Sample records for years technological developments

  1. Advanced mirror technology development (AMTD): year five status

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2017-09-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-orlarger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp 150 Hz 1.5-meter Ultra-Low Expansion (ULE) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur mirror using the STOP model prediction and verification of CTE homogeneity.

  2. Advanced Mirror Technology Development (AMTD): Year Five Status

    NASA Technical Reports Server (NTRS)

    Stahl, H Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp approximately 150 Hz 1.5-meter Ultra-Low Expansion (ULE Registered trademark) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur (Registered trademark) mirror using the STOP model prediction and verification of CTE homogeneity.

  3. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER WM) operations at DOE sites to be safer,more » faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs.« less

  4. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Fivemore » priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs.« less

  5. Advanced Life Support Research and Technology Development Metric: Fiscal Year 2003

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2003. As such, the values herein are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. The Metric is one of several measures employed by the National Aeronautics and Space Administration (NASA) to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). More specifically, the Metric is the ratio defined by the equivalent system mass (ESM) of a life support system for a specific mission using the ISS ECLSS technologies divided by the ESM for an equivalent life support system using the best ALS technologies. As defined, the Metric should increase in value as the ALS technologies become lighter, less power intensive, and require less volume. For Fiscal Year 2003, the Advanced Life Support Research and Technology Development Metric value is 1.47 for an Orbiting Research Facility and 1.36 for an Independent Exploration Mission.

  6. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum

  7. Technological Developments That Will Influence Teachers' Use of Technology to Improve Student Learning in California's Public Middle Schools by the Year 2017

    ERIC Educational Resources Information Center

    Solorzano, Monica

    2013-01-01

    Purpose. The purpose of this study was to (a) identify 5 top developments in educational technology that will be available to California's public middle schools in the next 5 years, (b) determine the likelihood of implementing these technological developments in California's public middle schools in the next 5 years, (c) determine the impact these…

  8. MSFC Technology Year in Review 2015

    NASA Technical Reports Server (NTRS)

    Reynolds, David; Tinker, Mike

    2015-01-01

    MSFC has a strong diverse portfolio of technology development projects, ranging from flight projects to very low Technology Readiness Level (TRL) laboratory projects. The 2015 Year in Review highlights the Center's technology projects and celebrates their accomplishments to raise awareness of technology development work that is integral to the success of future Agency flight programs.

  9. Emergent technologies: 25 years

    NASA Astrophysics Data System (ADS)

    Rising, Hawley K.

    2013-03-01

    This paper will talk about the technologies that have been emerging over the 25 years since the Human Vision and Electronic Imaging conference began that the conference has been a part of, and that have been a part of the conference, and will look at those technologies that are emerging today, such as social networks, haptic technologies, and still emerging imaging technologies, and what we might look at for the future.Twenty-five years is a long time, and it is not without difficulty that we remember what was emerging in the late 1980s. Yet to be developed: The first commercial digital still camera was not yet on the market, although there were hand held electronic cameras. Personal computers were not displaying standardized images, and image quality was not something that could be talked about in a standardized fashion, if only because image compression algorithms were not standardized yet for several years hence. Even further away were any standards for movie compression standards, there was no personal computer even on the horizon which could display them. What became an emergent technology and filled many sessions later, image comparison and search, was not possible, nor the current emerging technology of social networks- the world wide web was still several years away. Printer technology was still devising dithers and image size manipulations which would consume many years, as would scanning technology, and image quality for both was a major issue for dithers and Fourier noise.From these humble beginnings to the current moves that are changing computing and the meaning of both electronic devices and human interaction with them, we will see a course through the changing technology that holds some features constant for many years, while others come and go.

  10. Advanced Mirror Technology Development (AMTD) Project: Overview and Year 4 Accomplishments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2016-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  11. Advanced Mirror Technology Development (AMTD) project: overview and year four accomplishments

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2016-07-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  12. Urban Rail Supporting Technology Program Fiscal Year 1975 - Year End Summary

    DOT National Transportation Integrated Search

    1975-12-01

    The Urban Rail Supporting Technology Program is described for the 1975 fiscal year period. Important areas include program management, technical support and applications engineering, facilities development, test and evaluation, and technology develop...

  13. Vehicle Technologies and Fuel Cell Technologies Office Research and Development Programs: Prospective Benefits Assessment Report for Fiscal Year 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, T. S.; Birky, A.; Gohlke, David

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in whichmore » there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new

  14. A Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brennan T.; Welch, Tim; Witt, Adam M.

    The Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology (MYRP) presents a strategy for specifying, designing, testing, and demonstrating the efficacy of standard modular hydropower (SMH) as an environmentally compatible and cost-optimized renewable electricity generation technology. The MYRP provides the context, background, and vision for testing the SMH hypothesis: if standardization, modularity, and preservation of stream functionality become essential and fully realized features of hydropower technology, project design, and regulatory processes, they will enable previously unrealized levels of new project development with increased acceptance, reduced costs, increased predictability of outcomes, and increased value to stakeholders.more » To achieve success in this effort, the MYRP outlines a framework of stakeholder-validated criteria, models, design tools, testing facilities, and assessment protocols that will facilitate the development of next-generation hydropower technologies.« less

  15. Development Report for the Telecommunications Technology 2+2 Program. Grant Year 2--1990/1991.

    ERIC Educational Resources Information Center

    Kooker, Steve; Brey, Ron

    This report describes the second-year activities of Austin (Texas) Community College's development of a curriculum for a degree in Telecommunications Technology (Electronics) involving an articulation agreement with Leander Independent School District. Specifically, the report describes: the planning of five credit courses for telecommunications…

  16. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In FY 1990 Robotics Technology Development Program (RTDP) planning teams visited five DOE sites. These sites were selected by the Office of Technology Development to provide a needs basis for developing a 5-Year Plan. Visits to five DOE sites provided identification of needs for robotics technology development to support Environmental Restoration and Waste Management (ER WM) projects at those sites. Additional site visits will be conducted in the future to expand the planning basis. This volume summarizes both the results of the site visits and the needs and requirements of the priority ER WM activities at the sites, including potentialmore » needs for robotics and remote systems technology. It also discusses hazards associated with the site activities and any problems or technical uncertainties associated with dealing with the hazards in the performance of the ER WM work. Robotic or remote systems currently under development for remediation projects or waste operations are also discussed. The information in this document is organized principally by site, activity, and priority. Section 2.0, Site Needs, is based on information from the site visit reports and provides a summary which focuses on the site needs and requirements for each priority activity. Section 2.0 also records evaluations and discussions by the RTDP team following the site visit. Section 3.0, Commonality Assessment, documents similar site needs where common, or cross-cutting, robotics technology might be applied to several activities. Section 4.0 contains a summary of the site needs and requirements in tabular form. 1 tab.« less

  17. Enhancing Teachers' Technological Knowledge and Assessment Practices to Enhance Student Learning in Technology: A Two-year Classroom Study

    NASA Astrophysics Data System (ADS)

    Moreland, Judy; Jones, Alister; Northover, Ann

    2001-02-01

    This paper reports on a two-year classroom investigation of primary school (Years 1-8) technology education. The first year of the project explored emerging classroom practices in technology. In the second year intervention strategies were developed to enhance teaching, learning and assessment practices. Findings from the first year revealed that assessment was often seen in terms of social and managerial aspects, such as teamwork, turn taking and co-operative skills, rather than procedural and conceptual technological aspects. Existing formative interactions with students distorted the learning away from the procedural and conceptual aspects of the subject. The second year explored the development of teachers' technological knowledge in order to enhance formative assessment practices in technology, to inform classroom practice in technology, and to enhance student learning. Intervention strategies were designed to enhance the development of procedural, conceptual, societal and technical aspects of technology for teachers and students. The results from this intervention were very positive. This paper highlights the importance of developing teacher expertise pertaining to broad concepts of technology, detailed concepts in different technological areas and general pedagogical knowledge. The findings from this research therefore have implications for thinking about teaching, learning and assessment in technology.

  18. Technology Development Report: CDDF, Dual Use Partnerships, SBIR/STTR: Fiscal Year 2003 Activities

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    The FY2003 NASA John C. Stennis Stennis Space Center (SSC) Technology Development Report provides an integrated report of all technology development activities at SSC. This report actually combines three annual reports: the Center Director's Discretionary Fund (CDDF) Program Report, Dual Use Program Report, and the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Program Report. These reports are integrated in one document to summarize all technology development activities underway in support of the NASA missions assigned to SSC. The Dual Use Program Report provides a summary review of the results and status of the nine (9) Dual Use technology development partnership projects funded and managed at SSC during FY2003. The objective of these partnership projects is to develop or enhance technologies that will meet the technology needs of the two NASA SSC Mission Areas: Propulsion Test and Earth Science Applications. During FY2003, the TDTO managed twenty (20) SBIR Phase II Projects and two (2) STTR Phase II Projects. The SBIR contracts support low TRL technology development that supports both the Propulsion Test and the Earth Science Application missions. These projects are shown in the SBIR/STTR Report. In addition to the Phase II contracts, the TDTO managed ten (10) SBIR Phase I contracts which are fixed price, six month feasibility study contracts. These are not listed in this report. Together, the Dual Use Projects and the SBIR/STTR Projects constitute a technology development partnership approach that has demonstrated that success can be achieved through the identification of the technical needs of the NASA mission and using various available partnership techniques to maximize resource utilization to achieve mutual technology goals. Greater use of these partnership techniques and the resource leveraging they provide, is a goal of the TDTO, providing more support to meet the technology development needs of the mission areas at

  19. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  20. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  1. The Impact of Changing Policies about Technology on the Professional Development Needs of Early Years Educators in England

    ERIC Educational Resources Information Center

    Ingleby, Ewan

    2015-01-01

    This paper considers the implications of UK policy approaches to ICT (Information Communication Technology) in education by exploring the views of early years (0-8 years) educators about their ICT CPD (continuing professional development) needs. UK policy approaches to ICT may be visualised as a "house that Jack built." The policies are…

  2. Optical fiber technology development in Poland

    NASA Astrophysics Data System (ADS)

    Wójcik, Waldemar; Romaniuk, Ryszard

    2010-09-01

    Optical fiber technology is an important branch of science and technology, but also economy. Together with related disciplines it creates wider areas like optoelectronics and photonics. Optical fiber technology is developed in this country rather dynamically, proportionally to the available funds designed locally for research and applications. Recently this development was enhanced with considerable funds from European Operational Funds Innovative Economy POIG and Human Capital POKL. The paper summarizes the development of optical fiber technology in Poland from academic perspective during the period of last 2-3 years. The digest is very probably not full. An emphasis is put on development of optical fiber manufacturing methods. This development was illustrated by a few examples of optical fiber applications.

  3. Aviation technology applicable to developing regions

    NASA Technical Reports Server (NTRS)

    Zuk, John; Alton, Larry R.

    1988-01-01

    This paper is an analysis of aviation technologies useful for formulation of development plans to the year 2000 for emerging nations. The Caribbean Basin was used as a specific application. This development promises to be so explosive over the next 15 years as to be virtually unpredictable.

  4. VLBI Technology Development at SHAO

    NASA Technical Reports Server (NTRS)

    Zhang, Xiuzhong; Shu, Fengchun; Xiang, Ying; Zhu, Renjie; Xu, Zhijun; Chen, Zhong; Zheng, Weimin; Luo, Jintao; Wu, Yajun

    2010-01-01

    VLBI technology development made significant progress at SHAO in the last few years. The development status of the Chinese DBBC, the software and FPGA-based correlators, and the new VLBI antenna, as well as VLBI applications are summarized in this paper.

  5. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  6. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  7. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  8. Nuclear Medical Technology. Curriculum for a Two Year Program. Final Report.

    ERIC Educational Resources Information Center

    Buatti, A.; Rich, D.

    Objectives of the project briefly described here were (1) to develop curriculum for a two-year nuclear medical technology program based on a working relationship between three institutions (community college, university health center, and hospital) and (2) to develop procedures for the operation of a medical imaging and radiation technology core…

  9. Technology, Innovation, and Regional Economic Development.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    In recent years state and local governments, universities, and private sector groups have become increasingly active in promoting technological innovation and technology-based business development in their local economies. These efforts have resulted in productive new forms of partnership and cooperation at all levels. While federal programs have…

  10. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  11. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    NASA Technical Reports Server (NTRS)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  12. Cyrogenic Life Support Technology Development Project

    NASA Technical Reports Server (NTRS)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  13. Airbreathing Hypersonic Technology Vision Vehicles and Development Dreams

    NASA Technical Reports Server (NTRS)

    McClinton, C. R.; Hunt, J. L.; Ricketts, R. H.; Reukauf, P.; Peddie, C. L.

    1999-01-01

    Significant advancements in hypersonic airbreathing vehicle technology have been made in the country's research centers and industry over the past 40 years. Some of that technology is being validated with the X-43 flight tests. This paper presents an overview of hypersonic airbreathing technology status within the US, and a hypersonic technology development plan. This plan builds on the nation's large investment in hypersonics. This affordable, incremental plan focuses technology development on hypersonic systems, which could be operating by the 2020's.

  14. Titanium Aluminide Casting Technology Development

    NASA Astrophysics Data System (ADS)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  15. A Three-Year Program of Micro- and Nano-System Technology Development for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Canizares, Claude R.

    1997-01-01

    For many years the work at MIT aimed at the development of new concepts and technologies for space experiments in high-energy astrophysics, but not explicitly supported by flight programs, has been supported. This work has yielded new devices and techniques for X-ray astronomy, primarily low-noise, deep-depletion charge-coupled devices (CCDS) for spectrally-resolved X-ray imaging, and high-performance transmission gratings for high-resolution X-ray spectroscopy. Among the most significant recent achievements have been the development by G. Ricker and associates of the X-ray CCD camera flying on ASCA, and currently in development for AXAF and Astro-E, and the development by C. Canizares and associates of thick, 200 nm-period transmission gratings employing the phenomenon of phase shifting for high-resolution X-ray spectroscopy up to energies of 8- 1 0 keV that is essential for the operation of the AXAF High Energy Transmission Grating Spectrometer (HETGS). Through the current SR&T grant, the latter technology is now being extended successfully to the fabrication of 100 nm-period transmission gratings, which have twice the dispersion of the AXAF gratings. We note that, among other outcomes, the modest investments of past SR&T Grants at MIT resulted in the development of the key technologies for fully one-half of the scientific instrumentation on AXAF. In addition, NASA flight programs that have benefited from previous SR&T support at MIT include the SAS 3 X-ray Observatory, which carried the first rotation modulation collimator, the Focal Plane Crystal Spectrometer (FPCS) on the Einstein Observatory, the CCD cameras on ASCA and planned for Astro-E, the High Energy Transient Experiment (HETE), the Solar EUV Monitor on the Solar and Heliospheric Observatory (SOHO), the Medium Energy Neutral Atom imager (MENA) on the Image for Magnetopause-to-aurora Global Exploration (IMAGE) mission, and the recently-approved Two Wide-Angle Imaging Neutral-atom Spectrometers (TWINS

  16. Research and technology Fiscal Year 1985 report

    NASA Technical Reports Server (NTRS)

    Speer, F.

    1985-01-01

    A quarter of a century is but a moment on the cosmic calendar. Now that Marshall Space Flight Center has reached its 25th Anniversity, it seems just moments ago that President Dwight D. Eisenhower stood on these grounds and formally dedicated the George C. Marshall Space Flight Center in Huntsville, Alabama. The Fiscal Year 1985 Research and Technology Report reflects the wide spectrum of activities closely linked with the Center's mainstream spaceflight developments. Past accomplishments testify to the success of getting deeply involved in the science and technology of its projects - 32 Saturn launches, Pegasus, the Skylab missions, three High Energy Astronomy Observatory missions, the Apollo - Soyuz mission, and an accelerating schedule of successful Shuttle, Spacelab, and Shuttle payload missions. The Center continues to be involved in engineering development, scientific research, and technology. At the beginning of the second quarter century, the experience and dedication of the engineers and scientists, and the success of the collaboration with industry and academia will now be aimed at the next great endeavor, the Space Station.

  17. Technology Transfer Annual Report Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Wendy Lee

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partnersmore » for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to

  18. Titan probe technology assessment and technology development plan study

    NASA Technical Reports Server (NTRS)

    Castro, A. J.

    1980-01-01

    The need for technology advances to accomplish the Titan probe mission was determined by defining mission conditions and requirements and evaluating the technology impact on the baseline probe configuration. Mission characteristics found to be technology drivers include (1) ten years dormant life in space vacuum; (2) unknown surface conditions, various sample materials, and a surface temperature; and (3) mission constraints of the Saturn Orbiter Dual Probe mission regarding weight allocation. The following areas were identified for further development: surface sample acquisition system; battery powered system; nonmetallic materials; magnetic bubble memory devices, and the landing system. Preentry science, reliability, and weight reduction and redundancy must also be considered.

  19. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  20. A suggested Ten-Year Phased Program for Developing, Evaluating and Implementing Instructional Technologies.

    ERIC Educational Resources Information Center

    Miller, James G.

    A national program is necessary to discover and implement the best ways to utilize educational technology. Several university centers for research and development on instructional technology could provide a basis for national initiative in this field. These centers should carry out basic research on systems theory, with emphasis on such fields as…

  1. Transfer of radiation technology to developing countries

    NASA Astrophysics Data System (ADS)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  2. High Technology Engineering Services, Inc. fiscal year 1993 and 1994 research and development report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document has been prepared by the Professional Staff of High Technology Engineering Services, Inc. (HTES) for fiscal year (FY) 1993. Work was performed for various aspects of mechanical design and analysis, materials development and properties quantification, nuclear environment performance, and engineering program prioritization. The tasks enumerated in the subcontract, attachment B are: 1. Assist in preparation of final R&D report for SDC detector development. 2. Subcontractor shall make contributions to the development of innovative processes for the manufacture of quasi- isotropic, enhanced thermal conductivity compression molded advanced composite materials. 3. Perform finite element analysis as it relates to themore » Superconducting Super Collider Silicon Tracking System, both mechanical and thermal, of very thin section advanced composite materials. 4. Subcontractor shall perform technical studies, reviews, and assessments of the current program for advanced composites materials processing and testing. 5. Subcontractor shall attend meetings and discussions as directed by MEE-12 technical representative. Unfortunately during the course of FY93, technical and financial challenges prevailed against the aggressive goals set for the program. In point of fact, less than 25% of the contract value was able to be expended due to technical delays and programmatic funding cuts. Also, contracting difficulties with the SSC Lab and financial burdens at Los Alamos totally stopped progress on the subject subcontract during the whole of FY94. This was a great blow to me and the HTES, Inc. technical staff. Despite the negative influences over the years, significant progress was made in materials properties quantification and development of essential research and development documentation. The following brief report and attendant appendices will address these achievements.« less

  3. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    NASA Technical Reports Server (NTRS)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.

  4. NASA advanced cryocooler technology development program

    NASA Astrophysics Data System (ADS)

    Coulter, Daniel R.; Ross, Ronald G., Jr.; Boyle, Robert F.; Key, R. W.

    2003-03-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Over the years, NASA has developed new cryocooler technologies for a wide variety of space missions. Recent achievements include the NCS, AIRS, TES and HIRDLS cryocoolers, and miniature pulse tube coolers at TRW and Lockheed Martin. The largest technology push within NASA right now is in the temperature range of 4 to 10 K. Missions such as the Next Generation Space Telescope (NGST) and Terrestrial Planet Finder (TPF) plan to use infrared detectors operating between 6-8 K, typically arsenic-doped silicon arrays, with IR telescopes from 3 to 6 meters in diameter. Similarly, Constellation-X plans to use X-ray microcalorimeters operating at 50 mK and will require ~6 K cooling to precool its multistage 50 mK magnetic refrigerator. To address cryocooler development for these next-generation missions, NASA has initiated a program referred to as the Advanced Cryocooler Technology Development Program (ACTDP). This paper presents an overview of the ACTDP program including programmatic objectives and timelines, and conceptual details of the cooler concepts under development.

  5. Ornamental Horticulture Technology; Suggested 2-Year Post High School Curriculums.

    ERIC Educational Resources Information Center

    Bureau of Adult, Vocational, and Technical Education (DHEW/OE), Washington, DC. Div. of Vocational and Technical Education.

    Developed by a technical education specialist, this guide is designed to aid school administrators in planning and developing 2-year post-high school programs or evaluating existing programs in ornamental horticulture technology. In addition to general information on the program, contents include course outlines with examples of tests and…

  6. Development of laser technology in Poland: 2016

    NASA Astrophysics Data System (ADS)

    Jankiewicz, Zdzisław; Jabczyński, Jan K.; Romaniuk, Ryszard S.

    2016-12-01

    The paper is an introduction to the volume of proceedings and a concise digest of works presented during the XIth National Symposium on Laser Technology (SLT2016) [1]. The Symposium is organized since 1984 every three years [2-8]. SLT2016 was organized by the Institute of Optoelectronics, Military University of Technology (IO, WAT) [9], Warsaw, with cooperation of Warsaw University of Technology (WUT) [10], in Jastarnia on 27-30 September 2016. Symposium Proceedings are traditionally published by SPIE [11-19]. The meeting has gathered around 150 participants who presented around 120 research and technical papers. The Symposium, organized every 3 years is a good portrait of laser technology and laser applications development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. The SLT also presents the current technical projects under realization by the national research, development and industrial teams. Topical tracks of the Symposium, traditionally divided to two large areas - sources and applications, were: laser sources in near and medium infrared, picosecond and femtosecond lasers, optical fiber lasers and amplifiers, semiconductor lasers, high power and high energy lasers and their applications, new materials and components for laser technology, applications of laser technology in measurements, metrology and science, military applications of laser technology, laser applications in environment protection and remote detection of trace substances, laser applications in medicine and biomedical engineering, laser applications in industry, technologies and material engineering.

  7. Five Years After; the Impact of a Participatory Technology Development Programme as Perceived by Smallholder Farmers in Benin and Ghana

    ERIC Educational Resources Information Center

    Sterk, B.; Christian, A. K.; Gogan, A. C.; Sakyi-Dawson, O.; Kossou, D.

    2013-01-01

    Purpose: The article reports effects on livelihoods of a participatory technology development effort in Benin and Ghana (2001-2006), five years after it ended. Design: The study uses data from all smallholders who participated in seven experimental groups, each facilitated by a PhD researcher. Baseline data and controls were not available. In…

  8. Advanced Refrigerator/Freezer Technology Development. Technology Assessment

    NASA Technical Reports Server (NTRS)

    Gaseor, Thomas; Hunter, Rick; Hamill, Doris

    1996-01-01

    The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.

  9. The Next 25 Years?: Future Scenarios and Future Directions for Education and Technology

    ERIC Educational Resources Information Center

    Facer, K.; Sandford, R.

    2010-01-01

    The educational technology research field has been at the heart of debates about the future of education for the last quarter century. This paper explores the socio-technical developments that the next 25 years might bring and the implications of such developments for educators and for educational technology research. The paper begins by outlining…

  10. Technology Development Roadmap: A Technology Development Roadmap for a Future Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Camp, Jordan; Conklin, John; Livas, Jeffrey; Klipstein, William; McKenzie, Kirk; Mueller, Guido; Mueller, Juergen; Thorpe, James Ira; Arsenovic, Peter; Baker, John; hide

    2013-01-01

    Humankind will detect the first gravitational wave (GW) signals from the Universe in the current decade using ground-based detectors. But the richest trove of astrophysical information lies at lower frequencies in the spectrum only accessible from space. Signals are expected from merging massive black holes throughout cosmic history, from compact stellar remnants orbiting central galactic engines from thousands of close contact binary systems in the Milky Way, and possibly from exotic sources, some not yet imagined. These signals carry essential information not available from electromagnetic observations, and which can be extracted with extraordinary accuracy. For 20 years, NASA, the European Space Agency (ESA), and an international research community have put considerable effort into developing concepts and technologies for a GW mission. Both the 2000 and 2010 decadal surveys endorsed the science and mission concept of the Laser Interferometer Space Antenna (LISA). A partnership of the two agencies defined and analyzed the concept for a decade. The agencies partnered on LISA Pathfinder (LPF), and ESA-led technology demonstration mission, now preparing for a 2015 launch. Extensive technology development has been carried out on the ground. Currently, the evolved Laser Interferometer Space Antenna (eLISA) concept, a LISA-like concept with only two measurement arms, is competing for ESA's L2 opportunity. NASA's Astrophysics Division seeks to be a junior partner if eLISA is selected. If eLISA is not selected, then a LISA-like mission will be a strong contender in the 2020 decadal survey. This Technology Development Roadmap (TDR) builds on the LISA concept development, the LPF technology development, and the U.S. and European ground-based technology development. The eLISA architecture and the architecture of the Mid-sized Space-based Gravitational-wave Observatory (SGO Mid)-a competitive design with three measurement arms from the recent design study for a NASA

  11. Applying the Design Framework to Technology Professional Development

    ERIC Educational Resources Information Center

    Curwood, Jen Scott

    2013-01-01

    Building on contemporary research on teacher professional development, this study examined the practices of a technology-focused learning community at a high school in the United States. Over the course of a school year, classroom teachers and a university-based researcher participated in the learning community to investigate how technology can…

  12. Persistent Teaching Practices after Geospatial Technology Professional Development

    ERIC Educational Resources Information Center

    Rubino-Hare, Lori A.; Whitworth, Brooke A.; Bloom, Nena E.; Claesgens, Jennifer M.; Fredrickson, Kristi M.; Sample, James C.

    2016-01-01

    This case study described teachers with varying technology skills who were implementing the use of geospatial technology (GST) within project-based instruction (PBI) at varying grade levels and contexts 1 to 2 years following professional development. The sample consisted of 10 fifth- to ninth-grade teachers. Data sources included artifacts,…

  13. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  14. Ten-year space launch technology plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document is the response to the National Space Policy Directive-4 (NSPD-4), signed by the President on 10 Jul. 1991. Directive NSPD-4 calls upon the Department of Defense (DoD), the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA) to coordinate national space launch technology efforts and to jointly prepare a 10-year space launch technology plan. The nation's future in space rests on the strength of its national launch technology program. This plan documents our current launch technology efforts, plans for future initiatives in this arena, and the overarching philosophy that links these activities into an integrated national technology program.

  15. Technology CAD for integrated circuit fabrication technology development and technology transfer

    NASA Astrophysics Data System (ADS)

    Saha, Samar

    2003-07-01

    In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.

  16. Five Years of Research Into Technology-Enhanced Learning at the Faculty of Materials Science and Technology

    NASA Astrophysics Data System (ADS)

    Svetský, Štefan; Moravčík, Oliver; Rusková, Dagmar; Balog, Karol; Sakál, Peter; Tanuška, Pavol

    2011-01-01

    The article describes a five-year period of Technology Enhanced Learning (TEL) implementation at the Faculty of Materials Science and Technology (MTF) in Trnava. It is a part of the challenges put forward by the 7th Framework Programme (ICT research in FP7) focused on "how information and communication technologies can be used to support learning and teaching". The empirical research during the years 2006-2008 was focused on technology-driven support of teaching, i. e. the development of VLE (Virtual Learning Environment) and the development of database applications such as instruments developed simultaneously with the information support of the project, and tested and applied directly in the teaching of bachelor students. During this period, the MTF also participated in the administration of the FP7 KEPLER project proposal in the international consortium of 20 participants. In the following period of 2009-2010, the concept of educational activities automation systematically began to develop. Within this concept, the idea originated to develop a universal multi-purpose system BIKE based on the batch processing knowledge paradigm. This allowed to focus more on educational approach, i.e. TEL educational-driven and to finish the programming of the Internet application - network for feedback (communication between teachers and students). Thanks to this specialization, the results of applications in the teaching at MTF could gradually be presented at the international conferences focused on computer-enhanced engineering education. TEL was implemented at a detached workplace and four institutes involving more than 600 students-bachelors and teachers of technical subjects. Four study programmes were supported, including technical English language. Altogether, the results have been presented via 16 articles in five countries, including the EU level (IGIP-SEFI).

  17. Thirty Years of Evolution in Instructional Technology, as Reflected in a Textbook

    ERIC Educational Resources Information Center

    Smaldino, Sharon E.; Lowther, Deborah L.; Russell, James D.

    2011-01-01

    This article describes how a textbook has traced 30 years of evolution in instructional technology. One of the book's key continuing features is the ASSURE Model. To connect technology to learning, the Classroom Link was developed. As standards were formulated for teachers and students, they were included in the textbook. Other evolutionary…

  18. Brookhaven National Laboratory technology transfer report, fiscal year 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Brookhaven Office of Research and Technology Applications (ORTA) inaugurated two major initiatives. The effort by our ORTA in collaboration with the National Synchrotron Light Source (NSLS) has succeeded in alerting American industry to the potential of using a synchrotron x-ray source for high resolution lithography. We are undertaking a preconstruction study for the construction of a prototype commercial synchrotron and development of an advanced commercial cryogenic synchrotron (XLS). ORTA sponsored a technology transfer workshop where industry expressed its views on how to transfer accelerator technology during the construction of the prototype commercial machine. The Northeast Regional utility Initiative broughtmore » 14 utilities to a workshop at the Laboratory in November. One recommendation of this workshop was to create a Center at the Laboratory for research support on issues of interest to utilities in the region where BNL has unique capability. The ORTA has initiated discussions with the New York State Science and Technology Commission, Cornell University's world renowned Nannofabrication Center and the computer aided design capabilities at SUNY at Stony Brook to create, centered around the NSLS and the XLS, the leading edge semiconductor process technology development center when the XLS becomes operational in two and a half years. 1 fig.« less

  19. Research and technology, fiscal year 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.

  20. Extravehicular Activity Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an

  1. NASA Astrophysics Funds Strategic Technology Development

    NASA Astrophysics Data System (ADS)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects.

  2. Invention Development Program Helps Nurture NCI at Frederick Technologies | Poster

    Cancer.gov

    The Invention Development Fund (IDF) was piloted by the Technology Transfer Center (TTC) in 2014 to facilitate the commercial development of NCI technologies. The IDF received a second round of funding from the NCI Office of the Director and the Office of Budget and Management to establish the Invention Development Program (IDP) for fiscal year 2016. The IDP is using these

  3. Mobile display technologies: Past developments, present technologies, and future opportunities

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki

    2014-01-01

    It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.

  4. Cryogenic Fluid Management Technology Development Roadmaps

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Johnson, W. L.

    2017-01-01

    Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.

  5. Terrestrial Planet Finder: Coda to 10 Years of Technology Development

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.

    2009-01-01

    The Terrestrial Planet Finder (TPF) was proposed as a mission concept to the 2000 Decadal Survey, and received a very high ranking amongst the major initiatives that were then reviewed. As proposed, it was a formation flying array of four 3-m class mid-infrared telescopes, linked together as an interferometer. Its science goal was to survey 150 nearby stars for the presence of Earth-like planets, to detect signs of life or habitability, and to enable revolutionary advances in high angular resolution astrophysics. The Decadal Survey Committee recommended that $200M be invested to advance TPF technology development in the Decade of 2000-2010. This paper presents the results of NASA's investment.

  6. Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    The Metric is one of several measures employed by the NASA to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2004. The values are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. For Fiscal Year 2004, the Advanced Life Support Research and Technology Development Metric value is 2.03 for an Orbiting Research Facility and 1.62 for an Independent Exploration Mission.

  7. [Contribution of microbiologists of Kirov City to development of penicillin and streptomycin production processes (70 years since development of technology for submerged production of first domestic antibiotics)].

    PubMed

    Bakulin, M K; Tumanov, A S; Bakulin, V M; Kalininskiĭ, V B

    2014-01-01

    The publication is concerned with development of the technological processes for submered production of the first domestic antibiotics 70 years age. The literature data on the contribution of the microbiologists of the Kirov City and mainly the workers of the Red Army Research Institute of Epidemiology and Hygiene (nowadays Central Research Institute No. 48 of the Ministry of Defense of the Russian Federation, Kirov), to development of the manufacture processes for production of penicillin and streptomycin are reviewed.

  8. Subsystem Details for the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.

    2004-01-01

    This document provides values at the assembly level for the subsystems described in the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric (Hanford, 2004). Hanford (2004) summarizes the subordinate computational values for the Advanced Life Support Research and Technology Development (ALS R&TD) Metric at the subsystem level, while this manuscript provides a summary at the assembly level. Hanford (2004) lists mass, volume, power, cooling, and crewtime for each mission examined by the ALS R&TD Metric according to the nominal organization for the Advanced Life Support (ALS) elements. The values in the tables below, Table 2.1 through Table 2.8, list the assemblies, using the organization and names within the Advanced Life Support Sizing Analysis Tool (ALSSAT) for each ALS element. These tables specifically detail mass, volume, power, cooling, and crewtime. Additionally, mass and volume are designated in terms of values associated with initial hardware and resupplied hardware just as they are within ALSSAT. The overall subsystem values are listed on the line following each subsystem entry. These values are consistent with those reported in Hanford (2004) for each listed mission. Any deviations between these values and those in Hanford (2004) arise from differences in when individual numerical values are rounded within each report, and therefore the resulting minor differences should not concern even a careful reader. Hanford (2004) u es the uni ts kW(sub e) and kW(sub th) for power and cooling, respectively, while the nomenclature below uses W(sub e) and W(sub th), which is consistent with the native units within ALSSAT. The assemblies, as specified within ALSSAT, are listed in bold below their respective subsystems. When recognizable assembly components are not listed within ALSSAT, a summary of the assembly is provided on the same line as the entry for the assembly. Assemblies with one or more recognizable components are further

  9. NASA Advanced Refrigerator/Freezer Technology Development Project Overview

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.

    1995-01-01

    NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies, required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.

  10. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry. PMID:22346620

  11. Invention Development Program Helps Nurture NCI at Frederick Technologies | Poster

    Cancer.gov

    The Invention Development Fund (IDF) was piloted by the Technology Transfer Center (TTC) in 2014 to facilitate the commercial development of NCI technologies. The IDF received a second round of funding from the NCI Office of the Director and the Office of Budget and Management to establish the Invention Development Program (IDP) for fiscal year 2016. The IDP is using these funds to help advance a second set of inventions.

  12. [Industry of traditional Chinese patent medicine science and technology development and review].

    PubMed

    Lu, Jianwei; Wang, Fang; Yan, Dongmei; Luo, Yun; Yang, Ming

    2012-01-01

    "Fifteen" since, our country Chinese traditional medicine industry science and technology has made remarkable achievements. In this paper, the development of science and technology policy, Chinese medicine industry, platform construction and other aspects were analyzed, showing 10 years of Chinese traditional medicine industry development of science and technology innovation achievement and development, and on the current development of traditional Chinese medicine industry facing the main tasks and guarantee measures are analyzed.

  13. Ricor's anniversary of 50 innovative years in cryogenic technology

    NASA Astrophysics Data System (ADS)

    Filis, Avishai; Segal, Victor; Pundak, Nachman; Bar Haim, Zvi; Danziger, Menachem

    2017-05-01

    Ricor cryogenics was founded in 1967 and since then it has focused on innovative technologies in the cryogenic field. The paper reviews the initial research and development efforts invested in various technologies that have yielded products such as Cryostats for Mossbauer Effect measurement, Liquid gas Dewar containers, Liquid helium vacuum transfer tubes, Cryosurgery and other innovative products. The major registered patents that matured to products such as a magnetic vacuum valve operator, pumped out safety valve and other innovations are reviewed here. As a result of continuous R and D investment, over the years a new generation of innovative Stirling cryogenic products has developed. This development began with massive split slip-on coolers and has progressed as far as miniature IDDCA coolers mainly for IR applications. The accumulated experience in Stirling technology is used also as a platform for developing self-contained water vapor pumps known as MicroStar and NanoStar. These products are also used in collaboration with a research institute in the field of High Temperature Superconductors. The continuous growth in the cryogenic products range and the need to meet market demands have motivated the expansion, of Ricor's manufacturing facility enabling it to become a world leader in the cryocooler field. To date Ricor has manufactured more than 120,000 cryocoolers. The actual cryogenic development efforts and challenges are also reviewed, mainly in the field of long life cryocoolers, ruggedized products, miniaturization and products for space applications.

  14. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less

  15. Inflection Points in Magnetic Resonance Imaging Technology-35 Years of Collaborative Research and Development.

    PubMed

    Wood, Michael L; Griswold, Mark A; Henkelman, Mark; Hennig, Jürgen

    2015-09-01

    The technology for clinical magnetic resonance imaging (MRI) has advanced with remarkable speed and in such a manner reflecting the influence of 3 forces-collaboration between disciplines, collaboration between academia and industry, and the enabling of software applications by hardware. The forces are evident in the key developments from the past and emerging trends for the future highlighted in this review article. These developments are associated with MRI system attributes, such as wider, shorter, and stronger magnets; specialty magnets and hybrid devices; k space; and the notion that magnetic field gradients perform a Fourier transform on the spatial distribution of magnetization, phased-array coils and parallel imaging, the user interface, the wide range of contrast possible, and applications that exploit motion-induced phase shifts. An attempt is made to show connections between these developments and how the 3 forces mentioned previously will continue to shape the technology used so productively in clinical MRI.

  16. NASA GRC Stirling Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2003-01-01

    The Department of Energy, Lockheed Martin (LM), Stirling Technology Company, and NASA Glenn Research Center (GRC) are developing a high-efficiency Stirling Radioisotope Generator (SRG) for potential NASA Space Science missions. The SRG is being developed for multimission use, including providing spacecraft onboard electric power for NASA deep space missions and power for unmanned Mars rovers. NASA GRC is conducting an in- house supporting technology project to assist in developing the Stirling convertor for space qualification and mission implementation. Preparations are underway for a thermalhacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. Heater head life assessment efforts continue, including verification of the heater head brazing and heat treatment schedules and evaluation of any potential regenerator oxidation. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. Testing of the magnet/lamination epoxy bond for performance and lifetime characteristics is now underway. These efforts are expected to provide key inputs as the system integrator, LM, begins system development of the SRG. GRC is also developing advanced technology for Stirling convertors. Cleveland State University (CSU) is progressing toward a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. Validation efforts at both CSU and the University of Minnesota are complementing the code development. New efforts have been started this year on a lightweight convertor, advanced controllers, high-temperature materials, and an end-to-end system dynamics model. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems.

  17. New media, old media: The technologies of international development

    NASA Astrophysics Data System (ADS)

    Ingle, Henry T.

    1986-09-01

    The research, theory and practice of educational technology over the past 75 years provide convincing evidence that this process offers a comprehensive and integrated approach to solving educational and social problems. The use of media and technology in development has shifted from an emphasis on mass media to personal media. A variety of electronic delivery systems are being used and are usually coordinated by centralized governmental agencies. There are no patterns of use since the problems vary and the medium used is responsive to the problem. Computers are used most frequently and satellite telecommunication networks follow. The effective use of these and other technologies requires a long-term commitment to financial support and training of personnel. The extension model of face-to-face contact still prevails in developing nations whether in agriculture, education or rural development. Low-cost technologies are being used in local projects while major regional and national companies use radio, film and related video technologies. The use of all available and cost-effective media and technologies make possible appropriate communications for specific goals with specific audiences. There appears to be no conflict among proponents of various media formats. Development in education and other sectors has much to gain from old and new communication technologies and has hardly been tapped. Several new educational technology developments are discussed as potential contributors to formal and nonformal education.

  18. PRINTING TECHNIQUES: RECENT DEVELOPMENTS IN PHARMACEUTICAL TECHNOLOGY.

    PubMed

    Jamroz, Witold; Kurek, Mateusz; Lyszczarz, Ewelina; Brniak, Witold; Jachowicz, Renata

    2017-05-01

    In the last few years there has been a huge progress in a development of printing techniques and their application in pharmaceutical sciences and particularly in the pharmaceutical technology. The variety of printing methods makes it necessary to systemize them, explain the principles of operation, and specify the possibilities of their use in pharmaceutical technology. This paper aims to review the printing techniques used in a drug development process. The growing interest in 2D and 3D printing methods results in continuously increasing number of scientific papers. Introduction of the first printed drug Spritam@ to the market seems to be a milestone of the 3D printing development. Thus, a particular aim of this review is to show the latest achievements of the researchers in the field of the printing medicines.

  19. Project Morpheus: Lessons Learned in Lander Technology Development

    NASA Technical Reports Server (NTRS)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.

    2013-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.

  20. Establishment and development of irradiation technology industry in Shenzhen

    NASA Astrophysics Data System (ADS)

    Shou-yi, Lu

    1993-07-01

    This paper discusses the establishment and development of radiation processing—the new technology industry in Shenzhen special economic zone, China, from importing a complete set of irradiation equipment to establishing an industrial system of irradiation commercialization. Through the organization of irradiation production, the safety operation of the equipment, the development of irradiation products, the pioneering of technical markets, the increase of economic benefit and the reveal of social benefit, the irradiation technology industry in Shenzhen has formed a productive capacity of 1 million curies of Cobalt-60 just in a few years. This shows a bright future of the new technical industry. This paper also points out that the radiation sterilization is a ripe and practical technology in the present irradiation technology industry. The academic circles and industrial circles in the world now should closely cooperate to make the superior sterilization technology convinced by the public. The appropriate administrative measures should be taken to make it extended and popularized. This not only increases the level of social medical health, but also urges the irradiation technology to have an outstanding development in commercialization.

  1. Technology Development Towards a Flight Coronagraph

    NASA Astrophysics Data System (ADS)

    Siegler, N.

    2014-03-01

    The first biosignatures in the spectrum of an Earth-like planet will be measured by a spectrometer aboard a future space telescope. But before the planet's light can be captured and characterized, the host star's light may have to be suppressed by a factor of about 10 billion. One of these instruments may likely be an internal coronagraph working at visible wavelengths. Thanks to both a potential funding wedge in FY17 created by a JWST ramp-down to launch and a "gift" 2.4m telescope from the NRO being converted into a possible "AFTA-WFIRST" mission, NASA has already begun funding technology development towards flight coronagraphs that will take astronomers one step closer towards their goal. This talk will focus on the technology development underway and planned over the next few years for a flight coronagraph on an AFTA-WFIRST mission.

  2. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2003-01-01

    Aeroassist technology development is a vital part of the NASA ln-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  3. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2004-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  4. [Technological development: a weak link in vaccine innovation in Brazil].

    PubMed

    Homma, Akira; Martins, Reinaldo M; Jessouroum, Ellen; Oliva, Otavio

    2003-01-01

    In very recent years, the federal government has launched important initiatives mean to strengthen science, technology, and innovation in Brazil and thus enhance the results of technological innovation in key areas of the country's economy. Yet these initiatives have not been enough to reduce Brazil's heavy dependence on goods and technology from more developed nations. The article describes the current state of vaccination, production, and technological development of vaccines both internationally and nationally. Some thoughts are also offered on the complexity of vaccine innovation and the various stages whose completion is essential to the whole process of technological development. An analysis is made of the parameters and factors involved in each stage; technical requirements for facilities and equipment; good manufacturing practice guidelines; organizational, infrastructural, and managerial needs; and the lengthy time periods adn high costs entailed in these activities.

  5. Information Technology: A Year in Review.

    ERIC Educational Resources Information Center

    Byles, Torrey

    1989-01-01

    Describes developments in information technology during 1988, including new telecommunications and networking services, advances in optical disk technologies, the increased use of facsimile transmissions, and new microcomputer hardware and software products. Litigation within the computer industry is reviewed, and the implications for needed…

  6. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  7. Revisioning Information and Communication Technology for Development (ICT4D) at the Comparative & International Education Society (CIES): A Five-Year Account (2009-2013)

    ERIC Educational Resources Information Center

    Kang, Haijun

    2014-01-01

    The purpose of this paper is to provide an account of how Information and Communication Technology (ICT) has evolved as a key topic and research area at the Comparative and International Education Society (CIES) conference. The past five years' CIES conference papers with an ICT component are reviewed for common development trends, opportunities,…

  8. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne L.

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated

  9. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated

  10. Teachers as Learners: What Makes Technology-Focused Professional Development Effective?

    ERIC Educational Resources Information Center

    Curwood, Jen Scott

    2011-01-01

    Prompted by calls for research on technology-focused professional development, this article investigates how learning communities influence secondary English teachers' use of digital tools. Findings from this year-long study in the United States indicate that the ways in which technology is integrated within the English curriculum are still very…

  11. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  12. The Use of Technology in the Research, Development, and Dissemination Processes.

    ERIC Educational Resources Information Center

    Budke, Wesley E.

    1989-01-01

    Reviews technological developments of the last 18 years pertaining to the vocational education research responsibilities of networking and dissemination. Asserts that researchers should know about and evaluate emerging technologies in accessing, sharing, manipulating, and disseminating information for possible application to improve research…

  13. Aerocapture Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.; Moon, Steven A.

    2008-01-01

    This paper will explain the investment strategy, the role of detailed systems analysis, and the hardware and modeling developments that have resulted from the past 5 years of work under NASA's In-Space Propulsion Program (ISPT) Aerocapture investment area. The organizations that have been funded by ISPT over that time period received awards from a 2002 NASA Research Announcement. They are: Lockheed Martin Space Systems, Applied Research Associates, Inc., Ball Aerospace, NASA s Ames Research Center, and NASA s Langley Research Center. Their accomplishments include improved understanding of entry aerothermal environments, particularly at Titan, demonstration of aerocapture guidance algorithm robustness at multiple bodies, manufacture and test of a 2-meter Carbon-Carbon "hot structure," development and test of evolutionary, high-temperature structural systems with efficient ablative materials, and development of aerothermal sensors that will fly on the Mars Science Laboratory in 2009. Due in large part to this sustained ISPT support for Aerocapture, the technology is ready to be validated in flight.

  14. Advanced adaptive optics technology development

    NASA Astrophysics Data System (ADS)

    Olivier, Scot S.

    2002-02-01

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  15. Mars Technology Program: Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  16. Profiling 1366 Technologies: One Year Later

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Mierlo, Frank; Sachs, Ely

    2011-01-01

    Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made.

  17. Profiling 1366 Technologies: One Year Later

    ScienceCinema

    Van Mierlo, Frank; Sachs, Ely

    2018-05-30

    Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made.

  18. Urban Rail Supporting Technology Program - Fiscal Year 1973 - Year-End Summary

    DOT National Transportation Integrated Search

    1974-01-01

    The Urban Rail Supporting Technology Program, being conducted for the Department of Transportation Urban Mass Transportation Administration (UMTA) is described for the 1973 Fiscal Year period. Major areas covered include program management, technical...

  19. Technology Development Center at NICT

    NASA Technical Reports Server (NTRS)

    Takefuji, Kazuhiro; Ujihara, Hideki

    2013-01-01

    The National Institute of Information and Communications Technology (NICT) is developing and testing VLBI technologies and conducts observations with this new equipment. This report gives an overview of the Technology Development Center (TDC) at NICT and summarizes recent activities.

  20. Engineering Research and Development and Technology thrust area report FY92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less

  1. Mechanisation and automation technologies development in work at construction sites

    NASA Astrophysics Data System (ADS)

    Sobotka, A.; Pacewicz, K.

    2017-10-01

    Implementing construction work that creates buildings is a very complicated and laborious task and requires the use of various types of machines and equipment. For years there has been a desire for designers and technologists to introduce devices that replace people’s work on machine construction, automation and even robots. Technologies for building construction are still being developed and implemented to limit people’s hard work and improve work efficiency and quality in innovative architectonical and construction solutions. New opportunities for improving work on the construction site include computerisation of technological processes and construction management for projects and processes. The aim of the paper was to analyse the development of mechanisation, automation and computerisation of construction processes and selected building technologies, with special attention paid to 3D printing technology. The state of mechanisation of construction works in Poland and trends in its development in construction technologies are presented. These studies were conducted on the basis of the available literature and a survey of Polish construction companies.

  2. Research and Development Needs for Building-Integrated Solar Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  3. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  4. First Year of WFIRST/AFTA Coronagraph Technology Development: Testbed Progress Update

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Ilya; Poberezhskiy, Ilya; Zhao, Feng; An, Xin; Balasubramanian, Kunjithapatham; Belikov, Rus; Cady, Eric; Diaz, Rosemary; Gordon, Brian; Guyon, Olivier; Kasdin, N. Jeremy; Kern, Brian; Kuhnert, Andreas; Moody, Dwight; Muller, Richard; Nemati, Bijan; Patterson, Keith; Riggs, A. J.; Ryan, Daniel; Seo, Byoung-Joon; Sidick, Erkin; Shi, Fang; Tang, Hong; Trauger, John; Wallace, Kent; Wang, Xu; Wilson, Daniel; White, Victor; Yee, Karl; Zhou, Hanying; Zimmerman, Neil

    2015-01-01

    NASA's WFIRST/AFTA mission study includes the first high-contrast stellar coronagraph in space. This coronagraph will be capable of imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter and possibly super-Earths, as well as circumstellar disks. After a transparent and rigorous downselect process, NASA chose in December of 2013 a primary design called an Occulting Mask Coronagraph (OMC) that combines two technical approaches, Shaped Pupil and Hybrid Lyot, in one instrument. The Phase-Induced Amplitude Apodization Complex Mask Coronagraph was selected as the backup design.The OMC coronagraph technologies were assessed to have the highest likelihood of passing the WFIRST/AFTA flight readiness gates and the ability to produce compelling science by working with the existing 2.4-meter telescope 'as is,' including its central obscuration, expected thermal drift, and the observatory pointing jitter. NASA set us the objective of maturing the WFIRST/AFTA coronagraph to Technology Readiness Level (TRL) 5 by October 1, 2016. A set of technical milestones was agreed upon to track the progress toward achieving TRL 5.Substantial advances in WFIRST/AFTA coronagraph technology have been made during 2014, and the OMC progress is currently running ahead of the schedule laid out by the milestones. Our poster will present some of these key recent results to the community, including:(1) Fabrication and characterization of WFIRST/AFTA coronagraph pupil plane and focal plane masks designed to work with the existing 2.4 telescope.(2) Experimental results demonstrating high contrast achieved on a coronagraph testbed in narrowband and broadband light - first such results obtained with an obscured pupil.(3) Progress in the development of the low-order wavefront sensing and control subsystem that will use rejected starlight to sense and correct both high frequency pointing jitter and slow varying low order aberrations. This subsystem will be integrated with the

  5. Leveraging the Technology du Jour for Overt and Covert Faculty Development

    ERIC Educational Resources Information Center

    Hagler, Debra; Kastenbaum, Beatrice; Brooks, Ruth; Morris, Brenda; Saewert, Karen J.

    2013-01-01

    Leveraging Educational Technology for Evidence-Based Practice (LET-EBP), a four year federally funded project, was designed to extend use of educational technologies in the prelicensure undergraduate nursing program of a large public research university. Faculty members supported through the project developed and integrated over 20…

  6. Technology transfer of military space microprocessor developments

    NASA Astrophysics Data System (ADS)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  7. Development Challenges of Game-Changing Entry System Technologies From Concept to Mission Infusion

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Beck, Robin; Ellerby, Donald; Feldman, Jay; Gage, Peter; Munk, Michelle; Wercinski, Paul

    2016-01-01

    NASA's Space Technology Mission Directorate (STMD) and the Game Changing Development Program (GCDP) were created to develop new technologies. This paper describes four entry system technologies that are funded by the GCDP and summarizes the lessons learned during the development. The investments are already beginning to show success, mission infusion pathways after five years of existence. It is hoped that our experience and observations, drawn from projects supported by the GCD program/STMD, Orion and SMD can help current and future technology development projects. Observations on fostering a culture of success and on constraints that limit greater success are also provided.

  8. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, We use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.

  9. Urban Rail Supporting Technology Program Fiscal Year 1974 Year End Summary

    DOT National Transportation Integrated Search

    1975-03-01

    Major areas include program management, technical support and application engineering, facilities development, test and evaluation, and technology development. Specific technical discussion includes track measurement systems; UMTA facilities developm...

  10. Tracking Professional Development of Novice Teachers When Integrating Technology in Teaching Mathematics

    ERIC Educational Resources Information Center

    Gurevich, Irina; Stein, Hana; Gorev, Dvora

    2017-01-01

    This research traced changes in choices of technological tools and attitudes toward technology use among novice mathematics teachers at three stages of their professional development: as pre-service teachers, a year later, and in their work as novice teachers. At each stage, the participants were required to evaluate the benefits of technology use…

  11. Technology transfer and international development: Materials and manufacturing technology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  12. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, T. S.; Taylor, C. H.; Moore, J. S.

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which theremore » is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47

  13. Payload software technology: Software technology development plan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Programmatic requirements for the advancement of software technology are identified for meeting the space flight requirements in the 1980 to 1990 time period. The development items are described, and software technology item derivation worksheets are presented along with the cost/time/priority assessments.

  14. Development of Inflatable Entry Systems Technologies

    NASA Technical Reports Server (NTRS)

    Player, Charles J.; Cheatwood, F. McNeil; Corliss, James

    2005-01-01

    Achieving the objectives of NASA s Vision for Space Exploration will require the development of new technologies, which will in turn require higher fidelity modeling and analysis techniques, and innovative testing capabilities. Development of entry systems technologies can be especially difficult due to the lack of facilities and resources available to test these new technologies in mission relevant environments. This paper discusses the technology development process to bring inflatable aeroshell technology from Technology Readiness Level 2 (TRL-2) to TRL-7. This paper focuses mainly on two projects: Inflatable Reentry Vehicle Experiment (IRVE), and Inflatable Aeroshell and Thermal Protection System Development (IATD). The objectives of IRVE are to conduct an inflatable aeroshell flight test that demonstrates exoatmospheric deployment and inflation, reentry survivability and stability, and predictable drag performance. IATD will continue the development of the technology by conducting exploration specific trade studies and feeding forward those results into three more flight tests. Through an examination of these projects, and other potential projects, this paper discusses some of the risks, issues, and unexpected benefits associated with the development of inflatable entry systems technology.

  15. Technology for Distance Education: A 10 Year Prospective.

    ERIC Educational Resources Information Center

    Bates, A. W.

    This paper provides an overview of new technologies likely to be widely available within the next 10 years for teaching in Europe. It begins by presenting a framework which draws distinctions between different technologies based on their educational applications, i.e., for teaching or operational purposes, for communicating within or between…

  16. Development of a smart timber bridge - a five-year plan

    Treesearch

    Brent M. Phares; Terry J. Wipf; Ursula Deza; James P. Wacker

    2011-01-01

    This paper outlines a 5-year research plan for the development of a structural health monitoring system for timber bridges. A series of studies identify and evaluate various sensing technologies for measurement of structural adequacy and/or deterioration parameters. The overall goal is to develop a turn-key system to analyze, monitor, and report on the performance and...

  17. Mission critical technology development

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy

    1991-01-01

    Mission critical technology development is presented in the form of the viewgraphs. The following subject areas are covered: organization/philosophy overview; fault management technology; and introduction to optical processing.

  18. Reflections on the Development of a Machine Vision Technology for the Forest Products

    Treesearch

    Richard W. Conners; D.Earl Kline; Philip A. Araman; Robert L. Brisbon

    1992-01-01

    The authors have approximately 25 years experience in developing machine vision technology for the forest products industry. Based on this experience this paper will attempt to realistically predict what the future holds for this technology. In particular, this paper will attempt to describe some of the benefits this technology will offer, describe how the technology...

  19. Spacecraft technology. [development of satellites and remote sensors

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Developments in spacecraft technology are discussed with emphasis on the Explorer satellite program. The subjects considered include the following: (1) nutational behavior of the Explorer-45 satellite, (2) panoramic sensor development, (3) onboard camera signal processor for Explorer satellites, and (4) microcircuit development. Information on the zero gravity testing of heat pipes is included. Procedures for cleaning heat treated aluminum heat pipes are explained. The development of a five-year magnetic tape, an accurate incremental angular encoder, and a blood freezing apparatus for leukemia research are also discussed.

  20. Tracing Impacts of Science and Technology Development

    NASA Astrophysics Data System (ADS)

    Powell, Jeanne

    2003-03-01

    ATP's Mission and Operations. The ATP partners with industry to accelerate the development of innovative technologies for broad national economic benefit. The program's focus is on co-funding collaborative, multi-disciplinary technologies and enabling technology platforms that appear likely to be commercialized, with private sector funding, once the high technical risks are reduced. Industry-led projects are selected for funding in rigorous competitions on the basis of technical and economic merit. Since 1990, ATP has co-funded 642 projects, with 1,329 participants and another 1,300 subcontractors. Measuring to Mission: Overview of ATP's Evaluation Program. ATP's multi-component evaluation strategy provides measures of progress and performance matched to the stage of project evolution; i.e., for the short-term, from the time of project selection and over the course of the R for the mid-term, as commercial applications are pursued, early products reach the market, and dissemination of knowledge created in the R projects occurs; and for the longer-term, as more fully-developed technologies diffuse across multiple products and industries. The approach is applicable to all public S programs and adaptable to private or university projects ranging from basic research to applied industrial R. Examples of Results. ATP's composite performance rating system assesses ATP's completed projects against multi-faceted performance criteria of Knowledge Creation and Dissemination and Commercialization Progress 2-3 years after the end of ATP-funded R. It generates scores ranging from zero to four stars. Results for ATP's first 50 completed projects show that 16are in the bottom group of zero or one stars. 60the middle group. It is understood that not all ATP projects will be successful given the program's emphasis on funding high-risk technology development that the private sector is unwilling and unable to fund alone. Different technologies have different timelines for

  1. New Technology Trends in Education: Seven Years of Forecasts and Convergence

    ERIC Educational Resources Information Center

    Martin, Sergio; Diaz, Gabriel; Sancristobal, Elio; Gil, Rosario; Castro, Manuel; Peire, Juan

    2011-01-01

    Each year since 2004, a new Horizon Report has been released. Each edition attempts to forecast the most promising technologies likely to impact on education along three horizons: the short term (the year of the report), the mid-term (the next 2 years) and the long term (the next 4 years). This paper analyzes the evolution of technology trends…

  2. A Proposal to Develop Interactive Classification Technology

    NASA Technical Reports Server (NTRS)

    deBessonet, Cary

    1998-01-01

    Research for the first year was oriented towards: 1) the design of an interactive classification tool (ICT); and 2) the development of an appropriate theory of inference for use in ICT technology. The general objective was to develop a theory of classification that could accommodate a diverse array of objects, including events and their constituent objects. Throughout this report, the term "object" is to be interpreted in a broad sense to cover any kind of object, including living beings, non-living physical things, events, even ideas and concepts. The idea was to produce a theory that could serve as the uniting fabric of a base technology capable of being implemented in a variety of automated systems. The decision was made to employ two technologies under development by the principal investigator, namely, SMS (Symbolic Manipulation System) and SL (Symbolic Language) [see debessonet, 1991, for detailed descriptions of SMS and SL]. The plan was to enhance and modify these technologies for use in an ICT environment. As a means of giving focus and direction to the proposed research, the investigators decided to design an interactive, classificatory tool for use in building accessible knowledge bases for selected domains. Accordingly, the proposed research was divisible into tasks that included: 1) the design of technology for classifying domain objects and for building knowledge bases from the results automatically; 2) the development of a scheme of inference capable of drawing upon previously processed classificatory schemes and knowledge bases; and 3) the design of a query/ search module for accessing the knowledge bases built by the inclusive system. The interactive tool for classifying domain objects was to be designed initially for textual corpora with a view to having the technology eventually be used in robots to build sentential knowledge bases that would be supported by inference engines specially designed for the natural or man-made environments in which the

  3. Proceedings of the annual solar thermal technology research and development conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, W.A.

    1989-02-01

    The Annual Solar Thermal Technology Research and Development Conference is being held at the Holiday Inn Crowne Plaza in Arlington, Virgina, Marh 8 and 9, 1989. This year the conference is meeting in conjunction with SOLTECH '89. SOLTECH '89 is a jointly sponsored meeting of the Solar Energy Industries Association, Interstate Solar Coordination Council, Sandia National Laboratories and the Solar Energy Research Institute. This report contains the agenda, extended abstracts and most significant visual aids used by the speakers during the Solar Thermal Technology research and development sessions. The program is divided into three sessions: Solar Electric Technology, Non-Electric Researchmore » and Development and Applications, and Concentrators.« less

  4. Current Status and Tasks in Development of Cable Recycling Technology

    NASA Astrophysics Data System (ADS)

    Ezure, Takashi; Goto, Kazuhiko

    This paper shows current status and tasks in development of cable recycling technology and it’s items to be solved. Electric cable recycle system has been activated especially for copper conductor recycle in Japan. Previously removed cable coverings materials were mainly land filled. But landfill capacity is decreased and limited in recent years, at the same time, recycle technology was highly developed. A cable recycle technology has 4 tasks. (1) Applying new high efficiency separation system instead of electrostatic and gravity methods to classify mixed various kind of plastics materials including recently developed ecological material (ex PE, PVC, Rubber), (2) Removing heavy metal, especially lead from PVC material, (3) Treatment of optical glass fiber core, which has possibility going to be harmful micro particles, and (4) Establishment of social recycle system for electric wire and cable. Taking action for these tasks shall be proceeded under environmentally sensitive technology together with local government, user, manufacturer, and waste-disposal company on cost performance basis.

  5. The Importance of Introducing a Course on Information and Communication Technologies for Development into the Information Technology Curriculum

    ERIC Educational Resources Information Center

    Al-Ahmad, Walid

    2010-01-01

    This paper studies the role and the importance of Information and Communication Technologies for Development (ICT4D) education in Information Technology (IT) programs. The research included the students who attended an ICT4D course at NYiT Amman Campus in the academic years of 2006 to 2009. Data were collected through two questionnaires developed…

  6. THE SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: PROGRESS AND ACCOMPLISHMENTS - FISCAL YEAR 1990 A FOURTH REPORT TO CONGRESS

    EPA Science Inventory

    The SITE Program was the first major program for demonstrating and evaluating fullscale innovative treatment technologies at hazardous waste sites. Having concluded its fourth year, the SITE Program is recognized as a leading advocate of innovative technology development and comm...

  7. Genetic tool development and systemic regulation in biosynthetic technology.

    PubMed

    Dai, Zhongxue; Zhang, Shangjie; Yang, Qiao; Zhang, Wenming; Qian, Xiujuan; Dong, Weiliang; Jiang, Min; Xin, Fengxue

    2018-01-01

    With the increased development in research, innovation, and policy interest in recent years, biosynthetic technology has developed rapidly, which combines engineering, electronics, computer science, mathematics, and other disciplines based on classical genetic engineering and metabolic engineering. It gives a wider perspective and a deeper level to perceive the nature of life via cell mechanism, regulatory networks, or biological evolution. Currently, synthetic biology has made great breakthrough in energy, chemical industry, and medicine industries, particularly in the programmable genetic control at multiple levels of regulation to perform designed goals. In this review, the most advanced and comprehensive developments achieved in biosynthetic technology were represented, including genetic engineering as well as synthetic genomics. In addition, the superiority together with the limitations of the current genome-editing tools were summarized.

  8. Networking and Information Technology Research and Development. Supplement to the President's Budget for FY 2002.

    ERIC Educational Resources Information Center

    Office of Science and Technology Policy, Washington, DC. National Science and Technology Council.

    This document is the annual report prepared by the Interagency Working Group on Information Technology Research and Development of the National Science and Technology Council. This report is a Supplement to the President's fiscal year (FY) 2002 Budget that describes the Federal Networking and Information Technology Research and Development (NITRD)…

  9. Transforming Teaching with Technology: Perspectives from Two-Year Colleges. EDUCOM Strategies Series on Information Technology.

    ERIC Educational Resources Information Center

    Anandam, Kamala, Ed.

    Focusing on the diversity of the uses of technology in education and the institutions which apply them, this book presents 13 articles describing technological transformations in teaching at two-year colleges throughout the United States. The book contains: (1) "Tradition and Technology at Amarillo College: People Make the Difference," by Diana…

  10. Environmental Education and Development Division (EM-522). Annual report, Fiscal year 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    The Environmental Education and Development Division (EM-522) is one of three divisions within the Office of Technology Integration and Environmental Education and Development (EM-52) in Environmental Restoration and Waste Management`s (EM`s) Office of Technology Development (EM-50). The primary design criterion for EM-522 education activities is directly related to meeting EM`s goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, EM-522`s efforts are directed specifically toward stimulating knowledge and capabilities to achieve the goals of EM while contributing to DOE`s overall goal of increasing scientific, mathematical,more » and technical literacy and competency. This report discusses fiscal year 1993 activities.« less

  11. Elementary Principals' Perceptions of Visionary Leadership, Self-Efficacy, and Professional Development in Technology

    ERIC Educational Resources Information Center

    Gregory, Karen L.

    2015-01-01

    This quantitative research was conducted as a means of examining the relationship between elementary school principals' use of a Technology Action Plan and (a) gender, (b) age, (c) years of administrative experience, (d) perceptions of professional development in technology, and (e) perceptions of self-efficacy in technology. Also examined was the…

  12. Technology and Occupation: Past, Present, and the Next 100 Years of Theory and Practice.

    PubMed

    Smith, Roger O

    During the first 100 years of occupational therapy, the profession developed a remarkable practice and theory base. All along, technology was an active and core component of practice, but often technology was mentioned only as an adjunct component of therapy and as if it was a specialty. This lecture proposes a new foundational theory that places technology at the heart of occupational therapy as a fundamental part of human occupation and the human experience. Moreover, this new Metaphysical Physical-Emotive Theory of Occupation pushes the occupational therapy profession and the occupational science discipline to overtly consider occupation on the level of a metaphysical-level reality. The presentation of this theory at the Centennial of the profession charges the field to test and further define the theory over the next 100 years and to leverage technology and its role in optimizing occupational performance into the future. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  13. Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.

    2012-01-01

    NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.

  14. Past Research in Instructional Technology: Results of a Content Analysis of Empirical Studies Published in Three Prominent Instructional Technology Journals from the Year 2000 through 2004

    ERIC Educational Resources Information Center

    Hew, Khe Foon; Kale, Ugur; Kim, Nari

    2007-01-01

    This article reviews and categorizes empirical studies related to instructional technology that were published in three prominent journals: "Educational Technology Research and Development, Instructional Science," and the "Journal of Educational Computing Research" from the year 2000 through 2004. Four questions guided this review: 1) What…

  15. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  16. Developments in Business Gaming: A Review of the Past 40 Years

    ERIC Educational Resources Information Center

    Faria, A. J.; Hutchinson, David; Wellington, William J.; Gold, Steven

    2009-01-01

    This article examines developments in business simulation gaming during the past 40 years. Covered in this article are a brief history of business games, the changing technology employed in the development and use of business games, changes in why business games are adopted and used, changes in how business games are administered, and the current…

  17. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT andmore » E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.« less

  18. Advanced Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project matures critical technologies required to enable ultra-stable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets.

  19. New technologies and surgical innovation: five years of a local health technology assessment program in a surgical department.

    PubMed

    Poulin, Paule; Austen, Lea; Kortbeek, John B; Lafrenière, René

    2012-06-01

    There is pressure for surgical departments to introduce new and innovative health technologies in an evidence-based manner while ensuring that they are safe and effective and can be managed with available resources. A local health technology assessment (HTA) program was developed to systematically integrate research evidence with local operational management information and to make recommendations for subsequent decision by the departmental executive committee about whether and under what conditions the technology will be used. The authors present a retrospective analysis of the outcomes of this program as used by the Department of Surgery & Surgical Services in the Calgary Health Region over a 5-year period from December 2005 to December 2010. Of the 68 technologies requested, 15 applications were incomplete and dropped, 12 were approved, 3 were approved for a single case on an urgent/emergent basis, 21 were approved for "clinical audit" for a restricted number of cases with outcomes review, 14 were approved for research use only, and 3 were referred to additional review bodies. Subsequent outcome reports resulted in at least 5 technologies being dropped for failure to perform. Decisions based on local HTA program recommendations were rarely "yes" or "no." Rather, many technologies were given restricted approval with full approval contingent on satisfying certain conditions such as clinical outcomes review, training protocol development, or funding. Thus, innovation could be supported while ensuring safety and effectiveness. This local HTA program can be adapted to a variety of settings and can help bridge the gap between evidence and practice.

  20. Development priorities for in-space propulsion technologies

    NASA Astrophysics Data System (ADS)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2013-02-01

    During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.

  1. Engineering research, development and technology report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R T

    1999-02-01

    Nineteen ninety-eight has been a transition year for Engineering, as we have moved from our traditional focus on thrust areas to a more focused approach with research centers. These five new centers of excellence collectively comprise Engineering's Science and Technology program. This publication summarizes our formative year under this new structure. Let me start by talking about the differences between a thrust area and a research center. The thrust area is more informal, combining an important technology with programmatic priorities. In contrast, a research center is directly linked to an Engineering core technology. It is the purer model, for itmore » is more enduring yet has the scope to be able to adapt quickly to evolving programmatic priorities. To put it another way, the mission of a thrust area was often to grow the programs in conjunction with a technology, whereas the task of a research center is to vigorously grow our core technologies. By cultivating each core technology, we in turn enable long-term growth of new programs.« less

  2. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  3. Policy issues inherent in advanced technology development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most ofmore » the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.« less

  4. Recent developments in PET detector technology

    PubMed Central

    Lewellen, Tom K

    2010-01-01

    Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301

  5. Positron emission tomography imaging as a key enabling technology in drug development.

    PubMed

    McCarthy, T J

    2007-01-01

    The use of positron emission tomography (PET) in drug development has become more common in the pharmaceutical industry in recent years. One of the biggest challenges to gaining acceptance of this technology is for project teams to understand when to use PET. This chapter reviews the usage of PET in drug development in the context of target, mechanism and efficacy biomarkers. Examples are drawn from a number of therapeutic areas, but we also show that the relative penetration of this technology beyond CNS and oncology applications has been relatively small. However, with the increasing availability of PET and development of novel radiotracers it is expected that the utilization will be much broader in future years, with the additional expectation that the use of PET as an efficacy biomarker will also become more evident.

  6. Summary of Medipix Technology's 3-Years in Space and Plans for Future Developments

    NASA Astrophysics Data System (ADS)

    Pinsky, Lawrence

    2016-07-01

    NASA has evaluated 7 Timepix-based radiation imaging detectors from the CERN-based Medipix2 collaboration on the International Space Station (ISS), collecting more than 3-years of data, as well on the December, 2014 EFT-1 mission testing the new Orion Multi-Purpose Crew Vehicle. These data along with data collected at ground-based accelerator facilities including the NASA Space Radiation Lab (NSRL) at Brookhaven in the US, as well as at the HIMAC facility at the National Institute for Radiological Sciences in Japan, have allowed the development of software analysis techniques sufficient to provide a stand-alone accurate assessment of the space radiation environment for dosimetric purposes. Recent comparisons of the performance of the Timepix with both n-on-p and p-on-n Si sensors will be presented. The further evolution of the Timepix technology by the Medipix3 collaboration in the form of the Timepix3 chip, which employs a continuous data-driven readout scheme, is being evaluated for possible use in future space research applications. Initial performance evaluations at accelerators will be reported. The Medipix2 Collaboration is also in the process of designing an updated version of the Timepix chip, called the Timepix2, which will continue the frame-based readout scheme of the current Timepix chip, but add simultaneous charge encoding using the Time-Over-Threshold (TOT) and first-hit Time-of-Arrival (TOA) encoding. Current plans are to replace the Timepix by the Timepix2 with minimal reconfiguration of the supporting electronics. Longer-term plans include participation in the currently forming Medipix4 collaboration. A summary of these prospects will also be included.

  7. For the Teacher and by the Teacher: Development of Exemplar Technology Learning Activities in Taiwan.

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng Steven

    In Taiwan, revised curriculum standards for junior and senior high school technology education were developed to take effect in the 1997 and 1998 school years. A project was undertaken to develop a set of exemplar technology learning activities (TLAs) to assist teachers in developing their school-based course of study for the living technology…

  8. Information Technology Budgets and Costs: Do You Know What Your Information Technology Costs Each Year?

    ERIC Educational Resources Information Center

    Dugan, Robert E.

    2002-01-01

    Discusses yearly information technology costs for academic libraries. Topics include transformation and modernization activities that affect prices and budgeting; a cost model for information technologies; life cycle costs, including initial costs and recurring costs; cost benchmarks; and examples of pressures concerning cost accountability. (LRW)

  9. Recent progress in MEMS technology development for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Burgett, Sherrie J.

    2001-08-01

    The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.

  10. Proposed Curriculum Design for a 2-Year College of Technology.

    ERIC Educational Resources Information Center

    Wang, Yen-Zen

    This paper presents a curriculum-oriented model focusing on curriculum revision of the design and structures of two-year academic institutes of technology. This research uses the Department of Business and Technology Management, which is being set up in the Far East Institute of Technology (Taiwan), as an example and works out the new models…

  11. Aerocapture Technology Developments from NASA's In-Space Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.; Moon, Steven A.

    2007-01-01

    This paper will explain the investment strategy, the role of detailed systems analysis, and the hardware and modeling developments that have resulted from the past 5 years of work under NASA's In-Space Propulsion Program (ISPT) Aerocapture investment area. The organizations that have been funded by ISPT over that time period received awards from a 2002 NASA Research Announcement. They are: Lockheed Martin Space Systems, Applied Research Associates, Inc., Ball Aerospace, NASA's Ames Research Center, and NASA's Langley Research Center. Their accomplishments include improved understanding of entry aerothermal environments, particularly at Titan, demonstration of aerocapture guidance algorithm robustness at multiple bodies, manufacture and test of a 2-meter Carbon-Carbon "hot structure," development and test of evolutionary, high-temperature structural systems with efficient ablative materials, and development of aerothermal sensors that will fly on the Mars Science Laboratory in 2009. Due in large part to this sustained ISPT support for Aerocapture, the technology is ready to be validated in flight.

  12. Lunar Surface Systems Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; hide

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  13. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  14. From Cradle to Brave New World: The First 20 Years of Developing a Research Field in New Technologies and Teacher Education, as Reflected in the Pages of JITTE/TPE

    ERIC Educational Resources Information Center

    Denning, Tim; Fisher, Tony; Higgins, Chris

    2011-01-01

    This article explores the development of the Journal over the first 20 years of its existence, reflecting a period of ongoing change in educational technologies and their role in teacher education and development. This exploration is undertaken through an analysis of the abstracts of articles published in the first 19 volumes of the Journal. Word…

  15. Space technology developments in Malaysia:

    NASA Astrophysics Data System (ADS)

    Sabirin, A.

    The venture of space is, by nature, a costly one. However, exploring space is not just an activity reserved for international superpowers. Smaller and emerging space nations, some with burgeoning space programs of their own, can play a role in space technology development and interplanetary exploration, sometimes simply by just being there. Over the past four decades, the range of services delivered by space technologies in Malaysia has grown enormously. For many business and public services, space based technologies have become the primary means of delivery of such services. Space technology development in Malaysia started with Malaysia's first microsatellite, TiungSAT-1. TiungSAT-1 has been successfully launched from the Baikonur Cosmodrome, Kazakhstan on the 26th of September 2000 on a Russian-Ukrainian Dnepr rocket. There have been wide imaging applications and information extraction using data from TiungSAT-1. Various techniques have been applied to the data for different applications in environmental assessment and monitoring as well as resource management. As a step forward, Malaysia has also initiated another space technology programme, RAZAKSAT. RAZAKSAT is a 180kg class satellite designed to provide 2.5meter ground sampling distance resolution imagery on a near equatorial orbit. Its mission objective is to demonstrate the capability of a medium high resolution remote sensing camera using a cost effective small satellite platform and a multi-channel linear push-broom electro-optical instrument. Realizing the immense benefits of space technology and its significant role in promoting sustainable development, Malaysia is committed to the continuous development and advancement of space technology within the scope of peaceful use of outer space and boosting its national economic growth through space related activities.

  16. ECH Technology Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated themore » options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.« less

  17. The Developing Field of Technology Education: A Review to Look Forward

    ERIC Educational Resources Information Center

    Jones, Alister; Buntting, Cathy; de Vries, Marc J.

    2013-01-01

    This paper attempts to review the development of technology education over the last 20-25 years. The purpose is to reflect on how far the field has come and where it might go to, including what questions need to be considered in its ongoing development. The data for this paper draw on our work in developing "The International Handbook of Research…

  18. NASA Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  19. Watching, Creating and Achieving: Creative Technologies as a Conduit for Learning in the Early Years

    ERIC Educational Resources Information Center

    McDonald, Susan; Howell, Jennifer

    2012-01-01

    This paper describes the use of robotics in an Early Years classroom as a tool to aid the development of technological skills in a creative environment rich with literacy and numeracy opportunities. The pilot project illustrates how a three-phase process can result in the development of: (1) emergent literacy and numeracy, (2) digital access for…

  20. Advances in electronic-nose technologies developed for biomedical applications

    Treesearch

    Dan Wilson; Manuela Baietto

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and...

  1. PHOTON2: A web-based professional development model for photonics technology education

    NASA Astrophysics Data System (ADS)

    Massa, Nicholas M.; Washburn, Barbara A.; Kehrhahn, Marijke; Donnelly, Judith F.; Hanes, Fenna D.

    2004-10-01

    In this paper, we present a web-based teacher professional development model for photonics technology education funded by the National Science Foundation Advanced Technology Education (ATE) program. In response to the rapidly growing demand for skilled photonics technicians, the PHOTON2 project will increase the number of high school teachers and community college faculty across the US proficient in teaching photonics technology at their own institutions. The project will also focus on building the capacity of educators to engage in lifelong learning through web-based professional development. Unlike the traditional professional development model whereby educators receive training through intensive short-term workshops, the PHOTON2 project team has developed a pedagogical framework designed specifically for adult learners in which technical content, curriculum development, and learner self-regulatory development are integrated into an active, collaborative, and sustained online learning environment. In Spring 2004, two cohorts of science and technology educators, career/guidance counselors, and industry mentors from eleven states including California, Pennsylvania, Texas, Arizona, Hawaii, and the six New England states commenced participation in the three-year project. Qualitative and quantitative research, focused on individual and environmental factors related to web-based learning, will examine the viability of web-based teacher/faculty professional development in engineering technology education.

  2. Development of High Temperature Gas Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  3. Development of coverage with evidence development for medical technologies in Switzerland from 1996 to 2012.

    PubMed

    Brügger, Urs; Ruckstuhl, Andreas; Horisberger, Bruno; Gratwohl, Alois

    2014-07-01

    The aim of this study was to assess incidence, time frame, and outcome of "Coverage with Evidence Development" (CED) decisions in the Swiss Basic Health Insurance scheme. Analysis of all controversial medical technologies submitted to review by the Swiss Federal Office of Public Health (FOPH) from 1996 to 2012 with focus on decisions with constraints. Description of types of technology, type of initial decision, duration of evaluation period, final decision, and search for potential factors associated with changes over time. Forty-five (37.5 percent) of 120 controversial health technologies were classified as "yes, in evaluation, reimbursed" for a certain period of time and thirty-five (29.2 percent) as "no, in evaluation, not reimbursed" by the Federal Department of Home Affairs from 1996 to 2012. The rate of CED decisions ranged between zero and nine per year and was influenced by type of technology and calendar year. Forty-four of forty-five decisions were subject to further restrictions, to a "center or a specialist" (76 percent), "indications" (49 percent), "registry" (31 percent), or "other" (49 percent). The time to a final decision ranged from 1.5 to 11 years (median, 6 years). No factors associated with initial decision and final outcome could be identified. CED as a reality in Switzerland might have enabled patients to obtain access to promising technologies early in their life cycle. CED might have acted as a trigger to a successful implementation of a comprehensive national registry. The lack of qualitative data stresses the urgent need for evaluation of the HTA decisions and their impact on patient outcome and costs.

  4. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80%more » of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`« less

  5. Mobile Router Technology Development

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent

    2002-01-01

    Cisco Systems and NASA have been performing joint research on mobile routing technology under a NASA Space Act Agreement. Cisco developed mobile router technology and provided that technology to NASA for applications to aeronautic and space-based missions. NASA has performed stringent performance testing of the mobile router, including the interaction of routing and transport-level protocols. This paper describes mobile routing, the mobile router, and some key configuration parameters. In addition, the paper describes the mobile routing test network and test results documenting the performance of transport protocols in dynamic routing environments.

  6. Technology Implementation: Teacher Age, Experience, Self-Efficacy, and Professional Development as Related to Classroom Technology Integration

    ERIC Educational Resources Information Center

    Tweed, Stephanie

    2013-01-01

    The purpose of this quantitative study was to identify the combination of factors that pertain to the implementation of new technologies in the classroom. Specifically, the study was an analysis of the age of the teacher, years of teaching experience, quality of professional development, and teacher self-efficacy as defined by Bandura (1997) to…

  7. KSC Education Technology Research and Development Plan

    NASA Technical Reports Server (NTRS)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  8. Development of the Learning Result of Innovation and Information Technology in Education Using CIPPA, for Third Year Students in the Bachelor of Education Program, Nakhon Phanom University

    ERIC Educational Resources Information Center

    Hanrin, Chanwit

    2014-01-01

    This research proposes (1) to develop the learning management plan for the Innovation and Information Technology in Education of the 3rd year students of the Bachelor of Education Program by using CIPPA effectively according to the criteria 75/75; (2) to study the effectiveness index of the learning management plan for the Innovation and…

  9. 78 FR 18674 - Invitation for Public Comment on Draft DOT Research, Development and Technology Strategic Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ...-0002] Invitation for Public Comment on Draft DOT Research, Development and Technology Strategic Plan... for public comment on its draft strategic plan, U.S. Department of Transportation, Research, Development and Technology Strategic Plan FY 2013-2018. The new five-year strategic plan will guide the...

  10. Inflatable Space Structures Technology Development for Large Radar Antennas

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith

    2004-01-01

    There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both

  11. The Status of Emerging Technologies: An Economic/Technological Assessment to the Year 2000. Final Report.

    ERIC Educational Resources Information Center

    Department of Commerce, Washington, DC.

    The U.S. Department of Commerce reviewed emerging technologies and their future impact on the economy. This report lists the emerging technologies and suggests their potential contribution to the gross national product by the year 2000. It is based on an assessment by technical experts and agency heads within the Department of Commerce, who…

  12. X-43 Hypersonic Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  13. An integrated systems-based approach to mercury research and technology development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J; Brooks, Scott C; Mathews, Teresa J

    A 3-year strategic planning process was undertaken in Oak Ridge, Tennessee, to develop a research and technology development approach that can help guide mercury remediation in East Fork Poplar Creek (EFPC). Mercury remediation is a high priority for the US Department of Energy s (DOE s) Oak Ridge Office of Environmental Management because of large historical losses of mercury to the environment at the Y-12 National Security Complex (Y-12). Because of the extent of mercury losses and the complexities of mercury transport and fate in the stream environment, the success of conventional options for mercury remediation in the downstream sectionsmore » of EFPC is uncertain. The overall Oak Ridge mercury remediation strategy focuses on mercury treatment actions at Y-12 in the short-term and research and technology development to evaluate longer-term solutions in the downstream environment. The technology development strategy is consistent with a phased, adaptive management paradigm and DOE s Technology Readiness Level guidelines. That is, early evaluation includes literature review, site characterization, and small-scale studies of a broad number of potential technologies. As more information is gathered, technologies that may have the most promise and potential remediation benefit will be chosen for more extensive and larger-scale pilot testing before being considered for remedial implementation. Field and laboratory research in EFPC is providing an improved level of understanding of mercury transport and fate processes in EFPC that will inform the development of site-specific remedial technologies. Technology development has centered on developing strategies that can mitigate the primary factors affecting mercury risks in the stream: (1) the amount of inorganic mercury available to the stream system, (2) the conversion of inorganic mercury to methylmercury, and (3) the bioaccumulation of methylmercury through the food web. Given the downstream complexities and

  14. Examining Student Digital Artifacts during a Year-Long Technology Integration Initiative

    ERIC Educational Resources Information Center

    Rodriguez, Prisca M.; Frey, Chris; Dawson, Kara; Liu, Feng; Ritzhaupt, Albert D.

    2012-01-01

    This study was situated within a year-long, statewide technology integration initiative designed to support technology integration within science, technology, engineering, and math classrooms. It examined the elements used in student artifacts in an attempt to investigate trends in digital artifact creation. Among several conclusions, this…

  15. Technology-Mediated Learning 10 Years Later: Emphasizing Pedagogical or Utilitarian Applications?

    ERIC Educational Resources Information Center

    Arnold, Nike

    2007-01-01

    In recent years, educational technology has come a long way. Technological advancements and significant investments in computer equipment and training have opened new opportunities for foreign language teachers. In addition, instructional technology (IT) is now an accepted component of teacher training and foreign language teaching. This study…

  16. Mars Technology Program Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  17. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  18. NASA communications technology research and development

    NASA Technical Reports Server (NTRS)

    Durham, A. F.; Stankiewicz, N.

    1979-01-01

    The development of a 1978 NASA study to identify technology requirements is surveyed, and its principal conclusions, recommendations, and priorities are summarized. In addition, antenna, traveling wave tube, and solid state amplifier developments representing selected items from the current communications technology development programs at the NASA Lewis Research and Goddard Space Flight Centers are described.

  19. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  20. Technology development life cycle processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81more » of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.« less

  1. Teaching Science, Technology and Society. Developing Science and Technology Series.

    ERIC Educational Resources Information Center

    Solomon, Joan

    Science and technology are often presented and taught as two separate essences. When this is done, students as well as teachers are forced to attempt to develop the appropriate linkages. This book is one of a series designed to help teachers develop their science and technological education in ways that are both satisfying to themselves and…

  2. Management of the Defense Technology Security Administration Year 2000 Program

    DTIC Science & Technology

    1998-11-03

    caller is fully protected Acronyms DTSA Defense Technology Security Administration Y2K Year 2000 INSPECTOR GENERAL DEPARTMENT OF DEFENSE 400 ARMY NAVY...accordance with the DoD Management Plan Defense Technology Security Administration. The Defense Technology Security Administration ( DTSA ) was established...in 1985 as a field activity of the Office of the Secretary of Defense By establishing DTSA , the DoD role in export controls was centralized and

  3. 30years of DXA technology innovations.

    PubMed

    Glüer, Claus-C

    2017-11-01

    As the successor of Dual Photon Absorptiometry (DPA), Dual X-ray Absorptiometry (DXA) has seen 30years of continuous technological innovations. Implementation of measures for standardization and quality assurance made DXA a reliable and clinically useful approach. Its use in clinical multicenter drug studies in osteoporosis lead to general acceptance as the standard technique of bone densitometry. The limitations of DXA are well established. As a measure of areal bone mineral density (aBMD) it depends on bone size and is biased by overlaying soft tissue and calcified structures. To some extent these errors can be reduced by estimation of bone depth and/or lateral imaging. DXA based aBMD can be supplemented by additional information obtainable from DXA scans: geometric indices such as hip axis length or complex models like 2-D finite element analysis have been developed and tested. Given the drastic improvement in image quality current DXA scans can be used for Vertebral Fracture Analysis (VFA) or grading of Abdominal Aortic Calcifications. A textural measure, Trabecular Bone Score (TBS) provides independent information on fracture risk. DXA devices can also be used for assessments beyond bone density. Periprosthetic aBMD changes can be monitored to study the mechanical fitting of bone implants. Total body composition measurements are increasingly being used in studies on nutrition, obesity, and sarcopenia. 30years after its inception DXA is the undisputed standard imaging technique for the assessment of osteoporotic fracture risk with new applications beyond bone densitometry adding to its value. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  5. Technology Development for NASA Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    2005-01-01

    A viewgraph presentation on technology development for NASA Mars Missions is shown. The topics include: 1) Mars mission roadmaps; 2) Focus and Base Technology programs; 3) Technology Infusion; and 4) Feed Forward to Future Missions.

  6. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  7. Research and technology, fiscal year 1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The responibilities and programs of the Goddard Space Flight Center are ranged from basic research in the space and Earth sciences through the management of numerous flight projects to operational responsibility for the tracking of and data acquisition from NASA's Earth orbiting satellites, Progress in the areas of spacecraft technology, sensor development and data system development, as well as in the basic and applied to research in the space and Earth sciences that they support is highlighted.

  8. Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments

    NASA Technical Reports Server (NTRS)

    Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.

    1987-01-01

    The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.

  9. A Summary fo Solar Sail Technology Developments and Proposed Demonstration Missions

    NASA Technical Reports Server (NTRS)

    Garner, Charles; Diedrich, Benjamin; Leipold, Manfred

    1999-01-01

    NASA's drive to reduce mission costs and accept the risk of incorporating innovative, high payoff technologies into it's missions while simultaneously undertaking ever more difficult missions has sparked a greatly renewed interest in solar sails. From virtually no technology or flight mission studies activity three years ago solar sails are now included in NOAA, NASA, DOD, DLR, ESA and ESTEC technology development programs and technology roadmaps. NASA programs include activities at Langley Research Center, Jet Propulsion Laboratory, Marshall Space Flight Center, Goddard Space Flight Center, and the NASA Institute for Advanced Concepts; NOAA has received funding for a proposed solar sail mission; DLR is designing and fabricating a 20-m laboratory model sail, there are four demonstration missions under study at industry, NASA, DOD and Europe, two new text books on solar sailing were recently published and one new test book is planned. This paper summarizes these on-going developments in solar sails.

  10. Fire-protection research for energy technology: Fy 80 year end report

    NASA Astrophysics Data System (ADS)

    Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.

    1981-05-01

    This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  11. Status of Propulsion Technology Development Under the NASA In-space Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Dankanich, John; Pencil, Eric; Pinero, Luis

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Hall-effect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The HEP system is composed of the High Voltage Hall Accelerator (HiVHAc) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HiVHAc are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs like: MAV propulsion and electric propulsion. And finally, one focus of the SystemsMission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  12. The Design and Development of Educational Materials Using Microcomputer Technology in Distance Teaching Institutions: Some Issues for Consideration.

    ERIC Educational Resources Information Center

    Yates, Christopher

    Perhaps the most significant development in microcomputer technology over the last two years has been the development of desktop publishing techniques. This technology promises to offer some significant advantages to institutions developing instructional materials in less developed countries, particularly in terms of control, cost effectiveness,…

  13. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% formore » a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.« less

  14. Private sector development of stem cell technology and therapeutic cloning.

    PubMed

    Lysaght, Michael J; Hazlehurst, Anne L

    2003-06-01

    Based on data collected in June 2002, more than 30 biotechnology startup firms in 11 countries are pursuing commercial development of stem cell technology and therapeutic cloning. These firms employ 950-1000 scientists and support staff and spend just under $200 million on research and development each year. The field has the look and feel of a high-tech cottage industry, with about half the startups employing fewer than 15 FTEs (full time equivalents). Funding is mostly from venture capitalists and private investors. Participants are geographically dispersed, with about 40% of the activity outside the United States. Focus is equally split between embryonic and adult stem cells. Taken as a whole, both the structure and scope of the private sector in stem cell research seem appropriate to the promise and development time frames of this important new technology.

  15. Developing technology -- a forest health partnership

    Treesearch

    John W. Barry; Harold W. Thistle

    1995-01-01

    Since the early 1960's Missoula Technology and Development Center (MTDC) and Forest Pest Management (FPM) have worked in partnership developing technology to support forest health and silviculture. Traditionally this partnership has included cooperators from other agencies, States, foreign governments, academia, industry, and individual landowners. The FPM...

  16. Protein Crystallography from the Perspective of Technology Developments

    PubMed Central

    Su, Xiao-Dong; Zhang, Heng; Terwilliger, Thomas C.; Liljas, Anders; Xiao, Junyu; Dong, Yuhui

    2015-01-01

    Early on, crystallography was a domain of mineralogy and mathematics and dealt mostly with symmetry properties and imaginary crystal lattices. This changed when Wilhelm Conrad Röntgen discovered X-rays in 1895, and in 1912 Max von Laue and his associates discovered X-ray irradiated salt crystals would produce diffraction patterns that could reveal the internal atomic periodicity of the crystals. In the same year the father-and-son team, Henry and Lawrence Bragg successfully solved the first crystal structure of sodium chloride and the era of modern crystallography began. Protein crystallography (PX) started some 20 years later with the pioneering work of British crystallographers. In the past 50-60 years, the achievements of modern crystallography and particularly those in protein crystallography have been due to breakthroughs in theoretical and technical advancements such as phasing and direct methods; to more powerful X-ray sources such as synchrotron radiation (SR); to more sensitive and efficient X-ray detectors; to ever faster computers and to improvements in software. The exponential development of protein crystallography has been accelerated by the invention and applications of recombinant DNA technology that can yield nearly any protein of interest in large amounts and with relative ease. Novel methods, informatics platforms, and technologies for automation and high-throughput have allowed the development of large-scale, high efficiency macromolecular crystallography efforts in the field of structural genomics (SG). Very recently, the X-ray free-electron laser (XFEL) sources and its applications in protein crystallography have shown great potential for revolutionizing the whole field again in the near future. PMID:25983389

  17. Cutting Edge Technologies Presentation: An Overview of Developing Sensor Technology Directions and Possible Barriers to New Technology Implementation

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2007-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.

  18. Situating Technology Professional Development in Urban Schools

    ERIC Educational Resources Information Center

    Meier, Ellen B.

    2005-01-01

    The Center for Technology and School Change (CTSC) is a research and development center specializing in professional development, evaluation and technology integration research. The goal of the qualitative research reported in this article was to identify factors that strengthen the integration of technology in classrooms in ways that are…

  19. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  20. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  1. Engineering research, development and technology FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R T

    The growth of computer power and connectivity, together with advances in wireless sensing and communication technologies, is transforming the field of complex distributed systems. The ability to deploy large numbers of sensors with a rapid, broadband communication system will enable high-fidelity, near real-time monitoring of complex systems. These technological developments will provide unprecedented insight into the actual performance of engineered and natural environment systems, enable the evolution of many new types of engineered systems for monitoring and detection, and enhance our ability to perform improved and validated large-scale simulations of complex systems. One of the challenges facing engineering is tomore » develop methodologies to exploit the emerging information technologies. Particularly important will be the ability to assimilate measured data into the simulation process in a way which is much more sophisticated than current, primarily ad hoc procedures. The reports contained in this section on the Center for Complex Distributed Systems describe activities related to the integrated engineering of large complex systems. The first three papers describe recent developments for each link of the integrated engineering process for large structural systems. These include (1) the development of model-based signal processing algorithms which will formalize the process of coupling measurements and simulation and provide a rigorous methodology for validation and update of computational models; (2) collaborative efforts with faculty at the University of California at Berkeley on the development of massive simulation models for the earth and large bridge structures; and (3) the development of wireless data acquisition systems which provide a practical means of monitoring large systems like the National Ignition Facility (NIF) optical support structures. These successful developments are coming to a confluence in the next year with applications to NIF

  2. Progress Made in Lunar In-Situ Resource Utilization Under NASA's Exploration Technology and Development Program

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Larson, William E.

    2012-01-01

    Incorporation of In-Situ Resource Utilization (ISRU) and the production of mission critical consumables for 9 propulsion, power, and life support into mission architectures can greatly reduce the mass, cost, and risk of missions 10 leading to a sustainable and affordable approach to human exploration beyond Earth. ISRU and its products can 11 also greatly affect how other exploration systems are developed, including determining which technologies are 12 important or enabling. While the concept of lunar ISRU has existed for over 40 years, the technologies and systems 13 had not progressed much past simple laboratory proof-of-concept tests. With the release of the Vision for Space 14 Exploration in 2004 with the goal of harnessing the Moon.s resources, NASA initiated the ISRU Project in the 15 Exploration Technology Development Program (ETDP) to develop the technologies and systems needed to meet 16 this goal. In the five years of work in the ISRU Project, significant advancements and accomplishments occurred in 17 several important areas of lunar ISRU. Also, two analog field tests held in Hawaii in 2008 and 2010 demonstrated 18 all the steps in ISRU capabilities required along with the integration of ISRU products and hardware with 19 propulsion, power, and cryogenic storage systems. This paper will review the scope of the ISRU Project in the 20 ETDP, ISRU incorporation and development strategies utilized by the ISRU Project, and ISRU development and 21 test accomplishments over the five years of funded project activity.

  3. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  4. Advances in Technology, Education and Development

    ERIC Educational Resources Information Center

    Kouwenhoven, Wim, Ed.

    2009-01-01

    From 3rd to 5th March 2008 the International Association of Technology, Education and Development organised its International Technology, Education and Development Conference in Valencia, Spain. Over a hundred papers were presented by participants from a great variety of countries. Summarising, this book provides a kaleidoscopic view of work that…

  5. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-01

    This is the November 2014 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  6. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2015-03-01

    This is the March 2015 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  7. Teacher learning in technology professional development and its impact on student achievement in science

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju; Longhurst, Max; Campbell, Todd

    2017-07-01

    This research investigated teacher learning and teacher beliefs in a two-year technology professional development (TPD) for teachers and its impact on their student achievement in science in the western part of the United States. Middle-school science teachers participated in TPD focused on information communication technologies (ICTs) and their applications in science inquiry pedagogy. Three self-reporting teacher instruments were used alongside their student achievement scores on the end-of-year state-science-test. The teacher self-reporting measures investigated technological literacy, ICT capabilities, and pedagogical beliefs about science inquiry pedagogy. Data were collected every year, and descriptive statistics, t-tests, and Pearson's correlations were used for analysis. We found teachers' technological skills and ICT capabilities increasing over time with significant gains each year. Additionally, teachers' pedagogical beliefs changed to become more science inquiry oriented over time; however, the gains were not significant until after the second year of TPD. Comparisons of teacher learning and belief measures with student achievement revealed that the students' performance was correlated to teachers' pedagogical beliefs about science inquiry, but not to their technological skills nor to their ICT capabilities. This research suggests that pedagogical considerations should be foregrounded in TPD and that this may require more longitudinal TPD to ensure that technology integration in science instruction is consequential to student learning.

  8. Teacher Learning in Technology Professional Development and Its Impact on Student Achievement in Science

    ERIC Educational Resources Information Center

    Lee, Hyunju; Longhurst, Max; Campbell, Todd

    2017-01-01

    This research investigated teacher learning and teacher beliefs in a two-year technology professional development (TPD) for teachers and its impact on their student achievement in science in the western part of the United States. Middle-school science teachers participated in TPD focused on information communication technologies (ICTs) and their…

  9. The Human Response to Technological Development.

    ERIC Educational Resources Information Center

    Ramey, Luellen

    Technological development and our human potential are two of the greatest challenges facing humankind today. The appropriate response to technological development seems to be to shape it for positive and productive human uses. Just as America once shifted from an agricultural economy to an industrial economy, we are now shifting from an industrial…

  10. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.

    2009-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of

  11. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.

    2011-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set

  12. Developing internet-based eHealth promotion programs: the Spiral Technology Action Research (STAR) model.

    PubMed

    Skinner, Harvey A; Maley, Oonagh; Norman, Cameron D

    2006-10-01

    Health education and health promotion have a tradition of using information and communication technology (ICT). In recent years, the rapid growth of the Internet has created innovative opportunities for Web-based health education and behavior change applications-termed eHealth promotion. However, many eHealth promotion applications are developed without an explicit model to guide the design, evaluation, and ongoing improvement of the program. The spiral technology action research (STAR) model was developed to address this need. The model comprises five cycles (listen, plan, do, study, act) that weave together technological development, community involvement, and continuous improvement. The model is illustrated by a case study describing the development of the Smoking Zine (www.SmokingZine.org), a youth smoking prevention and cessation Web site.

  13. Assistive technology as reading interventions for children with reading impairments with a one-year follow-up.

    PubMed

    Lindeblad, Emma; Nilsson, Staffan; Gustafson, Stefan; Svensson, Idor

    2017-10-01

    This pilot study investigated the possible transfer effect on reading ability in children with reading difficulties after a systematic intervention to train and compensate for reading deficiencies by using applications in smartphones and tablets. The effects of using assistive technology (AT) one year after the interventions were completely studied. School related motivation, independent learning and family relations were also considered. 35 pupils aged 10-12 years participated. They were assessed five times with reading tests. The participants, their parents and teachers were surveyed with questionnaires regarding their experience of using AT. The data from the assessments were analyzed with paired t-tests and Wilcoxon signed-rank tests. The data from the questionnaires were analyzed using content analysis. The paper shows that using AT can create transfer effects on reading ability one year after the interventions were finished. This means that reading impaired children may develop at the same rate as non-impaired readers. Also, increased school motivation and an increase in independent learning and family effects have been shown. This paper provides implications in how to facilitate reading impaired pupils' learning process and realizes the need to challenge the concept of reading to change to fit modern means of gaining information. Implications for rehabilitation Children with reading impairment could benefit from assistive technology in regards of their reading development process and increase their chances of not falling behind peers. Assistive technology as applications in smartphones and tablets may aid children with reading impairment to have an equal platform for learning in school as their peers without reading difficulties. Assistive technology could facilitate the information gaining process and subsequently increase motivation to learn and increase interest in reading activities. Assistive technology had wider effects on its users: stigmatizing

  14. Textile technology development

    NASA Technical Reports Server (NTRS)

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  15. Information Communication Technology Planning in Developing Countries

    ERIC Educational Resources Information Center

    Malapile, Sandy; Keengwe, Jared

    2014-01-01

    This article explores major issues related to Information Communication Technology (ICT) in education and technology planning. Using the diffusion of innovation theory, the authors examine technology planning opportunities and challenges in Developing countries (DCs), technology planning trends in schools, and existing technology planning models…

  16. Energy Storage Technology Development for Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  17. Strategy for the Eighties: High Technology Industrial Development.

    ERIC Educational Resources Information Center

    Kansas State Dept. of Economic Development, Topeka.

    The need for high technology development in Kansas is assessed, with attention to community considerations and the roles of universities and state government in fostering technology development and community considerations. After defining a high technology industry, technologically innovative industries are identified, and influences on the…

  18. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: PROGRESS AND ACCOMPLISHMENTS - FISCAL YEAR 1991

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) program was the first major program for demonstrating and evaluating full-scale innovative treatment technologies at hazardous waste sites. Having concluded its fifth year, the SITE program is recognized as a leading advocate ...

  19. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  20. History of nuclear technology development in Japan

    NASA Astrophysics Data System (ADS)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  1. History of nuclear technology development in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp; General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  2. Advances in Maize Transformation Technologies and Development of Transgenic Maize

    PubMed Central

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K.

    2017-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium-mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area. PMID:28111576

  3. Advances in Maize Transformation Technologies and Development of Transgenic Maize.

    PubMed

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K

    2016-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.

  4. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investmentmore » in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their

  5. Civil propulsion technology for the next twenty-five years

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Facey, John R.

    1987-01-01

    The next twenty-five years will see major advances in civil propulsion technology that will result in completely new aircraft systems for domestic, international, commuter and high-speed transports. These aircraft will include advanced aerodynamic, structural, and avionic technologies resulting in major new system capabilities and economic improvements. Propulsion technologies will include high-speed turboprops in the near term, very high bypass ratio turbofans, high efficiency small engines and advanced cycles utilizing high temperature materials for high-speed propulsion. Key fundamental enabling technologies include increased temperature capability and advanced design methods. Increased temperature capability will be based on improved composite materials such as metal matrix, intermetallics, ceramics, and carbon/carbon as well as advanced heat transfer techniques. Advanced design methods will make use of advances in internal computational fluid mechanics, reacting flow computation, computational structural mechanics and computational chemistry. The combination of advanced enabling technologies, new propulsion concepts and advanced control approaches will provide major improvements in civil aircraft.

  6. Technological Innovation of Thin-Film Transistors: Technology Development, History, and Future

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshitaka

    2012-06-01

    The scale of the liquid crystal display industry has expanded rapidly, driven by technological innovations for thin-film transistors (TFTs). The TFT technology, which started from amorphous silicon (a-Si), has produced large TVs, and low-temperature polycrystalline silicon (poly-Si) has become a core technology for small displays, such as mobile phones. Recently, various TFT technological seeds have been realized, indicating that new information appliances that match new lifestyles and information infrastructures will be available in the near future. In this article, I review the history of TFT technology and discuss the future of TFT technological development from the technological innovation viewpoint.

  7. Aerocapture Technology Development for Planetary Science - Update

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.

    2006-01-01

    . Similar studies of Aerocapture applications at Neptune, Venus, and Mars were studied in 2003 through 2005. All showed significant performance improvements for the missions studied. Findings from these studies were used to guide the technology development tasks originally solicited in a 2002 NASA ROSS Research Announcement. The tasks are now in their final year and have provided numerous improvements in modeling and hardware, for use in proposals or new mission starts. Major Accomplishments: Since validation of the Aerocapture maneuver requires a space flight, ground developments have focused on modeling and environment prediction, materials, and sensors. Lockheed Martin has designed and built a 2-meter Carbon-Carbon aeroshell "hot structure." The article utilizes co-cured stiffening ribs and advanced insulation to achieve large scale, and up to a 40% reduction in areal density over the Genesis probe construction. This concept would be an efficient solution for probes that experience heat rates near 800-1000 W/cm(exp 2), such as at Venus and Earth. Applied Research Associates has extensively tested a family of efficient ablative TPS materials that provide solutions for a range of heating conditions. These materials are being applied to high-temperature structures built by ATK Space Systems, led by Langley Research Center. One-meter aeroshells will be thermally tested to validate construction and demonstrate higher bondline temperatures, which can lead to mass savings of up to 30% over traditional heatshields. Ames Research Center has developed aeroshell instrumentation that could measure environmental conditions and material performance during atmospheric entry. Instruments to measure TPS recession, heat flux, and catalycity could be combined with traditional sensors to provide a "plug-and-play" system for minimal mass and power, that would acquire flight data for model improvement and risk reduction on future missions. Improved atmospheric and aerothermodynamic models ha

  8. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  9. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominallymore » 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.« less

  10. SCIENCE AND TECHNOLOGY AS DEVELOPMENT FACTORS.

    ERIC Educational Resources Information Center

    LENGYEL, PETER

    PROCEEDINGS FROM A MEETING OF UNESCO'S ADVISORY COUNCIL TO ITS OFFICE OF ECONOMIC ANALYSIS AND ITS DIVISION OF SCIENCE POLICY ARE REPORTED. THE CENTRAL THEME OF THE CONFERENCE IS SCIENCE AND TECHNOLOGY IN ECONOMIC DEVELOPMENT. AN INTRODUCTORY PAPER DEALS WITH RESOURCES IN SCIENCE AND TECHNOLOGY, THE INFLUENCE OF SCIENCE AND TECHNOLOGY ON…

  11. Space Technology Mission Directorate: Game Changing Development

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  12. EPA-developed, patented technologies available for licensing

    EPA Pesticide Factsheets

    Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be licensed to businesses or individuals for further development and sale in the marketplace.

  13. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in laser/electro-optics technology. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…

  14. Exploring the Continuing Professional Development Needs of Pedagogical Practitioners in Early Years in England

    ERIC Educational Resources Information Center

    Ingleby, Ewan; Hedges, Clive

    2012-01-01

    This article is based on quantitative and qualitative data that have been generated since 2009 on the study skills needs of early years practitioners working in England. The research has identified that developing information technology skills appears to be a particular professional development need for these practitioners. The practitioners are…

  15. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  16. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, S.T.; Atwood, T.; Qiu Daxiong

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less

  17. Technology Development Risk Assessment for Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Godsell, Aga M.; Go, Susie

    2006-01-01

    A new approach for assessing development risk associated with technology development projects is presented. The method represents technology evolution in terms of sector-specific discrete development stages. A Monte Carlo simulation is used to generate development probability distributions based on statistical models of the discrete transitions. Development risk is derived from the resulting probability distributions and specific program requirements. Two sample cases are discussed to illustrate the approach, a single rocket engine development and a three-technology space transportation portfolio.

  18. Identifying Effective Design Features of Technology-Infused Inquiry Learning Modules: A Two-Year Study of Students' Inquiry Abilities

    ERIC Educational Resources Information Center

    Hsu, Ying-Shao; Fang, Su-Chi; Zhang, Wen-Xin; Hsin-Kai, Wu; Wu, Pai-Hsing; Hwang, Fu-Kwun

    2016-01-01

    The two-year study aimed to explore how students' development of different inquiry abilities actually benefited from the design of technology-infused learning modules. Three learning modules on the topics of seasons, environmental issues and air pollution were developed to facilitate students' inquiry abilities: questioning, planning, analyzing,…

  19. The Solid State Image Sensor's Contribution To The Development Of Silicon Technology

    NASA Astrophysics Data System (ADS)

    Weckler, Gene P.

    1985-12-01

    Until recently, a solid-state image sensor with full television resolution was a dream. However, the dream of a solid state image sensor has been a driving force in the development of silicon technology for more than twenty-five years. There are probably many in the main stream of semiconductor technology who would argue with this; however, the solid state image sensor was conceived years before the invention of the semi conductor RAM or the microprocessor (i.e., even before the invention of the integrated circuit). No other potential application envisioned at that time required such complexity. How could anyone have ever hoped in 1960 to make a semi conductor chip containing half-a-million picture elements, capable of resolving eight to twelve bits of infornation, and each capable of readout rates in the tens of mega-pixels per second? As early as 1960 arrays of p-n junctions were being investigated as the optical targets in vidicon tubes, replacing the photoconductive targets. It took silicon technology several years to catch up with these dreamers.

  20. Control technology development

    NASA Astrophysics Data System (ADS)

    Schaechter, D. B.

    1982-03-01

    The main objectives of the control technology development task are given in the slide below. The first is to develop control design techniques based on flexible structural models, rather than simple rigid-body models. Since large space structures are distributed parameter systems, a new degree of freedom, that of sensor/actuator placement, may be exercised for improving control system performance. Another characteristic of large space structures is numerous oscillatory modes within the control bandwidth. Reduced-order controller design models must be developed which produce stable closed-loop systems when combined with the full-order system. Since the date of an actual large-space-structure flight is rapidly approaching, it is vitally important that theoretical developments are tested in actual hardware. Experimental verification is a vital counterpart of all current theoretical developments.

  1. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  2. Industrial Arts Test Development, Book III. Resource Items for Graphics Technology, Power Technology, Production Technology.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    This booklet is designed to assist teachers in developing examinations for classroom use. It is a collection of 955 objective test questions, mostly multiple choice, for industrial arts students in the three areas of graphics technology, power technology, and production technology. Scoring keys are provided. There are no copyright restrictions,…

  3. Technology for the future - Long range planning for space technology development

    NASA Technical Reports Server (NTRS)

    Collier, Lisa D.; Breckenridge, Roger A.; Llewellyn, Charles P.

    1992-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) has begun the definition of an Integrated Technology Plan for the civilian space program which guides long-term technology development for space platforms, in light of continuing marker research and other planning data. OAST has conferred particular responsibility for future candidate space mission evaluations and platform performance requirement projections to NASA-Langley. An implementation plan is devised which is amenable to periodic space-platform technology updates.

  4. Advanced Technology Development for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope generator (SRG) for use on potential NASA space missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center. GRC is also developing advanced technology for Stirling converters, aimed at substantially improving the specific power and efficiency of the converter.The status and results to date will be discussed in this paper.

  5. WORK PLAN FOR COMPLETING A TECHNOLOGY ASSESSMENT OF WESTERN ENERGY RESOURCE DEVELOPMENT

    EPA Science Inventory

    This is a work plan for completing the final phase of a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, North and South Dakota...

  6. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    NASA Technical Reports Server (NTRS)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  7. NETL: The First 100 Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The National Energy Technology Laboratory celebrates 100 years of innovative energy technology development. NETL has been a leader in energy technology development. This video takes a look back at the many accomplishments over the past 100 years. These advances benefit the American people, enhance our nation's energy security and protect our natural resources.

  8. NETL: The First 100 Years

    ScienceCinema

    None

    2018-01-16

    The National Energy Technology Laboratory celebrates 100 years of innovative energy technology development. NETL has been a leader in energy technology development. This video takes a look back at the many accomplishments over the past 100 years. These advances benefit the American people, enhance our nation's energy security and protect our natural resources.

  9. Status of molten carbonate fuel cell technology development

    NASA Astrophysics Data System (ADS)

    Parsons, E. L., Jr.; Williams, M. C.; George, T. J.

    The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.

  10. Research and Development initiative of Satellite Technology Application for Environmental Issues in Asia Region

    NASA Astrophysics Data System (ADS)

    Hamamoto, K.; Kaneko, Y.; Sobue, S.; Oyoshi, K.

    2016-12-01

    Climate change and human activities are directly or indirectly influence the acceleration of environmental problems and natural hazards such as forest fires, drought and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these hazards and related phenomenon. However, there are still gaps between science and application of space technology in practical usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of space technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of space technology. The main activity of SAFE is SAFE prototyping. SAFE prototyping is a demonstration for end users and decision makers to apply space technology applications for solving environmental issues in Asia-Pacific region. By utilizing space technology and getting technical support by experts, prototype executers can develop the application system, which could support decision making activities. SAFE holds a workshop once a year. In the workshop, new prototypes are approved and the progress of on-going prototypes are confirmed. Every prototype is limited for two years period and all activities are operated by volunteer manner. As of 2016, 20 prototypes are completed and 6 prototypes are on-going. Some of the completed prototypes, for example drought monitoring in Indonesia were applied to operational use by a local official organization.

  11. An Analysis of the Relationship between Professional Development, School Leadership, Technology Infrastructure, and Technology Use

    ERIC Educational Resources Information Center

    Mishnick, Nicole

    2017-01-01

    This dissertation study investigates the relationship between professional development, school leadership, technology infrastructure and technology use. Three research questions were developed. The first examines the relationship between professional development and technology use, the second examines the relationship between school leadership and…

  12. Robotics Technology Crosscutting Program. Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had commonmore » (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.« less

  13. Technology Mapping: An Approach for Developing Technological Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Angeli, Charoula; Valanides, Nicos

    2013-01-01

    Technology mapping[TM] is proposed as an approach for developing technological pedagogical content knowledge (TPCK). The study discusses in detail instructional design guidelines in relation to the enactment of TM, and reports on empirical findings from a study with 72 pre-service primary teachers within the context of teaching them how to teach…

  14. Developing a Strategic Plan for NASA JSC's Technology Investments

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette M.

    2012-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cislunar space, near earth asteroid visits, lunar exploration, Mars space, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA fs Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach allocating Internal Research and Development funding to projects that have been prioritized using four focus criteria, with appropriate importance weighting. These four focus criteria are the Human Space Flight Technology Needs, JSC Core Technology Competencies, Commercialization Potential, and Partnership Potential. The inherent coupling in these focus criteria have been captured in a database and have provided an initial prioritization for allocation of technology development research funding. This paper will describe this process and this database

  15. NASA'S Changing Role in Technology Development and Transfer

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Craft, Harry G., Jr.

    1997-01-01

    National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.

  16. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy C. Herndon

    2001-02-28

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICERmore » at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.« less

  17. Research and Technology: Fiscal year 1982 report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Accomplishments and research objectives are described in the following areas: (1) space sciences; (2) space and terrestrial applications; (3) flight projects and mission definition studies; (4) space tracking and data systems; and (5) space technology. Data analysis efforts, instrument development, and measurement projects are among the aspects considered.

  18. Development of sanitation technologies in African context : how could we make it more sustainable?

    NASA Astrophysics Data System (ADS)

    Dakouré, M. S.; Traoré, M. B.; Sossou, S. K.; Maïga, A. H.

    2017-03-01

    Access to sanitation technologies remains one of the biggest challenges in sub-Saharan Africa. To overcome this gap, a sanitation project called “Ameli-EAUR” translated from French as improvement of water and sanitation in urban and rural areas, was implemented in Burkina Faso for 5 years (2010-2016). The technologies from the project were designed on the basis of agro-sanitation concept, leading to package containing a composting toilet, a grey water treatment facility and a set of urine collection and treatment. The study aimed to evaluate of Ameli-EAUR project, one year after the end, and identify some key factors of sustainability of technologies. As methodology, a survey and a technical diagnostic of implemented technologies were done. The results showed that, the pilot families stopped using all the technologies one year after the end of the project. However, two main lessons can be learnt: (1) in term of efficiency and effectiveness of the project the technology of composting toilet was not robust enough, leading to a rapid abandonment after the project (2) in term of impact and sustainability, the economic incentive of the resource oriented sanitation concept was very weak compared to the needed workload. The technologies development in this kind of project should be carried on and associated with a more inclusive system driven by economic incentive.

  19. Meeting the computer technology needs of community faculty: building new models for faculty development.

    PubMed

    Baldwin, Constance D; Niebuhr, Virginia N; Sullivan, Brian

    2004-01-01

    We aimed to identify the evolving computer technology needs and interests of community faculty in order to design an effective faculty development program focused on computer skills: the Teaching and Learning Through Educational Technology (TeLeTET) program. Repeated surveys were conducted between 1994 and 2002 to assess computer resources and needs in a pool of over 800 primary care physician-educators in community practice in East Texas. Based on the results, we developed and evaluated several models to teach community preceptors about computer technologies that are useful for education. Before 1998, only half of our community faculty identified a strong interest in developing their technology skills. As the revolution in telecommunications advanced, however, preceptors' needs and interests changed, and the use of this technology to support community-based teaching became feasible. In 1998 and 1999, resource surveys showed that many of our community teaching sites had computers and Internet access. By 2001, the desire for teletechnology skills development was strong in a nucleus of community faculty, although lack of infrastructure, time, and skills were identified barriers. The TeLeTET project developed several innovative models for technology workshops and conferences, supplemented by online resources, that were well attended and positively evaluated by 181 community faculty over a 3-year period. We have identified the evolving needs of community faculty through iterative needs assessments, developed a flexible faculty development curriculum, and used open-ended, formative evaluation techniques to keep the TeLeTET program responsive to a rapidly changing environment for community-based education in computer technology.

  20. DEVELOPMENT OF EMERGING TECHNOLOGIES WITHIN THE SITE PROGRAM

    EPA Science Inventory

    The Site Program is formed by five research programs: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technology Development Program, the Innovative Technology Program, and the Technology Transfer Program. The Emerging Technology (ET) P...

  1. Aligning Technology Education Teaching with Brain Development

    ERIC Educational Resources Information Center

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  2. Technology Challenges in Small UAV Development

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Vranas, Thomas L.; Motter, Mark; Shams, Qamar; Pollock, Dion S.

    2005-01-01

    Development of highly capable small UAVs present unique challenges for technology protagonists. Size constraints, the desire for ultra low cost and/or disposable platforms, lack of capable design and analysis tools, and unique mission requirements all add to the level of difficulty in creating state-of-the-art small UAVs. This paper presents the results of several small UAV developments, the difficulties encountered, and proposes a list of technology shortfalls that need to be addressed.

  3. Genetic technology and agricultural development.

    PubMed

    Staub, W J; Blase, M G

    1971-07-09

    The genetic technologies being adopted in South Asia are significant factors in the agricultural development of the area. But, labeling them " miracle seeds," solely responsible for recent agricultural growth, is misleading. Certainly the introduction of new genetic technology has catalyzed South Asian agriculture and has instilled a new dynamism essential to economic development. Somewhat similar phenomena have, however, been observed in other parts of the world in other periods of history. The nature of these genetic technologies, how they are being applied, and their limits and potential have been explored above. Also, the effects of these varieties on the generation of employment, and the distribution of benefits accruing from them have been examined in preliminary fashion. Stemming from the preceding discussion, two areas of priority appear obvious. First, the close association of genetic technologies with irrigation suggests that irrigation should receive more attention than it has in the past. Large-scale public irrigation schemes are expensive and have tended to yield low rates of return. However, there appears to be room for marginal increases in, or improvements of, existing irrigation facilities. Second, even with a rapid spread of the practices associated with highyeild varieties, it may be too much to expect the farm sector to absorb the expected increases in the rural labor force. The generation of employment is a major problem in India as well as in most other developing countries. Hence, possibilities for expanding rural, nonfarm employment and controlling population growth should be sought vigorously.

  4. Aerospace Flywheel Technology Development for IPACS Applications

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry L.; Jansen, Ralph H.; Fausz, Jerry; Bauer, Robert D.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) are cooperating under a space act agreement to sponsor the research and development of aerospace flywheel technologies to address mutual future mission needs. Flywheel technology offers significantly enhanced capability or is an enabling technology. Generally these missions are for energy storage and/or integrated power and attitude control systems (IPACS) for mid-to-large satellites in low earth orbit. These missions require significant energy storage as well as a CMG or reaction wheel function for attitude control. A summary description of the NASA and AFRL flywheel technology development programs is provided, followed by specific descriptions of the development plans for integrated flywheel system tests for IPACS applications utilizing both fixed and actuated flywheel units. These flywheel system development tests will be conducted at facilities at AFRL and NASA Glenn Research Center and include participation by industry participants Honeywell and Lockheed Martin.

  5. Practitioner Perspectives: Children's Use of Technology in the Early Years

    ERIC Educational Resources Information Center

    Formby, Susie

    2014-01-01

    This research, a collaboration between Pearson and the National Literacy Trust, was designed to explore the use of technology by children in the early years. In 2013 Pearson and the National Literacy Trust invited practitioners who work with three to five-year-olds to take part in an online survey to explore how they support children's language…

  6. Investigating Technology-Enhanced Teacher Professional Development in Rural, High-Poverty Middle Schools

    ERIC Educational Resources Information Center

    Blanchard, Margaret R.; LePrevost, Catherine E.; Tolin, A. Dell; Gutierrez, Kristie S.

    2016-01-01

    This 3-year, mixed-methods study investigated the effects of teacher technology-enhanced professional development (TPD) on 20 teachers' beliefs and practices. Teachers in two middle schools located in neighboring rural, high-poverty districts in the southeastern United States participated in reform-based lessons and learned how to integrate…

  7. Marine and Hydrokinetic Technology Development Risk Management Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowberg, David; Weber, Jochem

    2015-09-01

    Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over themore » development cycle. This framework is intended for the development and deployment of a single MHK technology—not for multiple device deployments within a plant. This risk framework is intended to meet DOE’s risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.« less

  8. Modular, Reconfigurable, High-Energy Technology Development

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  9. Cyberfeminism, technology, and international "development".

    PubMed

    Gajjala, R; Mamidipudi, A

    1999-07-01

    This article reports on the implications and benefits of Internet technology among women from developing countries. Cyberfeminism is the practice of feminism in cyberspace. Feminists believe that women should take control and augment Internet technologies to empower themselves. Learning to use the computers, getting "connected," and surfing the Internet are encouraged among all women with the aim of advancing feminist causes and empowering women. The Internet has been observed to cause radical changes in the way business and social activities are conducted. A description of how two women have engaged in cyberfeminism and worked in development and technology programs is included. One contributor, Annapurna Mamipudi, is involved in a non-governmental organization working with traditional handloom weavers in India Another contributor is Radhika Gajjala, who works in academia and creates on-line "discussion lists" and Web sites from her North American geographical location. Her job is to create spaces that provide opportunities for dialogue and collaboration among women with Internet access all over the world.

  10. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Schaut

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system conceptmore » development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural

  11. IQs Predict Differences in the Technological Development of Nations from 1000 BC through 2000 AD

    ERIC Educational Resources Information Center

    Lynn, Richard

    2012-01-01

    National IQs and measures of technological development given by Comin, Easterly and Gong (2010) are presented for 133 nations for the year 1000 BC, for 134 nations for 0 AD, for 120 nations for 1500 AD and for 133 nations for 2000 AD. It is shown that national IQs are significantly correlated with national differences in technological development…

  12. Integration of Antibody Array Technology into Drug Discovery and Development.

    PubMed

    Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan

    Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.

  13. College of DuPage Information Technology Plan, Fiscal Year 1994-95.

    ERIC Educational Resources Information Center

    College of DuPage, Glen Ellyn, IL.

    Building upon four previous planning documents for computing at College of DuPage in Illinois, this plan for fiscal year 1995 (FY95) provides a starting point for future plans to address all activities that relate to the use of information technology on campus. The FY95 "Information Technology Plan" is divided into six sections, each…

  14. The Limits of Programmed Professional Development on Integration of Information and Communication Technology in Education

    ERIC Educational Resources Information Center

    Peeraer, Jef; Van Petegem, Peter

    2012-01-01

    In the framework of a development cooperation program on quality of education in Vietnam, a professional development trajectory for teacher educators on the use of information and communication technology (ICT) in education was developed and implemented over the course of a three-year program. We describe how the framework on "Technological…

  15. Data-Base Software For Tracking Technological Developments

    NASA Technical Reports Server (NTRS)

    Aliberti, James A.; Wright, Simon; Monteith, Steve K.

    1996-01-01

    Technology Tracking System (TechTracS) computer program developed for use in storing and retrieving information on technology and related patent information developed under auspices of NASA Headquarters and NASA's field centers. Contents of data base include multiple scanned still images and quick-time movies as well as text. TechTracS includes word-processing, report-editing, chart-and-graph-editing, and search-editing subprograms. Extensive keyword searching capabilities enable rapid location of technologies, innovators, and companies. System performs routine functions automatically and serves multiple users.

  16. Manufacturing technologies for photovoltaics and possible means of their development in Russia (Review). Part 1: General approach to the development of photoelectric converters and basic silicon technologies

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. B.; Popel', O. S.

    2015-11-01

    The state and key tendencies of the development of basic technologies for manufacture of photoelectric converters (PECs) in the world are considered, and their advantages and disadvantages are discussed. The first part of the review gives short information on the development of photovoltaics in the world and planes of the development of solar power plants in Russia. Total power of photoelectric plants operating in various countries in 2015 exceeded 150 GW and increased in the last ten years with a rate of approximately 50% per year. Russia made important state decisions on the support of the development of renewable power engineering and developed mechanisms, which were attractive for business, on the stimulation of building of the network of solar power plants with a total power to 1.5 GW in the country to 2020. At the same time, the rigid demands are made with respect to the localization of the production of components of these plants that opens new abilities for the development of the domestic production of photovoltaics manufacture. Data on the efficiency of PECs of various types that are attained in the leading laboratories of the world are given. Particular emphasis has been placed on the consideration of basic silicon technologies of PEC manufacture, which had the widest commercial application. The basic methods for production of polycrystalline silicon and making single-crystal and multicrystal silicon are described. Fundamentals of making techniques for plates, PECs, and photoelectric modules based on single-crystal and polycrystalline silicon are considered. The second part will be devoted to modifications of manufacturing techniques for photoelectric converters, enhancement methods for contact structures, and recommendations of authors with respect to the choice of prospective technologies for the expansion of PEC production in Russia. It will involve formulations and substantiations of the most promising lines of the development of photoelectric

  17. The Role of Venezuelan Space Technology in Promoting Development in Latin America

    NASA Astrophysics Data System (ADS)

    Pena, J. A.; Yumin, T.

    2017-09-01

    Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Venezuela formally recognizes the advantages of space resources and pursues national level activity to harness them. Venezuela space cooperation has grown in the past several years, contributing to debates over Venezuela's rising influence in the Latin America. This paper summarizes the establishment and current development of space activities in the Bolivarian Republic of Venezuela, these activities are focused on the areas of telecommunications, Earth observation, research and development space and has as a primary goal the satisfaction of social needs. This analysis offers the elements most important of the Venezuelan space policy: technological transfer, capacity building and human training and international cooperation including the new participation of Venezuela in the international charter on space and major disasters. Our analysis shows that Venezuela has the potential to become a space leadership country, promoting the social welfare, integration, and sustainable development of Latin American countries.

  18. Research and Development Opportunities for Technologies to Influence Water Consumption Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Todd; Horner, Robert M.; Muehleisen, Ralph T.

    In April 2015, Argonne National Laboratory hosted a two-day workshop that convened water experts and stakeholders from across industry, government, and academia to undertake three primary tasks: 1) identify technology characteristics that are favorable for motivating behavioral change, 2) identify barriers that have prevented the development and market adoption of technologies with these characteristics in the water sector, and 3) identify concrete research and development pathways that could be undertaken to overcome these barriers, increase the penetration of technologies that influence water consumption behavior, and ultimately reduce domestic water consumption. While efforts to reduce water consumption have gained momentum inmore » recent years, there are a number of key barriers that have limited the effectiveness of such efforts. Chief among these is the fact that many consumers have limited awareness of their water consumption patterns because of poor data availability, and/or are unmotivated to reduce their consumption because of low costs and split incentives. Without improved data availability and stronger price signals, it will be difficult to effect true transformative behavioral change. This report also reviews a number of technology characteristics that have successfully motivated behavioral change in other sectors, as well as several technologies that could be developed specifically for the water sector. Workshop participants discussed how technologies that provide active feedback and promote measurable goals and social accountability have successfully influenced changes in other types of behavior. A range of regulatory and policy actions that could be implemented to support such efforts are also presented. These include institutional aggregation, revenue decoupling, and price structure reforms. Finally, several R&D pathways were proposed, including efforts to identify optimal communication strategies and to better understand consumer perceptions

  19. Carbon prices and incentives for technological development.

    PubMed

    Lundgren, Tommy; Marklund, Per-Olov; Samakovlis, Eva; Zhou, Wenchao

    2015-03-01

    There is concern that the carbon prices generated through climate policies are too low to create the incentives necessary to stimulate technological development. This paper empirically analyzes how the Swedish carbon dioxide (CO2) tax and the European Union emission trading system (EU ETS) have affected productivity development in the Swedish pulp and paper industry 1998-2008. A Luenberger total factor productivity (TFP) indicator is computed using data envelopment analysis. The results show that climate policy had a modest impact on technological development in the pulp and paper industry, and if significant it was negative. The price of fossil fuels, on the contrary, seems to have created important incentives for technological development. Hence, the results suggest that the carbon prices faced by the industry through EU ETS and the CO2 tax have been too low. Even though the data for this study is specific for Sweden, the models and results are applicable internationally. When designing policy to mitigate CO2 emissions, it is vital that the policy creates a carbon price that is high enough - otherwise the pressure on technological development will not be sufficiently strong. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. New Space Technology Development

    NASA Technical Reports Server (NTRS)

    Mueller, Rob

    2014-01-01

    Visitors from Moon Express, a privately funded commercial space company, will be visiting KSC Swamp Works. This presentation includes a high-level introduction to NASA and commercial partnerships, as well as brief background on the moon - what we used to think about it hundreds of years ago, and what we know today with advanced technologies.***This third part being added includes Swamp Works technical capabilities and has a high-level overview of a selection of projects.***

  1. Application of Technology to Cognitive Development.

    ERIC Educational Resources Information Center

    Wilson, Louise

    This report presents a summary of research being conducted at the University of Minnesota in which new technologies are being applied to development of cognition in hearing impaired learners. The study involved an application of concept analysis, information-processing theories, and group-based interactive technology in the teaching of…

  2. Personal Professional Development Efforts of Science and Technology Teachers in Their Fields

    ERIC Educational Resources Information Center

    Bilgin, Aysegul; Balbag, Mustafa Zafer

    2018-01-01

    The aim of this study is to examine the personal professional development efforts of science and technology teachers in their fields with regard to some variables. These variables were determined as gender, year of seniority and sufficiency level of the laboratory equipment. Moreover, the relation between the actual efforts exerted by science and…

  3. Editorial: Should We Develop a Sense of Urgency in Science and Technology Development?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kintner-Meyer, Michael CW

    2011-07-01

    In his book A Sense of Urgency, John P. Kotter describes how organizations must develop the right sense of urgency as an enabler for organizational changes necessary to compete in today’s global economy. A surfeit of complacency promotes institutional inertia that solely relies on past accomplishments, people *hoping* that the tomorrow will be an extrapolation of the today. However, the reality is that the marketplace around us changes drastically at an ever-increasing rate of change. Only x number of Fortune 500 companies are still on the list who were there five years ago . Transferring the sense of urgency frommore » a business setting to the nation’s energy and energy security area is critical, Peter Ogden et al. wrote in a 2008 article in the journal Issues Online in Science and Technology. In the article, Ending the Inertia on Energy Policy. A new Strategy to Spur Energy Innovation, he writes, the United States must undergo an innovation revolution. The rate at which the United States is able to develop and deploy new energy technologies will, to a great extent, determine the ultimate speed and cost of the economic transformation« less

  4. Exploration Life Support Technology Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  5. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  6. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  7. Hermod: optical payload technology demonstrator flying on PROBA-V: overview of the payload development, testing and results after 1 year in orbit exploitation

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Blasco, J.; Henriksen, V.; Samuelsson, H.; Navasquillo, O.; Grimsgaard, M.; Mellab, K.

    2017-11-01

    and environmental tests before the integration in a very limited time. The telemetry data is currently sent to ground on daily basis. All the channels have survived the launch and no BER has been measured with the exception of channel 2, currently recording a BER of 3.06*10-16, that exhibits from time to time a burst of errors due to synchronizing issues of the initial data frame. It is expected to observe during the operating life of the payload the first errors within the channel 4 which was designed on purpose with reduced power margin. This paper will present the full overview of the HERMOD technology demonstrator including the development, testing, validation activity, integration, commissioning and 1 year in-orbit exploitation results.

  8. Materials Technology; 200 Years and the Future.

    ERIC Educational Resources Information Center

    Yadon, James N.; Steeb, Ralph V.

    Focus in this paper is on the importance of materials technology, the matter and energy crises, and the interrelatedness of our increasing need for materials, and the implications for education. Following a short history of what materials have done for man and what man has done with materials, particularly in the development of various metals and…

  9. An early and enduring advanced technology originating 71,000 years ago in South Africa.

    PubMed

    Brown, Kyle S; Marean, Curtis W; Jacobs, Zenobia; Schoville, Benjamin J; Oestmo, Simen; Fisher, Erich C; Bernatchez, Jocelyn; Karkanas, Panagiotis; Matthews, Thalassa

    2012-11-22

    There is consensus that the modern human lineage appeared in Africa before 100,000 years ago. But there is debate as to when cultural and cognitive characteristics typical of modern humans first appeared, and the role that these had in the expansion of modern humans out of Africa. Scientists rely on symbolically specific proxies, such as artistic expression, to document the origins of complex cognition. Advanced technologies with elaborate chains of production are also proxies, as these often demand high-fidelity transmission and thus language. Some argue that advanced technologies in Africa appear and disappear and thus do not indicate complex cognition exclusive to early modern humans in Africa. The origins of composite tools and advanced projectile weapons figure prominently in modern human evolution research, and the latter have been argued to have been in the exclusive possession of modern humans. Here we describe a previously unrecognized advanced stone tool technology from Pinnacle Point Site 5-6 on the south coast of South Africa, originating approximately 71,000 years ago. This technology is dominated by the production of small bladelets (microliths) primarily from heat-treated stone. There is agreement that microlithic technology was used to create composite tool components as part of advanced projectile weapons. Microliths were common worldwide by the mid-Holocene epoch, but have a patchy pattern of first appearance that is rarely earlier than 40,000 years ago, and were thought to appear briefly between 65,000 and 60,000 years ago in South Africa and then disappear. Our research extends this record to ~71,000 years, shows that microlithic technology originated early in South Africa, evolved over a vast time span (~11,000 years), and was typically coupled to complex heat treatment that persisted for nearly 100,000 years. Advanced technologies in Africa were early and enduring; a small sample of excavated sites in Africa is the best explanation for any

  10. Remediation Technology Collaboration Development

    NASA Technical Reports Server (NTRS)

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  11. Collaborative Professional Development in Higher Education: Developing Knowledge of Technology Enhanced Teaching

    ERIC Educational Resources Information Center

    Jaipal-Jamani, Kamini; Figg, Candace; Gallagher, Tiffany; Scott, Ruth McQuirter; Ciampa, Katia

    2015-01-01

    This paper describes a professional development initiative for teacher educators, called the "Digital Pedagogies Collaboration," in which the goal was to build faculty knowledge about technology enhanced teaching (TPACK knowledge), develop a collaborative learning and research community of faculty members around technology enhanced…

  12. Technology Development for Fire Safety in Exploration Spacecraft and Habitats

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2007-01-01

    Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.

  13. Technology Development for Fire Safety in Exploration Spacecraft and Habitats

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2006-01-01

    Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.

  14. Industry Speaks to Two-Year Colleges about High Technology.

    ERIC Educational Resources Information Center

    Long, James P.

    A summary is presented of the major conclusions of seven regional conferences on high technology and the two-year college conducted by the National Postsecondary Alliance. The conclusions were drawn from the addresses of representatives from more than 40 firms, who responded to questions concerning their companies' involvement with high technology…

  15. Beginning secondary science teachers' instructional use of educational technology during the induction year

    NASA Astrophysics Data System (ADS)

    McNall, Rebecca Lee

    This study explored how 10 beginning secondary science teachers who had completed the newly revised technology-integrated science teacher education program at the University of Virginia used educational technology in their science instruction during the induction year. Nine of the beginning teachers taught in Virginia or Maryland high schools, while one taught overseas in an international school. Participants taught biology, earth science, chemistry, physics, or general science. A revised version of the Technology Usage and Needs of Science Teachers survey (Pedersen & Yerrick, 2000) was administered to all 10 participants in early fall 2002 and late spring 2003 to assess their confidence using educational technology tools in teaching science. Follow-up interviews were conducted with all participants subsequent to survey administration to explore their views toward educational technology as an instructional tool, their use of educational technology in science instruction, and factors influencing their use. In addition, four participants were purposefully selected to characterize participants' instructional use of educational technology and to increase the likelihood of observing its use. Selection criteria of this subgroup included factors summarized from the research literature: (a) high confidence using educational technology, (b) strong intent to use educational technology instructionally, (c) access to technology tools, and (d) collegial or technology support. Survey responses were analyzed using descriptive statistics, and interview and classroom observation data were analyzed using analytic induction methods developed by Erickson (1986). Analysis of survey responses indicated that participants were confident using educational technology tools in science instruction and were most confident using word processing, spreadsheets, PowerPoint, and telecommunications applications. Classroom observations and interview responses indicated that participants used

  16. Breakthrough discoveries in drug delivery technologies: the next 30 years.

    PubMed

    Brambilla, Davide; Luciani, Paola; Leroux, Jean-Christophe

    2014-09-28

    What if we could open the 2044 special issue of the Journal of Controlled Release? Which drug delivery technologies will have led the field? Which ones will have successfully reached the marketplace? In attempting to answer these questions, we selected a few recent technologies and concepts that could, in our opinion, play a crucial role in coming years. In each case, emblematic papers are cited to introduce and discuss the selected topic. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Technology and Development of Self-Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  18. First-Year Composition Teachers' Uses of New Media Technologies in the Composition Class

    ERIC Educational Resources Information Center

    Mina, Lilian W.

    2014-01-01

    As new media technologies emerge and evolve rapidly, the need to make informed decisions about using these technologies in teaching writing increases. This dissertation research study aimed at achieving multiple purposes. The first purpose was to catalog the new media technologies writing teachers use in teaching first-year composition classes.…

  19. Green technology innovation in a developing country

    NASA Astrophysics Data System (ADS)

    Treesubsuntorn, Chairat; Dolphen, Rujira; Dhurakit, Prapai; Siswanto, Dian; Thiravetyan, Paitip

    2017-11-01

    Developing countries rapidly grow when green technology, which is referred to as eco-friendly processes or methods, is developed in parallel. Here, some examples of green technology research and development in Thailand will be overviewed. A huge amount of agricultural waste is generated during agricultural processes. Applying these agricultural wastes in order to maximize the benefits for environmental cleanups of water, soil and air has been studied and commercialized. For example: 1) Application of agricultural waste and/or biochar developed from agricultural waste as biological adsorbents for wastewater treatment in some industries, such as textile/dye industries, and printing industries. In addition, this agricultural waste can also be applied in decolorization of sugar syrup from sugar industries; 2) The research on modified biomaterials as adsorbents and packing materials in biofilters would also be presented, and now, pilot scale biofilters have been developed and applied to solve air pollution problems in the field for future commercialization; 3) Some agricultural waste and/or biochar developed from agricultural waste in our laboratory can promote rice growth and improve rice quality via the reduction of Cd uptake and translocation in rice. Phytoremediation technology, in which plants are used to improve the environmental quality in water and air, has also been studied and would be presented. 1) Some species of native Thai plants can effectively remove heavy metals and dye from wastewater. For this research, a constructed wetland for wastewater treatment was developed and applied in a real contaminated site. 2) In air phytoremediation, some plant species harbor highly volatile organic compound (VOC) removal efficiency. In addition, plants do not only absorb organic pollutants, but also they have the innate ability to degrade organic compounds and use them as carbon sources for their growth. In addition, plant growth-promoting (PGP) bacteria inoculation

  20. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  1. Mirror Technology Development for The International X-Ray Observatory Mission

    NASA Technical Reports Server (NTRS)

    Zhang, Will

    2010-01-01

    Presentation slides include: International X-ray Observatory (IXO), Lightweight and High Resolution X-ray Optics is Needed; Modular Design of Mirror Assembly, IXO Mirror Technology Development Objectives, Focus of Technology Development, Slumping - Status, Mirror Fabrication Progress, Temporary Bonding - Status, Alignment - Status, Permanent Bonding - Status, Mirror Housing Simulator (MHS) - TRL-4, Mini-Module (TRL-5), Flight-Like Module (TRL-6), Mirror Technology Development Team, Outlook, and Small Technology Firms that Have Made Direct Contributions to IXO Mirror Technology Development.

  2. Recent developments in chemical decontamination technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, C.J.

    1995-03-01

    Chemical decontamination of parts of reactor coolant systems is a mature technology, used routinely in many BWR plants, but less frequently in PWRs. This paper reviews recent developments in the technology - corrosion minimization, waste processing and full system decontamination, including the fuel. Earlier work was described in an extensive review published in 1990.

  3. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  4. Role of research aircraft in technology development

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1984-01-01

    The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.

  5. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  6. Solar Electric Propulsion Technology Development for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie

    2015-01-01

    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.

  7. Factors Affecting Learning in Technology in the Early Years at School

    ERIC Educational Resources Information Center

    Mawson, Brent

    2007-01-01

    The nature of progression in technology is still a matter of debate in technology education. While there is a growing research-based literature exploring the elements of technological literacy that might be appropriate measures of progression, little has been written about the factors that may influence both group and individual development of…

  8. Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2005-01-01

    A high-efficiency, 110-W(sub e) (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 W(sub e) per kilogram. GRC has performed random vibration testing of a lowerpower version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.

  9. Case Studies on the Use of Technology in TPD (Teacher Professional Development)

    ERIC Educational Resources Information Center

    Gu, Limin; Jiao, Jianli; Wang, Xiaodong; Jia, Yimin; Qin, Dan; Lindberg, J. Ola

    2012-01-01

    In this paper, the progress of a three-year cooperative project investigating the current state of TPD (teacher professional development) in Sweden and China in the area of TPD and ICT (information and communication technologies) is summarized. A brief introduction to the field of TPD is given, and thereafter, ICT is related to what in the project…

  10. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  11. Development of a Two-Year Associate Arts Degree in Environmental Health Technology.

    ERIC Educational Resources Information Center

    Campbell, Charles R.

    The field of Environmental Health Technology (EHT) encompasses both the equipment and the trained expertise required to utilize land, water, energy, and minerals in the service of human health and welfare. EHT technicians work in disease control, licensing bureaus, hospitals, nursing homes, hazardous waste agencies, and other health agencies. In…

  12. Technology Development Benefits and the Economics Breakdown Structure

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.

    1998-01-01

    This paper describes the construction and application of the EBS (Economics Breakdown Structure) in evaluating technology investments across multiple systems and organizations, illustrated with examples in space transportation technology. The United States Government (USG) has a long history of investing in technology to enable its missions. Agencies such as the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) have evaluated their technology development programs primarily on their effects on mission performance and cost. More and more, though, USG agencies are being evaluated on their technology transfer to the commercial sector. In addition, an increasing number of USG missions are being accomplished by industry-led or joint efforts, where the USG provides technology and funding but tasks industry with development and operation of the mission systems.

  13. Development of a Hydrologic Characterization Technology for Fault Zones Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, Kenzi; Onishi, Celia Tiemi; Doughty, Christine

    2012-03-31

    This is the final report for the five-year program of the NUMO-LBNL collaborative project (hereafter called the Project): Development of Hydrologic Characterization Technology for Fault Zones, under a NUMO-DOE/LBNL collaboration agreement. Detailed results from the past four years of study can be found in the each year’s year-end report (Karasaki et al., 2008, 2009, 2010, and 2011; Kiho et al., 2008, 2009, 2010, and 2011). In this report, we discuss the results of the studies conducted in FY2011. We also give a summary of the overall results and findings, as well as the lessons learned during the course of themore » Project.« less

  14. Principles for fostering the transdisciplinary development of assistive technologies.

    PubMed

    Boger, Jennifer; Jackson, Piper; Mulvenna, Maurice; Sixsmith, Judith; Sixsmith, Andrew; Mihailidis, Alex; Kontos, Pia; Miller Polgar, Janice; Grigorovich, Alisa; Martin, Suzanne

    2017-07-01

    Developing useful and usable assistive technologies often presents complex (or "wicked") challenges that require input from multiple disciplines and sectors. Transdisciplinary collaboration can enable holistic understanding of challenges that may lead to innovative, impactful and transformative solutions. This paper presents generalised principles that are intended to foster transdisciplinary assistive technology development. The paper introduces the area of assistive technology design before discussing general aspects of transdisciplinary collaboration followed by an overview of relevant concepts, including approaches, methodologies and frameworks for conducting and evaluating transdisciplinary working and assistive technology design. The principles for transdisciplinary development of assistive technologies are presented and applied post hoc to the COACH project, an ambient-assisted living technology for guiding completion of activities of daily living by older adults with dementia as an illustrative example. Future work includes the refinement and validation of these principles through their application to real-world transdisciplinary assistive technology projects. Implications for rehabilitation Transdisciplinarity encourages a focus on real world 'wicked' problems. A transdisciplinary approach involves transcending disciplinary boundaries and collaborating with interprofessional and community partners (including the technology's intended users) on a shared problem. Transdisciplinarity fosters new ways of thinking about and doing research, development, and implementation, expanding the scope, applicability, and commercial viability of assistive technologies.

  15. Decision Gate Process for Assessment of a Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna; Hyatt, Mark

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to TRL 6 development level) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, which will reduce life cycle cost and risk, and will increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product is either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  16. Technical Leadership Development Program-Year 3

    DTIC Science & Technology

    2012-08-30

    Develop an understanding of why achieving technology-based competitive advantage can be part of firm’s business strategy.  Review the Porter Model ...NUMBER H98230-08-D-0171 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Gavito /Dr. Valentin 5d. PROJECT NUMBER RT 4-3 5e. TASK...NUMBER WHS TO009 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Stevens Institute of Technology 8. PERFORMING ORGANIZATION

  17. Scenario drafting to anticipate future developments in technology assessment.

    PubMed

    Retèl, Valesca P; Joore, Manuela A; Linn, Sabine C; Rutgers, Emiel J T; van Harten, Wim H

    2012-08-16

    Health Technology Assessment (HTA) information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and different development paths are still possible. We developed a multi-parameter framework to assess dynamic aspects of a technology -still in development-, by means of scenario drafting to determine the effects, costs and cost-effectiveness of possible future diffusion patterns. Secondly, we explored the value of this method on the case of the clinical implementation of the 70-gene signature for breast cancer, a gene expression profile for selecting patients who will benefit most from chemotherapy. To incorporate process-uncertainty, ten possible scenarios regarding the introduction of the 70-gene signature were drafted with European experts. Out of 5 most likely scenarios, 3 drivers of diffusion (non-compliance, technical failure, and uptake) were quantitatively integrated in a decision-analytical model. For these scenarios, the cost-effectiveness of the 70-gene signature expressed in Incremental Cost-Effectiveness Ratios (ICERs) was compared to clinical guidelines, calculated from the past (2005) until the future (2020). In 2005 the ICER was €1,9 million/quality-adjusted-life-year (QALY), meaning that the 70-gene signature was not yet cost-effective compared to the current clinical guideline. The ICER for the 70-gene signature improved over time with a range of €1,9 million to €26,145 in 2010 and €1,9 million to €11,123/QALY in 2020 depending on the separate scenario used. From 2010, the 70-gene signature should be cost-effective, based on the combined scenario. The uptake-scenario had strongest influence on the cost-effectiveness. When optimal diffusion of a technology is sought, incorporating process-uncertainty by means of scenario drafting into a decision model may

  18. Scenario drafting to anticipate future developments in technology assessment

    PubMed Central

    2012-01-01

    Background Health Technology Assessment (HTA) information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and different development paths are still possible. We developed a multi-parameter framework to assess dynamic aspects of a technology -still in development-, by means of scenario drafting to determine the effects, costs and cost-effectiveness of possible future diffusion patterns. Secondly, we explored the value of this method on the case of the clinical implementation of the 70-gene signature for breast cancer, a gene expression profile for selecting patients who will benefit most from chemotherapy. Methods To incorporate process-uncertainty, ten possible scenarios regarding the introduction of the 70-gene signature were drafted with European experts. Out of 5 most likely scenarios, 3 drivers of diffusion (non-compliance, technical failure, and uptake) were quantitatively integrated in a decision-analytical model. For these scenarios, the cost-effectiveness of the 70-gene signature expressed in Incremental Cost-Effectiveness Ratios (ICERs) was compared to clinical guidelines, calculated from the past (2005) until the future (2020). Results In 2005 the ICER was €1,9 million/quality-adjusted-life-year (QALY), meaning that the 70-gene signature was not yet cost-effective compared to the current clinical guideline. The ICER for the 70-gene signature improved over time with a range of €1,9 million to €26,145 in 2010 and €1,9 million to €11,123/QALY in 2020 depending on the separate scenario used. From 2010, the 70-gene signature should be cost-effective, based on the combined scenario. The uptake-scenario had strongest influence on the cost-effectiveness. Conclusions When optimal diffusion of a technology is sought, incorporating process-uncertainty by means of

  19. The Historical Development of Vaccine Technology: Exploring the Relationship between Science and Technology

    ERIC Educational Resources Information Center

    Lee, Yeung Chung; Kwok, Ping Wai

    2017-01-01

    This paper examines the feasibility of using historical case studies to contextualise the learning of the nature of science and technology in a biology lesson. Through exploring the historical development of vaccine technology, students were expected to understand the complexity of the relationships between technology and science beyond the…

  20. 30 CFR 402.11 - Technology-development project applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...

  1. 30 CFR 402.11 - Technology-development project applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...

  2. 30 CFR 402.11 - Technology-development project applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...

  3. 30 CFR 402.11 - Technology-development project applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...

  4. 30 CFR 402.11 - Technology-development project applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...

  5. Thin Film Technology Development for the Powersphere

    NASA Technical Reports Server (NTRS)

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen; hide

    2003-01-01

    The Aerospace Corporation, NASA Glenn Research Center, Lockheed-Martin, and ILC Dover over the past two years have been engaged in developing a Multifunctional Inflatable Structure for the Powersphere Concept under contract with NASA (NAS3-01115). The Powersphere concept consists of a relatively large spherical solar array, which would be deployed from a microsatellite. The Powersphere structure and the deployment method was patented by the Aerospace Corporation (U.S. Patent Numbers 6,284,966 B 1 and 6,3 18,675). The work on this project has resulted in a number of technological innovations in the state of the art for integrating flexible thin-film solar cells with flex circuit harness technology and inflatable ultraviolet-light-rigidizable structures. The specific power, specific volume, for the Powersphere are presented in Figures 1 and 2 as a function of solar cell technology and efficiency. The Powersphere will enable microsatellite missions across NASA enterprises and DoD missions by providing ample electric power at an affordable cost. The Powersphere design provides attitude-independent electric power and thermal control for an enclosed microsatellite payload. The design is scalable, robust in high radiation environments and provides sufficient electric power to allow the use of electric propulsion. Electric propulsion enables precise positioning of microsatellites which is required for inspectors that would be deployed to inspect the International Space Station, Space Shuttle or large unmanned spacecraft. The Powersphere allows for efficient launch packaging versus deployed volume as shown in Figure 3.

  6. 78 FR 17418 - Rural Health Information Technology Network Development Grant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Information Technology Network Development Grant AGENCY: Health Resources and Services Administration (HRSA...-competitive replacement award under the Rural Health Information Technology Network Development Grant (RHITND... relinquishing its fiduciary responsibilities for the Rural Health Information Technology Network Development...

  7. Development of airframe design technology for crashworthiness.

    NASA Technical Reports Server (NTRS)

    Kruszewski, E. T.; Thomson, R. G.

    1973-01-01

    This paper describes the NASA portion of a joint FAA-NASA General Aviation Crashworthiness Program leading to the development of improved crashworthiness design technology. The objectives of the program are to develop analytical technology for predicting crashworthiness of structures, provide design improvements, and perform full-scale crash tests. The analytical techniques which are being developed both in-house and under contract are described, and typical results from these analytical programs are shown. In addition, the full-scale testing facility and test program are discussed.

  8. Forest Technology: Selected Two-Year Programs and Their Graduates.

    ERIC Educational Resources Information Center

    Backels, John F.

    Of the 27 American institutions which offer forest technology programs, only two--Lassen College (Calif.) and Paul Smith's College (New York)--have had such programs for 20 or more years. Responses from 324 of the two institution's 636 total graduates (prior to the classes of 1968) indicated where and in what capacities they were employed. Of the…

  9. Development of sustainable models for technology evaluation in hospital.

    PubMed

    Miniati, Roberto; Frosini, Francesco; Cecconi, Giulio; Dori, Fabrizio; Gentili, G Biffi

    2014-01-01

    This paper reports the development of standard techniques for technology evaluation in hospital carried out at the Florence Teaching Hospital Careggi (AOUC), where, as a complex system, the technological evaluation is a strategic and essential element for the maintenance of high-quality clinical activity and maximization of available resources. The aim of this paper has been the development of a system of economically sustainable models for the implementation of HTA and HS analyses in the hospital environment as well as presenting, in addition to a valid scientific resilience, the methodological and temporary flexibility to satisfy needs of hospital decision-makers. The evaluation models call for 3 main phases: an initial analysis of the in-hospital request, a collection of data, and finally a draft of a specific, easily usable set of reports. Three standardized and tested models of evaluation were developed, which, in relation to the objective of the request and schedule of the assignment, provide for the production of a speedy report (1-week), an intermediate report (1-month), or a extensive report typical of classical studies of hospital based HTA (1-year). It is then related to the evaluation model of the IORT (Intra-Operative Radiation Therapy) technology. The developed models have permitted the construction, using personnel and laboratories within the hospital, of an evaluation system reliable and responsive to the HOSPITAL's temporary needs based on the HS and HTA analyses in the hospital environment. Regarding the applicable case of IORT, this has shown how in-hospital requests have been satisfied in the preset time: although it establishes expected improvements on the social effect and weight of the illness and reveals a high territorial strategic relevance, the introduction of IORT in the hospital presents some criticalities on the impact on the healthcare organization and the necessity of specific training of medical technologist personnel.

  10. Seeds of Innovation: Three Years of the Technology Innovation Challenge Grant Program.

    ERIC Educational Resources Information Center

    Harris, Larry A.

    This publication describes the 62 projects that received 5-year Technology Innovation Challenge Grants beginning in 1995, 1996, and 1997, with reviews of the projects occurring in late 1999 and early 2000. Part 1 of the report describes the Technology Innovation Challenge Grant (TICG) program and its importance. Part 2 contains the project…

  11. Advanced Gas Turbine (AGT) technology development project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the final in a series of Technical Summary Reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorizrd under NASA Contract DEN3-167 and sponsored by the DOE. The project was administered by NASA-Lewis Research Center of Cleveland, Ohio. Plans and progress are summarized for the period October 1979 through June 1987. This program aims to provide the US automotive industry the high risk, long range technology necessary to produce gas turbine engines for automobiles that will reduce fuel consumption and reduce environmental impact. The intent is that this technology will reach the marketplace by the 1990s. The Garrett/Ford automotive AGT was designated AGT101. The AGT101 is a 74.5 kW (100 shp) engine, capable of speeds to 100,000 rpm, and operates at turbine inlet temperatures to 1370 C (2500 F) with a specific fuel consumption level of 0.18 kg/kW-hr (0.3 lbs/hp-hr) over most of the operating range. This final report summarizes the powertrain design, power section development and component/ceramic technology development.

  12. SITE TECHNOLOGY CAPSULE: GEOTECH DEVELOPMENT CORPORATION COLD TOP EX-SITU VITRIFICATION TECHNOLOGY

    EPA Science Inventory

    A SITE technology demonstration was conducted in 1997 to evaluate the potential applicability and effectiveness of the Geotech Cold Top ex-situ vitrification technology on chromium-contaminated soils. The primary objective was to develop test data to evaluate whether the waste a...

  13. Developing Professional Skills in a Third-Year Undergraduate Chemistry Course Offered in Western Australia

    NASA Astrophysics Data System (ADS)

    Dunn, Jeffrey G.; Kagi, Robert I.; Phillips, David N.

    1998-10-01

    "This unit gave me a broad industrial view of the chemical world and I am grateful for the professional skills I gained." That is the response of one graduate several years after he had taken the "Chemistry and Technology" unit that we present in the third year of the undergraduate chemistry course at Western Australia's Curtin University of Technology. Students in tertiary education are effectively "cocooned from the real world". There is a growing need for a teaching that links students to situations they will encounter upon gaining employment. The Chemistry and Technology unit has been developed over a 12-year period and is presented in the final semester of the course. It comprises six modules and is taught by lecturers from industry and the staff of the School. The Professional Practice, Consumer Chemistry, and Environmental modules are ones that most teachers could consider in their course. The other three modules are specific to Western Australia's needs, but could be modified or replaced to cater to other employment circumstances. A survey of recent graduates yielded complimentary responses to the appropriateness of such a unit in the course.

  14. EAGLE: relay mirror technology development

    NASA Astrophysics Data System (ADS)

    Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.

    2002-06-01

    EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.

  15. Making technological innovation work for sustainable development.

    PubMed

    Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G; Matus, Kira; Moon, Suerie; Murthy, Sharmila L; Clark, William C

    2016-08-30

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset.

  16. Making technological innovation work for sustainable development

    PubMed Central

    Anadon, Laura Diaz; Harley, Alicia G.; Matus, Kira; Moon, Suerie; Murthy, Sharmila L.

    2016-01-01

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset. PMID:27519800

  17. Development of 3D in Vitro Technology for Medical Applications

    PubMed Central

    Ou, Keng-Liang; Hosseinkhani, Hossein

    2014-01-01

    In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering. PMID:25299693

  18. Aerosciences, Aero-Propulsion and Flight Mechanics Technology Development for NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.

    2003-01-01

    The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.

  19. GSFC Technology Development Center Report

    NASA Technical Reports Server (NTRS)

    Himwich, Ed; Gipson, John

    2013-01-01

    This report summarizes the activities of the GSFC Technology Development Center (TDC) for 2012 and forecasts planned activities for 2013. The GSFC TDC develops station software including the Field System (FS), scheduling software (SKED), hardware including tools for station timing and meteorology, scheduling algorithms, and operational procedures. It provides a pool of individuals to assist with station implementation, check-out, upgrades, and training.

  20. Atmosphere Revitalization Technology Development for Crewed Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Carrasquillo, Robyn L.; Harris, Danny W.

    2006-01-01

    As space exploration objectives extend human presence beyond low Earth orbit, the solutions to technological challenges presented by supporting human life in the hostile space environment must build upon experience gained during past and present crewed space exploration programs. These programs and the cabin atmosphere revitalization process technologies and systems developed for them represent the National Aeronautics and Space Administration s (NASA) past and present operational knowledge base for maintaining a safe, comfortable environment for the crew. The contributions of these programs to the NASA s technological and operational working knowledge base as well as key strengths and weaknesses to be overcome are discussed. Areas for technological development to address challenges inherent with the Vision for Space Exploration (VSE) are presented and a plan for their development employing unit operations principles is summarized

  1. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  2. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; hide

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  3. Looking Back and Ahead: 20 Years of Technologies for Language Learning

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2016-01-01

    Over the last 20 years Robert Godwin-Jones has written 48 columns on "Emerging Technologies"; an additional six columns have been written by guest columnists. Several topics have been re-examined in regular intervals of approximately five years, namely digital literacy (Vol. 4, Num. 2; Vol. 10, Num. 2; Vol. 14, Num. 3; Vol. 19, Num. 3)…

  4. 1995 Federal Research and Development Program in Materials Science and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly amore » century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States

  5. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Jakupca, Ian J.

    2011-01-01

    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  6. Assistive Technology Developments in Puerto Rico.

    ERIC Educational Resources Information Center

    Lizama, Mauricio A.; Mendez, Hector L.

    Recent efforts to develop Spanish-based adaptations for alternate computer input devices are considered, as are their implications for Hispanics with disabilities and for the development of language sensitive devices worldwide. Emphasis is placed on the particular need to develop low-cost high technology devices for Puerto Rico and Latin America…

  7. Organizational Development: Values, Process, and Technology.

    ERIC Educational Resources Information Center

    Margulies, Newton; Raia, Anthony P.

    The current state-of-the-art of organizational development is the focus of this book. The five parts into which the book is divided are as follows: Part One--Introduction (Organizational Development in Perspective--the nature, values, process, and technology of organizational development); Part Two--The Components of Organizational Developments…

  8. Reusable launch vehicle: Technology development and test program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) assess the Reusable Launch Vehicle (RLV) technology development and test programs in the most critical component technologies. At a time when discretionary government spending is under close scrutiny, the RLV program is designed to reduce the cost of access to space through a combination of robust vehicles and a streamlined infrastructure. Routine access to space has obvious benefits for space science, national security, commercial technologies, and the further exploration of space. Because of technological challenges, knowledgeable people disagree about the feasibility of a single-stage-to-orbit (SSTO) vehicle. The purpose of the RLV program proposed by NASA and industry contractors is to investigate the status of existing technology and to identify and advance key technology areas required for development and validation of an SSTO vehicle. This report does not address the feasibility of an SSTO vehicle, nor does it revisit the roles and responsibilities assigned to NASA by the National Transportation Policy. Instead, the report sets forth the NRC committee's findings and recommendations regarding the RLV technology development and test program in the critical areas of propulsion, a reusable cryogenic tank system (RCTS), primary vehicle structure, and a thermal protection system (TPS).

  9. Technological Literacy and Its Effects on First-Year Liberal Studies College Students.

    ERIC Educational Resources Information Center

    Gathercoal, Paul

    This study examined the effects of including a technology literacy component in first-year students' programs at a liberal arts college. The program was designed to systematically help students use and critically evaluate the technology and what it can do to enhance the living and learning environment. The study employed a non-equivalent control…

  10. [Evaluation of sustainable development of Dalian Economic and Technological Development Zone based on MuSIASEM theory].

    PubMed

    Geng, Yong; Liu, Xiao-qing; Zhang, Pan; Liu, Ye

    2010-10-01

    Based on the theory of multiple-scale integrated assessment of societal and ecosystem metabolism (MuSIASEM), a comprehensive evaluation was made on the human activity time, exosomatic energy input, and added value of Dalian Economic and Technological Development Zone in 2000-2007. During the study period, the life quality of local citizens increased year after year, while the agricultural industry dwindled. Manufacturing industry was still the main pillar industry, but its energy consumption was greater. Service industry was at its early stage, falling behind manufacturing industry. The exosomatic metabolic level of the whole zone and its various industries had an obvious increase, and the energy intensity decreased continuously. With the fact that both the human activity time and the exosomatic energy input had a ceaseless decrease, the economic added value increased steadily, and the zone was under its way towards sustainable development.

  11. Technology Development and Demonstration Concepts for the Space Elevator

    NASA Technical Reports Server (NTRS)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  12. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  13. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  14. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  15. Space power development impact on technology requirements

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.; Fitzgerald, T. J.; Gilje, R. I.; Gordon, J. D.

    1986-01-01

    The paper is concerned with the selection of a specific spacecraft power technology and the identification of technology development to meet system requirements. Requirements which influence the selection of a given technology include the power level required, whether the load is constant or transient in nature, and in the case of transient loads, the time required to recover the power, and overall system safety. Various power technologies, such as solar voltaic power, solar dynamic power, nuclear power systems, and electrochemical energy storage, are briefly described.

  16. Research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The research and technology accomplishments of the NASA Lewis Research Center are summarized for the fiscal year 1986, the 45th anniversary year of the Center. Five major sections are presented covering: aeronautics, aerospace technology, space communications, space station systems, and computational technology support. A table of contents by subjects was developed to assist the reader in finding articles of special interest.

  17. Sustaining Innovation: Developing an Instructional Technology Assessment Process

    ERIC Educational Resources Information Center

    Carmo, Monica Cristina

    2013-01-01

    This case study developed an instructional technology assessment process for the Gevirtz Graduate School of Education (GGSE). The theoretical framework of Adelman and Taylor (2001) guided the development of this instructional technology assessment process and the tools to aid in its facilitation. GGSE faculty, staff, and graduate students…

  18. Developments at the Advanced Design Technologies Testbed

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    2003-01-01

    A report presents background and historical information, as of August 1998, on the Advanced Design Technologies Testbed (ADTT) at Ames Research Center. The ADTT is characterized as an activity initiated to facilitate improvements in aerospace design processes; provide a proving ground for product-development methods and computational software and hardware; develop bridging methods, software, and hardware that can facilitate integrated solutions to design problems; and disseminate lessons learned to the aerospace and information technology communities.

  19. Beyond computer literacy: supporting youth's positive development through technology.

    PubMed

    Bers, Marina Umaschi

    2010-01-01

    In a digital era in which technology plays a role in most aspects of a child's life, having the competence and confidence to use computers might be a necessary step, but not a goal in itself. Developing character traits that will serve children to use technology in a safe way to communicate and connect with others, and providing opportunities for children to make a better world through the use of their computational skills, is just as important. The Positive Technological Development framework (PTD), a natural extension of the computer literacy and the technological fluency movements that have influenced the world of educational technology, adds psychosocial, civic, and ethical components to the cognitive ones. PTD examines the developmental tasks of a child growing up in our digital era and provides a model for developing and evaluating technology-rich youth programs. The explicit goal of PTD programs is to support children in the positive uses of technology to lead more fulfilling lives and make the world a better place. This article introduces the concept of PTD and presents examples of the Zora virtual world program for young people that the author developed following this framework.

  20. Arsenic removal methods for drinking water in the developing countries: technological developments and research needs.

    PubMed

    Kabir, Fayzul; Chowdhury, Shakhawat

    2017-11-01

    Arsenic pollution of drinking water is a concern, particularly in the developing countries. Removal of arsenic from drinking water is strongly recommended. Despite the availability of efficient technologies for arsenic removal, the small and rural communities in the developing countries are not capable of employing most of these technologies due to their high cost and technical complexity. There is a need for the "low-cost" and "easy to use" technologies to protect the humans in the arsenic affected developing countries. In this study, arsenic removal technologies were summarized and the low-cost technologies were reviewed. The advantages and disadvantages of these technologies were identified and their scopes of applications and improvements were investigated. The costs were compared in context to the capacity of the low-income populations in the developing countries. Finally, future research directions were proposed to protect the low-income populations in the developing countries.

  1. Chemistry for Energy Technology I. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in chemistry for energy technology is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  2. Chemistry for Energy Technology II. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in chemistry for energy technology is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  3. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    The project described in this report was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in conjunction with area vocational-technical schools, the second year of a competency-based curriculum in laser/electro-optics technology. During the project, a task force of teachers from the area schools and the college…

  4. Development of Articulated Competency-Based Curriculum in Automated Systems/Robotics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    The project described in this report was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in conjunction with area vocational-technical schools, the second year of a competency-based curriculum in automated systems/robotics technology. During the project, a task force of teachers from the area schools and the college…

  5. Social Network Analysis of 50 Years of International Collaboration in the Research of Educational Technology

    ERIC Educational Resources Information Center

    Guo, Shesen; Zhang, Ganzhou; Guo, Yufei

    2016-01-01

    The definition of the field of educational technology has evolved over 50 years. New inventions and economic globalization increasingly facilitate people's communication for exchange of ideas and collaboration. This work attempts to describe international research collaboration in educational technology for the past 50 years. This article intends…

  6. Digital technology and human development: a charter for nature conservation.

    PubMed

    Maffey, Georgina; Homans, Hilary; Banks, Ken; Arts, Koen

    2015-11-01

    The application of digital technology in conservation holds much potential for advancing the understanding of, and facilitating interaction with, the natural world. In other sectors, digital technology has long been used to engage communities and share information. Human development-which holds parallels with the nature conservation sector-has seen a proliferation of innovation in technological development. Throughout this Perspective, we consider what nature conservation can learn from the introduction of digital technology in human development. From this, we derive a charter to be used before and throughout project development, in order to help reduce replication and failure of digital innovation in nature conservation projects. We argue that the proposed charter will promote collaboration with the development of digital tools and ensure that nature conservation projects progress appropriately with the development of new digital technologies.

  7. Sample Return Propulsion Technology Development Under NASA's ISPT Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.

    2011-01-01

    Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12

  8. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  9. Historical development of health technology assessment in Thailand.

    PubMed

    Teerawattananon, Yot; Tantivess, Sripen; Yothasamut, Jomkwan; Kingkaew, Pritaporn; Chaisiri, Kakanang

    2009-07-01

    This study aims to review the development of health technology assessment (HTA), including the socioeconomic context, outputs, and policy utilization in the Thai setting. This study was conducted through extensive document reviews including these published in both domestic and international literature. Evidence suggests that contextual elements of the health system, especially the country's economic status and health financing reforms, as well as their effects on government budgeting for medical and public health services, played an important role in the increasing needs and demands for HTA information among policy makers. In the midst of substantial economic growth during the years 1982 to 1996, several studies reported the rapid diffusion and poor distribution of health technologies, and inequitable access to high-cost technology in public and private hospitals. At the same time, economic analysis and its underpinning concept of efficiency were suggested by groups of scholars and health officials to guide national policy on the investment in health technology equipment. Related research and training programs were subsequently launched. However, none of these HTA units could be institutionalized into national bodies. From 1997 to 2005, an economic recession, followed by the introduction of a universal health coverage plan, triggered the demands for effective measures for cost containment and prioritization of health interventions. This made policy makers and researchers at the Ministry of Public Health (MOPH) pay increasing attention to economic appraisals, and several HTA programs were established in the Ministry. Despite the rising number of Thai health economic publications, a major problem at that period involved the poor quality of studies. Since 2006, economic recovery and demands from different interests to include expensive technologies in the public health benefit package have been crucial factors promoting the role of HTA in national policy decisions

  10. Composite Technology Personnel Development. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel; Fink, Edwin

    A project was conducted at Delaware County Community College, Media, Pennsylvania, to train two instructional staff members in the area of composite materials technology. A 1-year training program was set up for the two technical instructional specialists at the Boeing Helicopter Training Center, Eddystone, Pennsylvania. The program consisted of…

  11. Evaluation Criteria for Solid Waste Processing Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, J. A.; Alazraki, M. P.

    2001-01-01

    A preliminary list of criteria is proposed for evaluation of solid waste processing technologies for research and technology development (R&TD) in the Advanced Life Support (ALS) Program. Completion of the proposed list by current and prospective ALS technology developers, with regard to specific missions of interest, may enable identification of appropriate technologies (or lack thereof) and guide future development efforts for the ALS Program solid waste processing area. An attempt is made to include criteria that capture information about the technology of interest as well as its system-wide impacts. Some of the criteria in the list are mission-independent, while the majority are mission-specific. In order for technology developers to respond to mission-specific criteria, critical information must be available on the quantity, composition and state of the waste stream, the wast processing requirements, as well as top-level mission scenario information (e.g. safety, resource recovery, planetary protection issues, and ESM equivalencies). The technology readiness level (TRL) determines the degree to which a technology developer is able to accurately report on the list of criteria. Thus, a criteria-specific minimum TRL for mandatory reporting has been identified for each criterion in the list. Although this list has been developed to define criteria that are needed to direct funding of solid waste processing technologies, this list processes significant overlap in criteria required for technology selection for inclusion in specific tests or missions. Additionally, this approach to technology evaluation may be adapted to other ALS subsystems.

  12. Recent Progress at NASA in LlSA Formulation and Technology Development

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2007-01-01

    Over the last year, the NASA portion of the LISA team has been focused its effort on advancing the formulation of the mission and responding to a major National Academy review. This talk will describe advances in, and the current state of: the baseline mission architecture, the performance requirements, the technology development and plans for final integration and test. Interesting results stimulated by the NASINRC Beyond Einstein Program Assessment Review will also be described.

  13. SMD Technology Development Story for NASA Annual Technology report

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  14. Building technological capability within satellite programs in developing countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle; Weigel, Annalisa

    2011-12-01

    This paper explores the process of building technological capability in government-led satellite programs within developing countries. The key message is that these satellite programs can learn useful lessons from literature in the international development community. These lessons are relevant to emerging satellite programs that leverage international partnerships in order to establish local capability to design, build and operate satellites. Countries with such programs include Algeria, Nigeria, Turkey, Malaysia and the United Arab Emirates. The paper first provides background knowledge about space activity in developing countries, and then explores the nuances of the lessons coming from the international development literature. Developing countries are concerned with satellite technology because satellites provide useful services in the areas of earth observation, communication, navigation and science. Most developing countries access satellite services through indirect means such as sharing data with foreign organizations. More countries, however, are seeking opportunities to develop satellite technology locally. There are objective, technically driven motivations for developing countries to invest in satellite technology, despite rich debate on this topic. The paper provides a framework to understand technical motivations for investment in satellite services, hardware, expertise and infrastructure in both short and long term. If a country decides to pursue such investments they face a common set of strategic decisions at the levels of their satellite program, their national context and their international relationships. Analysis of past projects shows that countries have chosen diverse strategies to address these strategic decisions and grow in technological capability. What is similar about the historical examples is that many countries choose to leverage international partnerships as part of their growth process. There are also historical examples from

  15. Technology developments toward 30-year-life of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    As part of the United States National Photovoltaics Program, the Jet Propulsion Laboratory's Flat-Plate Solar Array Project (FSA) has maintained a comprehensive reliability and engineering sciences activity addressed toward understanding the reliability attributes of terrestrial flat-plate photovoltaic arrays and to deriving analysis and design tools necessary to achieve module designs with a 30-year useful life. The considerable progress to date stemming from the ongoing reliability research is discussed, and the major areas requiring continued research are highlighted. The result is an overview of the total array reliability problem and of available means of achieving high reliability at minimum cost.

  16. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran

    NASA Astrophysics Data System (ADS)

    Bannayan, M.; Mansoori, H.; Rezaei, E. Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm-1) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  17. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.

    PubMed

    Bannayan, M; Mansoori, H; Rezaei, E Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm(-1)) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  18. A Flipped First-Year Digital Circuits Course for Engineering and Technology Students

    ERIC Educational Resources Information Center

    Yelamarthi, Kumar; Drake, Eron

    2015-01-01

    This paper describes a flipped and improved first-year digital circuits (DC) course that incorporates several active learning strategies. With the primary objective of increasing student interest and learning, an integrated instructional design framework is proposed to provide first-year engineering and technology students with practical knowledge…

  19. NASA Environmental Control and Life Support Technology Development and Maturation for Exploration: 2015 to 2016 Overview

    NASA Technical Reports Server (NTRS)

    Schneider, Walter F.; Gatens, Robyn L.; Anderson, Molly S.; Broyan, James L.; MaCatangay, Ariel V.; Shull, Sarah A.; Perry, Jay L.; Toomarian, Nikzad

    2016-01-01

    Over the last year, the National Aeronautics and Space Administration (NASA) has continued to refine the understanding and prioritization of technology gaps that must be closed in order to achieve Evolvable Mars Campaign objectives and near term objectives in the cislunar proving ground. These efforts are reflected in updates to the technical area roadmaps released by NASA in 2015 and have guided technology development and maturation tasks that have been sponsored by various programs. This paper provides an overview of the refined Environmental Control and Life Support (ECLS) strategic planning, as well as a synopsis of key technology and maturation project tasks that occurred in 2014 and early 2015 to support the strategic needs. Plans for the remainder of 2015 and subsequent years are also described.

  20. Technology-Based Communication and the Development of Interpersonal Competencies Within Adolescent Romantic Relationships: A Preliminary Investigation

    PubMed Central

    Nesi, Jacqueline; Widman, Laura; Choukas-Bradley, Sophia; Prinstein, Mitchell J.

    2018-01-01

    This study investigated longitudinal associations between adolescents’ technology-based communication and the development of interpersonal competencies within romantic relationships. A school-based sample of 487 adolescents (58% girls; Mage = 14.1) participated at two time points, one year apart. Participants reported (1) proportions of daily communication with romantic partners via traditional modes (in person, on the phone) versus technological modes (text messaging, social networking sites) and (2) competence in the romantic relationship skill domains of negative assertion and conflict management. Results of cross-lagged panel models indicated that adolescents who engaged in greater proportions of technology-based communication with romantic partners reported lower levels of interpersonal competencies one year later, but not vice versa; associations were particularly strong for boys. PMID:28876524

  1. Advanced Power Technology Development Activities for Small Satellite Applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew; hide

    2017-01-01

    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.

  2. Progress in developing ultrathin solar cell blanket technology

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Mesch, H. G.; Scott-Monck, J.

    1984-01-01

    A program was conducted to develop technologies for welding interconnects to three types of 50-micron-thick, 2 by 2-cm solar cells. Parallel-gap resistance welding was used for interconnect attachment. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Six 48-cell modules were assembled with 50-micron (nominal) thick cells, frosted fused-silica covers, silver-plated Invar interconnectors, and four different substrate designs. Three modules (one for each cell type) have single-layer Kapton (50-micron-thick) substrates. The other three modules each have a different substrate (Kapton-Kevlar-Kapton, Kapton-graphite-Kapton, and Kapton-graphite-aluminum honeycomb-graphite). All six modules were subjected to 4112 thermal cycles from -175 to 65 C (corresponding to over 40 years of simulated geosynchronous orbit thermal cycling) and experienced only negligible electrical degradation (1.1 percent average of six 48-cell modules).

  3. Development of Structural Health Management Technology for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  4. Technological Advances in Stent Therapies: a Year in Review.

    PubMed

    Raffoul, Jad; Nasir, Ammar; Klein, Andrew J P

    2018-04-07

    Stent technology has rapidly evolved since the first stainless steel bare metal stents with substantial developments in scaffolding, polymer, drug choice, drug delivery, and elution mechanisms. Most recently, there has been the evolution of bioabsorbable vascular scaffolds, potentially eliminating the need for long-term foreign object retention. These rapid developments have led to an ever-expanding selection of new stents, making the choice of which to use in which patient challenging. Operators must balance potential short- and long-term clinical ramifications, namely stent thrombosis, in-stent restenosis, target lesion revascularization, and target lesion failure. In this review, we hope to provide insight for interventional cardiologists on the details of stent technology and how this impacts outcomes, stent selection, and duration of dual-antiplatelet therapy duration post drug-eluting stent implantation.

  5. Seizing the strategic opportunities of emerging technologies by building up innovation system: monoclonal antibody development in China.

    PubMed

    Zhang, Mao-Yu; Li, Jian; Hu, Hao; Wang, Yi-Tao

    2015-11-04

    Monoclonal antibodies (mAbs), as an emerging technology, have become increasingly important in the development of human therapeutic agents. How developing countries such as China could seize this emerging technological opportunity remains a poorly studied issue in prior literature. Thus, this paper aims to investigate the research and development of mAbs in China based on an innovation system functions approach and probes into the question of how China has been taking advantage of emerging technologies to overcome its challenges of building up a complete innovation system in developing mAbs. Mixed research methods were applied by combining archival data and field interviews. Archival data from the China Food and Drug Administration, Web of Science, the United States Patent and Trademark Office, the Chinese Clinical Trial Registry, and the National Science and Technology Report Service were used to examine the status quo of the technology and research and development (R&D) activities in China, while the opinions of researchers and managers in this field were synthesized from the interviews. From the perspective of innovation system functions, technological development of mAb in China is being driven by incentives such as the subsidies from the State and corporate R&D funding. Knowledge diffusion has been well served over the last 10 years through exchanging information on networks and technology transfer with developed countries. The State has provided clear guidance on search of emerging mAb technologies. Legitimacy of mAb in China has gained momentum owing to the implementation of government policies stipulated in the "The Eleventh Five-year Plan" in 2007, as well as national projects such as the "973 Program" and "863 Program", among others. The potential of market formation stays high because of the rising local demand and government support. Entrepreneurial activities for mAb continue to prosper. In addition, the situation of resource supply has been improved

  6. One chip at a time: using technology to enhance youth development.

    PubMed

    Cohall, Alwyn; Nshom, Montsine; Nye, Andrea

    2007-08-01

    Youth development programs have the potential to positively impact psychosocial growth and maturation in young adults. Several youth development programs are capitalizing on youths' natural gravitation toward technology as well. Research has shown that youth view technology and technologic literacy as positive and empowering, and that youth who master technology have increased self-esteem and better socioeconomic prospects than their counterparts. Technology-centered youth development programs offer a unique opportunity to engage youth, thereby extending their social networks, enhancing their access to information, building their self-esteem, and improving their self-efficacy. This article provides an overview of the intersection between youth development and technology and illustrates the ways technology can be used as a cutting-edge tool for youth development.

  7. USGS Information Technology Strategic Plan: Fiscal Years 2007-2011

    USGS Publications Warehouse

    ,

    2006-01-01

    Introduction: The acquisition, management, communication, and long-term stewardship of natural science data, information, and knowledge are fundamental mission responsibilities of the U.S. Geological Survey (USGS). USGS scientists collect, maintain, and exchange raw scientific data and interpret and analyze it to produce a wide variety of science-based products. Managers throughout the Bureau access, summarize, and analyze administrative or business-related information to budget, plan, evaluate, and report on programs and projects. Information professionals manage the extensive and growing stores of irreplaceable scientific information and knowledge in numerous databases, archives, libraries, and other digital and nondigital holdings. Information is the primary currency of the USGS, and it flows to scientists, managers, partners, and a wide base of customers, including local, State, and Federal agencies, private sector organizations, and individual citizens. Supporting these information flows is an infrastructure of computer systems, telecommunications equipment, software applications, digital and nondigital data stores and archives, technical expertise, and information policies and procedures. This infrastructure has evolved over many years and consists of tools and technologies acquired or built to address the specific requirements of particular projects or programs. Developed independently, the elements of this infrastructure were typically not designed to facilitate the exchange of data and information across programs or disciplines, to allow for sharing of information resources or expertise, or to be combined into a Bureauwide and broader information infrastructure. The challenge to the Bureau is to wisely and effectively use its information resources to create a more Integrated Information Environment that can reduce costs, enhance the discovery and delivery of scientific products, and improve support for science. This Information Technology Strategic Plan

  8. Propulsion Control Technology Development in the United States A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.a; Garg, Sanjay

    2005-01-01

    This paper presents a historical perspective of the advancement of control technologies for aircraft gas turbine engines. The paper primarily covers technology advances in the United States in the last 60 years (1940 to approximately 2002). The paper emphasizes the pioneering technologies that have been tested or implemented during this period, assimilating knowledge and experience from industry experts, including personal interviews with both current and retired experts. Since the first United States-built aircraft gas turbine engine was flown in 1942, engine control technology has evolved from a simple hydro-mechanical fuel metering valve to a full-authority digital electronic control system (FADEC) that is common to all modern aircraft propulsion systems. At the same time, control systems have provided engine diagnostic functions. Engine diagnostic capabilities have also evolved from pilot observation of engine gauges to the automated on-board diagnostic system that uses mathematical models to assess engine health and assist in post-flight troubleshooting and maintenance. Using system complexity and capability as a measure, we can break the historical development of control systems down to four phases: (1) the start-up phase (1942 to 1949), (2) the growth phase (1950 to 1969), (3) the electronic phase (1970 to 1989), and (4) the integration phase (1990 to 2002). In each phase, the state-of-the-art control technology is described and the engines that have become historical landmarks, from the control and diagnostic standpoint, are identified. Finally, a historical perspective of engine controls in the last 60 years is presented in terms of control system complexity, number of sensors, number of lines of software (or embedded code), and other factors.

  9. Long life Regenerative Fuel Cell technology development plan

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.

    1992-01-01

    This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.

  10. Volpe Center Office of Research and Technology Applications (ORTA) : fiscal year 2014 annual report

    DOT National Transportation Integrated Search

    2014-12-01

    Technology transfer activities performed by the Volpe National Transportation Systems Center during fiscal year 2014 in fulfillment of statutory Office of Research and Technology Applications (ORTA) responsibilities are summarized in this report.

  11. Insulin delivery device technology 2012: where are we after 90 years?

    PubMed

    Fry, Andrew

    2012-07-01

    Since the first successful use of insulin in 1921 to treat diabetes at Toronto General Hospital, the major advances in development of the medication itself have taken place in parallel with equally significant developments in the means of delivery. Administration of insulin remains parenteral. This article reviews the main variants in prescription-available delivery technology: vial and syringe, pen injector, needle-free injection, and continuous subcutaneous insulin infusion pumps. For each of these, the background and major milestones are covered briefly and followed by a discussion of the latest product innovations, technologies, and implementations, which are all considered in the context of the interaction with users. The article concludes by reflecting upon how the progress in the technology of diabetes management can best serve the patient. The spectacular technological advances in medication, monitoring, and delivery since 1922 have transformed the lives of millions. However, the fact that we can add sophisticated technology to delivery devices and accessories does not mean it is always the best thing for the patient. Electronic sophistication may be welcomed by a young, eager type 1 diabetes patient, while a senior citizen who discovers he has type 2 diabetes may yearn for simplicity. Technology continues to provide great solutions, but the type of solution delivered must be matched to the user if the maximum benefit is to be achieved for all. © 2012 Diabetes Technology Society.

  12. An Extraordinary Year for Managing Technology

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    It's wonderful to be back home again in Indiana. I am honored to be here with you today to share two important results of effective technology management. The first is the indirect return on investment that Americans get from NASA's relatively lean annual budget, and the second is the direct economic benefits that the great state of Indiana and businesses nationwide realize through multiple contracts with NASA. As a proud Purdue graduate and deputy director of one of NASA's highest-priority, multi-billion dollar projects, I have a vested interest in this conference and in the outcome of this work. My goal today is to help you better understand the types of work in which NASA engages and to provide avenues for you to pursue opportunities with America's space Agency, if that is a good fit for your company. You may already know that NASA and various Indiana businesses and universities are partners in the pursuit of improving life on Earth through scientific discoveries that pay dividends in terms of expanded knowledge, as well as big-picture conveniences and a multitude of spin-offs. Whether your organization is large or small, NASA offers numerous opportunities to participate. Before I provide some motivating facts and figures about the aerospace industry and its economic impact, I want to set the stage by sharing several notable examples of how 2005 was an extraordinary year for technology management at NASA, a subject that I can speak about firsthand.

  13. Technology-Supported Change: A Staff Development Opportunity.

    ERIC Educational Resources Information Center

    Bradshaw, Lynn K.

    1997-01-01

    Implementing technology in a classroom is a personal process that varies from teacher to teacher. The Concerns-Based Adoption Model identifies seven stages of concern that teachers may experience, from awareness to refocusing ideas. Innovative staff development strategies include establishing organizational structures to support technological and…

  14. Re-Entry: Inflatable Technology Development in Russian Collaboration (RITD)

    NASA Astrophysics Data System (ADS)

    Koryanov, V. V.; Kazakovtsev, V. P.; Harri, A.-M.; Da-Poian, V.

    2018-04-01

    Technology has been developed specifically for launching spacecraft into the planet's atmosphere. The technology is based on the concept of using inflatable braking device, which was originally developed for landing in conditions of Mars.

  15. Liquid Oxygen/Liquid Methane Component Technology Development at MSFC

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.

    2010-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. Besides existing in-house risk reduction activities, NASA has solicited from industry their participation on component technologies based on the potential application to the lunar ascent main engine (AME). Contracted and NASA efforts have ranged from valve technologies to engine system testbeds. The application for the AME is anticipated to be an expendable, pressure-fed engine for ascent from the moon at completion of its lunar stay. Additionally, the hardware is expected to provide an abort capability prior to landing, in the event that descent systems malfunction. For the past 4 years, MSFC has been working with the Glenn Research Center and the Johnson Space Center on methane technology development. This paper will focus on efforts specific to MSFC in pursuing ignition, injector performance, chamber material assessments and cryogenic valve technologies. Ignition studies have examined characteristics for torch, spark and microwave systems. Injector testing has yielded insight into combustion performance for shear, swirl and impinging type injectors. The majority of chamber testing has been conducted with ablative and radiatively cooled chambers with planned activities for regenerative and transpiration cooled chambers. Lastly, an effort is underway to examine the long duration exposure issues of cryogenic valve internal components. The paper will summarize the status of these efforts.

  16. SOME CHANGES IN INFORMATION TECHNOLOGY AFFECTING MARKETING IN THE YEAR 2000,

    DTIC Science & Technology

    The report considers how far the year 2000 is from today, then some of the changes in the information technology one might expect, and lastly how these changes might affect marketing and its segmentation. (Author)

  17. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginiamore » Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.« less

  18. Professional Education in Educational Media and Technology: A 75 Year Perspective.

    ERIC Educational Resources Information Center

    Ely, Donald P.

    1997-01-01

    Describes the evolution of educational technology curricula and examines its current status. Highlights include graduate curriculum development; the National Defense Education Act; competition between school librarians and media specialists; the inclusion of computer technology; and three case studies of academic programs at Indiana University,…

  19. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  20. [Technology development as social process: prospects and frontiers of social scientific elucidation of technological advancement].

    PubMed

    Dierkes, M

    1990-05-01

    This article provides an overview of the new developments in social scientific technology research which have changed considerably as a result of public debate and reactions to the importance of advancements in technology. The shift in emphasis, away from the effects of technology to its shaping, is described and certain hypotheses and concepts of advancement in the study of the social conditions underlying technical development processes are presented.

  1. Surveying the technology landscape: Teachers' use of technology in secondary mathematics classrooms

    NASA Astrophysics Data System (ADS)

    Goos, Merrilyn; Bennison, Anne

    2008-12-01

    For many years, education researchers excited by the potential for digital technologies to transform mathematics teaching and learning have predicted that these technologies would become rapidly integrated into every level of education. However, recent international research shows that technology still plays a marginal role in mathematics classrooms. These trends deserve investigation in the Australian context, where over the past 10 years secondary school mathematics curricula have been revised to allow or require use of digital technologies in learning and assessment tasks. This paper reports on a survey of mathematics teachers' use of computers, graphics calculators, and the Internet in Queensland secondary schools, and examines relationships between use and teachers' pedagogical knowledge and beliefs, access to technology, and professional development opportunities. Although access to all forms of technology was a significant factor related to use, teacher beliefs and participation in professional development were also influential. Teachers wanted professional development that modelled planning and pedagogy so they could meaningfully integrate technology into their lessons in ways that help students learn mathematical concepts. The findings have implications not only for resourcing of schools, but also for designing professional development that engages teachers with technology in their local professional contexts.

  2. Nuclear Technology for the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Darby, Iain

    2017-01-01

    Science, technology and innovation will play a crucial role in helping countries achieve the ambitious Sustainable Development Goals (SDGs). Since the discovery of nuclear fission in the 1930s, the peaceful applications of nuclear technology have helped many countries improve crops, fight pests, advance health, protect the environment and guarantee a stable supply of energy. Highlighting the goals related to health, hunger, energy and the environment, in this presentation I will discuss how nuclear technology contributes to the SDGs and how nuclear technology can further contribute to the well-being of people, help protect the planet and boost prosperity.

  3. Heatshield for Extreme Entry Environment Technology (HEEET) Development Status

    NASA Technical Reports Server (NTRS)

    Ellerby, Don; Gage, Peter; Kazemba, Cole; Mahzari, Milad; Nishioka, Owen; Peterson, Keith; Stackpoole, Mairead; Venkatapathy, Ethiraj; Young, Zion; Poteet, Carl; hide

    2016-01-01

    exist between the panels and these gaps have to be filled with seams. The seam material then has to be bonded on to adjacent panels and also to the structure. The heat-shield assembly is shown in Figure 1. One of the significant challenges we have overcome recently is the design, development and testing of the seam. HEEET material development and the seam concept development have utilized some of the unique test capabilities available in the US. The various test facilities utilized in thermal testing along with the entry environment for Saturn and Venus missions are shown in Figure 2. The HEEET project is currently in its 3rd year of a four-year development. Figure 3 illustrates the key accomplishments to date and the challenges yet to be overcome before the technology is ready for mission infusion. This proposed presentation will cover both progress that has been made in the HEEET project and also the challenges to be overcome that is highlighted in Figure 3. Objective of the HEEET project is to mature the system in time to support the next New Frontiers opportunity and we believe we are well along the way to mission infuse HEEET.

  4. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions

  5. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently

  6. A Professional Development Project for Improving the Use of Information and Communication Technologies in Science Teaching

    ERIC Educational Resources Information Center

    Lavonen, Jari; Juuti, Kalle; Aksela, Maija; Meisalo, Veijo

    2006-01-01

    This article describes a professional development project aiming to develop practical approaches for the integration of information and communication technologies (ICT) into science education. Altogether, 13 two-day face-to-face seminars and numerous computer network conferences were held during a three-year period. The goals for the project were…

  7. Developments in the Use of Technology in Counselling and Psychotherapy

    ERIC Educational Resources Information Center

    Goss, S.; Anthony, K.

    2009-01-01

    Counselling and psychotherapy has been influenced by technology for over 50 years. During this time, the rate at which ways that technology of one kind or another can assist therapists and counsellors has seemed to increase exponentially. This paper introduces and summarises contributions to the subject of technological enhancements or extensions…

  8. Starting a New Technology Course?: An Opportunity to Develop Student Technological Literacy

    ERIC Educational Resources Information Center

    Moye, Johnny J.

    2008-01-01

    Starting a new course can be intimidating, especially if the person is the first to teach it in his or her school district. A teacher must take many things into consideration when constructing the content for a new course. The primary focus should be on the development of student technological literacy. The International Technology Education…

  9. ATDRS payload technology research and development

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Connolly, D. J.; Fujikawa, G.; Andro, M.; Kunath, R. R.; Sharp, G. R.

    1990-01-01

    Four technology development tasks were chosen to reduce (or at least better understand) the technology risks associated with proposed approaches to Advanced Tracking and Data Relay Satellite (ATDRS). The four tasks relate to a Tri-Band Antenna feed system, a Digital Beamforming System for the S Band Multiple Access System (SMA), an SMA Phased Array Antenna, and a Configuration Thermal/Mechanical Analysis task. The objective, approach, and status of each are discussed.

  10. Arctic Energy Technology Development Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. Inmore » the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.« less

  11. Development of Composite Technologies for the European Next Generation Launcher

    NASA Astrophysics Data System (ADS)

    Fatemi, Javad; van der Bas, Finn

    2014-06-01

    In the frame of the European Space Agency's Future Launchers Preparatory Programme (FLPP), in conjunction with national Research and Technology programs, Dutch Space has undertaken the development of composite technologies for application in the Europe's next generation launcher, Ariane 6. The efforts have focused on development of a Carbon Fibre Reinforced Plastic (CFRP) Engine Thrust Frame (ETF) for the upper-stage of Ariane6 launcher. These new technologies are expected to improve performance and to lower cost of development and exploitation of the launcher. Although the first targeted application is the thrust frame, the developed technologies are set to be generic in the sense that they can be applied to other structures of the launcher, e.g. inter-stage structures.This paper addresses the design, analysis, manufacturing and testing activities related to the composite technology developments.

  12. Unshrouded Impeller Technology Development Status

    NASA Technical Reports Server (NTRS)

    Droege, Alan R.; Williams, Robert W.; Garcia, Roberto

    2000-01-01

    To increase payload and decrease the cost of future Reusable Launch Vehicles (RLVs), engineers at NASA/MSFC and Boeing, Rocketdyne are developing unshrouded impeller technology for application to rocket turbopumps. An unshrouded two-stage high-pressure fuel pump is being developed to meet the performance objectives of a three-stage shrouded pump. The new pump will have reduced manufacturing costs and pump weight. The lower pump weight will allow for increased payload.

  13. Using Computers in Early Years Education: What Are the Effects on Children's Development? Some Suggestions Concerning Beneficial Computer Practice

    ERIC Educational Resources Information Center

    Theodotou, Evgenia

    2010-01-01

    Technology in education is considered in empirical and theoretical literature as both beneficial and harmful to children's development. In the field of the early years settings there is a dilemma whether or not early childhood teachers should use technology as a teaching and learning resource. This paper has a pedagogical focus, discussing the…

  14. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  15. Space Station engineering and technology development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Historical background, costs, organizational assignments, technology development, user requirements, mission evolution, systems analyses and design, systems engineering and integration, contracting, and policies of the space station are discussed.

  16. Self-Directed Learning: College Students' Technology Preparedness Change in the Last 10 Years

    ERIC Educational Resources Information Center

    Caravello, Michael J.; Jiménez, Joel R.; Kahl, Lois J.; Brachio, Brian; Morote, Elsa-Sofia

    2015-01-01

    This study compares a sample of approximately 44 first year college students in 2005 and 2015 on Long Island, New York, in their technology preparedness and self-directed instruction. The researchers used a survey instrument including demographic information focused upon students' preparation for classroom technology in high school and college.…

  17. Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies

  18. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; hide

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  19. An Information Technology Architecture for Pharmaceutical Research and Development

    PubMed Central

    Klingler, Daniel E.; Jaffe, Marvin E.

    1990-01-01

    Rationale for and development of an information technology architecture are presented. The architectural approach described produces a technology environment that is integrating, flexible, robust, productive, and future-oriented. Issues accompanying architecture development and potential impediments to success are discussed.

  20. Advanced life support technology development for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.

    1990-01-01

    An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.

  1. A Fifteen-Year Forecast of Information-Processing Technology. Final Report.

    ERIC Educational Resources Information Center

    Bernstein, George B.

    This study developed a variation of the DELPHI approach, a polling technique for systematically soliciting opinions from experts, to produce a technological forecast of developments in the information-processing industry. SEER (System for Event Evaluation and Review) combines the more desirable elements of existing techniques: (1) intuitive…

  2. Technology Estimating: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark

    2013-01-01

    NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.

  3. Activities in Support of Two-Year College Science, Engineering, Technology, and Mathematics Education, Fiscal Year 1993. Highlights.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    This report describes the efforts of the National Science Foundation (NSF) and its Division of Undergraduate Education (DUE) to provide educational support to two-year colleges to strengthen science, technology, engineering, and mathematics programs through grants, collaborative efforts, and support for curriculum materials and teacher activities.…

  4. Developing Advanced Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  5. Technology to Develop Algebraic Reasoning

    ERIC Educational Resources Information Center

    Polly, Drew

    2011-01-01

    Students' use of technology allows them to generate and manipulate multiple representations of a concept, compute numbers with relative ease, and focus more on mathematical concepts and higher-order thinking skills. In elementary school mathematics classrooms, students develop higher-order thinking skills by completing complex tasks that require…

  6. Airframe Technology Development for Next Generation Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2004-01-01

    The Airframe subproject within NASA's Next Generation Launch Technology (NGLT) program has the responsibility to develop airframe technology for both rocket and airbreathing vehicles for access to space. The Airframe sub-project pushes the state-of-the-art in airframe technology for low-cost, reliable, and safe space transportation. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas being addressed include design and integration, hot and integrated structures, cryogenic tanks, and thermal protection systems. Each of the technologies in these areas are discussed in this paper.

  7. Lunar Dust Mitigation Technology Development

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Deluane, Paul B.

    2008-01-01

    NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.

  8. Insulin Delivery Device Technology 2012: Where Are We after 90 Years?

    PubMed Central

    Fry, Andrew

    2012-01-01

    Since the first successful use of insulin in 1921 to treat diabetes at Toronto General Hospital, the major advances in development of the medication itself have taken place in parallel with equally significant developments in the means of delivery. Administration of insulin remains parenteral. This article reviews the main variants in prescription-available delivery technology: vial and syringe, pen injector, needle-free injection, and continuous subcutaneous insulin infusion pumps. For each of these, the background and major milestones are covered briefly and followed by a discussion of the latest product innovations, technologies, and implementations, which are all considered in the context of the interaction with users. The article concludes by reflecting upon how the progress in the technology of diabetes management can best serve the patient. The spectacular technological advances in medication, monitoring, and delivery since 1922 have transformed the lives of millions. However, the fact that we can add sophisticated technology to delivery devices and accessories does not mean it is always the best thing for the patient. Electronic sophistication may be welcomed by a young, eager type 1 diabetes patient, while a senior citizen who discovers he has type 2 diabetes may yearn for simplicity. Technology continues to provide great solutions, but the type of solution delivered must be matched to the user if the maximum benefit is to be achieved for all. PMID:22920823

  9. Developing a framework for energy technology portfolio selection

    NASA Astrophysics Data System (ADS)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  10. EPA-developed, patented technologies related to vehicles and fuel emissions

    EPA Pesticide Factsheets

    Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be licensed to businesses or individuals for further development and sale in the marketplace. These technologies primarily relate to efficient vehicle systems and hybrid or diesel engines.

  11. Technology and Motor Ability Development

    ERIC Educational Resources Information Center

    Wang, Lin; Lang, Yong; Luo, Zhongmin

    2014-01-01

    As a new member joining the technology family, active video games have been developed to promote physical exercise. This working-in-progress paper shares an ongoing project on examining the basic motor abilities that are enhanced through participating in commercially available active video games. [For the full proceedings see ED557181.

  12. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  13. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  14. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  15. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  16. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  17. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  18. Fiber-based, trace-gas, laser transmitter technology development for space

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-09-01

    NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  19. Turnaround Operations Analysis for OTV. Volume 3: Technology Development Plan

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An integrated technology development plan for the technologies required to process both GBOTVs and SBOTVs are described. The plan includes definition of the tests and experiments to be accomplished on the ground, in a Space Shuttle Sortie Mission, on an Expendable Launch Vehicle, or at the Space Station as a Technology Development Mission (TDM). The plan reflects and accommodates current and projected research and technology programs where appropriate.

  20. A Fast Technology Infusion Model for Aerospace Organizations

    NASA Technical Reports Server (NTRS)

    Shapiro, Andrew A.; Schone, Harald; Brinza, David E.; Garrett, Henry B.; Feather, Martin S.

    2006-01-01

    A multi-year Fast Technology Infusion initiative proposes a model for aerospace organizations to improve the cost-effectiveness by which they mature new, in-house developed software and hardware technologies for space mission use. The first year task under the umbrella of this initiative will provide the framework to demonstrate and document the fast infusion process. The viability of this approach will be demonstrated on two technologies developed in prior years with internal Jet Propulsion Laboratory (JPL) funding. One hardware technology and one software technology were selected for maturation within one calendar year or less. The overall objective is to achieve cost and time savings in the qualification of technologies. At the end of the recommended three-year effort, we will have demonstrated for six or more in-house developed technologies a clear path to insertion using a documented process that permits adaptation to a broad range of hardware and software projects.

  1. Cognitive Development: Two-Year-Old

    MedlinePlus

    ... Español Text Size Email Print Share Cognitive Development: Two-Year-Old Page Content Article Body Think back ... touching, looking, manipulating, and listening. Now, as a two-year-old, the learning process has become more ...

  2. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  3. Developing Technology Teachers: Questioning the Industrial Tool Use Model

    ERIC Educational Resources Information Center

    Hansen, John W.; Lovedahl, Gerald G.

    2004-01-01

    In this article, the author questions the role of technology teacher preparation programs that are based on an "industrial tool use" model to develop technology education teachers. It is the position of the authors that the manner by which technology education teachers are prepared may need revision and that technology teacher educators…

  4. Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2005-01-01

    A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.

  5. Career Development and Counseling Strategies in an Age of Technology.

    ERIC Educational Resources Information Center

    Hu, Xiaolu; Toman, Sarah

    The technology revolution not only brings new channels of global communication, but also brings unprecedented changes that can impact America's workforce. This paper highlights the impact of technology and knowledge-based economies to career development and the new concept and strategies that need to be developed. The technology revolution brings…

  6. Hypersonic Flight Test Windows for Technology Development Testing

    DTIC Science & Technology

    2013-11-01

    used. 2.1 Propulsion and Controls Test Window The technologies dealing with scramjet propulsion (inlets, fuel injection, etc.) and hypersonic ...AFRL-RQ-WP-TM-2013-0260 HYPERSONIC FLIGHT TEST WINDOWS FOR TECHNOLOGY DEVELOPMENT TESTING Barry M. Hellman Vehicle Technology Branch...DATES COVERED (From - To) November 2013 Final 01 November 2013 – 25 November 2013 4. TITLE AND SUBTITLE HYPERSONIC FLIGHT TEST WINDOWS FOR

  7. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  8. Nature of Technology: Implications for design, development, and enactment of technological tools in school science classrooms

    NASA Astrophysics Data System (ADS)

    Waight, Noemi; Abd-El-Khalick, Fouad

    2012-12-01

    This position paper provides a theory-based explanation informed by philosophy of technology (PoT) of the recurrent documented patterns often associated with attempts to enact technology-supported, inquiry-based approaches in precollege science classrooms. Understandings derived from the history of technological development in other domains (e.g. medicine, transportation, and warfare) reveal numerous parallels that help to explain these recurrent patterns. Historical analyses of major technologies reveal a conglomerate of factors that interact to produce benefits, as well as intended and unintended consequences. On a macro-scale, PoT facilitates understandings of how technologies interact and are impacted by individuals, society, institutions, economy, politics, and culture. At the micro-level, and most relevant to science education, PoT engages the inherent nature of technology along a number of key dimensions: role of culture and values, notions of technological progression, technology as part of systems, technological diffusion, technology as a fix, and the notions of expertise. Overall, the present analysis has implications for the design, development, implementation, and adoption of technological tools for use in precollege science education, and highlights the role of technology as both artifact and process.

  9. Physics of the Cosmos (PCOS) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  10. Identifying Facets of Technology Satisfaction: Measure Development and Application

    ERIC Educational Resources Information Center

    Njoroge, Joyce; Norman, Andrew; Reed, Diana; Suh, Inchul

    2012-01-01

    As institutions of higher learning, universities must devote significant resources in developing intellectual capital in the use of educational technology to sustain their viability. To better understand satisfaction in technology used in classrooms, a psychometric instrument was developed to identify and measure the specific factors of…

  11. The Five-Year Outlook on Science and Technology: 1982.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Committee on Science and Public Policy.

    Presented are reports on trends and probable future developments in eight selected areas of basic science and engineering. These reports are: "The Genetic Program of Complex Organisms" (Maxine F. Singer); "The Molecular and Genetic Technology of Plants" (Joseph E. Varner); "Cell Receptors for Hormones and…

  12. INNOVATIVE CLEAN TECHNOLOGIES CASE STUDIES - SECOND YEAR PROJECT REPORT

    EPA Science Inventory

    The Innovative Clean Technologies Case Studies contained herein are the products of the "Pollution Prevention by and for Small Business" Program (P2SB). The P2SB was an outreach program directed to small businesses that had developed innovative concepts for pollution pr...

  13. Balance, Proprioception, and Gross Motor Development of Chinese Children Aged 3 to 6 Years.

    PubMed

    Jiang, Gui-Ping; Jiao, Xi-Bian; Wu, Sheng-Kou; Ji, Zhong-Qiu; Liu, Wei-Tong; Chen, Xi; Wang, Hui-Hui

    2018-01-01

    The authors' aim was to find the features of balance, proprioception, and gross motor development of Chinese children 3-6 years old and their correlations, provide theoretical support for promoting children's motor development, and enrich the world theoretical system of motor development. This study used a Tekscan foot pressure measurement instrument (Tekscan, Inc., Boston, MA), walking on a balance beam, Xsens 3-dimensional positional measuring system (Xsens Technologies, Enschede, the Netherlands), and Test of Gross Motor Development-2 to assess static balance, dynamic balance, knee proprioception, and levels of gross motor development (GMD) of 3- to 6-year-old children (n = 60) in Beijing. The results are as follows: children had significant age differences in static balance, dynamic balance, proprioception, and levels of GMD; children had significant gender differences in static balance, proprioception, and levels of GMD; children's static balance, dynamic balance, and proprioception had a very significant positive correlation with GMD (p < .01), but no significant correlation with body mass index.

  14. Scientific Knowledge and Technology, Animal Experimentation, and Pharmaceutical Development.

    PubMed

    Kinter, Lewis B; DeGeorge, Joseph J

    2016-12-01

    Human discovery of pharmacologically active substances is arguably the oldest of the biomedical sciences with origins >3500 years ago. Since ancient times, four major transformations have dramatically impacted pharmaceutical development, each driven by advances in scientific knowledge, technology, and/or regulation: (1) anesthesia, analgesia, and antisepsis; (2) medicinal chemistry; (3) regulatory toxicology; and (4) targeted drug discovery. Animal experimentation in pharmaceutical development is a modern phenomenon dating from the 20th century and enabling several of the four transformations. While each transformation resulted in more effective and/or safer pharmaceuticals, overall attrition, cycle time, cost, numbers of animals used, and low probability of success for new products remain concerns, and pharmaceutical development remains a very high risk business proposition. In this manuscript we review pharmaceutical development since ancient times, describe its coevolution with animal experimentation, and attempt to predict the characteristics of future transformations. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. [Research development on disinfection technology for viruses in drinking water].

    PubMed

    Zhang, Yun; Zhang, Qiang; Liu, Yan; Dai, Ruihua; Liu, Xiang

    2010-09-01

    With the deterioration of water source pollution, the quality requirements for drinking water of countries will become stricter and stricter, and the microbe index has been one of the important aspects. The introduction of the virus index and the development of disinfection technology focusing on virus have significant importance for the improvement of the drinking water standards and for the protection of people health in every country. To be familiar with the domestic and abroad research development of the disinfection control technology focusing on virus provides certain theory guidance and technological support for continuously improving drinking water standard in our country and for establishing safer drinking water processing technologies. So, this article will comprehensively describes 4 aspects: resistance comparison of virus over every disinfection technology, influential factors of disinfection, research development of new technology, and the mechanisms.

  16. Development of Technology and Installation for Biohydrogen Production

    NASA Astrophysics Data System (ADS)

    Pridvizhkin, S. V.; Vyguzova, M. A.; Bazhenov, O. V.

    2017-11-01

    The article discusses the method for hydrogen production and the device this method application. The relevance of the use of renewable fuels and the positive impact of renewable energy on the environment and the economy is also considered. The presented technology relates to a method for hydrogen production from organic materials subject to anaerobic fermentation, such as the components of solid municipal waste, sewage sludge and agricultural enterprises wastes, sewage waste. The aim of the research is to develop an effective eco-friendly technology for hydrogen producing within an industrial project To achieve the goal, the following issues have been addressed in the course of the study: - development of the process schemes for hydrogen producing from organic materials; - development of the technology for hydrogen producing; - optimization of a biogas plant with the aim of hydrogen producing at one of the fermentation stages; - approbation of the research results. The article is recommended for engineers and innovators working on the renewable energy development issues.

  17. Decision Gate Process for Assessment of a NASA Technology Development Portfolio

    NASA Technical Reports Server (NTRS)

    Kohli, Rajiv; Fishman, Julianna L.; Hyatt, Mark J.

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to Technology Readiness Level (TRL) 6) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, to reduce life cycle cost and risk, and to increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product was either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  18. Recent advances in the development of new transgenic animal technology.

    PubMed

    Miao, Xiangyang

    2013-03-01

    Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.

  19. Towards the systematic development of medical networking technology.

    PubMed

    Faust, Oliver; Shetty, Ravindra; Sree, S Vinitha; Acharya, Sripathi; Acharya U, Rajendra; Ng, E Y K; Poo, Chua Kok; Suri, Jasjit

    2011-12-01

    Currently, there is a disparity in the availability of doctors between urban and rural areas of developing countries. Most experienced doctors and specialists, as well as advanced diagnostic technologies, are available in urban areas. People living in rural areas have less or sometimes even no access to affordable healthcare facilities. Increasing the number of doctors and charitable medical hospitals or deploying advanced medical technologies in these areas might not be economically feasible, especially in developing countries. We need to mobilize science and technology to master this complex, large scale problem in an objective, logical, and professional way. This can only be achieved with a collaborative effort where a team of experts works on both technical and non-technical aspects of this health care divide. In this paper we use a systems engineering framework to discuss hospital networks which might be solution for the problem. We argue that with the advancement in communication and networking technologies, economically middle class people and even some rural poor have access to internet and mobile communication systems. Thus, Hospital Digital Networking Technologies (HDNT), such as telemedicine, can be developed to utilize internet, mobile and satellite communication systems to connect primitive rural healthcare centers to well advanced modern urban setups and thereby provide better consultation and diagnostic care to the needy people. This paper describes requirements and limitations of the HDNTs. It also presents the features of telemedicine, the implementation issues and the application of wireless technologies in the field of medical networking.

  20. Centers for Professional Development and Technology (CPDT) State-Wide Evaluation Study. Final Summary Report.

    ERIC Educational Resources Information Center

    Macy Research Associates, Wills Point, TX.

    The Texas Centers for Professional Development and Technology (CPDT) study gathered evaluative data about the progress and contribution of the centers toward their goal of systematic change in teacher preparation and student learning during four years of funding (1992-93 through 1995-96). The 21 centers in the sample included 35 universities, 15…

  1. Development of a Hydrologic Characterization Technology for Fault Zones Phase II 2nd Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, Kenzi; Doughty, Christine; Gasperikova, Erika

    2011-03-31

    This is the 2nd report on the three-year program of the 2nd phase of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology for Fault Zones under NUMO-DOE/LBNL collaboration agreement. As such, this report is a compendium of the results by Kiho et al. (2011) and those by LBNL.

  2. Capitalizing on App Development Tools and Technologies

    ERIC Educational Resources Information Center

    Luterbach, Kenneth J.; Hubbell, Kenneth R.

    2015-01-01

    Instructional developers and others creating apps must choose from a wide variety of app development tools and technologies. Some app development tools have incorporated visual programming features, which enable some drag and drop coding and contextual programming. While those features help novices begin programming with greater ease, questions…

  3. Banking, Technology Workers and Their Career Development.

    ERIC Educational Resources Information Center

    Armstrong, Lesley; West, Jim

    2001-01-01

    An Australian bank developed a four-stage career development strategy for information technology workers: (1) career coaching sessions with executives; (2) career coaching seminars for line managers and team leaders; (3) staff career planning workshops; and (4) online career development support. The program resulted in increased satisfaction,…

  4. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  5. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  6. OAST system technology planning

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1978-01-01

    The NASA Office of Aeronautics and Space Technology developed a planning model for space technology consisting of a space systems technology model, technology forecasts and technology surveys. The technology model describes candidate space missions through the year 2000 and identifies their technology requirements. The technology surveys and technology forecasts provide, respectively, data on the current status and estimates of the projected status of relevant technologies. These tools are used to further the understanding of the activities and resources required to ensure the timely development of technological capabilities. Technology forecasting in the areas of information systems, spacecraft systems, transportation systems, and power systems are discussed.

  7. Tritium technology development in EEC laboratories contributions to design goals for NET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinner, P.; Chazalon, M.; Leger, D.

    1988-09-01

    An overview is given of the tritium technology activities carried out in the European national laboratories associated with the European Fusion Programme and in the European Joint Research Center. The relationship of these activities to the Next European Torus (NET) design priorities is discussed, and the current status of the research is summarised. Future developments, required for NET, which will be addressed in the definition of the next 5-year programme are also presented.

  8. The Deflector Selector: A Machine Learning Framework for Prioritizing Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Van Heerden, Elmarie; Erasmus, Nicolas; Greenberg, Adam; Nesvold, Erika; Galache, Jose Luis; Dahlstrom, Eric; Marchis, Franck

    2016-10-01

    On 15 February, 2013, a ~15 m diameter asteroid entered the Earth's atmosphere over Russia. The resulting shockwave injured nearly 1500 people, and incurred ~33 million (USD) in infrastructure damages. The Chelyabinsk meteor served as a forceful demonstration of the threat posed to Earth by the hundreds of potentially hazardous objects (PHOs) that pass near the Earth every year. Although no objects have yet been discovered on an impact course for Earth, an impact is virtually statistically guaranteed at some point in the future. While many impactor deflection technologies have been proposed, humanity has yet to demonstrate the ability to divert an impactor when one is found. Developing and testing any single proposed technology will require significant research time and funding. This leaves open an obvious question - towards which technologies should funding and research be directed, in order to maximize our preparedness for when an impactor is eventually found?To help answer this question, we have created a detailed framework for analyzing various deflection technologies and their effectiveness. Using an n-body integrator (REBOUND), we have simulated the attempted deflections of a population of Earth-impacting objects with a variety of velocity perturbations (∂Vs), and measured the effects that these perturbations had on impact probability. We then mapped the ∂Vs applied in the orbital simulations to the technologies capable of achieving those perturbations, and analyzed which set of technologies would be most effective at preventing a PHO from impacting the earth. As a final step, we used the results of these simulations to train a machine learning algorithm. This algorithm, combined with a simulated PHO population, can predict which technologies are most likely to be needed. The algorithm can also reveal which impactor observables (mass, spin, orbit, etc.) have the greatest effect on the choice of deflection technology. These results can be used as a tool to

  9. Technology-Based Communication and the Development of Interpersonal Competencies Within Adolescent Romantic Relationships: A Preliminary Investigation.

    PubMed

    Nesi, Jacqueline; Widman, Laura; Choukas-Bradley, Sophia; Prinstein, Mitchell J

    2017-06-01

    This study investigated longitudinal associations between adolescents' technology-based communication and the development of interpersonal competencies within romantic relationships. A school-based sample of 487 adolescents (58% girls; M age  = 14.1) participated at two time points, one year apart. Participants reported (1) proportions of daily communication with romantic partners via traditional modes (in person, on the phone) versus technological modes (text messaging, social networking sites) and (2) competence in the romantic relationship skill domains of negative assertion and conflict management. Results of cross-lagged panel models indicated that adolescents who engaged in greater proportions of technology-based communication with romantic partners reported lower levels of interpersonal competencies one year later, but not vice versa; associations were particularly strong for boys. © 2016 The Authors. Journal of Research on Adolescence © 2016 Society for Research on Adolescence.

  10. Technological developments and future perspectives on graphene-based metamaterials: a primer for neurosurgeons.

    PubMed

    Mattei, Tobias A; Rehman, Azeem A

    2014-05-01

    Graphene, a monolayer atomic-scale honeycomb lattice of carbon atoms, has been considered the greatest revolution in metamaterials research in the past 5 years. Its developers were awarded the Nobel Prize in Physics in 2010, and massive funding has been directed to graphene-based experimental research in the last years. For instance, an international scientific collaboration has recently received a €1 billion grant from the European Flagship Initiative, the largest amount of financial resources ever granted for a single research project in the history of modern science. Because of graphene's unique optical, thermal, mechanical, electronic, and quantum properties, the incorporation of graphene-based metamaterials to biomedical applications is expected to lead to major technological breakthroughs in the next few decades. Current frontline research in graphene technology includes the development of high-performance, lightweight, and malleable electronic devices, new optical modulators, ultracapacitors, molecular biodevices, organic photovoltaic cells, lithium-ion microbatteries, frequency multipliers, quantum dots, and integrated circuits, just to mention a few. With such advances, graphene technology is expected to significantly impact several areas of neurosurgery, including neuro-oncology, neurointensive care, neuroregeneration research, peripheral nerve surgery, functional neurosurgery, and spine surgery. In this topic review, the authors provide a basic introduction to the main electrophysical properties of graphene. Additionally, future perspectives of ongoing frontline investigations on this new metamaterial are discussed, with special emphasis on those research fields that are expected to most substantially impact experimental and clinical neurosurgery in the near future.

  11. Integration of NASA-Developed Lifing Technology for PM Alloys into DARWIN (registered trademark)

    NASA Technical Reports Server (NTRS)

    McClung, R. Craig; Enright, Michael P.; Liang, Wuwei

    2011-01-01

    In recent years, Southwest Research Institute (SwRI) and NASA Glenn Research Center (GRC) have worked independently on the development of probabilistic life prediction methods for materials used in gas turbine engine rotors. The two organizations have addressed different but complementary technical challenges. This report summarizes a brief investigation into the current status of the relevant technology at SwRI and GRC with a view towards a future integration of methods and models developed by GRC for probabilistic lifing of powder metallurgy (P/M) nickel turbine rotor alloys into the DARWIN (Darwin Corporation) software developed by SwRI.

  12. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  13. Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment

    NASA Technical Reports Server (NTRS)

    Yackovetsky, Robert (Technical Monitor)

    2002-01-01

    The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.

  14. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin Bluhm; James Coffey; Roman Korotkov

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources ofmore » elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This

  15. Schedule Risks Due to Delays in Advanced Technology Development

    NASA Technical Reports Server (NTRS)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  16. Extension Youth Educators' Technology Use in Youth Development Programming

    ERIC Educational Resources Information Center

    McClure, Carli; Buquoi, Brittany; Kotrlik, Joe W.; Machtmes, Krisanna; Bunch, J. C.

    2014-01-01

    The purpose of this descriptive-correlational study was to determine the use of technology in youth programming by Extension youth development educators in Louisiana, Mississippi, and Tennessee. Data were collected via e-mail and a SurveyMonkey© questionnaire. Extension educators are using some technology in youth development programming. More…

  17. The Implementation of Technology-Based SME Management Development Programmes

    ERIC Educational Resources Information Center

    Carr, James

    2005-01-01

    Learning technology is seen as one solution to the problem of delivering management training in Small and Medium-sized Enterprises (SMEs). This paper investigates how the Higher Education (HE) sector can use its growing expertise in learning technology implementation to develop effective SME management development solutions. It is found that there…

  18. Space technology transfer to developing countries: opportunities and difficulties

    NASA Astrophysics Data System (ADS)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  19. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Watkins, S.; Shaw, T.

    2014-01-01

    The Technology Watch (Tech Watch) project is directed by the NASA Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASA's goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive

  20. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Watkins, S.; Shaw, T.

    2014-01-01

    The Technology Watch (Tech Watch) project is directed by the NASA Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASAs goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive

  1. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  2. Technology, design and dementia: an exploratory survey of developers.

    PubMed

    Jiancaro, Tizneem; Jaglal, Susan B; Mihailidis, Alex

    2017-08-01

    Despite worldwide surges in dementia, we still know relatively little about the design of home technologies that support this population. The purpose of this study was to investigate design considerations from the perspective of developers. Participants, including technical and clinical specialists, were recruited internationally and answered web-based survey questions comprising Likert-type responses with text entry options. Developers were queried on 23 technology acceptance characteristics and 24 design practices. In all, forty developers completed the survey. Concerning "technology acceptance", cost, learnability, self-confidence (during use) and usability were deemed very important. Concerning "design practice", developers overwhelmingly valued user-centred design (UCD). In terms of general assistive technology (AT) models, these were largely unknown by technical specialists compared to clinical specialists. Recommendations based on this study include incorporating "self-confidence" into design protocols; examining the implications of "usability" and UCD in this context; and considering empathy-based design approaches to suit a diverse user population. Moreover, clinical specialists have much to offer development teams, particularly concerning the use of conceptual AT models. Implications of rehabilitation Stipulate precise usability criteria. Consider "learnability" and "self-confidence" as technology adoption criteria. Recognize the important theoretical role that clinical specialists can fulfil concerning the use of design schemas. Acknowledge the diversity amongst users with dementia, potentially adopting techniques, such as designing for "extraordinary users".

  3. The Year-Two Decline: Exploring the Incremental Experiences of a 1:1 Technology Initiative

    ERIC Educational Resources Information Center

    Swallow, Meredith

    2015-01-01

    Reports on one-to-one (1:1) technology initiatives emphasize overall favorable results; however, comprehensive multiyear studies looked at understate the progressive experiences of teachers and students. A small body of research suggested the second year of 1:1 technology programs manifested difficulties and struggles which significantly…

  4. Elementary Teachers' Experiences with Technology Professional Development and Using Technology in the Classroom: A Case Study

    ERIC Educational Resources Information Center

    Grizzle, Pamela Lavon

    2016-01-01

    In order for educators to prepare students for technology-enhanced learning educators must first be prepared. The digital divide and technology professional development are two factors impacting the depth at which technology is integrated into the classroom. The local problem addressed in this study was that the impact of technology professional…

  5. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  6. National Policies and strategies on science and technology for development.

    PubMed

    Ayob, A

    1979-01-01

    Malaysia's economy continues to be dependent upon the primary producing sectors, based on the exploitation or use of her natural resources. At this Malaysia is the world's largest exporter of natural rubber, tin, tropical hardwoods and palm oil. There is still wide scope for developing new application of science and technology in the rubber industry, and the scope remains even wider in other agricultural sectors. In order to accelerate development in the traditional agricultural sector, that is, those related to food production, the Malaysian Agricultural Research and Development Institute (MARDI) was established in 1970 to undertake research in the development of crops other than rubber. Progress has been relatively slow in the development of agriculture. In forestry much work needs to be done in the application of science and technology to forest management, logging, timber utilization, silviculture and the related field of forest regeneration, tree breeding, forest protection and soil conservation. Further development of the mining sector calls for the application of new technology both in prospecting for new sources of minerals and in exploitation. Development of off-shore technology will become increasingly important. Although a major sector in resources development is energy, there is, as yet, no energy policy. Structural diversification is recognized as a basic need for the economic development of Malaysia. Malaysia will have a great demand for trained scientific and technological personnel.

  7. Technologies for the development of West Nile virus vaccines.

    PubMed

    Ulbert, Sebastian; Magnusson, Sofia E

    2014-01-01

    West Nile virus (WNV), an emerging mosquito-borne and zoonotic flavivirus, continues to spread worldwide and represents a major problem for human and veterinary medicine. In recent years, severe outbreaks were observed in the USA and Europe with neighboring countries, and the virus is considered to be endemic in an increasing number of areas. Although most infections remain asymptomatic, WNV can cause severe, even fatal, neurological disease, which affects mostly the elderly and immunocompromised individuals. Several vaccines have been licensed in the veterinary sector, but no human vaccine is available today. This review summarizes recent strategies that are being followed to develop WNV vaccines with emphasis on technologies suitable for the use in humans.

  8. [Patented technology status quo and development trend for Chinese herbal medicines].

    PubMed

    Li, Chang; Huang, Luqi

    2009-06-01

    Patent technology is regarded as technological trends under the market economy condition. The case showed the information form patent literature can be widely used in technology or economy. In this study, we analyzed the patent technology status quo and development trend for Chinese herbal medicines based on China patent database. The patent technology status quo is divided from the technology of biotechnology, quality control, cultivation and herb processing on Chinese herbal medicines. Furthermore, some recommendations of technology development and advices on patent protection for Chinese herbal medicines were suggested.

  9. [Health technology assessment (HTA). Developments in healthcare and potential for radiology].

    PubMed

    Gizewski, E R; Forsting, M; Krombach, G A; Schöffski, O

    2014-06-01

    Cost-intensive measures and procedures, such as also employed in radiology, have far-reaching economic implications in respect to increasing expenditure with limited resources. Health technology assessment (HTA) describes the systematic evaluation of medical procedures and technologies which in recent years has been introduced by many countries into healthcare politics. In many cases HTA analyses can be directly implemented into practice as shown by the examples given in this article; however, in the current form of HTA the practical implementation for radiology often presents the problem that the cost-benefit ratio does not yet have a comprehensive view in the HTA report but is limited to a subsection, e.g. current costs versus sensitivity of a method. Since its inception radiology has had a high power of innovation and new developments will also substantially determine the future years. These procedures must not only be evaluated with respect to feasibility but also in the sense of the HTA in the total concept. In radiology there are also a large number of possibilities for radiologists not only as passive consumers of HTA reports but also to become active participants in this process, an opportunity which should be taken advantage of.

  10. Partnering To Build a Quality Workforce: Critical Issues in Environmental Technology Education at Two-Year Colleges. A Report of the National Forum on Critical Issues in Environmental Technology Education at Two-Year Colleges (Washington, D.C., March 2-4, 1995).

    ERIC Educational Resources Information Center

    Kabat, Ellen J.; Friedel, Janice Nahra; Senew, Mike

    The National Forum on Critical Issues in Environmental Technology Education at Two-Year Colleges addressed critical issues relevant to environmental technology education in the United States. Forty-three participants from across the country who attended the 1995 Forum represented business and industry, two-year colleges, four-year colleges and…

  11. Advancement of CMOS Doping Technology in an External Development Framework

    NASA Astrophysics Data System (ADS)

    Jain, Amitabh; Chambers, James J.; Shaw, Judy B.

    2011-01-01

    The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.

  12. The Feasibility of a Continuous Learning Year Program at Fashion Institute of Technology.

    ERIC Educational Resources Information Center

    Thomas, George Isaiah

    This feasibility study provides the Fashion Institute of Technology with a number of continuous-learning-year calendar choices, along with several suggestions regarding implementation procedures. The nature of the implementation process and the issues confronting the college administrator who is willing to reschedule the college year to facilitate…

  13. NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.

    2009-01-01

    This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.

  14. Supporting research and technology for automotive Stirling engine development

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.

    1980-01-01

    The technology advancement topics described are a part of the supporting research and technology (SRT) program conducted to support the major Stirling engine development program. This support focuses on developing alternatives or backups to the engine development in critical areas. These areas are materials, seals control, combustors and system analysis. Specific objectives and planned milestone schedules for future activities as now envisioned are described. These planned SRT activities are related to the timeline of the engine development program that they must support.

  15. The Effectiveness of Information and Communication Technology on the Learning of Written English for 5- to 16-Year-Olds

    ERIC Educational Resources Information Center

    Andrews, Richard; Freeman, Allison; Hou, Dan; McGuinn, Nick; Robinson, Alison; Zhu, Judy

    2007-01-01

    The last few years have seen an increase in research studies on the impact and effectiveness of information and communication technologies (ICTs) in the teaching and learning of English as a school subject. It is against that research background and against recent developments in policy and practice in the UK that the present systematic review of…

  16. NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Pham, Bruce; Ganel, Opher

    2017-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects

  17. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  18. The International Year of Light and Light-based Technologies

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie

    2015-05-01

    I report on the opening ceremony of the International Year of Light and Light-based Technologies 2015 (IYL2015), which took place at the UNESCO headquarters in Paris, France, on 19-20 January 2015. Over the two days, more than 1000 participants from all over the world learned more about the fundamental properties of light and advanced photonics applications, the history of optics and its applications through the centuries, light poverty and light pollution, and light for everyday life, health and research.

  19. Technological advances in precision medicine and drug development.

    PubMed

    Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina

    New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.

  20. Research on robotics by principal investigators of the Robotics Technology Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrigan, R.W.

    The U.S. Department of Energy`s Office of Technology Development has been developing robotics and automation technologies for the clean-up and handling of hazardous and radioactive waste through one of its major elements, Cross Cutting and Advanced Technology development. CC&AT university research and development programs recognize the strong technology, base resident in the university community and sponsor a focused technology research and development program which stresses close interaction between the university sector and the DOE community. This report contains a compilation of research articles by each of 14 principle investigators supported by CC&AT to develop robotics and automation technologies for themore » clean-up and handling of hazardous and radioactive waste. This research has led to innovative solutions for waste clean-up problems, and it has moved technology out of university laboratories into functioning systems which has allowed early evaluation by site technologists.« less