due to large random measurement errors. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Virtual Levels and Role Models: N-Level Structural Equations Model of Reciprocal Ratings Data.

    PubMed

    Mehta, Paras D

    2018-01-01

    A general latent variable modeling framework called n-Level Structural Equations Modeling (NL-SEM) for dependent data-structures is introduced. NL-SEM is applicable to a wide range of complex multilevel data-structures (e.g., cross-classified, switching membership, etc.). Reciprocal dyadic ratings obtained in round-robin design involve complex set of dependencies that cannot be modeled within Multilevel Modeling (MLM) or Structural Equations Modeling (SEM) frameworks. The Social Relations Model (SRM) for round robin data is used as an example to illustrate key aspects of the NL-SEM framework. NL-SEM introduces novel constructs such as 'virtual levels' that allows a natural specification of latent variable SRMs. An empirical application of an explanatory SRM for personality using xxM, a software package implementing NL-SEM is presented. Results show that person perceptions are an integral aspect of personality. Methodological implications of NL-SEM for the analyses of an emerging class of contextual- and relational-SEMs are discussed.

  1. Structural Equation Modeling in Language Testing and Learning Research: A Review

    ERIC Educational Resources Information Center

    In'nami, Yo; Koizumi, Rie

    2011-01-01

    Despite the recent increase of structural equation modeling (SEM) in language testing and learning research and Kunnan's (1998) call for the proper use of SEM to produce useful findings, there seem to be no reviews about how SEM is applied in these areas or about the extent to which the current application accords with appropriate practices. To…

  2. Level-Specific Evaluation of Model Fit in Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Ryu, Ehri; West, Stephen G.

    2009-01-01

    In multilevel structural equation modeling, the "standard" approach to evaluating the goodness of model fit has a potential limitation in detecting the lack of fit at the higher level. Level-specific model fit evaluation can address this limitation and is more informative in locating the source of lack of model fit. We proposed level-specific test…

  3. Structural Equation Modeling: Applications in ecological and evolutionary biology research

    USGS Publications Warehouse

    Pugesek, Bruce H.; von Eye, Alexander; Tomer, Adrian

    2003-01-01

    This book presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems. Supplementary information can be found at the authors website, http://www.jamesbgrace.com/. • Details why multivariate analyses should be used to study ecological systems • Exposes unappreciated weakness in many current popular analyses • Emphasizes the future methodological developments needed to advance our understanding of ecological systems.

  4. Predictive model for early math skills based on structural equations.

    PubMed

    Aragón, Estíbaliz; Navarro, José I; Aguilar, Manuel; Cerda, Gamal; García-Sedeño, Manuel

    2016-12-01

    Early math skills are determined by higher cognitive processes that are particularly important for acquiring and developing skills during a child's early education. Such processes could be a critical target for identifying students at risk for math learning difficulties. Few studies have considered the use of a structural equation method to rationalize these relations. Participating in this study were 207 preschool students ages 59 to 72 months, 108 boys and 99 girls. Performance with respect to early math skills, early literacy, general intelligence, working memory, and short-term memory was assessed. A structural equation model explaining 64.3% of the variance in early math skills was applied. Early literacy exhibited the highest statistical significance (β = 0.443, p < 0.05), followed by intelligence (β = 0.286, p < 0.05), working memory (β = 0.220, p < 0.05), and short-term memory (β = 0.213, p < 0.05). Correlations between the independent variables were also significant (p < 0.05). According to the results, cognitive variables should be included in remedial intervention programs. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  5. Equations for predicting biomass in 2- to 6-year-old Eucalyptus saligna in Hawaii

    Treesearch

    Craig D. Whitesell; Susan C. Miyasaka; Robert F. Strand; Thomas H. Schubert; Katharine E. McDuffie

    1988-01-01

    Eucalyptus saligna trees grown in short-rotation plantations on the island of Hawaii were measured, harvested, and weighed to provide data for developing regression equations using non-destructive stand measurements. Regression analysis of the data from 190 trees in the 2.0- to 3.5-year range and 96 trees in the 4- to 6-year range related stem-only...

  6. Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.

    2003-01-01

    The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…

  7. Trichotomous goals of elementary school students learning English as a foreign language: a structural equation model.

    PubMed

    He, Tung-Hsien; Chang, Shan-Mao; Chen, Shu-Hui Eileen; Gou, Wen Johnny

    2012-02-01

    This study applied structural equation modeling (SEM) techniques to define the relations among trichotomous goals (mastery goals, performance-approach goals, and performance-avoidance goals), self-efficacy, use of metacognitive self-regulation strategies, positive belief in seeking help, and help-avoidance behavior. Elementary school students (N = 105), who were learning English as a foreign language, were surveyed using five self-report scales. The structural equation model showed that self-efficacy led to the adoption of mastery goals but discouraged the adoption of performance-approach goals and performance-avoidance goals. Furthermore, mastery goals increased the use of metacognitive self-regulation strategies, whereas performance-approach goals and performance-avoidance goals reduced their use. Mastery goals encouraged positive belief in help-seeking, but performance-avoidance goals decreased such belief. Finally, performance-avoidance goals directly led to help-avoidance behavior, whereas positive belief assumed a critical role in reducing help-avoidance. The established structural equation model illuminated the potential causal relations among these variables for the young learners in this study.

  8. Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2005-01-01

    In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…

  9. Introducing Algebraic Structures through Solving Equations: Vertical Content Knowledge for K-12 Mathematics Teachers

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2014-01-01

    Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…

  10. Structural Equation Modeling towards Online Learning Readiness, Academic Motivations, and Perceived Learning

    ERIC Educational Resources Information Center

    Horzum, Mehmet Baris; Kaymak, Zeliha Demir; Gungoren, Ozlem Canan

    2015-01-01

    The relationship between online learning readiness, academic motivations, and perceived learning was investigated via structural equation modeling in the research. The population of the research consisted of 750 students who studied using the online learning programs of Sakarya University. 420 of the students who volunteered for the research and…

  11. Self-Conscious Emotions in Response to Perceived Failure: A Structural Equation Model

    ERIC Educational Resources Information Center

    Bidjerano, Temi

    2010-01-01

    This study explored the occurrence of self-conscious emotions in response to perceived academic failure among 4th-grade students from the United States and Bulgaria, and the author investigated potential contributors to such negative emotional experiences. Results from structural equation modeling indicated that regardless of country, negative…

  12. Equivalence and Differences between Structural Equation Modeling and State-Space Modeling Techniques

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V.

    2010-01-01

    State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…

  13. p-Euler equations and p-Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  14. An Application of Structural Equation Modeling for Developing Good Teaching Characteristics Ontology

    ERIC Educational Resources Information Center

    Phiakoksong, Somjin; Niwattanakul, Suphakit; Angskun, Thara

    2013-01-01

    Ontology is a knowledge representation technique which aims to make knowledge explicit by defining the core concepts and their relationships. The Structural Equation Modeling (SEM) is a statistical technique which aims to explore the core factors from empirical data and estimates the relationship between these factors. This article presents an…

  15. Prescriptive Statements and Educational Practice: What Can Structural Equation Modeling (SEM) Offer?

    ERIC Educational Resources Information Center

    Martin, Andrew J.

    2011-01-01

    Longitudinal structural equation modeling (SEM) can be a basis for making prescriptive statements on educational practice and offers yields over "traditional" statistical techniques under the general linear model. The extent to which prescriptive statements can be made will rely on the appropriate accommodation of key elements of research design,…

  16. The Effect of Authentic Leadership on School Culture: A Structural Equation Model

    ERIC Educational Resources Information Center

    Karadag, Engin; Oztekin-Bayir, Ozge

    2018-01-01

    In the study, the effect of school principals' authentic leadership behaviors on teachers' perceptions of school culture was tested with the structural equation model. The study was carried out with the correlation research design. Authentic leadership behavior was taken as the independent variable, and school culture was taken as the dependent…

  17. Bias and Efficiency in Structural Equation Modeling: Maximum Likelihood versus Robust Methods

    ERIC Educational Resources Information Center

    Zhong, Xiaoling; Yuan, Ke-Hai

    2011-01-01

    In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…

  18. Factor Structure of the Primary Scales of the Inventory of Personality Organization in a Nonclinical Sample Using Exploratory Structural Equation Modeling

    ERIC Educational Resources Information Center

    Ellison, William D.; Levy, Kenneth N.

    2012-01-01

    Using exploratory structural equation modeling and multiple regression, we examined the factor structure and criterion relations of the primary scales of the Inventory of Personality Organization (IPO; Kernberg & Clarkin, 1995) in a nonclinical sample. Participants (N = 1,260) completed the IPO and measures of self-concept clarity, defenses,…

  19. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  20. Psychotropic substance abuse among adolescents: a structural equation model on risk and protective factors.

    PubMed

    Rumpold, Gerhard; Klingseis, Michael; Dornauer, Kurt; Kopp, Martin; Doering, Stephan; Höfer, Stefan; Mumelter, Birgit; Schüssler, Gerhard

    2006-01-01

    The use of psychotropic substances in adolescents represents a serious public health problem. In this study a representative sample of 485 Austrian students between 14 and 18 years of age were investigated with a semistructured interview about substance-related issues and completed the general health questionnaire. The following rates of regular psychotropic substance use were found: cigarettes 41.4%, alcohol 44.5%, cannabis 10.1%, and other illicit substances 3%. Logistic regression analyses and structural equation modeling revealed the following major risk factors for substance use: peer pressure, negative family atmosphere, school difficulties, and psychopathology. Knowledge about substance use acted as a protective factor. Prevention of adolescent substance use and misuse should aim at these different targets. Information about coping with peer pressure may be a particularly promising route of intervention.

  1. "Great expectations" of adoptive parents: theory extension through structural equation modeling.

    PubMed

    Foli, Karen J; Lim, Eunjung; South, Susan C; Sands, Laura P

    2014-01-01

    Most of the 2 million adoptive parents in the United States make the transition to parenting successfully. Adoptive parents who do not make the transition easily may put their children at risk for negative outcomes. The aim of this study was to further refine Foli's midrange theory of postadoption depression, which postulates that fulfillment of expectations is a principal contributor to parental emotional health status, aggravation, and bonding. The linked dataset (National Survey of Children's Health and National Survey of Adoptive Parents) was used for structural equation modeling. The sample consisted of 1,426 parents with adopted children who had been placed in the home more than 2 years before survey completion. Special services and child's behaviors were direct determinants of parental expectations, and parental expectations were direct determinants of parental aggravation and parentalbonding. As anticipated, parental expectations served as a mediator between child-related variables and parental outcomes. A path was also found between child's behaviors and special services and parental emotional health status. Child's past trauma was also associated with parental bonding. Parental expectations showed direct relationships with the latent variables of parental aggravation and bonding. Future research should examine factors associated with early transition when children have been in the adoptive home less than 2 years and include specific expectations held by parents.

  2. Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions

    NASA Astrophysics Data System (ADS)

    Azadbakht, F. Teimoury; Boroun, G. R.

    2018-02-01

    We propose an analytical solution for DGLAP evolution equations with polarized splitting functions at the Leading Order (LO) approximation based on the Laplace transform method. It is shown that the DGLAP evolution equations can be decoupled completely into two second order differential equations which then are solved analytically by using the initial conditions δ FS(x,Q2)=F[partial δ FS0(x), δ FS0(x)] and {δ G}(x,Q2)=G[partial δ G0(x), δ G0(x)]. We used this method to obtain the polarized structure function of the proton as well as the polarized gluon distribution function inside the proton and compared the numerical results with experimental data of COMPASS, HERMES, and AAC'08 Collaborations. It was found that there is a good agreement between our predictions and the experiments.

  3. Killing-Yano equations with torsion, worldline actions and G-structures

    NASA Astrophysics Data System (ADS)

    Papadopoulos, G.

    2012-06-01

    We determine the geometry of the target spaces of supersymmetric non-relativistic particles with torsion and magnetic couplings, and with symmetries generated by the fundamental forms of G-structures for G = U(n), SU(n), Sp(n), Sp(n) · Sp(1), G2 and Spin(7). We find that the Killing-Yano equation, which arises as a condition for the invariance of the worldline action, does not always determine the torsion coupling uniquely in terms of the metric and fundamental forms. We show that there are several connections with skew-symmetric torsion for G = U(n), SU(n) and G2 that solve the invariance conditions. We describe all these compatible connections for each of the G-structures and explain the geometric nature of the couplings.

  4. The ways parents cope with stress in difficult parenting situations: the structural equation modeling approach

    PubMed Central

    Dobrenko, Kamila Anna

    2017-01-01

    The purpose of this study was to verify a theoretical model of parents’ responses to difficulties they experienced with their child. The model presents relationships between seven variables: (a) discrepancy between parental goal and the child’s current level of development, (b) parental experience of a difficulty, (c) representation of the child in the parent’s mind, (d) parent’s withdrawal from the parenting situation, (e) seeking help, (f) distancing oneself from the situation, and (g) applying pressure on the child. The study involved 319 parents of preschool children: 66 parents of three-year-olds, 85 parents of four-year-olds, 99 parents of five-year-olds and 69 parents of six-year-old children. Structural equations modeling (SEM) was used to verify the compounds described in the theoretical model. The studies revealed that when a parent is experiencing difficulties, the probability increases that the parent will have one of two reactions towards that type of stress: withdrawal from the situation or applying pressure on the child. Experiencing difficulties has no connection with searching for help and is negatively related to distancing oneself from the situation. PMID:28626606

  5. Investigations of Sayre's Equation.

    NASA Astrophysics Data System (ADS)

    Shiono, Masaaki

    Available from UMI in association with The British Library. Since the discovery of X-ray diffraction, various methods of using it to solve crystal structures have been developed. The major methods used can be divided into two categories: (1) Patterson function based methods; (2) Direct phase-determination methods. In the early days of structure determination from X-ray diffraction, Patterson methods played the leading role. Direct phase-determining methods ('direct methods' for short) were introduced by D. Harker and J. S. Kasper in the form of inequality relationships in 1948. A significant development of direct methods was produced by Sayre (1952). The equation he introduced, generally called Sayre's equation, gives exact relationships between structure factors for equal atoms. Later Cochran (1955) derived the so-called triple phase relationship, the main means by which it has become possible to find the structure factor phases automatically by computer. Although the background theory of direct methods is very mathematical, the user of direct-methods computer programs needs no detailed knowledge of these automatic processes in order to solve structures. Recently introduced direct methods are based on Sayre's equation, so it is important to investigate its properties thoroughly. One such new method involves the Sayre equation tangent formula (SETF) which attempts to minimise the least square residual for the Sayre's equations (Debaerdemaeker, Tate and Woolfson; 1985). In chapters I-III the principles and developments of direct methods will be described and in chapters IV -VI the properties of Sayre's equation and its modification will be discussed. Finally, in chapter VII, there will be described the investigation of the possible use of an equation, similar in type to Sayre's equation, derived from the characteristics of the Patterson function.

  6. The ACTIVE conceptual framework as a structural equation model.

    PubMed

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of people who show

  7. The ACTIVE conceptual framework as a structural equation model

    PubMed Central

    Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.

    2018-01-01

    Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Conclusions Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of

  8. Reliable and More Powerful Methods for Power Analysis in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun

    2017-01-01

    The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…

  9. An Analysis of the Relationship between the Learning Process and Learning Motivation Profiles of Japanese Pharmacy Students Using Structural Equation Modeling.

    PubMed

    Yamamura, Shigeo; Takehira, Rieko

    2018-04-23

    Pharmacy students in Japan have to maintain strong motivation to learn for six years during their education. The authors explored the students’ learning structure. All pharmacy students in their 4th through to 6th year at Josai International University participated in the survey. The revised two factor study process questionnaire and science motivation questionnaire II were used to assess their learning process and learning motivation profiles, respectively. Structural equation modeling (SEM) was used to examine a causal relationship between the latent variables in the learning process and those in the learning motivation profile. The learning structure was modeled on the idea that the learning process affects the learning motivation profile of respondents. In the multi-group SEM, the estimated mean of the deep learning to learning motivation profile increased just after their clinical clerkship for 6th year students. This indicated that the clinical experience benefited students’ deep learning, which is probably because the experience of meeting with real patients encourages meaningful learning in pharmacy studies.

  10. The Interface Between Theory and Data in Structural Equation Models

    USGS Publications Warehouse

    Grace, James B.; Bollen, Kenneth A.

    2006-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite, for representing general concepts. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling general relationships of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially reduced form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influences of suites of variables are often of interest.

  11. Equation of State of Structured Matter at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Yasutake, N.; Tatsumi, T.

    We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.

  12. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    ERIC Educational Resources Information Center

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  13. Using Structural Equation Models with Latent Variables to Study Student Growth and Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1991-01-01

    Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…

  14. Organizational Cynicism, School Culture, and Academic Achievement: The Study of Structural Equation Modeling

    ERIC Educational Resources Information Center

    Karadag, Engin; Kilicoglu, Gökhan; Yilmaz, Derya

    2014-01-01

    The purpose of this study is to explain constructed theoretical models that organizational cynicism perceptions of primary school teachers affect school culture and academic achievement, by using structural equation modeling. With the assumption that there is a cause-effect relationship between three main variables, the study was constructed with…

  15. Using a Structural Equation Model to Examine Factors Affecting Married Individuals' Sexual Embarrassment

    ERIC Educational Resources Information Center

    Celik, Eyup; Arici, Neslihan

    2014-01-01

    This study aimed to predict the effects of levels of sexual awareness, sexual courage, and sexual self-disclosure on sexual embarrassment. Data was collected from 336 married individuals, who have students in the Sultangazi District of Istanbul. According to the structural equation model (SEM), sexual self-disclosure, directly, and sexual courage…

  16. A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Maydeu-Olivares, Albert

    2007-01-01

    This paper presents a new polychoric instrumental variable (PIV) estimator to use in structural equation models (SEMs) with categorical observed variables. The PIV estimator is a generalization of Bollen's (Psychometrika 61:109-121, 1996) 2SLS/IV estimator for continuous variables to categorical endogenous variables. We derive the PIV estimator…

  17. Item response theory and structural equation modelling for ordinal data: Describing the relationship between KIDSCREEN and Life-H.

    PubMed

    Titman, Andrew C; Lancaster, Gillian A; Colver, Allan F

    2016-10-01

    Both item response theory and structural equation models are useful in the analysis of ordered categorical responses from health assessment questionnaires. We highlight the advantages and disadvantages of the item response theory and structural equation modelling approaches to modelling ordinal data, from within a community health setting. Using data from the SPARCLE project focussing on children with cerebral palsy, this paper investigates the relationship between two ordinal rating scales, the KIDSCREEN, which measures quality-of-life, and Life-H, which measures participation. Practical issues relating to fitting models, such as non-positive definite observed or fitted correlation matrices, and approaches to assessing model fit are discussed. item response theory models allow properties such as the conditional independence of particular domains of a measurement instrument to be assessed. When, as with the SPARCLE data, the latent traits are multidimensional, structural equation models generally provide a much more convenient modelling framework. © The Author(s) 2013.

  18. Ten-Year-Old Students Solving Linear Equations

    ERIC Educational Resources Information Center

    Brizuela, Barbara; Schliemann, Analucia

    2004-01-01

    In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

  19. The relativistic equations of stellar structure and evolution. Stars with degenerate neutron cores. 1: Structure of equilibrium models

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Zytkow, A. N.

    1976-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."

  20. Direct and Indirect Effects of Parental Influence upon Adolescent Alcohol Use: A Structural Equation Modeling Analysis

    ERIC Educational Resources Information Center

    Kim, Young-Mi; Neff, James Alan

    2010-01-01

    A model incorporating the direct and indirect effects of parental monitoring on adolescent alcohol use was evaluated by applying structural equation modeling (SEM) techniques to data on 4,765 tenth-graders in the 2001 Monitoring the Future Study. Analyses indicated good fit of hypothesized measurement and structural models. Analyses supported both…

  1. Structural Equation Modelling of Multiple Facet Data: Extending Models for Multitrait-Multimethod Data

    ERIC Educational Resources Information Center

    Bechger, Timo M.; Maris, Gunter

    2004-01-01

    This paper is about the structural equation modelling of quantitative measures that are obtained from a multiple facet design. A facet is simply a set consisting of a finite number of elements. It is assumed that measures are obtained by combining each element of each facet. Methods and traits are two such facets, and a multitrait-multimethod…

  2. Exploratory structural equation modeling of personality data.

    PubMed

    Booth, Tom; Hughes, David J

    2014-06-01

    The current article compares the use of exploratory structural equation modeling (ESEM) as an alternative to confirmatory factor analytic (CFA) models in personality research. We compare model fit, factor distinctiveness, and criterion associations of factors derived from ESEM and CFA models. In Sample 1 (n = 336) participants completed the NEO-FFI, the Trait Emotional Intelligence Questionnaire-Short Form, and the Creative Domains Questionnaire. In Sample 2 (n = 425) participants completed the Big Five Inventory and the depression and anxiety scales of the General Health Questionnaire. ESEM models provided better fit than CFA models, but ESEM solutions did not uniformly meet cutoff criteria for model fit. Factor scores derived from ESEM and CFA models correlated highly (.91 to .99), suggesting the additional factor loadings within the ESEM model add little in defining latent factor content. Lastly, criterion associations of each personality factor in CFA and ESEM models were near identical in both inventories. We provide an example of how ESEM and CFA might be used together in improving personality assessment. © The Author(s) 2014.

  3. Full Equations (FEQ) model for the solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures

    USGS Publications Warehouse

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations (FEQ) model is a computer program for solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures. A stream system that is simulated by application of FEQ is subdivided into stream reaches (branches), parts of the stream system for which complete information on flow and depth are not required (dummy branches), and level-pool reservoirs. These components are connected by special features; that is, hydraulic control structures, including junctions, bridges, culverts, dams, waterfalls, spillways, weirs, side weirs, and pumps. The principles of conservation of mass and conservation of momentum are used to calculate the flow and depth throughout the stream system resulting from known initial and boundary conditions by means of an implicit finite-difference approximation at fixed points (computational nodes). The hydraulic characteristics of (1) branches including top width, area, first moment of area with respect to the water surface, conveyance, and flux coefficients and (2) special features (relations between flow and headwater and (or) tail-water elevations, including the operation of variable-geometry structures) are stored in function tables calculated in the companion program, Full EQuations UTiLities (FEQUTL). Function tables containing other information used in unsteady-flow simulation (boundary conditions, tributary inflows or outflows, gate settings, correction factors, characteristics of dummy branches and level-pool reservoirs, and wind speed and direction) are prepared by the user as detailed in this report. In the iterative solution scheme for flow and depth throughout the stream system, an interpolation of the function tables corresponding to the computational nodes throughout the stream system is done in the model. FEQ can be applied in the simulation of a wide range of stream configurations (including loops), lateral-inflow conditions, and special features. The

  4. On the structure of the master equation for a two-level system coupled to a thermal bath

    NASA Astrophysics Data System (ADS)

    de Vega, Inés

    2015-04-01

    We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).

  5. Quasi-Maximum Likelihood Estimation of Structural Equation Models with Multiple Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Klein, Andreas G.; Muthen, Bengt O.

    2007-01-01

    In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…

  6. A Review of Structural Equation Modeling Applications in Turkish Educational Science Literature, 2010-2015

    ERIC Educational Resources Information Center

    Karakaya-Ozyer, Kubra; Aksu-Dunya, Beyza

    2018-01-01

    Structural equation modeling (SEM) is one of the most popular multivariate statistical techniques in Turkish educational research. This study elaborates the SEM procedures employed by 75 educational research articles which were published from 2010 to 2015 in Turkey. After documenting and coding 75 academic papers, categorical frequencies and…

  7. A structural equation model analysis of postfire plant diversity in California shrublands

    USGS Publications Warehouse

    Grace, J.B.; Keeley, J.E.

    2006-01-01

    This study investigates patterns of plant diversity following wildfires in fire-prone shrublands of California, seeks to understand those patterns in terms of both local and landscape factors, and considers the implications for fire management. Ninety study sites were established following extensive wildfires in 1993, and 1000-m2 plots were used to sample a variety of parameters. Data on community responses were collected for five years following fire. Structural equation modeling (SEM) was used to relate plant species richness to plant abundance, fire severity, abiotic conditions, within-plot heterogeneity, stand age, and position in the landscape. Temporal dynamics of average richness response was also modeled. Richness was highest in the first year following fire, indicating postfire enhancement of diversity. A general decline in richness over time was detected, with year-to-year variation attributable to annual variations in precipitation. Peak richness in the landscape was found where (1) plant abundance was moderately high, (2) within-plot heterogeneity was high, (3) soils were moderately low in nitrogen, high in sand content, and with high rock cover, (4) fire severity was low, and (5) stands were young prior to fire. Many of these characteristics were correlated with position in the landscape and associated conditions. We infer from the SEM results that postfire richness in this system is strongly influenced by local conditions and that these conditions are, in turn, predictably related to landscape-level conditions. For example, we observed that older stands of shrubs were characterized by more severe fires, which were associated with a low recovery of plant cover and low richness. These results may have implications for the use of prescribed fire in this system if these findings extrapolate to prescribed burns as we would expect. ?? 2006 by the Ecological Society of America.

  8. [A Structural Equation Model on Family Strength of Married Working Women].

    PubMed

    Hong, Yeong Seon; Han, Kuem Sun

    2015-12-01

    The purpose of this study was to identify the effect of predictive factors related to family strength and develop a structural equation model that explains family strength among married working women. A hypothesized model was developed based on literature reviews and predictors of family strength by Yoo. This constructed model was built of an eight pathway form. Two exogenous variables included in this model were ego-resilience and family support. Three endogenous variables included in this model were functional couple communication, family stress and family strength. Data were collected using a self-report questionnaire from 319 married working women who were 30~40 of age and lived in cities of Chungnam province in Korea. Data were analyzed with PASW/WIN 18.0 and AMOS 18.0 programs. Family support had a positive direct, indirect and total effect on family strength. Family stress had a negative direct, indirect and total effect on family strength. Functional couple communication had a positive direct and total effect on family strength. These predictive variables of family strength explained 61.8% of model. The results of the study show a structural equation model for family strength of married working women and that predicting factors for family strength are family support, family stress, and functional couple communication. To improve family strength of married working women, the results of this study suggest nursing access and mediative programs to improve family support and functional couple communication, and reduce family stress.

  9. Regression equations for estimating flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year recurrence intervals in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2004-01-01

    Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual

  10. Relationships among Adolescents' Leisure Motivation, Leisure Involvement, and Leisure Satisfaction: A Structural Equation Model

    ERIC Educational Resources Information Center

    Chen, Ying-Chieh; Li, Ren-Hau; Chen, Sheng-Hwang

    2013-01-01

    The purpose of this cross-sectional study was to test a cause-and-effect model of factors affecting leisure satisfaction among Taiwanese adolescents. A structural equation model was proposed in which the relationships among leisure motivation, leisure involvement, and leisure satisfaction were explored. The study collected data from 701 adolescent…

  11. Testing Mediation in Structural Equation Modeling: The Effectiveness of the Test of Joint Significance

    ERIC Educational Resources Information Center

    Leth-Steensen, Craig; Gallitto, Elena

    2016-01-01

    A large number of approaches have been proposed for estimating and testing the significance of indirect effects in mediation models. In this study, four sets of Monte Carlo simulations involving full latent variable structural equation models were run in order to contrast the effectiveness of the currently popular bias-corrected bootstrapping…

  12. The solution of linear systems of equations with a structural analysis code on the NAS CRAY-2

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Overman, Andrea L.

    1988-01-01

    Two methods for solving linear systems of equations on the NAS Cray-2 are described. One is a direct method; the other is an iterative method. Both methods exploit the architecture of the Cray-2, particularly the vectorization, and are aimed at structural analysis applications. To demonstrate and evaluate the methods, they were installed in a finite element structural analysis code denoted the Computational Structural Mechanics (CSM) Testbed. A description of the techniques used to integrate the two solvers into the Testbed is given. Storage schemes, memory requirements, operation counts, and reformatting procedures are discussed. Finally, results from the new methods are compared with results from the initial Testbed sparse Choleski equation solver for three structural analysis problems. The new direct solvers described achieve the highest computational rates of the methods compared. The new iterative methods are not able to achieve as high computation rates as the vectorized direct solvers but are best for well conditioned problems which require fewer iterations to converge to the solution.

  13. Soliton structure versus singularity analysis: Third-order completely intergrable nonlinear differential equations in 1 + 1-dimensions

    NASA Astrophysics Data System (ADS)

    Fuchssteiner, Benno; Carillo, Sandra

    1989-01-01

    Bäcklund transformations between all known completely integrable third-order differential equations in (1 + 1)-dimensions are established and the corresponding transformations formulas for their hereditary operators and Hamiltonian formulations are exhibited. Some of these Bäcklund transformations are not injective; therefore additional non-commutative symmetry groups are found for some equations. These non-commutative symmetry groups are classified as having a semisimple part isomorphic to the affine algebra A(1)1. New completely integrable third-order integro-differential equations, some depending explicitly on x, are given. These new equations give rise to nonin equation. Connections between the singularity equations (from the Painlevé analysis) and the nonlinear equations for interacting solitons are established. A common approach to singularity analysis and soliton structure is introduced. The Painlevé analysis is modified in such a sense that it carries over directly and without difficulty to the time evolution of singularity manifolds of equations like the sine-Gordon and nonlinear Schrödinger equation. A method to recover the Painlevé series from its constant level term is exhibit. The soliton-singularity transform is recognized to be connected to the Möbius group. This gives rise to a Darboux-like result for the spectral properties of the recursion operator. These connections are used in order to explain why poles of soliton equations move like trajectories of interacting solitons. Furthermore it is explicitly computed how solitons of singularity equations behave under the effect of this soliton-singularity transform. This then leads to the result that only for scaling degrees α = -1 and α = -2 the usual Painlevé analysis can be carried out. A new invariance principle, connected to kernels of differential operators is discovered. This new invariance, for example, connects the explicit solutions of the Liouville equation with the Miura transform

  14. Structural equation modeling in environmental risk assessment.

    PubMed

    Buncher, C R; Succop, P A; Dietrich, K N

    1991-01-01

    Environmental epidemiology requires effective models that take individual observations of environmental factors and connect them into meaningful patterns. Single-factor relationships have given way to multivariable analyses; simple additive models have been augmented by multiplicative (logistic) models. Each of these steps has produced greater enlightenment and understanding. Models that allow for factors causing outputs that can affect later outputs with putative causation working at several different time points (e.g., linkage) are not commonly used in the environmental literature. Structural equation models are a class of covariance structure models that have been used extensively in economics/business and social science but are still little used in the realm of biostatistics. Path analysis in genetic studies is one simplified form of this class of models. We have been using these models in a study of the health and development of infants who have been exposed to lead in utero and in the postnatal home environment. These models require as input the directionality of the relationship and then produce fitted models for multiple inputs causing each factor and the opportunity to have outputs serve as input variables into the next phase of the simultaneously fitted model. Some examples of these models from our research are presented to increase familiarity with this class of models. Use of these models can provide insight into the effect of changing an environmental factor when assessing risk. The usual cautions concerning believing a model, believing causation has been proven, and the assumptions that are required for each model are operative.

  15. Toward a muon-specific electronic structure theory: effective electronic Hartree-Fock equations for muonic molecules.

    PubMed

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    2018-02-07

    An effective set of Hartree-Fock (HF) equations are derived for electrons of muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator, which are completely equivalent to the usual two-component HF equations used to derive stationary states of the muonic molecules. In these effective equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and the electrons effectively and is optimized during the self-consistent field cycles. While in the two-component HF equations a muon is treated as a quantum particle, in the effective HF equations it is absorbed into the effective potential and practically transformed into an effective potential field experienced by electrons. The explicit form of the effective potential depends on the nature of muon's vibrations and is derivable from the basis set used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in a series of muonic molecules containing all atoms from the second and third rows of the Periodic Table. To solve the algebraic version of the equations muon-specific Gaussian basis sets are designed for both muon and surrounding electrons and it is demonstrated that the optimized exponents are quite distinct from those derived for the hydrogen isotopes. The developed effective HF theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure theory that incorporates various types of quantum correlations into the muonic systems beyond the HF equations.

  16. Nonlinear ordinary difference equations

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1979-01-01

    Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.

  17. Connecting Athletes’ Self-Perceptions and Metaperceptions of Competence: a Structural Equation Modeling Approach

    PubMed Central

    Cecchini, Jose A.; Fernández-Rio, Javier; Méndez-Giménez, Antonio

    2015-01-01

    This study explored the relationships between athletes’ competence self-perceptions and metaperceptions. Two hundred and fifty one student-athletes (14.26 ± 1.89 years), members of twenty different teams (basketball, soccer) completed a questionnaire which included the Perception of Success Questionnaire, the Competence subscale of the Intrinsic Motivation Inventory, and modified versions of both questionnaires to assess athletes’ metaperceptions. Structural equation modelling analysis revealed that athletes’ task and ego metaperceptions positively predicted task and ego self-perceptions, respectively. Competence metaperceptions were strong predictors of competence self-perceptions, confirming the atypical metaperception formation in outcome-dependent contexts such as sport. Task and ego metaperceptions positively predicted athletes’ competence metaperceptions. How coaches value their athletes’ competence is more influential on what the athletes think of themselves than their own self-perceptions. Athletes’ ego and task metaperceptions influenced their competence metaperceptions (how coaches rate their competence). Therefore, athletes build their competence metaperceptions using all information available from their coaches. Finally, only task-self perfections positively predicted athletes’ competence self-perceptions. PMID:26240662

  18. Vector Autoregression, Structural Equation Modeling, and Their Synthesis in Neuroimaging Data Analysis

    PubMed Central

    Chen, Gang; Glen, Daniel R.; Saad, Ziad S.; Hamilton, J. Paul; Thomason, Moriah E.; Gotlib, Ian H.; Cox, Robert W.

    2011-01-01

    Vector autoregression (VAR) and structural equation modeling (SEM) are two popular brain-network modeling tools. VAR, which is a data-driven approach, assumes that connected regions exert time-lagged influences on one another. In contrast, the hypothesis-driven SEM is used to validate an existing connectivity model where connected regions have contemporaneous interactions among them. We present the two models in detail and discuss their applicability to FMRI data, and interpretational limits. We also propose a unified approach that models both lagged and contemporaneous effects. The unifying model, structural vector autoregression (SVAR), may improve statistical and explanatory power, and avoids some prevalent pitfalls that can occur when VAR and SEM are utilized separately. PMID:21975109

  19. Multilevel structural equation models for assessing moderation within and across levels of analysis.

    PubMed

    Preacher, Kristopher J; Zhang, Zhen; Zyphur, Michael J

    2016-06-01

    Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Update of the equations of the limit state of the structural material with the realization of their deformation

    NASA Astrophysics Data System (ADS)

    Zenkov, E. V.

    2018-01-01

    Two methods are given in the article by considering the type of stressed-Deformed state (SDS) based on equations limit condition and analyzing the results of laboratory tests of special specimens for mechanical testing, focus having destruction thereof in the same view of SDS as in focus possible destruction of the structural member. The considered limited use of these methods in terms of considering physically consistent strength criterion type Pisarenko-Lebedev. A revised design-experimental procedure for determining the strength of the material of the structure, combining therein the elements of these two methods, consisting in determining the strength parameters of construction material, entering criterion equation Pisarenko-Lebedev, considering the actual appearance of the region-of-interest SDS structure. The implementation of the procedure is performed on the basis of the selection of the respective experimental laboratory specimens for mechanical testing, plan SDS in working zone coinciding with a SDS: structure whose strength is evaluated. The refinement process limit state equations demonstrated in determining 50CrV4 steel strength parameters, being in a state of biaxial stretching. Design-experimentally determined by, that steel for a given voltage limit value is almost a quarter of its value is reduced compared to the conventional tensile strength. value is reduced compared to the conventional tensile strength.

  1. Estimating, Testing, and Comparing Specific Effects in Structural Equation Models: The Phantom Model Approach

    ERIC Educational Resources Information Center

    Macho, Siegfried; Ledermann, Thomas

    2011-01-01

    The phantom model approach for estimating, testing, and comparing specific effects within structural equation models (SEMs) is presented. The rationale underlying this novel method consists in representing the specific effect to be assessed as a total effect within a separate latent variable model, the phantom model that is added to the main…

  2. A Two-Stage Approach to Synthesizing Covariance Matrices in Meta-Analytic Structural Equation Modeling

    ERIC Educational Resources Information Center

    Cheung, Mike W. L.; Chan, Wai

    2009-01-01

    Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…

  3. Reliability of Summed Item Scores Using Structural Equation Modeling: An Alternative to Coefficient Alpha

    ERIC Educational Resources Information Center

    Green, Samuel B.; Yang, Yanyun

    2009-01-01

    A method is presented for estimating reliability using structural equation modeling (SEM) that allows for nonlinearity between factors and item scores. Assuming the focus is on consistency of summed item scores, this method for estimating reliability is preferred to those based on linear SEM models and to the most commonly reported estimate of…

  4. A Structural Equation Modeling of EFL Learners' Goal Orientation, Metacognitive Awareness, and Self-Efficacy

    ERIC Educational Resources Information Center

    Zafarmand, Atefeh; Ghanizadeh, Afsaneh; Akbari, Omid

    2014-01-01

    This article sets out to examine the relationship between EFL learners' goal orientation, metacognitive awareness and self-efficacy in a single framework. One hundred fifteen EFL students from two universities of Mashhad, a city in north-eastern Iran took part in this study. Structural equation modeling (SEM) was utilized to examine the…

  5. A Structural Equation Model of Burnout and Job Exit among Child Protective Services Workers.

    ERIC Educational Resources Information Center

    Drake, Brett; Yadama, Gautam N.

    1996-01-01

    Uses a structural equation model to examine the three elements of the Maslach Burnout Inventory (MBI)--emotional exhaustion, depersonalization, and personal accomplishment--in relation to job exit among child protective services workers over a 15-month period. The model was supported, showing the relevance of all three MBI elements of job exit.…

  6. Reference equations for the six-minute walk distance in the healthy Chinese population aged 18–59 years

    PubMed Central

    Zou, He; Zhu, Xiuruo; Zhang, Jia; Wang, Yi; Wu, Xiaozhen; Liu, Fang; Xie, Xiaofeng

    2017-01-01

    Background The six-minute walk test (6MWT) is a safe, simple, inexpensive tool for evaluating the functional exercise capacity of patients with chronic respiratory disease. However, there is a lack of standard reference equations for the six-minute walk distance (6MWD) in the healthy Chinese population aged 18–59 years. Aims The purposes of the present study were as follows: 1) to measure the anthropometric data and walking distance of a sample of healthy Chinese Han people aged 18–59 years; 2) to construct reference equations for the 6MWD; 3) to compare the measured 6MWD with previously published equations. Method The anthropometric data, demographic information, lung function, and walking distance of Chinese adults aged 18–59 years were prospectively measured using a standardized protocol. We obtained verbal consent from all the subjects before the test, and the study design was approved by the ethics committee of Wenzhou People's Hospital. The 6MWT was performed twice, and the longer distance was used for further analysis. Results A total of 643 subjects (319 females and 324 males) completed the 6MWT, and average walking distance was 601.6±55.51 m. The walking distance was compared between females and males (578±49.85 m vs. 623±52.53 m; p < 0.0001) and between physically active subjects and sedentary subjects (609.3±56.17 m vs. 592±53.23 m; p < 0.0001). Pearson’s correlation indicated that the 6MWD was significantly correlated with various demographic and the 6MWT variables, such as age, height, weight, body mass index (BMI), heart rate after the test and the difference in the heart rate before and after the test. Stepwise multiple regression analysis showed that age and height were independent predictors associated with the 6MWD. The reference equations from white, Canadian and Chilean populations tended to overestimate the walking distance in our subjects, while Brazilian and Arabian equations tended to underestimate the walking distance. There

  7. The eight tetrahedron equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hietarinta, J.; Nijhoff, F.

    1997-07-01

    In this paper we derive from arguments of string scattering a set of eight tetrahedron equations, with different index orderings. It is argued that this system of equations is the proper system that represents integrable structures in three dimensions generalizing the Yang{endash}Baxter equation. Under additional restrictions this system reduces to the usual tetrahedron equation in the vertex form. Most known solutions fall under this class, but it is by no means necessary. Comparison is made with the work on braided monoidal 2-categories also leading to eight tetrahedron equations. {copyright} {ital 1997 American Institute of Physics.}

  8. Structural equation models to estimate risk of infection and tolerance to bovine mastitis.

    PubMed

    Detilleux, Johann; Theron, Léonard; Duprez, Jean-Noël; Reding, Edouard; Humblet, Marie-France; Planchon, Viviane; Delfosse, Camille; Bertozzi, Carlo; Mainil, Jacques; Hanzen, Christian

    2013-03-06

    One method to improve durably animal welfare is to select, as reproducers, animals with the highest ability to resist or tolerate infection. To do so, it is necessary to distinguish direct and indirect mechanisms of resistance and tolerance because selection on these traits is believed to have different epidemiological and evolutionary consequences. We propose structural equation models with latent variables (1) to quantify the latent risk of infection and to identify, among the many potential mediators of infection, the few ones that influence it significantly and (2) to estimate direct and indirect levels of tolerance of animals infected naturally with pathogens. We applied the method to two surveys of bovine mastitis in the Walloon region of Belgium, in which we recorded herd management practices, mastitis frequency, and results of bacteriological analyses of milk samples. Structural equation models suggested that, among more than 35 surveyed herd characteristics, only nine (age, addition of urea in the rations, treatment of subclinical mastitis, presence of dirty liner, cows with hyperkeratotic teats, machine stripping, pre- and post-milking teat disinfection, and housing of milking cows in cubicles) were directly and significantly related to a latent measure of bovine mastitis, and that treatment of subclinical mastitis was involved in the pathway between post-milking teat disinfection and latent mastitis. These models also allowed the separation of direct and indirect effects of bacterial infection on milk productivity. Results suggested that infected cows were tolerant but not resistant to mastitis pathogens. We revealed the advantages of structural equation models, compared to classical models, for dissecting measurements of resistance and tolerance to infectious diseases, here bovine mastitis. Using our method, we identified nine major risk factors that were directly associated with an increased risk of mastitis and suggested that cows were tolerant but

  9. Applying Structural Equation Modeling in the Context of the Theory of Reasoned Action: Some Problems and Solutions.

    ERIC Educational Resources Information Center

    van den Putte, Bas; Hoogstraten, Johan

    1997-01-01

    Problems found in the application of structural equation modeling to the theory of reasoned action are explored, and an alternative model specification is proposed that improves the fit of the data while leaving intact the structural part of the model being tested. Problems and the proposed alternative are illustrated. (SLD)

  10. Reference values and equations reference of balance for children of 8 to 12 years.

    PubMed

    Libardoni, Thiele de Cássia; Silveira, Carolina Buzzi da; Sinhorim, Larissa Milani Brognoli; Oliveira, Anamaria Siriani de; Santos, Márcio José Dos; Santos, Gilmar Moraes

    2018-02-01

    There are still no normative data in balance sway for school-age children in Brazil. We aimed to establish the reference ranges for balance scores and to develop prediction equations for estimation of balance scores in children aged 8 to 12 years old. The study included 165 healthy children (83 boys and 82 girls; age, 8-12 years) recruited from a public school in the city of Florianópolis, Santa Catarina, Brazil. We used the Sensory Organization Test to assess the balance scores and both a digital scale and a stadiometer to measure the anthropometric variables. We tested a stepwise multiple-regression model with sex, height, weight, and mid-thigh circumference of the dominant leg as predictors of the balance score. For all experimental conditions, girls' age accounted for over 85% of the variability in balance scores; while, boys' age accounted only 55% of the variability in balance scores. Therefore, balance scores increase with age for boys and girls. This study described the ranges of age- and sex-specific normative values for balance scores in children during 6 different testing conditions established by the sensory organization test. We confirmed that age was the predictor that best explained the variability in balance scores in children between 8 and 12 years old. This study stimulates a new and more comprehensive study to estimate balance scores from prediction equations for overall Brazilian pediatric population. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An Illustration of a Longitudinal Cross-Lagged Design for Larger Structural Equation Models. Teacher's Corner.

    ERIC Educational Resources Information Center

    Burkholder, Gary J.; Harlow, Lisa L.

    2003-01-01

    Tested a model of HIV behavior risk, using a fully cross-lagged, longitudinal design to illustrate the analysis of larger structural equation models. Data from 527 women who completed a survey at three time points show excellent fit of the model to the data. (SLD)

  12. University Students' Behaviors Pertaining to Sustainability: A Structural Equation Model with Sustainability-Related Attributes

    ERIC Educational Resources Information Center

    Sahin, Elvan; Ertepinar, Hamide; Teksoz, Gaye

    2012-01-01

    The purpose of this study is to construct a structural equation model to examine the links among attitudes, values, and behaviors pertaining to sustainability, participation in outdoor recreation as well as gender and tendency to follow mass media for university students. The data were collected by on-line administration of a survey to 958…

  13. Is the Wheeler-DeWitt equation more fundamental than the Schrödinger equation?

    NASA Astrophysics Data System (ADS)

    Shestakova, Tatyana P.

    The Wheeler-DeWitt equation was proposed 50 years ago and until now it is the cornerstone of most approaches to quantization of gravity. One can find in the literature, the opinion that the Wheeler-DeWitt equation is even more fundamental than the basic equation of quantum theory, the Schrödinger equation. We still should remember that we are in the situation when no observational data can confirm or reject the fundamental status of the Wheeler-DeWitt equation, so we can give just indirect arguments in favor of or against it, grounded on mathematical consistency and physical relevance. I shall present the analysis of the situation and comparison of the standard Wheeler-DeWitt approach with the extended phase space approach to quantization of gravity. In my analysis, I suppose, first, that a future quantum theory of gravity must be applicable to all phenomena from the early universe to quantum effects in strong gravitational fields, in the latter case, the state of the observer (the choice of a reference frame) may appear to be significant. Second, I suppose that the equation for the wave function of the universe must not be postulated but derived by means of a mathematically consistent procedure, which exists in path integral quantization. When applying this procedure to any gravitating system, one should take into account features of gravity, namely, nontrivial spacetime topology and possible absence of asymptotic states. The Schrödinger equation has been derived early for cosmological models with a finite number of degrees of freedom, and just recently it has been found for the spherically symmetric model which is a simplest model with an infinite number of degrees of freedom. The structure of the Schrödinger equation and its general solution appears to be very similar in these cases. The obtained results give grounds to say that the Schrödinger equation retains its fundamental meaning in constructing quantum theory of gravity.

  14. An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences.

    PubMed

    Tarka, Piotr

    2018-01-01

    This paper is a tribute to researchers who have significantly contributed to improving and advancing structural equation modeling (SEM). It is, therefore, a brief overview of SEM and presents its beginnings, historical development, its usefulness in the social sciences and the statistical and philosophical (theoretical) controversies which have often appeared in the literature pertaining to SEM. Having described the essence of SEM in the context of causal analysis, the author discusses the years of the development of structural modeling as the consequence of many researchers' systematically growing needs (in particular in the social sciences) who strove to effectively understand the structure and interactions of latent phenomena. The early beginnings of SEM models were related to the work of Spearman and Wright, and to that of other prominent researchers who contributed to SEM development. The importance and predominance of theoretical assumptions over technical issues for the successful construction of SEM models are also described. Then, controversies regarding the use of SEM in the social sciences are presented. Finally, the opportunities and threats of this type of analytical strategy as well as selected areas of SEM applications in the social sciences are discussed.

  15. Integrating occupancy models and structural equation models to understand species occurrence

    PubMed Central

    Joseph, Maxwell B.; Preston, Daniel L.; Johnson, Pieter T. J.

    2016-01-01

    Understanding the drivers of species occurrence is a fundamental goal in basic and applied ecology. Occupancy models have emerged as a popular approach for inferring species occurrence because they account for problems associated with imperfect detection in field surveys. Current models, however, are limited because they assume covariates are independent (i.e., indirect effects do not occur). Here, we combined structural equation and occupancy models to investigate complex influences on species occurrence while accounting for imperfect detection. These two methods are inherently compatible because they both provide means to make inference on latent or unobserved quantities based on observed data. Our models evaluated the direct and indirect roles of cattle grazing, water chemistry, vegetation, nonnative fishes, and pond permanence on the occurrence of six pond-breeding amphibians, two of which are threatened: the California tiger salamander (Ambystoma californiense), and the California red-legged frog (Rana draytonii). While cattle had strong effects on pond vegetation and water chemistry, their overall effects on amphibian occurrence were small compared to the consistently negative effects of nonnative fish. Fish strongly reduced occurrence probabilities for four of five native amphibians, including both species of conservation concern. These results could help to identify drivers of amphibian declines and to prioritize strategies for amphibian conservation. More generally, this approach facilitates a more mechanistic representation of ideas about the causes of species distributions in space and time. As shown here, occupancy modeling and structural equation modeling are readily combined, and bring rich sets of techniques that may provide unique theoretical and applied insights into basic ecological questions. PMID:27197402

  16. Psychological Separation, Attachment Security, Vocational Self-Concept Crystallization, and Career Indecision: A Structural Equation Analysis.

    ERIC Educational Resources Information Center

    Tokar, David M.; Withrow, Jason R.; Hall, Rosalie J.; Moradi, Bonnie

    2003-01-01

    Structural equation modeling was used to test theoretically based models in which psychological separation and attachment security variables were related to career indecision and those relations were mediated through vocational self-concept crystallization. Results indicated that some components of separation and attachment security did relate to…

  17. Using Instrumental Variable (IV) Tests to Evaluate Model Specification in Latent Variable Structural Equation Models*

    PubMed Central

    Kirby, James B.; Bollen, Kenneth A.

    2009-01-01

    Structural Equation Modeling with latent variables (SEM) is a powerful tool for social and behavioral scientists, combining many of the strengths of psychometrics and econometrics into a single framework. The most common estimator for SEM is the full-information maximum likelihood estimator (ML), but there is continuing interest in limited information estimators because of their distributional robustness and their greater resistance to structural specification errors. However, the literature discussing model fit for limited information estimators for latent variable models is sparse compared to that for full information estimators. We address this shortcoming by providing several specification tests based on the 2SLS estimator for latent variable structural equation models developed by Bollen (1996). We explain how these tests can be used to not only identify a misspecified model, but to help diagnose the source of misspecification within a model. We present and discuss results from a Monte Carlo experiment designed to evaluate the finite sample properties of these tests. Our findings suggest that the 2SLS tests successfully identify most misspecified models, even those with modest misspecification, and that they provide researchers with information that can help diagnose the source of misspecification. PMID:20419054

  18. Mathematical learning instruction and teacher motivation factors affecting science technology engineering and math (STEM) major choices in 4-year colleges and universities: Multilevel structural equation modeling

    NASA Astrophysics Data System (ADS)

    Lee, Ahlam

    2011-12-01

    Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students

  19. Equating with Miditests Using IRT

    ERIC Educational Resources Information Center

    Fitzpatrick, Joseph; Skorupski, William P.

    2016-01-01

    The equating performance of two internal anchor test structures--miditests and minitests--is studied for four IRT equating methods using simulated data. Originally proposed by Sinharay and Holland, miditests are anchors that have the same mean difficulty as the overall test but less variance in item difficulties. Four popular IRT equating methods…

  20. The Application of Structural Equation Modeling to Maternal Ratings of Twins' Behavior and Emotional Problems.

    ERIC Educational Resources Information Center

    Silberg, Judy L.; And Others

    1994-01-01

    Applied structural equation modeling to twin data to assess impact of genetic and environmental factors on children's behavioral and emotional functioning. Applied models to maternal ratings of behavior of 515 monozygotic and 749 dizygotic twin pairs. Importance of genetic, shared, and specific environmental factors for explaining variation was…

  1. Determinants of moderate to vigorous physical activity and obesity in children: a structural equation modeling analysis.

    PubMed

    Yeung, Daniel Chi-Shing; Yuan, Xin; Hui, Stanley Sai-Chuen; Feresu, Shingairai Aliifina

    2016-05-01

    The determinants of physical activity (PA) and body fatness in Chinese adolescents are rarely examined. This study aimed to investigate the effect of attitude toward PA, screen time, parents' socioeconomic status (SES), and exercise habit on PA and body fatness among Chinese children by using structural equation modeling (SEM) analysis. Data obtained from the second Community Fitness Survey in Hong Kong were utilized, in which students from one secondary school of each of the 18 districts of Hong Kong were recruited. A total of 2517 questionnaires with physical fitness items were successfully distributed to students aged 13-19 years in these districts. Families' SES, parents' exercise habit, children's intention to participate in PA, amount of moderate to vigorous PA (MVPA), screen time, children's attitude toward PA, and children's body fat percentage were measured and analyzed with SEM. The structural equation model was composed of a measurement model and a structural model. The model was tested with Mplus 6. The Chi-square test, root mean square error of approximation, comparative fit index, and Tucker-Lewis index were calculated to evaluate model fit. The model was then modified based on the model fit indices. Children's intention to participate in PA was a strong predictor of their engagement in MVPA. Parents' exercise habit had both direct and indirect (via attitude) effects on their children's intention to participate in PA. Screen time was not a predictor of body composition. Children's intention to participate in PA directly affected their body composition. Children's attitude toward PA, parents' exercise habit, and SES had significant effects on the children's intention to participate in PA. Furthermore, obesity had a negative effect on the children's attitude toward PA. To promote MVPA and prevent obesity in Chinese children of Hong Kong, it is important to design intervention that enhances children's intention and attitude in PA, as well as parent

  2. Anti-transgender prejudice: a structural equation model of associated constructs.

    PubMed

    Tebbe, Esther N; Moradi, Bonnie

    2012-04-01

    This study aimed to identify theoretically relevant key correlates of anti-transgender prejudice. Specifically, structural equation modeling was used to test the unique relations of anti-lesbian, gay, and bisexual (LGB) prejudice; traditional gender role attitudes; need for closure; and social dominance orientation with anti-transgender prejudice. Social desirability was controlled as a covariate in the model. Analyses of data from 250 undergraduate students indicated that anti-LGB prejudice, traditional gender role attitudes, and need for closure each had positive unique relations with anti-transgender prejudice beyond the negative association of social desirability with such prejudice. By contrast, social dominance orientation was not related uniquely to anti-transgender prejudice. Additional analyses indicated that women's mean level of anti-transgender prejudice was lower than that of men's, but the pattern of relations between the predictor variables and anti-transgender prejudice did not differ between women and men. A confirmatory factor analysis also supported the unidimensional structure of anti-transgender prejudice as operationalized by Nagoshi et al.'s (2008) Transphobia Scale.

  3. Multilevel Modeling of Two Cyclical Processes: Extending Differential Structural Equation Modeling to Nonlinear Coupled Systems

    ERIC Educational Resources Information Center

    Butner, Jonathan; Amazeen, Polemnia G.; Mulvey, Genna M.

    2005-01-01

    The authors present a dynamical multilevel model that captures changes over time in the bidirectional, potentially asymmetric influence of 2 cyclical processes. S. M. Boker and J. Graham's (1998) differential structural equation modeling approach was expanded to the case of a nonlinear coupled oscillator that is common in bimanual coordination…

  4. Residuals and the Residual-Based Statistic for Testing Goodness of Fit of Structural Equation Models

    ERIC Educational Resources Information Center

    Foldnes, Njal; Foss, Tron; Olsson, Ulf Henning

    2012-01-01

    The residuals obtained from fitting a structural equation model are crucial ingredients in obtaining chi-square goodness-of-fit statistics for the model. The authors present a didactic discussion of the residuals, obtaining a geometrical interpretation by recognizing the residuals as the result of oblique projections. This sheds light on the…

  5. Comparison of the 2-, 25-, and 100-year recurrence interval floods computed from observed data with the 1995 urban flood-frequency estimating equations for Georgia

    USGS Publications Warehouse

    Inman, Ernest J.

    1997-01-01

    Flood-frequency relations were computed for 28 urban stations, for 2-, 25-, and 100-year recurrence interval floods and the computations were compared to corresponding recurrence interval floods computed from the estimating equations from a 1995 investigation. Two stations were excluded from further comparisons or analyses because neither station had a significant flood during the period of observed record. The comparisons, based on the student's t-test statistics at the 0.05 level of significance, indicate that the mean residuals of the 25- and 100-year floods were negatively biased by 26.2 percent and 31.6 percent, respectively, at the 26 stations. However, the mean residuals of the 2-year floods were 2.5 percent lower than the mean of the 2-year floods computed from the equations, and were not significantly biased. The reason for this negative bias is that the period of observed record at the 26 stations was a relatively dry period. At 25 of the 26 stations, the two highest simulated peaks used to develop the estimating equations occurred many years before the observed record began. However, no attempt was made to adjust the estimating equations because higher peaks could occur after the period of observed record and an adjustment to the equations would cause an underestimation of design floods.

  6. Modeling statistics and kinetics of the natural aggregation structures and processes with the solution of generalized logistic equation

    NASA Astrophysics Data System (ADS)

    Maslov, Lev A.; Chebotarev, Vladimir I.

    2017-02-01

    The generalized logistic equation is proposed to model kinetics and statistics of natural processes such as earthquakes, forest fires, floods, landslides, and many others. This equation has the form dN(A)/dA = s dot (1-N(A)) dot N(A)q dot A-α, q>0q>0 and A>0A>0 is the size of an element of a structure, and α≥0. The equation contains two exponents α and q taking into account two important properties of elements of a system: their fractal geometry, and their ability to interact either to enhance or to damp the process of aggregation. The function N(A)N(A) can be understood as an approximation to the number of elements the size of which is less than AA. The function dN(A)/dAdN(A)/dA where N(A)N(A) is the general solution of this equation for q=1 is a product of an increasing bounded function and power-law function with stretched exponential cut-off. The relation with Tsallis non-extensive statistics is demonstrated by solving the generalized logistic equation for q>0q>0. In the case 0equation models super-additive, and the case q>1q>1 it models sub-additive structures. The Gutenberg-Richter (G-R) formula results from interpretation of empirical data as a straight line in the area of stretched exponent with small α. The solution is applied for modeling distribution of foreshocks and aftershocks in the regions of Napa Valley 2014, and Sumatra 2004 earthquakes fitting the observed data well, both qualitatively and quantitatively.

  7. The Neo Personality Inventory-Revised: Factor Structure and Gender Invariance from Exploratory Structural Equation Modeling Analyses in a High-Stakes Setting

    ERIC Educational Resources Information Center

    Furnham, Adrian; Guenole, Nigel; Levine, Stephen Z.; Chamorro-Premuzic, Tomas

    2013-01-01

    This study presents new analyses of NEO Personality Inventory-Revised (NEO-PI-R) responses collected from a large British sample in a high-stakes setting. The authors show the appropriateness of the five-factor model underpinning these responses in a variety of new ways. Using the recently developed exploratory structural equation modeling (ESEM)…

  8. Stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobczyk, K.

    1990-01-01

    This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshoremore » structures.« less

  9. Is gravidity 4+ a risk factor for oral clefts? A case-control study in eight South american countries using structural equation modeling.

    PubMed

    Gili, Juan Antonio; Poletta, Fernando Adrián; Campaña, Hebe; Comas, Belén; Pawluk, Mariela; Rittler, Monica; López-Camelo, Jorge Santiago

    2013-09-01

    Background : There is disagreement about the association between cleft lip with or without cleft palate and multigravidity, which could be explained by differences of adjusting for maternal age, Amerindian ancestry, and socioeconomic status. Objective : The aim was to evaluate gravidity 4+ (four or more gestations) as a risk factor for cleft lip with or without cleft palate in South America. Design : We used a matched (1:1) case-control study with structural equation modeling for related causes. Data were obtained from 1,371,575 consecutive newborn infants weighing ≥500 g who were born in the hospitals of the Estudio Colaborativo Latinoamericano de Malformaciones Congénitas (ECLAMC) network between 1982 and 1999. There were a total of 1,271 cases with cleft lip with or without cleft palate (excluding midline and atypical cleft lip with or without cleft palate). A total of 1,227 case-control pairs were obtained, matched by maternal age, newborn gender, and year and place of birth. Potential confounders and intermediary variables were analyzed with structural equation modeling. Results : The crude risk of gravidity 4+ was 1.41 and the 95% confidence interval was 1.14 to 1.61. When applying structural equation modeling, the effect of multigravidity on the risk of cleft lip with or without cleft palate was 1.22 and the 95% confidence interval was 0.91 to 1.39. Conclusions : Multigravid mothers (more than four gestations) showed no greater risk of bearing children who had cleft lip with or without cleft palate than mothers with two or three births. Therefore, the often observed and reported association between multigravidity and oral clefts likely reflects the effect of other risk factors related to low socioeconomic status in South American populations.

  10. A Structural Equation Model at the Individual and Group Level for Assessing Faking-Related Change

    ERIC Educational Resources Information Center

    Ferrando, Pere Joan; Anguiano-Carrasco, Cristina

    2011-01-01

    This article proposes a comprehensive approach based on structural equation modeling for assessing the amount of trait-level change derived from faking-motivating situations. The model is intended for a mixed 2-wave 2-group design, and assesses change at both the group and the individual level. Theoretically the model adopts an integrative…

  11. Understanding the Impact of Trauma Exposure on Posttraumatic Stress Symptomatology: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Chen, Wei; Wang, Long; Zhang, Xing-Li; Shi, Jian-Nong

    2012-01-01

    The objective of this study was to investigate the impact of trauma exposure on the posttraumatic stress symptomatology (PTSS) of children who resided near the epicenter of the 2008 Wenchuan earthquake. The mechanisms of this impact were explored via structural equation models with self-esteem and coping strategies included as mediators. The…

  12. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  13. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.

    PubMed

    Wen, Xiao-Yong; Yang, Yunqing; Yan, Zhenya

    2015-07-01

    In this paper, a simple and constructive method is presented to find the generalized perturbation (n,M)-fold Darboux transformations (DTs) of the modified nonlinear Schrödinger (MNLS) equation in terms of fractional forms of determinants. In particular, we apply the generalized perturbation (1,N-1)-fold DTs to find its explicit multi-rogue-wave solutions. The wave structures of these rogue-wave solutions of the MNLS equation are discussed in detail for different parameters, which display abundant interesting wave structures, including the triangle and pentagon, etc., and may be useful to study the physical mechanism of multirogue waves in optics. The dynamical behaviors of these multi-rogue-wave solutions are illustrated using numerical simulations. The same Darboux matrix can also be used to investigate the Gerjikov-Ivanov equation such that its multi-rogue-wave solutions and their wave structures are also found. The method can also be extended to find multi-rogue-wave solutions of other nonlinear integrable equations.

  14. Post-partum blues among Korean mothers: a structural equation modelling approach.

    PubMed

    Chung, Sung Suk; Yoo, Il Young; Joung, Kyoung Hwa

    2013-08-01

    The objective of this study was to propose the post-partum blues (PPB) model and to estimate the effects of self-esteem, social support, antenatal depression, and stressful events during pregnancy on PPB. Data were collected from 249 women post-partum during their stay in the maternity units of three hospitals in Korea using a self-administered questionnaire. A structural equation modelling approach using the Analysis of Moments Structure program was used to identify the direct and indirect effects of the variables on PPB. The full model had a good fit and accounted for 70.3% of the variance of PPB. Antenatal depression and stressful events during pregnancy had strong direct effects on PPB. Household income showed indirect effects on PPB via self-esteem and antenatal depression. Social support indirectly affected PPB via self-esteem, antenatal depression, and stressful events during pregnancy. © 2012 The Authors; International Journal of Mental Health Nursing © 2012 Australian College of Mental Health Nurses Inc.

  15. Factors Affecting Higher Order Thinking Skills of Students: A Meta-Analytic Structural Equation Modeling Study

    ERIC Educational Resources Information Center

    Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya

    2015-01-01

    The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…

  16. Sample Invariance of the Structural Equation Model and the Item Response Model: A Case Study.

    ERIC Educational Resources Information Center

    Breithaupt, Krista; Zumbo, Bruno D.

    2002-01-01

    Evaluated the sample invariance of item discrimination statistics in a case study using real data, responses of 10 random samples of 500 people to a depression scale. Results lend some support to the hypothesized superiority of a two-parameter item response model over the common form of structural equation modeling, at least when responses are…

  17. Friendship trust and psychological well-being from late adolescence to early adulthood: A structural equation modelling approach.

    PubMed

    Miething, Alexander; Almquist, Ylva B; Edling, Christofer; Rydgren, Jens; Rostila, Mikael

    2017-05-01

    This study explored the sex-specific associations between friendship trust and the psychological well-being of young Swedes from late adolescence to early adulthood. A random sample of native Swedes born in 1990 was surveyed at age 19 years and again at age 23 years regarding their own well-being and their relationships with a maximum of five self-named peers. The response rate was 31.3%, resulting in 782 cases to be analysed. We used sex-stratified structural equation models to explore the associations between trust and well-being. Psychological well-being was constructed as the latent variable in the measurement part. The structural part accounted for the autocorrelation of trust with respect to well-being over time and incorporated the cross-lagged effects between late adolescence and early adulthood. It was found that trust increased while well-being decreased for young men and remained stable for young women from 19 to 23 years of age. The young women reported lower well-being at both time points, whereas no sex difference was found for trust. Based on model fit comparisons, a simple model without forward or reward causation was accepted for young men, whereas reversed causation from well-being to trust was suggested for young women. Subsequent analysis based on these assumptions confirmed the reversed effect for young women. The findings suggest that young people do not benefit from trustful social relations to the same extent as adult populations. Young women who express impaired well-being run a greater risk of being members of networks characterized by low friendship trust over time.

  18. A structure-preserving split finite element discretization of the split 1D linear shallow-water equations

    NASA Astrophysics Data System (ADS)

    Bauer, Werner; Behrens, Jörn

    2017-04-01

    We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger

  19. almaBTE : A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials

    NASA Astrophysics Data System (ADS)

    Carrete, Jesús; Vermeersch, Bjorn; Katre, Ankita; van Roekeghem, Ambroise; Wang, Tao; Madsen, Georg K. H.; Mingo, Natalio

    2017-11-01

    almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm- μm range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title:almaBTE Program Files doi:http://dx.doi.org/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo

  20. A Bayesian Approach for Nonlinear Structural Equation Models with Dichotomous Variables Using Logit and Probit Links

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng

    2010-01-01

    Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…

  1. Cultural, Social, and Economic Capital Constructs in International Assessments: An Evaluation Using Exploratory Structural Equation Modeling

    ERIC Educational Resources Information Center

    Caro, Daniel H.; Sandoval-Hernández, Andrés; Lüdtke, Oliver

    2014-01-01

    The article employs exploratory structural equation modeling (ESEM) to evaluate constructs of economic, cultural, and social capital in international large-scale assessment (LSA) data from the Progress in International Reading Literacy Study (PIRLS) 2006 and the Programme for International Student Assessment (PISA) 2009. ESEM integrates the…

  2. On Insensitivity of the Chi-Square Model Test to Nonlinear Misspecification in Structural Equation Models

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Satorra, Albert

    2009-01-01

    In this paper, we show that for some structural equation models (SEM), the classical chi-square goodness-of-fit test is unable to detect the presence of nonlinear terms in the model. As an example, we consider a regression model with latent variables and interactions terms. Not only the model test has zero power against that type of…

  3. Maternal, Infant Characteristics, Breastfeeding Techniques, and Initiation: Structural Equation Modeling Approaches

    PubMed Central

    Htun, Tha Pyai; Lim, Peng Im; Ho-Lim, Sarah

    2015-01-01

    Objectives The aim of this study was to examine the relationships among maternal and infant characteristics, breastfeeding techniques, and exclusive breastfeeding initiation in different modes of birth using structural equation modeling approaches. Methods We examined a hypothetical model based on integrating concepts of a breastfeeding decision-making model, a breastfeeding initiation model, and a social cognitive theory among 952 mother-infant dyads. The LATCH breastfeeding assessment tool was used to evaluate breastfeeding techniques and two infant feeding categories were used (exclusive and non-exclusive breastfeeding). Results Structural equation models (SEM) showed that multiparity was significantly positively associated with breastfeeding techniques and the jaundice of an infant was significantly negatively related to exclusive breastfeeding initiation. A multigroup analysis in the SEM showed no difference between the caesarean section and vaginal delivery groups estimates of breastfeeding techniques on exclusive breastfeeding initiation. Breastfeeding techniques were significantly positively associated with exclusive breastfeeding initiation in the entire sample and in the vaginal deliveries group. However, breastfeeding techniques were not significantly associated with exclusive breastfeeding initiation in the cesarean section group. Maternal age, maternal race, gestations, birth weight of infant, and postnatal complications had no significant impacts on breastfeeding techniques or exclusive breastfeeding initiation in our study. Overall, the models fitted the data satisfactorily (GFI = 0.979–0.987; AGFI = 0.951–0.962; IFI = 0.958–0.962; CFI = 0.955–0.960, and RMSEA = 0.029–0.034). Conclusions Multiparity and jaundice of an infant were found to affect breastfeeding technique and exclusive breastfeeding initiation respectively. Breastfeeding technique was related to exclusive breastfeeding initiation according to the mode of birth. This

  4. Race/Ethnicity and Social Capital among Middle- and Upper-Middle-Class Elementary School Families: A Structural Equation Model

    ERIC Educational Resources Information Center

    Caldas, Stephen J.; Cornigans, Linda

    2015-01-01

    This study used structural equation modeling to conduct a first and second order confirmatory factor analysis (CFA) of a scale developed by McDonald and Moberg (2002) to measure three dimensions of social capital among a diverse group of middle- and upper-middle-class elementary school parents in suburban New York. A structural path model was…

  5. On the Inclusion of Difference Equation Problems and Z Transform Methods in Sophomore Differential Equation Classes

    ERIC Educational Resources Information Center

    Savoye, Philippe

    2009-01-01

    In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.

  6. Self-Efficacy, School Resources, Job Stressors and Burnout among Spanish Primary and Secondary School Teachers: A Structural Equation Approach

    ERIC Educational Resources Information Center

    Betoret, Fernando Domenech

    2009-01-01

    This study examines the relationship between school resources, teacher self-efficacy, potential multi-level stressors and teacher burnout using structural equation modelling. The causal structure for primary and secondary school teachers was also examined. The sample was composed of 724 primary and secondary Spanish school teachers. The changes…

  7. Factors that Affect Mathematics-Science (MS) Scores in the Secondary Education Institutional Exam: An Application of Structural Equation Modeling

    ERIC Educational Resources Information Center

    Yavuz, Mustafa

    2009-01-01

    Discovering what determines students' success in the Secondary Education Institutional Exam is very important to parents and it is also critical for students, teachers, directors, and researchers. Research was carried out by studying the related literature and structural equation modeling techniques. A structural model was created that consisted…

  8. Critical Factors Analysis for Offshore Software Development Success by Structural Equation Modeling

    NASA Astrophysics Data System (ADS)

    Wada, Yoshihisa; Tsuji, Hiroshi

    In order to analyze the success/failure factors in offshore software development service by the structural equation modeling, this paper proposes to follow two approaches together; domain knowledge based heuristic analysis and factor analysis based rational analysis. The former works for generating and verifying of hypothesis to find factors and causalities. The latter works for verifying factors introduced by theory to build the model without heuristics. Following the proposed combined approaches for the responses from skilled project managers of the questionnaire, this paper found that the vendor property has high causality for the success compared to software property and project property.

  9. High-pressure structural parameters and equation of state of osmium to 207 GPa

    DOE PAGES

    Perreault, Christopher S.; Velisavljevic, Nenad; Vohra, Yogesh K.; ...

    2017-09-08

    We studied the most incompressible transition metal osmium (Os) under high pressure. There is significant interest in Os because of the structural anomalies attributed to topological transitions in the Fermi surface for valence electrons in the hexagonal close-packed phase. We report on measurements of structural parameters and equation of state on Os metal to a pressure of 207 GPa at ambient temperature using platinum as a pressure standard. We also obtained angle-dispersive X-ray diffraction data at a synchrotron source with closely spaced pressure intervals to observe any discontinuities or anomalies in the axial c/a ratio at high pressures. Rietveld refinementsmore » of X-ray diffraction data show a slowly varying axial ratio (c/a) with a broad minimum at 75 GPa. Our data do not provide any evidence of anomalous behavior in the c/a ratio in Os at 25 or 150 GPa as have been reported in previous studies. These experimental results are in agreement with theoretical calculations that do not predict any anomalous behavior in c/a ratio in Os under extreme conditions. We present an equation of state for Os to 207 GPa (V/V 0 = 0.761) at ambient temperature and compare our results with the previously published data.« less

  10. High-pressure structural parameters and equation of state of osmium to 207 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault, Christopher S.; Velisavljevic, Nenad; Vohra, Yogesh K.

    We studied the most incompressible transition metal osmium (Os) under high pressure. There is significant interest in Os because of the structural anomalies attributed to topological transitions in the Fermi surface for valence electrons in the hexagonal close-packed phase. We report on measurements of structural parameters and equation of state on Os metal to a pressure of 207 GPa at ambient temperature using platinum as a pressure standard. We also obtained angle-dispersive X-ray diffraction data at a synchrotron source with closely spaced pressure intervals to observe any discontinuities or anomalies in the axial c/a ratio at high pressures. Rietveld refinementsmore » of X-ray diffraction data show a slowly varying axial ratio (c/a) with a broad minimum at 75 GPa. Our data do not provide any evidence of anomalous behavior in the c/a ratio in Os at 25 or 150 GPa as have been reported in previous studies. These experimental results are in agreement with theoretical calculations that do not predict any anomalous behavior in c/a ratio in Os under extreme conditions. We present an equation of state for Os to 207 GPa (V/V 0 = 0.761) at ambient temperature and compare our results with the previously published data.« less

  11. Using Structural Equation Modeling to Assess Functional Connectivity in the Brain: Power and Sample Size Considerations

    ERIC Educational Resources Information Center

    Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack

    2014-01-01

    The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…

  12. A Unified Equation of State on a Microscopic Basis : Implications for Neutron Stars Structure and Cooling

    NASA Astrophysics Data System (ADS)

    Burgio, G. F.

    2018-03-01

    We discuss the structure of Neutron Stars by modelling the homogeneous nuclear matter of the core by a suitable microscopic Equation of State, based on the Brueckner-Hartree-Fock many-body theory, and the crust, including the pasta phase, by the BCPM energy density functional which is based on the same Equation of State. This allows for a uni ed description of the Neutron Star matter over a wide density range. A comparison with other uni ed approaches is discussed. With the same Equation of State, which features strong direct Urca processes and using consistent nuclear pairing gaps as well as effective masses, we model neutron star cooling, in particular the current rapid cooldown of the neutron star Cas A. We nd that several scenarios are possible to explain the features of Cas A, but only large and extended proton 1 S 0 gaps and small neutron 3 PF 2 gaps can accommodate also the major part of the complete current cooling data.

  13. Structural equation models of VMT growth in US urbanised areas.

    USGS Publications Warehouse

    Ewing, Reid; Hamidi, Shima; Gallivan, Frank; Nelson, Arthur C.; Grace, James B.

    2014-01-01

    Vehicle miles travelled (VMT) is a primary performance indicator for land use and transportation, bringing with it both positive and negative externalities. This study updates and refines previous work on VMT in urbanised areas, using recent data, additional metrics and structural equation modelling (SEM). In a cross-sectional model for 2010, population, income and freeway capacity are positively related to VMT, while gasoline prices, development density and transit service levels are negatively related. Findings of the cross-sectional model are generally confirmed in a more tightly controlled longitudinal study of changes in VMT between 2000 and 2010, the first model of its kind. The cross-sectional and longitudinal models together, plus the transportation literature generally, give us a basis for generalising across studies to arrive at elasticity values of VMT with respect to different urban variables.

  14. ODEion--a software module for structural identification of ordinary differential equations.

    PubMed

    Gennemark, Peter; Wedelin, Dag

    2014-02-01

    In the systems biology field, algorithms for structural identification of ordinary differential equations (ODEs) have mainly focused on fixed model spaces like S-systems and/or on methods that require sufficiently good data so that derivatives can be accurately estimated. There is therefore a lack of methods and software that can handle more general models and realistic data. We present ODEion, a software module for structural identification of ODEs. Main characteristic features of the software are: • The model space is defined by arbitrary user-defined functions that can be nonlinear in both variables and parameters, such as for example chemical rate reactions. • ODEion implements computationally efficient algorithms that have been shown to efficiently handle sparse and noisy data. It can run a range of realistic problems that previously required a supercomputer. • ODEion is easy to use and provides SBML output. We describe the mathematical problem, the ODEion system itself, and provide several examples of how the system can be used. Available at: http://www.odeidentification.org.

  15. Representing general theoretical concepts in structural equation models: The role of composite variables

    USGS Publications Warehouse

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  16. Development of uncertainty-based work injury model using Bayesian structural equation modelling.

    PubMed

    Chatterjee, Snehamoy

    2014-01-01

    This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.

  17. Testing the simplex assumption underlying the Sport Motivation Scale: a structural equation modeling analysis.

    PubMed

    Li, F; Harmer, P

    1996-12-01

    Self-determination theory (Deci & Ryan, 1985) suggests that motivational orientation or regulatory styles with respect to various behaviors can be conceptualized along a continuum ranging from low (a motivation) to high (intrinsic motivation) levels of self-determination. This pattern is manifested in the rank order of correlations among these regulatory styles (i.e., adjacent correlations are expected to be higher than those more distant) and is known as a simplex structure. Using responses from the Sport Motivation Scale (Pelletier et al., 1995) obtained from a sample of 857 college students (442 men, 415 women), the present study tested the simplex structure underlying SMS subscales via structural equation modeling. Results confirmed the simplex model structure, indicating that the various motivational constructs are empirically organized from low to high self-determination. The simplex pattern was further found to be invariant across gender. Findings from this study support the construct validity of the SMS and have important implications for studies focusing on the influence of motivational orientation in sport.

  18. Integrability and structural stability of solutions to the Ginzburg-Landau equation

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R.

    1986-01-01

    The integrability of the Ginzburg-Landau equation is studied to investigate if the existence of chaotic solutions found numerically could have been predicted a priori. The equation is shown not to possess the Painleveproperty, except for a special case of the coefficients that corresponds to the integrable, nonlinear Schroedinger (NLS) equation. Regarding the Ginzburg-Landau equation as a dissipative perturbation of the NLS, numerical experiments show all but one of a family of two-tori solutions, possessed by the NLS under particular conditions, to disappear under real perturbations to the NLS coefficients of O(10 to the -6th).

  19. A Second-Year Undergraduate Course in Applied Differential Equations.

    ERIC Educational Resources Information Center

    Fahidy, Thomas Z.

    1991-01-01

    Presents the framework for a chemical engineering course using ordinary differential equations to solve problems with the underlying strategy of concisely discussing the theory behind each solution technique without extensions to formal proofs. Includes typical class illustrations, student responses to this strategy, and reaction of the…

  20. Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences

    ERIC Educational Resources Information Center

    Elrod, Terry; Haubl, Gerald; Tipps, Steven W.

    2012-01-01

    Recent research reflects a growing awareness of the value of using structural equation models to analyze repeated measures data. However, such data, particularly in the presence of covariates, often lead to models that either fit the data poorly, are exceedingly general and hard to interpret, or are specified in a manner that is highly data…

  1. The Development of a Structural Equation Model to Demonstrate the Correlations between Marijuana Use and Involvement

    ERIC Educational Resources Information Center

    Borcherding, Matthew J.

    2017-01-01

    This quantitative study examined the effects of marijuana on academic and social involvement in undergraduates using a structural equation model. The study was conducted at a midsized comprehensive community college in the Midwest and was guided by Astin's (1985) theory of student involvement. A survey link was e-mailed to all 4,527 eligible…

  2. Effect of practical training on the learning motivation profile of Japanese pharmacy students using structural equation modeling.

    PubMed

    Yamamura, Shigeo; Takehira, Rieko

    2017-01-01

    To establish a model of Japanese pharmacy students' learning motivation profile and investigate the effects of pharmaceutical practical training programs on their learning motivation. The Science Motivation Questionnaire II was administered to pharmacy students in their 4th (before practical training), 5th (before practical training at clinical sites), and 6th (after all practical training) years of study at Josai International University in April, 2016. Factor analysis and multiple-group structural equation modeling were conducted for data analysis. A total of 165 students participated. The learning motivation profile was modeled with 4 factors (intrinsic, career, self-determination, and grade motivation), and the most effective learning motivation was grade motivation. In the multiple-group analysis, the fit of the model with the data was acceptable, and the estimated mean value of the factor of 'self-determination' in the learning motivation profile increased after the practical training programs (P= 0.048, Cohen's d = 0.43). Practical training programs in a 6-year course were effective for increasing learning motivation, based on 'self-determination' among Japanese pharmacy students. The results suggest that practical training programs are meaningful not only for providing clinical experience but also for raising learning motivation.

  3. Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations

    ERIC Educational Resources Information Center

    Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln

    2007-01-01

    A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…

  4. Algebraic and geometric structures of analytic partial differential equations

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2016-11-01

    We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.

  5. Conservation of protein structure over four billion years.

    PubMed

    Ingles-Prieto, Alvaro; Ibarra-Molero, Beatriz; Delgado-Delgado, Asuncion; Perez-Jimenez, Raul; Fernandez, Julio M; Gaucher, Eric A; Sanchez-Ruiz, Jose M; Gavira, Jose A

    2013-09-03

    Little is known about the evolution of protein structures and the degree of protein structure conservation over planetary time scales. Here, we report the X-ray crystal structures of seven laboratory resurrections of Precambrian thioredoxins dating up to approximately four billion years ago. Despite considerable sequence differences compared with extant enzymes, the ancestral proteins display the canonical thioredoxin fold, whereas only small structural changes have occurred over four billion years. This remarkable degree of structure conservation since a time near the last common ancestor of life supports a punctuated-equilibrium model of structure evolution in which the generation of new folds occurs over comparatively short periods and is followed by long periods of structural stasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Beyond logistic regression: structural equations modelling for binary variables and its application to investigating unobserved confounders.

    PubMed

    Kupek, Emil

    2006-03-15

    Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.

  7. On the specification of structural equation models for ecological systems

    USGS Publications Warehouse

    Grace, J.B.; Michael, Anderson T.; Han, O.; Scheiner, S.M.

    2010-01-01

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical concepts using latent variables. In this paper, we discuss characteristics of ecological theory and some of the challenges for proper specification of theoretical ideas in structural equation models (SE models). In our presentation, we describe some of the requirements for classical latent variable models in which observed variables (indicators) are interpreted as the effects of underlying causes. We also describe alternative model specifications in which indicators are interpreted as having causal influences on the theoretical concepts. We suggest that this latter nonclassical specification (which involves another variable type-the composite) will often be appropriate for ecological studies because of the multifaceted nature of our theoretical concepts. In this paper, we employ the use of meta-models to aid the translation of theory into SE models and also to facilitate our ability to relate results back to our theories. We demonstrate our approach by showing how a synthetic theory of grassland biodiversity can be evaluated using SEM and data from a coastal grassland. In this example, the theory focuses on the responses of species richness to abiotic stress and disturbance, both directly and through intervening effects on community biomass. Models examined include both those based on classical forms (where each concept is represented using a single latent variable) and also ones in which the concepts are recognized to be multifaceted and modeled as such. To address the challenge of matching SE models with the conceptual level of our theory, two approaches are illustrated, compositing and aggregation. Both approaches are shown to have merits, with the former being preferable for cases where the multiple facets of a concept have widely differing effects in the

  8. Population-level preferences for primary care physicians' characteristics in Japan: a structural equation modeling.

    PubMed

    Takahashi, Osamu; Ohde, Sachiko; Jacobs, Joshua L; Tokuda, Yasuharu; Yanai, Haruo; Okubo, Tomoya; Shimbo, Takuro; Fukuhara, Shunichi; Hinohara, Shigeaki; Fukui, Tsuguya

    2010-01-01

    Primary care has potential to play a role for improving the patient care in Japanese health care system; however, little information is available about how patients perceive the roles of primary care physicians (PCPs) within the Japanese health care system. We aimed to assess population-level preferences for PCPs and investigated the extent to which preferences vary in relation to different population groups in Japan. Data were extracted from a cross-sectional questionnaire survey in October 2003. An 18-item questionnaire was used to measure the preferences for PCPs. Exploratory factor analysis was performed to identify latent factors, while confirmatory factor analysis was used to evaluate the fit of the structure using structural equation modeling (SEM). Nationally representative sample of the adult Japanese general population was chosen by controlling for age, sex, and the size of cities. A total of 2,453 adults>or=18-years-old were analyzed. SEM provided a 4-factor structural model of the population-level preference for PCPs, such as clinical competence (path coefficient (pc)=0.72), gate-keeping (pc=0.64), communication with patients or specialists (pc=0.49) and high education (pc=0.25) and demonstrated the best goodness-of-fit. Those who were middle aged, have a high family income, and a high level of education, placed more importance on gate-keeping characteristics, and the rural residents emphasized communication rather than clinical competence. Our results indicate that the preferences for PCPs are divided into four main factors and underscore the variation among preferences according to different population groups, such as age, socioeconomic and educational status, and places of living. These variations should be considered to improve the primary care system in Japan.

  9. Many-level multilevel structural equation modeling: An efficient evaluation strategy.

    PubMed

    Pritikin, Joshua N; Hunter, Michael D; von Oertzen, Timo; Brick, Timothy R; Boker, Steven M

    2017-01-01

    Structural equation models are increasingly used for clustered or multilevel data in cases where mixed regression is too inflexible. However, when there are many levels of nesting, these models can become difficult to estimate. We introduce a novel evaluation strategy, Rampart, that applies an orthogonal rotation to the parts of a model that conform to commonly met requirements. This rotation dramatically simplifies fit evaluation in a way that becomes more potent as the size of the data set increases. We validate and evaluate the implementation using a 3-level latent regression simulation study. Then we analyze data from a state-wide child behavioral health measure administered by the Oklahoma Department of Human Services. We demonstrate the efficiency of Rampart compared to other similar software using a latent factor model with a 5-level decomposition of latent variance. Rampart is implemented in OpenMx, a free and open source software.

  10. Structural equation modeling: building and evaluating causal models: Chapter 8

    USGS Publications Warehouse

    Grace, James B.; Scheiner, Samuel M.; Schoolmaster, Donald R.

    2015-01-01

    Scientists frequently wish to study hypotheses about causal relationships, rather than just statistical associations. This chapter addresses the question of how scientists might approach this ambitious task. Here we describe structural equation modeling (SEM), a general modeling framework for the study of causal hypotheses. Our goals are to (a) concisely describe the methodology, (b) illustrate its utility for investigating ecological systems, and (c) provide guidance for its application. Throughout our presentation, we rely on a study of the effects of human activities on wetland ecosystems to make our description of methodology more tangible. We begin by presenting the fundamental principles of SEM, including both its distinguishing characteristics and the requirements for modeling hypotheses about causal networks. We then illustrate SEM procedures and offer guidelines for conducting SEM analyses. Our focus in this presentation is on basic modeling objectives and core techniques. Pointers to additional modeling options are also given.

  11. Factors influencing adherence to psychopharmacological medications in psychiatric patients: a structural equation modeling approach.

    PubMed

    De Las Cuevas, Carlos; de Leon, Jose; Peñate, Wenceslao; Betancort, Moisés

    2017-01-01

    To evaluate pathways through which sociodemographic, clinical, attitudinal, and perceived health control variables impact psychiatric patients' adherence to psychopharmacological medications. A sample of 966 consecutive psychiatric outpatients was studied. The variables were sociodemographic (age, gender, and education), clinical (diagnoses, drug treatment, and treatment duration), attitudinal (attitudes toward psychopharmacological medication and preferences regarding participation in decision-making), perception of control over health (health locus of control, self-efficacy, and psychological reactance), and level of adherence to psychopharmacological medications. Structural equation modeling was applied to examine the nonstraightforward relationships and the interactive effects among the analyzed variables. Structural equation modeling demonstrated that psychiatric patients' treatment adherence was associated: 1) negatively with cognitive psychological reactance (adherence decreased as cognitive psychological reactance increased), 2) positively with patients' trust in their psychiatrists (doctors' subscale), 3) negatively with patients' belief that they are in control of their mental health and that their mental health depends on their own actions (internal subscale), and 4) positively (although weakly) with age. Self-efficacy indirectly influenced treatment adherence through internal health locus of control. This study provides support for the hypothesis that perceived health control variables play a relevant role in psychiatric patients' adherence to psychopharmacological medications. The findings highlight the importance of considering prospective studies of patients' psychological reactance and health locus of control as they may be clinically relevant factors contributing to adherence to psychopharmacological medications.

  12. Meta-Analytic Methods of Pooling Correlation Matrices for Structural Equation Modeling under Different Patterns of Missing Data

    ERIC Educational Resources Information Center

    Furlow, Carolyn F.; Beretvas, S. Natasha

    2005-01-01

    Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for…

  13. Are Teachers' Approaches to Teaching Responsive to Individual Student Variation? A Two-Level Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rosário, Pedro; Núñez, José Carlos; Vallejo, Guilermo; Paiva, Olímpia; Valle, António; Fuentes, Sonia; Pinto, Ricardo

    2014-01-01

    In the framework of teacher's approaches to teaching, this study investigates the relationship between student-related variables (i.e., study time, class absence, domain knowledge, and homework completion), students' approaches to learning, and teachers' approaches to teaching using structural equation modeling (SEM) with two…

  14. A determinant-based criterion for working correlation structure selection in generalized estimating equations.

    PubMed

    Jaman, Ajmery; Latif, Mahbub A H M; Bari, Wasimul; Wahed, Abdus S

    2016-05-20

    In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. Copyright © 2015 John Wiley & Sons, Ltd.

  15. A novel use of structural equation models to examine factors associated with prediabetes among adults aged 50 years and older: National Health and Nutrition Examination Survey 2001-2006.

    PubMed

    Bardenheier, Barbara H; Bullard, Kai McKeever; Caspersen, Carl J; Cheng, Yiling J; Gregg, Edward W; Geiss, Linda S

    2013-09-01

    To use structural modeling to test a hypothesized model of causal pathways related with prediabetes among older adults in the U.S. Cross-sectional study of 2,230 older adults (≥ 50 years) without diabetes included in the morning fasting sample of the 2001-2006 National Health and Nutrition Examination Surveys. Demographic data included age, income, marital status, race/ethnicity, and education. Behavioral data included physical activity (metabolic equivalent hours per week for vigorous or moderate muscle strengthening, walking/biking, and house/yard work), and poor diet (refined grains, red meat, added sugars, solid fats, and high-fat dairy). Structural-equation modeling was performed to examine the interrelationships among these variables with family history of diabetes, high blood pressure, BMI, large waist (waist circumference: women, ≥ 35 inches; men, ≥ 40 inches), triglycerides ≥ 200 mg/dL, and total and HDL (≥ 60 mg/dL) cholesterol. After dropping BMI and total cholesterol, our best-fit model included three single factors: socioeconomic position (SEP), physical activity, and poor diet. Large waist had the strongest direct effect on prediabetes (0.279), followed by male sex (0.270), SEP (-0.157), high blood pressure (0.122), family history of diabetes (0.070), and age (0.033). Physical activity had direct effects on HDL (0.137), triglycerides (-0.136), high blood pressure (-0.132), and large waist (-0.067); poor diet had direct effects on large waist (0.146) and triglycerides (0.148). Our results confirmed that, while including factors known to be associated with high risk of developing prediabetes, large waist circumference had the strongest direct effect. The direct effect of SEP on prediabetes suggests mediation by some unmeasured factor(s).

  16. The Effects of Cognitive Style on Edmodo Users' Behaviour: A Structural Equation Modeling-Based Multi-Group Analysis

    ERIC Educational Resources Information Center

    Ursavas, Omer Faruk; Reisoglu, Ilknur

    2017-01-01

    Purpose: The purpose of this paper is to explore the validity of extended technology acceptance model (TAM) in explaining pre-service teachers' Edmodo acceptance and the variation of variables related to TAM among pre-service teachers having different cognitive styles. Design/methodology/approach: Structural equation modeling approach was used to…

  17. Three Approaches to Using Lengthy Ordinal Scales in Structural Equation Models: Parceling, Latent Scoring, and Shortening Scales

    ERIC Educational Resources Information Center

    Yang, Chongming; Nay, Sandra; Hoyle, Rick H.

    2010-01-01

    Lengthy scales or testlets pose certain challenges for structural equation modeling (SEM) if all the items are included as indicators of a latent construct. Three general approaches to modeling lengthy scales in SEM (parceling, latent scoring, and shortening) have been reviewed and evaluated. A hypothetical population model is simulated containing…

  18. Pathways of inhalation exposure to manganese in children living near a ferromanganese refinery: A structural equation modeling approach

    EPA Science Inventory

    Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation ...

  19. Analyzing average and conditional effects with multigroup multilevel structural equation models

    PubMed Central

    Mayer, Axel; Nagengast, Benjamin; Fletcher, John; Steyer, Rolf

    2014-01-01

    Conventionally, multilevel analysis of covariance (ML-ANCOVA) has been the recommended approach for analyzing treatment effects in quasi-experimental multilevel designs with treatment application at the cluster-level. In this paper, we introduce the generalized ML-ANCOVA with linear effect functions that identifies average and conditional treatment effects in the presence of treatment-covariate interactions. We show how the generalized ML-ANCOVA model can be estimated with multigroup multilevel structural equation models that offer considerable advantages compared to traditional ML-ANCOVA. The proposed model takes into account measurement error in the covariates, sampling error in contextual covariates, treatment-covariate interactions, and stochastic predictors. We illustrate the implementation of ML-ANCOVA with an example from educational effectiveness research where we estimate average and conditional effects of early transition to secondary schooling on reading comprehension. PMID:24795668

  20. Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models

    NASA Astrophysics Data System (ADS)

    Alim, Murad

    2017-08-01

    The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.

  1. Structural equation model of total phosphorus loads in the Red River of the North Basin, USA and Canada

    USGS Publications Warehouse

    Ryberg, Karen R.

    2017-01-01

    Attribution of the causes of trends in nutrient loading is often limited to correlation, qualitative reasoning, or references to the work of others. This paper represents efforts to improve causal attribution of water-quality changes. The Red River of the North basin provides a regional test case because of international interest in the reduction of total phosphorus loads and the availability of long-term total phosphorus data and ancillary geospatial data with the potential to explain changes in water quality over time. The objectives of the study are to investigate structural equation modeling methods for application to water-quality problems and to test causal hypotheses related to the drivers of total phosphorus loads over the period 1970 to 2012. Multiple working hypotheses that explain total phosphorus loads and methods for estimating missing ancillary data were developed, and water-quality related challenges to structural equation modeling (including skewed data and scaling issues) were addressed. The model indicates that increased precipitation in season 1 (November–February) or season 2 (March–June) would increase total phosphorus loads in the basin. The effect of agricultural practices on total phosphorus loads was significant, although the effect is about one-third of the effect of season 1 precipitation. The structural equation model representing loads at six sites in the basin shows that climate and agricultural practices explain almost 60% of the annual total phosphorus load in the Red River of the North basin. The modeling process and the unexplained variance highlight the need for better ancillary long-term data for causal assessments.

  2. From job stress to intention to leave among hospital nurses: A structural equation modelling approach.

    PubMed

    Lo, Wen-Yen; Chien, Li-Yin; Hwang, Fang-Ming; Huang, Nicole; Chiou, Shu-Ti

    2018-03-01

    The aim of this study was to examine the structural relationships linking job stress to leaving intentions through job satisfaction, depressed mood and stress adaptation among hospital nurses. High turnover among nurses is a global concern. Structural relationships linking job stress to leaving intentions have not been thoroughly examined. Two nationwide cross-sectional surveys of full-time hospital staff in 2011 and 2014. The study participants were 26,945 and 19,386 full-time clinical nurses in 2011 and 2014 respectively. Structural equation modelling was used to examine the interrelationships among the study variables based on the hypothesized model. We used cross-validation procedures to ensure the stability and validity of the model in the two samples. There were five main paths from job stress to intention to leave the hospital. In addition to the direct path, job stress directly affected job satisfaction and depressed mood, which in turn affected intention to leave the hospital. Stress adaptation mitigated the effects of job stress on job satisfaction and depressed mood, which led to intention to leave the hospital. Intention to leave the hospital preceded intention to leave the profession. Those variables explained about 55% of the variance in intention to leave the profession in both years. The model fit was good for both samples, suggesting validity of the model. Strategies to decrease turnover intentions among nurses could focus on creating a less stressful work environment, increasing job satisfaction and stress adaptation and decreasing depressed mood. Hospitals should cooperate in this issue to decrease nurse turnover. © 2017 John Wiley & Sons Ltd.

  3. Thought-action fusion: a comprehensive analysis using structural equation modeling.

    PubMed

    Marino, Teresa L; Lunt, Rachael A; Negy, Charles

    2008-07-01

    Thought-action fusion (TAF), the phenomenon whereby one has difficulty separating cognitions from corresponding behaviors, has implications in a wide variety of disturbances, including eating disorders, obsessive-compulsive disorder, generalized anxiety disorder, and panic disorder. Numerous constructs believed to contribute to the etiology or maintenance of TAF have been identified in the literature, but to date, no study has empirically integrated these findings into a comprehensive model. In this study, we examined simultaneously an array of variables thought to be related to TAF, and subsequently developed a model that elucidates the role of those variables that seem most involved in this phenomenon using a structural equation modeling approach. Results indicated that religiosity, as predicted by ethnic identity, was a significant predictor of TAF. Additionally, the relation between ethnic identity and TAF was partially mediated by an inflated sense of responsibility. Both TAF and obsessive-compulsive symptoms were found to be significant predictors of engagement in neutralization activities. Clinical and theoretical implications are discussed.

  4. Stability Results, Almost Global Generalized Beltrami Fields and Applications to Vortex Structures in the Euler Equations

    NASA Astrophysics Data System (ADS)

    Enciso, Alberto; Poyato, David; Soler, Juan

    2018-05-01

    Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness

  5. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    PubMed

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  6. Anxiety, Depression and Hopelessness in Adolescents: A Structural Equation Model

    PubMed Central

    Cunningham, Shaylyn; Gunn, Thelma; Alladin, Assen; Cawthorpe, David

    2008-01-01

    Objective This study tested a structural model, examining the relationship between a latent variable termed demoralization and measured variables (anxiety, depression and hopelessness) in a community sample of Canadian youth. Methods The combined sample consisted of data collected from four independent studies from 2001 to 2005. Nine hundred and seventy one (n=971) participants were high school students (grades 10–12) from three geographic locations: Calgary, Saskatchewan and Lethbridge. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory-Revised (BDI-II), Beck Hopelessness Scale (BHS), and demographic survey. Structural equation modeling was used for statistical analysis. Results The analysis revealed that the final model, including depression, anxiety and hopelessness and one latent variable demoralization, fit the data (chi-square value, X2 (2) = 7.25, p< .001, goodness of fit indices (CFI=0.99, NFI=0.98) and standardized error (0.05). Overall, the findings suggest that close relationships exist among depression, anxiety, hopelessness and demoralization that is stable across demographic variables. Further, the model explains the relationship between sub-clinical anxiety, depression and hopelessness. Conclusion These findings contribute to a theoretical framework, which has implications for educational and clinical intervention. The present findings will help guide further preventative research on examining demoralization as a precursor to sub-clinical anxiety and depression. PMID:18769644

  7. Scalable Preconditioners for Structure Preserving Discretizations of Maxwell Equations in First Order Form

    DOE PAGES

    Phillips, Edward Geoffrey; Shadid, John N.; Cyr, Eric C.

    2018-05-01

    Here, we report multiple physical time-scales can arise in electromagnetic simulations when dissipative effects are introduced through boundary conditions, when currents follow external time-scales, and when material parameters vary spatially. In such scenarios, the time-scales of interest may be much slower than the fastest time-scales supported by the Maxwell equations, therefore making implicit time integration an efficient approach. The use of implicit temporal discretizations results in linear systems in which fast time-scales, which severely constrain the stability of an explicit method, can manifest as so-called stiff modes. This study proposes a new block preconditioner for structure preserving (also termed physicsmore » compatible) discretizations of the Maxwell equations in first order form. The intent of the preconditioner is to enable the efficient solution of multiple-time-scale Maxwell type systems. An additional benefit of the developed preconditioner is that it requires only a traditional multigrid method for its subsolves and compares well against alternative approaches that rely on specialized edge-based multigrid routines that may not be readily available. Lastly, results demonstrate parallel scalability at large electromagnetic wave CFL numbers on a variety of test problems.« less

  8. Scalable Preconditioners for Structure Preserving Discretizations of Maxwell Equations in First Order Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Edward Geoffrey; Shadid, John N.; Cyr, Eric C.

    Here, we report multiple physical time-scales can arise in electromagnetic simulations when dissipative effects are introduced through boundary conditions, when currents follow external time-scales, and when material parameters vary spatially. In such scenarios, the time-scales of interest may be much slower than the fastest time-scales supported by the Maxwell equations, therefore making implicit time integration an efficient approach. The use of implicit temporal discretizations results in linear systems in which fast time-scales, which severely constrain the stability of an explicit method, can manifest as so-called stiff modes. This study proposes a new block preconditioner for structure preserving (also termed physicsmore » compatible) discretizations of the Maxwell equations in first order form. The intent of the preconditioner is to enable the efficient solution of multiple-time-scale Maxwell type systems. An additional benefit of the developed preconditioner is that it requires only a traditional multigrid method for its subsolves and compares well against alternative approaches that rely on specialized edge-based multigrid routines that may not be readily available. Lastly, results demonstrate parallel scalability at large electromagnetic wave CFL numbers on a variety of test problems.« less

  9. Kinematic assumptions and their consequences on the structure of field equations in continuum dislocation theory

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2016-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Therefore, the dislocation tensor is introduced as an additional thermodynamic state variable which reflects tensorial properties of dislocation ensembles. Moreover, the CDT captures both the strain energy from the macroscopic deformation of the crystal and the elastic energy of the dislocation network, as well as the dissipation of energy due to dislocation motion. The present contribution deals with the geometrically linear CDT. More precise, the focus is on the role of dislocation kinematics for single and multi-slip and its consequences on the field equations. Thereby, the number of active slip systems plays a crucial role since it restricts the degrees of freedom of plastic deformation. Special attention is put on the definition of proper, well-defined invariants of the dislocation tensor in order to avoid any spurious dependence of the resulting field equations on the coordinate system. It is shown how a slip system based approach can be in accordance with the tensor nature of the involved quantities. At first, only dislocation glide in one active slip system of the crystal is allowed. Then, the special case of two orthogonal (interacting) slip systems is considered and the governing field equations are presented. In addition, the structure and symmetry of the backstress tensor is investigated from the viewpoint of thermodynamical consistency. The results will again be used in order to facilitate the set of field equations and to prepare for a robust numerical implementation.

  10. Modeling Latent Growth Curves With Incomplete Data Using Different Types of Structural Equation Modeling and Multilevel Software

    ERIC Educational Resources Information Center

    Ferrer, Emilio; Hamagami, Fumiaki; McArdle, John J.

    2004-01-01

    This article offers different examples of how to fit latent growth curve (LGC) models to longitudinal data using a variety of different software programs (i.e., LISREL, Mx, Mplus, AMOS, SAS). The article shows how the same model can be fitted using both structural equation modeling and multilevel software, with nearly identical results, even in…

  11. Do Test Design and Uses Influence Test Preparation? Testing a Model of Washback with Structural Equation Modeling

    ERIC Educational Resources Information Center

    Xie, Qin; Andrews, Stephen

    2013-01-01

    This study introduces Expectancy-value motivation theory to explain the paths of influences from perceptions of test design and uses to test preparation as a special case of washback on learning. Based on this theory, two conceptual models were proposed and tested via Structural Equation Modeling. Data collection involved over 870 test takers of…

  12. Women’s cognitive and affective reactions to breast cancer survivor stories: A structural equation analysis

    PubMed Central

    McQueen, Amy; Kreuter, Matthew W.

    2010-01-01

    OBJECTIVE Compare the immediate affective and cognitive reactions to cancer survivor stories about mammography and breast cancer vs. a didactic, informational approach. METHODS Participants (N=489) were African American women age 40 years and older (Mean = 61). Most had ≤ high school education (67%), annual household income ≤ $20,000 (77%), and a prior mammogram (89%). Participants completed surveys before and after watching the narrative or informational video. We used structural equation modeling to examine the large number of inter-related latent constructs. RESULTS Women who watched the narrative video experienced more positive and negative emotions, found it easier to understand the video, had more positive evaluations of the video, reported stronger identification with the message source (i.e., perceived similarity, trust, liking), and were more engaged with the video. CONCLUSIONS Narratives elicited immediate reactions consistent with theorized pathways of how communication affects behavior. Future studies should examine whether and how these immediate outcomes act as mediators of the longer-term effects of narratives on affect, cognitions, and behavior. PRACTICE IMPLICATIONS Stories of other women’s experiences may be more powerful than a didactic presentation when encouraging African American women to get a mammogram. PMID:20850258

  13. Student-Teacher Racial Match and Its Association with Black Student Achievement: An Exploration Using Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Yarnell, Lisa M.; Bohrnstedt, George W.

    2018-01-01

    This study examines student-teacher "racial match" for its association with Black student achievement. Multilevel structural equation modeling was used to analyze 2013 National Assessment for Educational Progress (NAEP) Grade 4 Reading Assessment data to examine interactions of teacher race and student race in their associations with…

  14. A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking.

    PubMed

    Martinez, Sydney A; Beebe, Laura A; Thompson, David M; Wagener, Theodore L; Terrell, Deirdra R; Campbell, Janis E

    2018-01-01

    The inverse association between socioeconomic status and smoking is well established, yet the mechanisms that drive this relationship are unclear. We developed and tested four theoretical models of the pathways that link socioeconomic status to current smoking prevalence using a structural equation modeling (SEM) approach. Using data from the 2013 National Health Interview Survey, we selected four indicator variables (poverty ratio, personal earnings, educational attainment, and employment status) that we hypothesize underlie a latent variable, socioeconomic status. We measured direct, indirect, and total effects of socioeconomic status on smoking on four pathways through four latent variables representing social cohesion, financial strain, sleep disturbance, and psychological distress. Results of the model indicated that the probability of being a smoker decreased by 26% of a standard deviation for every one standard deviation increase in socioeconomic status. The direct effects of socioeconomic status on smoking accounted for the majority of the total effects, but the overall model also included significant indirect effects. Of the four mediators, sleep disturbance and psychological distress had the largest total effects on current smoking. We explored the use of structural equation modeling in epidemiology to quantify effects of socioeconomic status on smoking through four social and psychological factors to identify potential targets for interventions. A better understanding of the complex relationship between socioeconomic status and smoking is critical as we continue to reduce the burden of tobacco and eliminate health disparities related to smoking.

  15. A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking

    PubMed Central

    Beebe, Laura A.; Thompson, David M.; Wagener, Theodore L.; Terrell, Deirdra R.; Campbell, Janis E.

    2018-01-01

    The inverse association between socioeconomic status and smoking is well established, yet the mechanisms that drive this relationship are unclear. We developed and tested four theoretical models of the pathways that link socioeconomic status to current smoking prevalence using a structural equation modeling (SEM) approach. Using data from the 2013 National Health Interview Survey, we selected four indicator variables (poverty ratio, personal earnings, educational attainment, and employment status) that we hypothesize underlie a latent variable, socioeconomic status. We measured direct, indirect, and total effects of socioeconomic status on smoking on four pathways through four latent variables representing social cohesion, financial strain, sleep disturbance, and psychological distress. Results of the model indicated that the probability of being a smoker decreased by 26% of a standard deviation for every one standard deviation increase in socioeconomic status. The direct effects of socioeconomic status on smoking accounted for the majority of the total effects, but the overall model also included significant indirect effects. Of the four mediators, sleep disturbance and psychological distress had the largest total effects on current smoking. We explored the use of structural equation modeling in epidemiology to quantify effects of socioeconomic status on smoking through four social and psychological factors to identify potential targets for interventions. A better understanding of the complex relationship between socioeconomic status and smoking is critical as we continue to reduce the burden of tobacco and eliminate health disparities related to smoking. PMID:29408939

  16. [Maternal depressive symptoms and anxiety and interference in the mother/child relationship based on a prenatal cohort: an approach with structural equations modeling].

    PubMed

    Morais, Adriana Oliveira Dias de Sousa; Simões, Vanda Maria Ferreira; Rodrigues, Lívia Dos Santos; Batista, Rosângela Fernandes Lucena; Lamy, Zeni Carvalho; Carvalho, Carolina Abreu de; Silva, Antônio Augusto Moura da; Ribeiro, Marizélia Rodrigues Costa

    2017-07-13

    This study aimed to investigate the association between maternal depressive symptoms and anxiety and interference in the mother/child relationship, using structural equations modeling. Data were used from a prospective cohort study initiated during the prenatal period with 1,140 mothers in São Luís, Maranhão State, Brazil. Data were collected during prenatal care and when the children reached two years of age. Interference in the mother/child relationship was measured with the Postpartum Bonding Questionnaire - PBQ (N = 1,140). In the initial theoretical model, socioeconomic status determined the maternal demographic, psychosocial, and social support factors, which determined the outcome, i.e., the mother/child relationship. Adjustments were performed by structural equations modeling, using Mplus 7.0. The final model showed good fit (RMSEA = 0.047; CFI = 0.984; TLI = 0.981). Depressive symptoms in pregnancy and the postpartum were associated with higher PBQ scores, indicating interference in the mother/child relationship. The greatest effect was from depressive symptoms in pregnancy. Other factors associated with higher PBQ scores were lower social support, unfavorable socioeconomic status, and living without a partner, by indirect association. Anxiety symptoms and maternal age were not associated with the mother/child relationship. The results suggest that identifying and treating depression in pregnancy and postpartum can improve mother/child bonding in childhood.

  17. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation

    NASA Astrophysics Data System (ADS)

    Tan, Wei; Dai, Houping; Dai, Zhengde; Zhong, Wenyong

    2017-11-01

    A periodic breather-wave solution is obtained using homoclinic test approach and Hirota's bilinear method with a small perturbation parameter u0 for the (2+1)-dimensional generalized Kadomtsev-Petviashvili equation. Based on the periodic breather-wave, a lump solution is emerged by limit behaviour. Finally, three different forms of the space-time structure of the lump solution are investigated and discussed using the extreme value theory.

  18. Scale-dependent behavior of scale equations.

    PubMed

    Kim, Pilwon

    2009-09-01

    We propose a new mathematical framework to formulate scale structures of general systems. Stack equations characterize a system in terms of accumulative scales. Their behavior at each scale level is determined independently without referring to other levels. Most standard geometries in mathematics can be reformulated in such stack equations. By involving interaction between scales, we generalize stack equations into scale equations. Scale equations are capable to accommodate various behaviors at different scale levels into one integrated solution. On contrary to standard geometries, such solutions often reveal eccentric scale-dependent figures, providing a clue to understand multiscale nature of the real world. Especially, it is suggested that the Gaussian noise stems from nonlinear scale interactions.

  19. Effect of practical training on the learning motivation profile of Japanese pharmacy students using structural equation modeling

    PubMed Central

    2017-01-01

    Purpose To establish a model of Japanese pharmacy students’ learning motivation profile and investigate the effects of pharmaceutical practical training programs on their learning motivation. Methods The Science Motivation Questionnaire II was administered to pharmacy students in their 4th (before practical training), 5th (before practical training at clinical sites), and 6th (after all practical training) years of study at Josai International University in April, 2016. Factor analysis and multiple-group structural equation modeling were conducted for data analysis. Results A total of 165 students participated. The learning motivation profile was modeled with 4 factors (intrinsic, career, self-determination, and grade motivation), and the most effective learning motivation was grade motivation. In the multiple-group analysis, the fit of the model with the data was acceptable, and the estimated mean value of the factor of ‘self-determination’ in the learning motivation profile increased after the practical training programs (P= 0.048, Cohen’s d= 0.43). Conclusion Practical training programs in a 6-year course were effective for increasing learning motivation, based on ‘self-determination’ among Japanese pharmacy students. The results suggest that practical training programs are meaningful not only for providing clinical experience but also for raising learning motivation. PMID:28167812

  20. Great moments in kinetic theory: 150 years of Maxwell’s (other) equations

    NASA Astrophysics Data System (ADS)

    Robson, Robert E.; Mehrling, Timon J.; Osterhoff, Jens

    2017-11-01

    In 1867, just two years after laying the foundations of electromagnetism, J. Clerk Maxwell presented a fundamental paper on kinetic gas theory, in which he described the evolution of the gas in terms of certain ‘moments’ of its velocity distribution function. This inspired Ludwig Boltzmann to formulate his famous kinetic equation, from which followed the H-theorem and the connection with entropy. On the occasion of the 150th anniversary of publication of Maxwell's paper, we review the Maxwell-Boltzmann formalism and discuss how its generality and adaptability enable it to play a key role in describing the behaviour of a variety of systems of current interest, in both gaseous and condensed matter, and in modern-day physics and technologies which Maxwell and Boltzmann could not possibly have foreseen. In particular, we illustrate the relevance and applicability of Maxwell's formalism to the dynamic field of plasma-wakefield acceleration.

  1. [A Structural Equation Model of Pressure Ulcer Prevention Action in Clinical Nurses].

    PubMed

    Lee, Sook Ja; Park, Ok Kyoung; Park, Mi Yeon

    2016-08-01

    The purpose of this study was to construct and test a structural equation model for pressure ulcer prevention action by clinical nurses. The Health Belief Model and the Theory of Planned Behavior were used as the basis for the study. A structured questionnaire was completed by 251 clinical nurses to analyze the relationships between concepts of perceived benefits, perceived barriers, attitude, subjective norm, perceived control, intention to perform action and behavior. SPSS 22.0 and AMOS 22.0 programs were used to analyze the efficiency of the hypothesized model and calculate the direct and indirect effects of factors affecting pressure ulcer prevention action among clinical nurses. The model fitness statistics of the hypothetical model fitted to the recommended levels. Attitude, subjective norm and perceived control on pressure ulcer prevention action explained 64.2% for intention to perform prevention action. The major findings of this study indicate that it is essential to recognize improvement in positive attitude for pressure ulcer prevention action and a need for systematic education programs to increase perceived control for prevention action.

  2. Family Environment and Childhood Obesity: A New Framework with Structural Equation Modeling

    PubMed Central

    Huang, Hui; Wan Mohamed Radzi, Che Wan Jasimah bt; Salarzadeh Jenatabadi, Hashem

    2017-01-01

    The main purpose of the current article is to introduce a framework of the complexity of childhood obesity based on the family environment. A conceptual model that quantifies the relationships and interactions among parental socioeconomic status, family food security level, child’s food intake and certain aspects of parental feeding behaviour is presented using the structural equation modeling (SEM) concept. Structural models are analysed in terms of the direct and indirect connections among latent and measurement variables that lead to the child weight indicator. To illustrate the accuracy, fit, reliability and validity of the introduced framework, real data collected from 630 families from Urumqi (Xinjiang, China) were considered. The framework includes two categories of data comprising the normal body mass index (BMI) range and obesity data. The comparison analysis between two models provides some evidence that in obesity modeling, obesity data must be extracted from the dataset and analysis must be done separately from the normal BMI range. This study may be helpful for researchers interested in childhood obesity modeling based on family environment. PMID:28208833

  3. Family Environment and Childhood Obesity: A New Framework with Structural Equation Modeling.

    PubMed

    Huang, Hui; Wan Mohamed Radzi, Che Wan Jasimah Bt; Salarzadeh Jenatabadi, Hashem

    2017-02-13

    The main purpose of the current article is to introduce a framework of the complexity of childhood obesity based on the family environment. A conceptual model that quantifies the relationships and interactions among parental socioeconomic status, family food security level, child's food intake and certain aspects of parental feeding behaviour is presented using the structural equation modeling (SEM) concept. Structural models are analysed in terms of the direct and indirect connections among latent and measurement variables that lead to the child weight indicator. To illustrate the accuracy, fit, reliability and validity of the introduced framework, real data collected from 630 families from Urumqi (Xinjiang, China) were considered. The framework includes two categories of data comprising the normal body mass index (BMI) range and obesity data. The comparison analysis between two models provides some evidence that in obesity modeling, obesity data must be extracted from the dataset and analysis must be done separately from the normal BMI range. This study may be helpful for researchers interested in childhood obesity modeling based on family environment.

  4. Space station rotational equations of motion

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Carroll, S. N.

    1985-01-01

    Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.

  5. A structural equation modeling analysis of students' understanding in basic mathematics

    NASA Astrophysics Data System (ADS)

    Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus

    2017-11-01

    This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.

  6. Using structural equation modeling to investigate relationships among ecological variables

    USGS Publications Warehouse

    Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.

    2000-01-01

    Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0

  7. Regression Levels of Selected Affective Factors on Science Achievement: A Structural Equation Model with TIMSS 2011 Data

    ERIC Educational Resources Information Center

    Akilli, Mustafa

    2015-01-01

    The aim of this study is to demonstrate the science success regression levels of chosen emotional features of 8th grade students using Structural Equation Model. The study was conducted by the analysis of students' questionnaires and science success in TIMSS 2011 data using SEM. Initially, the factors that are thought to have an effect on science…

  8. Assessment of the effect of visual impairment on mortality through multiple health pathways: structural equation modeling.

    PubMed

    Christ, Sharon L; Lee, David J; Lam, Byron L; Zheng, D Diane; Arheart, Kristopher L

    2008-08-01

    To estimate the direct effects of self-reported visual impairment (VI) on health, disability, and mortality and to estimate the indirect effects of VI on mortality through health and disability mediators. The National Health Interview Survey (NHIS) is a population-based annual survey designed to be representative of the U.S. civilian noninstitutionalized population. The National Death Index of 135,581 NHIS adult participants, 18 years of age and older, from 1986 to 1996 provided the mortality linkage through 2002. A generalized linear structural equation model (GSEM) with latent variable was used to estimate the results of a system of equations with various outcomes. Standard errors and test statistics were corrected for weighting, clustering, and stratification. VI affects mortality, when direct adjustment was made for the covariates. Severe VI increases the hazard rate by a factor of 1.28 (95% CI: 1.07-1.53) compared with no VI, and some VI increases the hazard by a factor of 1.13 (95% CI: 1.07-1.20). VI also affects mortality indirectly through self-rated health and disability. The total effects (direct effects plus mediated effects) on the hazard of mortality of severe VI and some VI relative to no VI are hazard ratio (HR) 1.54 (95% CI: 1.28-1.86) and HR 1.23 (95% CI: 1.16-1.31), respectively. In addition to the direct link between VI and mortality, the effects of VI on general health and disability contribute to an increased risk of death. Ignoring the latter may lead to an underestimation of the substantive impact of VI on mortality.

  9. A Note on the Use of Missing Auxiliary Variables in Full Information Maximum Likelihood-Based Structural Equation Models

    ERIC Educational Resources Information Center

    Enders, Craig K.

    2008-01-01

    Recent missing data studies have argued in favor of an "inclusive analytic strategy" that incorporates auxiliary variables into the estimation routine, and Graham (2003) outlined methods for incorporating auxiliary variables into structural equation analyses. In practice, the auxiliary variables often have missing values, so it is reasonable to…

  10. Socioeconomic Status and Asian American and Pacific Islander Students' Transition to College: A Structural Equation Modeling Analysis

    ERIC Educational Resources Information Center

    Museus, Samuel D.; Vue, Rican

    2013-01-01

    The purpose of this study is to examine socioeconomic differences in the interpersonal factors that influence college access among Asian Americans and Pacific Islanders (AAPIs). Data on 1,460 AAPIs from the Education Longitudinal Study (ELS: 02/06) were analyzed using structural equation modeling techniques. Findings suggest that parental…

  11. The Bach equations in spin-coefficient form

    NASA Astrophysics Data System (ADS)

    Forbes, Hamish

    2018-06-01

    Conformal gravity theories are defined by field equations that determine only the conformal structure of the spacetime manifold. The Bach equations represent an early example of such a theory, we present them here in component form in terms of spin- and boost-weighted spin-coefficients using the compacted spin-coefficient formalism. These equations can be used as an efficient alternative to the standard tensor form. As a simple application we solve the Bach equations for pp-wave and static spherically symmetric spacetimes.

  12. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    USGS Publications Warehouse

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  13. Solving the Helmholtz equation in conformal mapped ARROW structures using homotopy perturbation method.

    PubMed

    Reck, Kasper; Thomsen, Erik V; Hansen, Ole

    2011-01-31

    The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method. The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution.

  14. A structural equation model of perceived and internalized stigma, depression, and suicidal status among people living with HIV/AIDS.

    PubMed

    Zeng, Chengbo; Li, Linghua; Hong, Yan Alicia; Zhang, Hanxi; Babbitt, Andrew Walker; Liu, Cong; Li, Lixia; Qiao, Jiaying; Guo, Yan; Cai, Weiping

    2018-01-15

    Previous studies have shown positive association between HIV-related stigma and depression, suicidal ideation, and suicidal attempt among people living with HIV/AIDS (PLWH). But few studies have examined the mechanisms among HIV-related stigma, depression, and suicidal status (suicidal ideation and/or suicidal attempt) in PLWH. The current study examined the relationships among perceived and internalized stigma (PIS), depression, and suicidal status among PLWH in Guangzhou, China using structural equation modeling. Cross-sectional study by convenience sampling was conducted and 411 PLWH were recruited from the Number Eight People's Hospital from March to June, 2013 in Guangzhou, China. Participants were interviewed on their PIS, depressive symptoms, suicidal status, and socio-demographic characteristics. PLWH who had had suicidal ideation and suicidal attempts since HIV diagnosis were considered to be suicidal. Structural equation model was performed to examine the direct and indirect associations of PIS and suicidal status. Indicators to evaluate goodness of fit of the structural equation model included Chi-square Statistic, Comparative Fit Index (CFI), Root Mean Square Error of Approximation (RMSEA), Standardized Root Mean Square Residual (SRMR), and Weighted Root Mean Square Residual (WRMR). More than one-third (38.4%) of the PLWH had depressive symptoms and 32.4% reported suicidal ideation and/or attempt since HIV diagnosis. The global model showed good model fit (Chi-square value = 34.42, CFI = 0.98, RMSEA = 0.03, WRMR = 0.73). Structural equation model revealed that direct pathway of PIS on suicidal status was significant (standardized pathway coefficient = 0.21), and indirect pathway of PIS on suicidal status via depression was also significant (standardized pathway coefficient = 0.24). There was a partial mediating effect of depression in the association between PIS and suicidal status. Our findings suggest that PIS is associated

  15. Structural equation model analysis for the evaluation of overall driving performance: A driving simulator study focusing on driver distraction.

    PubMed

    Papantoniou, Panagiotis

    2018-04-03

    The present research relies on 2 main objectives. The first is to investigate whether latent model analysis through a structural equation model can be implemented on driving simulator data in order to define an unobserved driving performance variable. Subsequently, the second objective is to investigate and quantify the effect of several risk factors including distraction sources, driver characteristics, and road and traffic environment on the overall driving performance and not in independent driving performance measures. For the scope of the present research, 95 participants from all age groups were asked to drive under different types of distraction (conversation with passenger, cell phone use) in urban and rural road environments with low and high traffic volume in a driving simulator experiment. Then, in the framework of the statistical analysis, a correlation table is presented investigating any of a broad class of statistical relationships between driving simulator measures and a structural equation model is developed in which overall driving performance is estimated as a latent variable based on several individual driving simulator measures. Results confirm the suitability of the structural equation model and indicate that the selection of the specific performance measures that define overall performance should be guided by a rule of representativeness between the selected variables. Moreover, results indicate that conversation with the passenger was not found to have a statistically significant effect, indicating that drivers do not change their performance while conversing with a passenger compared to undistracted driving. On the other hand, results support the hypothesis that cell phone use has a negative effect on driving performance. Furthermore, regarding driver characteristics, age, gender, and experience all have a significant effect on driving performance, indicating that driver-related characteristics play the most crucial role in overall driving

  16. Social Learning Theory, Gender, and Intimate Partner Violent Victimization: A Structural Equations Approach.

    PubMed

    Powers, Ráchael A; Cochran, John K; Maskaly, Jon; Sellers, Christine S

    2017-05-01

    The purpose of this study is to examine the applicability of Akers's Social Learning Theory (SLT) to explain intimate partner violence (IPV) victimization. In doing so, we draw on the Intergenerational Transmission of Violence Theory (IGT) to extend the scope of SLT to the explanation of victimization and for a consideration of uniquely gendered pathways in its causal structure. Using a structural equation modeling approach with self-report data from a sample of college students, the present study tests the extent to which SLT can effectively explain and predict IPV victimization and the degree, if any, to which the social learning model is gender invariant. Although our findings are largely supportive of SLT and, thus, affirm its extension to victimization as well as perpetration, the findings are also somewhat mixed. More significantly, in line with IGT literature, we find that the social learning process is not gender invariant. The implications of the latter are discussed.

  17. Applying Self-Determination Theory to Adolescent Sexual-Risk Behavior and Knowledge: A Structural Equation Model [Formula: see text].

    PubMed

    Riley, Bettina H; McDermott, Ryon C

    2018-05-01

    National health priorities identify adolescent sexual-risk behavior outcomes as research and intervention targets for mental health. Reduce sexual-risk behavioral outcomes by applying self-determination theory to focus on decision-making autonomy. This study examined late adolescents' recollections of parental autonomy support/sexual-risk communication experiences and autonomy motivation as predictors of sexual-risk behaviors/knowledge. A convenience sample ( N = 249) of 19- and 20-year-old university students completed self-report questionnaires. Structural equation modeling with latent variables examined direct/indirect effects in the hypothesized model. Parents contributed uniquely through sexual-risk communication and/or autonomy support to late adolescents' autonomous motivation. The final model evidenced acceptable fit and explained 12% of the variation in adolescent sexual-risk behavior, 7% in adolescent autonomous motivation, and 2% in adolescent sexual-risk knowledge. Psychiatric mental health nurses should conduct further research and design interventions promoting parent autonomy support and adolescent autonomous motivation to reduce sexual risk-behavior and increase sexual-risk knowledge.

  18. Technique for handling wave propagation specific effects in biological tissue: mapping of the photon transport equation to Maxwell's equations.

    PubMed

    Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S

    2008-10-27

    A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.

  19. Bypassing the Kohn-Sham equations with machine learning.

    PubMed

    Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert

    2017-10-11

    Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

  20. Applying Exploratory Structural Equation Modeling to Examine the Student-Teacher Relationship Scale in a Representative Greek Sample

    PubMed Central

    Tsigilis, Nikolaos; Gregoriadis, Athanasios; Grammatikopoulos, Vasilis; Zachopoulou, Evridiki

    2018-01-01

    Teacher-child relationships in early childhood are a fundamental prerequisite for children's social, emotional, and academic development. The Student-Teacher Relationship Scale (STRS) is one of the most widely accepted and used instruments that evaluate the quality of teacher-child relationships. STRS is a 28-item questionnaire that assess three relational dimensions, Closeness, Conflict, and Dependency. The relevant literature has shown a pattern regarding the difficulty to support the STRS factor structure with CFA, while it is well-documented with EFA. Recently, a new statistical technique was proposed to combine the best of the CFA and EFA namely, the Exploratory Structural Equation Modeling (ESEM). The purpose of this study was (a) to examine the factor structure of the STRS in a Greek national sample. Toward this end, the ESEM framework was applied in order to overcome the limitations of EFA and CFA, (b) to confirm previous findings about the cultural influence in teacher-child relationship patterns, and (c) to examine the invariance of STRS across gender and age. Early educators from a representative Greek sample size of 535 child care and kindergarten centers completed the STRS for 4,158 children. CFA as well as ESEM procedures were implemented. Results showed that ESEM provided better fit to the data than CFA in both groups, supporting the argument that CFA is an overly restrictive approach in comparison to ESEM for the study of STRS. All primary loadings were statistically significant and were associated with their respective latent factors. Contrary to the existing literature conducted in USA and northern Europe, the association between Closeness and Dependency yielded a positive correlation. This finding is in line with previous studies conducted in Greece and confirm the existence of cultural differences in teacher-child relationships. In addition, findings supported the configural, metric, scalar, and variance/covariance equivalence of the STRS

  1. Applying Exploratory Structural Equation Modeling to Examine the Student-Teacher Relationship Scale in a Representative Greek Sample.

    PubMed

    Tsigilis, Nikolaos; Gregoriadis, Athanasios; Grammatikopoulos, Vasilis; Zachopoulou, Evridiki

    2018-01-01

    Teacher-child relationships in early childhood are a fundamental prerequisite for children's social, emotional, and academic development. The Student-Teacher Relationship Scale (STRS) is one of the most widely accepted and used instruments that evaluate the quality of teacher-child relationships. STRS is a 28-item questionnaire that assess three relational dimensions, Closeness, Conflict, and Dependency. The relevant literature has shown a pattern regarding the difficulty to support the STRS factor structure with CFA, while it is well-documented with EFA. Recently, a new statistical technique was proposed to combine the best of the CFA and EFA namely, the Exploratory Structural Equation Modeling (ESEM). The purpose of this study was (a) to examine the factor structure of the STRS in a Greek national sample. Toward this end, the ESEM framework was applied in order to overcome the limitations of EFA and CFA, (b) to confirm previous findings about the cultural influence in teacher-child relationship patterns, and (c) to examine the invariance of STRS across gender and age. Early educators from a representative Greek sample size of 535 child care and kindergarten centers completed the STRS for 4,158 children. CFA as well as ESEM procedures were implemented. Results showed that ESEM provided better fit to the data than CFA in both groups, supporting the argument that CFA is an overly restrictive approach in comparison to ESEM for the study of STRS. All primary loadings were statistically significant and were associated with their respective latent factors. Contrary to the existing literature conducted in USA and northern Europe, the association between Closeness and Dependency yielded a positive correlation. This finding is in line with previous studies conducted in Greece and confirm the existence of cultural differences in teacher-child relationships. In addition, findings supported the configural, metric, scalar, and variance/covariance equivalence of the STRS

  2. Using structural equation modeling for network meta-analysis.

    PubMed

    Tu, Yu-Kang; Wu, Yun-Chun

    2017-07-14

    Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison

  3. Students' Equation Understanding and Solving in Iran

    ERIC Educational Resources Information Center

    Barahmand, Ali; Shahvarani, Ahmad

    2014-01-01

    The purpose of the present article is to investigate how 15-year-old Iranian students interpret the concept of equation, its solution, and studying the relation between the students' equation understanding and solving. Data from two equation-solving exercises are reported. Data analysis shows that there is a significant relationship between…

  4. On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Curtis, Christopher W.

    2011-05-01

    The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.

  5. Next Steps in Bayesian Structural Equation Models: Comments on, Variations of, and Extensions to Muthen and Asparouhov (2012)

    ERIC Educational Resources Information Center

    Rindskopf, David

    2012-01-01

    Muthen and Asparouhov (2012) made a strong case for the advantages of Bayesian methodology in factor analysis and structural equation models. I show additional extensions and adaptations of their methods and show how non-Bayesians can take advantage of many (though not all) of these advantages by using interval restrictions on parameters. By…

  6. Nonlinear Gyro-Landau-Fluid Equations

    NASA Astrophysics Data System (ADS)

    Raskolnikov, I.; Mattor, Nathan; Parker, Scott E.

    1996-11-01

    We present fluid equations which describe the effects of both linear and nonlinear Landau damping (wave-particle-wave effects). These are derived using a recently developed analytical method similar to renormalization group theory. (Scott E. Parker and Daniele Carati, Phys. Rev. Lett. 75), 441 (1995). In this technique, the phase space structure inherent in Landau damping is treated analytically by building a ``renormalized collisionality'' onto a bare collisionality (which may be taken as vanishingly small). Here we apply this technique to the nonlinear ion gyrokinetic equation in slab geometry, obtaining nonlinear fluid equations for density, parallel momentum and heat. Wave-particle resonances are described by two functions appearing in the heat equation: a renormalized ``collisionality'' and a renormalized nonlinear coupling coeffient. It will be shown that these new equations may correct a deficiency in existing gyrofluid equations, (G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990). which can severely underestimate the strength of nonlinear interaction in regimes where linear resonance is strong. (N. Mattor, Phys. Fluids B 4,) 3952 (1992).

  7. From differential to difference equations for first order ODEs

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    When constructing an algorithm for the numerical integration of a differential equation, one should first convert the known ordinary differential equation (ODE) into an ordinary difference equation. Given this difference equation, one can develop an appropriate numerical algorithm. This technical note describes the derivation of two such ordinary difference equations applicable to a first order ODE. The implicit ordinary difference equation has the same asymptotic expansion as the ODE itself, whereas the explicit ordinary difference equation has an asymptotic that is similar in structure but different in value when compared with that of the ODE.

  8. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate.

    PubMed

    Matsushita, Kunihiro; Mahmoodi, Bakhtawar K; Woodward, Mark; Emberson, Jonathan R; Jafar, Tazeen H; Jee, Sun Ha; Polkinghorne, Kevan R; Shankar, Anoop; Smith, David H; Tonelli, Marcello; Warnock, David G; Wen, Chi-Pang; Coresh, Josef; Gansevoort, Ron T; Hemmelgarn, Brenda R; Levey, Andrew S

    2012-05-09

    The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation more accurately estimates glomerular filtration rate (GFR) than the Modification of Diet in Renal Disease (MDRD) Study equation using the same variables, especially at higher GFR, but definitive evidence of its risk implications in diverse settings is lacking. To evaluate risk implications of estimated GFR using the CKD-EPI equation compared with the MDRD Study equation in populations with a broad range of demographic and clinical characteristics. A meta-analysis of data from 1.1 million adults (aged ≥ 18 years) from 25 general population cohorts, 7 high-risk cohorts (of vascular disease), and 13 CKD cohorts. Data transfer and analyses were conducted between March 2011 and March 2012. All-cause mortality (84,482 deaths from 40 cohorts), cardiovascular mortality (22,176 events from 28 cohorts), and end-stage renal disease (ESRD) (7644 events from 21 cohorts) during 9.4 million person-years of follow-up; the median of mean follow-up time across cohorts was 7.4 years (interquartile range, 4.2-10.5 years). Estimated GFR was classified into 6 categories (≥90, 60-89, 45-59, 30-44, 15-29, and <15 mL/min/1.73 m(2)) by both equations. Compared with the MDRD Study equation, 24.4% and 0.6% of participants from general population cohorts were reclassified to a higher and lower estimated GFR category, respectively, by the CKD-EPI equation, and the prevalence of CKD stages 3 to 5 (estimated GFR <60 mL/min/1.73 m(2)) was reduced from 8.7% to 6.3%. In estimated GFR of 45 to 59 mL/min/1.73 m(2) by the MDRD Study equation, 34.7% of participants were reclassified to estimated GFR of 60 to 89 mL/min/1.73 m(2) by the CKD-EPI equation and had lower incidence rates (per 1000 person-years) for the outcomes of interest (9.9 vs 34.5 for all-cause mortality, 2.7 vs 13.0 for cardiovascular mortality, and 0.5 vs 0.8 for ESRD) compared with those not reclassified. The corresponding adjusted hazard ratios were 0.80 (95

  9. Structural equation model of interactions between risk factors and work-related musculoskeletal complaints among Iranian hospital nurses.

    PubMed

    Mehralizadeh, Semira; Dehdashti, Alireza; Motalebi Kashani, Masoud

    2017-01-01

    Statistics indicate a high risk of developing work-related musculoskeletal disorders among hospital nurses. The challenge is to understand the associations between musculoskeletal symptoms and various individual and occupational risk factors. This study examined the direct and indirect interactions of various risk factors with musculoskeletal complaints in hospital nurses. In a cross-sectional design, Iranian hospital nurses from Semnan University of Medical Sciences participated in a questionnaire survey reporting their perceived perceptions of various work-related risk factors and musculoskeletal symptoms. We tested our proposed structural equation model to evaluate the relations between latent and observed concepts and the relative importance and strength of exogenous variables in explaining endogenous musculoskeletal complaints. Measurement model fits the data relatively acceptable. Our findings showed direct effects of psychological, role-related and work posture stressors on musculoskeletal complaints. Fatigue mediated the adverse indirect relations of psychological, role-related, work posture and individual factors with musculoskeletal complaints. Structural equation modeling may provide methodological opportunities in occupational health research with a potential to explain the complexity of interactions among risk factors. Prevention of work-related musculoskeletal disorders among nurses must account for physical and psychosocial conditions.

  10. Lax representations for matrix short pulse equations

    NASA Astrophysics Data System (ADS)

    Popowicz, Z.

    2017-10-01

    The Lax representation for different matrix generalizations of Short Pulse Equations (SPEs) is considered. The four-dimensional Lax representations of four-component Matsuno, Feng, and Dimakis-Müller-Hoissen-Matsuno equations are obtained. The four-component Feng system is defined by generalization of the two-dimensional Lax representation to the four-component case. This system reduces to the original Feng equation, to the two-component Matsuno equation, or to the Yao-Zang equation. The three-component version of the Feng equation is presented. The four-component version of the Matsuno equation with its Lax representation is given. This equation reduces the new two-component Feng system. The two-component Dimakis-Müller-Hoissen-Matsuno equations are generalized to the four-parameter family of the four-component SPE. The bi-Hamiltonian structure of this generalization, for special values of parameters, is defined. This four-component SPE in special cases reduces to the new two-component SPE.

  11. On Reductions of the Hirota-Miwa Equation

    NASA Astrophysics Data System (ADS)

    Hone, Andrew N. W.; Kouloukas, Theodoros E.; Ward, Chloe

    2017-07-01

    The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.

  12. Structural Equation Modeling of Group Differences in CES-D Ratings of Native Hawaiian and Non-Hawaiian High School Students.

    ERIC Educational Resources Information Center

    McArdle, John J.; Johnson, Ronald C.; Hishinuma, Earl S.; Miyamoto, Robin H.; Andrade, Naleen N.

    2001-01-01

    Analyzes differences in self-reported Center for Epidemiologic Studies Depression inventory results among ethnic Hawaiian and non-Hawaiian high school students, using different forms of latent variable structural equation models. Finds a high degree of invariance between students on depression. Discusses issues about common features and…

  13. An Immersed Boundary Method for Solving the Compressible Navier-Stokes Equations with Fluid Structure Interaction

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    An immersed boundary method for the compressible Navier-Stokes equation and the additional infrastructure that is needed to solve moving boundary problems and fully coupled fluid-structure interaction is described. All the methods described in this paper were implemented in NASA's LAVA solver framework. The underlying immersed boundary method is based on the locally stabilized immersed boundary method that was previously introduced by the authors. In the present paper this method is extended to account for all aspects that are involved for fluid structure interaction simulations, such as fast geometry queries and stencil computations, the treatment of freshly cleared cells, and the coupling of the computational fluid dynamics solver with a linear structural finite element method. The current approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems in 2D and 3D. As part of the validation procedure, results from the second AIAA aeroelastic prediction workshop are also presented. The current paper is regarded as a proof of concept study, while more advanced methods for fluid structure interaction are currently being investigated, such as geometric and material nonlinearities, and advanced coupling approaches.

  14. Construct validity of the Chinese version of the Self-care of Heart Failure Index determined using structural equation modeling.

    PubMed

    Kang, Xiaofeng; Dennison Himmelfarb, Cheryl R; Li, Zheng; Zhang, Jian; Lv, Rong; Guo, Jinyu

    2015-01-01

    The Self-care of Heart Failure Index (SCHFI) is an empirically tested instrument for measuring the self-care of patients with heart failure. The aim of this study was to develop a simplified Chinese version of the SCHFI and provide evidence for its construct validity. A total of 182 Chinese with heart failure were surveyed. A 2-step structural equation modeling procedure was applied to test construct validity. Factor analysis showed 3 factors explaining 43% of the variance. Structural equation model confirmed that self-care maintenance, self-care management, and self-care confidence are indeed indicators of self-care, and self-care confidence was a positive and equally strong predictor of self-care maintenance and self-care management. Moreover, self-care scores were correlated with the Partners in Health Scale, indicating satisfactory concurrent validity. The Chinese version of the SCHFI is a theory-based instrument for assessing self-care of Chinese patients with heart failure.

  15. Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Poola, Praveen Kumar; John, Renu

    2017-10-01

    We report the results of characterization of red blood cell (RBC) structure and its dynamics with nanometric sensitivity using transport of intensity equation microscopy (TIEM). Conventional transport of intensity technique requires three intensity images and hence is not suitable for studying real-time dynamics of live biological samples. However, assuming the sample to be homogeneous, phase retrieval using transport of intensity equation has been demonstrated with single defocused measurement with x-rays. We adopt this technique for quantitative phase light microscopy of homogenous cells like RBCs. The main merits of this technique are its simplicity, cost-effectiveness, and ease of implementation on a conventional microscope. The phase information can be easily merged with regular bright-field and fluorescence images to provide multidimensional (three-dimensional spatial and temporal) information without any extra complexity in the setup. The phase measurement from the TIEM has been characterized using polymeric microbeads and the noise stability of the system has been analyzed. We explore the structure and real-time dynamics of RBCs and the subdomain membrane fluctuations using this technique.

  16. Structural Equation Modeling: A Framework for Ocular and Other Medical Sciences Research

    PubMed Central

    Christ, Sharon L.; Lee, David J.; Lam, Byron L.; Diane, Zheng D.

    2017-01-01

    Structural equation modeling (SEM) is a modeling framework that encompasses many types of statistical models and can accommodate a variety of estimation and testing methods. SEM has been used primarily in social sciences but is increasingly used in epidemiology, public health, and the medical sciences. SEM provides many advantages for the analysis of survey and clinical data, including the ability to model latent constructs that may not be directly observable. Another major feature is simultaneous estimation of parameters in systems of equations that may include mediated relationships, correlated dependent variables, and in some instances feedback relationships. SEM allows for the specification of theoretically holistic models because multiple and varied relationships may be estimated together in the same model. SEM has recently expanded by adding generalized linear modeling capabilities that include the simultaneous estimation of parameters of different functional form for outcomes with different distributions in the same model. Therefore, mortality modeling and other relevant health outcomes may be evaluated. Random effects estimation using latent variables has been advanced in the SEM literature and software. In addition, SEM software has increased estimation options. Therefore, modern SEM is quite general and includes model types frequently used by health researchers, including generalized linear modeling, mixed effects linear modeling, and population average modeling. This article does not present any new information. It is meant as an introduction to SEM and its uses in ocular and other health research. PMID:24467557

  17. A Harmonic Solution for the Hyperbolic Heat Conduction Equation and Its Relationship to the Guyer-Krumhansl Equation

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K. V.

    2018-01-01

    A particular solution of the hyperbolic heat-conduction equation was constructed using the method of operators. The evolution of a harmonic solution is studied, which simulates the propagation of electric signals in long wire transmission lines. The structures of the solutions of the telegraph equation and of the Guyer-Krumhansl equation are compared. The influence of the phonon heat-transfer mechanism in the environment is considered from the point of view of heat conductivity. The fulfillment of the maximum principle for the obtained solutions is considered. The frequency dependences of heat conductivity in the telegraph equation and in an equation of the Guyer-Krumhansl type are studied and compared with each other. The influence of the Knudsen number on heat conductivity in the model of thin films is studied.

  18. The GUP and quantum Raychaudhuri equation

    NASA Astrophysics Data System (ADS)

    Vagenas, Elias C.; Alasfar, Lina; Alsaleh, Salwa M.; Ali, Ahmed Farag

    2018-06-01

    In this paper, we compare the quantum corrections to the Schwarzschild black hole temperature due to quadratic and linear-quadratic generalised uncertainty principle, with the corrections from the quantum Raychaudhuri equation. The reason for this comparison is to connect the deformation parameters β0 and α0 with η which is the parameter that characterises the quantum Raychaudhuri equation. The derived relation between the parameters appears to depend on the relative scale of the system (black hole), which could be read as a beta function equation for the quadratic deformation parameter β0. This study shows a correspondence between the two phenomenological approaches and indicates that quantum Raychaudhuri equation implies the existence of a crystal-like structure of spacetime.

  19. Structural Equation Modeling (SEM) for Satisfaction and Dissatisfaction Ratings; Multiple Group Invariance Analysis across Scales with Different Response Format

    ERIC Educational Resources Information Center

    Mazaheri, Mehrdad; Theuns, Peter

    2009-01-01

    The current study evaluates three hypothesized models on subjective well-being, comprising life domain ratings (LDR), overall satisfaction with life (OSWL), and overall dissatisfaction with life (ODWL), using structural equation modeling (SEM). A sample of 1,310 volunteering students, randomly assigned to six conditions, rated their overall life…

  20. Development of regression equations to revise estimates of historical streamflows for the St. Croix River at Stillwater, Minnesota (water years 1910-2011), and Prescott, Wisconsin (water years 1910-2007)

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Magdalene, Suzanne

    2015-01-01

    The new regression equations were used to calculate revised estimates of historical streamflows for Stillwater and Prescott starting in 1910 and ending when index-velocity streamgages were installed. Monthly, annual, 30-year, and period of record statistics were examined between previous and revised estimates of historical streamflows. The abilities of the new regression equations to estimate historical streamflows were evaluated by using percent differences to compare new estimates of historical daily streamflows to discrete streamflow measurements made at Stillwater and Prescott before the installation of index-velocity streamgages. Although less variability was observed between estimated and measured streamflows at Stillwater compared to Prescott, the percent difference data indicated that the new estimates closely approximated measured streamflows at both locations.

  1. Exploring the measurement structure of the Gambling Related Cognitions Scale (GRCS) in treatment-seekers: A Bayesian structural equation modelling approach.

    PubMed

    Smith, David; Woodman, Richard; Drummond, Aaron; Battersby, Malcolm

    2016-03-30

    Knowledge of a problem gambler's underlying gambling related cognitions plays an important role in treatment planning. The Gambling Related Cognitions Scale (GRCS) is therefore frequently used in clinical settings for screening and evaluation of treatment outcomes. However, GRCS validation studies have generated conflicting results regarding its latent structure using traditional confirmatory factor analyses (CFA). This may partly be due to the rigid constraints imposed on cross-factor loadings with traditional CFA. The aim of this investigation was to determine whether a Bayesian structural equation modelling (BSEM) approach to examination of the GRCS factor structure would better replicate substantive theory and also inform model re-specifications. Participants were 454 treatment-seekers at first presentation to a gambling treatment centre between January 2012 and December 2014. Model fit indices were well below acceptable standards for CFA. In contrast, the BSEM model which included small informative priors for the residual covariance matrix in addition to cross-loadings produced excellent model fit for the original hypothesised factor structure. The results also informed re-specification of the CFA model which provided more reasonable model fit. These conclusions have implications that should be useful to both clinicians and researchers evaluating measurement models relating to gambling related cognitions in treatment-seekers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Atmospheric chemical and thermal structure evolution after one Titanian year

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Bampasidis, G.; Vinatier, S.; Achterberg, R.; Lavvas, P.; Nixon, C.; Jennings, D.; Teanby, N.; Flasar, F. M.; Carlson, R.; Orton, G.; Romani, P.; Guandique, E. A.

    2012-09-01

    We analyze Cassini Composite Infrared Spectrometer (CIRS) data taken during the numerous Titan flybys from 2004-2010 and compare them to the 1980 Voyager 1 flyby values inferred from the re-analysis of the Infrared Radiometer Spectrometer (IRIS) spectra. Seven years after Cassini's Saturn orbit insertion, we look at the evolution of the chemical composition by combining these recordings and the intervening ground- and space- based observations, we have in hand almost a complete picture of the stratospheric evolution within a Titan year. The fulfillment of one Titanian year of observations provides us for the first time with the opportunity to evaluate the relative role of different physical processes in the long-term evolution of this complex environment. By comparing V1 (1980), ISO (1997) and Cassini (2010) we find that a reversal of composition near the equator from autumnal equinox to vernal equinox (1996 min -2009 max, half a year), as well as some differences in polar enhancement at the same era as Voyager.

  3. Social participation, social support, and body image in the first year of rehabilitation in burn survivors: A longitudinal, three-wave cross-lagged panel analysis using structural equation modeling.

    PubMed

    Ajoudani, Fardin; Jasemi, Madineh; Lotfi, Mojgan

    2018-05-15

    Psychosocial outcomes of burn survivors in the first year of rehabilitation are not well studied. Considering the interrelationships among psychosocial processes in burn survivors, we assessed three psychosocial variables (i.e., social support, social participation, and body image) simultaneously in a longitudinal study. This study aimed at identifying the developmental trajectory of the main study variables and also discovering the causal pathways between social support, body image, and social participation of burn survivors in the first year of rehabilitation. One hundred individuals were enrolled in the study. The analysis was based on three waves of data collected at the time of discharge, 6 months after discharge, and 12 months after discharge. We used MSPSS, SWAP, and the p-scale for measuring the variables social support, body image, and social participation, respectively. A repeated-measures analysis of variance (ANOVA) was performed to identify the major differences in the mean levels of the main study variables across the three evaluation times. A structural equation modeling (SEM) approach was implemented in four hypothesized cross-lagged models (M1, M2, M3, and M4) to evaluate the bidirectional relationships among the main variables. All hypothesized models were tested, and their goodness-of-fit indexes were compared to identify the best fitting model. All three main variables worsen during the first six months after burn and then do not return to their earlier level. The M4 (final model) chosen to represent the data showed the best goodness-of-fit indexes (χ 2 (9)=51.76, p<.01, RMSEA=0.060, IFI=0.97, and CFI=0.98) among all hypothesized models. The effect of social participation on body image, and vice versa, seems to be relatively constant and steady. Social support at the time of discharge predicted social participation at 12 months after burn, with the relationship mediated by body image at 6 months after burn. Our study findings suggest that

  4. A Simultaneous Equation Demand Model for Block Rates

    NASA Astrophysics Data System (ADS)

    Agthe, Donald E.; Billings, R. Bruce; Dobra, John L.; Raffiee, Kambiz

    1986-01-01

    This paper examines the problem of simultaneous-equations bias in estimation of the water demand function under an increasing block rate structure. The Hausman specification test is used to detect the presence of simultaneous-equations bias arising from correlation of the price measures with the regression error term in the results of a previously published study of water demand in Tucson, Arizona. An alternative simultaneous equation model is proposed for estimating the elasticity of demand in the presence of block rate pricing structures and availability of service charges. This model is used to reestimate the price and rate premium elasticities of demand in Tucson, Arizona for both the usual long-run static model and for a simple short-run demand model. The results from these simultaneous equation models are consistent with a priori expectations and are unbiased.

  5. Linking Structural Equation Modelling with Bayesian Network and Coastal Phytoplankton Dynamics in Bohai Bay

    NASA Astrophysics Data System (ADS)

    Chu, Jiangtao; Yang, Yue

    2018-06-01

    Bayesian networks (BN) have many advantages over other methods in ecological modelling and have become an increasingly popular modelling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modelling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, despite the Redfield ratio indicating that phosphorus should be the primary nutrient limiting factor, our results indicate that silicate plays the most important role in regulating phytoplankton dynamics in Bohai Bay.

  6. Examining the Relationship between Middle School Students' Critical Reading Skills, Science Literacy Skills and Attitudes: A Structural Equation Modeling

    ERIC Educational Resources Information Center

    Karademir, Ersin; Ulucinar, Ufuk

    2017-01-01

    The purpose of this study is to verify the causal relationship between middle school students' critical reading skills, science literacy skills and attitudes towards science literacy with research data according to the default model. Through the structural equation modeling, path analysis has been applied in the study which was designed in…

  7. Perceived Social Relationships and Science Learning Outcomes for Taiwanese Eighth Graders: Structural Equation Modeling with a Complex Sampling Consideration

    ERIC Educational Resources Information Center

    Jen, Tsung-Hau; Lee, Che-Di; Chien, Chin-Lung; Hsu, Ying-Shao; Chen, Kuan-Ming

    2013-01-01

    Based on the Trends in International Mathematics and Science Study 2007 study and a follow-up national survey, data for 3,901 Taiwanese grade 8 students were analyzed using structural equation modeling to confirm a social-relation-based affection-driven model (SRAM). SRAM hypothesized relationships among students' perceived social relationships in…

  8. Higuchi equation: derivation, applications, use and misuse.

    PubMed

    Siepmann, Juergen; Peppas, Nicholas A

    2011-10-10

    Fifty years ago, the legendary Professor Takeru Higuchi published the derivation of an equation that allowed for the quantification of drug release from thin ointment films, containing finely dispersed drug into a perfect sink. This became the famous Higuchi equation whose fiftieth anniversary we celebrate this year. Despite the complexity of the involved mass transport processes, Higuchi derived a very simple equation, which is easy to use. Based on a pseudo-steady-state approach, a direct proportionality between the cumulative amount of drug released and the square root of time can be demonstrated. In contrast to various other "square root of time" release kinetics, the constant of proportionality in the classical Higuchi equation has a specific, physically realistic meaning. The major benefits of this equation include the possibility to: (i) facilitate device optimization, and (ii) to better understand the underlying drug release mechanisms. The equation can also be applied to other types of drug delivery systems than thin ointment films, e.g., controlled release transdermal patches or films for oral controlled drug delivery. Later, the equation was extended to other geometries and related theories have been proposed. The aim of this review is to highlight the assumptions the derivation of the classical Higuchi equation is based on and to give an overview on the use and potential misuse of this equation as well as of related theories. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Impact of Inclusion of Varying Percentages of Repeaters on Equating

    ERIC Educational Resources Information Center

    Rogers, W. Todd; Radwan, Nizam

    2015-01-01

    Restricted equating samples are often used to equate test results. Previously eligible students may be excluded because this group of students is not stable from year to year and their inclusion may bias the results. The present study evaluated the impact of including previously eligible students in the equating samples, where the percentage of…

  10. On the non-stationary generalized Langevin equation

    NASA Astrophysics Data System (ADS)

    Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja

    2017-12-01

    In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.

  11. Elliptic Euler-Poisson-Darboux equation, critical points and integrable systems

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Ortenzi, G.

    2013-12-01

    The structure and properties of families of critical points for classes of functions W(z,{\\overline{z}}) obeying the elliptic Euler-Poisson-Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(\\beta ,{\\overline{\\beta }};1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed.

  12. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations.

    PubMed

    Dascaliuc, Radu; Michalowski, Nicholas; Thomann, Enrique; Waymire, Edward C

    2015-07-01

    The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.

  13. Relative Performance of Rescaling and Resampling Approaches to Model Chi Square and Parameter Standard Error Estimation in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Nevitt, Johnathan; Hancock, Gregory R.

    Though common structural equation modeling (SEM) methods are predicated upon the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to use distribution-free estimation methods. Fortunately, promising alternatives are being integrated into…

  14. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    NASA Astrophysics Data System (ADS)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.

    2016-08-01

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  15. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better thanmore » the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.« less

  16. Differences in within- and between-person factor structure of positive and negative affect: analysis of two intensive measurement studies using multilevel structural equation modeling.

    PubMed

    Rush, Jonathan; Hofer, Scott M

    2014-06-01

    The Positive and Negative Affect Schedule (PANAS) is a widely used measure of emotional experience. The factor structure of the PANAS has been examined predominantly with cross-sectional designs, which fails to disaggregate within-person variation from between-person differences. There is still uncertainty as to the factor structure of positive and negative affect and whether they constitute 2 distinct independent factors. The present study examined the within-person and between-person factor structure of the PANAS in 2 independent samples that reported daily affect over 7 and 14 occasions, respectively. Results from multilevel confirmatory factor analyses revealed that a 2-factor structure at both the within-person and between-person levels, with correlated specific factors for overlapping items, provided good model fit. The best-fitting solution was one where within-person factors of positive and negative affect were inversely correlated, but between-person factors were independent. The structure was further validated through multilevel structural equation modeling examining the effects of cognitive interference, daily stress, physical symptoms, and physical activity on positive and negative affect factors.

  17. Using structural equation modeling to construct calibration equations relating PM2.5 mass concentration samplers to the federal reference method sampler

    NASA Astrophysics Data System (ADS)

    Bilonick, Richard A.; Connell, Daniel P.; Talbott, Evelyn O.; Rager, Judith R.; Xue, Tao

    2015-02-01

    The objective of this study was to remove systematic bias among fine particulate matter (PM2.5) mass concentration measurements made by different types of samplers used in the Pittsburgh Aerosol Research and Inhalation Epidemiology Study (PARIES). PARIES is a retrospective epidemiology study that aims to provide a comprehensive analysis of the associations between air quality and human health effects in the Pittsburgh, Pennsylvania, region from 1999 to 2008. Calibration was needed in order to minimize the amount of systematic error in PM2.5 exposure estimation as a result of including data from 97 different PM2.5 samplers at 47 monitoring sites. Ordinary regression often has been used for calibrating air quality measurements from pairs of measurement devices; however, this is only appropriate when one of the two devices (the "independent" variable) is free from random error, which is rarely the case. A group of methods known as "errors-in-variables" (e.g., Deming regression, reduced major axis regression) has been developed to handle calibration between two devices when both are subject to random error, but these methods require information on the relative sizes of the random errors for each device, which typically cannot be obtained from the observed data. When data from more than two devices (or repeats of the same device) are available, the additional information is not used to inform the calibration. A more general approach that often has been overlooked is the use of a measurement error structural equation model (SEM) that allows the simultaneous comparison of three or more devices (or repeats). The theoretical underpinnings of all of these approaches to calibration are described, and the pros and cons of each are discussed. In particular, it is shown that both ordinary regression (when used for calibration) and Deming regression are particular examples of SEMs but with substantial deficiencies. To illustrate the use of SEMs, the 7865 daily average PM2.5 mass

  18. Maximum Likelihood Methods in Treating Outliers and Symmetrically Heavy-Tailed Distributions for Nonlinear Structural Equation Models with Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Xia, Ye-Mao

    2006-01-01

    By means of more than a dozen user friendly packages, structural equation models (SEMs) are widely used in behavioral, education, social, and psychological research. As the underlying theory and methods in these packages are vulnerable to outliers and distributions with longer-than-normal tails, a fundamental problem in the field is the…

  19. My Science Class and Expected Career Choices--A Structural Equation Model of Determinants Involving Abu Dhabi High School Students

    ERIC Educational Resources Information Center

    Badri, Masood; Alnuaimi, Ali; Mohaidat, Jihad; Al Rashedi, Asma; Yang, Guang; Al Mazroui, Karima

    2016-01-01

    Background: This study is about Abu Dhabi high school students' interest in science in different contexts. The survey was conducted in connection with the international project, the Relevance of Science Education (ROSE). The sample consists of 5650 students in public and private schools. A structural equation model (SEM) is developed to capture…

  20. Equation Structure and the Meaning of the Equal Sign: The Impact of Task Selection in Eliciting Elementary Students' Understandings

    ERIC Educational Resources Information Center

    Stephens, Ana C.; Knuth, Eric J.; Blanton, Maria L.; Isler, Isil; Gardiner, Angela Murphy; Marum, Tim

    2013-01-01

    This paper reports results from a written assessment given to 290 third-, fourth-, and fifth-grade students prior to any instructional intervention. We share and discuss students' responses to items addressing their understanding of equation structure and the meaning of the equal sign. We found that many students held an operational conception of…

  1. Understanding Nomophobia: Structural Equation Modeling and Semantic Network Analysis of Smartphone Separation Anxiety.

    PubMed

    Han, Seunghee; Kim, Ki Joon; Kim, Jang Hyun

    2017-07-01

    This study explicates nomophobia by developing a research model that identifies several determinants of smartphone separation anxiety and by conducting semantic network analyses on smartphone users' verbal descriptions of the meaning of their smartphones. Structural equation modeling of the proposed model indicates that personal memories evoked by smartphones encourage users to extend their identity onto their devices. When users perceive smartphones as their extended selves, they are more likely to get attached to the devices, which, in turn, leads to nomophobia by heightening the phone proximity-seeking tendency. This finding is also supplemented by the results of the semantic network analyses revealing that the words related to memory, self, and proximity-seeking are indeed more frequently used in the high, compared with low, nomophobia group.

  2. Finite element solution of torsion and other 2-D Poisson equations

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.

    1982-01-01

    The NASTRAN structural analysis computer program may be used, without modification, to solve two dimensional Poisson equations such as arise in the classical Saint Venant torsion problem. The nonhomogeneous term (the right-hand side) in the Poisson equation can be handled conveniently by specifying a gravitational load in a "structural" analysis. The use of an analogy between the equations of elasticity and those of classical mathematical physics is summarized in detail.

  3. Structural equation model of factors related to quality of life for community-dwelling schizophrenic patients in Japan

    PubMed Central

    2014-01-01

    Background This study aimed to clarify how community mental healthcare systems can be improved. Methods We included 79 schizophrenic patients, aged 20 to 80 years, residing in the Tokyo metropolitan area who regularly visited rehabilitation facilities offering assistance to psychiatric patients and were receiving treatment on an outpatient basis. No subjects had severe cognitive disorders or were taking medication with side effects that could prevent the completion of questionnaires. Questionnaires included items related to quality of life, self-efficacy, self-esteem, psychosis based on the Behavior and Symptom Identification Scale, health locus of control, and socio-demographic factors. We performed multiple linear regression analysis with quality of life as the dependent variable and, based on covariance structural analysis, evaluated the goodness of fit of the resulting structural equations models. Results Self-efficacy, self-esteem, and degree of psychosis significantly impacted quality of life. Marital status, age, and types of medications also influenced quality of life. Multiple linear regression analysis revealed psychiatric symptoms (Behavior and Symptom Identification Scale-32 [daily living and role functioning] (Beta = −0.537, p < 0.001) and self-efficacy (Beta = 0.249, p < 0.05) to be predictors of total quality of life score. Based on covariance structural analysis, the resulting model was found to exhibit reasonable goodness of fit. Conclusions Self-efficacy had an especially strong and direct impact on QOL. Therefore, it is important to provide more positive feedback to patients, provide social skills training based on cognitive behavioral therapy, and engage patients in role playing to improve self-efficacy and self-concept. PMID:25101143

  4. A stochastic process approach of the drake equation parameters

    NASA Astrophysics Data System (ADS)

    Glade, Nicolas; Ballet, Pascal; Bastien, Olivier

    2012-04-01

    The number N of detectable (i.e. communicating) extraterrestrial civilizations in the Milky Way galaxy is usually calculated by using the Drake equation. This equation was established in 1961 by Frank Drake and was the first step to quantifying the Search for ExtraTerrestrial Intelligence (SETI) field. Practically, this equation is rather a simple algebraic expression and its simplistic nature leaves it open to frequent re-expression. An additional problem of the Drake equation is the time-independence of its terms, which for example excludes the effects of the physico-chemical history of the galaxy. Recently, it has been demonstrated that the main shortcoming of the Drake equation is its lack of temporal structure, i.e., it fails to take into account various evolutionary processes. In particular, the Drake equation does not provides any error estimation about the measured quantity. Here, we propose a first treatment of these evolutionary aspects by constructing a simple stochastic process that will be able to provide both a temporal structure to the Drake equation (i.e. introduce time in the Drake formula in order to obtain something like N(t)) and a first standard error measure.

  5. Victor Henri: 111 years of his equation.

    PubMed

    Cornish-Bowden, Athel; Mazat, Jean-Pierre; Nicolas, Serge

    2014-12-01

    Victor Henri's great contribution to the understanding of enzyme kinetics and mechanism is not always given the credit that it deserves. In addition, his earlier work in experimental psychology is totally unknown to biochemists, and his later work in spectroscopy and photobiology almost equally so. Applying great rigour to his analysis he succeeded in obtaining a model of enzyme action that explained all of the observations available to him, and he showed why the considerable amount of work done in the preceding decade had not led to understanding. His view was that only physical chemistry could explain the behaviour of enzymes, and that models should be judged in accordance with their capacity not only to explain previously known facts but also to predict new observations against which they could be tested. The kinetic equation usually attributed to Michaelis and Menten was in reality due to him. His thesis of 1903 is now available in English. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  6. Are cystatin C-based equations superior to creatinine-based equations for estimating GFR in Chinese elderly population?

    PubMed

    Pei, Xiaohua; Liu, Qiao; He, Juan; Bao, Lihua; Yan, Chengjing; Wu, Jianqing; Zhao, Weihong

    2012-12-01

    Cystatin C has been proposed as a surrogate marker of kidney function. The elderly population accounts for the largest proportion of chronic kidney disease (CKD) patients. The aim of this study was to assess the diagnostic value of serum cystatin C and compare the applicability of cystatin C-based equations with serum creatinine (Scr)-based equations for estimating glomerular filtration rate (GFR). The estimated GFR (eGFR) values from six cystatin C-based equations (Tan, MacIsaac, Ma, Stevens1-3) and three Scr-based equations (CG, MDRD, CKD-EPI) were compared with the reference GFR (rGFR) values from 99mTc-DTPA renal dynamic imaging method. A total of 110 elderly Chinese (60-92 year, 71.05±7.62 year) were enrolled. Cystatin C had better diagnostic value than Scr (relationship coefficient with rGFR: cystatin C -0.847 vs. Scr -0.729, P<0.01; sensitivity: cystatin C 0.90 vs. Scr 0.55, P<0.01; AUCROC: cystatin C 0.857 vs. Scr 0.757, P<0.01). All the equations predicted GFR more accurately for rGFR≥60 ml/min/1.73 m2 than for rGFR<60 ml/min/1.73 m2. Most equations had acceptable accuracy. The cystatin C-based equations deviated from rGFR by -12.78 ml/min/1.73 m2 to -2.12 ml/min/1.73 m2, with accuracy varying from 64.6 to 82.7%. The Scr-based equations deviated from rGFR by -5.37 ml/min/1.73 m2 to -0.68 ml/min/1.73 m2, with accuracy varying from 77.3 to 79.1%. The CKD-EPI, MacIsaac and Ma equations predicted no bias with rGFR (P>0.05), with higher accuracy and lower deviation in the total group. The MacIsaac, CKD-EPI and Stevens3 equations could be optimal for those with normal and mildly impaired kidney function, whereas the Ma equation for those with CKD. Cystatin C is a promising kidney function marker. However, not all cystatin C-based equations could be superior to the Scr-equations.

  7. Interactivity and Trust as Antecedents of E-Training Use Intention in Nigeria: A Structural Equation Modelling Approach.

    PubMed

    Alkali, A U; Abu Mansor, Nur Naha

    2017-07-18

    The last few decades saw an intense development in information technology (IT) and it has affected the ways organisations achieve their goals. Training, in every organisation is an ongoing process that aims to update employees' knowledge and skills towards goals attainment. Through adequate deployment of IT, organisations can effectively meet their training needs. However, for successful IT integration in training, the employees who will use the system should be positively disposed towards it. This study predicts employees' intention to use the e-training system by extending the technology acceptance model (TAM) using interactivity and trust. Two hundred and fourteen employees participated in the study and structural equation modelling was used in the analysis. The findings of the structural equation modelling reveal that interactivity, trust, perceived usefulness and perceived ease of use have direct and positive effects on employees' intention to use e-training. It was also shown that perceived ease of use had no effects on perceived usefulness, while trust has the strongest indirect effects on employees' intention. In addition, the results of Importance-Performance Map Analysis (IPMA), which compares the contributions of each construct to the importance and performance of the model, indicate that to predict intention to use e-training, priorities should be accorded to trust and perceived usefulness.

  8. Are Systemic Manifestations Ascribable to COPD in Smokers? A Structural Equation Modeling Approach.

    PubMed

    Boyer, Laurent; Bastuji-Garin, Sylvie; Chouaid, Christos; Housset, Bruno; Le Corvoisier, Philippe; Derumeaux, Geneviève; Boczkowski, Jorge; Maitre, Bernard; Adnot, Serge; Audureau, Etienne

    2018-06-05

    Whether the systemic manifestations observed in Chronic Obstructive Pulmonary Disease (COPD) are ascribable to lung dysfunction or direct effects of smoking is in debate. Structural Equations Modeling (SEM), a causal-oriented statistical approach, could help unraveling the pathways involved, by enabling estimation of direct and indirect associations between variables. The objectives of the study was to investigate the relative impact of smoking and COPD on systemic manifestations, inflammation and telomere length. In 292 individuals (103 women; 97 smokers with COPD, 96 smokers without COPD, 99 non-smokers), we used SEM to explore the pathways between smoking (pack-years), lung disease (FEV 1 , K CO ), and the following parameters: arterial stiffness (aortic pulse wave velocity, PWV), bone mineral density (BMD), appendicular skeletal muscle mass (ASMM), grip strength, insulin resistance (HOMA-IR), creatinine clearance (eGFR), blood leukocyte telomere length and inflammatory markers (Luminex assay). All models were adjusted on age and gender. Latent variables were created for systemic inflammation (inflammatory markers) and musculoskeletal parameters (ASMM, grip strength, BMD). SEM showed that most effects of smoking were indirectly mediated by lung dysfunction: e.g. via FEV 1 on musculoskeletal factor, eGFR, HOMA-IR, PWV, telomere length, CRP, white blood cells count (WBC) and inflammation factor, and via K CO on musculoskeletal factor, eGFR and PWV. Direct effects of smoking were limited to CRP and WBC. Models had excellent fit. In conclusion, SEM highlighted the major role of COPD in the occurrence of systemic manifestations while smoking effects were mostly mediated by lung function.

  9. Regression equations for calculation of z scores for echocardiographic measurements of left heart structures in healthy Han Chinese children.

    PubMed

    Wang, Shan-Shan; Hong, Wen-Jing; Zhang, Yu-Qi; Chen, Shu-Bao; Huang, Guo-Ying; Zhang, Hong-Yan; Chen, Li-Jun; Wu, Lan-Ping; Shen, Rong; Liu, Yi-Qing; Zhu, Jun-Xue

    2018-06-01

    Clinical decision making in children with heart disease relies on detailed measurements of cardiac structures using two-dimensional and M-mode echocardiography. However, no echocardiographic reference values are available for the Chinese children. We aimed to establish z-score regression equations for left heart structures in a population-based cohort of healthy Chinese Han children. Echocardiography was performed in 545 children with a normal heart. The dimensions of the aortic valve annulus (AVA), aortic sinuses of Valsalva (ASV), sinotubular junction (STJ), ascending aorta (AAO), left atrium (LA), mitral valve annulus (MVA), interventricular septal end-diastolic thickness (IVSd), interventricular septal end-systolic thickness (IVSs), left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), left ventricular posterior wall end-diastolic thickness (LVPWd), left ventricular posterior wall end-systolic thickness (LVPWs) were measured. Regression analyses were conducted to relate the measurements of left heart structures to body surface area (BSA). Left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were calculated. Several models were used, and the adjusted R2 values were compared for each model. AVA, ASV, STJ, AAO, LA, MVA, IVSd, IVSs, LVIDd, LVIDs, LVPWd, and LVPWs had a cubic relationship with BSA. LVEF and LVFS fell within a narrow range. Our results provide reference values for z scores and regression equations for left heart structures in Han Chinese children. These data may help make a quick and accurate judgment of the routine clinical measurement of left heart structures in children with heart disease. © 2018 Wiley Periodicals, Inc.

  10. Influencing Self-Reported Health among Rural Low-Income Women through Health Care and Social Service Utilization: A Structural Equation Model

    ERIC Educational Resources Information Center

    Bice-Wigington, Tiffany; Huddleston-Casas, Catherine

    2012-01-01

    Using structural equation modeling, this study examined the mesosystemic processes among rural low-income women, and how these processes subsequently influenced self-reported health. Acknowledging the behavioral processes inherent in utilization of health care and formal social support services, this study moved beyond a behavioral focus by…

  11. Review of Sample Size for Structural Equation Models in Second Language Testing and Learning Research: A Monte Carlo Approach

    ERIC Educational Resources Information Center

    In'nami, Yo; Koizumi, Rie

    2013-01-01

    The importance of sample size, although widely discussed in the literature on structural equation modeling (SEM), has not been widely recognized among applied SEM researchers. To narrow this gap, we focus on second language testing and learning studies and examine the following: (a) Is the sample size sufficient in terms of precision and power of…

  12. Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions

    NASA Astrophysics Data System (ADS)

    Bombaci, Ignazio; Logoteta, Domenico

    2018-02-01

    Aims: We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the Δ(1232) isobar intermediate state. This EOS is provided in tabular form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars. Methods: The EOS is derived using the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are next computed solving numerically the Tolman-Oppenheimer-Volkov structure equations. Results: Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon. These experiments provide a selective test for constraining the nuclear EOS up to 4n0. Our EOS models are consistent with present measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M⊙ of the neutron stars in PSR J0348+0432.

  13. Synchronization with propagation - The functional differential equations

    NASA Astrophysics Data System (ADS)

    Rǎsvan, Vladimir

    2016-06-01

    The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.

  14. Conservation laws and symmetries of a generalized Kawahara equation

    NASA Astrophysics Data System (ADS)

    Gandarias, Maria Luz; Rosa, Maria; Recio, Elena; Anco, Stephen

    2017-06-01

    The generalized Kawahara equation ut = a(t)uxxxxx + b(t)uxxx + c(t) f (u)ux appears in many physical applications. A complete classification of low-order conservation laws and point symmetries is obtained for this equation, which includes as a special case the usual Kawahara equation ut = αuux + βu2ux + γuxxx + μuxxxxx. A general connection between conservation laws and symmetries for the generalized Kawahara equation is derived through the Hamiltonian structure of this equation and its relationship to Noether's theorem using a potential formulation.

  15. Regression equations to estimate seasonal flow duration, n-day high-flow frequency, and n-day low-flow frequency at sites in North Dakota using data through water year 2009

    USGS Publications Warehouse

    Williams-Sether, Tara; Gross, Tara A.

    2016-02-09

    Seasonal mean daily flow data from 119 U.S. Geological Survey streamflow-gaging stations in North Dakota; the surrounding states of Montana, Minnesota, and South Dakota; and the Canadian provinces of Manitoba and Saskatchewan with 10 or more years of unregulated flow record were used to develop regression equations for flow duration, n-day high flow and n-day low flow using ordinary least-squares and Tobit regression techniques. Regression equations were developed for seasonal flow durations at the 10th, 25th, 50th, 75th, and 90th percent exceedances; the 1-, 7-, and 30-day seasonal mean high flows for the 10-, 25-, and 50-year recurrence intervals; and the 1-, 7-, and 30-day seasonal mean low flows for the 2-, 5-, and 10-year recurrence intervals. Basin and climatic characteristics determined to be significant explanatory variables in one or more regression equations included drainage area, percentage of basin drainage area that drains to isolated lakes and ponds, ruggedness number, stream length, basin compactness ratio, minimum basin elevation, precipitation, slope ratio, stream slope, and soil permeability. The adjusted coefficient of determination for the n-day high-flow regression equations ranged from 55.87 to 94.53 percent. The Chi2 values for the duration regression equations ranged from 13.49 to 117.94, whereas the Chi2 values for the n-day low-flow regression equations ranged from 4.20 to 49.68.

  16. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dascaliuc, Radu; Thomann, Enrique; Waymire, Edward C., E-mail: waymire@math.oregonstate.edu

    2015-07-15

    The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturallymore » arise as a result of this investigation.« less

  17. Examining the Support Peer Supporters Provide Using Structural Equation Modeling: Nondirective and Directive Support in Diabetes Management.

    PubMed

    Kowitt, Sarah D; Ayala, Guadalupe X; Cherrington, Andrea L; Horton, Lucy A; Safford, Monika M; Soto, Sandra; Tang, Tricia S; Fisher, Edwin B

    2017-12-01

    Little research has examined the characteristics of peer support. Pertinent to such examination may be characteristics such as the distinction between nondirective support (accepting recipients' feelings and cooperative with their plans) and directive (prescribing "correct" choices and feelings). In a peer support program for individuals with diabetes, this study examined (a) whether the distinction between nondirective and directive support was reflected in participants' ratings of support provided by peer supporters and (b) how nondirective and directive support were related to depressive symptoms, diabetes distress, and Hemoglobin A1c (HbA1c). Three hundred fourteen participants with type 2 diabetes provided data on depressive symptoms, diabetes distress, and HbA1c before and after a diabetes management intervention delivered by peer supporters. At post-intervention, participants reported how the support provided by peer supporters was nondirective or directive. Confirmatory factor analysis (CFA), correlation analyses, and structural equation modeling examined the relationships among reports of nondirective and directive support, depressive symptoms, diabetes distress, and measured HbA1c. CFA confirmed the factor structure distinguishing between nondirective and directive support in participants' reports of support delivered by peer supporters. Controlling for demographic factors, baseline clinical values, and site, structural equation models indicated that at post-intervention, participants' reports of nondirective support were significantly associated with lower, while reports of directive support were significantly associated with greater depressive symptoms, altogether (with control variables) accounting for 51% of the variance in depressive symptoms. Peer supporters' nondirective support was associated with lower, but directive support was associated with greater depressive symptoms.

  18. Constructs of Student-Centered Online Learning on Learning Satisfaction of a Diverse Online Student Body: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Kwak, Dean

    2013-01-01

    The present study investigated the relationships between constructs of web-based student-centered learning and the learning satisfaction of a diverse online student body. Hypotheses on the constructs of student-centered learning were tested using structural equation modeling. The results indicated that five key constructs of student-centered…

  19. Testing women's propensities to leave their abusive husbands using structural equation modeling.

    PubMed

    Choi, Myunghan; Belyea, Michael; Phillips, Linda R; Insel, Kathleen; Min, Sung-Kil

    2009-01-01

    Many Korean women are just beginning to recognize that what they considered to be normal treatment is actually domestic violence. Many are becoming more intolerant of the abuse and more likely to desire to leave an abusive relationship. The aim of this study was to test, using the framework of sociostructural and psychological-relational power (PRP), a model of Korean women's propensities to leave their abusive husbands. Multigroup structural equation modeling was used to test relationships between variables chosen from the sociostructural power and PRP to explain intolerance to abuse. Married Korean women (n = 184) who self-identified as being abused physically, psychologically, sexually, or financially participated in the study. The multigroup analysis revealed that the relationship of abuse and Hwa-Byung (a culture-bound syndrome that denotes Korean women's anger) with intolerance was supported for women with low education (defined as having an education of high school or less: < or =12 years); also for this group, particularly among the younger women, high power was related to high levels of reported abuse and abuse intolerance. For women in the high-education group (education beyond high school: > or =13 years), high power was related to abuse, Hwa-Byung, and abuse intolerance; age did not influence power. Overall, the multigroup model adequately fitted the sample data (chi2 = 92.057, degree of freedom = 50, p = .000; normal fit index = .926, comparative fix index = .964, root mean square error of approximation = .068, Hoelter's critical number = 152), demonstrating that education is a crucial moderator of Korean women's attitude toward the unacceptability of abuse and propensity to terminate the marriage. This study found support for a model of abuse intolerance using the framework of sociostructural power and PRP, primarily for the low-education group. Hwa-Byung was a mediating factor that contributed to intolerance to abuse in women with low education. This

  20. Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański

    NASA Astrophysics Data System (ADS)

    Sheftel, Mikhail; Yazıcı, Devrim

    2016-09-01

    We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.

  1. Adolescent socioeconomic status and depressive symptoms in later life: Evidence from structural equation models.

    PubMed

    Pino, Elizabeth C; Damus, Karla; Jack, Brian; Henderson, David; Milanovic, Snezana; Kalesan, Bindu

    2018-01-01

    The complex association between socioeconomic status (SES) and depressive symptoms is not entirely understood and the existing literature does not address the relationship between early-life SES and later-life depression from a life-course perspective, incorporating mediating events. Using data from the Wisconsin Longitudinal Study, we employed structural equation modeling to examine how SES measured at age 18 affects depressive symptoms at age 54 directly and through mediating variables college graduation, marriage, and household income level at age 36. The total effect of adolescent SES on later-life depressive symptoms is largely mediated through college graduation. Our final model was driven by the effects of women. The variables contributing most to depressive symptoms in women were the direct effect of being raised in a home with a low SES and the indirect effect of low adolescent SES mediated through non-completion of college. Cohort was exclusively comprised of white, high school graduates born in 1939 (± 2 years). In our analysis we assume that missing values are missing at random (MAR); however, attrition both from death (excluded from our population) and from non-response could be associated with depression, i.e. missing not at random (MNAR). This study demonstrates the impact of completion of college, particularly among women, and supports the social mobility hypothesis to explain the relationship between adolescent socioeconomic circumstances and late-life health. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Structural Equation Modeling Approach to Examining Factors Influencing Outcomes with Cochlear Implant in Mandarin-Speaking Children

    PubMed Central

    Chen, Yuan; Wong, Lena L. N.; Zhu, Shufeng; Xi, Xin

    2015-01-01

    Objective To examine the direct and indirect effects of demographical factors on speech perception and vocabulary outcomes of Mandarin-speaking children with cochlear implants (CIs). Methods 115 participants implanted before the age of 5 and who had used CI before 1 to 3 years were evaluated using a battery of speech perception and vocabulary tests. Structural equation modeling was used to test the hypotheses proposed. Results Early implantation significantly contributed to speech perception outcomes while having undergone a hearing aid trial (HAT) before implantation, maternal educational level (MEL), and having undergone universal newborn hearing screening (UNHS) before implantation had indirect effects on speech perception outcomes via their effects on age at implantation. In addition, both age at implantation and MEL had direct and indirect effects on vocabulary skills, while UNHS and HAT had indirect effects on vocabulary outcomes via their effects on age at implantation. Conclusion A number of factors had indirect and direct effects on speech perception and vocabulary outcomes in Mandarin-speaking children with CIs and these factors were not necessarily identical to those reported among their English-speaking counterparts. PMID:26348360

  3. A cross-lagged structural equation model of relational aggression, physical aggression, and peer status in a Chinese culture.

    PubMed

    Tseng, Wan-Ling; Banny, Adrienne M; Kawabata, Yoshito; Crick, Nicki R; Gau, Susan Shur-Fen

    2013-01-01

    This short-term longitudinal study examined the associations among relational aggression, physical aggression, and peer status (i.e., acceptance, rejection, and perceived popularity) across three time points, six months apart, in a Taiwanese sample. Participants were 198 fifth grade students (94 girls and 104 boys; Mean age = 10.35 years) from Taipei, Taiwan. Study variables were assessed using peer nomination procedure. Results from the cross-lagged structural equation models demonstrated that there were longitudinal associations between relational aggression and each of the peer status constructs while only one longitudinal association was found for physical aggression such that physical aggression positively predicted subsequent peer rejection. The longitudinal associations did not vary with gender. Results also showed high stabilities of relational aggression, physical aggression, and the three peer status constructs over 1 year as well as high concurrent association between relational and physical aggression. In addition, relational aggression and physical aggression were concurrently related to less acceptance, more rejection, and less perceived popularity, especially at the outset of the study. Findings of this study demonstrated both similarities and differences in relation to previous literature in primarily Western cultures. This study also highlights the bidirectional and complex nature of the association between aggression and peer status, which appears to depend on the form of aggression and on the particular indicator of peer status under study. Copyright © 2013 Wiley Periodicals, Inc.

  4. Correct Interpretation of Latent Versus Observed Abilities: "Implications From Structural Equation Modeling Applied to the WISC-III and WIAT Linking Sample"

    ERIC Educational Resources Information Center

    Oh, Hyeon-Joo; Glutting, Joseph J.; Watkins, Marley W.; Youngstrom, Eric A.; McDermott, Paul A.

    2004-01-01

    In this study, the authors used structural equation modeling to investigate relationships between ability constructs from the "Wechsler Intelligence Scale for Children-Third Edition" (WISC-III; Wechsler, 1991) in explaining reading and mathematics achievement constructs on the "Wechsler Individual Achievement Test" (WIAT;…

  5. Constrained hierarchical least square nonlinear equation solvers. [for indefinite stiffness and large structural deformations

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Lackney, J.

    1986-01-01

    The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.

  6. The advancement of the built environment research through employment of structural equation modeling (SEM)

    NASA Astrophysics Data System (ADS)

    Wasilah, S.; Fahmyddin, T.

    2018-03-01

    The employment of structural equation modeling (SEM) in research has taken an increasing attention in among researchers in built environment. There is a gap to understand the attributes, application, and importance of this approach in data analysis in built environment study. This paper intends to provide fundamental comprehension of SEM method in data analysis, unveiling attributes, employment and significance and bestow cases to assess associations amongst variables and constructs. The study uses some main literature to grasp the essence of SEM regarding with built environment research. The better acknowledgment of this analytical tool may assist the researcher in the built environment to analyze data under complex research questions and to test multivariate models in a single study.

  7. Optical solitons to the resonance nonlinear Schrödinger equation by Sine-Gordon equation method

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    In this paper, we examined the optical solitons to the resonant nonlinear Schrödinger equation (R-NLSE) which describes the propagation of solitons through optical fibers. Three types of nonlinear media fibers are studied. They are; quadratic-cubic law, Kerr law and parabolic law. Dark, bright, dark-bright or combined optical and singular soliton solutions are derived using the sine-Gordon equation method (SGEM). The constraint conditions that naturally fall out of the solution structure which guarantee the existence of these solitons are also reported.

  8. Structure and Stability of Finite Dimensional Approximations for Functional Differential Equations.

    DTIC Science & Technology

    1983-10-01

    approximating the solution of the algebraic Riccati equation associated with a retarded system. However, there remained one open problem in the...theory much more elegant and efficient (see e.g. BERNIER- MANITIUS ( 3 ], MANITIUS (14], DELFOUR-MANITIUS (71). They have led to a number of new results...characteristic function of the interval I. It is well known that equation (2.1) admits a unique solution2 n 12 x() e L 2o-h,-;iUn I W [0,_: 3 n ] for every

  9. Testing students' e-learning via Facebook through Bayesian structural equation modeling.

    PubMed

    Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.

  10. Testing students’ e-learning via Facebook through Bayesian structural equation modeling

    PubMed Central

    Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019

  11. Generalized structural equations improve sexual-selection analyses

    PubMed Central

    Santini, Giacomo; Marchetti, Giovanni Maria; Focardi, Stefano

    2017-01-01

    Sexual selection is an intense evolutionary force, which operates through competition for the access to breeding resources. There are many cases where male copulatory success is highly asymmetric, and few males are able to sire most females. Two main hypotheses were proposed to explain this asymmetry: “female choice” and “male dominance”. The literature reports contrasting results. This variability may reflect actual differences among studied populations, but it may also be generated by methodological differences and statistical shortcomings in data analysis. A review of the statistical methods used so far in lek studies, shows a prevalence of Linear Models (LM) and Generalized Linear Models (GLM) which may be affected by problems in inferring cause-effect relationships; multi-collinearity among explanatory variables and erroneous handling of non-normal and non-continuous distributions of the response variable. In lek breeding, selective pressure is maximal, because large numbers of males and females congregate in small arenas. We used a dataset on lekking fallow deer (Dama dama), to contrast the methods and procedures employed so far, and we propose a novel approach based on Generalized Structural Equations Models (GSEMs). GSEMs combine the power and flexibility of both SEM and GLM in a unified modeling framework. We showed that LMs fail to identify several important predictors of male copulatory success and yields very imprecise parameter estimates. Minor variations in data transformation yield wide changes in results and the method appears unreliable. GLMs improved the analysis, but GSEMs provided better results, because the use of latent variables decreases the impact of measurement errors. Using GSEMs, we were able to test contrasting hypotheses and calculate both direct and indirect effects, and we reached a high precision of the estimates, which implies a high predictive ability. In synthesis, we recommend the use of GSEMs in studies on lekking

  12. Study of Factors Preventing Children from Enrolment in Primary School in the Republic of Honduras: Analysis Using Structural Equation Modelling

    ERIC Educational Resources Information Center

    Ashida, Akemi

    2015-01-01

    Studies have investigated factors that impede enrolment in Honduras. However, they have not analysed individual factors as a whole or identified the relationships among them. This study used longitudinal data for 1971 children who entered primary schools from 1986 to 2000, and employed structural equation modelling to examine the factors…

  13. Generalised equations for the prediction of percentage body fat by anthropometry in adult men and women aged 18-81 years.

    PubMed

    Leahy, Siobhan; O'Neill, Cian; Sohun, Rhoda; Toomey, Clodagh; Jakeman, Philip

    2013-02-28

    Anthropometric data indicate that the human phenotype is changing. Today's adult is greater in stature, body mass and fat mass. Accurate measurement of body composition is necessary to maintain surveillance of obesity within the population and to evaluate associated interventions. The aim of the present study was to construct and validate generalised equations for percentage body fat (%BF) prediction from anthropometry in 1136 adult men and women. Reference values for %BF were obtained using dual-energy X-ray absorptiometry. Skinfold thickness (SF) at ten sites and girth (G) at seven sites were measured on 736 men and women aged 18-81 years (%BF 5·1-56·8%). Quantile regression was employed to construct prediction equations from age and log-transformed SF and G measures. These equations were then cross-validated on a cohort of 400 subjects of similar age and fatness. The following generalised equations were found to most accurately predict %BF: Men: (age x 0·1) + (logtricepsSF x 7·6) + (logmidaxillaSF x 8·8) + (logsuprspinaleSF x 11·9) - 11·3 (standard error of the estimate: 2·5%, 95% limits of agreement: - 4·8, + 4·9) Women: (age x 0·1) + (logabdominalG x 39·4) + (logmidaxillaSF x 4·9) + (logbicepsSF x 11·0) + (logmedialcalfSF x 9·1) - 73·5 (standard error of the estimate: 3·0%, 95% limits of agreement: - 5·7, + 5·9) These generalised anthropometric equations accurately predict %BF and are suitable for the measurement of %BF in adult men and women of varying levels of fatness across the lifespan.

  14. The factor structure of the Values in Action Inventory of Strengths (VIA-IS): An item-level exploratory structural equation modeling (ESEM) bifactor analysis.

    PubMed

    Ng, Vincent; Cao, Mengyang; Marsh, Herbert W; Tay, Louis; Seligman, Martin E P

    2017-08-01

    The factor structure of the Values in Action Inventory of Strengths (VIA-IS; Peterson & Seligman, 2004) has not been well established as a result of methodological challenges primarily attributable to a global positivity factor, item cross-loading across character strengths, and questions concerning the unidimensionality of the scales assessing character strengths. We sought to overcome these methodological challenges by applying exploratory structural equation modeling (ESEM) at the item level using a bifactor analytic approach to a large sample of 447,573 participants who completed the VIA-IS with all 240 character strengths items and a reduced set of 107 unidimensional character strength items. It was found that a 6-factor bifactor structure generally held for the reduced set of unidimensional character strength items; these dimensions were justice, temperance, courage, wisdom, transcendence, humanity, and an overarching general factor that is best described as dispositional positivity. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Hamiltonian formulation of the KdV equation

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1984-06-01

    We consider the canonical formulation of Whitham's variational principle for the KdV equation. This Lagrangian is degenerate and we have found it necessary to use Dirac's theory of constrained systems in constructing the Hamiltonian. Earlier discussions of the Hamiltonian structure of the KdV equation were based on various different decompositions of the field which is avoided by this new approach.

  16. [Study on HIV prevention related knowledge-motivation-psychological model in men who have sex with men, based on a structural equation model].

    PubMed

    Jiang, Y; Dou, Y L; Cai, A J; Zhang, Z; Tian, T; Dai, J H; Huang, A L

    2016-02-01

    Knowledge-motivation-psychological model was set up and tested through structural equation model to provide evidence on HIV prevention related strategy in Men who have Sex with Men (MSM). Snowball sampling method was used to recruit a total of 550 MSM volunteers from two MSM Non-Governmental Organizations in Urumqi, Xinjiang province. HIV prevention related information on MSM was collected through a questionnaire survey. A total of 477 volunteers showed with complete information. HIV prevention related Knowledge-motivation-psychological model was built under related experience and literature. Relations between knowledge, motivation and psychological was studied, using a ' structural equation model' with data from the fitting questionnaires and modification of the model. Structural equation model presented good fitting results. After revising the fitting index: RMSEA was 0.035, NFI was 0.965 and RFI was 0.920. Thereafter the exogenous latent variables would include knowledge, motivation and psychological effects. The endogenous latent variable appeared as prevention related behaviors. The standardized total effects of motivation, knowledge, psychological on prevention behavior were 0.44, 0.41 and 0.17 respectively. Correlation coefficient of motivation and psychological effects was 0.16. Correlation coefficient on knowledge and psychological effects was -0.17 (P<0.05). Correlation coefficient of knowledge and motivation did not show statistical significance. Knowledge of HIV and motivation of HIV prevention did not show any accordance in MSM population. It was necessary to increase the awareness and to improve the motivation of HIV prevention in MSM population.

  17. Regularized Moment Equations and Shock Waves for Rarefied Granular Gas

    NASA Astrophysics Data System (ADS)

    Reddy, Lakshminarayana; Alam, Meheboob

    2016-11-01

    It is well-known that the shock structures predicted by extended hydrodynamic models are more accurate than the standard Navier-Stokes model in the rarefied regime, but they fail to predict continuous shock structures when the Mach number exceeds a critical value. Regularization or parabolization is one method to obtain smooth shock profiles at all Mach numbers. Following a Chapman-Enskog-like method, we have derived the "regularized" version 10-moment equations ("R10" moment equations) for inelastic hard-spheres. In order to show the advantage of R10 moment equations over standard 10-moment equations, the R10 moment equations have been employed to solve the Riemann problem of plane shock waves for both molecular and granular gases. The numerical results are compared between the 10-moment and R10-moment models and it is found that the 10-moment model fails to produce continuous shock structures beyond an upstream Mach number of 1 . 34 , while the R10-moment model predicts smooth shock profiles beyond the upstream Mach number of 1 . 34 . The density and granular temperature profiles are found to be asymmetric, with their maxima occurring within the shock-layer.

  18. Kinetic energy equations for the average-passage equation system

    NASA Technical Reports Server (NTRS)

    Johnson, Richard W.; Adamczyk, John J.

    1989-01-01

    Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.

  19. Psychological pathway to suicidal ideation among people living with HIV/AIDS in China: A structural equation model.

    PubMed

    Wang, Wei; Wang, Yuanyuan; Xiao, Chenchang; Yao, Xing; Yang, Yinmei; Yan, Hong; Li, Shiyue

    2017-11-29

    People living with HIV/AIDS (PLWHA) have higher rates of suicide than does the general population. It is critical to interpret the intricate relationships among various psychological variables that increase the risk of suicidal ideation among PLWHA in China. An institutional based cross-sectional study was conducted from Jul to Aug 2016 in Nanjing, China, using a self-reporting questionnaire. A total of 465 PLWHA participated. Sociodemographic, psychological variables and suicide information about the participants were collected. Structural equation modeling (SEM)-path analysis was used to analyze the cross-sectional data. The final structural equation model had a highly satisfactory fit. Among PLWHA, perceived stigma had the greatest accumulated total effect on suicidal ideation, with both a direct effect and indirect effect through self-esteem and depression. Additionally, self-esteem had the second greatest total effect on suicidal ideation and was influenced by social support. Depression contributed directly to suicidal ideation and partly mediated the association of perceived stigma and self-esteem with suicidal ideation. These findings suggest that self-esteem and depression, particularly perceived stigma, play important roles in suicidal ideation among PLWHA. Enhancing personal self-esteem or social support might also reduce perceived stigma and may be an important target for intervention to decrease suicidal ideation among PLWHA. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Interactivity and Trust as Antecedents of E-Training Use Intention in Nigeria: A Structural Equation Modelling Approach

    PubMed Central

    Abu Mansor, Nur Naha

    2017-01-01

    Background: The last few decades saw an intense development in information technology (IT) and it has affected the ways organisations achieve their goals. Training, in every organisation is an ongoing process that aims to update employees’ knowledge and skills towards goals attainment. Through adequate deployment of IT, organisations can effectively meet their training needs. However, for successful IT integration in training, the employees who will use the system should be positively disposed towards it. This study predicts employees’ intention to use the e-training system by extending the technology acceptance model (TAM) using interactivity and trust. Methods: Two hundred and fourteen employees participated in the study and structural equation modelling was used in the analysis. Results: The findings of the structural equation modelling reveal that interactivity, trust, perceived usefulness and perceived ease of use have direct and positive effects on employees’ intention to use e-training. It was also shown that perceived ease of use had no effects on perceived usefulness, while trust has the strongest indirect effects on employees’ intention. In addition, the results of Importance-Performance Map Analysis (IPMA), which compares the contributions of each construct to the importance and performance of the model, indicate that to predict intention to use e-training, priorities should be accorded to trust and perceived usefulness. PMID:28718837

  1. Consistent three-equation model for thin films

    NASA Astrophysics Data System (ADS)

    Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul

    2017-11-01

    Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.

  2. Structural equation modeling of pesticide poisoning, depression, safety, and injury.

    PubMed

    Beseler, Cheryl L; Stallones, Lorann

    2013-01-01

    The role of pesticide poisoning in risk of injuries may operate through a link between pesticide-induced depressive symptoms and reduced engagement in safety behaviors. The authors conducted structural equation modeling of cross-sectional data to examine the pattern of associations between pesticide poisoning, depressive symptoms, safety knowledge, safety behaviors, and injury. Interviews of 1637 Colorado farm operators and their spouses from 964 farms were conducted during 1993-1997. Pesticide poisoning was assessed based on a history of ever having been poisoned. The Center for Epidemiologic Studies-Depression scale was used to assess depressive symptoms. Safety knowledge and safety behaviors were assessed using ten items for each latent variable. Outcomes were safety behaviors and injuries. A total of 154 injuries occurred among 1604 individuals with complete data. Pesticide poisoning, financial problems, health, and age predicted negative affect/somatic depressive symptoms with similar effect sizes; sex did not. Depression was more strongly associated with safety behavior than was safety knowledge. Two safety behaviors were significantly associated with an increased risk of injury. This study emphasizes the importance of financial problems and health on depression, and provides further evidence for the link between neurological effects of past pesticide poisoning on risk-taking behaviors and injury.

  3. Effective equations governing an active poroelastic medium

    PubMed Central

    2017-01-01

    In this work, we consider the spatial homogenization of a coupled transport and fluid–structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation and transport in an active poroelastic medium. The ‘active’ nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth time scale is strongly separated from other elastic time scales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection–reaction–diffusion equation. The resultant system of effective equations is then compared with other recent models under a selection of appropriate simplifying asymptotic limits. PMID:28293138

  4. IT vendor selection model by using structural equation model & analytical hierarchy process

    NASA Astrophysics Data System (ADS)

    Maitra, Sarit; Dominic, P. D. D.

    2012-11-01

    Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.

  5. Modeling Latent Interactions at Level 2 in Multilevel Structural Equation Models: An Evaluation of Mean-Centered and Residual-Centered Unconstrained Approaches

    ERIC Educational Resources Information Center

    Leite, Walter L.; Zuo, Youzhen

    2011-01-01

    Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…

  6. Investigating Experimental Effects within the Framework of Structural Equation Modeling: An Example with Effects on Both Error Scores and Reaction Times

    ERIC Educational Resources Information Center

    Schweizer, Karl

    2008-01-01

    Structural equation modeling provides the framework for investigating experimental effects on the basis of variances and covariances in repeated measurements. A special type of confirmatory factor analysis as part of this framework enables the appropriate representation of the experimental effect and the separation of experimental and…

  7. Prewar Factors in Combat-Related Posttraumatic Stress Disorder: Structural Equation Modeling with a National Sample of Female and Male Vietnam Veterans.

    ERIC Educational Resources Information Center

    King, Daniel W.; And Others

    1996-01-01

    Structural equation modeling was used to examine relationships among prewar factors, dimensions of war-zone stress, and current posttraumatic stress disorder (PTSD) symptomatology using data from 1,632 female and male participants in the National Vietnam Veterans Readjustment Study. Discusses research findings. Recommends more attention be given…

  8. Structural equation model of the relationships among inquiry-based instruction, attitudes toward science, achievement in science, and gender

    NASA Astrophysics Data System (ADS)

    Wallace, Stephen R.

    The purpose of this study was to clarify the muddled state of the magnitude and direction of the relationships among inquiry-based instruction, attitudes toward science, and science achievement, as students progressed from middle school into high school. The problem under investigation was two-fold. The first was to create and test a structural equation model describing the direction and magnitude of the relationships. The second was to determine gender differences in the relationships. Data collected from the Longitudinal Study of American Youth (LSAY) over a three-year period were used to create and test the structural equation model. Results of this study indicate inquiry-based instruction is effective in positively influencing 7th- and 8th-grade students' understandings of science concepts. Additionally, inquiry-based instruction does not have an adverse influence on science achievement in 9th grade. If the primary goal is science achievement, then an inquiry-based approach to instruction is effective. On the other hand, if the primary goal of science instruction is to positively influence students' attitudes toward science (in particular, perceptions of the usefulness of science) then inquiry-based approaches may not be the most effective method of instruction. Inquiry-based instruction adversely influences 7th-grade males' attitudes toward science and has no significant influence on 7th-grade females' attitudes toward science. In 8th grade, inquiry-based instruction has no significant influence on either genders' attitudes toward science. Not until the 9th grade does inquiry-based instruction have a significantly positive influence on males' and females' perceptions of the usefulness of science. Additionally, prior attitudes toward science significantly influences science achievement only in 8th grade and science achievement influences attitudes toward science only in 9th grade. Recommendations for further research are based on the findings and limitations of

  9. Analysis of factors affecting satisfaction level on problem based learning approach using structural equation modeling

    NASA Astrophysics Data System (ADS)

    Hussain, Nur Farahin Mee; Zahid, Zalina

    2014-12-01

    Nowadays, in the job market demand, graduates are expected not only to have higher performance in academic but they must also be excellent in soft skill. Problem-Based Learning (PBL) has a number of distinct advantages as a learning method as it can deliver graduates that will be highly prized by industry. This study attempts to determine the satisfaction level of engineering students on the PBL Approach and to evaluate their determinant factors. The Structural Equation Modeling (SEM) was used to investigate how the factors of Good Teaching Scale, Clear Goals, Student Assessment and Levels of Workload affected the student satisfaction towards PBL approach.

  10. Regional regression equations for estimation of natural streamflow statistics in Colorado

    USGS Publications Warehouse

    Capesius, Joseph P.; Stephens, Verlin C.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Department of Transportation, developed regional regression equations for estimation of various streamflow statistics that are representative of natural streamflow conditions at ungaged sites in Colorado. The equations define the statistical relations between streamflow statistics (response variables) and basin and climatic characteristics (predictor variables). The equations were developed using generalized least-squares and weighted least-squares multilinear regression reliant on logarithmic variable transformation. Streamflow statistics were derived from at least 10 years of streamflow data through about 2007 from selected USGS streamflow-gaging stations in the study area that are representative of natural-flow conditions. Basin and climatic characteristics used for equation development are drainage area, mean watershed elevation, mean watershed slope, percentage of drainage area above 7,500 feet of elevation, mean annual precipitation, and 6-hour, 100-year precipitation. For each of five hydrologic regions in Colorado, peak-streamflow equations that are based on peak-streamflow data from selected stations are presented for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year instantaneous-peak streamflows. For four of the five hydrologic regions, equations based on daily-mean streamflow data from selected stations are presented for 7-day minimum 2-, 10-, and 50-year streamflows and for 7-day maximum 2-, 10-, and 50-year streamflows. Other equations presented for the same four hydrologic regions include those for estimation of annual- and monthly-mean streamflow and streamflow-duration statistics for exceedances of 10, 25, 50, 75, and 90 percent. All equations are reported along with salient diagnostic statistics, ranges of basin and climatic characteristics on which each equation is based, and commentary of potential bias, which is not otherwise removed

  11. Revisiting the hypothesis of equating the 6-year oscillation in the length-of-day to the mantle-inner core gravitational coupling

    NASA Astrophysics Data System (ADS)

    Chao, B. F.

    2016-12-01

    The steady 6-year oscillation observed in the length-of-day variation (ΔLOD) has been postulated to be, among others, an intrinsic oscillatory mode of the Earth's axial spin due to the mantle-inner core gravitational (MICG) coupling [Buffett and Mound, 2005]. Here I develop the general equation of motion of the 3-D MICG system from first principles in terms of multipole-multipole interactions (as in molecular electric field) under simple but realistic assumptions including the buoyancy effect of the fluid outer core. When specialized to the governing of the simple-harmonic oscillation in ΔLOD, the restoring force thereof is predominated, not surprisingly, by the [degree-2, order-2] density anomalies in the lower mantle and the upper inner core. Equating the corresponding "spring constant" to that belonging to the 6-year ΔLOD oscillation, one can estimate the difference between the two inner-core equatorial principal moments of inertia to be (BIC-AIC) ≈ 1.08 x 1031 kg m2 accurate perhaps to within a factor of 2, or a tri-axiality factor about 8 times larger than that of the whole Earth. Moreover, the orientation of the two principal axes can be identified in accordance with the timing of the 6-year ΔLOD oscillation. The physical excitation of the 6-year ΔLOD oscillation, ±0.12 ms in amplitude, is beyond the present scope.

  12. Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.

    2006-01-01

    Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The

  13. Work Ability: using structural equation modeling to assess the effects of aging, health and work on the population of Brazilian municipal employees.

    PubMed

    Alcântara, Marcus A; Sampaio, Rosana F; Assunção, Ada Ávila; Silva, Fabiana C Martins

    2014-01-01

    The Work Ability Model has a holistic structure that incorporates individual characteristics, work-related factors and life outside of work. The model has been explored in the context of Finland but still needs to be applied in other countries. The aim of this study was to examine the relationships between age, health, work and work ability in a sample of Brazilian municipal employees. A sample of 5,646 workers answered a web-survey questionnaire that collected information about socio-demographics, health, work characteristics and work ability. Structural equation modeling (SEM) was used to examine the simultaneous relationships between the variables that comprise the Work Ability Model. The sample was predominantly female (68.0%), between 30 and 49 years old (60.0%) and highly educated (66.0%). SEM produced good fit indexes that supported the Work Ability Model. Age was positively related to work ability and negatively related to health. Health and work characteristics positively influenced work ability. The results produced additional support for the conceptualization of work ability as a complex and dynamic phenomenon: a system composed of an individual and various elements of his/her work interact in time and space in a nonlinear way.

  14. Effect of threatening life experiences and adverse family relations in ulcerative colitis: analysis using structural equation modeling and comparison with Crohn's disease.

    PubMed

    Slonim-Nevo, Vered; Sarid, Orly; Friger, Michael; Schwartz, Doron; Sergienko, Ruslan; Pereg, Avihu; Vardi, Hillel; Singer, Terri; Chernin, Elena; Greenberg, Dan; Odes, Shmuel

    2017-05-01

    We published that threatening life experiences and adverse family relations impact Crohn's disease (CD) adversely. In this study, we examine the influence of these stressors in ulcerative colitis (UC). Patients completed demography, economic status (ES), the Patient-Simple Clinical Colitis Activity Index (P-SCCAI), the Short Inflammatory Bowel Disease Questionnaire (SIBDQ), the Short-Form Health Survey (SF-36), the Brief Symptom Inventory (BSI), the Family Assessment Device (FAD), and the List of Threatening Life Experiences (LTE). Analysis included multiple linear and quantile regressions and structural equation modeling, comparing CD. UC patients (N=148, age 47.55±16.04 years, 50.6% women) had scores [median (interquartile range)] as follows: SCAAI, 2 (0.3-4.8); FAD, 1.8 (1.3-2.2); LTE, 1.0 (0-2.0); SF-36 Physical Health, 49.4 (36.8-55.1); SF-36 Mental Health, 45 (33.6-54.5); Brief Symptom Inventory-Global Severity Index (GSI), 0.5 (0.2-1.0). SIBDQ was 49.76±14.91. There were significant positive associations for LTE and SCAAI (25, 50, 75% quantiles), FAD and SF-36 Mental Health, FAD and LTE with GSI (50, 75, 90% quantiles), and ES with SF-36 and SIBDQ. The negative associations were as follows: LTE with SF-36 Physical/Mental Health, SIBDQ with FAD and LTE, ES with GSI (all quantiles), and P-SCCAI (75, 90% quantiles). In structural equation modeling analysis, LTE impacted ES negatively and ES impacted GSI negatively; LTE impacted GSI positively and GSI impacted P-SCCAI positively. In a split model, ES had a greater effect on GSI in UC than CD, whereas other path magnitudes were similar. Threatening life experiences, adverse family relations, and poor ES make UC patients less healthy both physically and mentally. The impact of ES is worse in UC than CD.

  15. Regression equations for calculation of z scores for echocardiographic measurements of right heart structures in healthy Han Chinese children.

    PubMed

    Wang, Shan-Shan; Zhang, Yu-Qi; Chen, Shu-Bao; Huang, Guo-Ying; Zhang, Hong-Yan; Zhang, Zhi-Fang; Wu, Lan-Ping; Hong, Wen-Jing; Shen, Rong; Liu, Yi-Qing; Zhu, Jun-Xue

    2017-06-01

    Clinical decision making in children with congenital and acquired heart disease relies on measurements of cardiac structures using two-dimensional echocardiography. We aimed to establish z-score regression equations for right heart structures in healthy Chinese Han children. Two-dimensional and M-mode echocardiography was performed in 515 patients. We measured the dimensions of the pulmonary valve annulus (PVA), main pulmonary artery (MPA), left pulmonary artery (LPA), right pulmonary artery (RPA), right ventricular outflow tract at end-diastole (RVOTd) and at end-systole (RVOTs), tricuspid valve annulus (TVA), right ventricular inflow tract at end-diastole (RVIDd) and at end-systole (RVIDs), and right atrium (RA). Regression analyses were conducted to relate the measurements of right heart structures to 4body surface area (BSA). Right ventricular outflow-tract fractional shortening (RVOTFS) was also calculated. Several models were used, and the best model was chosen to establish a z-score calculator. PVA, MPA, LPA, RPA, RVOTd, RVOTs, TVA, RVIDd, RVIDs, and RA (R 2  = 0.786, 0.705, 0.728, 0.701, 0.706, 0.824, 0.804, 0.663, 0.626, and 0.793, respectively) had a cubic polynomial relationship with BSA; specifically, measurement (M) = β0 + β1 × BSA + β2 × BSA 2  + β3 × BSA. 3 RVOTFS (0.28 ± 0.02) fell within a narrow range (0.12-0.51). Our results provide reference values for z scores and regression equations for right heart structures in Han Chinese children. These data may help interpreting the routine clinical measurement of right heart structures in children with congenital or acquired heart disease. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:293-303, 2017. © 2017 Wiley Periodicals, Inc.

  16. Ground-Motion Prediction Equations (GMPEs) from a global dataset: the PEERPEER NGA equations

    USGS Publications Warehouse

    Boore, David M.; Akkar, Sinan; Gulkan, Polat; van Eck, Torild

    2011-01-01

    The PEER NGA ground-motion prediction equation s (GMPEs) were derived by five developer teams over several years, resulting in five sets of GMPEs. The teams used various subsets of a global database of ground motions and metadata from shallow earthquakes in tectonically active regions in the development of the equations. Since their publication, the predicted motions from these GMPEs have been compared with data from various parts of the world – data that largely were not used in the development of the GMPEs. The comparisons suggest that the NGA GMPEs are applicable globally for shallow earthquakes in tectonically active regions.

  17. Hydrodynamic Coherence and Vortex Solutions of the Euler-Helmholtz Equation

    NASA Astrophysics Data System (ADS)

    Fimin, N. N.; Chechetkin, V. M.

    2018-03-01

    The form of the general solution of the steady-state Euler-Helmholtz equation (reducible to the Joyce-Montgomery one) in arbitrary domains on the plane is considered. This equation describes the dynamics of vortex hydrodynamic structures.

  18. Effects of sociodemographic characteristics and patients' health beliefs on tuberculosis treatment adherence in Ethiopia: a structural equation modelling approach.

    PubMed

    Tola, Habteyes Hailu; Karimi, Mehrdad; Yekaninejad, Mir Saeed

    2017-12-15

    Patients' beliefs are a major factor affecting tuberculosis (TB) treatment adherence. However, there has been little use of Health Belief Model (HBM) in determining the pathway effect of patients' sociodemographic characteristics and beliefs on TB treatment adherence. Therefore, this study was aimed at determining the effect of sociodemographic characteristics and patients' health beliefs on TB treatment adherence based on the HBM concept in Ethiopia. A cross-sectional study was conducted in Addis Ababa, Ethiopia among TB patients undertaking treatment. Thirty health centres were randomly selected and one hospital was purposely chosen. Six hundred and ninety-eight TB patients who had been on treatment for 1-2 month, were aged 18 years or above, and had the mental capability to provide consent were enrolled consecutively with non-probability sampling technique from the TB registration book until required sample size achieved. Structured questionnaires were used to collect data. Structural equation modelling was employed to assess the pathway relationship between sociodemographic characteristics, patients' beliefs, and treatment adherence. Of the 698 enrolled participants, 401 (57.4%) were male and 490 (70.2%) were aged 35 years and below. The mean age of participants was 32 (± 11.7) and the age range was 18-90 years. Perceived barrier/benefit was shown to be a significant direct negative effect on TB treatment adherence (ß = -0.124, P = 0.032). In addition, cue to action (ß = -0.68, P ≤ 0.001) and psychological distress (ß = 0.08, P < 0.001) were shown significant indirect effects on TB treatment adherence through perceived barrier/benefit. Interventions intended to decrease perceived barriers and maximize perceived benefits should be implemented to enhance TB treatment adherence. In addition, it is crucial that counselling is incorporated with the regular directly observed therapy program. Motivators (cue to actions) such as

  19. Individual, social environmental, and physical environmental influences on physical activity among black and white adults: a structural equation analysis.

    PubMed

    McNeill, Lorna Haughton; Wyrwich, Kathleen W; Brownson, Ross C; Clark, Eddie M; Kreuter, Matthew W

    2006-02-01

    Social ecological models suggest that conditions in the social and physical environment, in addition to individual factors, play important roles in health behavior change. Using structural equation modeling, this study tested a theoretically and empirically based explanatory model of physical activity to examine theorized direct and indirect effects of individual (e.g., motivation and self-efficacy), social environmental (e.g., social support), and physical environmental factors (e.g., neighborhood quality and availability of facilities). A community-based sample of adults (N = 910) was recruited from 2 public health centers (67% female, 43% African American, 43% < $20,000/year, M age = 33 years) and completed a self-administered survey assessing their current physical activity level, intrinsic and extrinsic motivation for physical activity, perceived social support, self-efficacy, and perceptions of the physical environment. Results indicated that (a) perceptions of the physical environment had direct effects on physical activity, (b) both the social and physical environments had indirect effects on physical activity through motivation and self-efficacy, and (c) social support influenced physical activity indirectly through intrinsic and extrinsic motivation. For all forms of activity, self-efficacy was the strongest direct correlate of physical activity, and evidence of a positive dose-response relation emerged between self-efficacy and intensity of physical activity. Findings from this research highlight the interactive role of individual and environmental influences on physical activity.

  20. Impact of clinical input variable uncertainties on ten-year atherosclerotic cardiovascular disease risk using new pooled cohort equations.

    PubMed

    Gupta, Himanshu; Schiros, Chun G; Sharifov, Oleg F; Jain, Apurva; Denney, Thomas S

    2016-08-31

    Recently released American College of Cardiology/American Heart Association (ACC/AHA) guideline recommends the Pooled Cohort equations for evaluating atherosclerotic cardiovascular risk of individuals. The impact of the clinical input variable uncertainties on the estimates of ten-year cardiovascular risk based on ACC/AHA guidelines is not known. Using a publicly available the National Health and Nutrition Examination Survey dataset (2005-2010), we computed maximum and minimum ten-year cardiovascular risks by assuming clinically relevant variations/uncertainties in input of age (0-1 year) and ±10 % variation in total-cholesterol, high density lipoprotein- cholesterol, and systolic blood pressure and by assuming uniform distribution of the variance of each variable. We analyzed the changes in risk category compared to the actual inputs at 5 % and 7.5 % risk limits as these limits define the thresholds for consideration of drug therapy in the new guidelines. The new-pooled cohort equations for risk estimation were implemented in a custom software package. Based on our input variances, changes in risk category were possible in up to 24 % of the population cohort at both 5 % and 7.5 % risk boundary limits. This trend was consistently noted across all subgroups except in African American males where most of the cohort had ≥7.5 % baseline risk regardless of the variation in the variables. The uncertainties in the input variables can alter the risk categorization. The impact of these variances on the ten-year risk needs to be incorporated into the patient/clinician discussion and clinical decision making. Incorporating good clinical practices for the measurement of critical clinical variables and robust standardization of laboratory parameters to more stringent reference standards is extremely important for successful implementation of the new guidelines. Furthermore, ability to customize the risk calculator inputs to better represent unique clinical

  1. Solution of matrix equations using sparse techniques

    NASA Technical Reports Server (NTRS)

    Baddourah, Majdi

    1994-01-01

    The solution of large systems of matrix equations is key to the solution of a large number of scientific and engineering problems. This talk describes the sparse matrix solver developed at Langley which can routinely solve in excess of 263,000 equations in 40 seconds on one Cray C-90 processor. It appears that for large scale structural analysis applications, sparse matrix methods have a significant performance advantage over other methods.

  2. Gratitude mediates the effect of emotional intelligence on subjective well-being: A structural equation modeling analysis.

    PubMed

    Geng, Yuan

    2016-11-01

    This study investigated the relationship among emotional intelligence, gratitude, and subjective well-being in a sample of university students. A total of 365 undergraduates completed the emotional intelligence scale, the gratitude questionnaire, and the subjective well-being measures. The results of the structural equation model showed that emotional intelligence is positively associated with gratitude and subjective well-being, that gratitude is positively associated with subjective well-being, and that gratitude partially mediates the positive relationship between emotional intelligence and subjective well-being. Bootstrap test results also revealed that emotional intelligence has a significant indirect effect on subjective well-being through gratitude.

  3. Investigating the Relationships among Metacognitive Strategy Training, Willingness to Read English Medical Texts, and Reading Comprehension Ability Using Structural Equation Modeling

    ERIC Educational Resources Information Center

    Hassanpour, Masoumeh; Ghonsooly, Behzad; Nooghabi, Mehdi Jabbari; Shafiee, Mohammad Naser

    2017-01-01

    This quasi-experimental study examined the relationship between students' metacognitive awareness and willingness to read English medical texts. So, a model was proposed and tested using structural equation modeling (SEM) with R software. Participants included 98 medical students of two classes. One class was assigned as the control group and the…

  4. Algorithms and software for solving finite element equations on serial and parallel architectures

    NASA Technical Reports Server (NTRS)

    George, Alan

    1989-01-01

    Over the past 15 years numerous new techniques have been developed for solving systems of equations and eigenvalue problems arising in finite element computations. A package called SPARSPAK has been developed by the author and his co-workers which exploits these new methods. The broad objective of this research project is to incorporate some of this software in the Computational Structural Mechanics (CSM) testbed, and to extend the techniques for use on multiprocessor architectures.

  5. Baecklund transformation for the Ernst equation of general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, B.K.

    A Baecklund transformation for the Ernst equation arising in general relativity in connection with several physical problems is derived, using the pseudopotential method of Wahlquist and Estabrook. A prolongation structure is also constructed, using a method of writing the equations in terms of differential forms, and an equation in the spirit of Lax is constructed, somewhat different from that given by Maison. Possible uses of the Baecklund transformation to generate new solutions are mentioned.

  6. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  7. Partner violence victimization and unintended pregnancy in Latina and Asian American women: Analysis using structural equation modeling.

    PubMed

    Cha, Susan; Masho, Saba W; Heh, Victor

    2017-04-01

    Intimate partner violence (IPV) is a pervasive public health problem in the U.S., affecting nearly one in every three women over their lifetimes. Using structural equation modeling, we evaluated the association between IPV and unintended pregnancy, mediated by condom use and perceived spousal/partner support among Latina and Asian women. Data came from the 2002-2003 National Latino and Asian American Study (NLAAS). The analysis was restricted to married or cohabiting female respondents aged 18+ years (n = 1,595). Dependent variables included unintended pregnancy, condom use, and perceived partner support. Independent variables included physical abuse or threats by current partner and primary decision-maker. Weighted least squares was used to fit path models to data comprising dichotomous and ordinal variables. More than 13% of women reported IPV during their relationship with their partner/spouse. Abused women were twice as likely as non-abused women to have had an unintended pregnancy. This association was partially mediated by perceived partner support. Condom use had a positive, but non-significant association with unintended pregnancy, and IPV had a negative, but non-significant association with condom use. Results highlight the importance of IPV screening for minority women. Efforts to combine family planning and violence prevention services may help reduce unintended pregnancy.

  8. Family Structure, Family Stability, and Outcomes of Five-Year-Old Children

    PubMed Central

    Brooks-Gunn, Jeanne; Waldfogel, Jane

    2013-01-01

    This study exploits data from the Fragile Families and Child Wellbeing Study, a birth cohort study of a diverse sample of children from twenty U.S. cities (N = 3,676), to examine how cognitive, behavioural, and health outcomes of five-year old children differ according to their family structure and family stability. We define three models: one that measures family structure at birth only, a second that measures current family structure at year five conditional on family structure at birth, and a third that measures changes in family structure from birth to age five. We find that while family structure has persistent links to child outcomes, the effects are significantly altered by stability of the family structure over time. These findings remain robust even after addressing selection. PMID:24163735

  9. The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models

    PubMed Central

    Chow, Sy-Miin; Witkiewitz, Katie; Grasman, Raoul P. P. P.; Maisto, Stephen A.

    2015-01-01

    Catastrophe theory (Thom, 1972, 1993) is the study of the many ways in which continuous changes in a system’s parameters can result in discontinuous changes in one or several outcome variables of interest. Catastrophe theory–inspired models have been used to represent a variety of change phenomena in the realm of social and behavioral sciences. Despite their promise, widespread applications of catastrophe models have been impeded, in part, by difficulties in performing model fitting and model comparison procedures. We propose a new modeling framework for testing one kind of catastrophe model — the cusp catastrophe model — as a mixture structural equation model (MSEM) when cross-sectional data are available; or alternatively, as an MSEM with regime-switching (MSEM-RS) when longitudinal panel data are available. The proposed models and the advantages offered by this alternative modeling framework are illustrated using two empirical examples and a simulation study. PMID:25822209

  10. Hammett equation and generalized Pauling's electronegativity equation.

    PubMed

    Liu, Lei; Fu, Yao; Liu, Rui; Li, Rui-Qiong; Guo, Qing-Xiang

    2004-01-01

    Substituent interaction energy (SIE) was defined as the energy change of the isodesmic reaction X-spacer-Y + H-spacer-H --> X-spacer-H + H-spacer-Y. It was found that this SIE followed a simple equation, SIE(X,Y) = -ksigma(X)sigma(Y), where k was a constant dependent on the system and sigma was a certain scale of electronic substituent constant. It was demonstrated that the equation was applicable to disubstituted bicyclo[2.2.2]octanes, benzenes, ethylenes, butadienes, and hexatrienes. It was also demonstrated that Hammett's equation was a derivative form of the above equation. Furthermore, it was found that when spacer = nil the above equation was mathematically the same as Pauling's electronegativity equation. Thus it was shown that Hammett's equation was a derivative form of the generalized Pauling's electronegativity equation and that a generalized Pauling's electronegativity equation could be utilized for diverse X-spacer-Y systems. In addition, the total electronic substituent effects were successfully separated into field/inductive and resonance effects in the equation SIE(X,Y) = -k(1)F(X)F(Y) - k(2)R(X)R(Y) - k(3)(F(X)R(Y) + R(X)F(Y)). The existence of the cross term (i.e., F(X)R(Y) and R(X)F(Y)) suggested that the field/inductive effect was not orthogonal to the resonance effect because the field/inductive effect from one substituent interacted with the resonance effect from the other. Further studies on multi-substituted systems suggested that the electronic substituent effects should be pairwise and additive. Hence, the SIE in a multi-substituted system could be described using the equation SIE(X1, X2, ..., Xn) = Sigma(n-1)(i=1)Sigma(n)(j=i+1)k(ij)sigma(X)isigma(X)j.

  11. Investigating the potential of e-Learning in healthcare postgraduate curricula: a structural equation model.

    PubMed

    Katharaki, Maria; Daskalakis, Stelios; Mantas, John

    2010-01-01

    The objective of this paper is to assess the future adaptability of e-Learning platforms within postgraduate modules. An ongoing empirical assessment was conducted amongst postgraduate students, based on the Technology Acceptance Model (TAM). The current paper presents the outcomes from the second phase of a survey, involving fifty six participants. Data analysis was performed using a structural equation model, based on partial least squares. Results highlighted the very strong effect of perceived usefulness and perceived ease of use to attitude towards using e-Learning platforms. Consequently, attitude towards use proved to be a very strong predictor of behavioral intention. Perceived usefulness, on the contrary, did not prove to have an effect to behavioral intention. Implications on the potential of using e-Learning platforms are discussed along with limitations and future directions of the study.

  12. A small sample test of the factor structure of postural movement and bilateral motor integration using structural equation modeling.

    PubMed

    Lin, Chin-Kai; Wu, Huey-Min; Lin, Chung-Hui; Wu, Yuh-Yih; Wu, Pei-Fang; Kuo, Bor-Chen; Yeung, Kwok-Tak

    2012-10-01

    The goal of this study was to examine the relationship between the validity of postural movement and bilateral motor integration in terms of sensory integration theory. Participants in this study were 61 Chinese children ages 48 to 70 months. Structural equation modeling was applied to assess the relation between measures tapping postural movement and bilateral motor integration: for postural movement, the measures involve the Monkey Task, Side-Sit Co-contraction, Prone on Elbows, Wheelbarrow Walk, Airplane, and Scooter Board Co-contraction from the DeGangi-Berk Test of Sensory Integration, and Standing Balance with Eyes Closed/Opened in Southern California Sensory Integration Tests. For bilateral motor integration, the measures chosen were the Rolling Pin Activity, Jump and Turn, Diadokokinesis, Drumming, and Upper Extremity Control from the DeGangi-Berk Test of Sensory Integration, and Cross the Midline in Southern California Sensory Integration Tests (SCSIT). Postural movement was highly correlated with the bilateral motor integration. The factor structure fit the theoretical conceptualization, classifying postural movement and bilateral motor integration together in the same category. Therapists could combine two separate objectives (postural movement and bilateral motor integration) of intervention in an activity to improve the adaptive skills based on the vestibular-proprioceptive integration.

  13. Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum

    NASA Astrophysics Data System (ADS)

    Harbour, L.; Förster, G. D.; Dharma-wardana, M. W. C.; Lewis, Laurent J.

    2018-04-01

    The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature quasiequilibrium state, with the electron temperature higher than the ion temperature, are investigated using molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model. Such pair potentials based on density functional theory are parameter-free and depend directly on the electron temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties. Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows good agreement, justifying a study of quasiequilibrium situations. Analyzing the van Hove function, we find that ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical properties have a physical meaning for the quasiequilibrium state. A significant increase in the speed of sound is predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is increased. The two-temperature equation of state including the free energy, internal energy, and pressure is also presented.

  14. A structural equation model analysis of relationships among ENSO, seasonal descriptors and wildfires.

    PubMed

    Slocum, Matthew G; Orzell, Steve L

    2013-01-01

    Seasonality drives ecological processes through networks of forcings, and the resultant complexity requires creative approaches for modeling to be successful. Recently ecologists and climatologists have developed sophisticated methods for fully describing seasons. However, to date the relationships among the variables produced by these methods have not been analyzed as networks, but rather with simple univariate statistics. In this manuscript we used structural equation modeling (SEM) to analyze a proposed causal network describing seasonality of rainfall for a site in south-central Florida. We also described how this network was influenced by the El Niño-Southern Oscillation (ENSO), and how the network in turn affected the site's wildfire regime. Our models indicated that wet and dry seasons starting later in the year (or ending earlier) were shorter and had less rainfall. El Niño conditions increased dry season rainfall, and via this effect decreased the consistency of that season's drying trend. El Niño conditions also negatively influenced how consistent the moistening trend was during the wet season, but in this case the effect was direct and did not route through rainfall. In modeling wildfires, our models showed that area burned was indirectly influenced by ENSO via its effect on dry season rainfall. Area burned was also indirectly reduced when the wet season had consistent rainfall, as such wet seasons allowed fewer wildfires in subsequent fire seasons. Overall area burned at the study site was estimated with high accuracy (R (2) score = 0.63). In summary, we found that by using SEMs, we were able to clearly describe causal patterns involving seasonal climate, ENSO and wildfire. We propose that similar approaches could be effectively applied to other sites where seasonality exerts strong and complex forcings on ecological processes.

  15. A Structural Equation Model Analysis of Relationships among ENSO, Seasonal Descriptors and Wildfires

    PubMed Central

    Slocum, Matthew G.; Orzell, Steve L.

    2013-01-01

    Seasonality drives ecological processes through networks of forcings, and the resultant complexity requires creative approaches for modeling to be successful. Recently ecologists and climatologists have developed sophisticated methods for fully describing seasons. However, to date the relationships among the variables produced by these methods have not been analyzed as networks, but rather with simple univariate statistics. In this manuscript we used structural equation modeling (SEM) to analyze a proposed causal network describing seasonality of rainfall for a site in south-central Florida. We also described how this network was influenced by the El Niño-Southern Oscillation (ENSO), and how the network in turn affected the site’s wildfire regime. Our models indicated that wet and dry seasons starting later in the year (or ending earlier) were shorter and had less rainfall. El Niño conditions increased dry season rainfall, and via this effect decreased the consistency of that season’s drying trend. El Niño conditions also negatively influenced how consistent the moistening trend was during the wet season, but in this case the effect was direct and did not route through rainfall. In modeling wildfires, our models showed that area burned was indirectly influenced by ENSO via its effect on dry season rainfall. Area burned was also indirectly reduced when the wet season had consistent rainfall, as such wet seasons allowed fewer wildfires in subsequent fire seasons. Overall area burned at the study site was estimated with high accuracy (R 2 score = 0.63). In summary, we found that by using SEMs, we were able to clearly describe causal patterns involving seasonal climate, ENSO and wildfire. We propose that similar approaches could be effectively applied to other sites where seasonality exerts strong and complex forcings on ecological processes. PMID:24086670

  16. Evaluation of a Digital Game-Based Learning Program for Enhancing Youth Mental Health: A Structural Equation Modeling of the Program Effectiveness

    PubMed Central

    Huen, Jenny MY; Lai, Eliza SY; Shum, Angie KY; So, Sam WK; Chan, Melissa KY; Wong, Paul WC; Law, YW

    2016-01-01

    Background Digital game-based learning (DGBL) makes use of the entertaining power of digital games for educational purposes. Effectiveness assessment of DGBL programs has been underexplored and no attempt has been made to simultaneously model both important components of DGBL: learning attainment (ie, educational purposes of DGBL) and engagement of users (ie, entertaining power of DGBL) in evaluating program effectiveness. Objective This study aimed to describe and evaluate an Internet-based DGBL program, Professor Gooley and the Flame of Mind, which promotes mental health to adolescents in a positive youth development approach. In particular, we investigated whether user engagement in the DGBL program could enhance their attainment on each of the learning constructs per DGBL module and subsequently enhance their mental health as measured by psychological well-being. Methods Users were assessed on their attainment on each learning construct, psychological well-being, and engagement in each of the modules. One structural equation model was constructed for each DGBL module to model the effect of users' engagement and attainment on the learning construct on their psychological well-being. Results Of the 498 secondary school students that registered and participated from the first module of the DGBL program, 192 completed all 8 modules of the program. Results from structural equation modeling suggested that a higher extent of engagement in the program activities facilitated users’ attainment on the learning constructs on most of the modules and in turn enhanced their psychological well-being after controlling for users’ initial psychological well-being and initial attainment on the constructs. Conclusions This study provided evidence that Internet intervention for mental health, implemented with the technologies and digital innovations of DGBL, could enhance youth mental health. Structural equation modeling is a promising approach in evaluating the effectiveness of

  17. Evaluation of a Digital Game-Based Learning Program for Enhancing Youth Mental Health: A Structural Equation Modeling of the Program Effectiveness.

    PubMed

    Huen, Jenny My; Lai, Eliza Sy; Shum, Angie Ky; So, Sam Wk; Chan, Melissa Ky; Wong, Paul Wc; Law, Y W; Yip, Paul Sf

    2016-10-07

    Digital game-based learning (DGBL) makes use of the entertaining power of digital games for educational purposes. Effectiveness assessment of DGBL programs has been underexplored and no attempt has been made to simultaneously model both important components of DGBL: learning attainment (ie, educational purposes of DGBL) and engagement of users (ie, entertaining power of DGBL) in evaluating program effectiveness. This study aimed to describe and evaluate an Internet-based DGBL program, Professor Gooley and the Flame of Mind, which promotes mental health to adolescents in a positive youth development approach. In particular, we investigated whether user engagement in the DGBL program could enhance their attainment on each of the learning constructs per DGBL module and subsequently enhance their mental health as measured by psychological well-being. Users were assessed on their attainment on each learning construct, psychological well-being, and engagement in each of the modules. One structural equation model was constructed for each DGBL module to model the effect of users' engagement and attainment on the learning construct on their psychological well-being. Of the 498 secondary school students that registered and participated from the first module of the DGBL program, 192 completed all 8 modules of the program. Results from structural equation modeling suggested that a higher extent of engagement in the program activities facilitated users' attainment on the learning constructs on most of the modules and in turn enhanced their psychological well-being after controlling for users' initial psychological well-being and initial attainment on the constructs. This study provided evidence that Internet intervention for mental health, implemented with the technologies and digital innovations of DGBL, could enhance youth mental health. Structural equation modeling is a promising approach in evaluating the effectiveness of DGBL programs.

  18. Quantified Choice of Root-Mean-Square Errors of Approximation for Evaluation and Power Analysis of Small Differences between Structural Equation Models

    ERIC Educational Resources Information Center

    Li, Libo; Bentler, Peter M.

    2011-01-01

    MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of…

  19. Averaging problem in general relativity, macroscopic gravity and using Einstein's equations in cosmology.

    NASA Astrophysics Data System (ADS)

    Zalaletdinov, R. M.

    1998-04-01

    The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.

  20. Improvement of the Mair scoring system using structural equations modeling for classifying the diagnostic adequacy of cytology material from thyroid lesions.

    PubMed

    Kulkarni, H R; Kamal, M M; Arjune, D G

    1999-12-01

    The scoring system developed by Mair et al. (Acta Cytol 1989;33:809-813) is frequently used to grade the quality of cytology smears. Using a one-factor analytic structural equations model, we demonstrate that the errors in measurement of the parameters used in the Mair scoring system are highly and significantly correlated. We recommend the use of either a multiplicative scoring system, using linear scores, or an additive scoring system, using exponential scores, to correct for the correlated errors. We suggest that the 0, 1, and 2 points used in the Mair scoring system be replaced by 1, 2, and 4, respectively. Using data on fine-needle biopsies of 200 thyroid lesions by both fine-needle aspiration (FNA) and fine-needle capillary sampling (FNC), we demonstrate that our modification of the Mair scoring system is more sensitive and more consistent with the structural equations model. Therefore, we recommend that the modified Mair scoring system be used for classifying the diagnostic adequacy of cytology smears. Diagn. Cytopathol. 1999;21:387-393. Copyright 1999 Wiley-Liss, Inc.

  1. A Riemann-Hilbert Approach for the Novikov Equation

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech

    2016-09-01

    We develop the inverse scattering transform method for the Novikov equation u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx} considered on the line xin(-∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3× 3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.

  2. Two ways to solve, using Lie group analysis, the fundamental valuation equation in the double-square-root model of the term structure

    NASA Astrophysics Data System (ADS)

    Sinkala, W.

    2011-01-01

    Two approaches based on Lie group analysis are employed to obtain the closed-form solution of a partial differential equation derived by Francis A. Longstaff [J Financial Econom 1989;23:195-224] for the price of a discount bond in the double-square-root model of the term structure.

  3. Imaging of the internal structure of comet 67P/Churyumov-Gerasimenko from radiotomography CONSERT Data (Rosetta Mission) through a full 3D regularized inversion of the Helmholtz equations on functional spaces

    NASA Astrophysics Data System (ADS)

    Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie; Benna, Mehdi; Kofman, Wlodek; Herique, Alain

    We investigate the inverse problem of imaging the internal structure of comet 67P/ Churyumov-Gerasimenko from radiotomography CONSERT data by using a coupled regularized inversion of the Helmholtz equations. A first set of Helmholtz equations, written w.r.t a basis of 3D Hankel functions describes the wave propagation outside the comet at large distances, a second set of Helmholtz equations, written w.r.t. a basis of 3D Zernike functions describes the wave propagation throughout the comet with avariable permittivity. Both sets are connected by continuity equations over a sphere that surrounds the comet. This approach, derived from GPS water vapor tomography of the atmosphere,will permit a full 3D inversion of the internal structure of the comet, contrary to traditional approaches that use a discretization of space at a fraction of the radiowave wavelength.

  4. Adiposity has no direct effect on carotid intima-media thickness in adolescents and young adults: Use of structural equation modeling to elucidate indirect & direct pathways.

    PubMed

    Gao, Zhiqian; Khoury, Philip R; McCoy, Connie E; Shah, Amy S; Kimball, Thomas R; Dolan, Lawrence M; Urbina, Elaine M

    2016-03-01

    Carotid intima-media thickness (cIMT) is associated with CV events in adults. Thicker cIMT is found in youth with CV risk factors including obesity. Which risk factors have the most effect upon cIMT in youth and whether obesity has direct or indirect effects is not known. We used structural equation modeling to elucidate direct and indirect pathways through which obesity and other risk factors were associated with cIMT. We collected demographics, anthropometrics and laboratory data on 784 subjects age 10-24 years (mean 18.0 ± 3.3 years). Common, bulb and internal carotid cIMT were measured by ultrasound. Multivariable regression analysis was performed to assess independent determinants of cIMT. Analyses were repeated with structural equation modeling to determine direct and indirect effects. Multivariable regression models explained 11%-22% of variation of cIMT. Age, sex and systolic blood pressure (BP) z-score were significant determinants of all cIMT segments. Body mass index (BMI) z-score, race, presence of type 2 diabetes mellitus (T2DM), hemoglobin A1c (HbA1c) and non-HDL were significant for some segments (all p = 0.05). The largest direct effect on cIMT was age (0.312) followed by BP (0.228), Blood glucose control (0.108) and non-HDL (0.134). BMI only had a significant indirect effect through blood glucose control, BP & non-HDL. High sensitivity C-reactive protein (CRP) had a small indirect effect through blood glucose control (all p = 0.05). Age and BP are the major factors with direct effect on cIMT. Glucose and non-HDL were also important in this cohort with a high prevalence of T2DM. BMI only has indirect effects, through other risk factors. Traditional CV risk factors have important direct effects on cIMT in the young, but adiposity exerts its influence only through other CV risk factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1994-01-01

    Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.

  6. A derivation of the beam equation

    NASA Astrophysics Data System (ADS)

    Duque, Daniel

    2016-01-01

    The Euler-Bernoulli equation describing the deflection of a beam is a vital tool in structural and mechanical engineering. However, its derivation usually entails a number of intermediate steps that may confuse engineering or science students at the beginnig of their undergraduate studies. We explain how this equation may be deduced, beginning with an approximate expression for the energy, from which the forces and finally the equation itself may be obtained. The description is begun at the level of small ‘particles’, and the continuum level is taken later on. However, when a computational solution is sought, the description turns back to the discrete level again. We first consider the easier case of a string under tension, and then focus on the beam. Numerical solutions for several loads are obtained.

  7. The Feeding Practices and Structure Questionnaire (FPSQ-28): A parsimonious version validated for longitudinal use from 2 to 5 years.

    PubMed

    Jansen, Elena; Williams, Kate E; Mallan, Kimberley M; Nicholson, Jan M; Daniels, Lynne A

    2016-05-01

    Prospective studies and intervention evaluations that examine change over time assume that measurement tools measure the same construct at each occasion. In the area of parent-child feeding practices, longitudinal measurement properties of the questionnaires used are rarely verified. To ascertain that measured change in feeding practices reflects true change rather than change in the assessment, structure, or conceptualisation of the constructs over time, this study examined longitudinal measurement invariance of the Feeding Practices and Structure Questionnaire (FPSQ) subscales (9 constructs; 40 items) across 3 time points. Mothers participating in the NOURISH trial reported their feeding practices when children were aged 2, 3.7, and 5 years (N = 404). Confirmatory Factor Analysis (CFA) within a structural equation modelling framework was used. Comparisons of initial cross-sectional models followed by longitudinal modelling of subscales, resulted in the removal of 12 items, including two redundant or poorly performing subscales. The resulting 28-item FPSQ-28 comprised 7 multi-item subscales: Reward for Behaviour, Reward for Eating, Persuasive Feeding, Overt Restriction, Covert Restriction, Structured Meal Setting and Structured Meal Timing. All subscales showed good fit over 3 time points and each displayed at least partial scalar (thresholds equal) longitudinal measurement invariance. We recommend the use of a separate single item indicator to assess the family meal setting. This is the first study to examine longitudinal measurement invariance in a feeding practices questionnaire. Invariance was established, indicating that the subscales of the shortened FPSQ-28 can be used with mothers to validly assess change in 7 feeding constructs in samples of children aged 2-5 years of age. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Static aeroelastic analysis of wings using Euler/Navier-Stokes equations coupled with improved wing-box finite element structures

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.

    1994-01-01

    Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.

  9. Time of exposure to night work and carotid atherosclerosis: a structural equation modeling approach using baseline data from ELSA-Brasil.

    PubMed

    Silva-Costa, Aline; Guimarães, Joanna; Chor, Dora; de Jesus Mendes da Fonseca, Maria; Bensenor, Isabela; Santos, Itamar; Barreto, Sandhi; Griep, Rosane Härter

    2018-07-01

    The study of cardiovascular diseases (CVD) associated with night work is difficult due to the long period required for conditions to manifest and the healthy-worker effect. Analyzing asymptomatic pre-clinical changes in the atherosclerotic process is a way to assess the pathways between exposure to night work and CVD. To evaluate the associations between night work and subclinical atherosclerosis measured by carotid intima-media thickness (CIMT) using baseline data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). We conducted cross-sectional analyses using baseline data (2008-2010) from 9785 civil servants, aged 35-74 years. The associations between time of exposure to night work and mean CIMT were examined using a structural equation model. The sample included 4259 men and 5526 women, mean age of 51.6 years. A total of 1778 (18.2%) individuals were exposed to night work (594 current and 1184 former night workers), and the mean years of night work exposed was 11.47 (SD = 9.45) years. On average, mean CIMT was 0.606 (SD = 0.130) mm. Among men, the increase in exposure to night work was significantly associated with an increase in BMI and CIMT. Among women, night work was not associated with increased CIMT. In relation to the indirect associations, results suggest a possible mediation by BMI, diabetes and hypertension on the association between the years of night work and mean CIMT only among men. Night work was associated with increased CIMT only among men. These findings add to the knowledge of the possible pathways that link night work and carotid atherosclerosis. Additionally, these results contribute to the recognition of work schedules as a public health problem that should be addressed by the medical community and policy makers.

  10. Textbook Multigrid Efficiency for the Steady Euler Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Sidilkover, David; Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.

  11. A Structural Equation Model of HIV-related Symptoms, Depressive Symptoms, and Medication Adherence.

    PubMed

    Yoo-Jeong, Moka; Waldrop-Valverde, Drenna; McCoy, Katryna; Ownby, Raymond L

    2016-05-01

    Adherence to combined antiretroviral therapy (cART) remains critical in management of HIV infection. This study evaluated depression as a potential mechanism by which HIV-related symptoms affect medication adherence and explored if particular clusters of HIV symptoms are susceptible to this mechanism. Baseline data from a multi-visit intervention study were analyzed among 124 persons living with HIV (PLWH). A bifactor model showed two clusters of HIV-related symptom distress: general HIV-related symptoms and gastrointestinal (GI) symptoms. Structural equation modeling showed that both general HIV-related symptoms and GI symptoms were related to higher levels of depressive symptoms, and higher levels of depressive symptoms were related to lower levels of medication adherence. Although general HIV-related symptoms and GI symptoms were not directly related to adherence, they were indirectly associated with adherence via depression. The findings highlight the importance of early recognition and evaluation of symptoms of depression, as well as the underlying physical symptoms that might cause depression, to improve medication adherence.

  12. A Structural Equation Model of HIV-related Symptoms, Depressive Symptoms, and Medication Adherence

    PubMed Central

    Yoo-Jeong, Moka; Waldrop-Valverde, Drenna; McCoy, Katryna; Ownby, Raymond L

    2016-01-01

    Adherence to combined antiretroviral therapy (cART) remains critical in management of HIV infection. This study evaluated depression as a potential mechanism by which HIV-related symptoms affect medication adherence and explored if particular clusters of HIV symptoms are susceptible to this mechanism. Baseline data from a multi-visit intervention study were analyzed among 124 persons living with HIV (PLWH). A bifactor model showed two clusters of HIV-related symptom distress: general HIV-related symptoms and gastrointestinal (GI) symptoms. Structural equation modeling showed that both general HIV-related symptoms and GI symptoms were related to higher levels of depressive symptoms, and higher levels of depressive symptoms were related to lower levels of medication adherence. Although general HIV-related symptoms and GI symptoms were not directly related to adherence, they were indirectly associated with adherence via depression. The findings highlight the importance of early recognition and evaluation of symptoms of depression, as well as the underlying physical symptoms that might cause depression, to improve medication adherence. PMID:27695710

  13. [A Methodological Quality Assessment of South Korean Nursing Research using Structural Equation Modeling in South Korea].

    PubMed

    Kim, Jung-Hee; Shin, Sujin; Park, Jin-Hwa

    2015-04-01

    The purpose of this study was to evaluate the methodological quality of nursing studies using structural equation modeling in Korea. Databases of KISS, DBPIA, and National Assembly Library up to March 2014 were searched using the MeSH terms 'nursing', 'structure', 'model'. A total of 152 studies were screened. After removal of duplicates and non-relevant titles, 61 papers were read in full. Of the sixty-one articles retrieved, 14 studies were published between 1992 and 2000, 27, between 2001 and 2010, and 20, between 2011 and March 2014. The methodological quality of the review examined varied considerably. The findings of this study suggest that more rigorous research is necessary to address theoretical identification, two indicator rule, distribution of sample, treatment of missing values, mediator effect, discriminant validity, convergent validity, post hoc model modification, equivalent models issues, and alternative models issues should be undergone. Further research with robust consistent methodological study designs from model identification to model respecification is needed to improve the validity of the research.

  14. Asymptotic problems for stochastic partial differential equations

    NASA Astrophysics Data System (ADS)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  15. Work-life balance culture, work-home interaction, and emotional exhaustion: a structural equation modeling approach.

    PubMed

    Nitzsche, Anika; Pfaff, Holger; Jung, Julia; Driller, Elke

    2013-01-01

    To examine the relationships among employees' emotional exhaustion, positive and negative work-home interaction, and perceived work-life balance culture in companies. Data for this study were collected through online surveys of employees from companies in the micro- and nanotechnology sectors (N = 509). A structural equation modeling analysis was performed. A company culture perceived by employees as supportive of their work-life balance was found to have both a direct negative effect on emotional exhaustion and an indirect negative effect meditated by negative work-home interaction. In addition, whereas negative work-home interaction associated positively with emotional exhaustion, positive work-home interaction had no significant effect. The direct and indirect relationship between work-life balance culture and emotional exhaustion has practical implications for health promotion in companies.

  16. The assessment of the performance of covariance-based structural equation modeling and partial least square path modeling

    NASA Astrophysics Data System (ADS)

    Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin

    2017-05-01

    Structural equation modeling (SEM) is the second generation statistical analysis technique developed for analyzing the inter-relationships among multiple variables in a model. Previous studies have shown that there seemed to be at least an implicit agreement about the factors that should drive the choice between covariance-based structural equation modeling (CB-SEM) and partial least square path modeling (PLS-PM). PLS-PM appears to be the preferred method by previous scholars because of its less stringent assumption and the need to avoid the perceived difficulties in CB-SEM. Along with this issue has been the increasing debate among researchers on the use of CB-SEM and PLS-PM in studies. The present study intends to assess the performance of CB-SEM and PLS-PM as a confirmatory study in which the findings will contribute to the body of knowledge of SEM. Maximum likelihood (ML) was chosen as the estimator for CB-SEM and was expected to be more powerful than PLS-PM. Based on the balanced experimental design, the multivariate normal data with specified population parameter and sample sizes were generated using Pro-Active Monte Carlo simulation, and the data were analyzed using AMOS for CB-SEM and SmartPLS for PLS-PM. Comparative Bias Index (CBI), construct relationship, average variance extracted (AVE), composite reliability (CR), and Fornell-Larcker criterion were used to study the consequence of each estimator. The findings conclude that CB-SEM performed notably better than PLS-PM in estimation for large sample size (100 and above), particularly in terms of estimations accuracy and consistency.

  17. The Drake Equation in an astrobiological context

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory A.

    2010-09-01

    The Drake Equation was originally composed as an attempt to quantify the potential number of extraterrestrial civilizations in our Galaxy which we might be able to detect using a radio telescope. Since this equation was first formulated, nearly 50 years ago, we have discovered that life on Earth arose very early in its history, and has filled virtually every habitable, potentially extreme, niche available. This suggests that simple forms of life might be plentiful where possible, and can be observed remotely by atmospheric biosignatures in the host planet. We consider modifications to the Drake Equation to reflect this new understanding.

  18. Testing a theory of aircraft noise annoyance: a structural equation analysis.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2008-06-01

    Previous research has stressed the relevance of nonacoustical factors in the perception of aircraft noise. However, it is largely empirically driven and lacks a sound theoretical basis. In this paper, a theoretical model which explains noise annoyance based on the psychological stress theory is empirically tested. The model is estimated by applying structural equation modeling based on data from residents living in the vicinity of Amsterdam Airport Schiphol in The Netherlands. The model provides a good model fit and indicates that concern about the negative health effects of noise and pollution, perceived disturbance, and perceived control and coping capacity are the most important variables that explain noise annoyance. Furthermore, the model provides evidence for the existence of two reciprocal relationships between (1) perceived disturbance and noise annoyance and (2) perceived control and coping capacity and noise annoyance. Lastly, the model yielded two unexpected results. Firstly, the variables noise sensitivity and fear related to the noise source were unable to explain additional variance in the endogenous variables of the model and were therefore excluded from the model. And secondly, the size of the total effect of noise exposure on noise annoyance was relatively small. The paper concludes with some recommended directions for further research.

  19. A Multidimensional Model of School Dropout from an 8-Year Longitudinal Study in a General High School Population

    ERIC Educational Resources Information Center

    Fortin, Laurier; Marcotte, Diane; Diallo, Thierno; Potvin, Pierre; Royer, Egide

    2013-01-01

    This study tests an empirical multidimensional model of school dropout, using data collected in the first year of an 8-year longitudinal study, with first year high school students aged 12-13 years. Structural equation modeling analyses show that five personal, family, and school latent factors together contribute to school dropout identified at…

  20. Modeling of Individual and Organizational Factors Affecting Traumatic Occupational Injuries Based on the Structural Equation Modeling: A Case Study in Large Construction Industries.

    PubMed

    Mohammadfam, Iraj; Soltanzadeh, Ahmad; Moghimbeigi, Abbas; Akbarzadeh, Mehdi

    2016-09-01

    Individual and organizational factors are the factors influencing traumatic occupational injuries. The aim of the present study was the short path analysis of the severity of occupational injuries based on individual and organizational factors. The present cross-sectional analytical study was implemented on traumatic occupational injuries within a ten-year timeframe in 13 large Iranian construction industries. Modeling and data analysis were done using the structural equation modeling (SEM) approach and the IBM SPSS AMOS statistical software version 22.0, respectively. The mean age and working experience of the injured workers were 28.03 ± 5.33 and 4.53 ± 3.82 years, respectively. The portions of construction and installation activities of traumatic occupational injuries were 64.4% and 18.1%, respectively. The SEM findings showed that the individual, organizational and accident type factors significantly were considered as effective factors on occupational injuries' severity (P < 0.05). Path analysis of occupational injuries based on the SEM reveals that individual and organizational factors and their indicator variables are very influential on the severity of traumatic occupational injuries. So, these should be considered to reduce occupational accidents' severity in large construction industries.

  1. How motivation affects academic performance: a structural equation modelling analysis.

    PubMed

    Kusurkar, R A; Ten Cate, Th J; Vos, C M P; Westers, P; Croiset, G

    2013-03-01

    Few studies in medical education have studied effect of quality of motivation on performance. Self-Determination Theory based on quality of motivation differentiates between Autonomous Motivation (AM) that originates within an individual and Controlled Motivation (CM) that originates from external sources. To determine whether Relative Autonomous Motivation (RAM, a measure of the balance between AM and CM) affects academic performance through good study strategy and higher study effort and compare this model between subgroups: males and females; students selected via two different systems namely qualitative and weighted lottery selection. Data on motivation, study strategy and effort was collected from 383 medical students of VU University Medical Center Amsterdam and their academic performance results were obtained from the student administration. Structural Equation Modelling analysis technique was used to test a hypothesized model in which high RAM would positively affect Good Study Strategy (GSS) and study effort, which in turn would positively affect academic performance in the form of grade point averages. This model fit well with the data, Chi square = 1.095, df = 3, p = 0.778, RMSEA model fit = 0.000. This model also fitted well for all tested subgroups of students. Differences were found in the strength of relationships between the variables for the different subgroups as expected. In conclusion, RAM positively correlated with academic performance through deep strategy towards study and higher study effort. This model seems valid in medical education in subgroups such as males, females, students selected by qualitative and weighted lottery selection.

  2. Modeling motor connectivity using TMS/PET and structural equation modeling

    PubMed Central

    Laird, Angela R.; Robbins, Jacob M.; Li, Karl; Price, Larry R.; Cykowski, Matthew D.; Narayana, Shalini; Laird, Robert W.; Franklin, Crystal; Fox, Peter T.

    2010-01-01

    Structural equation modeling (SEM) was applied to positron emission tomographic (PET) images acquired during transcranial magnetic stimulation (TMS) of the primary motor cortex (M1hand). TMS was applied across a range of intensities, and responses both at the stimulation site and remotely connected brain regions covaried with stimulus intensity. Regions of interest (ROIs) were identified through an activation likelihood estimation (ALE) meta-analysis of TMS studies. That these ROIs represented the network engaged by motor planning and execution was confirmed by an ALE meta-analysis of finger movement studies. Rather than postulate connections in the form of an a priori model (confirmatory approach), effective connectivity models were developed using a model-generating strategy based on improving tentatively specified models. This strategy exploited the experimentally-imposed causal relations: (1) that response variations were caused by stimulation variations, (2) that stimulation was unidirectionally applied to the M1hand region, and (3) that remote effects must be caused, either directly or indirectly, by the M1hand excitation. The path model thus derived exhibited an exceptional level of goodness (χ2=22.150, df = 38, P = 0.981, TLI=1.0). The regions and connections derived were in good agreement with the known anatomy of the human and primate motor system. The model-generating SEM strategy thus proved highly effective and successfully identified a complex set of causal relationships of motor connectivity. PMID:18387823

  3. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Múnera, Héctor A., E-mail: hmunera@hotmail.com; Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America

    2016-07-07

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding amore » unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.« less

  4. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    PubMed

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  5. The indirect association of job strain with long-term sickness absence through bullying: a mediation analysis using structural equation modeling.

    PubMed

    Janssens, Heidi; Braeckman, Lutgart; De Clercq, Bart; Casini, Annalisa; De Bacquer, Dirk; Kittel, France; Clays, Els

    2016-08-22

    In this longitudinal study the complex interplay between both job strain and bullying in relation to sickness absence was investigated. Following the "work environment hypothesis", which establishes several work characteristics as antecedents of bullying, we assumed that job strain, conceptualized by the Job-Demand-Control model, has an indirect relation with long-term sickness absence through bullying. The sample consisted of 2983 Belgian workers, aged 30 to 55 years, who participated in the Belstress III study. They completed a survey, including the Job Content Questionnaire and a bullying inventory, at baseline. Their sickness absence figures were registered during 1 year follow-up. Long-term sickness absence was defined as at least 15 consecutive days. A mediation analysis, using structural equation modeling, was performed to examine the indirect association of job strain through bullying with long-term sickness absence. The full structural model was adjusted for several possible confounders: age, gender, occupational group, educational level, company, smoking habits, alcohol use, body mass index, self-rated health, baseline long-term sickness absence and neuroticism. The results support the hypothesis: a significant indirect association of job strain with long-term sickness absence through bullying was observed, suggesting that bullying is an intermediate variable between job strain and long-term sickness absence. No evidence for the reversed pathway of an indirect association of bullying through job strain was found. Bullying was observed as a mediating variable in the relation between job strain and sickness absence. The results suggest that exposure to job strain may create circumstances in which a worker risks to become a target of bullying. Our findings are generally in line with the work environment hypothesis, which emphasizes the importance of organizational work factors in the origin of bullying. This study highlights that remodeling jobs to reduce

  6. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.

    1990-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  7. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.

    1992-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  8. A thermodynamic equation of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Pirouz Kavehpour, H.

    2008-03-01

    Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.

  9. Physical activity prescription among Mexican physicians: a structural equation analysis of the theory of planned behaviour.

    PubMed

    Galaviz, K I; Jauregui-Ulloa, E; Fabrigar, L R; Latimer-Cheung, A; Lopez y Taylor, J; Lévesque, L

    2015-03-01

    To describe the physical activity (PA) prescribing behaviour of Mexican primary care physicians and determine if the theory of planned behaviour (TPB) explains this behaviour. 633 physicians (56% male, mean age 38 years) from 305 primary care clinics in Jalisco, Mexico self-reported PA prescription behaviour, PA involvement, attitude, subjective norm, perceived behavioural control (PBC) and intention related to PA prescription behaviour. Structural equation modelling (SEM) was employed. 48% of physicians reported they always ask patients about their PA, 33% provide verbal prescriptions, 6% provide written prescriptions, 8% refer patients to PA resources and 4% assess patient fitness. SEM analysis showed that the fit of the TPB model was satisfactory (RMSEA = 0.05, CFI = 0.98, SRMR = 0.05). The model explained 79% of the variance on intention (r(2) = 0.79, p < 0.05), and 14% of the variance on prescription behaviour (r(2) = 0.14, p < 0.05). Subjective norm (β = 0.73, p < 0.05) and attitude (β = 0.16, p < 0.05) explained behavioural intention, while PBC (β = 0.38, p < 0.05) and physician PA (β = 0.15, p < 0.05) explained prescription behaviour. The TPB provided useful insight into physician prescription behaviour, although not all the theory tenets were supported. More research testing the TPB and other theories is needed to better understand psychosocial predictors of this behaviour. Strategies aimed at improving physicians' perceived ability to prescribe PA and their own PA involvement seem worthwhile. © 2015 John Wiley & Sons Ltd.

  10. A structural equation model of the determinants of malnutrition among children in rural Kelantan, Malaysia.

    PubMed

    Cheah, Whye Lian; Muda, Wan Abdul Manan Wan; Zamh, Zabidi-Hussin

    2010-01-01

    Many studies had shown that poor growth in children is associated with malnutrition. The underlying factors are diverse, multisectoral and interrelated, ranging from biological to social, cultural and economically related. Because the highest levels of under-nutrition worldwide are found in South Asia, it is essential that policymakers in the region understand the underlying determinants, in order to design effective public health intervention programs. This is especially so if public resources are limited. The purpose of this cross-sectional study was to examine causal relationships among the biological, behavioural and environmental factors related to malnutrition in children aged 5 years and under. The instrument used in this study was based on a previously described conceptual framework for malnutrition in children, and tested for its psycometric component, using both qualitative and quantitative methods. As well as the use of a questionnaire, anthropometric and dietary data were collected from 295 children aged 5 years and below, randomly selected from clinics in Tumpat, Kelantan. The proposed model was tested and modified using structural equation modelling (AMOS software: ADC, Chicago, IL, USA). The modified model fitted the data adequately. The results demonstrated that an environmental construct (with factors that included total household income beta = 0.68, p <0.01; total expenditure beta = 0.67, p <0.01; number of rooms in the house beta = 0.46, p <0.01; and socioeconomic status beta = 0.71, p <0.01) had a significant effect on malnutrition. Neither the biological nor behavioural constructs had significant effects. These findings provide useful insights into the importance of focusing on environmental factors as the main target when designing intervention programs. This information will be useful for the prioritization of preventive programs when resources are limited, especially in a rural setting. Future studies should focus on the issues of the

  11. A composite velocity procedure for the compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Khosla, P. K.; Rubin, S. G.

    1982-01-01

    A new boundary-layer relaxation procedure is presented. In the spirit of the theory of matched asymptotic expansions, a multiplicative composite of the appropriate velocity representations for the inviscid and viscous regions is prescribed. The resulting equations are structured so that far from the surface of the body the momentum equations lead to the Bernoulli relation for the pressure, while the continuity equation reduces to the familiar compressible potential equation. Close to the body surface, the governing equations and solution techniques are characteristic of those describing interacting boundary-layers; although, the full Navier-Stokes equations are considered here. Laminar flow calculations for the subsonic flow over an axisymmetric boattail simulator geometry are presented for a variety of Reynolds and Mach numbers. A strongly implicit solution method is applied for the coupled velocity components.

  12. On the hierarchy of partially invariant submodels of differential equations

    NASA Astrophysics Data System (ADS)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  13. Langevin Equation for DNA Dynamics

    NASA Astrophysics Data System (ADS)

    Grych, David; Copperman, Jeremy; Guenza, Marina

    Under physiological conditions, DNA oligomers can contain well-ordered helical regions and also flexible single-stranded regions. We describe the site-specific motion of DNA with a modified Rouse-Zimm Langevin equation formalism that describes DNA as a coarse-grained polymeric chain with global structure and local flexibility. The approach has successfully described the protein dynamics in solution and has been extended to nucleic acids. Our approach provides diffusive mode analytical solutions for the dynamics of global rotational diffusion and internal motion. The internal DNA dynamics present a rich energy landscape that accounts for an interior where hydrogen bonds and base-stacking determine structure and experience limited solvent exposure. We have implemented several models incorporating different coarse-grained sites with anisotropic rotation, energy barrier crossing, and local friction coefficients that include a unique internal viscosity and our models reproduce dynamics predicted by atomistic simulations. The models reproduce bond autocorrelation along the sequence as compared to that directly calculated from atomistic molecular dynamics simulations. The Langevin equation approach captures the essence of DNA dynamics without a cumbersome atomistic representation.

  14. Shock-wave structure based on the Navier-Stokes-Fourier equations.

    PubMed

    Uribe, F J; Velasco, R M

    2018-04-01

    We use the Navier-Stokes-Fourier constitutive equations to study plane shock waves in dilute gases. It is shown that the experimental information on the normalized density profiles can be fit by using the so-called soft sphere model, in which the viscosity and thermal conductivity are proportional to a power of the temperature.

  15. Shock-wave structure based on the Navier-Stokes-Fourier equations

    NASA Astrophysics Data System (ADS)

    Uribe, F. J.; Velasco, R. M.

    2018-04-01

    We use the Navier-Stokes-Fourier constitutive equations to study plane shock waves in dilute gases. It is shown that the experimental information on the normalized density profiles can be fit by using the so-called soft sphere model, in which the viscosity and thermal conductivity are proportional to a power of the temperature.

  16. The Impact of Intraclass Correlation on the Effectiveness of Level-Specific Fit Indices in Multilevel Structural Equation Modeling: A Monte Carlo Study

    ERIC Educational Resources Information Center

    Hsu, Hsien-Yuan; Lin, Jr-Hung; Kwok, Oi-Man; Acosta, Sandra; Willson, Victor

    2017-01-01

    Several researchers have recommended that level-specific fit indices should be applied to detect the lack of model fit at any level in multilevel structural equation models. Although we concur with their view, we note that these studies did not sufficiently consider the impact of intraclass correlation (ICC) on the performance of level-specific…

  17. Nonstandard Topics for Student Presentations in Differential Equations

    ERIC Educational Resources Information Center

    LeMasurier, Michelle

    2006-01-01

    An interesting and effective way to showcase the wide variety of fields to which differential equations can be applied is to have students give short oral presentations on a specific application. These talks, which have been presented by 30-40 students per year in our differential equations classes, provide exposure to a diverse array of topics…

  18. The Drake Equation revisited

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory

    2009-08-01

    In the almost half century since the Drake Equation was first conceived, a number of profound discoveries have been made that require each of the seven variables of this equation to be reconsidered. The discovery of hydrothermal vents on the ocean floor, for example, as well as the ever-increasing extreme conditions in which life is found on Earth, suggest a much wider range of possible extraterrestrial habitats. The growing consensus that life originated very early in Earth's history also supports this suggestion. The discovery of exoplanets with a wide range of host star types, and attendant habitable zones, suggests that life may be possible in planetary systems with stars quite unlike our Sun. Stellar evolution also plays an important part in that habitable zones are mobile. The increasing brightness of our Sun over the next few billion years, will place the Earth well outside the present habitable zone, but will then encompass Mars, giving rise to the notion that some Drake Equation variables, such as the fraction of planets on which life emerges, may have multiple values.

  19. Final Technical Report for Year 5 Early Career Research Project "Viscosity and equation of state of hot and dense QCD matter"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molnar, Denes

    2016-05-25

    The Section below summarizes research activities and achievements during the fifth (last) year of the PI’s Early Career Research Project (ECRP). Unlike the first four years of the project, the last year was not funded under the American Recovery and Reinvestment Act (ARRA). The ECRP advanced two main areas: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time); and ii) application of relativistic hydrodynamics, via development of a self-consistent framework to convert viscous fluids to particles. In Year 5 we finalized thermalization studies withmore » radiative gg ↔ ggg transport (Sec. 1.1.1) and used nonlinear covariant transport to assess the accuracy of fluid-to-particle conversion models (Sec. 1.1.2), calculated observables with self-consistent fluid-to-particle conversion from realistic viscous hydrodynamic evolution (Secs. 1.2.1 and 1.2.2), extended the covariant energy loss formulation to heavy quarks (Sec. 1.4.1) and studied energy loss in small systems (Sec. 1.4.2), and also investigated how much of the elliptic flow could have non-hydrodynamic origin (Sec 1.3). Years 1-4 of the ECRP were ARRA-funded and, therefore, they have their own report document ’Final Technical Report for Years 1-4 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCD matter”’ (same award number DE-SC0004035). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Top- ical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).« less

  20. A new solution procedure for a nonlinear infinite beam equation of motion

    NASA Astrophysics Data System (ADS)

    Jang, T. S.

    2016-10-01

    Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.